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0. Introduction 

It is a well-known fact in the theory of Brauer groups of commutative rings, that 
there exists a natural monomorphism Br(R)~H2(R, U), where H2(R, U) is the 
~tale Brauer group of R. As was recently pointed out by O. Gabber, it is even true 
that Br(R)=H2(R, U) t. In this paper, we deal with the so-called 'graded Brauer 
group' of Z-graded commutative ring (cf. F. Van Oystaeyen [17]), and try to 
generalise the above properties. 

As we encounter some technical difficulties trying to generalise a fundamental 
theorem due to M. Artin [1], we restrict ourselves to the so-called quasistrongly 
graded rings. It will turn out that some importatnt classes of graded rings fall within 
this scope, and that Brg(R) may be embedded in li__,m H2(S/R, Uo) , where the limit 
is taken over graded 6tale coverings of R, and Uo(R) is the multiplicative group of 
units of degree zero of R. 

Also, a more general class of rings is considered (d-quasistrongly graded rings), 
and it is shown that their graded Brauer group may embedded in li__m H2r(S/R, U), 
a cohomology group containing non-homogeneous cocycles. The existence of two 
different embeddings is not surprising, since we have two corresponding graded ver- 
sions of the crossed product theorem (cf. [4]). 

In the last section, it is pointed out that Gabber's theorem holds for quasistrongly 
graded rings. To this end, we need a description of the Grothendieck group of the 
category of graded progenerators (Section 3) and some variants of the 
Mayer-Vietoris sequences (Section 4). 

The theory of  Brauer groups can be found in [2], [8], [11]. 
For the graded Brauer group, we refer to [17], [18], [21]. 

1. Preliminary results and notations 

All rings R considered in this paper will be Z-graded. R i will be the set of 
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elements of degree i, and h(R) the set of homogeneous elements. For a~Ri, we 
denote dege a = i, and omit the subscript whenever ambiguity is excluded. Similar 
notations are introduced for graded R-modules, graded R-algebras, ... 

A homomorphism f :  M - ~ N  of graded R-modules is called homogeneous of  
degree p if f(Mi)CNi+p for all i in 7?. A homomorphism of degree zero will also 
be called a graded homomorphism. If there exists a graded isomorphism between 
M and N, then we say that M and N are graded isomorphic, or gr-isomorphic, 

denoted M~g N. 
R-gr is the category of graded R-modules with graded homomorphisms. 
There exists a natural forgetful functor Un'R-mod-~R-gr,  sending a graded R- 

module M to its underlying ungraded module Un(M)--M. 
The unadorned symbol ® will always mean ®R. We denote S in) = S ® S ®  ... ®S, 

and ®n will be a shorter notation for ®sen). The natural switch map A ® B ~  
B ® A  is denoted by r. 

For R-modules M(1),...,M(n), we define e i ' M o ) ® . . . ® M t n ) ~ M o ) ® . . . ®  
S ®  ... ®M(n ) by ei(ml ® ... ®ran) = m I Q ... (~ 1 ® ... ®mn. 

For an R-module M, let M I = S ® M .  M 2 = M ® S ,  M I 2 = M I I = S ® S ® M ,  .... 
An S(2)-homomorphism g" Ml ~M2 then induces three homomorphisms 

gl :Mll -*M13, g3 : M13--*M23, g2 :Mll --*M23- 
Let us briefly recall the definition of the graded Brauer group: consider the set 

of gr-isomorphism classes of graded R-Azumaya algebras, modulo the equivalence 
relation - ,  given by 

A - B  *~ A®B°=gENDR(P)  

for some graded R-progenerator P. Recall that ENDR(P) is the graded R-algebra 
generated by all homogeneous endomorphisms of P, and that Un(ENDR(P))= 
Endg (P) if P is finitely generated. The set thus obtained forms a group under the 
operation induced by the tensor product, the graded Brauer group of R, denoted 
Brg(R). 

The natural mapping Brg(R)-~Br(R) is monomorphic in some situations, e.g. 
when R is a graded Krull domain (cf. [6], [17]), but not in general (M. Van den 
Bergh, private communication). 

The proofs of the following three propositions are left to the reader, as they are 
very similar to the corresponding ungraded proofs (cf. e.g. [11] for 1.1 and 1.2, and 
[7], [22] for 1.3.). 

1.1. Proposition. Brg(R) is a torsion group. 

1.2. Proposition. For any graded R-Azumaya algebra A, there exists a Noetherian 
subring R' o f  R, and a graded R'-Azumaya algebra A'  such that R®R, A'=g A. 

1.3. Proposition. I f  I is a nilpotent graded ideal o f  R, then the canonical homomor- 
phism Brg(R)~Brg(R/I) is an isomorphism. 
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1.4. Notations. For a graded commutative ring R, we define the following categories 
with product by their objects and morphisms. 

Category Objects Morphisms Product 

P(R) finitely generated R-module G 
projective R - m o d u l e s  homomorphisms 

FP(R) R-progenerators R-module ® 
homomorphisms 

Pic(R) R-progenerators of R-module ® 
rank one homomorphisms 

Az(R) R-Azumaya algebras R-algebra ® 
homomorphisms 

Let Pg(R), FPg(R), Pieg(R), Azg(R) be the respective full subcategories con- 
sisting of graded R-modules and graded R-algebras. 

Pg(R), FPg(R), Picg(R), AZg(R) are the categories with the same respective ob- 
jects, but with graded R-module or R-algebra homomorphisms. 

It is then easily seen that K 0 Pieg(R)= Picg(R), K 0 Picg(R)= Picg(R), respectively 
the groups of graded isomorphism classes and isomorphism classes of graded R- 
progenerators of rank one. 

Furthermore, /(1 Picg(R)= K~ Pie(R)= U(R), and K1 Picg(R)= Uo(R ). Consider 
the natural functor F :  Picg(R)~Pieg(R), and the group KlOF (cf. [3]). K1~LE - can 
then be described as follows: let gr(R) be the set of graded ring isomorphism classes 
of graded R-progenerators isomorphic to R as an R-module, and which have a ring 
structure in this way, i.e. the set of all possible R-module gradations on R. This 
forms a group under the operation induced by the tensor product. A little computa- 
tion shows that a:gr (R)~Kl~F,  given by a([T])= [(R, id, T)] is an isomorphism. 
We therefore have (cf. [3], [4]): 

1.5. Proposition. We have an exact sequence 

d 
1 - ,  Uo(R)~ U(R) ' gr(R)~Picg(R)~Picg(R)--, 1 

where the homomorphism d is given by the following data: 

Un(d(u)) = Un(R), 
for  u ~ U(R): (. dega(u) (U) = 0 

(i.e. a(d(u)) = [(R, u-l,R)]). 

Let I ,I 'ePieg(R) such that there exists an isomorphism 0 : I ~ I ' .  Then, ac- 
cording to [4, 2.8], there exists a (unique) Tegr(R) and a graded isomorphism 
Z : I---,I'® Tsuch that Un(z) = 0. We denote gr(0) = T; We also have that gr(0- 0 ' )  = 
gr(O) @ gr(O'). 
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1.6. Lemma. Suppose T, T' e gr(R) such that id" I ®  T- - , I® T' is graded, for  some 
IePicg(R). Then T= T' in gr(R). 

Proof. In K1cpF, we have a(T)=l(R,  Id, T)l=t(I ,  Id, I ®  T)l=t( l ,  id, I ®  T')]= 
[(R, Id, T')] = a(T'), where the third equality holds in view of the following diagram 
of R-isomorphisms (the vertical ones being graded): 

id 
I " I ® T  

I , I ® T '  

Hence T= T' in gr(R). 

If R is reduced, then gr(R) can be calculated, in fact we have (cf. [4, 2.3]): 

1.7. Theorem. I f  R is reduced (semi-prime), then gr(R)=H°(R), the set o f  con- 
tinuous functions f rom Spec(R) to Z. 

The preceding theorem has an interesting corollary: if R is reduced, then all inver- 
tible elements of R are 'nearly' homogeneous: 

1.8. Corollary. I f  R is a reduced commutative graded ring, then every u ~ U(R) is 

o f  the form ~,i"=1 uiei, where ei e Idemp(R0), ui ~ h(R). 

Proof. Consider M =  d(u). According to 1.7, there exist el , . . . ,  en ~ Idemp(R) = 
Idemp(R 0) (cf. [5, 1.3]) such that degmi(ei) = r i for some ri ~ Z, and Y-i"= ~ ei = 1. Put 
Mi = eiM, then the gradation on Mi is given by degmi(ei)= r i. This means that 
for any x in Rex, degm, x = degRe, X + ri. Since degm,(uei)= 0, we have degRe~(Uei)= 

1/ - r  i. Now u = ]~i=l (uei)ei, establishing the result. 

Let S be a graded faithfully flat ringextension of R. Then the Amitsurcomplexes 
~(U) and ~g(gr) can be written as follows (cf. [4]): 

A o AI 
1 , U ( S )  , U(S (2)) , U(S (3)) ' - . .  

D 1 
1 , gr(S) Do ; gr(S (2)) ' gr(S (3)) ' . . .  

where di" u(st2))-*gr(S(2)) is the map described in 1.4. We define a new complex 

(C ,  V)  -~ ~ g r ( U ) :  
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C n = U(S ~n+! ) × gr(S(n)), 

V, = (U, I) = (A,u, Dn_ iI" (dnu) -1 ). 

The corresponding cohomology group Hgr(S/R , U)=Ker  V~/ImVn_ 1 is called the 
n-th graded Amitsur cohomology group of U. Recall the crossed product theorems 

from [4]: 

1.9. Proposition. I f  S & a graded R-progenerator, then 

Picg(S) = Picg(S@S)= 1 = Brg(S/R)~H2r(S/R, U); 

P icg(S)=Picg(S®S)=  1 = Brg(S/R)=H2(S/R, Uo). 

An extension S of R is called a graded 6tale covering of R if it is a graded R- 
algebra which is an 6tale covering, i.e. if S is graded, R-separable, finitely presented 
as an R-algebra and faithfully flat over R. Thanks to the arguments given in [11, 
Ch. V, § 1 ], we may define for any covariant functor F from the category of graded 
R-algebras to abelian groups: 

Hg (R,F) = lira Hn(S/R,F) ,  

H~r(R, U) = lira H~r(S/R , U) 

where the limits are taken over all graded 6tale coverings S of R. 
If no confusion is possible, we write ~ n H~ (F)= H~ (R,F). 

2. Embedding of Brg(R) in the ~tale Brauer group 

As before, R is a graded commutative ring. R(n ) is the graded ring defined by 

Un(R(, 0) = Un(R), R i = (R(n))ni , 

i.e. we have degR(n)(a)= n degR(a ). 

2.1. Definition. R is called strongly graded if RnRm=Rn+m for all n,m in 7/, or 
equivalently, if RR 1 =R. R is called quasistrongly graded if there exists a graded 
6tale covering of R containing an invertible element of degree 1. R is called d- 
quasistrongly graded (de  No) if R = T~a ) for some quasistrongly graded ring T. 

2.2. Examples. (a) If R contains an invertible element T of degree d > 0, and if 
d e  U(R), then R is quasistrongly graded. Indeed, S = R [ X ] / ( X  d -  T) is a graded 
6tale covering of R satisfying the condition. 

(b) If R contains a generalised Rees ring A = (~ne~_ InXn, where deg(IX) = d, and 
d e  U(,4), then R is quasistrongly graded. Recall from [19] that a generalised Rees 
ring is obtained as follows: let A0 be a domain, and I an invertible fractional ideal 
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of Ao. Then A = (~n ~ z InXn is a graded ring. Let So be an &ale covering of R o 
such that So®RoI=So . Then S=So®AoA=gSo[X,X-I],  so S ® A  satisfies the 
conditions of (a). 

Similar arguments show that the scaled Rees rings and Lepidoptorous rings, 
studied in [16], [20] fall within this scope. 

As the following proposition shows, d-quasistrongly gradedness is a gr-local pro- 
perty. Qg means localisation at h(R-p) .  

2.3. Proposition. For a graded commutative ring R, the following conditions are 
equivalent: 

(i) R is quasistrongly graded. 
(ii) For all p in Specg(R), Qgp(R) is quasistrongly graded. 

(iii) For all p in Specg(R), Qg(R) contains an invertible element o f  invertible 
degree. 

Proof. The implications (i)= (ii) and (iii)= (ii) are obvious. For (ii)= (i), suppose 
that Qg(R) is quasistrongly graded, for all p in Specg(R). Let S(p) be a graded &ale 
covering of Qg(R) containing a unit of degree one. Then there exists f e  h (R-p ) ,  
and a graded 6tale covering S( f )  of Qf(R) containing a unit of degree one. 

Using the quasicompactness of Specg(R), we therefore get a graded Zarisky 
covering 1-Ii~l S(f/) of R, which is a graded &ale covering. 

For (ii)=(iii), consider a gr-local quasistrongly graded ring R. Then R/m is 
quasistrongly graded, so it is of the form kiT, T - l  ], where deg T = d  is invertible in 
k. Let T' be a homogeneous lifting of T, then T' is invertible, deg T'= d, and d is 
invertible in R. 

The next proposition is a graded version of Artin's theorem [1, 4.1]. We tried to 
prove it for general (Noetherian) graded rings, but encountered some technical dif- 
ficulties, lying in the fact that not every graded projective module of constant rank 
over a gr-semilocal ring is graded free. 

2.4. Proposition. Let R be a quasistrongly graded Noetherian ring, and Si some 
graded dtale R-algebras (1 <_ i<_ n). I f  U is a graded dtale covering o f  $1 ® "" ® Sn, 
then there exist graded dtale coverings S~ o f  S i such that we have a factorisation 

where the connecting homomorphisms are graded. 

Proof. First, suppose that R contains a unit x of degree one. Then R = Ro[x, X - l  ] ,  

SO (~R Si ~-- (~Ro (Si)o IX, X- l ], and U = U0 Ix, x -  1 ],  where U0 is a graded &ale cover- 
ing of (~go(Si)o. Hence there exist &ale coverings (S/')0 and a factorisation 

! ! ! - - I  ®Ro (Si)o ~ Uo -~ ®R0 (Si)o, by Artin's theorem. Next let Si = (Si)o [x, x ]. 
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For the general case, let/~ be a graded &ale covering of R containing a unit x of 
degree one; putting ~ =Si®t~, 0=  U®I~, one finds graded 6tale coverings S~ of /~  
and R, and a factorisation 

hence ® Si ~ U ~ ® S;, establishing the result. 

Let A be a graded R-Azumaya algebra, S a graded faithfully flat extension of R 
splitting A in the graded sense, i.e. we have a graded isomorphism a : A ® S ~  
ENDs(P),  for some graded S-progenerator P. As usual, define the graded iso- 
morphism ~p:ENDs(2)(P1)~ENDs(2)(P2) by 

= (o-Q 1) o (vQ 1) o (1 (~ cr -l  ). 

By the graded version of the Morita theorems (cf. [4]), ~ is induced by a graded 
isomorphism f "  Pl ®2 I ~ P2, where I e  Picg(S(2~). 

2.5. Definition. If [I] = 1 in Picg(S (2)) (Picg(S(2~), then we say that (S,P, tr, ~ , f )  is 
a (very) good graded splitting datum for A. 

2.6. Theorem. Let A be a graded R-Azumaya algebra. I f  R is d-quasistrongly grad- 
ed, then A admits a good graded splitting datum which is an dtale covering. I f  R 
is quasistrongly graded, then A admits a very good graded ~tale covering splitting 
datum. 

Proof.  Let us first state that A admits a graded 6tale covering splitting. For a gr- 
local ring R, this can be done in general, but in our situation, it suffices to refer 
to [6, Proposition 2.4], where the result was proved for a gr-local ring containing 
a homogeneous unit of degree different from zero. 

Hence for all p in Specg(R), there exists a graded 6tale covering S(p) of Qg(R) 
splitting Qg(R). But then we can find f e  h (R-p) ,  and a graded 6tale covering S( f )  
of Rf  splitting Af. Denote Uf = { p ~ Specg(R) : f~p} ,  then the collection of all ob- 
tained Uf cover Specg(R), which is quasicompact, so can be restricted to a finite 
covering { Uf,, ..., Ufn } of Specg(R). But then S = 1-Ii S(f/) is a graded 6tale covering 
of I-I; R~ and R, and a standard computation shows that S splits A. Also note that 
this construction implies deg S = deg R. Thanks to Proposition 1.2, we can restrict 
ourselves to the case where R is Noetherian. Suppose R quasistrongly graded, and 
S obtained as above. Then we get I~  Picg(S(2)). There exists a graded ~tale cover- 
ing U of S rE) such that [~)2 U~ U; indeed, one first observes that Qg(I)=_ Qg(S(2~), 
for all p e Spec(S (2) ), and then uses the quasicompactness. If we chose S such that 
it contains a unit of  degree one, then we have Qg(I)=gQg(s(2)), hence U can be 
chosen such that I ®  2 U---g U. Next, apply 2.4 to get a graded 4tale covering S' of 
S factorising S t2~--, U ~ S  42~. Then 

/'(~)2 S'(2) -~g ([(~)2 U) (~)u S'(2) ~-g U(~u S'(2) ~-g S '(2) ~- 1 



26 S. Caenepeel 

in Picg(S'(2)). This establishes a very good graded splitting (S;P '=P®I S',a'= 
t r® 1 ls,, ¢ ' , f ' ) .  

Finally, for the d-quasistrongly graded case, repeat the above argument, noting 
that the isomorphism I Q  2 U~- U is not graded in general, so that we do get a good 
graded splitting which might be not very good. 

Also observe that deg S=  deg S(2)= deg U, so that we can apply 2.1 to R(l/n), ob- 
taining S'. 

Note. Not every A e Azg(R) admits a very good 6tale covering splitting datum, if R 
is d-quasistrongly graded. For example, consider K =  0:2[T, T -1, deg T= 2]. Then K 
is 2-quasistrongly graded, but not quasistrongly graded, let l be the Galois extension 
of k defined by the equation a2+a - 1 =0, and L=I[T, T-l]. 

Let A be the graded K-Azumaya algebra defined as a Galois-crossed product by 
the cocycle f :  

f (1 ,1)=f(1 ,a)=f(a , l )=l;  f (a ,a)=T.  

Then A does not admit a very good 6tale splitting datum (since any graded 6tale 
covering of K is 2Z-graded). Also cf. [4, Theorem 4.7]. 

Note however that A admits a very good splitting datum which is faithfully flat 
but not 6tale: let M =  k[x, X -1 ] where X 2 =  T, then A can be written as a differential 
crossed product over M in degree zero: A is generated by { 1, Z}, with multiplication 
rules Z2= T -1, Z X = X Z +  1 (a=XZ).  

2.7. Proposition. I f  R is an arbitrary commutative graded ring, then 
(a) Uo(R)= H°(Uo)= H°gr(U). 
(b) U(R)=H°(U)=H°(U). 
(c) Picg(R) = Ker(H~g(U)~H~(gr)) = Im(Hlgr(V)--*H~g(U)). 
(d) I f  R is quasistrongly graded, then Picg(R)=Hlg(Uo). 

Proof.  (a) and (b) follow directly from [4, Propositions 4.1 and 4.4]. 
(c) follows from [4, 4.3] and the observation that for any [I] ~ Picg(R), one can 

find a graded faithfully flat extension S such that [I®S] = 1 in Picg(S) (cf. the 
proof of 2.6). 

(d) follows in a similar way from [4, 4.1hi. 

2.8. Theorem. I f  R is quasistrongly graded, then there exists a natural monomor- 
phism O:Brg(R)~H2(Uo). I f  R is d-quasistrongly graded, then there exists a 
natural monomorphism O: Brg(R)"+ H2gr(U). 

Proof.  The first part can be shown in a way which is very similar to the one followed 
by Knus & Ojanguren in [11], remarking that all mappings are graded, and using 
Proposition 2.6. We provide the proof for the second part, as some pecularities of 
a graded nature are involved there. 
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Let A represent [A] e Brg(R), and (S, P, tr, ~0,f) be a good graded &ale covering 
splitting datum. We keep the notations of 2.6. q~ is induced by a graded isomor- 
phism f :  P1 ~ P 2 ® 2 I ,  where/ePieg(s(2)) .  Thanks to the exact sequence 1.4, and 
the fact that [I]= 1 in Picg(S®S),  we can view [I] as an element of  gr(S®S).  
Consider f =  U(f)"_P1--'_P2, then f f l f 3 f l  is multiplication by a unit u e U(S (3)) as it 
induces the identity ~021q~301, and u is a cocycle. Note that d(u)=gr( f f l f3 f l )= 
11 ®3 13 @3 I f  i = D1 (I), since the isomorphism - - - 

f-I 
f 2  l f 3 f l ' P l l @ 3  11 (~)3 I3 (~)3 12 1 ~ P13 ~)3 I3~)3 12 1 ~ P23(~)3 12 1 J2-"~-~P1 

is graded, hence u = (u, I) is a cocycle in the gr-cohomology sequence Tgr(S/R , U). 
Let [u] be the image of u in Hg2gr(U). From the following lemmas, it follows that 
[A]--,[u] induces the desired monomorphism. 

2.9. Lemma. I f  [A] = 1 in Brg(R), and (S, P, a, q)) is an arbitrary gr-~tale covering 
splitting datum, then there exists a graded dtale covering S' o f  S, such that extension 
o f  scalars yields a good graded ~tale splitting (S', P; tr', ~', g), with g21g3gl = 1 and 
gr(g) = 1 in HI(S'/R, gr). 

Proof. From the Morita equivalence [4, 1.2], a : (END R Q ) ®  S ~ E N D s  P is induc- 
ed by a graded h : Q ® S ~ P ®  1L I eP icgS .  

Replacing S by a suitable graded &ale covering, we can suppose that [I] = 1 in 
Pic g S, hence view I as an element of gr(S). Then define f :  P1 ~P2  by commuta- 
tivity of the following diagram: 

h®l 
Q23 ' P2 @2 12 

r3 I f 

l®h 
QI3 ' el  @2 Ia 

From the theorem on faithfully flat descent, it follows that f2 =f3f l ,  and [gr(f)l = 
[I1 @/2 1 ] = 1 in H l (S/R, gr). - - 

2.10. Lemma. If  (S,P, tr, O,f)  is a good graded dtale covering splitting for  A, and 
f~ l fa f  1 = 1, and [grf ]  = 1 in HI(S/R, gr), then [A] = 1. 

Proof. Let gr(f)=Ii@2121, [I]egr(S),  then we get a graded isomorphism 
f:P2@212~PI@211, which is a graded descent datum, inducing a graded R- 
progenerator Q- 

Q23 * (P @1 I) ® S 

1 
Q13 r S@(P@ 1 I) 
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inducing 
ENDR(Q23)' , ENDs~2,((P ®~ I) ® S) 

ENDR(Q13) , ENDs~2,(S ® (P®I I)) 

From uniqueness in [4, 1.4], it follows that A ~-g ENDR(Q). 

2.11. Lemma. The cocycle u defined above is independent of  the choice o f f  and L 

Proof. Let f :P1-"*P2(~2 I, g:P1-~P2t~2 J induce ~. Put f21fafl =u, gElgagl =_0. 
Then f = t g  for some t e  U(S(2)), so u =(dEt)o. Also [I] = gr ( f )  = d2(t) = dE(_/) gr(g) = 
dE(t)[-J], hence [(_u,I)(_o -l, j - i  )] = [(dEt, dEt)] = 1 in HEr(S/R, U). 

So the cocycle [u] defined above depends only on A and a. Denote [u] = 0(a, A). 

2.12. Lemma. I f  [A] = 1, then 0(tr, A )=  1. 

Proof. First note that if S'  is a graded 6tale covering of S, then 0(a;  A ) =  O(a, A). 
Now take S' as in Lemma 2.9. Then it follows that O(a; A')  = [(1, I)] = 1, since [I] = 1 
in H2(S/R, gr). 

2.13. Lemma. Let (S,P, tr, 4~, f ) ,  (T, Q, r, el, g) be good graded dtale covering split- 
tings for A and B. Then 

(S@ T , P ® Q *  a®r° ,~p®~,° , f  ®g *-1) 

is a good graded dtale covering splitting for A ® B  °. r ° : B ° ® T ~ E N D r Q  * is 
defined by r ° (x) = (r(x))*. Consequently O(a ® r ° , A ® B ° ) = O(a, A) ® (O(a, B)) -1, 
and O(a, A) is independent of  the choice of  a. 

Proof. An easy computation; the last observation then follows from 2.12. 

2.14. Lemma.  O"Brg(R)~H2gr(U) is a well-defined monomorphism. 

Proof. That 0 is a well-defined homomorphism follows from the preceding lemma. 
Suppose O(A)= 1, and let S define a good graded &ale covering splitting datum. 
Then there exists a graded &ale covering S'  of S such that the image (u; I ' )  of  (u, D 
is identical to (A2o, (D1, J) .  (dE V) -1) for u e U(S'(2)), [J] e gr(S'). Then consider 
the splitting (S', P,  tr; y',f'o) and apply 2.10 to conclude that [A] = 1. 

2.15. Theorem. I f  R is quasistrongly graded, then we have an exact sequence 

1 ~ Picg(R)~Hlg(U)~Hl(gr) #-~ H2(Uo) r--~ Hggr(U) --" 1. 
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Proof. The part l~Picg(R)-+H~(U)-+H~(gr) was done previously. 
Definition of ft. Let [T] eHI(S/R, gr) represent XeHgl(gr). Up to replacing S by 

an 6tale covering, we can suppose IT] = 1 in Picg(St~)S), hence IT] =[d(u)] for 
some u ~  U(S(2)). Since DI(T)= 1 in gr(S(3)), O=AlU=U£lU3Ul ~ Uo(S(3)), and is 
clearly a cocycle in Uo(S(3)). Define fl(x) = [0] eH2(Uo). Note that [0] is not trivial 
in H2(Uo) in general, a l though O=dlU. Indeed, u could be non-homogeneous.  

Exactness at H~ (gr). It is clear that  fl o a = 1. Suppose [0] =,8(x)= 1, then there 
exists a gr-6tale covering S'  of  S such that w'-- w21w3wl for  some w e  Uo(S'(2)), o' 
being obtained by extension of scalars. Since d e g w = 0 ,  d(uw-l)=d(u), and 
[uw -1 ] ~HI(S'/R, U), so x=a[uw-1]. 

Definition of y. Let x~H2(Uo) be represented by ueUo(S(3)), and let y(x)= 
[(U, S (3))]. 

Exactness at H2(Uo). If y(x) = 1, then there exists a gr-~tale covering S' such that 
[(u',$'(3))]=1 in H2gr(S'/R,U). Hence u ' = A l v  for some ueU(S(2)). Then 
x =,8(d(o)). Again,  y o ,6 = 1 is easy. 

y is surjective. Let y~H~gr(U ) be represented by [(u,I)] in H2gF(S/R, U), and 
assume [I] = 1 in P i c g ( S ® S )  (if necessary, replace S by a suitable gr-~tale cover- 
ing). Then [I] =dl(O) for some oe  U(S'(2)), by 1.4. Now 

y = [(u, I)1 = [(u, d 10) = [(u, d I o)] [(A l 0, (d  1 o ) -  1 ] = [(uA 1 o, 1)]. 

As (UAlO, l) is a cocycle, we have d2(udlo)= 1 in gr(S(3)), so udloe U0(S(3)), and 
y = y(uA l o). 

2.16. Corollary. I f  R & quas&trongly graded, then 
(i) H2g ( Uo) =- H2ggr( U). 

(ii) H~(U)-~ H~(gr) is surjective. 
(iii) H~gr(U)-'H2g(U) is injective. 

Proof. Using [4, §3.1], we have an exact sequence 

HIg(U)~H~ a 2 (gr)---+Hw(U)---,H~(U)--+H2(gr). (.) 

It is easily established that 5 = y o,8, hence 5 = 1, from 2.15. Indeed, for T=  dl (u) 
representing x ~ H~ (gr), we have that 

y o ,8([d I (u)]) = y([A lU]) = [(d lu, S(3))1 = [(1, d I (u))] = 61 (u)). 

(i), (ii), (iii) are now easily obtained using the exact sequences (,)  and 2.15. 

2.17. Note. For a quasistrongly graded ring, we now have the following com- 
mutative diagram: 

Brg(R) ) H2(Uo)_~ H2ggr(V) ) H2(U) 

Br(R) ~ H2(U) 
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The horizontal morphisms are monomorphisms. Note however that the vertical 
morphisms Brg(R)-~Br(R) and H2(U)--~HE(U) are not necessarily monomorphic. 

3. On the Grothendieck group of a graded ring. 

The aim of this section is to deduce some information on the Grothendieck groups 
of the categories FPg(R) and Pg(R). It will be used in the proof of Lemma 5.4. The 
notations are very similar to those in [3]. First, we search for a graded analog to 
Serre's theorem [3, Ch. IV, §2]. We shall not treat it in its full generality: a restric- 
tion to graded projective modules over commutative graded rings will be sufficient 
for our applications. We also have to make a technical assumption on the gradation 
of R: assume that every graded localisation at a graded prime ideal of R contains 
a homogeneous unit of positive degree, or equivalently, the graded residue class 
fields of the graded localisations are nontrivially graded. 

If Qgp(R) contains a unit of degree t, then there exists an open neighborhood D 
of p in Specg(R) such that every Qg(R) contains a unit of degree t (qeD) :  if 
T~ U(Qg(R)), with deg T=t,  then T or T-! lies in Im(R-~Qg(R)), e.g. T is 
represented by f e R t .  Then put D=Dg(f)={q~Specg(R):TC~q}.  Using the 
quasicompactness of Specg(R), we can now find 8 > 0  such that every graded 
localisation of R contains a unit of degree 8. Let 8(R) be the minimal positive 
number having this property. If 8(R) does not exist, then we shall say 8(R)= + oo 
(e.g. when R =kiT]).  

For d ~ Z  n, let Rn(d) be the free R-module with basis {a l , . . . , an} ,  where 
deg ai = di. For k ~ Z, we write k = (k, k,. . . ,  k) e Z n. Let P ~ Pg(R), then we call 
a e p k  unimodular o f  degree k if the graded ideal Op(a)={f(a): f ~ P * }  is the 
whole of R, or, equivalently, if R(k)-~P: x-~xa is a split graded monomorphism. 
In this case, R(k) embeds as a graded free direct summand in P. 

Now suppose R is gr-local (and commutative). For a subset S of P c  Pg(R), let 
S be the graded submodule generated by S. For k e 7/, we define k-rankR(S; P) as 
the supremum of all r >_ 0 such that (S) contains Rr(k) as a graded free direct sum- 
mand. if T is a unit of degree t in R, then (k+ t)-rank(S; P)=k-rank(S;  P). If 
t = di(R), then we have 6- ~,=0 k-rank(P; P ) =  rankR P (P is graded free!). Along the 
lines of [3, Ch. IV, §1], we can prove 

3.1. Lemma. Let (R, m) be a gr-local commutative ring, k ~ Z, P, P', Q ~ Pg(R). 
Then 

(i) k-rank(S; P) = k-rank(S + mP; P). 
(ii) I f  a, fl are unimodular o f  degree k in P, then there exists a graded automor- 

phism ~ o f  P leaving invariant all graded submodules containing a and fl, and such 
that (p(Ra) = Rfl. 

(iii) I f  M is a graded submodule o f  P, then 

k-rank(Rr(k) 0 M; Rr(k) <~ P) = r + k-rank(M; P). 
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(iv) I f  a e Pk, then k-rank((s, a); P) < 1 + k-rank(S; P). 
(v) I f  a l , . . . ,  ar ~ Pk, and k-rank(a1, ..., al; P) > t for  some t< r, then there exist 

fli = Oti + ai~r (ai E R O, 1 < i< t) such that k-rank(ill, ..., fit, at+ l , . .. , Otr- 1; P )  > t. 

If R is a graded commutative ring, denote Y=maxg(R). For PePg(R) ,  S C P ,  

k e Z ,  we define k-rankR(S; P)=infm~yk-rankQ~<R)(Qg(s); Qg(P)), and k- 

rankR(P) = k-rankR(P; P). 
For each j >- 0, we denote 

Fjk(S; P )=  {m ~ Y: k-rankQ¢(R)(S; Qgm(P))<j}. 

As in [3], we then prove 

3.2. Lemma. With notations as above, we have 
(i) Fjk(S; P) is a closed subset o f  Y. 

(ii) ai , . . . ,  ctj ~Pk form a basis for  a graded free direct summand o f  P i f  and 

only i f  Fjk(otl,...,otj; P ) = 0 .  

3.3. Theorem. Let R be a graded commutative ring such that 
d = dim maxg(R) < + oo. Then i f  P ~ Pg(R), and k-rank(P) > d for  some k ~ Z, then 
P contains a unimodular element o f  degree k. 

We omit the (long) proof, as it is a straightforward graded version of [3, IV. 2.5]. 
Remark that the functions rk(P) : Specg(R)~Z : p - ' k - r ank  Qg(P) are not necessary 
continuous! As an example, consider the scaled Rees ring 

S : ( i ~ e z a - i b - i R x 2 i ) ( ~ ( i ~ z a - i b - i R X 2 i + l  ) ,  

where R is a Dedekind-domain containing exactly two maximal ideals aR and bR, 
and deg X =  1. Then Specg(s) = {(0), (a, X), (b, X)} is connected, let P = aS tq bSX, 
which is a graded projective ideal of  S. Then we get the following functions: 

for k odd: rk(P)(0 ) = r~(P)(b, X) - 1; rk(P)(a, X )  = 0; 

for k even: rk(P)(O) = rk(P)(a, X )  = 1; re(b, X )  = O. 

As a consequence, 3.3 is not sufficient for our purposes. A slight modification is 
necessary. 

3.4. Proposition. Let R be a commutative Noetherian graded ring such that every 
graded localisation at a graded prime contains a homogeneous unit o f  positive 
degree, and ~ = g(R) defined as above. Then i f  P is a graded projective R-module 
o f  rank greater than d = d i m  maxg(R), then 15= PQ) P(1) O . . .~ )  P(t~ - 1) contains 
/~ = R Q R(1) @--. 03 R(O-  1) as a graded submodule. 

Proof. Take m ¢ maxg(R), then Qg(p)= (~(=lQgm(R)(ri), with f > d .  Hence 
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/ 6 -1  f 6 - 1  6 - 1  

Qgm(- ~) = • (~ Qgm(ri + k)= (~ (~ QSm(k ) = (~ Qgm(k) y. 
i= l  k=0 i= l  k=0 k=0 

Hence k-rank(P)>d,  for k = 0 , . . . , 6 - 1 .  An application of 3.3 then finishes the 
proof. 

We now turn to the study of KoPg(R) and KoFPg(R). Denote K~(R)= K0Pg(R). 

3.5. Lemma. The forgetful functors U: Pg(R)-,P(R), U: FPg(R)-,FP(R) induce 
monomorphisms 

U : Kg(R) ~Ko(R) and U : KoFPg(R) --*KoFP(R). 

Proof. As these functors are product preserving, we get well-defined homomor- 
phisms. Take xeK~(R) ,  and let U(x)=0. Since x=  [P] - [R n ] for some PeFg(R),  
[P] = [R n] in K0(R); hence pORm=Rn(~R_ m, so [P] = [Rn], establishing the first 
half of the lemma. The other part is similar. 

Let X g = Specg(R) be the set of graded primes on R, furnished with the Zarisky 
topology (thus being a subspace of X--Spec(R)). Using the fact that every idem- 
potent of a graded commutative ring is homogeneous of degree zero, (cf. [5]), we 
can show that the lattice of clopen subsets of X g is isomorphic to the lattice of 
idempotents, the isomorphism being given by e- , supp(eR)CX g. It is therefore 
very easy to establish the following lemma: 

3.6. Lemma. The space o f  continuous functions from Spec R to Z, and from 
Spec g R to 7 /are  isomorphic. They are denoted by H°(R). 

Proof. Suppose fg" Spec g R--,Z continuous. Then, for p e S p e c R ,  there exists 
e e Idemp R such that p e supp(eR). Observing that eR~ Spec g R, define f ( p )  = 
fg(eA). Then f is a well-defined continuous function extending fg. 

3.7. Lemma (concellation). Let P, QeFPg(R); i f  [P]= [Q] in KoFPg(R), 
pn=Qn for  some n>0 .  

Proof. We refer to [3, Ch. IX, Proposition 4.2], and use 3.1 and 3.2. 

then 

3.8. Lemma (stability). Let R be a commutative graded ring, such that every graded 
localisation o f  R contains a homogeneous unit outside R o, and u e K~(R). 

(i) I f  R is Noetherian, then there exists a 6 > 0 such that rk g u > d implies u = [P] 
for  some P e Pg(R). 

(ii) I f  u has nonnegative rank, then nu = [P] for  some n > O, and P e Pg(R). 

Proof. Let rk g be the restriction to Kog(R) of the rank function Ko(R)-'Ho(R). 
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(i) We can write u=[Q]-[R n] for some QePg(R) .  Let J be as in 3.4. Then 
rkg(u)+n>J+n, so from 3.4 it follows that Q=gPORn(d), for some d ~ Z  n. 

Hence u = [P]. 
(ii) Restricting attention to a graded direct factor of R, we may, without loss, 

assume that u has everywhere positive rank. Write u = [P] - [Rm]. Then P is de- 

fined over a finitely generated subring R ' C  R which can be chosen to be Noetherian 
and such that every graded localisation of R '  contains a homogenous unit of degree 
different from zero. Moreover, u is the image of u'=[P']-[R'm], where 
p ' e P g ( R ' )  is such that P'®R,R---gP. For n large enough, nu=[Q'], by (i), for 

some Q'. Thus nu = [Q'®n,R]. 

Recall from [3] that the rank function rk :Ko(R)--'Ho(R) can be split, yielding an 

exact sequence 
rk 

O--.rko(R)~Ko(R)----, Ho(R)--,O. 

Also, rk0(R) is a nilideal. Restricting rk to rk g we still get a split exact sequence 

rk g 
O~rk~(R)~K~(R) , Ho(R)~O 

where rk~(R) = rk0(R) AK~(R). 
Tensoring up this sequence by © still yields an exact sequence; let U+(© @Ho(R)) 

be the set of functions in © ®Ho(R) reaching only strictly positive values, and 
U+(© ®K~(R)) = (1 ® rkg) -1 (U+(© ®Ho(R)). Then U+(© ®K~(R)) is a subgroup 

of the groups of units of ©®Ho(R). The nilradical of ©QKo(R) lying in J ( © ®  
K~(R)), an element of  © ®K~(R) is invertible if and only if its rank is. So we have 
a split exact sequence of groups of  units: 

1 ~ 1 +(©®rk~(R))~U+(Q®K~(R))~U+(Q@H~(R))~O. 

Using the inverse group isomorphisms 

exp 
© @ rk~(R) z---' 1 + (© ® rk~(n)) 

log 

where exp and log are defined by their usual series expansions - nearly all terms 
being zero here - we get: 

3.9. Lemma. 

U + (© @ K~(R)) = U + (© @ Ho(R)) @ (© ® rk~(R)). 

3.10. Proposition. The map [P]-~I®P from FPg(R)~©®K~(R) induces a 
monomorphism k'KoFPg(R)oU+(©®Kg(R)), which is an isomorphism if all 
graded localisations of R contain a homogeneous unit outside R o. 

Proof. As in [3, IX. 7.1]. 
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3.11. Corollary. Let  R be such that every graded localisation 
homogeneous unit outside Ro. Then 

(i) rk g : KoFPg(R) --) U+(Q (~)H°(R)) admits section cr. 

(ii) Each x ~ KoFPg(R) with rkg(x)= 1 has a unique n-th root. 

contains a 

Proof. (i) is obvious. 
For (ii), identify KoFPg(R) with U+(© ®Ho(R))  (~ © ® rk~(R), using 3.9 and 

3.10. An element of rank one is then of the form (1,x). (1,x/n)  is therefore the 
unique n-th root. 

4. A Mayer Vietoris sequence for the graded Brauer group 

The result of this section is completely analogous to [12, §2]. So we omit the 
proofs. Consider graded ring homomorphisms 

RI 

1 
R 2 ' R 3 

We define a graded Brauer group relative to this diagram. Consider data of the form 
(AI ,A2 ,P ,Q ,~) ,  where Ai6Azg(R i )  , P, Q6FPg(R3) such that we have a graded 
isomorphism 

: A l (~)RI R3 (~)R3 ENDR3 p "*A2 (~)R2 R3 ®R3 ENDR3 Q 

(i.e. A1 and A 2 become equivalent on R3). Call a datum trivial if it is of the form 
(ENDRzPI, ENDR2P2, N, M, ENDO) where q~ is a graded isomorphism 
PI ~)RI R3 (~)N-+ P2 (~)R2 R3 (~)M. 

Defining tensor products of data in the obvious way, two data A, A' are called 
equivalent if there exist trivial data e, e' such that A ®e---g d ' ®  e'. The equivalence 
classes of data then form a group denoted by Brg(R1,RE,R3). 

4.1. Theorem. Let  R be a quasistrongly graded commutative ring, f g ~ h(R) such 
that R f +  Rg = R. Then there exists a monomorphism r/: Brg(Rf, Rg, Rfg)-+H2(R, Uo) 
and a commutative diagram o f  exact sequences: 

a # 8 Picg Rf(~ Picg Rg ' Picg Rfg"--* Br (R f, Rg, Rfg) 

Of' fl '  
I I - + I  ____=)H2(R, Uo) H~(Rf, Uo)(~H~ (Rg, Uo) H~(Rfg, Uo) 

) BrgRfO)BrgRg ) BrgRfg 

1o o 
Y" H~(Rf, Uo)(~H~(Rg, Uo) ~ H~ (Rlg , Uo) 



A cohomological interpretation of the graded Brauer group H 35 

For details on the construction of  the connecting maps, we refer to Knus & 
Ojanguren [12]. The proof is identical, noting that all units and isomorphisms in- 
volved are of degree zero. Let us only mention that (due to 2.4) it suffices to con- 
sider graded 6tale coverings for R f g = R f @ R g  of the form S I ® S  2 in order to 
calculate Hig(Rfg, Uo). Also note that a, fl are given as formation of quotients. 

5. Gabber's theorem for quasistrongly graded rings 

Here is the main theorem of this paper: 

5.1. Theorem. I f  R is a quasistrongly graded ring, then Brg(R)~HZg(R, U0)tors. 

5.2. Note. The proof of the corresponding ungraded result can be found in Gabber 
[9], Hoobler [10], and Knus-Ojanguren [12]. The proof of Theorem 5.1 is inspired 
by the Knus-Ojanguren proof. It is given by the following lemmas. Throughout this 
section R is assumed to be quasistrongly graded. 

5.3. Lemma. Let c e H2(R, U0)tors  , f~ g E h(R) such that R f +  Rg = R. Denoting cf, Cg 
for the images of  c in H2(Rf, Uo) and H (Rg, Uo), and supposing the existence o f  
graded Rf- and Rg-Azumaya algebras A and B such that O[A] =c f, O[B] = Cg, it 
follows that there exists a graded R-Azumaya algebra C such that fl[C] = c. 

Proof. In view of the results of the two preceding sections the result becomes a mere 
translation of [12, 3.2]. 

5.4. Lemma. Let c eH2g(R, U0)tors. I f  for any m e max g R, there exists a graded 
Qg(R)-algebra A(m) such that O[A(m)] = Qg(c), then c ~ Im(,8). 

Proof. Take memaxg(R) .  Then there exists f e h ( R  \ m), and a graded Rf- 
Azumaya algebra A ( f )  such that OlAf] =cf. Consider Z =  { f eb (R )  :cfe Im/~}. It 
is easily seen that 

(1) aeh(R),  f e Z = a f e Z .  
(2) f g e Z ,  d e g f = d e g g = f + g e Z  (applying 5.3) to Rf+g. 
Now Spec g R can be covered by a set of the form 

{ U(f(m)) : m ~ maxg(R),f(m) eZ} .  

By quasicompactness, this may be reduced to a finite covering { U(f/): i = 1, ..., n, 
f, e_r}. Hence there exist homogeneous az, ..., an e h(R) such that ~ air i = 1. Hence 
1 6Z,  finishing the proof. 

5.5. Lemma. Theorem 5.1 holds for graded rings of  the form Ro[X, X - I  ] 
(deg X =  1). 
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Proof.  In this situation, BrgR = Br R0 [21, VI.3.2]. 
If S is a graded &ale covering of R, then S=  So[X, X -1 ], where So is an &ale 

covering of R0. Clearly S(n)= (SOQRo SoQRo ""®Ro S0)[X, X -l ], hence Uo(S (n)) = 
U(S(on)), and Hn(S/R, U o) = Hn(So/Ro, U), so Hg(g, Uo) = Hn(Ro, U). 

The result then follows from the classical theorem. 

5.6. Lemma. I f  R is quasistrongly graded, and gr-local, then Brg(R) ~- H2(R, U0)tors. 

Proof.  If R is quasistrongly graded and gr-local, then R has a homogeneous in- 
vertible element T, with deg T = d > 0 .  Then consider C=R[X]/(X d-  T). Then 
C = C 0IX, X-1 ], and C is a graded &ale covering of R which is finitely generated 
as an R-module. Hence C is R-projective, so C is graded free as an R-module, 
[C : R] = d. 

Let c eH2(R, Uo)tors be represented by u e Uo(S (3)) for some graded &ale cover- 
ing S of R. We can choose S such that S/C is a graded 6tale covering. Now, let c c 
be the image of c in H2(C, Uo). By the preceding lemma, cc =p[A] for some graded 
C-Azumaya algebra A. Now let T be a graded &ale covering of S, C, R such that 
T determines a very good graded splitting 

a : A ® c  T~M,(T) (d)  

where de T_" determines a gradation on Mn(T) (cf. [13]). 
So ( a ®  1) o r o (1 ® a) -l is induced by a graded T®c T-isomorphism f :  P-~P, 

where P is a graded free T®c T-module of rank n. Let 

f21f3fl=Ue Uo(T®c T® c T), 

then [u] = Cc in H2(C, Uo), hence there exists a graded &ale covering W of C such 

that 1 ®u=(1 ®uc)Aiw, for some we Uo(W®c W). f induces fw:P'*P', where 
P' is a graded free W®c W-module. Since W®c W= C® W® W, P' is a graded 
free W® W-module of rank nd, so wfw induces a graded W® W-isomorphism 

X = END(Wfw) :Mnd(W® W)(d')-"M,,d(W® W)(d') 

which is a graded descent datum (i.e. X2=X3XI), defining an R-Azumaya algebra 

B= {X~Mnd(W® W) : •(1 ®x)  = x ®  1}. By construction ,6[B] =c. 
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