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It is well known that a finitely presented group is necessarily isomorphic to the
fundamental group of a closed orientable n-manifold for each n=4. On the
contrary, it is not necessarily isomorphic to the fundamental group of a compact
3-manifold. It is a difficult problem to determine when a given finitely presented
group is isomorphic to the fundamental group of a compact 3-manifold. For
example, it is known that there is no algorithm which decides whether or not finitely
presented groups are isomorphic to the fundamental groups of compact 3-manifolds
(See Lyndon-Schupp [15, p. 192]). (This fact was suggested by Gonzélez-Acuna to
the author.) The purpose of this paper is to present a method of testing that a
finitely presented group with an element of infinite order is not isomorphic to the
fundamental group of any compact 3-manifold. Similar questions were considered
by Heil in [6]) and Jaco in [8] and [9], using other methods. Our method is based
upon the theory of infinite cyclic covering spaces. This method has its applications
in knot theory (cf. Blanchfield [2], Milnor [17], Farber [4] and [11], [12], [13]). We
summarize our main idea here. If G is the group in question, the criterion in the
case of an orientable 3-manifold is that any Alexander module produced in G is self-
reciprocal, and the criterion in the case of a non-orientable 3-manifold is that there
is an index 2 subgroup G’ of G such that any Alexander module produced in G’ is
self-reciprocal. This is a generalized revised version of the author’s earlier
arguments [13, Application 1] where an incorrect theorem, ‘Theorem A’, was
claimed. [*“We may consider...”” (p. 194, line 32) is false.] The example following
after ‘Theorem A’ can be proved by the present method, but we omit the rroof since
it is a well-known fact by Heil [6] and Jaco [8, 10].

In Section 1 we define and study a module induced from a group with an infinite
cyclic quotient group. In Section 2 we discuss two special kinds of modules, called
Alexander modules and self-reciprocal modules. In Section 3 we discuss some
properties of the fundamental groups of 3-manifolds which are useful for our
purpose. In Section 4 we state and prove our main theorem giving a necessary
condition for a group to be the fundamental group of a 3-manifold. Also, we give
there a plan for our test and one example.
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1. A module induced from a group with an infinite cyclic quotient group

Let {¢) be the infinite cyclic group generated by a letter . Let Z{¢) be its integral
group ring. We consider a group K with an epimorphism y: K —=(¢). Let K be the
kernel of y. The lemma which follows shows how the integral homology group
H\(K; Z) has a natural Z{r)-module structure, called the module induced from K
by y.

Consider a presentation (Xp, Xy, ..., X, |71y ... 7m) (M<+00,m=<+00) of K such
that y(xp)=r and p(x;)=1 for all j=1. Let {rf,...,ry} freely generate P, Z{t)
ard let {x3,x7,...,x¥} freely generate @, , Z{¢). Define a Z(¢)-sequence

n+1

2

d]
YA @ Z(ey —— Z(1
m L
by d.(r) = E;’_(,(ar,/axj)"'x,* and d;(x*)=p(x;)— 1. Then d,d; =0 because r,— 1=
¥ (0r,/dx))(x, — 1) in the integral group ring of the free group generated by
{x9, X1, .-, X, } (cf. Fox {5]). By our choice of a presentation of K, we have
dix)=r-1 and di(x)=0 for all j=1. Since d,d,=0, it follows that
(9r,/9x,)’ =0 and kerd, =@, Z{t), where x* generates the i-th free factor,
i =i=n. In particular, d, determines a map

dy:DZH > D2,

where di(r*)=Y" | (3r;/dx)Yx}. By Crowell [3, p. 391, H\(K;Z) is Z(1)-
isomorphic to Kerd,/Imd,=@®, Z{1)/Imd;. Let J be the mxn matrix whose
({—j)-th entry is (dr,/0x;)’, where 1<i<m, 1<j<n. Then we have proved the
following:

Lemma 1.1. The matrix J is a Z{t)-presentation matrix of the Z{t)-module
H\(K; Z). In other words, there is a Z{t)-exact sequence

J

@z @ ZKn—~H(K; Z)—0.

Corollary 1.2. If K is finitely generated, then H\(K; Z) is finitely generated as a
Z{ty-module.

Lemma 1.3. If K is finitely generated and H(K; Q)= Q, then H\(K; Q) is a finitely
generated torsion QKty-module.

Proof. We see from Corollary 1.2 that H,(K; Q) is finitely generated over the
principal ideal domain Q(t). Then if H,(K; Q)= Q, Milnor {17, the proof of Asser-
rion 5] shows that H(K; Q) is a torsion Q(#)-module. This completes the proof.
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2. Alexander modules and self-reciprocal modules

For a Z(t)-module T, we denote the Q(t)-module T®, Q and the Z{¢)-module
I'®,Z, by Ty and T, respectively, where Z,, is the field of prime order p. The in-
tegral torsion product Torz(7, Z,)={xe T| px=0} is denoted by TP, Then TP
forms a Z(¢)-module.

The following is easily proved:

Lemma 2.1. A Z{f)-module T is a torsion Z{t)-module if and only if T, is a tor-
sion Q(t)-module.

Definition 2.2. A finitely generated torsion Z{¢)-module is called an Alexander
module.

Combining Lemma 2.1 with Corollary 1.2 and Lemma 1.3, we obtain the
following:

Lemma 2.3. For a finitely generated group K with H\(K; Q)= Q, the Z{t)-module
H\(K; Z) is an Alexander module.

For example, consider the knot group K=n,(S’—k) of a tame knot k in a
3-sphere §°. Since K is finitely presented and H,(K; Z)=Z, we see from Lemma
2.3 that the knot module H,(K; Z) is an Alexander module. The Alexander module
was named after J.W. Alexander, who introduced these ideas in [1].

Let R be a commutative ring with a unit. Let 7 be an R{¢)-module. If f(¢) € R(t),
xe T, define f(t)- x=f(t"")x. This gives T the structure of an R{f)-module in a
second way. Denote it by T*

Definition 2.4. A finitely generated Z{¢)-module T is said to be self-reciprocal if:
() To=T{ as Q<r)-modules,
(ii) TP =Homy [T, Z,(t)]* as Z,(t)-modules for all p.

For an Alexander module 7, let A(f) € Q(t) be the characteristic polynomial of
t:To—Ty. We call A(#) up to unit multiples of OX¢) the Alexander polynomial of
the Alexander module 7. Since O(¢) is a principal ideal domain, A(¢) is a generator
of the order ideal of a cyclic Q(r)-splitting of Ty, (cf. Lang [14, p. 401]).

The following lemma is easily proved.

Lemma 2.5. For an Alexander module T with property (i), the Alexander
polynomial A(t) is self-reciprocal, i.e., A(t)=uA(t™") for some unit ue Q(t).

Using that Z, () is a principal ideal domain and 7, is finitely generated over
Z,Xt), we see the following:
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Lemma 2.6. For an Alexander module T with property (i), TP is a free Z(1)-
module having the same finite Z,(t)-rank as T,. In particular, TP is infinite or
trivial as an abelian group.

Corollary 2.7. For a finitely generated group K with H(K; Z)=Z, assume that
H,(K; Z) has the property (ii). Then H, (K; Z) is a torsion-free abelian group.

Proof. By Lemma 2.3, H,(K; Z) is an Alexander module. Since H,(K; Z,)=Z,,
Milnor [17, Assertion 5] shows tl\1at H(K; Z,,)=H1(1(~'; Z), is a torsion Z,(1)-
module. By Lemma 2.6, H,(K; Z)'”’=0 for all prime p. This implies that H\(K; Z)
is a torsion-free abelian group. This completes the proof.

3. Some properiies of the fundameniai groups of 3-manifoids

Hempel's book [7] and Jaco’s book [9] are useful for general references in this
section. Unless otherwise stated, 3-manifolds will be assumed to be connected
piecewise-linear 3-manifolds with or without boundary.

3.1. Any subgroup G of the fundamental group n,(M) of a 3-manifold M is the
fundamental group of a 3-manifold M’, namely the covering space of M belonging
to G. Moreover, if G is finitely generated, then M’ is compact and G is finitely
presented. Also, if M is orientable, then M’ is also orientable. (See Hempel [7,
Chapter 8], Jaco [9, Chapter V].)

L.emma 3.2. If G=n,(M) is a finitely generated infinite group, then G has an
clement of infinite order.

Proof. Assume G is a finitely generated torsion group. Then it suffices to show that
G is finite. By 3.1 we may assume M is compact. By conéidering, if necessary, an
index 2 subgroup in place of G, we may further assume that M is orientable. Then
since H\(M; Z)= H,(G, Z) is finite, we may assume that M is a closed orientable
3-manifold. Now by the sphere theorem, we have n,(M)=0, because any non-
trivial free product has an element of infinite order. To show that G is finite,
suppose G is infinite. Then M is a K(G, 1)-space and hence G is torsion-free (cf. [7,
Chapter 9]), which is a contradiction. This completes the proof.

Let M be a compact oriented 3-manifold with an epimorphism y: n,(M)—(?).
Let M be the covering space of M belonging to Ker y, called the infinite cyclic cover-
ing space associated with y. The covering transformation group of M is identified
with (7). The homology group H,(M; Z) has the structure of a finitely generated
Z{ty-module.
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Theorem 3.3. Assume dimyH,(M; Q)<+oco. Then the Z{t)-module H\(M; Z) is
self-reciprocal.

Proof. After easy modifications of M, we can assume that dM is non-empty and
contains no 2-sphere as a component. By [11], H,(M,dM; Q)=H(M; Q)=0,
since dimgH,(M; Q) < +00. So, dimg H,(M; Q) < +co. This implies that dM is the
disjoint union of finite copies of S'xR! (cf. Milnor {17, Assertion 6]). Let
I=Iml[iy: H,(0M; Q)— H,(M; Q)] and H=H,(M; Q)/I. Consider the Q(t)-primary
splittings 7 =®q C, and H =(-Bq H,, where g=q(t) ranges over all irreducible
polynomials of Q<#) up to unit multiples. For any g with I,#0 we see that g is a
self-reciprocal polynomial, since ¢ must be a factor of some #"—1. Then the
natural epimorphism H,(M; Q)— H induces a Q(f)-isomorphism C,=H, for all
non-self-reciprocal polynomials g, for INC,=0. Using the cohomology exact se-
quence of (M,3M), we obtain the following composite Q(¢)-isomorphism:

H=Hom[H, Q]=Ker[i*: H'(M; Q) H'(M; Q)]

= H'(M,dM; Q)/Im[d : H*(0M; Q)— H'(M, 0M; Q)].
Then from [13, Corollary 3.5] we can see that H= H* (cf. Blanchfield [2], [12, 2.8]).
This implies that for any non-self-reciprocal g, Cyy)=(Cy,1))*. For any self-
reciprocal g, Cpy= Cyy-1y=(Cyy)*. Therefore, we have a Q(¢)-isomorphism
H,(M; Q)= H,(M; Q)*. Next, since dimyH,(M,dM; Q)< +o0, we see from [11]
that H,(M; Z)=H%(M,3M;Z)=0. Then by the universal coefficient theorem,
Hy(M; Z,)=H,(M; Z)'? for all prime p. By [13, Duality Theorem (ID)],
Tor 7,y Hy(M; Z,) =Torz,.,Hy(M,0M; Z,)*=0, for Hy(M,0M; Z,)=0. That is,
Hy(M; Z,) is a free Z,(t)-module. Using that H«(0M; Z)) is a torsion Z,(/)-
module, we see that

H,(M; Z)\P = Hy)(M; Z,)= H,(M, 0M; Z,)/ Z,(t)-torsion.
By [13, the proof of Duality Theorem (I)],
Homyg ,[H,(M; Z,), ZXt)]*=Homg,.,[H,(M; Z,)/ Z,(t)-torsion, Z,(1)]*
= H,(M,3M; Z,,)/ Z,(t)-torsion.
Thus, we have a Z(t)-isomorphism H,(M; Z)'P=Homy (,[H\(M; Z,), Z,X)]*.

This completes the proof.

Combining Theorem 3.3 with Lemma 2.6, we rediscover Farber’s result [4,
Theorem 6].

4. The main theorem

Let G be a group which contains a finitely generated subgroup K with H,(K; Z)
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infinite. Assume an Alexander module T is induced from the group K by an epimor-
phism y: K—=(1).

Definition 4.1. We say that the Alexander module T is produced in the group G.
The following is our main theorem:

Theorem 4.2. Let G be a group with an element of infinite order.

(1) Assume G is isomorphic to the fundamental group of an orientable
3-manifold. Then any Alexander module produced in G is self-reciprocal.

(2) Assume G is isomorphic to the fundamental group of a non-orientable
3-manifold. Then there exists an index 2 subgroup G’ of G such that any Alexander
module produced in G’ is self-reciprocal.

Proof. Let K be a finitely generat.d subgroup of G which induces an Alexander
module H,(K; Z) by an epimorphism y : K —(r). In the case (1), by 3.1 K=m(M)
for a compact orientable 3-manifold M. Let M be the infinite cyclic covering space
of M associated with y. Since there is a Z{t)-isomorphism H,(K; Z)=H,(M; Z)
and dimyH,(K; Q)=dimyH(M; Q)<+, we see from Theorem 3.3 that
H,(K; Z) is self-reciprocal, proving (1). In the case (2), G must have an index 2
subgroup G’ which is isomorphic to the fundamental group of an orientable
3-manifold, namely a unique double covering space of the original 3-manifold.
Apply the case (1) to G'. This completes the proof.

4.3. A plan for test. Assume we are given a group G and a (possibly infinite)
presentation Py for a finitely generater. subgroup K (possibly K=G) and an
epimorphism y:K—(t). If K=Z, then the test fails, since Z=m,(S'xS?), so
assume K # Z. Then check whether or not the induced Z{¢)-module H,(K; Z) is an
Alexander module by using the presentation Py and Lemma 1.1. For example, if
H,(K; Q)= Q, then by Lemma 2.3 H,(K; Z) is an Alexander module. In the case of
an Alexander module, check whether or not H,(K; Z) is self-reciprocal. If it is not
self-reciprocal, then by Theorem 4.2 (1) G is not isomorphic to the fundamental
group of any orientable 3-manifold. Next, for the non-orientable case, assume
H'(G; Z-)#0 and we are given all of the index 2 subgroups G; (iel) of G. (If
H'(G; Z,)=0, then by Theorem 4.2 (2) G is not isomorphic to the fundamental
group of any non-orientable 3-manifold.) Futher, assume, for each i, we are given
a (possibly infinite) presentation Py for a finitely generated subgroup K; of G;
(possibly K, =G,) and an epimorphism y;: K;— (1. If for each i, (K, y;) induces a
non-self-reciprocal Alexander module, then by Theorem 4.2 (2) G is not isomorphic
to the fundamental group of any non-orientable 3-manifold. In this case, G is of

course not 1somorphic to the fundamental group of any orientable 3-manifold by
Fheorem 4.2 (1).
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Example 4.4. For non-zero integers l,m and a prime p=2, the group G=
G(,m; p)=(a,b|a~'b'a=b" b"=1) is the fundamental group of a 3-manifold if
and only if p divides 2im.

Proof. If p divides /Im, then G is isomorphic to Z or the free product Z *Z,. So
G is realized as the fundamental group of a 3-manifold. Assume p does not divide
Im. Then if p=2, G=(a,b | a'ba=b,b*=1)=ZxZ,. This is the fundamental
group of S!x P2 Now assume p does not divide 2/m. Then we show that G is not
isomorphic to the fundamental group of any 3-manifold. Since H(G; Z,)=Z,, G
has just one subgroup G’ of index 2. By the Reidemeister-Schreier method (cf. [16]),
G’ has the presentation

(@, by, by| @’ 'ba’ = b, BT = b, bP = b = 1).

Let y: G’ —(t) be the epimorphism sending a’to ¢! and b, b, to 1. By Lemma 1.1,
H\(G'; Z)=Z(t)/(I*t—m*) (=Z, as an abelian group), which is a non-self-
reciprocal Alexander module by Lemma 2.6. By Theorem 4.2, G is not isomorphi
to the fundamental group of any 3-manifold. The proof is completed.
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