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1. Introduction 

We reprove that any injective module has a direct decomposition into a directly 
finite and a purely infinite part ([8], Theorem 6), and we show that this 
decomposition has a strong uniqueness property (Theorem 1). As a consequence of 
these facts, and of the cancellation property of directly finite injective modules, we 
derive a surprisingly powerful technical result for quasi-continuous modules: the 
isomorphism type of the ‘internal hull’ of any submodule is determined by the 
isomorphism type of the submodule (Theorem 4). As applications, we obtain, 
among others, the analogue of Theorem 1 for quasi-continuous modules 
(Proposition 6), the cancellation property for directly finite continuous modules 
(Proposition 8), and a criterion for the continuity of a direct sum of continuous 
modules (Theorem 13). 

One would expect that our technique, which amounts to a machinery for the 
generalization of theorems from injective to quasi-continuous modules, should 
allow to develop the theory of types and dimension functions [7] for quasi- 
continuous, instead of non-singular injective, modules. 

We list a few notational and terminological conventions: E(M) = EM denotes the 
injective hull of the right module M. A c'M' and B C@ M signify that A is an 
essential submodule, and B a direct summand, of A4. ‘Summand’ is synonymous 
with ‘direct summand’. “C is subisomorphic to M” means that there exists a 
monomorphism from C into M. 

2. decomposition theorem for injective modules 

We recall that a module is named directly finite if it is not isomorphic to a proper 
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direct summand of itself, and pure/y infinife if it is isomorphic to the direct sum 
of two copies of itself [7]. 

We remind the reader that a directly finite injective module has the cancellation 
property ([2], Proposition 5). We also list, for future reference, Proposition 5.7 of 
[9]: An injective module is not directly finite, if and only if it contains an infinite 
direct sum of nonzero pairwise isomorphic submodules, if and only if it has a 
nonzero purely infinite direct summand. 

With these concepts, we shall prove the following decomposition theorem for 
arbitrary injective modules. For non-singular injectives, it was already shown in 
((71, Proposition 74, and the decomposition is then absolutely unique. For 
arbitrary injectives, part of the existence statement is contained in ([8], Theorem 6). 
The full theorem can be deduced from its non-singular special case by means of the 
functorial technique outlined in [8], but we prefer to present a (relatively) short and 
direct argument. 

Theorem 1. Every injective module E has a direct decomposition, E = U@ V, where 
U is directly finite, V is purely infinite, and U and V have no nonzero isomorphic 
summands (or submodules). If E = U, @ V, = U2@ V2 are two such decompositions, 
then E = U, @ V2 holds too, and consequently U, z U2 and V, s V2. 

We begin with an auxiliary observation. 

Lemma 2. Let A be a submodule of a module C, let EA be directt’y finite, and /et 
C be subisomorphic to an injectivt’ module 1. Then every monomorphism f : A + I 

extends to a monomorphism C -+ 1. 

Proof. The given monomorphisms f: A -+I and g : C-4 extend to monomor- 
phisms (p:EA-+I and y:EC--+I. We have EA@X=EC, hence I=y(EC)@Y= 
vtEA)@y(X)@ Y, as well as I=cp(EA)@Z. 

As cp(EA) s EA z y(EA) is directly finite and injective, hence has the cancellation 
property, we conclude Zs y(X)@ YS X@ Y. We obtain a monomorphism 
,U : X -+Z. Then cp@,~ : EC= EA@X --vp(EA)@Z= I is a monomorphism, bvhose 
restriction cp@/c ] C extends ,f. j_ I 

Proof of Theorem 1. Step 1: We consider the collect ion of triples (V, cp’, tp”), where 
I’ is a submodule of E and cp’, cp” are monomorphisms of C’ into itself such that 
I’= cp’( C’)@cp”(I=). We order such triples by restriction, that is 

(r;cp’.(n”)((l-t;W:c~“) if G’c U’ and (p’=y/I V,&‘=@‘I V. 

For any chain of triples ( Vu, (o;, &), one verifies easily that (U Vu, U pi, U tp,“) is 
an upper bound. Thus, Zorn’s Lemma applies and produces a maximal triple 
(I,‘, u,‘. @‘I. Clearly, V is purely infinite. It is also injective, since (p’,@’ extend to 
isomorphisms $I’ : E 1;’ --+E(#V), f’: EV-+E(qf’V) of the injective ~115, a!1 
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therefore (V, (p’, (p”) I (EV, @‘, @“) hence V= EV follows. 
The injectivity of V implies that it is a direct summand: E= U@ V. We claim that 

U is directly finite. 
If not, then it contains a nonzero purely infinite direct summand (191, Proposition 

5.7; stated above), that is U@>A’@A” with isomorphisms a’: A’@N’+A’ and 
CT”: A’@A”+A”. We obtain 

in contradiction to the maximality of (V, (p’,#‘). 
(So far, we have proved directly what is already stated in ([8], Theorem 6).) 

Step 2: We study now a fixed but arbitrary decomposition E= U@ V, with U 
directly finite and V purely infinite. The collection of all pairs (AJ), where A is 
a submodule of U and f is a monomorphism A-+ V, ordered by restriction, 
obviously allows again the application of Zorn’s Lemma, and therefore contains a 
maximal pair (A, f ). 

This module A is clearly injective, since f extends to a monomorphism EA -+ V. 

Therefore we obtain a decomposition U = U’@A, where U’ is trivially directly 
finite. We claim that the module V’= A @ V is isomorphic to I/ (and consequently 
is purely infinite). 

Indeed, kV@V and V=X@f(A)sX@A yield kX@A@V’, hence V= 
X,@$@Vt with X 1 GX, A, ~,4 and Vt s V. We iterate this procedure and obtain 
V=Xt@A@-•X,OA,@V’with X+X, A+4 and I+ V. Therefore we have 
VI @p_, A;, and consequently 

V=E 

SO far, we have obtained a new decomposition, E = U’@ V’, again with U’ directly 
finite and I” purely infinite. We claim now that it enjoys the additional property 
that U’ and V’ have no nonzero isomorphic submodules. 

To this end, we consider a submodule ~b of U’which is subisomorphic to V’. Then 
A @S is subisomorphic to V, via &@A + V’@A G V&4 z V. As EA is directly 
finite since it is a direct summand of i’/, we can apply Lemma 2, with C= B@A and 
I= V, and we obtain a monomorpk extension (a : BOA-+ V of f. Consequently, 
(AJ) s (BOA, cp) holds, and the maximality of (AJ) yields B = 0. 

3: We turn now to the uniqueness statement. Thus, we are given two decom- 
ions E=U,@V,= LIZ@ Vz with Uj directly finite, r/;. purely infinite, and no 

nonzero isomorphic summands between I/i and 4. The immediate goal is to show 
that U1 and V, have no nonzero isomorphic summands either. 

We claim first that for any nonzero injective module A which is subisomorphic 
to both U, and V2, there exists a number n 1 I such that n is subisomorphic to U1 
but A”+’ is not. 
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Suppose, to the contrary, that A” is subisomorphic to Ut for all n. By induction 
over n, we show U, =X~@A,@o=g@A, with A+4. For n=l, this is true by 

assumption. If it holds for n, then we have L&X,@AR; but we also have 
U, z Y@A”+’ by supposition. Since A, being isomorphic to a summand of Ur , is 
directly finite and injective hence has the cancellation property, we conclude 
X,+Y@A. Thus we obtain Xn=Xn+t@An+r with An+tmA, as required. We 
deduce that Ur contains 0: I Ai, in contradiction to the fact that it is directly 
finite (cf. [9], Proposition 5.7). 

If U, and V2 have nonzero isomorphic summands, then by our claim we can find 
a nonzero injective module A, which is subislomorphic to both Ut and Vz, but such 
that A2 is not subisomorphic to U,. We obtain U, =A1 @B hence 
E = U, @ V, = Al @B@ V, , as well as a monomorphism A2 -+ V& V2 -+E hence 
E=A@A&C, with A+A. We cancel A and deduce B@V$A3@C, and conse- 
quently I?@ VI = A4@C’. Let it denote the projection from this module to V, with 
kernel B. 

We claim that BWIj = ker n / A4 is essential in Ad. Indeed, let X be a submodule 
of A4 with Xn ker II 1 A4=0. Then X is subisomorphic to Ur via Xc+A4sA-+U,, 

and to V, via n. Therefore we have X=0, by assumption on the decomposition 
E = u, @ v, . 

We deduce A 4zE(BnA4)~~‘B, and therefore B=A&D with ASsAdmA. 

C’onscquently U,=A,@B=A@A@D has the submodule Al@A5 which is 
isomorphic to A’, contrary to our choice of A. 

WC have just demonstrated that U, and V2 have no nonzero isomorphic sum- 
mands. It follows in particular that Ur (7 V’ = 0, since the injective hulls of Ul f3 V2 

in L’, and in V2 are isomorphic summands. Therefore we obtain E= U, @ V2@F, 

and w deduce VZ@Fz VI and U@Fz U2. This shows that F yields isomorphic 
summands of U, and Vr , and since such cannot exist, by symmetry, we conclude 
that E--=0 and E= U&W,. 2 

Remarks. (1) Consider an arbitrary decomposition E = U@ V with U directly finite 

and 1’ purely infinite. It seems worthwhile to emphasize that Step 2 of our proof 
constructs a new decomposition E= U’@ V’ with the additional property that U’ 

and 2.’ ha\-e no nonzero isomorphic summands. Together with the uniqueness state- 

nmcnt , it f‘olIo~s that k’ is determined by E up to isomorphism, and that U is 

ektermined by E up to the equivalence relation generated by isomorphism and 

additicm of cuch directly finite summands of E which are absorbed by V (or by E). 

One deduces easily that E = U@ V itself possesses the additional property of no 
r~n~cro 5ummand5 between U and C’, if and only if U is minimal, if and only if 

1’ ir masimal (in the sense that there is no other decomposition E = UN@ V” with 
c ir~tly finite and V” purely infinite, and with U”$ U respectively V$ V”). 

p1 L icy ot‘ these ‘extremal’ characterizations of U and V, one wonders whether 
tli‘ri’ LX&n1 fi;ld an even more direct existence proof which avoids our two-step 
c’i,ll\fI uc:rion. 
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(2) The uniqueness assertion of Theorem 1 iies between absolute uniqueness and 
uniqueness up to isomorphism. It is closely related to a notion introduced in ([ 11, 
p. 177): there, summands A, B of a module M are called equivalent if they have the 
same direct complements in M (i.e. if A @X=M holds if and only if B@X=M 
does). 

We consider a class V of direct decompositk~ns of M, that is a subset of the set 
SD = {(A, B): A @I3 = M} of all direct decompositions of AL We call I isomorphism- 
closed if (Ai, B+i?, (&B&53), A+A: and B1sB2 imply (A2,B2)~V; this 
seems to be satisfied for all naturally arising classes e. We say that Q is exchangeable 
if (&, B&I and (&B&Ci! imply (A,, B2)~V. 

It is straightforward to verify that an isomorphism-closed class I! is exchangeable, 
if and only if (A 1, B,) E I and (AZ, B2) E I? imply A 1 @ B2 = Ad, if and only if all first 
(and/or second) components of members of I are equivalent in the sense of [ 11. 

An example of an isomorphism-closed and exchangeable class is provided by 
I = {(U, V): U@ V= M, U directly finite, I/ purely infinite, U and V have no 
nonzero isomorphic summands}, for any injective module M (Theorem f ), or even 
any quasi-continuous M (Proposition 6). A second example arises from the decom- 
position of Proposition 9. 

3. A theorem for quasi-continuous modules 

A module M is quasi-continuous ([lo], or n-injective [6]) if any decompositio I 

EM= @ Ei of its injective hull leads to a decomposition M= @ (Mn E;). 
We remind the reader of the following hierarchy of definitions for modules: 

‘injective’ implies ‘quasi-injective’ implies ‘continuous’ implies ‘quasi-continuous’. 
We also recall that any one of these four properties is inherited by direct summands 
(cf. [ 101, 219-220). 

We collect a number of simple fundamental facts concerning quasi-continuity and 
relative injectivity: 

(A) If A, B are summands of a quasi-continuous module M, and if A (I B= 0, 
then A@B is also a summand of M ([lo], p. 219). 

(B) If A @B is quasi-continuous, then n and B are relatively injective with 
respect to each other ([lo], Theorem 4.2 and [6], Proposition 1.12). 

(C) If A and B are relatively injective with respect to each other, and if EA z EB, 
then A z B ([6], proof of Proposition 1.11). 

(D) If Ai are relatively injective with respect to B, (i,j= 1,2), then A@Az is 
relatively injective with respect to B&B2 ([16], Definition, roposition 1 and 

Lemma). 
An immediate consequence of (A)-(C) is: 
(E) If A, B are summands of a quasi-continuous module M, if A fV?= 0, an 

B, then AZ B (161, Proposition 1.11). 
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Lemma 3. A quasi-continuous module M is purely infinite (directly jkite) if and 
only if its injective hull EM is so. 

Proof. If M is purely infinite, MS MOM, then EMz EM@EM, hence EM is 
purely infinite. 

Conversely assume that EM is purely infinite, that is EM= El @E2 with 
EMzE,sE2. By quasi-continuity we obtain M= MnE,@Mn& and 
E(MflE;)=E;, and by (B) and (C) and ElzE2 we conclude MnE&Wf7E2. 

Moreover, this result and the relative injectivity of MnEl and MnE2 with respect 
to each other imply with (D) that M and Mf7Ei are relatively injective. Then, (C) 
and EMS Ei = E(Mf7 Ej) yield MsMflEi, and we conclude that M is purely 
infinite. 

Turning to direct finiteness, it is clear that if M is not directly finite, hence 
MzM@X with X#O, then EM=EM@EX hence EM is not directly finite. 

Conversely if EM is not directly finite, then it has a nonzero purely infinite 
summand B (1191, Proposition 5.7), EM= B@ Y. We deduce M=MnB@Mn Y, 

and r&3 B#O is purely infinite by the first half of our consideration. We conchtde 
that M is not directly finite. II 

For any submodule A of a quasi-continuous module M, there exists a summand 
P of M which contains A as an essential submodule (take P= MnEA). These 
modules P (which are just the maximal essential extensions of A in M) are referred 
to in the introduction as the ‘internal hulls’ of A in M. Our next theorem makes 
a strong uniqueness assertion about I? 

Theorem 4. Let A! be a quasi-continuous module, let Ai C’pi C’M (i = 1,2), and 

ussume A +A?. Then P,zPz. 

Proof. We put D=AlflAz, and we let Xi be a complement of D in Ai. Then 
OGJX, CA,, hence Ei@E’X, = EAi = EP,, where Ei denotes an injective hull of D in 
EA,. We note E,zE?, and XInX2=0, the latter since X,nX2cA,nAznX2= 
DrlX, = 0. 

Writing M= P,BQ,, we obtain 

0% here E, = U, @ t{ are decompositions according to Theorem 1. 

Kc conclude that 

ds, and we check easily that 
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Let Y be a complement of D in M. Then 00 Yc’M hence B@EY =EM, and 
factoring out EY yields an isomorphism TV : El *Ez , which is determined by 
a(e*) = e2 if and only if el - e2 E EY. 

Quasi-continuity of A4 and EM= Ei@EY imply M= MnEi@Mn EY, and 
factoring out MT EY yields an isomorphism 0’: Mn El +Mn E2, determined by 
a’(4 =Q if and only if ml - 1y1~ E Mn EY, if and only if ml - m2 E EY. We con- 
clude that 0’ is the restriction of 0, that is that a(MnEr ) =Mn E2 holds true. 

From Ei = Wi@ f$ and o(El) = E2, we obtain the two decompositions E2 = 
U2@ V2 = a( &)@a( V,) of E2. The uniqueness part of Theorem 1 yields then 
Et = U2 @ a( V,) = O( U,) @ V2. For the quasi-continuous module C = Mn E2, with 
injective hull E2, we deduce 

and 

and 

c=cnu,0cnv2=cna(U1)0cncr(CI;)=cnc/zOcna(v,) 

= cfb(r/,)gcn v2, 

therefore 

MnU2=cnv,~cno(v,)=a(MnEl)na(1/,)=a(MnU1)~MnC/,, 

similarly iwn V, s dm V, . 
The given isomorphism A 1 zA2 yields 

V,~V,~EXI=EA1~EA2=U2~‘v2~EX;!. 

As U1 z u;! is directly finite, we can cancel it and obtain 

E(Mn V,@MnEx,)= V,@EX,= V2@EX,=E(Mn v,lBMnEX;!). 

We shall use (C) to conclude from this that 

nm v,@kuwxl am v,gimEx,, 

a result which together with the already established isomorphism Mn U, z IMn I/z 
implies the desired conclusion 

P,=M~u,OM~~/,OM~EX,~M~C~,~M~~,OM~E~,=P~. 

In order to justify tnis application of (C), via (D), we have to verify that A4n V,, 
Mn EX, and M(1 V2, MnEX, are relatively injective with respect to each other. 
This results from Lemma 3, which yields the pure infiniteness of MT V, = IMn Vz, 
and from (B), as follows: 

km v,@km v,+im v,j2am vpkf 

yields that Mn V, and MCI V2 are relatively injective. 

im ~@MnEx2atm v2~kmEx2c@M 

yields that MT b and MnEX, are relatively injective. 
x,nx,=o @EX2@F hence M=MnEX&MnE&O 

and yields th nEX, are relatively inject ive. 0 



204 B.J. Miller, S. T. Rizvi 

Remarks. (1) Theorem 4 was known in the two special cases A i =A2 and 
Ai nAz =O, where the proof is much easier ([lo], (2) on p. 220 and Corollary 4.7 
on p. 221). Its general validity was first suggested to us by certain results on von 
Neumann regular rings, in Section 14 of [9], for instance (14.26). These statements 
are again special cases of Theorem 4, except that they assume &-continuity 
instead of quasi-continuity. 

(2) We discuss the relationship between the isomorphisms A 1 ai2 and Pi GZ Pz in 
Theorem 4, and in particular whether t‘r rPz can be chosen so that (I) it induces 
the given A 1 z A *, or (II) it induces some (possibly different) isomorphism_ A, ~4~. 

(I) holds true if M is quasi-injective. (Extend Ai zAz to EPI = EA1 ZEAL = EPZ, 
then to EM-+ EM, and restrict to P, =Mfl EP, .) 

(1) holds in general., in the special case Al nAz =0 (since then PI = Pz and 
PI &‘&c * M imply tha,t PI @f2 is quasi-injective). 

(I) does not hold in general, even if M is continuous and if Al = AZ. (For a 
countercxample, take the split extension R = FM .F of a field F by the bimodule 
.F whose left-multiplication has been modified by a proper endomorphism CJ of F. 
Then the right-module M= R is uniform of length two, hence continuous. The endo- 
morphisms of A = 0 XI d F are the natural left-multiplications by the elements of F, 
while the endomorphisms of A which are extendable to M are the modified left- 
multiplications, i.e. the natural left-multiplications by the elements of a(F). As 
a(F) 5 F holds, not every automorphism of A can be extended to M.) 

(11) holds in general, in the special case Al = AZ. (Any complement of A in M 
defines an isomorphism P, zPz which extends the identity on A.) 

(II) fails if M is not continuous. (Consider an arbitrary submodule Al of M 

which is isomorphic to a summand AZ. Then A 1 c P, and A2 = Pz. If PI G P2 can be 
chosen SO that it induces some isomorphism Al zAz, we conclude that A, = PI is 
it\& a cummand. hence M is continuous.) 

We do not know whether (II) holds if M is continuous. 

Our next result, which is just a reformulation of Theorem 4, is a powerful 
strengthening of fact (E). 

Corollary 5. If A and B are srrmmands of a quasi-continuous module, with 
isomorphic injective hulls, then A and B are isomorphic. 

I “roof. With the given isomorphism p : EA-+EB, we drCine A2 = q)(A)17 B and 
) - v ’ (B) f~ A. Then p induces an isomorphism between Al and A?. Since A is 

in EA, and hence &A) is essential in tp(EA) = EB, and since B is also 
essential in EB, we conclude that A2 is essential in EB and hence in 63. Similarly we 

at .4 1 is essential in A. Therefore Theorem 4 applies to Al CA C? M and 
* 3.4 and yieids A z B. 

ptions A, CT, C’ M and Al = A2 of Theorem 4, 
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EP1 = EA1 z EA2 = EP, follows, and Corollary 5 produces the conclusion Pt z Pz of 
Theorem 4.) 0 

4. Applications 

We shall see how the preceding results can be used to extend, with little effort, 
many theorems from injective to (quasi-)continuous modules. 

Proposition 6. Theorem 1 holds for quasi-continuous modules. Moreover, if V’ is 
any purely infinite submodule of a quasi-continuous module Al, then there exists a 
decomposition M= U@ V, as in Theorem 1, such that V’ c V. 

Proof. We note first that if M= A @B is any decomposition of a quasi-continuous 
module A4, such that A and B have no nonzero isomorphic summands, then they 
have no nonzero isomorphic submodules either. Indeed, if X and Y are isomorphic 
submodules of A and B respectively, then the quasi-continuity implies that X and 
Y are essential in summands P and Q of A and B, hence of M. By Theorem 4 we 
obtain Ps Q, and we conclude P= 0 = Q hence X = 0 = Y. 

Next, we apply Theorem 1 to EM and obtain EM= U@ V, and consequently 
M = Mf7 u@Mf7 I/. As U= E(Mf7 U) and V= E(Mn V) are respectively directly 
finite and purely infinite, the same holds true for 1Mn U and Mf7 V, by Lemma 3. 
Clearly Mn W and Mn V cannot have nonzero isomorphic submodules, since U and 
V don’t. 

Turning to uniqueness, let M= LI1 @ Vi = r/,@ I$ be two decompositions, as in 
Theorem 1. We obtain EM= EQ@EL$, with EUi directly finite and EI$ purely 
infinite, by Lemma 3. If X, Y are isomorphic summands of EUi, Ey respectively, 
then Xn Vi and Xn v are summands of CJi and I$ respectively and hence of M. As 
E(XnUJ=X= Y=E(YnI$) holds, Corollary 5 implies XM+YnF. We con- 
clude Xn U; =0= Uf7 I-$, hence X= 0= Y. Thus, the uniqueness statement of 
Theorem 1 gives E(M)=E(UI)@E(V2), and thereforeM=Mn~(U1)OMnE(1/2)= 

&O I$* 
Finally, if any purely infinite submodule V’ of M is given, then E( V’) is a purely 

infinite submodules of E(M), and Step 1 (restrict to modules V containing the given 
V’!) and Step 2 of the proof of Theorem 1 produce a decomposition E(M) = UG V 
with E( V')C V. Then, the preceding considerations yield the decomposition 
M=_IMnU@‘M(I V, for which V’cMn V holds. 0 

mark. In the context of Proposition 6, it should perhaps be pointed out that a 
purely infinite quasi-continuous module is automatically quasi-injective (by facts 

(B) and (IV. 
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The next two results generalize main theorems of 
(quasi)-cant inuous modules. 

[7] and [2] from injective to 

IProposition 7. In a quasi-continuous module, isomorphic directly finite summands 
have isomorphic direct complements. 

Proof. We are given M=P,@Q, =P2@Q2, with PI z P2 directly finite. We obtain 
EM=EP,aEQi!, with EPI - = EP, directly finite, by Lemma 3. Since EPi has the 
cancellation property ([2], Proposition S), we conclude EQ, s EQZ. Corollary 5 
yields Q, z QZ. cj 

Proposition 8. Every directly finite continuous module has the cancellation 
proper& 

Proof. The endomorphism ring of a continuous module M has the properties that 
its radical factor ring is von Neumann regular, and that idempotents can be lifted 
(( IO], Theorem 7.1). It follows from ([ 191, Theorems 2 and 3) that M has the finite 
exchange property. This information, together with Proposition 7, implies the 
cancellation property, by ([5], Theorem 2). 0 

Examples. (1) A. (non-continuous) quasi-continuous directly finite module which 
fails to have the cancellation property: ([ 181, Theorem 3) gives the well known 
example of a cornmutative domain R with a stably free projective module P which 
is not free, in ‘fact with P@ R z R”+ ’ but P2:R”. Thus R does not have the 
cancellation property (as module over itself). Since R is uniform, it is quasi- 
continuous and directly finite. 

(2) A non-continuous quasi-continuous directly finite module which has the 
exchange property, and therefore the cancellation property: Any local commutative 
domain R which is not a field. 

(3) A non-cominuous quasi-continuous directly finite module which fails to have 
the (finite) exchange property, but still has the cancellation property: The ring B of 
integers. 

Nest, we gent_ralize ([ 121, Theorem 1) from continuous to quasi-continuous 
modules. 

Proposition 9. Every quasi-continuous module M has a decomposition, M= P@ Q, 
where P is essen:ia/ over a direct sum @Ak of indecomposable (hence uniform) 
sumrnands Ak of M, and Q has no nonzero uniform submodules. If M= P, @ Q1 = 
P, i @ are two such decompositions, with corresponding direct sums @ Ak and 

z holds (hence P 1 s P2 and Q, E Qz), and there is a bijection 
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Proof. For a quasi-continuous module M, we know EM=P@Q, with @&C/P, 
and properties as described, from [ 121. We obtain M= MC) P@Mn Q. Clearly 
1Mn Q has no nonzero uniform submodules. MnP contains @ (Mn A,); and as 
MfI& is essential in Ak, @(MM,) is essential in @Ak hence in P hence in 
MnP. As the Ak are summands in EM, the MnAk are summands in M. This 
proves existence. 

For uniqueness, let M=P&Ql=P@Q2, with @A&‘Pl and @B+jC'Pz, as 
described above. Then EM=EPi@EQi, with @EA&‘EPI and @EBjC’EPz. 
From the known (injective) version we obtain EM=EPI@EQ2, as well as 
EAkZ EBj for a suitable bijection k-j. We conclude M=Mf7EP,@A4nEQ2 = 
PI @ Q2, and Corollary 5 yields Ak z B’. 0 

We recall at this point that a quasi-continuous module is actually continuous if 
and only if every submodule which is isomorphic to a summand is itself a summand 
([lo], p. 219). The next proposition was proved by Bumby [3], for injective modules. 

Proposition 10. Mutually subisomorphic continuous modules are isomorphic. 

Proof. We consider, without loss of generality, quasi-continuous modules NC A4 
with a monomorphism f: M-W. We obtain E(N) cE(M), and a monomorphism 
f ‘: E(M)+E(N). We conclude E(N)= E(M), by Bumby’s result ([3], Theorem). 

Since we have MS f(M)CNCM, and since M is continuous, we get f(M)CgM 
hence f(M)c" IV. As NC"N holds trivially, the quasi-continuity of N and 
Corollary 5 imply A4z f(M) r IV. Cl 

Examples. Our proof has only used that one of the modules M, N is continuous, 
and the other quasi-continuous. 

(1) Two mutually subisomorphic quasi-continuous modules which are not 
isomorphic: M= I, any non-principal ideal of a commutative domain R, and IV= R, 
as R-modules. 

(2) Two mutually subisomorphic modules, one injective and the other not quasi- 
continuous, which are not isomorphic: M=@~=,Q and N=GZ!@@~zlQ, as 
abelian groups. 

Remark. As a consequence of Proposition 10, one can show that if two arbitrary 
modules are subisomorphic to each other, and possess continuous hulls, then these 
hulls are isomorphic (cf. [ 131 for a discussion of continuous hulls). 

5. ireet sums 

We determine here when the direct sum A@B of two quasi-continuous, con- 
tinuous or quasi-injective modules shares the respective property. Due to fact ( 
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it is certainly necessary that A and B are injective with respect to each other. For 
quasi-injectivity, fact (D) shows immediately that this necessary condition is also 
sufficient. 

We shall prove that the very same condition is also sufficient in the other two 
instances. This was known only in a few special cases ([ 121, Theorem 2; [ 151, 
Theorem 3.4; [ 131, Lemma 4; (4)) Theorem 3). 

Lemma 11. The foilowing statements are equivalent for a quasi-continuous module 
M: 

( 1) M is continuous; 
(2) every essential monomorphism M-+ M is an isomorphism; 
(3) no summand of M is isomorphic to a proper essential submodule of itself. 

Proof. That (1) implies (2), follows immediately from the definition quoted above. 
(2) simplies (3): If PzAC’PC%, then M=P@Q~A@Qc’P@Q=M. By (2), 

this is an isomorphism, and A = P follows. 
(3) implies (1): Lei A be any submodule of M which is isomorphic to a summand 

B of M. Then A c’Pc“ M holds for some P, and BC’BC@M is trivial. As A 2 B 
is given, Pz B follows by Theorem 4. Thus P is isomorphic to the essential sub- 
module A of it self, and (3) yields A = P. We conclude that M ds continuous. Cl 

Theorem 12. Let M = @&, A,, and assume alE, E(Aj) is injective. Then M is 
quasi-continuous, if and only if the A, are quasi-continuous and Aj-injective for ail 
j f i. 

Proof. We are given that all Aj are quasi-continuous and A+jective for j f i. 
That .\! ig quasi-continuous, will be established once we show eMCM, for every 
iclemporent e of the cndomorphism ring of E(M). 

As E(M) = @Jc, E(Aj) holds, e can be wfitten as a matrix e= (Ejk), with 
cIx E hom,(E(Ak), E(A,)). The Ak-injectivity of Aj yields Ejk(A,,t)C Aj, for all k#i. 
Thus, it suffices to establish E,,(Aj)C A,. 

4 = eZ means Elk = c , &o&jke We Write pi = c,,, &g&jj and obtain &ii - Ei = 
: E(.d,)+E(A,). With K, =ker /?ilI we have Ejj-Ei IKj=O. Since Pi&jj=(Eji-Ez)&ji’= 

holds, we conclude &,,(&)C K,. Therefore, Eji / K, is an idempotent in the endo- 
rphism ring of K,, and produces a direct decomposition Kj =Xj@ Yi, where 

,4’; = L*. 4 A‘, 3 and Y, = ker E,, n K,. 
L’ii’, +I 1; = I’<, C E(A,) yields E(A,) = E(X,)@Fj, with KC Fj. We conclude Ai = 
LiNJ ';‘A,nF,, since A, is quasi-continuous. We claim that ker(/?j 1 E(Xj)) = Xi 
kr@ F;) = Y, hold. 
deed, if aE ker(,8, 1 E(X,)) = ker /3,nE(X,), then aE ker pi = Kj = Xi@ 5, hence 

Q- .#-+ I’, _ and consequently a-x=yEE(X,)nY,=O hence a=xEXj. The converse 
similar argument works in the second situation. 
s j?, /E(X,):E(X,)*E(A,) and l-~ijIE(Xj): E(Xj)+ 
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E(Ai)v we obtain IIOW an induced homomorphism q~E(,4~)-+&$.) with 
cP(@i 1 E(x,)) = 1 - &ii 1 &Xi), because ker(Pi 1 E(Xi)) = Xi C ker( 1 - &ii 1 E(Xi j) holds 

and E(Ai) is injective. This implies 

(1 -&ii)(AinE(Xi))=~~i(AinE(Xi)) 

since 
CA,, 

due to the relative injectivity of Ai and Aj. We deduce &ii(Ai n E(Xi)) C Ai. 

Similarly, working with the homomorphisms fli 1 Fi : Fi +E(Ai) and &ii 1 Fi : Fi-J 

E(Ai), we obtain &ii(Ai fJ Fi)CAi. This establishes Eii(Ai)CAi, and completes the 
proof. q 

Theorem 13. Let M= oiel Ai, and assume that oi, I E(Ai) is injective. Then M is 
continuous, if and only if the Ai are continuous and Aj-injective for all j:<:i. 

Proof. The necessity of the conditions is clear. Conversely, if they are given, then 
Theorem 12 shows that M is quasi-continuous. Accorcling to Lemma 11, it suffices 
to show that every essential monomorphism f: M--W is onto. 

AS ME f(M) = oil, f(Ai)C M is true, and M is quasi-continuous, there exist 
summands f(Ai) C’Pi C@ M. Since Ai C’Ai C% holds trivially, Theorem 4 implies 
Ai s Pi. This yields the essential monomorphisms Ai 2 f(Ai) C’ Pi s Ai, which 
become isomorphisms since the Ai are continuous. We conclude f(Ai) = Pi Co M, 
and consequently Mn E(J(A ;)) =f(A i) l 

Oi& ftAi) =fOCM yields oi.IE(f(Ai))CE(M). AS f(Ai)SAi holds, we 
have E(f(Ai)) E E(Ai). Thus &, E(f(Ai)) is injective, and is therefore a sum- 
mand of E(M). The quasi-continuity of M implies now f(M) =&, f(Ai) = 
oi~l MnE(f(Ai))C@M* But f(M> was essential in M, and we obtain 
f(M)=M. 0 

Remarks. The extra assumption in Theorems 12 and 13, that @JiE, E(Ai) is injec- 
tive, is automatically satisfied if the index set I is finite, or if the ring R is right- 
noetherian. (This settles, in particular, the question posed at the end of [ 121.) In 
general, it is stronger than necessary, but some extra condition is needed, as the 
following two examples show: 

(1) Any direct sum of simple modules is quasi-injective, but the direct sum of 
their injective hulls need not be injective. (If it always is, and if R is left-perfect, 
then R is right-noetherian, hence right-artinian.) 

(2) Let R be a domain, and .Ai = E(R) (i= 0, 1, . ..). Then @LO Ai need not be 
quasi-continuous. (If it is, then 0: 1 iii is Ao-injective, hence injective as R C&,. 
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Thus, E(R) is Z-injective, and R is is a right-Ore domain ((41, Corollary 4 in 
Section 8).) 
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