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0. Introduction 

Let k be a field, and A a finite-dimensional linear associative algebra over k. We 
assume that A has an identity element, and that a A-module X is left, unital and 
of finite dimension as a k-space. The representation theory of A is the study of such 
A-modules, or more exactly of the category mod A whose objects are all A-modules 
X, X', ... and whose morphisms are the A-maps (i.e. A-homomorphisms) between 
A-modules. We write X e m o d A  to indicate that X is an object of modA;  if 

X , X ' e m o d A  we denote the set of all morphisms f : X ~ X '  by (X,X')modA, or 
simply (X, X'). The category mod A is k-linear, which means that each set (X, X') 

is a k-space, and that composition of morphisms in mod A is k-bilinear. We shall 
meet other k-linear categories, and if ~ is one of these, we use the notations X ~  
and (X,X')~=(X,X') in the same sense as we have indicated for the case 

= mod A. We recall that a functor F :  ~ between k-linear categories ~, ~ is k- 
linear if for all X, X'  e ~ it acts k-linearly on (X, X')~, so that if F is, for example, 
contravariant, F induces a map (X,X')~(F(X'),  F(X))~ which is k-linear. All 
functors which we shall meet in this work are k-linear. 

In the past decade M. Auslander and I. Reiten have greatly enriched the represen- 
tation theory of A, by embedding mod A in a larger category Mod(mod A). The ob- 
jects of  Mod(mod A) are the k-linear, contravariant functors F :  mod A--,Mod k, 
where Mod k is the category of all k-spaces (including infinite-dimensional ones). 
The morphisms of Mod(mod A) are the natural transformations a : F~F'  between 
such functors F,F'. 

Notation. From now on, in the interests of brevity, we shall denote the category 
Mod(mod A) by Mmod A. Similarly the category mod(mod A) of finitely presented 
objects of Mmod A (see Section 1) is denoted mmod A. 

The object of this paper is to study the category Mmod A in the case where 
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A = kG is the group algebra over k of a finite group G. A summary of its contents 
follows. Section 1 is a survey, intended to be elementary, of the basic ideas Of 
Auslander-Reiten theory. In Section 2, the processes of induction, restriction and 
conjugation are generalized from the mod to the Mmod categories. For example, 
if H is a subgroup of G, we have a functor Ind~:  Mmod kH--*Mmod kG, which is 
'adjoint '  or 'dual '  to the usual restriction functor res~:mod kG-~modkH; if 
E e Mmod kH, we define I n d , ( E ) e  Mmod kG in such a way that Ind~(E)(X)= 
E(res~(X)), for all X e  mod kG. The standard identities involving ind, res, cnj for 
modules have their counterparts in the Mmod categories, and these are proved in 
Section 3. Section 4 introduces relative projectivity for functors; one defines vertex 
and source for any indecomposable finitely presented F e  Mmod kG. The theory at 
this point requires the analogue of the 'relative trace map' ,  and the discussion of 
this occupies Section 5. Functors already show some differences from modules at 
this stage; for example, a projective object F of M m o d k G  is not necessarily 
{ 1 }-projective. The rest of the paper, apart from some technical preliminaries in 
Section 6, is concerned with simple functors. Auslander has shown that there is a 
correspondence V--,SV which induces a bijection between the isomorphism classes 
of all indecomposable V~ mod A, and those of all simple S V e  Mmod A (see Section 
1 for definitions and references). The main results of Section 7 show that if the in- 
decomposable modules We mod k H  and Ve mod kG 'correspond' suitably, then 
Ind~t(SW)=SV; in particular this happens if W has vertex P, H>_No(P ) and W 
is a component of rest(V),  and this gives a proof of Burry-Carlson's 'strong cor- 
respondence theorem' [7, Theorem 5]. It should be said at once that this proof is 
much longer, and at heart is not very different from, that of Burry and Carlson; 
the theorems in Section 7 are offered for the new perspective provided by the 'func- 
torial' method. In particular, one gets very easily a theorem (7.8), certainly well- 
known, on the induction of almost split sequences. Section 8 shows how to calculate 
the vertex of the simple functor SV in two special cases, viz. when G is a p-group 
(Example (8.1)), and when G is arbitrary but V e m o d  kG is projective indecom- 
posable (Example (8.3)). Section 9 is a short appendix, in which is sketched a proof 
of a theorem of Auslander (Theorem (1.4)), for which I could find no convenient 
reference. 

1. Auslander-Reiten theory 

In this section, A is an arbitrary finite-dimensional k-algebra, and modA,  
Mmod A are the categories defined in the Introduction. We shall describe some of 
the basic ideas of Auslander-Reiten's theory, as it applies to these categories. A 
much more complete survey is given by Gabriel in [10]. 

For each module M e  mod A, we define a functor (-, M)  e Mmod A (sometimes 
called the functor 'represented' by M)  as follows: ( - ,M)  takes X e m o d A  to 
the k-space (X,M),  and it takes a morphism f : X ~ X '  in modA to the k-map 



Functors on categories o f  finite group representations 267 

(f, M) : (X, M ' ) ~ ( X ,  M) given by the rule (f, M)(O') = O'f, for any 0 ' e  (X', M). One 
verifies that (-, M) : mod A - , M o d  k, so defined, is a k-linear contravariant functor. 

The next lemma is fundamental; it describes completely all the morphisms from 
(., M)  into a given, arbitrary, functor F e  Mmod A. Recall that to specify a mor- 
phism a:G-- ,F  in MmodA,  we must give for each X e m o d A  a k-map 
a(X) : G(X)~F(X) ,  in such a way that the resulting family {a(X)} is natural in X. 

(1.1) Yoneda's lemma ([17]; see [14, p. 61]). I f M e m o d A  a n d F ~ M m o d A ,  then 
each morphism a : ( . , M ) ~ F  is completely determined by the element 
T a = a(M)(1 M)~ F(M). (Here 1M denotes the identity map o f  M onto itself.) In fact 
for any X ~  mod A, the k-map a(X) : (X, M ) ~ F ( X )  is given by 

(1.1a) a(X)( f )  =F(f)(Ta), for  all f e (X, M). 

Conversely given any element T~ F(M) there is a unique morphism a: (., M)--, F such 
that Ta = T. The correspondence t~--, Ta defines a k-isomorphism ((., M), F)Mmo d A 
F(M). 

We sketch the proof of (1.1). Let a, Ta be as given above. For each X e m o d A  and 
each f ~  (X, M), the naturality of a requires the diagram below to commute. 

(X,M) 

(f, M) l 

~(x) 
, F ( X )  

F(f) 

ct(M) 
(M, M) , F(M) 

Since l m e  (M, M), we get a(X)(f,  M)(1M) = F(f)a(M)(1M), and this is (1. la). Con- 
versely, if T~F(M)  is given, we put T in place of T a in (1.1a), and use this to 
define the k-map a(X):(X,M)-- ,F(M),  for all X e m o d A .  It is easy to check that 
the family {a(X)} is natural in X. The rest of the proof of (1.1) is straightforward. 

Suppose a : M ~ M '  is a morphism in modA.  Define for each X e m o d A  
the k-map (X,a):(X,M)--*(X,M') by the rule, (X,a)(O)=aO, for all Oe(X,M).  
We check that the family {(X,a)} is natural in X, hence defines a morphism 
(., a) :(- ,  M)-- , ( . ,M')  in MmodA.  But an application of Yoneda's lemma shows 
that every morphism a : ( - , M ) - * ( . , M ' )  has the form a = ( . , a ) ,  for a (unique) 
a : M--,M'. We may define a covariant, k-linear functor Y: mod A ~ M m o d  A by 
putting Y(M)= (., M), Y(a)= (., a). We have just proved that, for given M, M ' e  
mod A, the map 

(1.2) YM, M' : (M, M')mod A ~ ((', M), (', M'))Mmod A 

induced by Y is surjective; it is easy to see that YM, M" is in fact a k-isomorphism 
(we shall call this the Yoneda isomorphism), so that Y is a full embedding (see [14, 
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pp. 14, 15]) of modA in MmodA;  in this sense, MmodA is an 'extension' of 
mod A. 

Another application of (1.1) gives an important 

(1.3) Proposition. For any M e mod A, (-, M) is a projective objective o f  Mmod A. 

Mmod A is, like modA,  a k-linear, abelian category, and the objects F e  MmodA 
can be treated very much as if they were modules - see Auslander [1, §2]. For the 
reader's convenience we repeat here some definitions from [1, §2], sometimes with 
slight changes of terminology. If F, G e Mmod A, we say that F is a subfunctor of 
G (notation F_< G) if (i) for each X e m o d A ,  F(X) is a k-subspace of G(X), and 
(ii) for each f :  X--,X'  in modA,  the k-map F ( f ) : F ( X ' ) ~ F ( X )  is just the restric- 
tion of the k-map G(f)  : G(X') ~ G(X). Notice that (ii) is possible if and only if the 
spaces F(X) satisfy the condition (ii*) for each f :  X ~ X ' ,  G(f)  maps F(X') into 
F(X). 

If F <  G we may define the quotientfunctor G/Fe  Mmod A as follows: for each 
X e  mod A, (G/F)(X) := G(X)/F(X),  while for each morphism f :  X-- ,X'  in mod A, 
(G/F)( f )  is the k-map G(X' ) /F(X ' )~G(X) /F(X)  which is induced by G(f)  (and 
notice that by (ii*), this makes sense). Each morphism a : F ~ F '  in Mmod A has kernel 
Ker a and image Im a, which are the subfunctors of F and F '  respectively given by 
(Ker a)(X) := Ker a(X), (Im a)(X) := Im a(X), for each X e mod A. There is an iso- 
morphism t~ : F/Ker  a---,Im a in Mmod A such that for each X e  mod A, a(X) is the 
natural isomorphism F(X) /Kera(X)~Ima(X) .  A sequence F ~,F'~-ff--~F " in 
Mmod A is exact if Ker 1~= Im a, which is the same as saying that the sequence 
F(X) a(x), F'(X) #(x), F"(X) in mod A is exact, for each X e  mod A. Short exact 
sequences in Mmod A are defined in the expected way. 

If {Fi : i e I} is a family of objects of Mmod A, indexed by a set / ,  then the direct 
sum F= Hi~zFi is the object of MmodA such that F ( X ) : =  Hi,zF/(X) for each 
X e  mod A, while for each f :  X--,X" in mod A, F( f )  is the k-map H F/(f) .  One 
may define similarly the direct product Hi~tFi [1, pp. 184, 185]. 

Finally, an object F e  Mmod A is indecomposable if F ~ 0  and there is no isomor- 
phism F-~F1 tl F2 with non-zero objects F 1,/72 e Mmod A, equivalently, F ~ 0  is in- 
decomposable if  and only if the endomorphism algebra End F has no idempotent 
~:1F or 0. 

We come now to the first non-trivial application of these ideas. Pursuing the 
analogy with modules, Auslander defines the radical rF of an object F e  Mmod A 
to be the intersection of all the maximal subfunctors of F [2, p. 319]. In case 
F =  (., M)  for some M e  mod A, the radical has a useful explicit description, as 
follows. 

(1.4) Theorem (Auslander). Let M e  modA. Then r ( . ,M)  is the subfunctor of  
(., M)  given by 
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(1.4a) r ( X , M ) = { f e ( X , M ) l f g e r a d E n d M  for  all g e ( M , X ) }  

for  all X e  mod A. (Here we have written r(X, M) for the value r(-, M)(X)  of r(., M) 
a t X . )  

This is implicit in [3, Corollary 1.6b, Proposition 2.1]. For another description of 
r(., M), easily seen to be equivalent to that just given, see Gabriel [10, p. 2]. A proof 
of (1.4) is sketched in the Appendix to this paper. 

Now assume that Ve mod A is indecomposable (in future we shall often denote 
this by VeindecA).  This implies that (-, V) is indecomposable, since End V--- 
End(-, V) by (1.2). Assume also that X e  indec A. Then it follows easily from Fit- 
ting's lemma and (1.4a) that r(X, V)= (X, V) if X ~  V. On the other hand (1.4a) 
shows that r(V, V ) = r a d E n d  V. We define next functors SV, which are (in case 
A = kG) the main concern of this paper. 

Definitions. Let VeindecA.  Define S V e M m o d A  to be the quotient functor 
(-, V)/r(. ,  V). Let A(V):= (End V)/rad End V, which is a division k-algebra, since 
End V is a local ring. Let 5(V) : = dim A (V) (here and elsewhere, dim = dim~). 

Before going further, two remarks about an arbitrary F e  Mmod A are in order. 
The first is that F, like any other k-linear functor, commutes with finite direct sums. 
The second is that if M e  mod A, then F(M) can be regarded as a right End M 
module as follows: given ( e F ( M )  and h e End M, one defines ~h :=F(h)(O [1, p. 
191]. 

(1.5) Theorem (Auslander). Let VeindecA.  Then 
(i) SV is a simple object o f  Mmod A. Any simple object o f  Mmod A is isomor- 

phic to SV for  some Ve indec A. 
(ii) Let X e m o d A ,  and let X=Il i~ lXi ,  where I is a finite index set and the 

X i e indec A (such a "decomposition" o f  X is always possible). Then 

(1.5a) dim(SV)(X) = [ V l XI5(V), 

where [ V l X l = l { i e I l g i  = v}l is the "multiplicity" o f  V in the given decomposi- 
tion o f  X. 

(iii) End(S V) = A (V), isomorphism of  k-algebras. 

Proof. (i) We must prove that any non-zero subfunctor F of SV, is equal to SV. 
For this it is enough to prove F(X)= (SV)(X), for all X e  indec A. If X ~  V, this 
holds because (SV)(X)=(X,  V)/r(X, V)=0 (see above). If X_- V we may assume 
that X =  V and that F(V)~O. But F(V) is a right End V submodule of the right 
End V module (SV)=(V, V)/rad End V=A(V),  and this latter is clearly a simple 
module. Hence F ( V ) =  (SV)(V), as required. For the second statement in (i), see [3, 
p. 281]. 
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(ii) From what has been said above, it is clear that (SV)(X)=[V]X]A(V),  
isomorphism of k-spaces. The result follows. 

(iii) Each 0eEnd( . ,  V) maps r(., V) into itself (this means that, for all 
X e  rood A, O(X) maps r(X, V) into itself), hence 0 induces an endomorphism g of 
SV. Conversely any ~ ~ End SV can be lifted to some 0 ~ End(., V), because (-, V) 
is projective. So 0 ~  0 determines a k-algebra epimorphism End(., V)--, End S V. The 
result now follows, because End(., V)=-End V by (1.2), and End SV is a division 
algebra by Schur's lemma. 

Auslander defines an object F e  Mmod A to be finitely generated if there exists 
an exact sequence (., V ) ~ F ~ 0 ,  for some Ve mod A, and to be finitely presented 
if there is an exact sequence (., VI)--*(., V)-,F~O, for some V 1, V e m o d A  [1, pp. 
186, 204]. In the latter case the morphism (., V1)~( ., V) can be written (., g) for 
some g e  (Vl, V), by the Yoneda isomorphism (1.2). It is now easy to check that the 
sequence 

(-,f) t-,g) 
(1.6) 0"-~ (-, V2) ' (., Vl) ,(.,V)--*F--~O 

is exact, where V2 = Ker g and f :  V2--' VI is the inclusion. 

Definition. The category mmod A is defined to be the full subcategory of Mmod A, 
whose objects are the finitely presented objects of MmodA. (This category is 
denoted mod(mod A) in [2].) 

Clearly (., M) is finitely presented, for all M e  mod A, so that (1.6) is a projective 
resolution of F in mmod A. This shows that mmod A has global homological 
dimension < 2 [2, p. 327]. 

The fundamental theorem of Auslander-Reiten theory is that every simple func- 
tor in MmodA is finitely presented, or equivalently, that S V e m m o d A ,  for all 
Ve indec A [2, p. 319]. This is easy to prove if the indecomposable module V is pro- 
jective, for in that case the sequence 

( ' ,g) 
0-*(.,rV) ,( . ,  v)-~ s v - ~ o  

is exact, where rV is the radical of V and g is the inclusion r V ~  V ([5, Proposition 
3. la], [10, p. 4]). If V is non-projective, then the proof that SV is finitely presented 
is far from trivial, and is equivalent to the proof that there exists an almost split 
sequence o ~ v 2 - - L v  l g, v ~ o  in modA (see [4, §4], [5, p. 4431). In fact (1.6) 
is a minimal projective resolution for F =  SV (for the theory of minimal projective 
resolutions in mmodA,  see [1, p. 2121, [2, p. 320]) if and only if 0- ,  V2-~  V1 g, 
V--*0 is almost split - it being understood that the morphism (., V ) ~ S V  in (1.6) 
is the natural epimorphism (see [10, Lemma 1.4, p. 6]). 

Let M'modA denote the category of all covariant, k-linear functors 
E :  modA-- 'Mod k. For any object E of M'mod A, the functor DE is an object of 
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Mmod A; here D : Mod k ~ M o d  k is the standard 'dual '  functor which takes 
S e Mod k to DS= HOmk(S, k). In the same way, DFe M'mod A, for any 
F e  Mmod A. Since D induces a genuine duality S=-DDS on the category mod k of 
finite-dimensional k-spaces, we have E-~DDE, F=DDF for functors E,F such that 
E(X), F(X) e mod k, for all X e  mod A. One should notice that, for any M e  mod A, 
the functors E=(M, . ) ,  F = ( . , M )  have the property just mentioned ( (M, . ) e  
M'mod A is the analogue of (-, M ) e  Mmod A); hence so do any finitely-generated 
E,F. An important theorem of Auslander and Reiten [2 p. 317] says that E e 
M'mod A is finitely presented, if and only if  DEe Mmod A is finitely presented. 
The fact that D(M,. ) is a finitely presented object of Mmod A is at the heart of  
Auslander and Reiten's proof that simple functors in Mmod A are finitely presented 
(see [10, p. 5]). We shall make use of the following characterization of finitely 
presented objects of MmodA,  proved in [2, pp. 318, 319]. 

(1.7) Theorem (Auslander-Reiten). Let Fe  Mmod A. Then F is finitely presented i f  
and only i f  there exist V, X e mod A and a morphism a : (., V ) ~  D(X, . ) in Mmod A, 
such that F= Im a. 

Yoneda's lemma (1.1) tells us that a morphism a : ( . ,  V)- ,D(X, .  ) is completely 
determined by the element T~ = a(V)( l  v) of D(X, V). So we have the rather surpris- 
ing fact that any object F e  mmod A is completely specified by a pair of modules 
V, X e  modA,  and a single element T u of D(X, V). This specification of objects of  
mmod A is used in Sections 6, 7 of this work. We end the present Section 1 by giving 
the specification of this kind for a simple functor SV (Veindec A). This is used to 
calculate almost split sequences [4, §4]. 

(1.8) Theorem (Auslander-Reiten; see [10, p. 4]). I f  Veindec 2, then a morphism 
a : ( - ,  V)~D(V, .  ) has the property that Im a=SV,  i f  and only i f  the element T a = 
a(V)(1 v) of  D(V, V) satisfies 

(1.8a) Ta=#O, Ta(rad End V)=O. 

Proof. It is clear that Im a = S V  if and only if Ker a = r(., V), i.e. if and only if for 
all X e  rood A there holds 

(*) f e  r(X, V) ,~ a (X) ( f )  = 0, for all f e  (X, V). 

By (1.1a), a(X)( f )  is the element of  D(V, X) given by a(X)(f)(g)= Ta(fg), for all 
g e ( V , X ) .  By (1.4a), f e  r(X, V) if  and only if f g e r a d  End V for all g e ( V , X ) .  So 
condition (.) is equivalent to 

(**) f (V,X)_<radEnd V ~, Ta(f(V,X))=O, for all f e ( X ,  V). 

It is easy to check that f(V, X ) =  { fg]g  e (V, X)} is a right ideal of (V, V)= End V. 
Since radEnd V is the unique maximal right ideal of End V, condition (**) is 
equivalent to (1.Sa). This completes the proof of (1.8). 
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Remarks on notation. From now on p = char k is assumed finite. 
The signs Ii, lI refer to (external) direct sums. 
Ve indec A means that Ve mod A and V is indecomposable. 
Suppose now that V, X are objects of ~, where ~ = rood A or Mmod A. Then 1 v 

is the identity morphism on V. r V is the radical of V. V I X means that X--  V tl V', 
for some V ' e ~ ;  in this case we say V is a summand of X. If  also V is indecom- 
posable, we sometimes say V is a component of X. In that case [ V[ X] denotes the 
multiplicity of V as summand of X (see (1.5). It is interesting that (1.5) gives a new 
proof  of the Krull-Schmidt theorem for rood A, since by (1.5a), [V] X] is indepen- 
dent of the decomposition X_--- H Xi. See Gabriel [10, pp. 3,4].) Finally we recall 
that for any Ve indec A, we have defined 

S V: = (-, V)/r( . ,  V), A (V) : = (End V)/rad End V 
and 

~(V) := dim A (V). 

2. Induction, restriction and conjugation 

Denote by kG the group-algebra of a finite group G over our base-field k. Let 
H be a subgroup of G, and g an element of G. The familiar representation-theoretic 
operations of induction, restriction and conjugation can be expressed by the follow- 
ing functors 

(2.1) i n d , "  mod k H  ~ mod kG, 

(2.2) res~: mod kG ~ m o d  kH, 

(2.3) cnjH, g" mod k H ~ m o d  k(gH) (gH=gHg -l ). 

Thus ind~ takes each 14,'e mod k H  to the induced kG-module kG®kn W (which 
we denote We) ,  and it takes each kH-map a : W ~ W '  to the kG-map a C =  
l k c ® a "  W G---, W 'c. The functor res~ takes each V e m o d  kG to the restricted kH- 
module V~ (i.e., V regarded as kH-module), and it takes each kG-map 1/: V ~  V' 
to fin = p :  V n ~  V~. Finally cnj~,g takes each We mod k H  to the k(gH)-module 
gw,  where gW is the k-space W, given the following gH-action (which we denote • 
to avoid confusion) (ghg -1) • w= hw, for h e l l ,  we  I4"; cnjn, g takes each kH-map 
a :  W---, W' to ga=a,  which is clearly also a k(gH)-map from gw---,gW '. It is easy 
to check that these three functors are all k-linear, covariant and exact. 

Suppose for the moment that t2, A are any k-algebras and that 

u : mod I2 ~ mod A 

is a k-linear, covariant functor. We shall define a functor 

u : Mmod A ~ Mmod I2 

as follows. If  F e  Mmod A, then clearly F-  u : mod I2 ~ m o d  k is k-linear and con- 



Functors on categories o f  finite group representations 273 

travariant, so is an object of  Mod(mod g2), which we denote u(F). Thus u ( F ) e  
Mmod f2 is given by 

(2.4) u(F)(W) := F(u(W)), u(F) ( f )  := F(u(f)), 

for all objects W and all morphisms f :  W ~  W' in mod g2. 
Next, for any morphism 0" F---,F' in Mmod A, we define a morphism u(O) : u(F)-- '  

u(F')  by setting 

(2.5) u(O)(W) '=  O(u( W)) : F(u( W))~ F'(u( W)), 

for all We  mod f2. It is routine to verify that (2.5) is natural in W, and that (2.4), 
(2.5) define a functor u : M m o d A ~ M m o d f 2  which is k-linear and covariant. 
Finally u is exact (even if u is not exact!). 

Definition. If  H is a subgroup of G, and g is an element of G, we define the follow- 
ing functors 

(2.6) Ind~ = resH c : Mmod kH-- ,Mmod kG, 

(2.7) Res~ = ind," Mmod kG -~Mmod kH, 

(2.8) CnjH, g = cnjgH, g-, : Mmod k H ~ M m o d  k(gH). 

Here restS, for example, is the functor u" Mmod k H ~ M m o d  kG obtained from 
the functor u = r e s t "  mod kG-~mod kH. Notice that all the functors (2.6), (2.7), 
(2.8) are k-linear, covariant and exact. 

Notation. We shall use notations similar to those employed in representation theory 
for modules: for example if B is an object, and fl : B --,B' a morphism in Mmod kH, 
we write B c, f16 for Indg(B),Ind~(,fl), respectively. Thus B e is the object, and tic 
is the morphism in Mmod kG, defined according to the general prescriptions (2.4) 
and (2.5) by 

(2.9) B~(X):=B(XH), BC(f):=B(fn) and fl6(X):=fl(XH), 

for all objects X and morphisms f :  X - , X '  in mod kG. 
Similarly if A is an object, and a : A ~ A '  is a morphism in Mmod kG, we write 

AH, aH for Res~(A),Res~(a) respectively. Thus A H and aH are the object and rnor- 
phism in Mmod kH defined by 

(2.10) AH(Y):=A(Y~),  AH(h):=A(h G) and aH(Y):=a(Y~), 

for all objects Y and morphisms h : Y-~ Y' in rood kH. 
Finally if B, fl are in Mmod kH, we write gB, gfl for CnjH, g(B),CnjH, g(fl ) respec- 

tively; these are  in Mmod k(gH) and are defined by 

(2.11) gB(Z) "=B(g-'z), gB(j) "=B(g-'j) and g,8(Z):=/3(g-'z), 

for all objects Z and morphisms j : Z ~ Z '  in rood k(gH). 
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The next proposition shows that our definitions and notations are compatible 
with the Yoneda embeddings Y (see Section 1). 

(2.12) Proposition. Let W ~ m o d k H ,  V~modkG.  Then there are isomorphisms 
(., W)e=( . ,  We),  (., V)I_I=(., Vn), g(., W)=( . , gW)  in the categories Mmod kG, 
Mmod kH, Mmod k(gH), respectively. 

Proof.  By (2.9), (., W)e(X)= (., W)(XH)= (XH, W), for any X in mod kG. But 
the Frobenius reciprocity theorem (see for example [9, p. 232]) gives an isomor- 
phism of k-spaces (Xn, W)-=-(X, W e) which is natural in X, hence determines an 
isomorphism (., W)e=(  ., W e) in MmodkG. The other two isomorphisms in 
(2.12) are similarly derived. 

It follows from (2.12) that each of the functors Indn c, ReSH c, CnjH, g takes finitely 
presented objects to finitely presented objects (and the same is true, with 'finitely 
generated' replacing 'finitely presented' ). For example if A e Mmod kG is finitely 
presented, there exist modules U, U ' e m o d k G  and an exact sequence (., U)-~ 
(., U')- ,A- ,O in Mmod kG. If we apply the exact functor ResH c to this, we get the 
exact sequence (-, U)H~( • , U')n-~AI4-'O in Mmod kH. And since (-, U)n = (., Un), 
(., U')H=( ., U~), we may construct an exact sequence (., Un)- ' ( . ,  U'H)~AH--'O, 
which shows that A n =  ResnC(A) is finitely presented. 

Restriction and induction of  simple functors. Let VeindeckG, and let SV= 
(., V)/r(., V) be the corresponding simple functor. It can happen that (SV)H = O, 
for a subgroup H of G. In fact (SV) H is non-zero if and only if there exists 
Y e mod kH such that (S V)n(Y)~ O, which by (2.10) is to say (SV)(Ya):/: O. So by 
(1.5) we have: (SV)n*O if and only if there is some Y~mod kH such that V I ya ,  
i.e. if and only if V is H-projective (for the theory of relatively projective kG- 
modules, see [9, §19] or [13, II, §2]). This proves the first part of the 

(2.13) Proposition. Let V~indeckG, and H be a subgroup o f  G. Then (i) 
(SV)H=O if  and only i f  V is not H-projective, and (ii) I f  g: 0--* v2- f--~ V 1 g, V~O 
is an almost split sequence in mod kG, then the restricted sequence gn:0--* 
V2I-I ~ Vm gn VH_,O is split i f  and only i f  V is not H-projective. 

(2.13, ii) is due to Gabriel and Riedtmann (see [16, Lemma 3.1]). 
To prove it, apply Resn ~ to the exact sequence (1.6) (with F =  SV), and use (2.12). 

We get an exact sequence 

(" , f l t)  (" , gl t )  
0 - ,  (., v2n) ' (-, vln) , (., vn) -* (s  v)n-  o 

in mmod kH. Now (2.13, ii) follows from (2.13, i) and the fact that gn is split if 
and only if (., gn) : (', Vln)'-* (', Vn) is an epimorphism. 
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Let We indec kH, so that SW= (-, W)/r(-, W) is a simple object of mmod kH. 
Incontrast  to (2.13), we find that (SW) c is never zero. For there is always some 
X e m o d k G  such that W I X  H (for example, X=WC) ,  hence (SW)a(X)= 
(SW)(Xn) is not  zero. 

In the following proposition, we denote F/rF by Hd F, for any F e  mmod A (A 
being, for the moment, any finite-dimensional k-algebra). Thus Hd(.,  V)= SV, for 
Ve indec A. In general, Hd F is semisimple, i.e. is isomorphic to a finite direct sum 
of simple functors [2, p. 321]. In particular, if X e m o d A  and if X--Hi~1Xi (I 
finite, Xi e indec A) we have 

n d ( - , X ) =  H Hd( . ,X i )=  II SXi [2, p. 321]. 
i i 

(2.14) Proposition. (i) I f  Ve indec kG, then Hd(SV)~[ Hd(., Vn), hence 

[SWI hd(SV)n] t W [ V.], 

for all We indec kH. 
(ii) I f  WeindeckH, then Hd(SW)a]Hd(.,WC), hence [SV]Hd(SW)C]< 

IV I We], for all VeindeckG. 
(iii) I f  Weindec kH and ge G, then g(SW)=S(gW). 

Proof.  (i) Apply Res~ to the natural epimorphism (-, V)-}SV, and use (2.12). We 
get an epimorphism (-, Vz)--} (S V)n, hence an epimorphism Hd(-, Vn)~ Hd((S V)~r). 
Now (i) follows by the remarks above. The proof of (ii) is similar, and is left to the 
reader. To prove (iii), apply Cnjn, g and (2.12) to (-, W)~SW.  We get an epimor- 
phism (-, gW)~g(SW). But it is clear that g(SW) is simple and gW is indecom- 
posable, hence g(SW) = (., gW)/r( . ,  gw) = s(gw), as required. 

3. Identities involving Ind, Res, Cnj 

There are several standard formulae or 'identities' in group representation theory 
which involve the functors ind, res, cnj mentioned at the beginning of the last sec- 
tion. We shall see that these give rise, by an automatic general procedure, to for- 
mulae involving Ind, Res, Cnj. For this purpose, the original formula must be 
presented as a natural transformation between suitable combinations of ind, res and 
cnj functors. For example, the 'transitivity of induction' formula gives, when D,/-/ 
are subgroups of G such that D _  H, a kG-isomorphism 

(3.1) J(Z) : (zH) c ~ Z  a 

for each ZemodkD;  moreover this is natural in Z, so that we have a natural 
isomorphism J : u 1 --, u 2 between two functors u 1, u2 : rood kD ~ m o d  kG, namely 
u I = i n d , .  ind~ and u2=ind ~. A more sophisticated example is provided by 
Mackey's 'subgroup formula' (see [9, p. 237]). Here we have subgroups H, K of G, 
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and the formula gives an isomorphism of kK-modules 

(3.2) J(X) : (XG)r ~ H ((dx)atlal¢) x, 
d 

for each X ~  mod kH. Here d runs over a set of representatives of the double cosets 
KgH, geG.  We have again a natural isomorphism J:ul- 'u2,  the functors 
ul, u2" mod kH--, mod k being 

Ul res~ indg,  u2 II indff/.tn K ~t4 : " = " r e s a H N  g • cnjH, d. 
d 

The direct sum in u2 is to be understood in the following sense. Let u, u ' :  mod g2 -~ 
mod A be covariant functors (g2, A any k-algebras). We define their direct sum o = 
u u u': mod g2 ~ m o d  A by setting o(W) := u(W) tl u ' (W) and u(f) := u(f)  u u'(f) ,  
for all objects W and all morphisms f :  W ~  W' in mod f2. It is clear that utlu" is 
a covariant functor, which is k-linear if  u, u' are. 

The translation of formulae like (3.1) and (3.2) into formulae in the Mmod 
categories, requires a functor which we now describe. Let I2, A be any k-algebras, 
and let (mod 1"2, rood A) denote the k-linear category whose objects are all k-linear, 
covariant functors u : mod 1"2 -~mod A, and for which the morphisms are all natural 
transformations (natural morphisms) J :  ul --*u2, for objects ul, u2 e (mod g2, mod A) 
(see [1, p. 183]). In the same way we may define a k-linear category 
(MmodA,Mmod t2), whose objects and morphisms are, respectively, all k-linear 
covariant functors q/: Mmod A-~Mmod g2, and all natural morphisms J :  ~l ~ ~#2 
between such objects. 

(3.3) Proposition. Let J :u l~u2  be any natural morphism between k-linear 
covariant functors ul, u2 : mod O-~mod A. Then we may define a natural mor- 
phism J : u2-~ul between the k-linearfunctors u 2, u I : Mmod A ~ M m o d  ~ (see Sec- 
tion 2) as follows: i f  F e M m o d A  we define J(F):u2(F)~uI(F ) by the rule 
J(F)(W) := F(J(W)). for all We mod ~2. 

Moreover the correspondence u~u,  J-~ J defines a k-linear contravariant functor 
(mod f2, mod A ) ~ ( M m o d  A, Mmod ~) .  

Proof. We must prove that J as defined above is natural in F, in other words, that 
the diagram (i) below commutes, for any morphism ¢~ :F-~F' in Mmod A. The ob- 
jects and morphisms in this diagram are in Mmod I2, hence its commutativity is 
equivalent to that of diagram (ii), for arbitrary We mod g2. 

J(F) 
u2(F) , u (F) 

(i) u2(¢,) Lu,,o) 
u2(F ' )  J(F') ' u I ( F ' )  
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(ii) u2(0)(w ) 

,I(F)(.W) 
u2(F)(W ) ' uI(F)(W) 

U I (0)(W) 

u2(F')(W) J(F')(W; uI(F')(W) 

According to the definitions in Section 2 and in the statement of our proposition, 
(ii) is the same as (iii) below. 

F(J(W)) 
F(u2(W)) ' F(ul (W))  

I 

(iii) O(u2(W)) I O(u~(W)) 

4, 

F'(u2(W)) F'(J(W))' F'(Ul (W))  

But (iii) is commutative, because it represents the naturality of ~ :F--*F' with 
respect to the morphism J ( W ) : u I ( W ) ~ u 2 ( W )  in modA.  

This proves that J:u2-*Ul is indeed a morphism in the category (MmodA, 
Mmod £2). The rest of (3.3) is easy to prove. 

We shall need also the next proposition; its proof is elementary, and we shall omit 
it. 

(3.4) Proposition. Let f2, A,  ~ be k-algebras. 
(i) Given k-linear covariant functors  u : mod f2 ~ m o d  A, w" mod A ~ m o d  ~, let 

o = w.  u. We have then v = u .  w. 
(ii) Given k-linear covariant functors u, u'  : mod g2 ~ m o d  A,  let o = u tlu'. We 

have then v _~ u tlu'. 

To translate (3.1) into a natural isomorphism betwen functors, we simply apply 
the functor of (3.3) to J :indH ~- indg-= indg. We get the isomorphism J "indg--- 
i ndg - ind~ ,  i.e. Resg. Res~----Resg, which is to say there is an isomorphism 
(A/_t)o~Az~, for all A e M m o d  kG. This is the first formula in (3.5b), below. 

In the same way, the Mackey isomorphism (3.2) gives us an isomorphism 
ul =u2, which reads 

d H 
Resg. Indr  ~ ~ I.[ CnjaH, d-~" IndaHnX" ReSffHnX, 

d 

which is to say that we have a natural isomorphism 

(FG)H ~'~ H d-I((FdHNK)aH), 
d 

for F ~ M m o d k K .  If we use (3.5d,e) below, and replace d by d -1, we get the 
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isomorphism (3.5f), which is evidently the exact analogue, for functors, of 
Mackey's formula for modules. All the isomorphisms in theorem (3.5) are derived 
in the same way from well-known formulae for modules. We leave the reader to 
supply the details. 

(3.5) Theorem. Let D, H ,K  be subgroups o f  a finite group G, with D<_H. Let g,g" 
be elements o f  G. In the following, A, B, C,F denote arbitrary objects o f  the 
categories Mmod kG, Mmod kH, Mmod kD, Mmod kK, respectively. Then there 
hoM natural isomorphisms as follows: 

(a) A = A  c, A _~A c, A =gA. 
(b) (AH)D----Ao, (CZ)G---C °. 
(c) r(gB)-- g'gB. 
(d) ffBD-- (gB),o. 
(e) g(C z)  -- (gO) 'u. 
(f) (FC)H --- Ha((dF)zn~r)~  where d traverses a set of  representatives o f  the 

double cosets HgK, g e G. 

4. Relative projectivity for functors 

Let H be a subgroup of our finite group G. In this section we examine the idea 
of  (relative) H-projectivity of objects of Mmod kG, and develop a theory very like 
that of  relative projectivity of kG-modules. 

Before we do this, we must be sure that the Krull-Schmidt theorem holds for the 
objects F which we study. In fact if A is any k-algebra and F any object of Mmod A, 
we denote by End F (= (F, F )  = (F, F)MmodA ) the endomorphism algebra of F, and 
observe that the finite direct sum decompositions 

(4.1) F= ~ F~ 
i~I 

(! is a finite index set, and the F /are  subfunctors of F )  correspond one-to-one with 
the orthogonal idempotent decompositions 1F= ~ I e i  in End F. Then provided 
End F is finite-dimensional as k-space, the Krull-Schmidt theorem will hold for F, 
that is: there exists a finite decomposition (4.1) with all the F/indecomposable, and 
if F =  (~jejFj' is another such, there exists a bijection b: I ~ J  and an automor- 
phism a of F such that a(Fi)=Fbti), for all i~I.  For proof, we may simply take 
over the proof of the Krull-Schmidt theorem for kG-modules, as given for example 
in [13, Theorems 3.12, 5.2], since this proof works entirely within the endomor- 
phism algebra. Now the endomorphism algebra End F is certainly finite- 
dimensional if F is finitely generated. For in this case there exist We  mod A and an 
epimorphism f l : ( . ,  W ) ~ F .  Since (., W) is a projective object by (1.3), every en- 
domorphism 0 of F can be 'lifted' to an endomorphism @ of (-, W), so that P0 = 0,8. 
It is easy to see that the correspondence @--*0 defines an epimorphism onto End F 
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from a subalgebra of End(.,  W). But End(., W)_= End W by the Yoneda isomor- 
phism (1.2), hence End F is finite-dimensional. We have then 

(4.2) Proposition. The Krull-Schmidt theorem holds for any finitely generated 
F e  Mmod A. In particular, it holds for any object F~ mmod A. 

Notation. Let E , F ~ M m o d A .  We write E l F  (and say E is a summand of F )  if 
F=-E u E' for some E ' e  Mmod A. It is not hard to see that every summand of a 
finitely presented F, is finitely presented. One should beware that subfunctors of 
finitely presented F are not necessarily even finitely generated (in fact a finitely 
generated subfunctor F '  of a finitely presented F is automatically finitely presented). 
And in general neither ascending nor descending chain conditions hold for the sub- 
functors of a finitely presented F, or even for the finitely presented subfunctors of 
F (see [3, Theorem 3.1], and [2, p. 323, lines 9,10]. In both references one may take 
~ =  mod A.) We end these general remarks with a useful corollary of (4.2): 

(4.3) Let E, Fl, E2 be objects o f  mmod A, with E indecomposable. Then ElF1 uF2 
implies ElF or E l F  2 (or both). 

In the rest of this section, H is a fixed subgroup of a finite group G, and F is 
an object of mmod kG. 

Definition. F ~  mmod kG is H-projective is there is some E e m m o d  kH such that 
FIE  c. 

By means of the formulae in (3.5), and the fact that the functors Ind, Res, Cnj 
all commute with direct sums, we can copy the argument in [11, p. 432] almost 
without change, and so prove the next two statements. Recall that H___ c K (H, K 
being subgroups of G) means that H<gK for some g e  G. 

(4.4) I f  F is H-projective and H<_cK, then F is K-projective. 

(4.5) Suppose that FIE  c, for  some D-projective object E o f  mmod kH (D<_H). 
Then F is D-projective. 

The next theorem is the analogue of [11, Theorem 3], and it can be proved using 
the Mackey formula (3.5f). 

(4.6) Theorem. Let D, H be any subgroups of  G, and let S ~ mmod kD and F a sum- 
mand o f  S c. Suppose that 

(4.6a) FI4 = B1 tI . . .  It B t ,  

where n l , . . . , n  t a re  indecomposable objects o f  mmodkH.  Then for  each 
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i e{1 , . . . , t }  there exists an element x=xi  e G such that Bi ] ((XS)xDx-,nH) H. Hence 
B i is (xiDx71CI H)-projective. 

To go further, we must anticipate some results from Section 5. From Theorem 
(5.11) it will follow that for any object F e  mmod kG and subgroup H of G, F is 
H-projective i f  and only i f F  I (F~) °. And from Lemma (5.14, ii) we shall see that 
F is H-projective, for any F e  mmod kG and any Sylow p-subgroup H of G. Armed 
with these facts, we may take over the argument of [11, pp. 434, 435] and prove 
the following. 

(4.7) Theorem. Let F be an indecomposable object of  mmod kG. Then there exists 
a subgroup D o f  G with the properties 

(1) F is D-projective, and 
(2) I f  H<_G, then F is H-projective i f  and only i f  D<oH.  
D is determined uniquely up to G-conjugacy by these properties. D is a p- 

subgroup o f  G. 

Definitions. Any subgroup D of G with properties (1), (2) is called a vertex of F. 
In this case there must exist an indecomposable S e mmod kD such that F I S t ;  any 
such S is called a source of F. 

These definitions extend the old definitions of vertex and source for modules, as 
the next proposition shows. 

(4.8) Proposition. Let Ve mod kG, H<_ G. Then V is H-projective i f  and only i f  
(., V) is H-projective. Hence i f  V is indecomposable, the vertices of  V coincide with 
those o f  (., V); moreover i f  S is a source o f  V, then (., S) is a source o f  (., V). 

Proof. By (5.11), (., V) is H-projective if and only if  (-, V)[((., V)H) c, and by 
(2.12) ((., V)H)°=(.,  V~). But it is easy to see that (., V)I(. , Vff) if and only if  
V IV ~,  that is, if and only if V is H-projective. The rest of (4.8) is very easy to 
prove, and we leave this to the reader. Notice that V is indecomposable if and only 
if (., V) is indecomposable, since the Yoneda isomorphism gives End V= End(., V). 

Clearly many theorems about vertices and sources, together with their proofs, 
hold just as well in the category mmod kG. We shall not attempt to list such 
theorems, but give as an example a proposition which we shall need later. 

(4.9) Proposition. Let H< G, and let F,E be indecomposable objects of  mmod kG, 
mmod kH respectively, such that F[ E G and E I FH. Then F, E have a vertex and 
source in common. 

Proof. Let DF, D e be vertices of F,E. Since F I E  ~, F is De-projective by (4.5), 
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hence DF<_oDE. Take D=DF and S to be a source o f F  in (4.6). We may also take 
B i = E, since E l F  H. So there exists x e G such that E is (xDFx -1CIH)-projective. 
Hence DE<HXDFX-I<~Dr. Taking this with DF<<_6DF we have DE=cDF. Let 
TemmodkDE be a source of E. Then E I T H, hence FIEOI(TH)C-----T c, which 
shows that T is a source of F, and concludes the proof of (4.9). 

5. The maps R~ and Tff 

Throughout this section H is a given subgroup of the finite group G, and S a 
transversal of the set of cosets {gH I g e G }. We assume that S contains the identity 
element of G. 

Let M, N e mod kG. Two k-maps 

(5.1) rOH : (M,N)~(MH, NH), tG : (MH, NH)~(M,N)  

are fundamental in the theory of relatively projective kG-modules: rH c is simply the 
inclusion (M, N) <_ (MH, NH),  and tH c is the ('relative' or 'interior') trace map, given 
by triG(f)= T.s~sSfS -l for all f e (MH,  NH) (see, for example, [13, Chapter II]. In 
Landrock's notation, tHG is written TrHC.) We shall next define, for any objects 
A, B e Mmod kG, k-maps 

(5.2) RI~'(A,B)--*(AH, BH), Tff "(AH, BH)-*(A,B) 

which behave very like rH c, tH 6. The main theorem in this section, Theorem 5.11, in- 
cludes the analogue for functors of D.G. Higman's theorem that a kG-module M 
is H-projective if and only if there is an element r/e End(MH) = ( M  H, MH)  such that 
tn6(r/) = 1M ([12, p. 3711). 

It is easy to define R~, it is simply the map induced by the functor ResH c. So 
R~H(a) = all, for all a e (A, B). Notice that, in general, R6H is not injective. It is 
harder to define Tff, because there seems to be no analogue for the sum ~ sfs -1. 
However there is a 'functorial '  description (5.4) of tH c, and we shall adapt this to 
define Tff. 

Let X e m o d  kG. One has well-known k-maps 

(5.3) mGH(X) " X -+(XH) G, nGH(X) " (XH) o -+ X, 

defined by m~(X)(x)= ~ s®s-lx, nCH(X)(~ S®Xs)= ~ SXs, for x, xseX (the sums 
are over all s in the transversal S of {gHIgeG}) .  Let M, N e m o d k G  and 
f e  (MH, NH), then by an easy calculation we find 

(5.4) tell(f) = n6H(N) . f V  . m~(M). 

This will provide the model for our definition (5.6) of Tff. 
The maps (5.3) are natural in X, and so give morphisms mOH:Ul ~U2, nGH:U2-+Ul 

between the functors Ul = lmodkG and u2=indH c-  resH 6. Apply the functor of Pro- 
position (3.3) (with A = t2 = kG). This gives us morphisms mHO" U2--'Ul, Uric : Ul ~U2 
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between the functors n l = l M m o d k G  , u2=Ind~.ResH 6. These functors both take 
Mmod kG to itself. Thus we have, for each A ~ Mmod kG, the following morphisms 
in Mmod kG: 

(5.5) m~(A) : (A~,)°--,A, n~(A) : A---,(AM) c . 

To calculate these at an arbitrary X e  mod kG, we use the definition given in (3.3), 
namely m~(A)(X)=A(m~(X)),  n~(A)(X)=A(n~(X)). Since ul,n2 both map 
finitely presented objects of Mmod kG to finitely presented objects, we may regard 
ul, u2 as functors of mmod kG into itself. 

Definition. If A, B ~ mmod kG, we define Tff: (AH, BH)-'(A, B) by the rule 

(5.6) Tff(ti)=mG(B). tl c • n6H(A), 

for all ti ~ (AH, BH). In other words, Tff(ti) is defined by requiring the diagram 
below to commute. 

(5.7) 

t/G 
(A,~)c , (B,~)o 

A Tff(tl) ~ B 

Here tic = indHG(ti) of course. Since IndH 6 is a k-linear functor, it follows from (5.6) 
that Tff is a k-linear map. The maps RH ~, Tff satisfy many identities analogous to 
identities satisfied by rH ~, tH a. For our present purposes, we need the following. 

(5.8) Proposition. Let Z, A, B, C be objects o f  mmod kG. Then 
(i) R~(Bot) = RGH(B)R~H(a), for any a ~ (A, B), fl ~ (B, C). 

(ii) Tff(BHti)=BTHG(ti) and Tff (ti~H)= Tff(rl)~, for any ti e(AH, BH), Be(B, C) 
and ~ ~ (Z, A). 

Proof. (i) This holds because ResH c is a covariant functor. 
(ii) By definition (5.6) we have 

:" 

The fact that mHC(C)=m(C) is natural in C (Proposition (3.3)) gives the com- 
mutative diagram 

(BH) G re(B) ~ B 

(Bh')~ 1 I B 

(CH)C re(C)' C 
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Hence Tf f ( f lH)=B.m~(B) .  tlC.n~(A)=flTHO(tl). The proof of the second equa- 
tion in (ii) is similar. This completes the proof of (5.8). 

Let Ye mod kH. Define the kH-map c(Y) : (YO)H-~(YO)H by c(Y)(~, s®Ys) = 
1 ®Yl for all ~ s ® y  s in yO. An easy calculation shows that 

(5.9) lx  M = n(X)H" C(XH)" m(X)H, for  all X e  mod kG. 

(In this formula, and in the rest of this section, we have omitted the affixes G, H 
in nCH, mH 6 in the interests of greater legibility - we shall often do the same for nH ~, 
m~, resort, etc.) 

The map c(Y) is natural in Y, and so it provides a morphism c : res- ind--,res • ind. 
By Proposition (3.3) we deduce a morphism c : R e s - I n d ~ R e s .  Ind as follows: if 
C e m m o d  kH, then e(C):(CC)H---,(C°) n is the morphism in mmod k H  given by 
e(C)(Y)  = C(c(Y)), for all Ye mod kH. We prove next 

(5.10) Tff(c(C)) = Ice, f o r  all C e mmod kH. 

Proof. By definition (5.6), Tf f (c (C))=m(C°)  • c(C) O- n(C°) .  Each side of this 
equation is a morphism from C ° to itself. Then for an arbitrary X e  mod kG we 
have 

Tff (c(C))(X) = m(C °)(x)- c(C)°(X) • n(C °)(x) 

= C°(m(X)) .  c(C)(X.). C°(n(X)) 

= C(m(X)H). C(n(X)H) 

= C(n (X)H .  C(Xg)" m(X)H).  

Now apply (5.9) to the last term in this equation, which is thereby shown to equal 

C(1XH ) = C((1X)H) = CO(Ix)  = (1 co)(X ). 

We have now Tff(c(C))(X)= (lcc)(X),  for all X e  mod kG, and this proves (5.10). 

(5.11) Theorem. Let F e  mmod kG, and let H be a subgroup o f  G. Then each o f  the 
following six conditions on F implies all the others: 

(1) F is H-projective. 
(2) There exists rl e End F n = (FH, FH) such that Tff(rl) = 1F. 

(3) The map Tff : E n d F n - - * E n d F  is surjective. 
(4) The morphism m(F) : (FH) ° ~ F  has right inverse. 
(5) The morphism n(F) :F~(FI_I) O has left inverse. 
(6) FI(FH) °. 

Proof. (1)=(2). If F is H-projective, there exists some C e m m o d k H  such that 
F I C °. Therefore there are m o r p h i s m s / / : F - , C  O, g: C°-- ,F  such that I F = g / / .  
Hence by (5.10), (5.8) we have 
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lp  = l c o .  u = n .  T f f ( c ( C ) ) .  U = T f f ( n . c ( C ) u . ) ,  

which shows that (2) holds with r/= ItHC(C)]I H. 
(2)0(3), since by (5.8), Im Tff is an ideal of EndF.  
(2)=(4),(5). By (5.6), Tff(r/) = IF implies that re(F), r/°- n (F )=  1 F, which gives 

both (4) and (5). Finally (4) or (5) implies (6), which clearly'implies (1). 

Remarks. The implication (1) = (6) fills the gap in our proof of the existence of ver- 
tices of an indecomposable F e  mmod kG. The equivalence (1) ,~ (2) is the analogue 
of D.G. Higman's theorem [12, p. 371]. The analogue for kG-modules of (5.11) is 
well-known, see for example [9, §19] or [13, p. 94, Corollary 2.4]. But there are im- 
portant differences between the module and functor categories; for example, while 
n(X): (XH)C~X (see (5.3)) is epimorphic for all X ~  mod kG, the corresponding 
morphism re(F) : (FH) ~ ~ F  may fail to be epimorphic for F ~  mmod kG - for ex- 
ample, if F is simple, so that F = S V  for some Veindec kG, we saw (2.13) that 
FH = 0 whenever V is not H-projective, and so in this case re(F) is not epimorphic. 
However by (5.11)(4) re(F) is epimorphic for any H-projective FemmodkG.  
Taking these two remarks together we have the following result. 

(5.12) Theorem. Let Ve indec kG, and let H be any subgroup o f  G. Then V is H- 
projective (in mod kG) if  SV is H-projective (in mmod kG). Consequently any 
vertex Q of  SV contains some vertex P of  V. (See also (8.11).) 

We shall see in Section 8 that it can well happen that Q > P. 
Another place where mod kG and mmod kG behave differently with regard to 

relative projectivity is this: a module M e  mod kG is projective (in mod kG) if and 
only if it is { 1 }-projective, whereas a projective object of mmod kG need not be 
{ 1 }-projective. In fact F e  mmod kG is projective in mmod kG if F =  (., V) for some 
Ve mod kG (see (1.3)). But we saw in (4.8) that if V is indecomposable, then the 
vertices of (., V) are the same as those of V. Therefore if V is not projective, then 
(-, V) is not { 1 }-projective. 

We still have to prove the assertion made at the end of Section 4, that a defect 
group of any indecomposable F e  mmod kG is always a p-group. This follows from 
(ii) in the lemma below. 

(5.14) Lemma. (i) Let A, B ~ mmod kG and let'~ e (A, B). Then Tff(~H) = (G : H)~, 
for any subgroup H of  G. Here (G : H) denotes the index of  H in G. 

(ii) I f  Fe  mmod kG, then F is H-projective for any H e  Sylp(G). 

Proof. (i) By (5.6), TG(~H)= re(B).~H c.  n(A). Since n(A):A~(AH)G is natural in 
A, we deduce (H ° .  n(A)= n(B)- (, hence TG(~H)= m(B)n(B)~. So (i) will follow if 
we prove m(B)n (B)= (G:H) I  B. Take any X ~  mod kG. Then 

(m(B)n(B))(X) = m(B)(X) • n(B)(X) 
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= B(m(X)). B(n(X)) = B(n(X)m(X)). 

But it is easily checked that n(X)m(X)= (G:H)lx ,  and our result follows. 
(ii) Take A =B=F in (i), and take ~=(G : H ) - l l F  . We get TG(~H) = 1F, hence F 

is H-projective by (5.11). 

6. Some useful formulae 

In this section are collected some formulae which will be used in later calculations. 
We begin with some well-known maps (see [13, II, §1] or [9, p. 232]). Let 
X e  mod kG and Ye mod kH; S is a transversal (containing the element 1) of the set 
of  cosets {gHIg e G } of the subgroup H of G. Define 

a(Y,X)'(Y, XH)~(Y~,X),  b(X, Y)'(XH, Y)~(X, Y°),  

e(Y) : Y'--*(YG)H and d(Y) : (yG)H-- '~  Y 

as follows: a(Y,X)(O) takes EsS®ys~EssO(ys), for any O6(Y~XH); b(X, Y)(tp) 
takes x--,Ess®¢(s-lx), for any ¢e(XH, Y); e(Y) takes y ~ l ® y ;  d(Y) takes 
Ess®ys~Yl. 

(6.1) Proposition. a(Y, X), b(X, Y) are both k-isomorphisms, natural in X and Y. 
The inverse of  a(Y,X) takes O ~ 9 . e ( Y ) ,  for any ~ge(Yc, X). The inverse of  
b(X, Y) takes ¢ ~ d ( Y ) .  ¢, for any ¢e(X ,  yO). 

These standard facts are easily verified by direct calculation. We have already 
used implicitly the isomorphisms a(., X) : (., XH)--* (., X)H and b(-, Y) : (., y)C 
(., ya), see (2.12). The maps a(Y,X) and b(X, Y) also give isomorphisms in the 
categories of covariant k-linear functors, namely a(Y,.)" (Y, .)c--*(Ya,.) and 
b(X, .) : (Xm ")--'(X,')H (induction and restriction for covariant functors are 
defined by the appropriate adaptation of the definitions in Section 2). 

(6.2) Proposition. Let M, N e  mod kG. Define c -6 c n~ as rh, tH, mH, in (5.1), (5.3). 
There hold the following equations: 

(i) tg=(mg(M),N), a(MH, N)=(M, ng(N)), b(M, NH), and 
(ii) rg=  a(M H, N) -1. (ng(M), N) = b(M, NH)- 1. (M, rng(N)). 

These, too, are easily verified by direct calculations which we leave to the reader. 
We want next to make an explicit connexion between the maps Tg and tg of sec- 
tion 5. Let N,N'emodkG,  and let ~ : ( . ,N)H-S( . ,N ' )H be a morphism in 
mmodkH.  It is clear that there is a unique morphism (',NM)--'(.,N~) which 
makes the diagram (6.3) commute; by (1.2) this morphism has the form (., h) for 
a unique h e ( N  H, N'H). 
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(6.3) 

(. ,  N H  ) a(., N)) (.,  N )  H 

h>l 1' 
'(" N ' ) H  (" , N'H) a(.,N,) , 

(6.4) Proposition. Suppose that ~, h are such that the diagram (6.3) commutes. Then 
T~(,O = (., t~H(h )) " (', N ) ~ ( .  , N') .  

Proof. Take any M e  mod kG. By (5.6) we have 

TaH(~) = (., tGH(h)) • (., N ) ~ ( .  , N').  

(omitting some affixes G, H for clarity), where A = (., N) and B = (., N').  From the 
definitions of m = m H  c and n=nH c (see (5.5)), m(B)(M)=B(m(M))=(m(M) ,N ' ) ,  
and n(A)(M)=A(n(M))= (n(M),N).  And ~C(M)= ~(MH), which by the commu- 
tativity of (6.3) equals a(MH, N ' ) .  (MH, h) .a(MH, N)  -1. Therefore T~(O(M) is 
equal to the product 

(m(M) ,N ' ) .  a(MH, N ' ) .  (MH, h ) • a(MH, N)  -1. (n(M),N), 

hence by (6.2) to t~H • (MH, h)" r~, where t~: (MH, N 'H)~(M,N ") and rH~: (M,N)--" 
(Mt-t, NH). That is, T~(O(M): (M,N) - ) (M,N ' )  takes an element z e ( M , N )  to 
tg(rg(z)h)=tGH(Zh)=zt~(h), and is therefore equal to (M, tGH(h)). This completes 
the proof of (6.4). 

We saw in Section 1 that each object F of mmod kG can be specified (in many 
ways) by a single element T a e D(X, V), for suitable X, Ve mod kG. For by Aus- 
lander-Reiten's theorem (1.7) there exist modules X, Vemod kG and a morphism 
a: (., V )~D(X ,  • ) such that F--- Im a, and by Yoneda's lemma a is completely speci- 
fied by the element Tq=a(V) ( l r )  of D(X, V). To reconstruct a from T a we have 
the formula 

(6.5) a ( M ) ( f ) = D ( X , f ) ( T a ) ,  for all M ~ m o d k G ,  f e ( M ,  V). 

We want an analogous specification of FH. It is clear that FH = Im aa ,  hence that 
FH=Im fl where 1~ is the unique morphism (., VH)--*D(XH, .) which makes the 
diagram 

(., vn) a(., v),(., V)H 

(6.6) 

D(XH' ")~gb(X, .) (D(X, . ))H 

commute. The next proposition shows how to calculate T B. 
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(6.7) Proposition. Let X, VemodkG.  Given morphisms a: (., V)-~D(X, .) and 
10: (., VH)~D(XH, ") such that (6.6) commutes, then TB= T a • tea. That is, T B is the 
composite map 

tGn T a 
(xH, vH) ,(x, v) ,k. 

Proof. By definition TB=10(VH)(lv,), so by (6.6) 

TB=(Db(X, Vn). CZH(VH)" a(VH, V))(1 v,). 

We find a(V H, V)(lv,)=n~(lO by direct calculation (or by putting M = N =  V in 
(6.2,(ii)), and Otn(Vn)=Cx(Vea) by definition of an .  Thus 

Tfl= Db(X, Vn)(ot( Vea)(n( V)) = (Db(X, VH) . D(X, n( V)))( T~) 

by (6.5), that is T#=D((X,n(V)). b(X, Vn))(Ta)=D(tea)(Ta) by (6.2, i). But this 
means T# = T,. te  a, and the proof of (6.7) is complete. 

There is a companion piece to (6.7), which can be used to calculate E e, where 
E is any object of mmodkH.  There exist Y, We modkH and a morphism 
o~: (., W)~D(Y,  .) such that E_=Imog; therefore E is specified by the element 
T,,, = ~(  W)(1w) e D( Y, IV). Then E e ~ I m t ~ e ~ - I m ~ ,  where ~ is the unique mor- 
phism (., We)--,D(Y e, .) which makes the diagram 

(6.8) 

(., w e) b(., w),(., w)e 

D(Y G, .), (D(Y, .))e 
Da( Y, . ) 

commute. The next proposition shows how to calculate T¢. It uses, in place of tea, 
the map uea: (ye, We)..+(y, W) given by 

(6.9) uea(f)=d(W), f . e (Y ) ,  for a l l f e ( Y  e, We). 

(6.10) Proposition. Let Y, We mod kH. Given morphisms co: (., W)~D(Y,  .) and 
~: (., W e ) ~ D ( Y  ~, .) such that (6.8) commutes, then T¢= Too. uea. 

Proof. By definition T¢=~(WG)(1w~), so by (6.8) 

T¢ = (Da(Y, We) - 1. o9 6 (We) . b(W 6, W)- 1)(1 we). 

By (6.1), 
Thus 

b(W e, W)-1(1 we) = d(W). Hence T¢ = (Da(Y, We) - 1(og(Wea)(d(W))). 

T~ = (Da(Y, We) -1. D(Y, d(W)))(Ta,) = D((Y, d(W)), a(Y, We) - I)(T~). 
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Take any f e  (yC, We). We have T~(f) = (T~. (Y, d(W)),  a(Y, We) - l)(f)  by what 
has just been proved. But a(Y, W e ) - l ( f ) = f . e ( Y ) ,  by (6.1). Thus ((Y,d(W)). 
a(Y, W e ) - 1 ) ( f ) = d ( W ) . f . e ( Y ) = u ~ ( f ) .  We have now T¢(f)=T~o(ug(f)), and 
the proof of (6.10) is complete. 

We shall need the following lemma in the next section. The proof is straight- 
forward, and is left to the reader. 

(6.11) Lemma. Let Z, Y, W e m o d  kH. Then ug(fx e) = ug(f)x, for  all f e (yG, We) 
and all x • (Z, Y). 

7. Applications to module theory 

Throughout this section H is a subgroup of G, We  indec kH and Ve indec kG. 
We are interested in cases where the functors (SW) c or (SV)n are semisimple, or 
even simple. If H is normal in G, then (SV)H is always semisimple - this is the 
analogue of Clifford's theorem [8, Theorem 1]. More surprisingly, ( S W ) ° = S V  
whenever W, V are related by the module correspondence mentioned in the Intro- 
duction. It turns out that this is a reformulation of Burry-Carlson's 'strong corre- 
spondence theorem' [7, Theorems 5, 6]. 

We give a criterion for a finitely presented functor of a certain type to be semi- 
simple. 

(7.1) Lemma. Let A be a k-algebra o f  finite k-rank, and let M e m o d A .  Let 
a: (., M ) ~ D ( M , . )  be a morphism in mmod A, and let Ta = a(M)(1M). Then 
F =  Im a is semisimple i f  and only if  Ta(rad End M) = 0. 

Proof. Since F =  (., M)/Ker  a, F is semisimple if and only if r(-, M ) _  Ker a. That 
is, F is semisimple if  and only if 

(.) f e r ( X , M )  ~ a ( X ) ( f ) = 0  

for all X e m o d A  and all f e ( X , M ) .  By (6.5), a(X)( f )=D(M,f ) (Ta) ,  hence 
a ( X ) ( f ) = 0  if and only if Ta(fh) =0  for all he (M,X) .  

Suppose first that F is semisimple. Putting M = X in (.) we find: f e  rad End M =  
Ta( fh )=0  all h e E n d M = T ~ ( f ) = O .  In other words, T~( radEndM)=0 ,  as re- 
quired. Next assume that T a (rad End M) = 0. Suppose X e mod A, f e  (X, M) and 
that f e  rOt',M). By (1.4) we have fh  • rad End M, for all h • (M,X), hence 
Ta ( fh )=0  for all he (M,X) .  But this implies that t~(X)(f) -- 0. Hence (,) holds, 
therefore F is semisimple. The proof of (7.1) is now complete. 

We next apply (7.1), to give criteria for (SW) ° or (SV)n to be Semisimple. 
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(7.2) Theorem. (i) I f  W~indec kH, then (SW) e is semisimple i f  and only i f  
u~(rad End W e) ___ rad End W. 

(ii) I f  Veindec kG, then (SV)H is semisimple i f  and only i f  t~(rad End VH)--< 
rad End V. 

Proof. (i) From (1.8), SW--Imto,  where to: (-, W)~D(W, .) is the morphism is 
mmodkH specified by an element T~o=to(W)(1w) of D(End W) which satisfies 
T~o :g 0, T~o (rad End W) = 0. By (6.10), (S W) e = Im ~, where ~: (-, W e) ~ D ( W  e, • ) 
is specified by the element T~ =Tco" u~. By (7.1), then, (SW) e is semisimple if and 
only if u~(rad End W e) < Ker T~o. But (6.11) tells us that R = u~(rad End W e) is a 
right ideal of End W. It is then clear, since rad End W is the unique maximal right 
ideal of End W, that R < Ker To, if and only if R_< rad End W. This completes the 
proof of (7.2, i). We leave the reader to give the, exactly parallel, proof of (7.2, ii). 
(In place of (6.11), we need the well-known equation t~(fXH)=t~(f)x, which 
holds for all X,M, N e  mod kG and f e (MH, NH), x e  (X,M).) 

The next theorem describes some criteria for semisimplicity of (SW) ° and 
(SV) H, which do not require explicit calculation of endomorphism rings. 

(7.3) Theorem. (i) I f  We indec kH and if [W I Wg] = 1, then (SW) c is semisimple. 
(ii) I f  Ve  indec kG and if  H is normal in G, then (SV)H is semisimple. 

Proof. (i) Our hypothesis says that there is an isomorphism 0: W ~  W 111 ... tI Wr ~, 
where the Wie indec kHand  W= W1, while Wi~ Wfor i=2, ...,r. Let 7/i: W ~  W i 
and/zi: I4I,.--* W~ be the projections and injections which result from 0. We may 
(and shall) arrange that 7/1 and/.t I are the maps d(W) and e(W) defined at the 
beginning of Section 6, because e(W)d(W) is an idempotent of End W~ whose 
image is isomorphic to W. 

Every element f E  End Wg has a matrix (f/j), whose coefficient fo = 7/i" f '  P je  
(Wj, Wi), for all i , j= l , . . . , r  (see for example [9, p. 462]). Define a map 
¢i: End Wg---,(End W)/R, where R=rad  End W, by the rule ¢ i ( f )=f l l  +R. Then 

is a k-algebra map; the only difficulty in proving this, is to show that ~b(fg)= 
¢i(f)~(g),  for any f, g e E n d  Wg. But (fg)ll =fllgll  +fl2g21 + "'" +flrgr l ,  and for 
each i~:l, l, Vi~ W, which shows that f l igi l  is not an automorphism of W, and 
hence by Fitting's lemmafligil eR .  Thus ( fg ) l l - f l lg l l  modR, which is what we 
need. 

Now we apply this k-algebra map • to End W c, which is a subalgebra of 
End W~. If f e E n d  W c, we have f l l  =7/1" f"/- /1 = d ( W ) . f .  e(W) = u~(f),  so that 
• ( f )  = u ~ ( f ) + R .  Let S=rad  End W 6. By (6.11), ui~(S) is a right ideal of Er~d W. 
Therefore ¢i(S) is a right ideal of (End W)/R; but ¢~(S) is also nilpotent, and 
(End W)/R is a division ring. It follows ¢,(S)=0, that is, u~(S)<_R, and so by 
(7.2, i) (SW)o is semisimple. 
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(ii) Since H is normal in G, each element s • G induces on End Vn a k-algebra 
automorphism f ~ s f s -  1 ( f e  End Vn). If R = rad End Vtt, then we have sRs- l = R, 
for all s • G. Therefore t~(R)<R.  But t~(R) is a right ideal of End V (see the 
remark at the end of the proof of (7.2)), and is nilpotent because it is contained in 
R. Hence t~(R)_<rad End V, and so by (7.2,ii), (SV)# is semisimple. This com- 
pletes the proof of Theorem (7.3). 

The next lemma has the corollary (see (7.5,i)) that in (7.3,i), (SW) a is in fact 
simple. 

(7.4) Lemma. Let W e  indec kH be such that (SW) c is semisimple, so that there 
exist t> 1 mutually non-isomorphic modules VI,..., Vte indec kG, and positive in- 
tegers rl , . . . ,  r t such that 

t 

(7.4a) (SW) a= n rjSVj. 
j = i  

Then for  any M e  indec kG there hold the following: 
(i) tS(W)[W MH]= • ryS(Vy)[Vj ]M] (sum over j 1 , . . . , t ) ,  

(ii) WIMn if and only i f  M =  Vj for  some j e { 1, ..., t }, 
(iii) [ Vj[ W e I >- r i, for  all j = 1,..., t, and 
(iv) [W Wt~]> ~: QIWI(Vj)nl (sum over j =  1,. . . , t ) .  

Proof.  (i) Evaluate both sides of (7.4a) at M, take dimensions, and use (1.5a). 
Notice that (SW)e(M)=(SW)(MH),  by (2.9). 

(ii) From (i) it is clear that [WIM n] is positive if and only if [VjlM] is positive 
for some j.  This proves (ii). 

(iii) Take any j e { 1, ..., t }. Then rj = [SVj[(SW)G] = [SVj [Hd(SW)e] < [ Vy[ W a] 
by (2.14, ii). 

(iv) By (iii), u rjVj (sum over j =  1, ..., t) is a summand of W a. Therefore 
u rj(Vy)n is a summand of Wg, whence (iv). 

(7.5) Theorem. Let W e  indec k H  be such that [W I W~] = 1. Then there is a module 
Ve indec kG such that: 

(i) (SW)a = SV. 
(ii) 

(iii) 
(iv) 
(v) 

(vi) 

[W[V n ] = l  = [V[Wa] .  
I f  Meindec  kG, then W I M  n only i f  M =  V. 
a(W)=A(V). 
W, V have a vertex and source in common. 
SW, S V  have a vertex and source in common. 

Proof.  By (7.3, i), (SW) a is semisimple. Therefore (SW) e can be written as (7.4a), 
and all the statements of (7.4) apply. In particular by (7.4,ii), [WI(Vj)t4]_> 1 for 
all j .  
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(i) Put [W]W/~]=I  in (7.4,iv). We must conclude that t=l ,  rl=l and 
[W[(V1)H] = 1. So we have (SW)°--SV, with V= V 1. 

(ii) We have just proved that [W I Vn]=l, and from (7.3,iii) [VIW°]>I.  In 
fact [ V I W ° ] = 1, since if  [ V I W ° ] >_ 2, then WH ~ would have at least two summands 
W, against our hypothesis. 

(iii) Equation (7.4,i) now reads ~(W)[WIMH] =cS(V)[VIM], from which (iii) 
follows. 

(iv) If  we put M = V in the equation above, we get ~(W) = ~5(V), so that the divi- 
sion algebras A(W)=_End (SW), A ( V) ---- End (SV) have the same k-dimension. 
Therefore any (non-zero) k-algebra map /~ :A (W)-+A (V) must be an isomorphism. 
Such a map/z  exists, because the functor IndH~: mmod kH-+mmod kG provides a 

k-algebra map ( SW, SW)-+((SW) °, (SW) °) --- (SV, SV). 
(v) This follows at once from the 'module version' of (4.9), because we have 

f rom (ii) that W] Vn and V[ W °. 
(vi) This also follows from (4.9). Clearly SVI(sw)  °, since SV~(SW)  ° by (i). 

And  SW](SV) H, since Mackey's formula  (3.50 shows that SW is a summand of  
((sw)%n. 

Remarks .  Theorem 7.5 is largely a statement about modules, since its hypothesis 
[ W I w n  ~] = 1, and all of  its conclusions except (i), (vi) refer to modules. It is easy 
to prove directly that there exists V~indeckG satisfying (ii), for if W °= 
V(~)u ... Ii V is) (V O) ~ indec kG), the condition [W] We 6] = 1 implies that W] V~ ) for 
exactly one j e { 1,... ,  s}. But (iii) is less trivial, and is related to the Burry-Caxlison 
theorem (see (7.7, iii)). The following lemma will enable us to make this relation 
clearer. 

(7.6) Lemma.  Let H be a subgroup of  G, and let We indec kH have vertex P and 
source S ~ indec kP. Define the stabilizer J(S) ors  in G, to be the subgroup consist- 
ing of  all g eNo(P ) such that gS= S. Assume that H>_J(S). Then [W I W~] = 1. 

P r o o f .  By Mackey's  formula Wna_ --_ Wu Ua((dW)~nnH) H, where d runs over the 
elements dq~H in some transversal of  H \ G / H .  Therefore if  the lemma is false, 
there must be some d e  G \ H such that W]R H, where R = (dW) K, K=dHNH. But 
S]Wp because S is a source of W (see the proof of (7.7, i), below), and so S R~--- 
He((eR),Knp) P, with e running over a transversal of  P \ H / K .  Therefore there is 
some e e H  such that S]((eR)~Knp) P. Since P is the vertex of S, we must have 
eKf')P=P, which means that P<_eK, and we have s](eR)p=(edw)p. NOW W]S H, 
because S is a source of W, hence edw](eds)L, where L=edH. Therefore 

S (e w)p] (eaS)# = II p, 
X 

x running over a transversal of edp\L/P. So there is some x¢L such that 

8]((xea$)x~pnp) P, and since P is the vertex of 8 we have xedpNP=P, that is 
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xedp=p, and s[xeds. This can happen only if s=xeds, which means that 

xed e J(S) < H. So ed(ed)- lx(ed) e H. But x e L = eaH implies (ed)- lx(ed) is in H, 
as also is e. Hence d e  H, a contradiction which proves the lemma. 

We collect our conclusions in the following theorem. 

(7.7) Theorem. Let V e  indec kG have vertex P and source S, and let H be a sub- 
group o f  G. 

(i) If H>_ P, then VH has a component W e  indec k H  with vertex P and source 
S. 

(ii) Assume now that H >  J(S), where J(S) is the stabilizer o f  S in G (notice that 
P<_J(S)<Nc(P ), by the definition o f  J(S)). Let W be any component o f  Vn which 
has vertex P and source S. Then all the conclusions (i) through (vi) o f  (7.5) hold. 
In particular V I W °, and V is uniquely characterized (up to kG-isomorphism) by 
the properties V e  indec kG, W[ Vn. 

(iii) (A special case of(ii).) I f  H>>_NG(P ) and i f  W=fV ,  then all the conclusions 
(i) through (vi) o f  (7.5) hold. 

Proof.  (i) Vp has a component So with vertex P [11, Theorem 6(2)], and by [11, 
Theorem 6(3)], So is a source of V. By [11, Theorem 5] xs o = S for some x e N c ( P ) .  
Now S01Vp implies Slx(vp) = Vp. Since S] vp and H>_P, there must be some com- 
ponent W of V H such that S] Wp. From W[ V H and S l W  p follow that P is a vertex 
of W, hence S is a source of W by [11, Theorem 6(3)]. 

(ii) (7.6) shows that [ W I W ~ ] = I ,  hence by (7.5) there is some VoeindeckG 
such that (i) through (vi) of (7.5) hold. But V = V o, by (7.5, iii). 

(iii) If H>__Nc(P), then W = f V e  indec k H  is determined uniquely up to isomor- 
phism by the two properties (1) W I Vt~, (2) W has vertex P. By (i), W must also 
have source S. Now we apply (ii), and thus complete the proof of (7.7). 

Remarks. (1) If V is projective, then J(S)= G and the theorem is vacuous. 
(2) In case H>-No(P),  the parts of Theorem (7.7) which relate to modules, are 

due to Burry and Carlson [7]. 
(3) The module Wis not uniquely determined up to isomorphism by V, in general, 

although this is so if H>-Nc(P).  

We now prove the theorem on almost split sequences which was mentioned in the 
Introduction. 

(7.8) Theorem. Let Ve  indec kG be non-projective, with vertex P as source S, and 
let H be a subgroup o f  G which contains J(S). Let W e  indec k H  be any component 
o f  VH which has vertex P and source S. I f  O--, W2 ~ W l ~ W-~O is an almost sprit se- 
quence in mod kH, then O~ W~-~ W~ -~ W ° ~ O  is an exact sequence in mod kG, 
which is isomorphic to the direct sum o f  an almost split sequence 0--, V2 ~ V 1 ~ V~O 
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with a split exact sequence O ~ L ~ L O ) M ~ M ~ O ,  for some L , M  in mod kG. 
In particular this holds i f  H>-Nc(P) and W=fV .  

Proof. Since O~ W2--~f W l g  , W ~ O  is almost split, we have a sequence 

0-*( -, W2) ("f) , ( . ,  WI) ("g) '(-, W)--*SW-'*O 

in mmod  kH which is a minimal  projective resolution of SW (see Section 1). Apply 
Indg  to this, and then we use the isomorphisms (., W2)G__=(., W2°), etc. of (2.12), 
together with the isomorphism (SW)G=SV from (7.7). We get an exact sequence 

(.) o-,(., ("f%,(. ,  ("g%,(., wC)-,sv o 
in mmod  kG, which is therefore a projective resolution, not necessarily minimal,  of  
SV. Standard arguments (see [1, Proposition 4.9(b)]) show that (.) is isomorphic to 
the direct sum of the minimal  projective resolution 0--,(., V2)--*(., 111)--*( ", V)--* 
SV--,O of SV, with a projective resolution of zero. This last is easily shown to have 
the form 0 ~ (., L )--* (., L • M)  ~ (., M)  ~ 0 ~ 0, for some L, M e mod kG. Theorem 
(7.8) now follows. 

Remark. This theorem is certainly well-known, at least in case H >  Nc  (P) - see for 
example Webb [16, Theorem 3.2(ii)]. Benson and Parker 's  'atom-copying theorem' 
[6, Theorem 11.2] is equivalent to (7.7) in case H > N o ( P  ). 

We end this section with an elementary proposition on restriction to a normal sub- 
group. 

(7.9) Proposition. Let ICe indec kG, H ~  G and let WI,... ,  W n e indec kH be such 
that every component o f  V H is isomorphic to W i for  exactly one i e { 1,..., n}. We 
~ave then 

(i) VH------sI WI lI "" Us, Wn, where si= [Wi[ VH]. 
(ii) (SV)H=rI(SWOu ... Urn(SWn), where ri=(5(V)/5(Wi))[V I Wi~]. 

(iii) I f  V is H-projective, then { WI, ... , Wn } is a single G-conjugacy class, hence 
)y (2.14, iii), {S Wl, ...,  S IV, } is a single G-conjugacy class. 

(iv) I f  S V is H-projective, then S V has a vertex and source in common with S W, 
~or any W e { W I , . . . ,  IV,}. 

'roof. (i) is just the definition of the si. 
(ii) By (7.3, ii), (SV)t4 is semisimple. If  W e  indec kH is not isomorphic to any of 

~1, ..., Wn, then by (2.14, i), [SWI(SV) H] <-[W I Vn] =0.  The multiplicity r i of SWi 
a (SV)H is found from 

riS( Wi) = dim(SV)n( W~) = dim(SV)( W~) = 5( V)[ V[ Wb ]. 

(iii) In this case V] V~, hence V[ W/c for some i; result follows. 
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(iv) Since SV  is H-projective, it has vertex and source in common with some in- 
decomposable summand of (S V) H [11, Theorem 6]. But all these summands are G- 
conjugate to SW, by (ii). 

8. Vertices of simple funetors. Examples 

This section contains some remarks on the problem: given Ve indec kG with 
vertex P and source S e indec kP, to find a vertex Q and source Te  mmod kQ for 
the simple functors S V e  mmod kG. We know from (4.7) that Q is a p-subgroup of  
G, and from (5.12) that we may assume Q>_P. Also (7.7) shows that there is an in- 
decomposable component W of Vjts) having vertex P and source S, and such that 
S V = ( S W )  °, and any source and vertex of S W  are source and vertex of SV. For 
this reason we shall assume henceforth that J(S) = G, that is, we take Ve indec kG 
to be a module with vertex P ~ G ,  and source S which is G-stable (i.e. gS=S for all 
g~G) .  

(8.1) Example. Let V, P, S be as just given, and assume also that G is ap-group,  and 
that k is algebraically closed. We shall prove that the vertex of  SV is G. 

I f  this is not true, there must be a maximal subgroup H of G such that SVis  H- 
projective. By (5.12), V must be H-projective too, which implies that H>_P. 

We have V--_S G, since VIS e and S e is indecomposable (see for example [11, 
Theorem 8, p. 438]). Then 

VH----(Se)M -- II n, 
d 

where d runs over a transversal of the cosets dH in G. But dp=p,  aS= s for all 
dE G. So we find VH=PW, where W = S  H and p = ( G : H ) .  Now from (7.9,ii) we 
get (SV)H=-SW, since 6(V)=6(W)= [V[ W °] = 1 (the last equality holds because 
V=- W°) .  Since SVis  H-projective, we have SV[(SV)~=(SW) °. But (SW) e is in- 
decomposable, since it is a proper epimorphic image of (., W e) = (., V) and hence, 
like (., V), has unique maximal subfunctor. Therefore SV=(SW)  °. But this leads 
to a contradiction, namely 

1 = dim(S V)(V) = dim(S W) ° (V) = dim(S W)(VH) =P 

(we axe using (1.Sb) and the fact that VH=--p. W). This proves that the vertex of SV  
must be G. If  we combine this with the argument at the beginning of this section, 
we have the following 

(8.2) Theorem. Let G be a p-group and k an algebraically closed field o f  character- 
istic p. I f  V~ indec kG has vertex P and source S, then the simple functor 
S V ~  mmod kG has vertex J(S) (the stabilizer of  S in G), and source SW, for any 
indecomposable summand W of  Vj(s) which has vertex P and source S. 
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(8.3) Example. Let Vemod kG be projective and indecomposable. Then V has 
vertex P={1},  and its source S=k{l}, that is, S=k ,  regarded as trivial 
k{1}-module. Clearly P ~ G ,  and S is G-stable. 

In order to find a vertex of SV, we first consider an arbitrary F e  mmod kG, and 
an arbitrary subgroup H of G, and give a procedure to decide whether F is H- 
projective or not. Take any projective resolution of F 

(-, f) (-, g) a (8.4) 0--,(-, V2) ,(., Vl) ,(-, V) .F--+0, 

so that V, Vl, V2, f, g all belong to mod kG. Apply the functor Rest ,  which gives 
the exact sequence (8.5) in mmod kH. 

(8.5) 0 ,( . ,  V2)n (',f)H>(., Vl)n (',g)H (., V) H cell 'Fn ,0 

t 

(', fH) (', gH) CtH 
(8.6) 0 '( ' ,  V2 H) ' ( ' ,  Vl/4) ' ( ' ,  Vn) ' F n  ,0 

If we define a'n=an • a(-, V), where a(-, V) ' ( . ,  Vn)--,(., V)n is the isomorphism 
defined at the beginning over Section 6, we have another sequence (8.6); moreover 
the diagram (8.5)-(8.6) whose vertical arrows are a(-, V2), a(-, V1), a(-, V) and IF,,, 
commutes. This shows that (8.6) is exact, and is, therefore, a projective resolution 
of Fn in mmod kH. If r/is any element of End Fn = (Fn, Fn),  a standard argument 
for projective resolutions shows that there exist elements h e End V, hi e End V 1 
and h 2 E End V2 such that diagram (8.7) commutes. 

(8.7) 

t-,f n) 
0 >(', V2H ) ' ( ' ,  VIH ) 

(" h2)[ (" hl)[ 

0 ,(., YEn) (.,fH),(., VIH) (.,_T_~H) (" 

t 

(', gu) an 
,(-, vz)  ,Fn ,0 

(., h) [~ 

, VH)-----7~, FH '0 
0¢14 

(8.8) Lemma. I f  the diagram (8.7) commutes, then so does the diagram (8.9), below. 

(8.9) 

(., f) (-, g) 
0 ,(., V2) ,(., V~) ,(., V )  

o , ( . ,  v2) , ( . ,  , ( . ,  v )  
(., f) (', g) 

,F  ,0 

,F  ,0 

In this diagram, th 2 stands for  t~(h2), th I for t~(hl), th for tell(h) and Ttl for  
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Proof. By hypothesis the first 'square' of (8.7) commutes, which implies hi fie= 
ft4h 2. Apply t~ to this equation. Since f is a kG-map, we get tt~(hl)f=ft~(h2), 
which shows that the first square of (8.9) commutes. Similarly, the second square 
of (8.9) commutes. For the third square of (8.7), our hypothesis gives ~Ta~= 
a~¢- (-, h), which can be rewritten as r/at~ = at4~, where ~ = a(., V). (., h). a(., V)- 1. 
Apply T~ to the first of these equations, and use (5.8, ii). We get T~(q)a = aT~(O. 
But it follows at once from (6.4) that TI~(~)= (', t~(h)), hence the third square of 
(8.9) commutes, and this completes the proof of (8.8). 

Lemma (8.8) leads to the following criterion for F to be H-projective. 

(8.10) Criterion. Suppose that F~mmod kG, and that H is a subgroup o f  G. Let 
(8.4) be a minimal projective resolution o f  F. Then F is H-projective i f  and only i f  
there exists an element h ~ End V~ which satisfies the following two conditions: 

(1) (-, h) maps Ker a~= Im(., g~i) into i tsel f -  this means that the k-map (Y,h) 
maps Ker u}4(Y)= Im(Y, g~) into itself, for  all Ye  mod kH. 

(2) t~(h) is an automorphism o f  V. 

Proof. We know from (5.11) that Fis  H-projective if and only if there exists an ele- 
ment r/e End Fz¢ such that T~(r/) = IF. Suppose first that we have such an r/. We 
then construct the commutative diagram (8.7), from which it is clear that h satisfies 
condition (1). But from (8.8) we know that the diagram (8.9) also commutes, and 
so by the minimality of (8.4) and the fact that T~(r/)= l r ,  it follows that all the 
vertical arrows in (8.9) are isomorphisms; in particular condition (2) holds. 

Conversely suppose we are given h e End Vn which satisfies (1) and (2). Condi- 
tion (1) ensures that there is some r/ in End Fie to make the third square in (8.7) 
commute; we may then find ht, h 2 in the usual way, so that (8.7) is a commutative 
diagram. By Lemma (8.8), (8.9) is also commutative. But condition (2) forces 
T~(r/) = y to be an automorphism of F, hence F is H-projective s ince  THG(r/),~ 1) = 

T (,7)y 1F. 

(8.11) Corollary to this proof. I f  F is H-projective and i f  (8.4) is minimal, then the 
modules VI, V 2 and V are all H-projective. In particular i f  O~ V I ~ V2 ~ V-~O is an 
almost split sequence in mod kG and i f  Q is a vertex o f  SV, then Vl, V 2 and V are 
all Q-projective (this provides a second proof of (5.12)). 

Proof. If F is H-pr0jective, we can find kH-endomorphisms hi, h2, h of V1, V2, V 
such that (8.9) commutes, with Tr/= 1F. Then tGH(hl),tGH(hE),tGH(h ) a re  all auto- 
morphisms by the minimality of (8.4), hence V l, V 2, V are all H-projective by 
Higman's theorem. The second part of (8.11) follows by'taking F=SV.  

We return to our example, where V~ indec kG is projective and F =  SV. By [5, 
Proposition 3.1a] or [10, Theorem 1.3], the sequence 
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0 ~ 0 ~ ( . ,  rV) ("g) ,(., V)---,SV-*O 

is a minimal projective resolution of  SV, where g is the inclusion of rV in V. 
Let H be a subgroup of G. According to (8.10), S V  is H-projective if and only 

if there is some h e End VH which satisfies conditions (1), (2). Condition (1) requires 
that for any Ye rood kH and any f e  (Y, VH) 

(*) f e l m ( Y ,  gH) = h f e lm(Y ,  gH). 

It is clear that f e I m ( Y ,  gH) if and only if Imf_<rV. Taking Y=(rIOH, f=gH in 
(*), we see that h must map rVin to  itself; conversely if h maps rV into itself, then 
h Satisfies (.) for all Y, f i  So h e E n d  VH satisfies (1), if and only if h(rV)<_rV. 

Suppose that SV is H-projective, and that h eEnd  V g satisfies (1),(2). Since 
h(rV)<_rV, h induces a map O(h) on the simple kG-module M= V/r'V. It is easy to 
check that O(h)e End M H, and that t~(O(h))= O(t~(h)), hence by (2) tt~(O(h)) is an 
automorphism of M. Therefore M is H-projective. 

Conversely Suppose that M =  V/r V is H-projective, and that r)e End Mg satisfies 
t~(r/)= 1M. Because V H is projective, we may 'lift' any q ' e E n d M H  to some 
h ' e  End V H, so that the diagram (8.12) commutes. 

V H , M  H , 0  

V H , M  H ' 0  

By this diagram it is clear that h '  maps rV into itself, i.e. h '  satisfies (1). If now h 
is the lift of our kH-endomorphism r/, we have O(tg(h))= tg(r/)= 1M. This proves 
that ti~(h) is a non-nilpotent endomorphism of V, hence by Fitting's lemma is an 
automorphism of V. But this shows that h satisfies both conditions (1) and (2), 
therefore SV is H-projective by (8.10). We have proved that SV is H-projective if 
and only if M =  V/rV is H-projective. This gives the theorem below. 

(8.13) Theorem. I f  Ve mod kG is projective and indecomposable, then the vertices 
o f  the simple functor S V coincide with those o f  the simple module M= V/r V. 

9. Appendix 

We sketch here a proof of Theorem 1.4. This proof is essentially that deducible 
from Auslander [3, p. 281]. (It also works when k is replaced by a complete discrete 
valuation ring, cf. Roggenkamp=Schmidt [15, pp. 904, 905].) 

Given any M e m o d A ,  we set up two maps a: A ~ B ,  fl: B ~ A ,  where A is the set 
of  all subfunctors F of (-, M), and B is the set of all right ideals R of End M. Namely 
if  F e  A, we set a(F) = F(M), which is a right ideal of End M (see remark preceding 
Theorem (1.5)), and if R e B ,  we define p(R)<_(.,M) by 
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B(R)(X)= { f e ( X , M ) l f g e R  for all ge(M,X)} ,  

for all X e  mod A. ( o f  course, one must check that this does define a subfunctor 
B(R) of (., M).)  With this notation, Theorem (1.4) reads 

(9.1) r(. ,M)=fl(radEndM), for any M e m o d A .  

To prove (9.1), first verify the following: 
(i) F<fl(a(F)), for all F e A .  

(ii) R = a(B(R)), for all R e B. 
(iii) I f  a(F)=(M,M), then F=( . ,M) .  
(iv) If F is maximal in (.,M), then B(a(F))=F. 
(v) If  R is maximal (as right ideal) in End M, then B(R) is maximal in (., M). 

(vi) fl commutes with intersections. 
From (i)-(v) one finds that B induces a bijection between the sets Bmax of  all max- 
imal right ideals of End M, and Amax of  all maximal subfunctors of  (-, M).  So 
using (vi) we have 

] / ( r a d  E n d  M) = f l (~  Bmax) = 0 fl(Bmax) = ~') Amax = r ( . ,  M ) ,  

and (9.1) is proved. 
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