
Journal of Pure and Applied Algebra 38 (1985) 323-336 

North-Holland 

323 

LENGTHS OF CERTAIN GENERALIZED FRACTIONS 

R.Y. SHARP and M.A. HAMIEH 

Department of Pure Mathematics, University of Sheffield, Hicks Building, Sheffield S3 7RH, 

England 

Communicated by C. Lijfwall 

Received 28 December 1984 

Dedicated to Jan-Erik Roos on his 50-th birthday 

1. Introduction 

Throughout, let A be a (commutative Noetherian) local ring (with identity) of 

dimension d > 0, having maximal ideal m. For an m-primary ideal q of A, we shall 

denote the multiplicity of q by e(q) or eA(q); if x1, . . . , Xd fOrIn a system of 

parameters (‘s.0.p.’ will be used as an abbreviation for ‘system of parameters’, and 

‘s.s.0.p.’ will stand for ‘subset of a system of parameters’) for A, we shall use 

4x1, . . . . xd) to denote e(Cy,, AXi). The length of an A-module M will be denoted 

by I(M) or I,(M). 

It is well known that, for an m-primary ideal q, for all large values of the positive 

integer n, the expression [(A/q”) takes the same values as a rational polynomial in 

n of degree d having leading coefficient e(q)/d!, so that 

U/q”) 
e(q) = lim ~ 

n-m rid/d!! . 

In the case when q = Cf=, Ax, (so that the elements x1, . . . , xd form a s.o.p. for A), 

there is also a related limit formula due to C. Lech [2, Theorem 21, which states that 

e(xl,...,Xd)= lim 
&WC:‘=, Ax,“)) 

min{n ,,..., n,,)-cc n, “’ nd 

This formula therefore raises the following. 

Question 1.1. Given x,, . . . ,x, which form a s.o.p. for A, does there exist a 
polynomial g E Q[X,, . . . , xd] (where X,, . . . , xd are indeterminates) of total degree 

d, linear in each Xi and having homogeneous component of degree d equal to 

e(xl, . . . , xd)xI -..X,, such that, provided n,, . . . , nd are all sufficiently large, 
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This question certainly has an affirmative answer in the case when A is Cohen- 

Macaulay, for then [4, p. 3111, for all positive integers n,, . . . , nd, 

+@h~)=~(x;l,..., Xp)=@l,..., &f)nl”‘nd, 

and also in the case when A is a generalized Cohen-Macaulay local ring [8, $31, for 

then [S, (3.3) and (3.7)], provided the integers nl, . . . , nd are all sufficiently large, 

(Here, H;(A) denotes the i-th local cohomology module of A with respect to tn.) 

However, Question 1.1 does not always have an affirmative answer: D. Kirby 

pointed out to the authors that the local ring 

where K is a field and X,, X,, X3 are indeterminates, provides a situation where the 

answer is negative: if we let, for i = 1,2,3, ti denote the natural image of Xi in B, 

then (tt + t3), (t2 + t3) form an s.o.p. for B and, for all positive integers n,, n2, 

f,(B/((t,+t3)"',(t2+t3)"*))=n,n2+ min{n,,n2}. 

This paper is concerned with a similar, and sometimes related, question. In [II, 

3.51, a description of H:(A) was given in terms of the modules of generalized frac- 

tions introduced in [lo]. Write 

&4)d+i={(xt,...,xd,l)EAd+1: there exists j with Osjsd such that 

XI, *.a, Xj form an S.S.O.P. for A and Xj+l = -*.=Xd= l}. 

Then U(/l)d+ , is a triangular subset [lo, 2. l] of Ad+‘, and Hi(A) z U(A)& ‘A, 

the module of generalized fractions of A with respect to u(A)d+, . Let x1, . . . , xd 

form a s.o.p. for A, and let nl, . . . , nd E th (we use N to denote the set of positive 

integers). Consider the generalized fraction 1 /(x7’, . . . , x2,1) E U(A)& ‘A: by [ 10, 

3.3(ii)], it is annihilated by Cf=, Ax,!‘, and so the cyclic submodule of U(A),,d; ‘A 

generated by this generalized fraction has 

E(A ( 1 /(xY’, . . . , x2, I)))+/~, Ax+0. 

(We call &A( 1 /(xy’, . . . , xi4 1))) the length of the generalized 

(XY’, . . . , x2, l).) This paper is concerned with the following question 

fraction l/ 

Question 1.2. Given x, , . . . , xd which form a s.o.p. for A, does there exist a poly- 

nomial h E Q[X,, . . . , &] such that, provided nl, . . . , nd are all sufficiently large, 

~(A(l/(x~‘)...) xF,l)))=h(nt )..., nd)? 

It is perhaps worth pointing out the following intriguing link between Questions 



Lengths of certain generalized fractions 325 

1.1 and 1.2. Let x 1, . . . , x, form a s.o.p. for A. It is well known that &(A) may be 

viewed as a direct limit of the modules A/(Cy=, Ax:) (where n,, . . . , nd E N); on 

the other hand, U(A),,dT’A, which is isomorphic to H&A), is, by [ll, 3.61, the 

union of its cyclic submodules A( 1 /(xy’, . . . , x’$ 1)). 

Question 1.2 has an affirmative answer in the case when A is Cohen-Macaulay, 

for in that case it is a consequence of the exactness theorem [12, 3.151 that the an- 

nihilator of l/(x:‘, . . . , x;I: 1) (where xl, . . . , x, form an s.o.p. for A and 

n,, *.., nd E n\l) is exactly Cf=, Ax,?, so that 

&4(1/(x;‘, . . ..xF. i)))=i(Al~,Ax:.)=e(x,,...,w,)n,---nd. 

(Incidentally, O’Carroll has provided, in [5, $31, a simpler proof of the exactness 

theorem which does not require the underlying ring to be Noetherian.) 

At the time of writing, we do not know the complete answer to Question 1.2. We 

do know that the answer is affirmative in the special case when d=2 (or l), so that 

for 2-dimensional local rings the situation concerning this question is perhaps more 

satisfactory than that for Question 1.1. We also know that Question 1.2 has an 

affirmative answer in the special case in which A is a generalized Cohen-Macaulay 

local ring (of arbitrary (positive) dimension). Below, we present our proofs of these 

results. 

2. Preliminaries 

When discussing modules of generalized fractions, we shall use the notation of 

[lo] and [ll], except that we shall use slightly different notation concerning 

matrices, in that round brackets will now be used instead of square ones, we shall 

agree to use n-tuples (u,, . . . , u,) of elements of R (where R is a commutative ring) 

and 1 x n row matrices (u, ... u,) over R interchangeably, and we shall cease to 

use boldface letters to denote matrices. We still use T to denote matrix transpose 

and, for in N, D;(R) to denote the set of all ix i lower triangular matrices over R; 
we shall, in addition, use M;(R) to denote the set of all ix i matrices over R. 

Our first lemma is concerned with the standard technique of factoring out 

Hz(A); it will enable us, in some of our proofs, to reduce to the case where 

depth A > 0. 

Lemma 2.1. Let b be the annihilator of an m-primary ideal of A, let A =A/& and 
let -a . A-+A be the natural ring homomorphism. Let rFr = m/b, the maximal ideal 
of A. Let x, ,..., x~EA. 

(i) The local ring A again has dimension d, and, as A-modules, 

H;(A) G Hi(A) for aN i E N. 

(ii) The elements x1, , . . , xd form a s.0.p. for A if and only if R,, . . . , i?d form a 
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s.o.p. for A; when this is the case, 

eA(X1, . . . . Xd)=eA(xlr...,xd). 

(iii) There is an isomorphism of A-modules 

8: U(A)-d-‘A+U(A)-d-‘A 
d+l d+l 

which is such that, for a E A and (u,, . . . , ud, 1) E &4>d+ ,, 

&a/(24,,..., ud, 1)) = a/(& . . . , iid, i). 

Proof. (i) That dim A= d comes from the fact that b is contained in every prime 

ideal of A. Since Supp(b) c {m}, we have H;(b) = 0 for all i E N; hence H,!,,(A) z 

H/,,(A) for all iE N; and the claim now follows from [9, 4.31. 

(ii) The first claim is easy, and the second can be proved by, for example, use of 

[4, Theorem 5 on p. 302, Proposition 5 on p. 307, and (7.4.3) on p. 3001. 

(iii) In view of the first part of (ii), it is routine to check that there is an A-epi- 

morphism 0 : U(A)& ‘A+ U(A);fT ‘A given by the formula in the statement of the 

lemma, and it remains to show that this 0 is injective. So let a EA, (uI, . . . , ud, 1) E 

u(A),+ 1 be such that, in U(A);,dT’A, ~?/(a,, ,.. , iid, i) =O. By [lo, 3.3(ii)], we may 

assume that u 1, . . . , ud form a s.0.p. for A. There exist (yl, . . . , yd, 1) E u(A),+ 1 and 

H* E Dd+ 1(& such that 

H*(a,, . . . , iid,i)T=(j$ )...) Jd,i)T and IH*( iTE i Api, 
i=l 

For P= (pij) EMU+ 1(A), we use P to denote the matrix (p;j) of Md+ 1(A). There 

exists NEDd+ I (A) such that 8= H* and 

H(u l,...,Ud,l)T=(Y;,...,y~,l)T 

for suitable y;, . . . , y; E A. By part (ii), y;, . . . , yi form a s.o.p. for A. Also, 

there exists n E N such that (Cp=, Ay,F)b =0: let D denote the diagonal matrix 

diag(y;,..., Y$ l)EDd+l(A). Then 

DH(u,, . . . , &,l)T=(y;+l ,..., _,$+l,l)T. 

Moreover, jH 1 a E Cp= I Ayi + b; thus 

IDHI aE t Ayr+’ 
i=l 

and a/@,, . . . . ud, 1) =0 in U(A);:; ‘A. Thus 6’ is injective and the proof is com- 

plete. 

Note. We are grateful to the referee for pointing out the above proof of (iii) to us; 

our original proof was considerably longer. 

In the situation where depth A>O, we shall sometimes wish to factor out by an 
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ideal generated by a non-zerodivisor xi E m, and, when doing so, we shall make use 

of the following fact from [13, $21. 

Proposition 2.2. (See 113, 2.4 and 2.71.) Suppose that dr2. Let x1 urn be a non- 
zerodivisor on A (so that x1 automatically forms a S.S. o.p. for A). Let A = A/Ax, 
and let -: A-tA denote the natural ring homomorphism. There is a homomorphism 

n ‘+’ : U(&,‘A+ U(A)& ‘A 

which is such that, for all a E ii and (J1, . . . , Jd, i) E U(&, 

rld+l(d/(~~,...,~)d,i))=a/(x,,y,,...,y,,l). 

(We adopt the convention here that if some Jj= i, then 1 is to be used for _Yj, Of 
course, the notation a has a different meaning from that of 2.1.) 

Moreover, ker rl;ld+ ’ rH;-‘(A)/x$?;-‘(A). 

As the module Hi- ‘(A) is Artinian [3, 2.11, the ideas of [13, $11 will be helpful. 

We give a brief review of these here, and introduce some new definitions. 

Remarks and Definitions 2.3. (See [13, $11 for more details.) Let L be an Artinian 

A-module. Let 

L=C,+...+C, 

(h 20) be a minimal secondary representation of L, with Ci pi-secondary for i= 
1 ,...,h, and set 

Lo= i c;. 
1=I 

P, + m 

This submodule, which is independent of the choice of minimal secondary represen- 

tation for L, will be called the residuum of L. Note that, by [13, 1.11, Lo is the 

smallest submodule K of L for which L/K has finite length. We shall call /(L/L,) 
the residual length of L. 

We say that an element a of A is pseudo-L-coregular if a urn but a does not belong 

to any of the non-maximal attached primes of L. (The members of Att(L) are called 

the attached primes of L.) Note that this is equivalent to the condition that a E m 

and aL, = L,. There exists t E h. such that m’L c L,; we define the stability index 
s = s(L) of L to be the least integer i 2 0 such that m’L c L,. Note that s is the least 

integer i 2 0 such that m’L =m ‘+‘L, that mSL = L,, and that aSL =L, for each 

pseudo-L-coregular element a em. 

We shall need to use a result of A.M. Riley concerning permutations of systems 

of parameters: it follows from the proof of [7, II, (3.1)] that, if xi, . . . ,xd form an 

s.o.p. for A and (7 is a permutation of { 1, . . . , d}, then, in U(A);!; ‘A, for aEA, 
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a (sign a)a 

(X,(I) ,... ,x,(,),I)=(x,,...,xd,l). 

As no proof of this is available in the literature (apart, that is, from Riley’s thesis), 

we show below how the above result can be quickly derived from a result of 

O’Carroll [6, 3.31. 

Lemma 2.4 (G. Gibson and L. O’Carroll). Let R be a commutative ring (with 
identity), let X be an R-module, let n E IF-I, and let V be a triangular subset of R”. 
Suppose that v =(v,, . . . . v,), w=(w,, . . . , w,) E V and PEM,,(R) are such that 
P(Vl, . . . ,v,)T=(WI )..., W,)T. Note that V x {l} is a triangular subset of R”+ ‘. 
Then, in (Vx { 1)))“-‘A4 for m EM, 

rn/(Vl, . ..) v,, l)=lPI m/(w, )...) Wn,l). 

Proof. There exist x= (xi, . . . , x,) E V and H, KE D,(R) such that HvT = xT = Kw’ = 
KPvT. Hence, by [6, 3.31, if we let D be the diagonal matrix diag(xi, . . ..x.,), then 

For Q E M,(R), denote by Q* the matrix in M,, + ,(R) which has Q as its top left 

n x n submatrix, has 1 as its (n + 1, n + 1)-th entry, and has all remaining entries in 

its (n + 1)-st row and (n + 1)-st column equal to zero. Then 

D*H*(vi, . . . , v,, l)T = (xf, . . . , x,‘, l)T =D*K*(wl, . . . , w,, l)T. 

Now IQ*I=IQl f or all QEMJR), and so, in (Vx{l})-“-‘Ad, 

m PI IHI m = IDI IKI IPI m = PI m 
(v I)..., vn,l)=(X: )..., x,2,1) (xf ,..., x,2,1) (Wi ,...) Wn,l) 

in view of [lo, 3.3(ii)]. 

We can now use permutation matrices to obtain the above-mentioned 

Riley. 

result of 

Corollary 2.5. (See A.M. Riley [7, II, (3. l)].) Let xl, . . . , x, form a s.o.p. for A, let 
o be a permutation of ( 1, . . . , d} and let aE A. Then, in U(A);,dT ‘A, 

a/(x,, . . . . xd, 1) = (sign @a/(x&), . . . , xc(d), lh 

Next we give a technical lemma which facilitates considerably calculation in cer- 

tain modules of generalized fractions. Let R be a commutative ring (with identity), 

let rzEk4, let x=(x1 ,..., x,)ER”, and let 

u(x)={(xp’,...) x,a”):(q )..., aJEw}, 

a triangular subset of R”. For ar=(ai,...,ar,)~h\l”, it will be convenient to denote 
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(xf’, . ..) x:) by x0, and we shall use obvious extensions of this notation without 

further comment. We use tr$ to denote lNU{O}. 
Given (YE~N” and P=@,,...,p,)~n\l,“, (xO)~ and (x,+~)~ are related by a 

diagonal matrix: we have 

diag(xf’, . . . , x/yqxy= (x@‘“)T 

At first sight, it would appear that, when working with the module of generalized 

fractions U(X)-~N of an R-module N with respect to U(x), we shall need to work 

with general lower triangular matrices in D,(R). The next lemma shows that, for 

some purposes, we only need consider diagonal matrices of the above type when 

working with U(x)-“N. 

Lemma 2.6. (See H. Zakeri [14, II, (2.2)(ii)].) Let the notation be as above. Let 
g,hENand let a=(a, ,..., a,), /3=(p, ,..., /I,,) E tkl”. Then g/xa = h/x8 in U(x)-“N 

if and only if there exists 6= (6 , , . . . ,a,) E N” such that ~5~ zz max{ a;, p,} for all 
i=l ,...,n and 

n-1 

Xl 
61-aI ...x$-“~g_x~l-/Il ...x&-bnhE 

n 
( > 

,;, RX? N 

60 that DxaT = xaT = ExPT (where D = diag(xf’-a’, . . . , ~,6,-‘~) and E = 

diag(xf’ Ppl, . . . , x2-8n )) and ID ) g - IE 1 h E (C::,’ RxT)N). 

Proof. (-) This is clear. 

(a) Choose y=(v , ,..., yn)~R\ln such that yI?max{ai,&} for all i=l,..., n. 
Since 

O=K__= 
h @;I-., ...,~-aflg_x;I-~l ...x~-fi~h) 

x” xfl XY 

it is enough to prove the claim in the case when h = 0. This we do. 

There exists y = ( yl, . . . , Y,)E Nn and HED,(R) such that HxaT=xYT and IHI ge 
(cyl,’ Rxj)‘)N. We may assume that yi I (Y; (and pi) for each i = 1, . . . , n. Set D, = 

diag(x{‘-a’, . . . , ~2~~~) and D, = diag(xr’, . . . , xp). Now 

HxaT = xYT = D, xaT. 

It thus follows from [lo, 2.31 that lD,HI - lD2D,l E C::,’ RxFY’; since jD,HI gE 
(C::,’ RxFy’)N, we have 

X1 
&J-a1 ...X2Y,-a, 

n g=]D2D,]g+;Rx+N. 

Take 6i = 2~; (for i = 1,. . . , n) to complete the proof. 

Remark 2.7. Note that 2.6 may be used not only for U(x)-“N, but also for 

U(x)-“N, where U(x) denotes the expansion [lo, 3.21 of U(x): this is a consequence 

of the natural isomorphism between U(x)-“N and U(x)-“N. 
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Lemma 2.6 has many uses, and we give one now. 

Lemma 2.8. Let R be a commutative ring (with identity) and let XER. Let 
V= U((x, 1)) (in the notation of 2.6). Let SE k4. Then 

(O:V-~,xS)={r/(xS,l):r~R}. 

Proof. One inclusion is immediate from [lo, 3.3(ii)], and so we suppose that 

r/(x’, I), where t E N with t >s, is an element of V2R annihilated by 9. Thus 

T/(X’_ “, 1) =0 and so, by 2.6, there exists qE h\l, such that X~TE Rx~+~-‘. Hence 

there exists r’E R and b E (0 :R x4) such that r= r’.~-~+ b. Hence, in V2R, 

r’xtmS+b ’ x4b , 
~ - 

Cx’, 1) =~+(x’+41&’ 

The result follows. 

Finally in this preliminary section, we recall from [8, $31 the definition of 

generalized Cohen-Macaulay local ring: A is such a ring if and only if Hi(A) has 

finite length for all i = 0, . . . , d- 1. Note that, when this is the case, the residuum of 

Hz-‘(A) is 0, and the residual length of Hi- ‘(A) is therefore just the length 

l(H$‘(A)). We draw the reader’s attention to the various characterizations of 

generalized Cohen-Macaulay local rings provided by [8, (3.3)]. 

3. The results 

We begin by answering Question 1.2 in the case when d = 1. 

Proposition 3.1. Suppose that d= dim A = 1 and that x, forms a s.o.p. for A. 
Then, for all n, E N, the length of the generalized fraction l/(x;‘, 1) of U(A)F2A is 
given by 

l(A( 1 /(x;‘, 1))) = e(x,)nl . 

Proof. There exists t E N such that (0: m’) = (0: m”‘) for all iE k4. Now A/(0 : m’) 

has positive depth, and it therefore follows from 2.1 that we may assume that 

depth A >O, so that, as dim A = 1, A is Cohen-Macaulay. 

But, as remarked in the Introduction, the result is then easy: by [12, 3.151, 

l(A(l/(x;‘, l)))=f(A/Ax~l), and this is e(x,)nl by [4, p. 3111. 

Next we answer Question 1.2 for 2-dimensional local rings. 

Theorem 3.2. Suppose that d = dim A = 2. Let I’ be the residual length (see 2.3) of 
the Artinian module HA(A), and let s be the stability index of HA(A). Let xl, x2 
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form an s.o.p. for A. Then, for all n,, n2 E N with n,, n,zs, the length of the 

generalized fraction l/(x;‘, xp, 1) of U(A)T3A is given by 

/(A( 1 /(x7’, x$?, 1))) = e(x, , x2)nl n2 - I’. 

Proof. There exists te N such that (0: m’) = (0: rr?“) for all iE N. If we change 

rings from A to A/(0 : m’) then, by 2.1(i), we do not change the values of I’ and s. 

Since A/(0 : m’) has positive depth, it thus follows from 2.1 that we may assume 

depth A > 0. 
Choose n,, n2 E tN with n, , n2 2 s. Set 

9 = Ass A U (Att(H;(A)) \ {m}), 

a finite set of non-maximal prime ideals of A. Since 

Ax;‘+Ax,G u P, 
PE @ 

it follows from [l, Theorem 1241 

yz:=a,x;‘+x2$ IJ p. 
PE +’ 

that there exists al EA with 

Thus y,, and all positive powers of it, are non-zerodivisors on A and pseudo- 

HA(A)-coregular. Note that there exists b1 E A such that yp = b,x;’ +xp. Set 

100 

H= bl 1 0 ED,(A); 

! 1 0 0 1 

since H(x;‘, x;*, l)T = (xr’, y;‘, l)T we see that, in view of 2.5, in U(A)T3A we have 

1/(x~‘,x~,1)=l/(x~~,y,“:l)=-l/(y,”z,x;~,1). 

Since Ax, + Ax2 = Ay, + Axl, we have e(xi, x2) = e( y,, xi), and it is enough for us to 

show that 

4A(l4y,“*,x?, l)))=e(y2,xl)nln2-I’. 

We now use 2.2: note that y;’ is a non-zerodivisor on A. So we set A = AlAy; 

and use - : A-+A to denote the natural ring homomorphism. By 2.2, there is an 

A-homomorphism 

q3 : U(&2+U(A);3A 

such that u3(d/(z2, i))=a/(y,“2, z2, 1) for each DEA and s.o.p. {Z2} for A. Note 

also that ker q3 zH~(A)/~;~H~(A) and, by choice of yz, Y~~HA(A) is the residuum 
of HA(A). Thus ker q3 has finite length equal to I’. Note also that it is annihilated 

by x;, and so, by 2.8, [IO, 3.21 and Ill, 3.51, 
-- 

ker q3 L A(l/($, i)) c A(i/($l, i)). 
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We therefore have an exact sequence of A-modules 

O-tker q3 +?i(i/($I, i))pA(l/($, xfl, l))+O. 

All the modules in this sequence have finite length: we remarked earlier that 

I(ker q3)=1’. By 3.1, 
_- -- 

fA(A(l/($l, i)))=I,(A(l/(q, i)))=eA(x,)nl, 

and, by [4, (7.4.2) and (7.4.3)], e~(X1)=eA(y~*,xl). It therefore follows, in view 

of [4, p. 3111, that 

IA(A(W~2n2,x?, 1)))=eA(yZ,x,)nIn2-~‘, 

as required. 

In the case when A is a 2-dimensional generalized Cohen-Macaulay local ring, 

there are simplifications in the statement of 3.2. 

Corollary 3.3. Suppose that A is a 2-dimensional generalized Cohen-Macaulay local 
ring. Let xl, x2 form an s.o.p. for A. Then, for ail positive integers nl, n21 
s(HA(A)), we have 

I(A(l/(x;‘, xz”: 1))) = e(xr, x2)nln2 - [(HA(A)). 

All our attempts up to the time of writing to obtain an extension of 3.2 which 

applies to arbitrary local rings of higher dimensions have failed; we have, however, 

been able to provide an affirmative answer to Question 1.2 in the special case in 

which A is a generalized Cohen-Macaulay local ring of arbitrary (positive) dimen- 

sion. Before we provide the proof of this, some preparatory results are necessary. 

Remark 3.4. Let N-+P +Q be an exact sequence of A-modules and let b, c be ideals 

of A such that bN=O=cQ. Then bcP=O. Consequently, if N, P, Q all have finite 

length, then s(P) <s(N) + s(Q). 

Corollary 3.5. Suppose that A is a generalized Cohen-Macaulay local ring and 
x1 E m is a non-zerodivisor on A. Then, for all i = 1, . . . , d - 2, 

s(&~~~(A/x,A))~~(H~(A))+~(H~‘(A)). 

Proof. Use the long exact sequence of local cohomology modules induced by the 

exact sequence 

O+A~A+A/Axl+O, 

in conjunction with 3.4 and [9, 4.31. 



Lengths of certain generalized fractions 333 

Proposition 3.6. Suppose that A is a generalized Cohen-Macauiay local ring and let 
xl, . . . , x, form a s.o.p. for A. Set 

Let rE bJ. Then 

Proof. We use induction on d; the result in the case in which d= 1 follows from 2.8, 

[ 11, 3.51 and [ 10, 3.21. So we suppose that d > 1 and the result has been proved for 

generalized Cohen-Macaulay local rings of smaller (positive) dimension. 

Lemma 2.1 shows that we may, after factoring out by the maximum ideal of A 

of finite length, assume that depth A>O. Then every x~rn which forms a s.s.0.p. 

for A is automatically a non-zerodivisor on A, since, by [8, (3.3)], for some n E N, 

(0 :A x) G (0 :A m”) = 0; 

it also follows from 3.4 and 3.5 that A/xA is a generalized Cohen-Macaulay local 

ring (of dimension d- 1). 

So, let a E Il(A) ‘A be such that m’a = 0. By [l 1, 3.61, there exist a E A and 

positive integers n,, . . . , nd such that a=a/(xr’, . . . ,x2,1). Let A =A/x;‘A, a 

(d- 1)-dimensional generalized Cohen-Macaulay local ring, and let -: A+A be the 

natural ring homomorphism. By 2.2, there is an exact sequence of A-modules and 

A-homomorphisms 
dtl 

O~H,-l(A)/x~‘H~-‘(A)-t~(~)dd~ 4 U(A)& ‘A 

in which qd+ ’ (6/( J2, . . . , y,+ i)) = b/(x;‘, y, ,...,y&l) for each SEA and each 

s.0.p. (J2 )...) yd} for A. Set s =s(Hi- '(A)). Now ms ker qd’ ’ = 0 and 

m’+s(GV(.F~z, . . . , Qf, I)) = 0. 

Hence, by the inductive assumption, there exists a, E A such that 

a a1 

where 
(xp, . . . ,x2, i) = (x;+s+l; . . . . x;+s+t: i) 

d-2 d-2 
f= c w&m 

i=I ( > 
i _ l 

(and rii is the maximal ideal of A). By 3.5, t’+sl t. Hence we see that, after applica- 

tion of qd+ ‘, there exists a2 E A such that 

cx=a2/(x~l,x~+‘, . . . . xl;+‘, 1). 

We now use Riley’s permutation result 2.5 to write 

c! = -a2/(x;+‘, x;l, xi+‘, . . . , xl;+‘, l), 
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repeat the above argument, and use 2.5 again to complete the inductive step. 

An interesting question is whether we can replace, in the conclusion of 3.6, t by 

a smaller integer and still obtain a valid statement. If so, what is the smallest such 

replacement? 

We are now in a position to settle Question 1.2 affirmatively for generalized 

Cohen-Macaulay local rings of arbitrary (positive) dimension. 

Theorem 3.1. Suppose that A is a generalized Cohen-Macaulay local ring and let 

x1, .**, xd form a s.0.p. for A. Set 

Then, for all positive integers n, , . . . , nd r t, we have 

l(A(l/(x;‘,..., x;;4 l)))=e(xi ,..., x&r “‘nd- &H;(A)). 

Proof. We use induction on d. The special cases of the result in which d = 1 and d = 2 

have been proved in 3.1 and 3.3. (Of course we interpret an empty sum as zero.) 

So we suppose that d ~2 and the result has been proved for generalized Cohen- 

Macaulay local rings of smaller (positive) dimension. 

We begin as we began the proof of 3.6: Lemma 2.1 enables us to assume that 

depth A>O; then every x~rn which forms an s.s.0.p. for A is automatically a non- 

zerodivisor on A for which A/xA is a generalized Cohen-Macaulay local ring of 

dimension d - 1. 

Choose n,, . . . . ndEn\l with nilt for i=l,...,d. Write A=A/x;‘A, let -:A-tA 

be the natural map, and note that x;lHiP ‘(A) = 0. Use the homomorphism qd+’ 

of 2.2 again: this time we have an exact sequence 

and ms ker qd+’ =0, where s=s(H$‘(A)). Thus, by 3.6, 

ker qd+ ’ c_A(i/(x;+‘: . . ..x.+‘: I)), 

where 

(and rfi is the maximal ideal of A). By 3.5, t’+slt. Hence 

ker qd+’ c&i/(X?, . . . . X2, i)), 

and so we have an exact sequence of A-modules of finite length 

o-H;-‘(A)+A(i/(X$~, . . . . @, i))+A(l/(x~‘,x2”2, . ..) x~,l))-+O. 
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By the inductive hypothesis, since n2, . . . , nd 1 t’, 

_- 
f,(A( 1 /(.$Z, . . . ) $5 T))) = e,- (X2, . . . ) z&l2 . . . nd - di2 

( > 
;I 1” I,-(Hi(A)). 

r=l 

By 14, (7.4.2), (7.4.3), and Corollary 1 on p. 3111, 

eA(&, . . . , ~~)=eA(XI1’,X2,...,Xd)=n,e,(xl,X2,...,Xd), 

so that the above exact sequence yields 

I(4 (l/(x;‘, xz”‘, . . . ) x2, 1))) 

=e(xl,x2,...,x~)nln2...nd-I(~~-1(A))-d~2 :‘-_F 
( > 

I,4 WIM)) 
,=1 

on use of [9, 4.31. 

Next, the exact sequence 

O+A 
X;l 

-A-A-+0 

induces a long exact sequence 

O-G&A) 

of local cohomology modules, in which all the endomorphisms of the Hi(A) (for 

15 is d - 1) given by multiplication by xrl are zero: this is because n,rs(H~(A)) 

for each i= 1, . . ..d- 1. Thus 

thus 

l(H~(A))=I(H~(A))+I(H~l(A)) for i= l,...,d-2; 

I(Hf-1(A))+di2 I&&q) = df’ W;(A)), 
i-l !=I 

and the inductive step is complete. 

It is perhaps worth pointing out that, in the situation of 3.7, for n,, . . . , ndz t, 

&A(l/(x;‘,..., xdn:l)))=e(xF’,..., xj”)- c 

falls short of e(x;‘, . . . , xl;d) by the integer ~f:,‘(f:~)1(H,i,,(A)), while, by [8, (3.7)], 

provided n,, . . . . nd are all sufficiently large, 

exceeds e(xrl, . . . , ~2’) by C:‘_; (dT1)I(H;(A)). 
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As in the case of 3.6, there are interesting questions concerning the role of the 

integer t in 3.7: can we replace t in its conclusion by a smaller integer and still obtain 

a valid statement, and, if so, what is the smallest such replacement? Thus this 

research not only leaves open Question 1.2 in its full generality, but also raises fur- 

ther questions! We have spent many hours trying to extend the results of this paper 

but, as indicated above, have been unsuccessful up to the time of writing. 
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