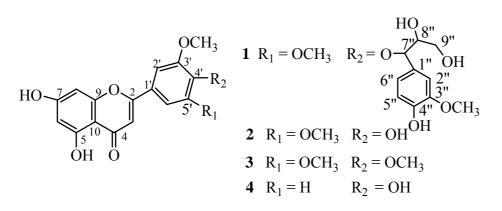
HETEROCYCLES, Vol. 65, No. 3, 2005, pp. 661 - 666 Received, 21st December, 2004, Accepted, 28th January, 2005, Published online,1st February, 2005

A NEW FLAVONE FROM LYCOPODIUM JAPONICUM

Jian Yan,^{1,2} Lirong Sun,^{1,2} Xianming Zhang,¹ and Minghua Qiu^{1,2} *

¹ State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of sciences, Kunming, Yunnan 650204, China


*Corresponding author: E-mail: mhchiu@public.km.yn.cn; Tel: + 86-871-5223255; Fax: +86-871-5150227

² Graduate School of the Chinese Academy of Sciences, Beijing, 100039, China

Abstract — A new flavone, lycopodone (1), together with other three known flavonoids tricin (2), tricetin $3^{,}4^{,}5^{-}OMe$ (3), $5,7,4^{-}trihydroxy-3^{-}$ methoxy flavone (4), were isolated from the fern *Lycopodium japonicum*. The structure of 1 was established on the basis of spectral measures. Compounds (1) and (2) showed moderate antitumor activity.

INTRODUCTION

Lycopodium japonicum is widely distributed in Guangdong, Guangxi, Yunnan, Guizhou Provinces.¹ This plant is one of the most commonly encountered traditional Chinese herbal medicines for treatments of arthritic pain, quadriplegia, dysmenorrhea, and contusion.²⁻³ The chemical constituents of the genus *Lycopodium* have been investigated previously.⁴⁻⁶ But flavones of the genus were hardly reported. Numerous biological activities of flavonoids have been reported. For example, tricin (2) has been evaluated with respect to antimicrobial⁸ and cancer cell line activities.⁹⁻¹⁰ In the course of our screening of biologically active constituents, four compounds (1), (2) ¹⁰⁻¹¹, (3) ¹¹, (4) ¹² (see Scheme 1) were isolated from *L. japonicum*. In this paper, we would like to present the isolation and identification of the new compound, lycopodone.

Scheme 1 the structures of compounds (1-4)

RESULTS AND DISCUSSION

Lycopodone (1) possessed the molecular formula $C_{27}H_{26}O_{11}$ by HRFAB-MS (neg.) (m/z 525.0867 $[M-H]^{-}$, calc. for C₂₇H₂₅O₁₁ 525.1396), which was consistent with its NMR data. The new compound exhibited UV maximum absorptions (273 and 331 nm) and IR absorptions spectral at 3417 and 1612 cm⁻¹, which were characteristic of a flavonoid. The ¹³C NMR (DEPT) spectra presented nine carbon signals corresponding to a C₆-C₃ phenylpronane unit, and the frequencies were characteristic of a flavone skeleton. The ¹H NMR spectra showed signals (H-3, 6, 8, 2` and 6`) typical of a tricin-like flavone skeleton. Comparing those of **2**, the ¹³C NMR spectra of **1** displayed an additional aromatic ring and an additional glycerol chain and a methoxy group. In the aromatic part of the ¹H NMR spectrum, the signals at δ 6.95 (1H, d, J = 1.8 Hz, H-2⁽⁾), 6.76 (1H, d, J = 8.8 Hz, H-5⁽⁾), and 6.70 (1H, dd, J = 1.8, 8.8 Hz, H-6``) defined a 1, 3, 4 tri-substituted aromatic ring. This was confirmed in the ¹³C NMR spectrum by three methane peaks at $\delta_C 111.2$ (d, C-2^{``}), 119.4 (d, C-5^{``}), 114.7 (d, C-6^{``}). Due to deshielded effect, two signal peaks $\delta_H 4.36$ (1H, H-7^{''}); $\delta_C 86.3$ (d, C-7^{''}) and $\delta_H 4.80$ (1H, H-8^{''}); $\delta_C 72.2$ (d, C-8^{''}) and a methylene peaks $\delta_{\rm H}$ 3.51 (2H, d, J = 9.3, H-9^{\circ}); $\delta_{\rm C}$ 60.1 (t, C-9^{\circ}) were observed in the ¹H NMR and ¹³C NMR spectrum, which suggested glycerol chain. Thus, 1 was primarily determined to be a flavonophenylpropanetriol. The HMQC and HMBC 2D NMR spectral analyses confirmed that the three phenol hydroxyl groups were situated at C-5, C-7 and C-4``, and three methoxy groups at C-3`, C-5` and C-3`` (see Table 1). From HMBC spectrum, the correlations H-7`` with C-1`` and C-4` were observed,

which suggested that C-7^{``} and C-4[`] were linked its *O* bond. The ¹H-¹H COSY spectra revealed the coupling patterns of the oxygenated methyne and methane protons of H-7^{``}, H-8^{``}, and H-9^{``}. The relatively small constant between H-8^{``} and H-7^{``} (J = 5.0 Hz) suggested an erythro-configuration in the glycerol chain.¹¹⁻¹² Thus, lycopodone (**1**) was formulated as *rel-*(7^{``}*R*, 8^{``}*S*) - tricin-4^{`-}*O-*(4^{``-} hydroxy-3^{``}-methoxyphenyl propanetriol).

EXPERIMENTAL

General Experimental Procedures. Column chromatography (CC): Silica gel (200-300 mesh, Qingdao Marine Chemical, China); and Lichroprep RP-18 (40-63um, Merck, Darmstadt, German). All melting points: YANACO-MP-52 apparatus, uncorrected. Optical rotations: Horiba SEAP-300 spectropolarimeter. IR spectra: Shimadzu IR-450 instrument; in cm⁻¹; KBr pellets. UV spectral data: UV 210A spectrometer. FAB-MS and HRFAB-MS: VG-AUTOSPEC-3000 spectrometer; in m/z (rel. int. in % of the base peak). NMR specta: Bruker AV-400, or DRX-500 instruments; Chemical shifts (δ) in ppm; TMS as the internal standard. Fractions were monitored by TLC, and spots were visualized by heating TLC sprayed with 10% H₂SO₄.

Plant Material. The whole body of *L. japonicum* Thunb was obtained from the Chinese herbal market. It was identified by Prof. S. G. Wu. A voucher specimen (KUN No. 001143) was deposited at the Laboratory of Phytochemistry, Kunming Institute of Botany.

Extraction and Isolation. The dried, milled whole body of *L. japonicum* (19.0 kg) was exhaustively extracted with 90% MeOH (3×10 L) under reflux for 4, 4, 3 h. The MeOH extract was evaporated under reduce pressure to yield syrup (910 g), which was suspended in water: MeOH (9:1, 1500 mL) and extracted successively with EtOAc (3×2000 mL) and n-BuOH part (3×2000 mL) to give EtOAc-soluble (410 g) and n-BuOH-soluble fractions (101 g). The AcOEt extract was absorbed on 600 g silica gel and was fractionated by CC [silica gel (1.5 kg), CHCl₃ : Me₂CO 10:0, 9:1, 8:2, 7:3, 6:4 0:10, *v*:*v*] to afford six fractions (*Fr.*): 1 (oil), 2 (104 g), 3 (119 g), 4 (64 g), 5 (49 g), 6 (22 g).

Fr. 2 (104 g) was subjected to CC (silica gel, CHCl₃ : MeOH 40:1, 30:1, 20:1, v:v) to get four

subfractions. *Fr. 2.1* was further purified by repeated CC (silica gel, CHCl₃: MeOH 60:1, 50:1, *v*:*v*) to yield **3** (30 mg). *Fr. 2.2* was dissolved in CHCl₃ and yielded yellow powder of compound (**2**) (10 mg). *Fr.2.4* was further purified by CC (silica gel, CHCl₃ : MeOH 35:1, *v*:*v*) to give **4** (40 mg).

No	¹³ C	¹ H	HMBC	COSY
2	162.9 s	/	H-3, H-2`, H-6`	
3	104.7 d	7.00 (s)		
4	181.7 s	/	H-3, H-6	
5	161.3 s	/	Н-6, 5-ОН	
6	98.8 d	6.70 (d, 2.0)	H-8	
7	164.2 s	/	H-6, H-8	
8	94.2 d	6.22 (d, 2.0)	H-6	
9	157.3 s	/	H-8	
10	103.8 s	/	H-6, H-8, H-3, 5-OH	
1`	125.2 s	/	H-3, H-2`, H-6`	
2`	104.4 d	7.30 (s)	H-6`	
3`	152.9 s	/	3`-OMe, H-2`	
4`	139.5 s	/	H-2`, H-6`, H-7``	
5`	152.9 s	/	5`-OMe, H-6`	
6`	104.4 d	7.30 (s)	H-2`	
3`,5`-OMe	56.3 q	3.76 (s, 6H)		
1``	133.1 s	/	H-2``, H-6``	
2``	111.2 d	6.95 (d, 1.8)	H-6``, H-8``	
3``	146.9 s	/	3``-OMe, H-2``, H-5``	
4``	145.4 s	/	4``-OH, H-5``	
5``	119.4 d	6.76 (d, 8.8)	H-6``, H-8``, 4``-OH	
6``	114.7 d	6.70 (dd, 1.8, 8.8)	H-2``, H-5``, 4``-OH	
7``	86.3 d	4.36 (br s)	H-8``, H-9``	H-8``
8``	72.2 d	4.80 (br s)	H-7``, H-9``	H-7``, H-9``

Table 1 13 C and 1 H NMR spectra data of compound of **1**

9``	60.1 t	3.51 (d, 9.3)	H-8``, H-7``	H-8``
3``-OMe	55.6 q	3.65 (s, 3H)		
5-ОН		12.83 (br s, 1H)		
4`` - OH		8.62 (br s, 1H)		
8`` - OH		5.07 (br s, 1H)		
9``-OH		4.06 (br s, 1H)		

Recorded at 500 MHz in DMSO-d₆, at room temperature.

Fr. 3(119 g) was purified by repeated CC (silica gel, CHCl₃ : MeOH 25:1, 15:1, 10:1, *v*:*v*) to afford five fractions. *Fr.* 3.2 (200.0 mg) was a mixture of compound (**1**) and other compounds. And the mixture was repeatedly subjected to HPLC (MeOH : H₂O 70:30, *v*:*v*) to yield compound (**1**) (50.0 mg).

Compound (1), yellow powder, mp>300°C; $[\alpha]_{D}^{23} - 11.76$ ° (*c* 1.7, MeOH); UV λ_{max} ^{MeOH} nm(log ε): 204(4.16), 273(3.55), 306(3.53), 331(3.55); ¹³C and ¹H NMR spectrum, see **Table 1**; IR (KBr) v_{max} 3417 (br.*s*), 2941, 2842, 1656, 1612, 1591, 1556, 1455, 1356, 1250, 1170, 1048, 1031, 989, 918, 838, 786 cm⁻¹; FAB⁻MS (m/z, %): 525([M-1]⁻, 55), 329([M-C₁₀H₁₃O₄], 100); HRFAB-MS: 525.0867 (calcd for C₂₇H₂₅O₁₁ 525.1396)

Antitumor Activity: Human tumor A549, K562 cells line assay were performed at Kunming Medical College prof. Q. Chen and her coworkers and previously described bioassay methods were adopted. ¹⁵⁻¹⁷ The IC₅₀ values for compounds (**1**) and (**2**) (10-100 μ g/mL, 11.68 μ g/mL, respectively, against human tumor K562 cells) indicated moderate antitumor activity.

ACKNOWLEDGEMENTS

This work was supported by NKIP Foundation of CAS (KSCZX-SW-301-08) and Fundation of Key State Lab of Phytochemistry.

REFERENCES

1. C. Y. Yang, Zhongyao Tongbao, 1981, 6, 12.

- K. M. Dai, D. J. Pan, Z. H. Chen, and X. Cai, *Journal of Plant Resource and Environment*, 1992, 1, 36.
- Jingsu Institute of Botany, Outline of New China Herbal, Shanghai: The Shanghai Science and Technology Press, 1990, p. 625
- 4. H. Zhou, C. H. Tan, S. H. Tan, and D. Y. Zhou, J. Nat. Prod., 2003, 66, 1328.
- 5. M. J. Kulshreshtha, D. K. Kushireshtha, and R. P. Rastogi, *Phytochemistry*, 1972, 11, 2369.
- 6. P. Pant and R. P. Rastogi, Phytochemistry, 1979, 18, 1095.
- 7. F. R. Ansair, W. H. Ansari, W. Rahman, O. Seligman, V. M. Chari, H. Wagner, and B. G. Osterdahl, *Planta Medica*, 1979, **36**, 196.
- 8. W. F. Zhang, R. X. Tan, L. Yang, and Z. L. Liu, Planta Medica, 1996, 62, 160.
- 9. K. H, Lee, K. Tagahara, H. Suzuki, R. Y. Wu, M. Haruna, and I. H. Hall, J. Nat. Prod., 1981, 44, 530.
- G. R. Pettit, Y. H. Mei, C. A. Stevenson, D. L. Doubek, J. C. Knight, Z. Cichacz, R. K. Pettit, J. C. Chapuis, and J. M. Schmidt, *J. Nat. Prod.*, 2003, 66, 259.
- 11. K. R. Markham, B. Ternal, R. Stanley, H. Gelger, and T. J. Mabry, Tetrahedron, 1978, 34, 1389.
- 12. M. Fujita, M. Nagai, and T. Inoue, Chem. Pharm. Bull., 1982, 30,1151.
- 13. J. M. Fang, C. K. Lee, and Y. S. Cheng, *Phytochemistry*, 1992, **31**, 3659.
- 14. M. L. Cardona, B. Carcia, J. R. Pedro, and J. F. Sinisterra, Phytochemistry, 1990, 29, 629.
- 15. T. J. Mosmman, Immunol. Meth., 1983, 65, 55.
- 16. M. C. Alley, D. A. Scudiero, and A. Monks, Cancer Res., 1988, 48, 589.
- 17. J. J. Zhou, X. F. Yue, and J. X. Han, Chin. J. Pharm., 1993, 24, 455.