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Abstract – The first total synthesis of murrastifoline-A (1), a biscarbazole

alkaloid is described.  The biscarbazole skeleton of 1 was effectively

constructed by the Pd-catalyzed double N-arylation of carbazolamine (bottom-

half segment, 3) with dibromobiphenyl derivative (top-half segment, 2) in one-

step reaction.  Both segments were synthesized starting from 2-amino-5-

methylphenol (4).  

Carbazole alkaloids are known to show wide range of biological activities such as antitumor, antibiotic,

psychotropic, antiinflammatory, and antihistaminic activities.1  Development of efficient methods for the

construction of a carbazole ring is still an important issue.2  While many monomeric carbazoles have

been isolated from higher plants,1 recently, much attention has been focused on biarylic biscarbazole

alkaloids3,4 due to their interesting structures and expected biological activities.  
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Figure.  Structure of murrastifoline-A (1) and retrosynthetic way to 1.
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Murrastifoline-A (1) was isolated by the Furukawa group from the root bark of Murraya euchrestifolia

(Rutaceae) collected in Taiwan.3  The structure elucidation study by spectral analyses revealed that

murrastifoline-A is a new biscarbazole possessing a dimeric structure of 1-methoxy-3-methylcarbazole

(murrayafoline-A), where the nitrogen in one carbazole unit is connected to the carbon atom at 6’-

position of another carbazole unit.3  Such a C,N-bonded biaryl biscarbazole structure is very unique

among the biscarbazole alkaloids,4 however, reports on the synthetic approach to C,N-bonded biaryl

biscarbazoles are limited,4d,5 and synthesis of 1 has not been achieved to date.  In 2001, Bringmann

disclosed the total synthesis of murrastifoline-F, an isomer of 1 in which the nitrogen in a carbazole unit

is bonded to another carbazole at C-4’, by a lead tetraacetate-mediated oxidative coupling of 1-methoxy-

3-methylcarbazole.5b  In this communication, we report the first total synthesis of murrastifoline-A,

which fully confirmed the proposed unique structure.  

Our retrosynthetic analysis suggested that the Pd-catalyzed double N-arylation of carbazolamine (bottom-

half segment, 3) with 2,2’-dibromobiphenyl derivative (top-half segment, 2) would construct the

biscarbazole skeleton of 1 in one-step reaction (Figure).  The double N-arylation of primary amines with

biphenyls possessing leaving groups at C-2 and 2’, recently developed by Nozaki and co-workers,6 is an

important extension of the Buchwald-Hartwig Pd-catalyzed N-arylation reaction,7a and proved to be an

excellent protocol for the regioselective construction of multi-substituted carbazoles in one-step.  The

Nozaki group also reported successful synthesis of various substituted carbazoles including a

monocarbazole alkaloid, mukonine by this novel methodology.6b  For preparation of both top- and

bottom segments (2 and 3), we chose 2-amino-5-methylphenol (4) as the common starting material.  
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Scheme 1

The synthesis of the top-half segment (2) commenced from the known O-tosylate (5),8 prepared from

commercially available 4 in 89% yield (Scheme 1).  Conventional iodination with N-iodosuccinimide
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(NIS) of 5 afforded 69 (69%), whose Suzuki-Miyaura cross-coupling reaction10 with 2-bromophenyl-

boronic acid in the presence of Pd(PPh3)4 in EtOH–benzene–2N aqueous Na2CO3 cleanly afforded 7 in

99% yield.  Sandmeyer reaction of 7 with NaNO2 and CuBr in acetic acid, conc. H2SO4 and 48%

aqueous HBr gave dibromobiphenyl (8) in 64% yield.  The O-Ts protecting group in 8 was removed by

basic hydrolysis to give 9, whose O-methylation furnished the top-half segment (2)11 in 59% yield from 8.  

The bottom-half segment (3) was synthesized as shown in Scheme 2.  Thus, the Buchwald-Hartwitg Pd-

catalyzed amination7b of p-bromonitrobenzene with 5 afforded diarylamine (10) in 81% yield.

Treatment of 10 with excess Pd(OAc)2 in AcOH induced the cyclization12 to provide carbazole (11)11 in

53% yield.  After protection of the nitrogen function in 11 with 2-trimethylsilylethoxymethyl (SEM)

group (79% yield), the product (12) was treated with NaOH in MeOH–H2O to provide de-O-tosyl

derivative (13) along with its methyl ether (14)13 in 76 and 8% isolated yields, respectively.  O-

Methylation of 13 afforded 14, quantitatively.  Reduction of the nitro function in 14 with NaBH2S3
14

cleanly provided the bottom-half segment (3)11 in 84% yield.
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With both top- and bottom-half segments in hand, the crucial double N-arylation reaction was explored

(Scheme 3).  When a mixture of segments (2) and (3) was heated in toluene at 120 °C in the presence of

Pd2(dba)3, t-BuONa, and ligands, the double N-arylation successfully took place to provide the desired N-

protected biscarbazole (15)11 in one-step reaction.  Use of 2-dicyclohexylphosphinobiphenyl15 as the

ligand was found to give good results, and 15 was obtained in 58% yield.16  Finally, the N-SEM group

was removed under acidic conditions to furnish murrastifoline-A (1)11 in 94% yield.  The spectral data of

synthetic 1 were fully identical with those of the natural product.1a
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In summary, the first total synthesis of murrastifoline-A (1) has been accomplished.  This work fully

confirmed the proposed structure of the natural product and revealed that the double N-arylation

methodology is highly effective for the one-step construction of the C,N-bonded biaryl biscarbazole

structures.  Further application of the double N-arylation strategy to the preparation of structurally more

complex natural products is under investigation in our laboratory.
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