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Abstract

In this paper we consider the subcategories CMod-R (M € MOD-R s.t. M ~Homg(R,M))
and DMod-R (M € MOD-R s.t. M ®z R~ R) of the category of all right R-modules, MOD-R,
for an associative ring R, possibly without identity.

If R and § are associative rings and we have a Morita context between R and S with epimor-
phic pairings, it can be deduced from [6, 8] that the induced functors provide equivalences

CMod-R~CMod-S R-CMod~ S-CMod,
DMod-R ~DMod-S R-DMod ~ S-DMod.

We find hypotheses weaker than the surjectivity that let us prove also a converse of this result.
As a consequence, we give an example of a ring R such that CMod-R is not equivalent to
DMod-R. © 1998 Elsevier Science B.V. All rights reserved.

1991 Math. Subj. Class.: 16D90; 18E35

1. Introduction and preliminaries

In the following, all rings are associative rings but it is not assumed that they have
an identity unless it is mentioned explicitly.

One of the main problems that appears when we want to study associative rings
using categorical techniques is to choose an appropriate category of R-modules. The
standard choice for rings with identity is the subcategory of MOD-R of the unitary R-
modules, i.e. modules M such that MR = M. With more generality, a satisfactory Morita
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theory has been developed for rings with local units in [1] using the subcategory of
unitary modules and for idempotent rings in [4] using the subcategory Mod-R of unitary
modules that satisfy this additional condition

VmeM, mR=0=m=0.

(In fact, this additional condition is always satisfied for unitary modules if R has local
units or identity.) However, there are other rather natural (though possibly distinct)
subcategories of MOD-R which arise in the nonunital case which could be consid-
ered as candidates for the “appropriate” category of modules. These are the categories
CMod-R, DMod-R, and Mod-R described here.

Definition 1.1. Let R be an associative ring. We shall define the following three full
subcategories of the category MOD-R:

(1) CMod-R is the category formed with the modules M such that M ~ Homg(R,M)
with the canonical homomorphism Ay : M — Homg(R, M) given by Ay (m)(#)=mr for
all me M and reR.

(2) DMod-R is the category formed with the modules M such that M ~M ®zR
with the canonical homomorphism gy : M Qg R — M given by uy(m & r)=mr for all
meM and reR.

(3) Mod-R is the category formed with the modules M such that MR=M and for
all me M if mR=0 then m=0.

We shall give a direct proof of the fact that the categories CMod-R and DMod-R
are equivalent to the one that has been used in the case of idempotent rings, and using
the main theorem of this paper we will be able to prove that they are not equivalent
in general.

Let R be a ring, and 4 the Dorroh’s extension of R. This ring consists of the pairs
(r.2) € R x Z with the sum defined componentwise and the product (r,z)}(#',z") = (rr' +
rz' + #'z,zz"). This is a ring with identity, (0,1)=1,, and R can be considered as a
two-sided ideal of 4 if we identify the elements of R with the pairs {(r,0) € 4: r€ R}.
The category of all right R-modules, MOD-R, is equivalent to the category of uni-
tary right A-modules Mod-4. Also, the functors — @z— and Homg(—, —) are, through

the above equivalences, the same as — @4— and Homu(—.—). All these facts are
known or easily checked. For general properties of the Dorroh’s extension of R, see
[10, p. 5].

The categories that we are studying are full subcategories of MOD-R or R-MQOD.
In principle, every kernel, cokernel, exact sequence, etc., between R-modules will be
considered in the category of unitary 4-modules, therefore we will not worry about
the existence of these objects. Properties of exactness of the functors Homgz(P,—),
Homg(—. Q), P ®z— and — ®zQ will be true because they are the same as the functors
Homy(P, —), Homy(—,Q), P® 4— and — 0.

The category MOD-R = Mod-4 is not the one that is used in order to study properties
of the ring R. For instance, even in the case of a ring with identity S, the categories
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Mod-S and MOD-S are rather different. In general terms, the modules of the category
MOD-R that give problems are the modules M such that MR=0.

Consider the class of modules in MOD-R such that MR =0. Using the terminology
of [9] this class is a pretorsion and pretorsion-free class. Therefore, we can define the
associated preradical t in the following way:

tMy={meM: mR=0}.

This class of modules is the pretorsion class corresponding to the idempotent pre-
radical t. We can build the smallest radical larger than t as in [9, VI.1] in the fol-
lowing way: t; =t, if f is not a limit ordinal, then t; is given by tp(M)/ts_ (M) =
t(M/tg_((M)) and for a limit ordinal B, tz= ZKﬂta. For every module M, there
exists an ordinal x such that t,(M)=t,, (M), then we define T(M)=t,(M) for this
. This can be represented by T = 21 t,, having in mind that, fixing a module M, this
sum stabilizes for some ordinal.

The modules such that T(M)=M will be called torsion modules and the modules
such that T(M)=0 (or equivalently t(M)=0) will be called torsion-free modules.
The quotient category of MOD-R =Mod-4 by this torsion theory will be denoted by
CMod-R. This is the quotient category with respect to the R-adic topology in 4. This
shows that CMod-R is a Grothendieck category, although we will not use this fact.

The category CMod-R coincides with the category of modules M such that the
canonical homomorphism Ay : M — Homg(R. M) (Ap(m)(r)=mr) is an isomorphism.
This could be considered as the definition that we will use here because we will not
use the properties of a quotient category. Dually, we will define DMod-R as the full
subcategory of MOD-R formed with the modules M such that the canonical homo-
morphism u: M QpR— M (u(m®r)=mr) is an isomorphism. The definitions of the
converse are similar.

These categories have been considered with different notations in several papers,
e.g. [6-8]., but mainly as categories associated to the trace ideals of a Morita context
between rings with identity. The definition of a Morita context for rings without identity
is same as the one for rings with identity:

Definition 1.2. Let R and S be rings, sPg and zQs bimodules and ¢:Q ®s P — R,
Y:PogrQ— S bimodule homomorphisms. We say that (R,S,P,0Q,¢,{) is a Morita
context if forall p, p’ € Pand q,¢4' €Q, p(q@ p)g =q(pRq )Y and y(p R q)p’ = pe
(g® p"H.

The two-sided ideals Im{¢p) and Im(y/) are called the trace ideals of the context.

The results given in [8, Theorem 3; 6, Theorem 2] determine the equivalences
CMod-Im(¢p)~ CMod-Im(y/) and DMod-Im(¢)~ DMod-Im(y) and also on the other
side. These results could be rewritten as follows: If we have a Morita context (R, S, P. Q,
¢,¥) with ¢ and Y epimorphisms, then CMod-R~CMod-S, DMod-R >~ DMod-S,
R-CMod ~ S-CMod and R-DMod ~ S-DMod with the functors induced by the con-
text. What we do here is to weaken the hypothesis “¢ and i epimorphisms” in order
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to find also a converse of this result. Then we define a left-acceptable Morita context
(Definition 3.6), such that all contexts with epimorphisms are left (and right) accept-
able, and we obtain the characterization in Theorem 3.10.

If the ring R is idempotent, the class of modules A such that MR =0 is also closed
under extensions. This is known as a TTF class. In this case, it can be deduced from
[5, Proposition 1.15] that the categories CMod-R, DMod-R and the full subcategory of
the modules such that t(M)=0 and MR =M are equivalent. In the case of idempotent
rings, this category (in its different forms) has been chosen to develop a Morita theory;
see, for example [1, 3, 4].

2. Some cases of equivalence

In this section we are going to study two different types of rings such that the
categories CMod-R, DMod-R and Mod-R are equivalent.

Although this first case can be deduced from {5, Proposition 1.15] we shall give
here a direct proof of the fact that the considered categories are equivalent if R is
idempotent giving explicitly the functors in this case.

Definition 2.1. Let R be a ring. We shall use the following notations:

(1) u the functor that is defined over the objects of MOD-R as w(M)=MR and over
the morphisms by the restriction.

(2) jy:u(M)— M the canonical inclusion.

(3) t°PP the functor that is defined over the objects of MOD-R as t°*P(M )= M/t(M)
and over the morphisms in the canonical way.

(4) py:M — M/t(M) the canonical projection.

Lemma 2.2. Let R be a ring and M € MOD-R. The morphisms

)LM M **HOIIIR(R,M), Hum IM@RR—PM,
Py M — tPP(M), Juu(M)—M.

define the natural transformations

4:idmop-g — Homg(R, —), p: — ®rR— idymop-z,
p idmop-z — tF, Ju— idmop-z.

Proof. It is rather simple. [J

Lemma 2.3. Let y:R@rR— R be the bimodule homomorphism defined as y(r ® s)
=rs. Then

Ker(y)R=RXKer(y)=0.

Proof. Let ycKer(y) and x€R then yx=9(y)Qx=0 and xy=x®y(y)=0. O
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Lemma 2.4. Let R be a ring, U,T,F € MOD-R such that UR=R, TR=0, t(F)=0
and V € R-MOD such that RV =0. Then

(1) Homg(U,T)=0,

(2) Hompg(7,F)=0,

3) UpgV =0.

Proof. (1) Let f:U — T and u& U = UR. We can find elments u; € U and r; € R such
that u= > w;r; then f(u)= 3, f(u;)r; =0 because f(u;)r;€ f(URCTR=0.
(2)Let f:T—F and t€T. For all reR, f(t)yr=f(tr)=0; thus f(r)et(F)=0.
(3) Let uc U and veV. We can find elements », € U and »; € R such that u=
> juiri, then u®@v= > u;@rv=0 because v RV =0. [

Proposition 2.5. Let R be an idempotent ring and M € Mod-R. Then
(1) per: M @rR®rR— M Qg R is an isomorphism.
(2) AHomg(r.a): Homg(R, M) — Homg(R, Homg(R,M)) is an isomorphism.

Proof. (1) pyo,r~M Ry with y:R®gR — R the canonical homomorphism. As R
is idempotent, y is an epimorphism and M @y y is an epimorphism. Using the fact that
RKer(y)=0, we deduce from Lemma 2.4 that M ®zKer(y)=0 and the exactness of
the sequence

M @rKer(y) — M @rR ®g R — M QzR — 0,

completes the proof.
(2) Using the canonical isomorphism

Homg(R,Homg(R, M ))~ Homg(R GrR,M),

it is easy to check that Angmgr.ar) 1S an isomorphism if and only if Homg(y, M) is an
isomorphism. As 7y is an epimorphism, Homg(y,M) is a monomorphism and using the
exactness of the sequence

0 — Homg(R, M) — Homg(R @R, M ) — Hompg(Ker(y), M)

and the fact that Homg(Ker(y), M )= 0 (because Ker(y)R=0 and t(M)=0) we deduce
from Lemma 2.4 that Homg(y,M) is an isomorphism. [

Proposition 2.6. Let R be an idempotent ring. Then
(1) for all M € CMod-R, u(M) € Mod-R,
(2) for all M € DMod-R, t°"P(M) € Mod-R.

Proof. (1) As t(M)=Ker(4y)=0 we know that t(u(M))Ct(M)=0. On the other
hand, using the fact that R> =R we deduce that u(M )R = MR? = MR =u(M).

(2) As MR=1Im(up)=M we know that (M/t(M ))R=M/t(M). On the other hand,
if (m+t(M))R =0 then mR C t(M ) and mR?> = 0. Using the fact that R = R we deduce
that m € t(M) and therefore m + t(M)=0. O
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Proposition 2.7. Let R be an idempotent ring. Using the previous propositions we
have functors

u: CMod-R — Mod-R, Homg(R, —): Mod-R — CMod-R,
t°P: DMod-R — Mod-R, —®zR:Mod-R — DMod-R.

These functors are equivalences with the natural transformations given by
(1) 4! oHomg(R, jx):Homg(R,u(X))— X for all X € CMod-R.

(2) u(Ay): M — u(Homg(R,M)) for all M € Mod-R.

(3) t°PP(uyr ) t°PP(M Qg R) — M for all M € Mod-R.

(4) (py ®rR)opy : Y —tP(Y)®r R for all Y € DMod-R.

Proof. (1) As Ay is an isomorphism, we only have to check that Homg(R,jy) is
an isomorphism. The morphism jy is a monomorphism, therefore Homg(R,jx) is a
monomorphism. Using the exactness of the sequence

0 — Homp(R,u(X)) — Homg(R, X' ) — Homg(R, Coker( jx }))

and the fact that R =R and Coker(jy )R =0 we deduce that Homg(R, Coker(jx))=0
and Homg(R, jx ) is an isomorphism.

(2) Ker(u(Ay ))=t(u(M)) C t(M)=0. This proves that u(Ay ) is a monomorphism.
To check that it is an epimorphism, let >, fir; € Homg(R,M)R with fi:R— M and
ri €R. It is easy to prove that >, firr =u(Ay XD, fi(ri)).

(3) As Ker(uy )R=0, we deduce that Ker(uy ) Ct(M @z R) and therefore t°PP(uys)
is a monomorphism. Let > m;r; € M = MR, then t°PP(3°, m; @ r+t(M ®g R))= >, mir;
and this proves the surjectivity of t°P(uuy).

(4) As uy is an isomorphism, we only have to check that py ®g R is an isomorphism.
Using the exactness of the sequence

tM)QRR— Y Qr Rt P(M)®g R— 0

and that t(M)®z R =0 (because t(M)R=0 and R*> =R) we deduce from Lemma 2.4
that py ®z R is an isomorphism. [J

We now give a second type of ring for which the categories CMod-R, DMod-R,
and Mod-R are equivalent; in fact, in this case these three subcategories of MOD-R
are equal.

Definition 2.8. Let R be a ring and gz € R. We shall say that g is a central generator
of R if

(1) gr commutes with the elements of R,

(2) grR + grZ =R,

(3) for all r€R, rgg=0=r=0.

All rings with identity are rings with a central generator taking gg as the identity
element. All the ideals in a p.i.d. are also rings with a central generator.
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Proposition 2.9. Let R be a ring with a central generator gg. The following conditions
on M € MOD-R are equivalent:.

(1) M € CMod-R.

(2) M € Mod-R

(3) M € DMod-R.

Proof. Let 4 be the Dorroh’s extension of R. A module M satisfies MR =M if and
only if M = MR = MAggr =Mgr. For any module M,

tM)={meM: mR=0}={meM: mgrd =0}
={meM: mgg=0}.

((1)=(2)): Let M € CMod-R. Clearly, M is torsion free because t(M)=Ker(4x)
=0. In order to prove that M =MR, let m€M and consider the homomorphism
f:R— M defined by f(gra)=ma for all a€ A. This definition is good because if
for some r €R, ¥ =gra=gra then gp(a—a’')=0=(a—a’)ggr = a=a’. Using the fact
that M € CMod-R we can find an element m’ € M such that f(r)=m'r for all r €R,
then m= f(gr)=m'gr € MR.

((2)=(3)): Let M €« Mod-R. All the elements in M QxR can be written as m @ gg
for some me M. If m® ggr € Ker(ups), then mgg=0 and met(M)=0. This proves
that Ker(yy ) =0. The surjectivity of ug is clear because MR=M.

((3)=(1)): Let M € DMod-R and m € Ker(4y), then mgr =0 and m ® gg =0. Us-
ing the result given in [10, p. 97] we can find elements my €M and a, €4 for
k=1,...,n such that a;gg =0 for all £ and m= Zzzlmkak. The elements m; € M
= MR; therefore, we can find m; € M such that my =mj g for all k € {1,...,n}. Thus,

n n
m= E myay = E miaygr =0.
k=1 k=1

In order to prove the surjectivity of Ay let f:R— M be a homomorphism. The
element f(gg) € M = MR, therefore there exists an m € M such that f(gg)=mggr. What
we are going to prove is that f =Ay(m). Let r €R, r=gga for some a€ 4, then
f(r)= f(gr)a=mgra=mr=iy(m)(r). U

3. Contexts and equivalences

First of all we are going to build a module in the category R-DMod. This construction
follows the steps of that in [2, 28.1], but we shall prove further properties of the module
that 1s built there.

Let R be a ring, 4 the Dorroh’s extension of R, (ry)nen € RN such that riry -1, #0
for all ne N. Let F =A™ the free left 4-module over the set N. We shall denote
for all n€ N, v, the element in F that has 1, in the anth component and 0 elsewhere,
U, =Up — Fat1Vns1, G Will be the module >, nAu, and M =F/G. We are going
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to prove that M € R-DMod. With the same proof of [2, 28.1] it is possible to see
that for all n€N and a€ A4, av, + G=0 if and only if there exists £ > n such that
Arpy * ¥k =0.

This proves that the module M is not 0 because the element vy + G can never
be 0. If v9 + G=0 we would find a k€ N such that 1,7 ---r, =0 and this is not
possible because r - --r; #0. In order to prove that M € R-DMod consider the canon-
ical morphism s : R®r M — M. This morphism is an epimorphism because for all
neN, v, +G=rytuy1 +G. The elements in R@z M can be written like r® v, + G
with reR and neN. If rv, + G=1(r ® v, + G) =0 then there exists & > n such that
Frpe1 -1 =0 and therefore rRuv, + G=rryrr ... O + G=0.

Lemma 3.1. Let M € MOD-R. Then
TM)={meM: Y(ry)nen eRN IngeN s.t.mry - “Fp, =0}

Proof. Assume first that m € T(M). As we observed earlier, there is an ordinal a such
that T(M)=1t,(M), so that t,(M)=t,(M). Let (r,)uen €RY and m € T(M) such
that mr---#, #0 for all neN. We know that m € T(M )=t,(M), therefore, we can
find a smallest ordinal yy such that met, (M). For i=1,2,....,n we now define a
nonzero ordinal y;, as the first ordinal such that mry---r; €t (M).

By our hypothesis that the given sequence does not annihilate m, we see that
y; cannot be 0. Also, by the construction of the t,, each y; is a successor ordi-
nal (if it were a limit ordinal, then a contradiction would arise from the fact that
mri---ri€t,(M)= Z/k,,,l ty(M), but mry...r; ¢ ty(M) for f<y;).

In order to compare now 7; and 7,4y, suppose y;=pf + 1. Clearly, y;4; < f+ L.
But we have mr;---r; €ty (M). By the construction of the t,, we infer that the
class of mr| ---r; modulo tg(M) is annihilated by R, that is mr(---nRCtg(M). In
particular, mr, ---ri; € tg(M). This implies that 1, < f<y; This shows that the
decreasing sequence of the ordinals y; is strictly decreasing. But any set of ordinals
has a smallest element, which contradicts the existence of the sequence of the ;. This
is the contradiction we were looking for.

We turn now to the converse part of the proof. Assume that m¢ T(M ) =1t,(M). As
t,(M)=t,, (M), then mR is not contained in t,(M) and we can find r; € R such that
mr| € t,(M)=T(M). In the same way, once we have obtained that mr, - - - r; ¢ t,(M),
we infer that mr| - - - r R is not contained in t,(M). So we find r44; such that mr - - -
ririyt € t,(M). In particular, each of these products is nonzero. [

Definition 3.2. Let M € MOD-R and L a R-submodule of M. As in [9, Section 1X.4]
we define L¢ as the biggest submodule of M such that L°/L is torsion.

Lemma 3.3. Let Z be an abelian group, W € R-MOD such that RW =W, M € MOD-R
and Ly a subset of M. Let h: M Qg W — Z be an abelian group homomorphism such
that (I @w)=0 for all | € Ly and w e W, then if we denote L the right R-submodule
of M generated by Ly, for all ' €L and all we W, h(I' @ w)=0.



L. Marin!Journal of Pure and Applied Algebra 133 (1998) 219-232 227

Proof. Clearly, h({ ®w)=0 for all [ € L because L is the smallest submodule that con-
tains Lo. Suppose some [’ € L and some w € W that A(/' @ w)# 0. We claim that then
there exist sequences (7, )uen € R™ and (w,)ae v € WN such that A(I'r; - - r, @ w, ) #0.
Once this is proved we get a contradiction because using Lemma 3.1, for some
ng €N, I'ry -1y, €L and then A(!'r| -~ - r,, @ wy,,)=0. Let us prove the claim.

For n=0 we have wy=w, suppose we have r|,....r, €R and w, € W such that
h(I'ry -+ 1y @w,)#0. Using the fact that RW = W we can find elements w; € W and
rl€R for i=1....,k such that w,= "% r/w/. Then 0#h(/'r - r,@w,)= 3" h
(I'ry---rar; ®w() and therefore, for some ip€ {l,....k}, A(l'ri---ryrl ©w,)#0. If
we define r,., :r,’( , and wy, :w,’»o we can continue the induction process. O

Proposition 3.4. Let M CN modules in MOD-R with M € CMod-R and N torsion-
Jfree. Then N/M is torsion-free.

Proof. Let n€ N such that nR C M, then we define f:R— M such that f(#)=nr.
Using the fact that M € CMod-R we can find m € M such that mr = f(r)=nr for all
r € R and then n=m €M because N is torsion-free. [

Proposition 3.5. Let M CN modules in R-MOD with N/M € R-DMod and RN =N.
Then RM =M.

Proof. Let me M, as me N we can find elements n; € N and r; € R such that m =
Zfﬂ rin;. Consider the element Zf;l ri®@(n 4+ M)eRr N/M. This element satisfies
Zf:] ri(n; + M)=0 and using the fact that N/M € R-DMod, we deduce Zf;l Fi D
(n;+M)=0. Then using the exactness of the sequence R Qx M — RQr N — RQy N/M
~—0 we can find elements ;€ R and m; € M such that ZLI Fi&n, = Z;:lr; @ m,
therefore m= "', rjm} € RM and then RM =M. [
Definition 3.6. Let (R, S,P,Q, ¢,{) be a Morita context. We shall say that this context
is left acceptable if and only if

(1) Y(ry)nen €RYN 3ng €N such that ry -- P, €Im( ),

(2) Y(Sm)mern €SN Imy €N such that sy - - - sy, € Im().

Remark 3.7. The definition of right acceptable Morita contexts is the one that we
obtain if we use the opposite rings and bimodules.

These definitions include the case in which ¢ and ¥ are epimorphisms, but in the
case of idempotent rings it is possible to prove that this is not a proper extension.

Proposition 3.8. Let R and S be idempotent rings and (R,S.P.Q,¢. ) a Morita
context. The following conditions are equivalent:

(1) (R,S.P.Q, 0, ) is left acceptable.

(2) (R,S,P,Q,0.) is right acceptable.

(3) @ and y are surjective.
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Proof. Clearly, (3) implies conditions (1) and (2). In fact, we only have to prove
((1)=(3)) or ((2)=(3)) because of the symmetry of the third condition.
((1)=(3)) Let 7€ R\Im(¢). Because of the idempotence of R, we can find ele-
ments r} and 7} such that 7= r!Fl. As 3, r/Fl ¢ Im(¢) there exists i; such that
ri 7 ¢ Im(g).
For the element F}l we can find elements 7 and r'? in R such that r'}I =5, P2,
222

then for some i, rill ri.7, ¢ Im(¢). Following this argument we can find a sequence

(r¥)€RN and 7} such that

rird - orkEb ¢lm(p) VkeEN
and this is a contradiction with the fact that for some k€N, r}ri - rk €Im(p).
This proves the surjectivity of ¢. The proof for Y is similar. O

If the rings are not idempotent, this relation need not be true; for instance, for any
ring R, the context given by (R,R,R,R,y,7) with the y:R Qg R— R given in Lemma
2.3 is always left and right acceptable, but v is surjective if and only if R is idempotent.

Although we do not need to have surjectivity, the relation between left-acceptable
contexts and right-acceptable ones appears also in commutative rings and also in rings
with a central generator.

Proposition 3.9. Let R and S be general associative rings and let (R,S,P,Q, ¢, {) be
a left-acceptable Morita context. Then:
(1) Mz € MOD-R is torsion-free if and only if for all me M, mIm(¢@)=0 implies
m=0.
(2) gM € R-MOD satisfies RM =M if and only if Im{(@)M =M.

Proof. Let M; € MOD-R. Suppose M is not torsion-free, then we can find m € ¢(M)\0
with mR=0, and so mIm(¢)=0. On the other hand, suppose M torsion-free and
meM, m#0 , using Lemma 3.1 we can find a sequence (r, ),cn such that mry - - -1, £0
for all n € N. As the context is left acceptable we can find a np € N such that r; - - - 1, €
Im(¢) and then mIm(¢)+#0.

Let xM € R-MOD such that Im(@)M =M then M D RM DO Im(p)M =M. On the
other hand, suppose RM =M and let 4 : R @M — M/Im(@)M be the homomorphism
defined as A(r @ m) =rm+Im{@)M. Clearly, H{p{g® pY@m)=0forall g Q, peP
and me M. Using Lemma 3.3 and the fact that the context is left acceptable, we
deduce that A(r @m)=0 for all r€R and meM and then RM/Im(¢)M =0 and
Im(@)M =RM =M. O

Theorem 3.10. Ler (R,S,P,0.@.Y) be a Morita context. The following conditions
are equivalent:

(1) Homg(Pg,—) and Homs(Qs.—) are inverse category equivalences with the
transformations given by the context, between the categories CMod-R and CMod-S.
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(2) Por— and Q ® s— are inverse category equivalences with the transformations
given by the context, between the categories R-DMod and S-DMod.
(3) The context (R,S,P,Q.@,Y) is left acceptable.

Proof. ((3)=>(1)): The pairings induce the following natural transformations:

@ :idmop-z — Homg(Q, Homg(P, —)) > Homp(Q & sP, —),
¥ :idmop-s — Homz(P,Homs(Q, —)) >~ Homgs(P @rQ. —),

given by Py (x)(¢)(p) =x¢(q @ p) and Pr(y)(p)q)=y(p®q).

Let X € MOD-R. Then Ker(®y)={x€X |VpeP, VgeQ, xp(q® p)=0}. Using
Proposition 3.9 we deduce that t(X)=0 if and only if &y is injective.

Consider the canonical homomorphism Ay : X — Homg(R,X') (Ax(x)(r)=xr)). What
we have to prove is that X € CMod-R (i.e. Ax is a isomorphism) if and only if @y
is an isomorphism. As Ker(Ady)=1t(X) we have proved that Ay is injective iff @y is
injective.

Suppose that X is torsion-free, we claim that Homg(R,X) and Homgp(Q ® P,X)
are torsion-free. If f:R— X satisfies fR=0 then for all ¥€R and ' € R we have
0= fr(r'y= f(rr'Y= f(r), then f(»)R=0 and using the fact that X is torsion-free,
we deduce that f(r)=0 for all » € R and then f =0. Let now f:Q ®s P — X such that
fR=0andlet p,p'€P and q.q' € O, 0= fo(q© pXq' @ p')= f(p(g®@ p)g' ® p') =
fa(pRqdHY® p)=fg® pp(qd © p'))= f(g© p)og’ © p'). Then f(g® plm(ep)
=0 and using Proposition 3.9 and the fact that X is torsion-free we deduce that
flg® p)=0 for all peP and g € Q, therefore f =0.

Suppose that @y is an isomorphism, then, X is torsion-free and Ay is a monomor-
phism. As @y =Hompg(¢p,X)o iy we deduce that Coker(4y) is a direct summand of
Hompg(R.X ) and therefore, it is torsion-free, but Coker(/y )R =0, then Coker(Ay)=10
and Ax is an isomorphism. On the other hand, suppose Ay i1s an isomorphism. Then
t(X)=0 and Py i1s a monomorphism. Using Proposition 3.4 we deduce that Coker(®y )
is torsion-free, but Coker(®y )Im(¢p) = 0, then using Proposition 3.9 we conclude Coker
(@y)=0 and therefore @y is an isomorphism.

In a similar way, it is possible to prove that ¥ € CMod-S if and only if ¥y is
an isomorphism. Using these facts it is not difficult to check that Homg(P,—) and
Homg(Q, —) are inverse category equivalences between CMod-R and CMod-S.

((1)=(3)): Suppose that there exists a sequence (7,),en €RY such that for all
neN, r---r, € Im(e), we are going to build a module X in CMod-R such that @y is
not an isomorphism. As K/Im(¢):=T(R/Im(¢))+# R/Im(¢p), then the module R/K # 0
is torsion-free. If we apply the localization functor, X :=a(R/K) is a nonzero module
in CMod-R and the elements » + K € R/K C X have the property (v + K)Im(¢)=0
because » Im(¢p) CK, then R/K CKer(@y ) and therefore @y is not an isomorphism.

((3)=(2)): The pairings induce the foliowing natural transformations:

4:Q®sPQRr— —idg-moDp. A:PRrQO®s — —ids-mop
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given by dx(¢® pOx)=@(q@ p)x and Ay(p©qg® y)=yY(p®q)y. Let X € R-MOD.
Then Im(Ay )= Im(@)X and using Proposition 3.9 we deduce that RX = X if and only
if Ay is an epimorphism. We have proved that Ay is an epimorphism if and only if
the canonical morphism py :R& X — X is an epimorphism.

If X =RX then R(R®rX)=R®z X, and using Proposition 3.9 Im(p)X =X, there-
fore RIORsPRrX)=Q@sP @ X because if > q;® p, ®x; € QQsP Qr X, for the

elements x; we can find elements g;;€Q, p;;€P and xj; €X such that x; =},

o(g; @ pl;)x;; and then 3. qiOpi®x=3,4:® p@olg;® pi;= 3,4
V(P @qy)pl; @xi; = 2 04 @ pi)gl; @ pj, O xj; € R(Q D sP BrX).

We have to prove that Ay is an isomorphism if and only if puy is an isomor-
phism. Suppose that Ay is an isomorphism, then RX =X and therefore puy is an
epimorphism. As py o (p ® X)= Ay, then Ker(py) is a direct summand of R ®zX
and therefore RKer(yy)=Ker(uy). But it is a simple computation to check that
RKer(ux)=0, therefore py i1s an isomorphism. On the other hand, suppose puy is
an isomorphism, then using Proposition 3.5 we deduce that RKer(A4y)=Ker(4x) and
then Im(¢)Ker(4y)=Ker(Ax), but it is not difficult to see that Im(¢)Ker(4yx)=0
and therefore Ay is an isomorphism.

In a similar way, it is possible to deduce that Ay is an isomorphism if and only if
Y € §-DMod. With these results it is not difficult to prove that P@z — and Q® g —
are inverse category equivalences between R-DMod and S-DMod.

((2)=(3)): Suppose Ay is an isomorphism for all X € R-DMod. We claim first
that for all pcP and ge Q and all sequence (r,),en €RY there exists an me N
such that (g ® p)ri...rn € RIm(gp). Let (Fplnen € RN, Associated to this sequence
we can build a module X in R-DMod as in the beginning of this section. The element
gOpRu+GEQOsPOrX =R(Q©s POrX) because it is isomorphic to X and X
satisfies this property. Therefore, we can find a £ €N and elements r/ € R, ¢/ € Q and
p,€P such that g© pRuvy + G= Y. r/q, & pi ® vy + G. Using the isomorphism Ax
we deduce that (g ©® plug+G= >, r/o(q;® p;)vx + G and then (o(g @ p)ry -1k —
Y irio(g; @ pi))ve +G =0 and using the results of the beginning of this section, there
exists ¢ > k such that (g ® p)ry---ri=>_.riop(q} @ Pi)is1...rr €RIm(¢) that is
what we was looking for.

Let (7,)nen € RN such that for all €N, r;---r, ¢ Im(¢). Associated to this se-
quence, we can build the module X as in the beginning of this section. We are going
to prove that the module M = X/Im(¢)X € R-DMod and 4, 1s not an isomorphism.

Let avy + G €Im()X. Then we can find a n > &, and elements p; € P and ;€ Q
such that avy + G = >, ¢(q; @ p;)va+ G, L., (arisr -1 — ., 9(q: ® pi))on+ G =0.
Then, there exists m > n such that aryy| - -1 = Zl_ O(qi @ pi)rny) - - rm. If we apply
the previous claim, we deduce that there exists # > m such that aryy - -7, € RIm(@).
We have proved that (av; + G)+Im(@)X =0 if and only if there exists an & > k such
that argy| - -ry € Rlm(g).

Consider the canonical homomorphism g : R & X/Im(¢)X — X/Im(¢)X. It 1s clear
that i is an epimorphism because RX =X. Suppose @ (v; + G) + Im(@)X € Ker(u),
i.e roy + G €Im(p)X, then there exists & > k such that rrigy ---rp= 3, rlo(g; ® pi)
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for some r] €R, q; € Q and p; € P, and then r & (vx+G)+Im(@)X =rrip1 - 15 @ (vp+
G)+ Im(p)X =0.

Module M is not 0 because vy + G ¢ Im(@)X (7| --#, ¢ Im(¢) Vn), but 4, =0,
therefore 4y, is not an isomorphism. [J

As we have said in the introduction, this result lets us find a counterexample such
that the categories CMod-R and DMod-R cannot be equivalent. We recall the definition
of T-nilpotent (see e.g. [2, p. 314]); a subset X of a ring R is left T-nilpotent in case
for any sequence (x,),ecn € XV there exists ng € N such that x,x; - - “Xp, =0.

Corollary 3.11. The following conditions are equivalent:
(1) CMod-R=0.
(2) R-DMod =0.
(3) R is left T-nilpotent.

Proof. Consider the following Morita context between R and 0, ¢:080—R and
¥ :0®0— 0. This context is left acceptable if and only if R is left T-nilpotent and using
the previous theorem, this is equivalent to CMod-R=CMod-0(=0) and R-DMod =
0-DMod( =0). O

With a version of the theorem for the right context we obtain a similar corollary for
right 7T-nilpotence.

Corollary 3.12. The following conditions are equivalent:
(1) R-CMod=0.
(2) DMod-R=0.
(3) R is right T-nilpotent.

Then, if we could find a ring such that it were T-nilpotent on one side and not on
the other, we would have a ring such that CMod-R and DMod-R cannct be equivalent,
as one is zero and the other is not. The same would happen for R-DMod and R-CMod.

This kind of rings exist, we only have to consider the Jacobson radical of a ring
that is perfect on one side and not on the other, see [2, Exercise 15.8]
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