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Preface

Most fields of human activity are influenced by phenomena of sound and vi-
bration. Advances in scientific study of these phenomena have been driven
by widespread occupance of technological processes in which interaction of
sound and structural vibration is important. Examples abound in ma-
rine, aeronautical, mechanical and nuclear engineering, in physiological
processes, geology, etc. Among thousands of works dealing with vibra-
tion of fluid loaded elastic plates and shells a noticeable place belongs to
the analysis of specific physical effects simulated in simple models allowing
exact analytical or almost analytical solution (up to algebraic equations
and computation of integrals or series). Such are classical point models in
hydroelasticity.

In recent years applications appeared which require higher accuracy
of wave field representation both in fluid and in the structure than that
achieved by the use of classical point models. With increasing accuracy
it 18 desired to preserve simplicity of solution construction and analysis
and not to violate mathematical correctness and rigorousity. All these can
be achieved with the use of the technique of zero-range potentials. Zero-
range potentials were first introduced by Fermi in 30-es for description
of quantum mechanical phenomena. Later they came to mathematics as
special selfadjoint perturbations of differential operators (see paper [29] by
Beresin and Faddeev). At present applications of zero-range potentials are
known not only in quantum mechanics, but also in diffraction by small
slits in screens, analysis of resonators with small openings, simulation of
scattering effects from small inclusions in electromagnetics and other fields.

This book introduces the idea of zero-range potentials to structural
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mechanics and allows generalized point models more accurate than classical
ones to be constructed for obstacles presented both in the structure and in
the fluid.

We discuss the zero-range potentials technique taking as an example
one-sided fluid loaded thin elastic plate subject to flexural deformations
described by Kirchhoff theory. Two and three dimensional problems of
diffraction of stationary wave process are considered.

The 1deas that form the basis of exposition combine specifics of boundary-
value problems of hydro-elasticity and mathematically rigorous theory of
operators and their extensions in Hilbert space. Detailed presentation of
the theory of vibrations of thin-walled mechanical constructions was not
in the scope of the exposition, believing that existing monographs on the
theory of plates and shells can do that better. For the same reason the
book does not present any complete list of literature. We cite only those
directly related to the subject except some basic results with preference to
Russian papers not much known to Western audience.

Nevertheless, the book contains some background material from the
theory of flexure vibrations of thin elastic plates, it describes such important
features of correctly set boundary-value problems as reciprocity principle
and energy conservation law. The book contains a short introduction to the
theory of operators in Hilbert space and describes particular spaces (Lo and
Sobolev spaces). Theory of supersingular integral equations is presented in
the Appendix.

The first chapter presents some basic aspects of the theory of plates: it
contains derivation of Kirchhoff model of flexural waves, which allows appli-
cability of the approximation to be clarified; it describes general properties
of scattering problems by thin elastic plates, conditions of correctness and
uniqueness of solution; it discusses integral representation for the scattered
field, used in the book for the analysis of particular problems of scattering,
and presents important energetic identities such as optical theorem and
reciprocity principle which are exploited for independent control of asymp-
totic and numerical results. Classical point models are subjected to more
detailed analysis. Frequency and angular characteristics of scattering by
clamped point, by stiffener of finite mass and momentum of inertia and by
pointwise crack are presented for two examples of plate — fluid system. In
one case the plate is heavily loaded by water, in the other it contacts light
air. Peculiarities and general properties of scattered fields are discussed.

Chapter 2 gives a brief introduction to the theory of linear operators in
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Hilbert space. It does not pretend to be complete, but may be used for get-
ting acquainted to such objects as Hilbert space, symmetric and selfadjoint
operators, operators extensions theory, generalized derivatives and Sobolev
spaces. For more detailed and accurate presentation of these subjects the
reader can refer to corresponding textbooks and recent developments in the
perturbation theory of operators can be found in the book by S.Albeverio
and P.Kurasov [2] and references listed there. Chapter 2 also formulates
operator model adequate to the description of wave process in fluid loaded
elastic plate and constructs zero-range potentials for this operator.

Analysis of the structure of the operator for fluid loaded plate, being
two-component matrix one, permits the main hypothesis and basing on
it procedure of generalized models construction to be proclaimed, which
is done in Section 3.1. Other Sections of Chapter 3 deal with particular
generalized models of inhomogeneities in fluid loaded thin elastic plates.
Two-dimensional problem of diffraction by narrow crack is solved also in
asymptotic approximation by integral equations method and allows the
formulae written with the use of generalized model to be aposteriory justi-
fied. In three-dimensional case such justification is done for the generalized
model of short crack. Solutions of diffraction problems by a round hole and
by a narrow joint of two semi-infinite plates are considered in Chapter 3
with the use of generalized point models only. When examining auxil-
iary diffraction problems corresponding to isolated plates, Green’s function
method and method of Fourier transform is used to reduce the problems
to integral equations of the convolution on an interval. For short crack the
kernels of these equations are supersingular and for narrow joint these inte-
gral equations are solved in the class of nonintegrable functions. Theory of
such integral equations and methods of their regularization are presented
in the Appendix B.

In Chapter 4 the generalized models are analyzed from the point of
view of accuracy, limitations and possible generalizations. The structure
of generalized models and the reasons for the main hypothesis (of Sec-
tion 3.1) to be true and the scheme of models construction to be successful
are explained. An example of two-dimensional model of narrow crack gen-
eralization to the case of oblique incidence and to the analysis of edge waves
is presented. Chapter 4 discusses also unsolved problems that may require
further development of operator extensions theory.

We expect some mathematical background from the reader. When in-
troducing a mathematical fact or formula for the first time a short expla-



viii Preface

nation is included, and the index can help in finding that explanations in
the book.

Appearance and development of the generalized models in structural
mechanics based on operators extension theory began in late 80-s early 90-s
in the time when after graduating St.Petersburg (at that time Leningrad)
State University, I have caught excellent time for scientific research in the
Department of Mathematical and Computational Physics of that Univer-
sity. My contacts with on one hand specialists in the field of applica-
tion of mathematical physics to the theory of thin elastic plates such as
B.P.Belinskiy and D.P.Kouzov and on the other hand with specialists in
the theory of zero-range potentials, namely lectures of B.S.Pavlov and con-
tinuing discussions with P.B.Kurasov played invaluable role in the devel-
opment of Generalized models theory in mechanics of fluid loaded elastic
plates. Most of ideas were discussed at the seminars “On Wave Propaga-
tion” in St.Petersburg Branch of V.A.Steklov Mathematical Institute and
“On Acoustics” held now in the Institute for Problems of in Mechanical
Engineering.

I hope that dissemination of these ideas to a wider audience will be useful
and bring to the use of the Generalized models in practical applications.

Pushkin, November 2001, Ivan V. Andronov
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Chapter 1

Vibrations of Thin Elastic Plates
and Classical Point Models

1.1 Kirchhoff model for flexural waves

1.1.1 Fundamentals of elasticity

The elastic properties of an isotropic body are described either by Lame
coefficients A and p or by Young modulus £ and Poison’s ratio o. These
parameters are expressed via each other in the form

Eo F

e )

The state of an elastic body under deformation is characterized by strain
tensor e and stress tensor o

Cee Exy Cuz Ope Ogy OTZ
e = Cey Eyy Eyz , o= Opy Oyy OYZ
Eez Eyz Ezz Opy Oy, OZZ

The diagonal elements of strain tensor describe relative elongations in the
directions of z, y and z axes. The non-diagonal elements denote shear de-
formations in the corresponding planes. The volumetric strain or dilatation
O is given by the trace of strain tensor

O=Tre=cp; +eyy +¢:2.

Let the displacements in an elastic body be given by vector function
u(z,y,2) = (Us, Uy, u,), then the components of strain tensor can be ex-

1
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pressed as follows
- €5 = 5+ —4—-
01 0j 01

€ii =

Here and below in this section subscripts ¢ and j take the values z, y and
z and j does not coincide with 1.

The deformations € cause stresses to appear. The diagonal components
of stress tensor characterize normal stresses and non-diagonal components
give shear stresses. In an isotropic material the stress and strain tensors
are connected by Lame equations

o = A0 + 2ue;i, Oi5 = HE;. (11)

The potential energy of an elastic body which undergoes deformations
€ 1s given by the volume integral

1
P = 5///(61'@'0-@'17 +5yy0'yy + .20,

+ EoyOay + E220z: + Eyz O'yz) de dydz.

Suppose that deformations £ are caused by external forces f(z,y, z). Then
the energy becomes

P = [[[ G+t + vy didy (1.2

According to the minimum energy principal the displacements u(z, y, z)
in the elastic body are such that the total energy P; is minimal. That is
any problem of elasticity is equivalent to minimization of the functional
(1.2) [52]. The class of functions is restricted by boundary conditions that
should be satisfied on the surface of elastic body. The whole variety of
boundary conditions can not be discussed here. Note only that on the fixed
surface displacements are equal to zero and on the free surface stresses
Tnn, Ontys Ont, vanish (Here n stands for the normal to the surface and t;
and t5 are tangential directions).

1.1.2 Flexzural deformations of thin plates

The problems of elasticity allow simple solutions to be found only in a
small number of special geometries. In problems that contain small or
large parameters asymptotic methods can be used.
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Consider now a thin elastic layer and make asymptotic simplifications
before solving the problem, that is at the stage of problem formulation. Let
the Cartesian coordinates be chosen such that the midplane of the layer co-
incides with 2y plane and the faces be at z = £h/2. Assuming h small
compared to all other parameters of the problem allows the displacements,
strains and stresses to be decomposed into series by z. It can be checked
that potential energy splits into three parts corresponding to flexural, sym-
metric and shear deformations. The even terms in the series for v, and odd
terms in the series for u, and u, correspond to flexural deformations. Only
these terms are considered below. To derive the principal order model for
flexural waves it is sufficient only to keep terms up to quadratic in z in the
series for displacements, that is take

Here U, Uy, w and W are functions of x and y only. Satisfying the free
faces conditions at z = +h/2 allows all the functions to be expressed in
terms of w(x,y). For this substitute the above approximations for u into
Lame equations, this yields

h [ 0U aoU,
oz Nt (A AL (A2 W ) =0,
7 2=+h/2 2 ( Ox + Jy + A+ 20 )

O-I'Z

Jw wh? oW
ey (Uf + a_) o 0

Jw wh? oW
A Uy + ——=—=0
z=%h/2 ﬂ( vt 3y)+ 2 Oy
Neglecting the terms containing h? in the last two equations, yields
Jw Jw A

e N ——— N ——— R — Aw.
v dz’ Uy dy’ w A+ 2p v

Oyz

Here A denotes Laplace operator on the midplane of the layer. The appli-
cability condition for the above relations can be written as

h|Vw| < |w. (1.3)

Computing the nonzero elements of the stress tensor and calculating
integral by z allows the potential energy (1.2) to be written as the surface
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integral

(e L [
[ Pudsas

Here the Lame coefficients are expressed via Young modulus F and Poison’s
ratio o and the bending stiffness of the plate D is introduced as

Eh3

D=—"— .
12(1 - 0?)

The external force F' in (1.4) is the integral of f.(z,y,z) from (1.2) by
the thickness of the plate and the smaller order terms in the last integral
are neglected. One can accept that F(x,y) presents the difference of forces
applied to the faces of the plate.

The formula (1.4) expresses the energy of the plate in the form of the
functional of w(x,y). This allows the z coordinate to be excluded and
the problems of elasticity for thin plates to be reformulated in terms of
midplane displacements only.

It is convenient also to rewrite the formula (1.4) in another form. The

9%w O?w
= ((axay) a_ﬁ) o dy

can be rewritten as contour integral. Let the plate occupy the domain 2

integral

on the midplane zy, and let 9 be a smooth contour. Then integrating by

ow d {Odw

N

parts in [ yields

Here s is the arc-length measured from some fixed point along the contour
0£2. In the above contour integral one can integrate by parts. The smooth-
ness of the contour 9 yields absence of substitutes. Thus one finds the
representation

[ _/ ow d 3_w ow d 3_w J
N 3y ds \ O Oz ds 0y B
oQ
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The derivatives by x and y can be expressed in terms of derivatives by the
normal v and tangential s coordinates

Jw Ow ow Jw  Ow ow
— = — V. 4+ —s ———y—i——sy.

or v " 9s T Oy ov Y Os

Here (v, vy) are the coordinates of unit normal and (s, s,) are the coor-
dinates of unit tangential vector. Differentiation by s in the above integral
is applied both to the displacement w and to the unit vectors of local co-
ordinates. Introducing radius of curvature R(s) and using Frenet formulae

v 1, d§ 1,

ds R ds R

the integral I can be written as

1_1/ 3_w 3w O*w +32w L1 1 ow +13_w d
3 )\ s wds " T o VT R T R s 7)Y
a0l

__/ Ow +3w O*w 82_w _i@_w +16w P
2| \ar™ " s awds ' 92 " T Rov”" T R 0s 5
a0l

In the above formulae the components of unit vector s are expressed via
the components of the unit normal vector s, = v, s, = —v. Simplifying
the integrand and noting that v2 + 1/5 =1, yields

1 / owdw 1 (OwY dw w 1 [owY
== ———t == - = — == ds
2 Ov 9s? R\ Ov OJs dvds R \ Os
a0
Finally integrating in the last two terms by parts one gets
Pf_//< —Fw)dxdy

D(1 —o) 03w 1 0w d
+ 2 / Ovds? + R ds ’

o0
D<1—0>/3_w P 13_w J
+ 2 v 852+R31/ B

N

If the contour 92 is not smooth, then at every corner point the substitutes
F.w appear when integration by parts is performed in the above derivations.
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Here F, denotes “corner” forces

(1.5)

2
Fc:}ch:Du—U)[aw 13w]

ovds R Os

and by square brackets the jump of the enclosed expression is denoted.

1.1.3 Differential operator and boundary conditions

In real problems plates have edges, can be supported by stiffeners or joint
to each other. In the problems of elasticity all these cases are described by
some boundary conditions. To reformulate these conditions as boundary
conditions for the displacement w(x,y) one needs to know expressions for
the angle of rotation of the plate, for bending momentum and force. It may
be also convenient to formulate the problems as boundary value problems
for a differential operator. The quadratic form P defines this operator.
Applying Green’s formula

//(VAU —UAV)d2 = /m (vg—g - U%—Z) ds. (1.6)

in the double integral of Py one finds that displacements w(x, y) satisfy the
equilibrium equation

DA*w=TF, (x,y)€Q

and the boundary conditions should be such that the variation of the con-
tour integral over J€2 vanishes, that is

Ow
6/(w}Fw—|—8—VMw)ds_0. (1.7)
a0
Here the operators If and M on the contour 92 are introduced by the
formulae
0 o3 d 1 92
F=- <37A+ (1=0) <—au352 - d—ﬁa—)) ’

M:D<A—(1_U)<%+%a@_y>). (18)

To find the physics meaning of the boundary conditions one needs to
identify displacement, angle of rotation, bending momentum and force in
the integral (1.7). Generally speaking the formulae of plate theory do not
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allow continuation up to the edge, support or other inhomogeneity in the
plate. Indeed the formulae of the previous section are derived in the suppo-
sition of infinite plate in x and y directions. If the layer is finite or if some
body is attached to it, corner points appear. Near such corners smoothness
of displacements is violated and the applicability condition (1.3) becomes
not valid in a vicinity of order O(h). Nevertheless, let the formulae of
plate theory be extended up to the edge or line of support of the plate®.
Then w(x,y) stands for the displacement and dw/dv specifies the angle of
rotation of plate in the plane vz. Knowing that derivative of energy by
displacement gives force and derivative of energy by angle of rotation gives
bending momentum, one concludes that expressions Fw and Mw with the
operators (1.8) express force and bending momentum at the edge of the
plate.

Consider here some possible types of boundary conditions on the contour
0Q. 1If the edge of the plate is clamped, its displacements and angles of
rotation are equal to zero

Ow
w =10, 3 = 0.
On the contrary free edge is described by conditions

Fw =0, Mw=0.

1.1.4 Flexural waves

The equations of free vibrations of thin elastic plate can be obtained from
the equilibrium equation if the product of acceleration by surface mass is
subtracted from the force F

9w
2 _
DA w+ QhW =Fl(z,y,t).
Here ¢ is the density of the plate material.
In the case of harmonic vibrations all the quantities are supposed depen-

dent on time by the factor exp(—iwt) and due to phase shifts the function

*In some geometries this causes nonphysical results. For example near tips of cracks,
sharp supports and inclusions stresses computed by plate theory have singularities. In
reality such singularities are evidently not presented, but a kind of afterwards regular-
ization allows stress intensity coefficients introduced as coefficients of singular terms,
to characterize the probability of crack growth. See details in section 3.3.1.
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w becomes complex!. Introducing the wave number of flexural waves kg in
an isolated plate by the formula
w?oh

D bl

.
the equation for harmonic flexural waves can be written as
2 4 1
A*w — kqw = EF(x,y). (1.9)

The formula for the wavenumber ky shows that velocity c; of flexural
waves depends on frequency

DA\ )
(D /2
e <9h) c

Let F' = 0. Multiplying the equation (1.9) by complex conjugatet of w
and integrating over the plate yields

Duw 2 9w |° Awl|8%w
T// (|Aw| +2(1-0) (‘31‘33/ _‘3962 Oy? ))dxdy
9)
:—k4/ |w|? da dy

This formula expresses the well known equality of average potential and av-
erage kinetic energy of a vibrating body. Indeed, expressing displacements
as the real part of w

Rew = |w]| cos(arg w — iwt)

and substituting into (1.4) causes w to be replaced by absolute values |w|
and the multiplier cos?(arg w —iwt) to appear in the integrand. Calculating
the average by time ¢ over the period T'= 1/w transforms this multiplier
to w/2. Thus the left-hand side of the above identity gives the average
potential energy of vibrating plate and its right-hand side gives average
kinetic energy.

tReal part is assumed in final formulae for physical characteristics of the wave process.

{Complex conjugation is denoted by overline.
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The total energy is the sum of potential energy P; given by (1.4) and
kinetic energy

1
FE = Pf + §gh(Rew)2

Variation of the total energy in domain € is

B= Dé/ (Re (Aw)Re (Aw) + (1 - o) (236 (aa:—éz,) fe (aa:—gy)

0w 0% 0w 0%
e (w) fe (W) e (W) fte (w))) e dy
-I-Qh//RewRed}dxdy.

Q

Here dot denotes derivative by time. Acceleration w can be expressed with
the help of dynamics equation, after which integrating by parts yields

E= / (Re (Fw) Rew 4 Re (Mw) Re (g—w)) ds.

v

Taking average by the period of oscillations one finds

1/w
w/E'dtzilm/ Fww—i—Mwa—w ds.
2 ov
0 a0

The integrand in the right-hand side of the above formula is the average
energy flur density through the contour.

1.2 Fluid loaded plates

In the first order approximation for sufficiently rigid plates the influence
of external media can be neglected. However more accurate considerations
require the full system of plate and surrounding fluid to be studied. Dif-
ferently from vibrations of elastic bodies, wave processes in fluids can be
more conveniently described in terms of pressure, but not displacements.
Under the assumption of the time factor exp(—iwt) same as in the previous
section, the acoustic pressure satisfies Helmholtz equation

AU(z,y,2) + k*U(x,y,2) = 0. (1.10)
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Here the wave number k = w/¢, and ¢, is the acoustic waves velocity in
the fluid.

Acoustic pressure U causes external forces to be applied to the faces of
the plate. If acoustic media is presented only on one side of the plate (let
at z > 0), this results in the right-hand side in the equation (1.9)

1
Aw — kjw = —EU(x,y, 0). (1.11)

Note that due to small thickness of the plate U(z,y, h/2) is replaced in
(1.11) by U(z,y,0). Thus geometrically plate is considered infinitely thin
and 1ts thickness is presented in the equations only via bending stiffness
D and wave number ky. Evidently such simplification is possible if the
wavelength in the acoustic media is small compared to A. That 1s besides
the condition (1.3) the other applicability condition can be written as

kh < 1. (1.12)

The plate displacements w(z, y) and displacements in fluid in a vicinity
of the plate coincide. This is described by adhesion condition

1 9U(x,y,0)
oow? 0z ’

w(z,y) =

Here gg 1s the density of fluid.
It is also convenient to rewrite the equations (1.11) and adhession condi-
tion as the generalized impedance boundary condition for acoustic pressure

AU (x,y,0)
0z

Here N = w?9oD~!. The boundary condition (1.13) allows the surface
wave to propagate along the plate. Taking

U= Aexp(Fice — k2 — k?z2),

with an arbitrary amplitude A, one gets the dispersion equation for the

(A — k) + N U(z,y,0)=0. (1.13)

wave number &
(" = k3) VK2 — k2 — N =0. (1.14)

This dispersion equation can be reduced to the 5-th order polynomial equa-

2

tion with respect to k. Two real solutions kg = —k5 = k correspond to

surface waves. Note that & > max(k, ko).
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10Hz 100Hz 1kHz 10kHz f

Fig. 1.1 Wave numbers of flexural waves in fluid loaded plates.

The characteristic dependence of the positive solution & of the equation
(1.14) as a function of frequency is illustrated on Fig. 1.1. The ratio x/kg
is plotted in logarithmic scale. Curve 1 corresponds to the steel plate of
h = lcm bounding water half-space. Curve 2 corresponds to Imm steel
plate being in one-side contact with air. Bullet on curve 1 characterizes
the applicability of the model, it marks the frequency for which kh = 1.
For the curve 2 this frequency exceeds the shown range.

In the low frequency approximation the solutions of the dispersion equa-
tion are (see Appendix A)

Kj A N5 exp (z%j) j=0,1,...9. (1.15)
That is the wavenumber & appears proportional to w?/5. Line 1’ on Fig. 1.1
presents the asymptotics (1.15). Same asymptotics for the case of plate in
air is valid only for very low frequencies and is not shown.

An important characteristics of the wave process in a fluid loaded plate is
the coincidence frequency, that is such frequency f. for which ¢; = ¢,. Lines
1" and 2" present the wavenumbers k in water and in air correspondingly.
Their crossing points with the horizontal line mark coincidence frequencies.
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Above coincidence frequency the wave number k approaches k and the
surface wave behaves in air as a “piston” wave. For water loaded plates
coincidence frequency usually lies outside the frequency range where plate
theory is applicable.

1.3 Scattering problems and general properties of solutions

1.3.1 Problem formulation

Consider problems of scattering in fluid loaded thin elastic plates. Such
problems are formulated as boundary value problems for the equation (1.10)
with the generalized impedance boundary condition (1.13) on the plate and
some type of boundary and contact conditions® on the obstacle. Two types
of obstacles are considered. The domain €2 can be bounded. In this case
the scattering problem is three-dimensional. The other type of obstacles is
infinite cylindrical obstacle £ x R with a bounded cross-section 2. If the
incident field does not depend on y coordinate, the scattering problem is
reduced to two-dimensional boundary value problem.

The domains for the equation (1.10) and for the operator impedance in
(1.13) are unbounded, therefore radiation conditions should be formulated
at infinity. Physically these conditions mean that except for the incident
wave all other components of the elasto-acoustic field can carry energy only
to infinity. Two types of waves are possible at infinity. These are spatial
waves in fluid and surface waves appearing due to joint oscillations of plate
and fluid.  Thus the radiation condition can be written in the form of
asymptotics [36] (d = 2,3 is the dimension of the problem)

a . 1-d
(5—2147)U_0(r ), r— 400, > ¥ >0

(%—iﬁ)wzo(p%), p — +oo

Here r = /2% + y* + 22 is the radius in spherical coordinate system and
p = v/x?+y? is its projection on the plate. The azimuthal angle ¥ is
introduced such that p/r = cosd. The first asymptotics in (1.16) is the
usual radiation condition for acoustic waves. In the presence of infinite

(1.16)

§Contact conditions were first introduced by Krasilnikov in [47].
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plate which allows surface waves to propagate this asymptotics becomes
nonuniform and is valid at some distance from the plate. The second
asymptotics is the radiation condition for flexural waves in fluid loaded
plate. The wavenumber of these waves is defined by the dispersion equation
(1.14).

The obstacle Q and the boundary conditions on it can be of any type.
It can be a rigid or elastic body joint to the plate or be separated from it,
or it can be a set of holes in the plate. The only important restriction is
that the boundary conditions on 9€2 should be such that

1 ou
N

Here n is the internal normal to the surface of the scatterer, Qg is the
domain where the obstacle is joint to the plate (in the case of holes, Qg is
union of all the holes), 9 is the contour of g on the plate and v is the
internal normal to this contour, overline stands for complex conjugation.
Summation in (1.17) is carried on all corner points of 9y and in the case
of nonsmooth 09 the integral is assumed as a limit from the exterior of €
(see Meixner conditions below).

The inequality (1.17) sets restrictions on the boundary conditions satis-
fied on 0€2 and 0€y. If the boundaries have breaks or curves where bound-
ary conditions change, in all such points the Meizner conditions should be
specified [36]. That is, the integration is carried along spherical or cylin-
drical surfaces of small radius ¢ surrounding singularities of the boundary
and then the limit for ¢ — 0 is taken. The condition saying that the above
limit is equal to zero is equivalent to the boundedness of the energy concen-
trated in any domain near the singular point. In particular for the acoustic
pressure one assumes that

VU =0 (s730) >0, (1.18)
For flexural deformations the Meixner condition says

Aw=0 ("), §>0. (1.19)
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We do not consider examples of correct conditions on the scatterer,
note only that Neumann or Dirichlet boundary conditions for U cause the
left-hand side of inequality (1.17) to be equal to zero.

From the point of view of physics Fq expresses the energy absorbed
by the obstacle €. The first term in (1.17) gives the average energy flux
carried by the acoustic field through the surface 90 and the other terms
give energy fluxes carried by flexural deformations (compare with the last
formula in section 1.1.4).

1.3.2 Green’s function of unperturbed problem

Green’s function of unperturbed (without obstacle) problem is the universal
tool that allows the scattering problem to be reduced to integral equations
on the obstacle. Green’s function represents the field of a point source. In
the system plate—fluid two types of sources are possible, namely acoustic
point source represented by Dirac’s delta-function in the right-hand side of
Helmholtz equation

AU + kU = —8(x — 20)d(y — ¥0)d (2 — 20),
and the other source is a concentrated force applied to the plate

AU (x,y,0)

2 g4
R

+ NU(z,y,0) = %5(1‘ — 20)d(y — yo).
Let the corresponding Green’s functions be distinguished by the number
of their arguments (r is three-dimensional vector and p is two-dimensional
vector in the plane of the plate), G(r,rg) stands for the field of acoustic
source and G(r, py) denotes the field of the point force, and let g(p,ry) and
g(p, py) be the corresponding flexural displacements in the plate.

Both Green’s functions satisfy the radiation conditions (1.16) at infinity.

The Green’s functions can be constructed explicitly in the form of
Fourier integrals. One can check the reciprocity principle and express all
the functions via G(z,y, z; %o, Yo, 20) by the formulae

_ 1 0G(r,py,0) 1 od
G(raPO) - QOWZ 820 ’ 9= QOWZ 62 .

The last formulais valid both in the case of acoustic and in the case flexural
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sources. Applying Fourier transform by  and y one finds

G(r,ro) :8% // exp (l/\(l‘ —xo) +ip(y — 3/0))

LA ) + 2N6—W(Z+ZD)) dX\dp
L(A, 1) ¥

(1.20)
« (e—vlz—%l n
For surface source this yields

G(r, py) = —ﬁ // exp (z/\(x —xg) +ip(y — o) — 'yz) Lci//\\c,lft) . (1.21)

Here
¥y = VA4 p? — k2 L(/\,u):((/\z—I—uz)z—kg)'y—N

The integration in the formulae (1.20) and (1.21) is carried along real axes
of A and p avoiding singularities on positive semi-axes from below and on
negative semi-axes from above. Such paths of integration accord to the
radiation conditions (1.16), which is justified below.

Consider the asymptotics of the Green’s functions at large distances
from the source. For this use saddle point method [33]. This method is
applied to integrals of the form

/ eipq)(s)f(s)ds,
c

where p is the large parameter and ® and f are analytic functions of s. The
path of integration C' can be arbitrarily deformed into C’. One can achieve
that Re ® = conts on C’. Then exponential factor does not oscillate. Then
the main contribution gives the point on €’ where Im ® is minimal. This
is the saddle point defined by the equation

d®(s)
ds

=0.

Decomposing functions ®(s) and f(s) into Taylor series near the saddle
point and computing integral of the principal order terms yields the saddle
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point asymptotics

Here the phase function @, its second order derivative ®” and function f
in the right-hand side are calculated in the saddle point.

Analogously one can derive the saddle point asymptotics in the case of
double integral

ip®P(s1,52)
// f(s1,82)ds1dsa ~ \/erxp(zpq)—l— Lmsgn (' )) (1.23)

Again functions ® and f and the matrix ®" of second order derivatives

(I)// . 62@/68% 62@/881682
- 82@/881882 82@/88%

are computed in the saddle point which is defined by the system of equations

6@(81,82) —0 8@(81, 82) -0

881 ’ 882 -
By |®"| the determinant of the matrix ®" is denoted and sgn stands for
the sign of matrix, which is equal to the difference of the number of positive
and the number of negative eigenvalues.

The contribution of the two-dimensional saddle point (1.23) gives the
outgoing spherical wave

2
G~ kﬂ' zkr 277/2\1! (ﬁ,go), r — +oo.
r

The residue in the pole corresponding to A? 4+ p? = «? gives the surface

G ~ K—Zelnp_lﬂ/41/)g(g0)6_\/n —k z’ p — +o0.

T Asymptotics is similar to the stationary phase asymptotics, though saddle point method

wave

is more general and allows contributions of poles of f(s) to be calculated. When the
path C is deformed to the steepest descent contour C’ some poles of f(s) may be
crossed, then corresponding residues appear in the right-hand side of formula (1.22).
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The above asymptotic decompositions show that the field G satisfies the
radiation conditions (1.16). The far fields amplitudes in the above asymp-
totics are given by explicit expressions

ik
U, (¥, ¢) = 81? exp(—ikag cos Usin g — ikyg cos ¥ cos )

(1.24)
X {exp(—ikzo sin ) + R(V) exp(ikzo sin ) },

Yy(p) = L exp (—ifw:o sin ¢ — ikyo cosp — /K% — k’zzo) X

T 97k
N
X )
bt — 4k2k2 — ki
where
R(¥) = %, L(9) = iksind(k*cos* ¥ — kj) + N.  (1.25)

is the reflection coefficient for a plane wave incident on the plate at angle
Y. One can notice that functions U, (¥, ¢) and ¢4(y) are connected by the
formula

K
g(p) = —2miz Res Wy(d, o),

U* =cos! (g) =1iln (g—l— (%)2— 1) :

It is convenient to change the variables A,y in (1.20) to «, 8 by the
formulae A = kcosasin 3, 4 = kcosacos 3, so that vy = —ik sin «. Then
the integral (1.20) can be reduced to

(1.26)

G(r,rg) = —// exp(ik(a: cos asin 8 + ycos acos 3 + zsin a))
x U, (a, B;10) cos ada df.

(1.27)

This formula is valid for z > zy and allows two variants of the integration
limits: 1) integration by « is carried along the modified Sommerfeld contour
(m—1i00, +ico) with point ¥ = 7 —9* avoided from the left and point ¥ = ¢*
avoided from the right (see Fig. 1.2), the integration by 3 takes place on the
interval [0, 7]; 2) integration by « is carried along the half of the modified
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Im®?

Red

Fig. 1.2 Modified Sommerfeld contour

Sommerfeld contour (7/2,4+ico) with the point ¥ = ¥* avoided from the
right and integration by 3 is carried on the whole period [0, 27].

In the case of two-dimensional scattering problems the above formulae
simplify. Only one Fourier transform is needed for the Green’s function

1 . L(A)+ 2N dA
Glrow) =4 [ (e—vlz—zowi(g&) e—v<z+zo>)7, (1.28)

where L(A) = L(A,0). The far field asymptotics is derived by saddle point
method formula (1.22). At large distances an outgoing cylindrical wave
(the polar co-ordinates are introduced as & = rcos ¥, z = rsin¥)

o
GN\/k—:elkr_”M\I!g(ﬁ), r— 400 (1.29)

and two surface waves

e _JTITET
G~1/);teimxe VRT=k?z r — +oo

are formed. The amplitude of the cylindrical wave is given by the expression

U () = —— —tkzgcos? —ikzgsind R(9 tkzgsin ¢
9( ) A € (6 + ( )6 ) )
the amplitudes of the surface waves can be found from the formula similar

to (1.26) which remains valid except the multiplier x/k should be dropped
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out (This formula was first derived in [19])

+K
+ _ . + _ -1
Yy = —2mi ﬂfzigi U, (v), 9% = cos (7) . (1.30)

For the case of a surface source the Green’s function G(z, z; #) can be
found as the derivative of (1.28) by zg

1 9G(#,z;20,0)

G(z,z;m0) = 0 e
X o s
__ N 22,y 4
==5-p | P (z/\(x zq) A? —k z) 0

It has similar as G(z, z; 2g, zp) asymptotics at large distances. The far field
amplitude is given by the following formula

1 ksind
v, () = —
al?) 2nD L(J)

—ikxgcos?d

The formula (1.27) reduces in two dimensions to
Gz, z;20) = — / exp (zk’(x cos o + zsin a)) U, (a; zp)da

with integration by « carried along the modified Sommerfeld contour shown
on Fig. 1.2.

1.3.3 Integral representation

The introduced Green’s functions allow the integral representation for the
solution of the scattering problem to be derived. Let the incident field be
a plane spatial wave

U9 = Aexp(ike cos ¥ — ikzsin dg). (1.32)

Here —1; is the angle of incidence and A is arbitrary constant amplitude.
It is natural to represent the solution of the scattering problem in the form

U=U%9 4yt ppyl) =gl L),

The reflected field U is the plane wave reflected from the plate in the
absence of the scatterer

UT) = A R(0o) exp(ika cos Uy 4 ikz sin ),
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where reflection coefficient R(g) is given in (1.25). The sum of U and
U is called the geometrical part of the field U/(9). It satisfies all the con-
ditions of the boundary value problem except the boundary (and contact)
conditions on the obstacle. The boundary value problem for the scattered
field U() remains the same as for the total field except the boundary and
contact conditions on the scatterer become inhomogeneous.

Introduce a smooth surface ¥ supported by a smooth contour I' on
the plate, such that the scatterer €2 be entirely inside ¥. In the domain
bounded by the plate, surface X and the semi-sphere Sg of a large radius R
one considers the Green’s formula (1.6) for functions G(r, ro) and U®)(r).
The volume integral gives —U(s)(ro) and the surface integral is split into
three parts: integral over X, integral over the plate and integral over the
semi-sphere Sr. The integral over the semi-sphere Sg of large radius R
vanishes as R — 400 which is due to the radiation condition (1.16) for the
solution U(*) and the asymptotics of the Green’s function. In the integral
over the plate the boundary conditions (1.13) can be used. This yields

(s)
b
—oow?D // (w(s) (A2 — ké) g—g (A2 — ké) w(s)) dz dy

Integrating by parts in the last integral in a similar way as in the Sec-
tion 1.1.2 allows this integral to be reduced to a contour integralll. Due
to the second radiation condition in (1.16) and asymptotics of the Green
function g(x,y;ro) the integral over the circle of large radius R tends to
zero with R — +oo. Finally the required integral representation takes the

form
U () = // (U(r) aG(@‘E’P) - 8g7(lr)G(ro,r)) dx
o [ (wley)Bylroiey) - Fuleglgtroing)  (133)
+WM§(I‘Q 2, y) — Mw(z,y) W) ds.

The scattered field in the right-hand side of (1.33) can be replaced by the

ISee also [28] where the analog of Green’s formula (1.6) is derived for an elastic plate.
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total field. To justify this it is sufficient to show that the right-hand side
of (1.33) with the geometrical part U9 and w9 substituted instead of U
and w gives zero. This is due to the Green’s formula (1.6) for G(r,ro) and
U@ (xr) inside .

The identity (1.33) allows the field U to be computed in any point
outside the surface X if the functions U, dU/8n, are known on ¥ and w,
0¢/0v, Mw and Fw are known on I'. In particular letting » — +oo yields
asymptotics for the field U(*)

2 . .
UG~ k—ﬂ- elk’“_”/z\ll(ﬁ,go), r— too, 9¥>0,
r
(1.34)
(s) 27 ikp—im/4 —VrZ k22
0 mJ2T girominlg () oo
Kp

The far field amplitudes in these asymptotics can be expressed via the far
field amplitude of point source by the formula

\If(ﬁ,go):—// (U(ro)ﬁ\ﬁg(g;f;ro) B 3%21(;0)\1,9(79’%1“09 g5

- / (w(l‘, YV, 052, y) — Fw(z, y)¥y (4, 05 2, y) (1.35)

JQuley) MW, (9, ¢; 2, y) — Muw(z, y) AHULAR) y))d&

v Jv
In the case of two-dimensional problem one integral disappears in the
formulae (1.33) and (1.35). In particular integral over T' reduces to substi-
tutions in two points on the plate and expressions for the force and bending
momentum simplify to
d3 d?
F_—D@, M_D@. (1.36)
The formula (1.35) allows the analyticity of the far field amplitudes to
be established. As the integration in (1.35) is performed in the bounded
domain the analytic properties of the far field amplitude are inherited from
functions ¥4 (J, ¢) and 14(¢). That is the function ¥(«}) is a meromorphic
function of ¢ and has poles in the points corresponding to the solutions of
the dispersion equation (1.14). The residue in the pole at ¥ = cos™!(k/k)
gives the far field amplitude of the surface wave and the formula (1.26) is
valid for the field U.
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Using the formula (1.27) for the Green’s functions G and g and taking
into account the relation (1.35) one can check the validity of similar formula

for the field U

Ur) = —//exp(ik(ajcosﬁsingp—I—ycosﬁcosgo—l—zsinﬂ))
X (0, ) cos ¥di de.

(1.37)

The paths of integration here are the same as in (1.27).

The formula (1.37) is valid at some distance from the plate z > z* =
maxy z. Under this condition the integral by a exponentially converges in
the nonshaded in Fig. 1.2 semi-strips. For the derivation of similar formula
in two dimensions see [17].

The integral representation (1.33) can be written for the case when ¥
coincides with the surface of the obstacle. In this case part of functions in
the right-hand side can be taken from the boundary conditions and integral
equations on 92 and 9 can be derived for the other unknowns. Due
to possible corner points of 9Qq additional terms gow? > (wF.g — glF. w)
should be added to the right-hand side. Here F. is the operator from
(1.5). Representation (1.33) with ¥ = 9 is used in this book when solving
particular problems of scattering.

1.3.4 Optical theorem

For any obstacle Q the effective cross-section characterizes the portion of
scattered energy. It is known [36] that the total effective cross-section
on some compact obstacle is proportional to the real part of the scattering
amplitude for the angle equal to zero. This identity follows from the unitary
property of the scattering operator and is called “optical theorem”. In the
presence of infinite plate the optical theorem holds, but the expressions for
the effective cross-section are different.

We derive here optical theorem in presence of infinite elastic plate being
in one-side contact to fluid. Two cases of incident fields can be considered.
The incident spatial plane wave (1.32) and the incident surface plane wave

) = Apina—VET=RZ: (1.38)

Multiply the Helmholtz equation (1.10) by the complex conjugate solu-
tion U and integrate over the domain bounded by the semi-sphere Sk of
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large radius, by the plate and by the surface of the obstacle 0Q2. Apply
then the Green’s formula and take imaginary part

QQOwIm (// _UdS)

Here the multiplier 1/(2gow) is introduced so that the left-hand side and
expressions below have the meaning of the average energy fluxes carried

through the surface.
All the function on the plate can be expressed via displacements with
the help of boundary conditions

Im ! / 6—UUdS—|——//wA2wdxdy =0.
200w on

Sr+o0 R2\Q

Integrating by parts in the last integral similarly to section 1.1.2 yields

| Sras-5 | (wmﬂ_wm)ds
QQow Jv

Sr+0Q CR+6QD
— Z wF.w | =0

Using (1.17) this equality can be rewritten as

I, (U, U) 4 My (w, w) + Eq = 0,

where
7T/2 2T 8P
m(P,Q)= /dﬁ/dgoﬁ—acosﬁ ,
r
0 0

27
(o3} — 81)_
H2(p,q) = —51111 R/ (qu + a—qu) de
0

The above identity expresses the energy conservation law. The first term is
the energy carried through the semi-sphere Sg by the field U in fluid and
the second term is the elastic energy carried through the circumference Cr
by flexural deformations w. For noncoincident arguments II; give energies
of interaction of two fields.
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Representing the total field as the sum of geometrical part U/(9) and
scattered field U() yields

(U, U) =L, (U9 UD) + 1,090y + (U@ vy + 11, (0 u)

and similar formula for IT,. The geometrical part of the field satisfies the
boundary value problem without an obstacle. Therefore,

Hl(U(g), U(g)) + Hz(w(g),w(g)) —0.

The energy of interaction can be calculated by the saddle point method
which gives exact result for R — oco. Consider the integral Hl(U(g), U(s)).
According to (1.34) the scattered field at large distances splits into the sum
of spherical wave Ugp, and cylindrical surface wave Ugyrr.  Let the incident
field be a plane wave (1.32). The geometrical part in this case is the sum
of incident and reflected plane waves. Rewriting these waves in spherical
coordinates and analysing the phase functions one finds out that saddle
point exists only for the integral describing interaction of reflected wave
with the spherical wave. The phase function in that integral is

® = —1 + cos ¥ cos g sin ¢ + sin ¥ sin dg

and the saddle point is at ¥ = ¥y, ¢ = 7/2.
Applying the formula (1.23) to the integrals TI; and letting R — 400
yields

L (UD Upn) = 0, T (UD Uguer) = 0, T (U, Ugiet) = 0

and

L (U0, Ugp) — 27 e (AR(%)\IJ(% 0)).
)y 8P QOWk )

Similar expressions can be found for the terms in Hl(U(s), U(g)). Thus the
total energy taken from the reflected plane wave can be written as
E=—IL/(UW US) -1 (U®),09)
Ar?

= e (A R(ﬁo)m) .

In the case of incident surface wave (1.38) the nonzero terms are only
Hl(U(i), Usare) and Ty (Usurt, U(i)). It is more convenient to use cylindri-
cal coordinates in the corresponding integrals and compute integrals by z
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explicitly and integrals by ¢ by the saddle point method (1.22). One finds

7
200wV KZ — k2

Consider now the terms II5. One can check that in the limit R — 400 the
nonvanishing term is possible only in the case when surface incident wave
(1.38) interacts with the surface scattered field. Applying saddle point
formula (1.22) one finds

I (U, Uget) — Re (AW) .

. 2 (g2 = k2 .
s (w®, Ugrt) — %Re (A¢(0)) .

Combining the above two expressions and taking into account the disper-
sion equation (1.14) one gets the expression for the energy taken from the
incident surface wave in the form

bt — 4%k — kg —
o ke (A¢(0)) :

The scattered field carries energy flux to infinity

F =

ES =1L (U, U®) + y(w®) | w).

Consider the first term. It can be represented as the sum of contributions
T4 (Usph, Uspn ) and Iy (Usurt, Usure ). The interaction of surface and spherical
waves takes no place. This fact is similar to the absence of interaction
between spatial components of U9 and the surface scattered field and
can be established with the help of saddle point method. Substituting the
asymptotics (1.34) one finds

272

H S 3 S
1(Uph Uph) - QOWk

/ | W (D, )| cos ¥ di) dp.

The surface wave contribution can be easier computed in cylindrical coor-
dinates

T

% F——
200wV K2 — k2

Consider now the second term in the formula for the scattered energy

Hl(Usurfa Usurf) / |1/)(§0)|2d§0

E?. It can be checked that the contribution of spherical wave vanishes as
R — 400, In My (wWsurs, Wsure) only derivatives by p in the operators IF and
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M give nonvanishing contributions. One finds

(2= &) [ 10te)dp.

Combining the three above expressions and taking into account that x is

ImK?

HZ (wsurfa wsurf) — QOWN

the solution of the dispersion equation (1.14) yields

1 472
B = (%//W(ﬁ,gpﬂzcosﬁdﬁ de

200w
T
2 ont = 4k k) [ loteIlds)

In terms of introduced above average energy fluxes the energy conser-
vation law reads

E = Eq+ E*. (1.39)

That is, part of the energy taken from the geometrical part of the field is
absorbed by the obstacle and the other part is scattered. In the case of
nonabsorbing obstacle Eq = 0 and the energy balance takes the form of
optical theorem. We repeat here formulae for the energy E. In the case of
spatial incident plane wave the energy E is taken from the reflected wave

472

QoW

F=—

Re (A R(ﬁo)m) .

For surface incident wave the energy is taken from the passed wave

5t — 4k%k% — ké —
o ke (A¢(0)) :

An important characteristics of the scattering obstacle is the effective

F =

cross-section ¥ defined as the ratio of scattered energy to the density of
energy in the incident field. Calculate the density of energy flux carried by
the incident wave. For the case of spatial plane incident wave one finds

_ kAP
T 200w

Bi=_—Im (WVU“)) (1.40)

200w
Surface wave carries energy by acoustic pressure and by flexural deforma-

tions £ = £’ + E”. The flux in fluid is given by

E/ — K:|A|2
4ogw/ k% — k2
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and the energy flux in the plate is

S — TP ) 2
E// — _glm (Fw(l)w(l) _|_ Mw(l) 6;}—) — & K?S (sz _ kZ) )

x Qow

Combining the above expressions and taking into account that vk? — k? =
N/(x* — kg) which follows from (1.14) yields finally the density of energy
flux carried by the incident surface wave

i KlA[? 4 27,2 4
R (5/.; — 4k%k —ko). (1.41)

For the spatial incident plane wave the effective cross-section is

2T 7T/2 9
R 472 // T4, )
B k2 A

0 0

2m
n T (5/@4 — 4k k? — ké) / ¥(p)
Nk A

cos ¥ di dy

2
dy.

0

This formula takes into account two channels of scattering, one presented
by an outgoing spherical acoustic wave contributes to the first term, and
the other channel of surface wave process contributes to the second term.

In terms of effective cross-sections optical theorem can be written in the
form of two equalities: for spatial incident wave

s U (W, 0)
¥ = ——5Re (R(ﬂo)T)

i ] [y

™ (5k* — 4K7k? — k) 7‘ e

cos ¥ di dy

2
de

Nk A

0
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and for surface incident wave

5— 2p. (@)
K A
2T 7T/2

_ 8Nr // V(Y )
a kk(br* — 4k2k? — kE) /) A
27
21 [ |¥(p)
+ K /‘ A
0

Optical theorem for two-dimensional problems can be derived analo-

2
cos ¥ di dy

2
dy.

gously (see details in [27]). In the case of spatial incident wave it reads

e (o T

S=—"TRe (R(ﬁo)T)
_ 27 a W () K (5% — 4k2k2 — k2) (| ot 2 (1.42)
=%/ . |

2Nk
For scattering by a compact obstacle in isolated plate optical theorem

2 2

P~

dv —
+ + ‘

is presented in [23]. It reads

27
2 2
Yo = m/W(@” de
olAf* (1.43)

= —he (47 (e0)).

Other variants of optical theorem dealing with diffraction by thin elastic
plates can be found in [6], [23], [25], [48]. We present in Section 1.5.2 the
optical theorem for an isolated plate with infinite crack in it.

Identities (1.39) and (1.42) allow additional independent control of nu-
merical and analytical results to be performed.

1.3.5 Uniqueness of the solution

The question of uniqueness is studied for the case of nonabsorbing material
of the plate and nonabsorbing fluid, that is Imk = 0, Imkg = 0 and
Im N = 0. If two different solutions (U, wy) and (Us, ws) of the problem of
scattering on an obstacle in presence of infinite elastic plate exist, then their
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difference (U, w) = (Uy — Ua, w1 — ws) solves the homogeneous problem,
1.e. without any incident field. First, it can be shown that the far field
amplitudes of spatial and surface waves in the solution (U, w) are equal to
zero. Indeed, consider the expression (1.39). In this expression F = 0 as
there is no incident wave and Eg > 0 according to the supposition (1.17)
of correct conditions on the scatterer. So, E® < 0, that is

4 9 2T 7T/2
%//w(ﬁ,go)ﬁsmﬁdﬁd@
DD
D 2w
+m 2(5.%4—4.%2]{72—ké)/|1/)(g0)|2dg0§0.
Qow

0

Noting that & > max(k, ko) (see dispersion equation (1.14) for ) allows
to conclude that ¥(J, ) =0, ¥ € [0,7/2), ¢ € [0,27] and ¢(p) =0, ¢ €
[0,27]. Analyticity of the far field amplitude yields ¥(J,¢) = 0 for all
complex arguments ¥ and ¢. Then from (1.37) the function U is concluded
identically zero at z > z*. To the domain z < z* 1t is continued by zero
as the solution of the Helmholtz equation. That is solutions U; and U,
coincide. Due to adhession condition the corresponding displacements of
the plate coincide too.

The above can be formulated as the uniqueness theorem:

Theorem 1  The problem (1.10), (1.11) with adhession condition, radi-
ation conditions (1.16) and any boundary and contact conditions on the
obstacle that satisfy the inequality (1.17) has unique solution.

Consider now the case of isolated plate. The problem of flexural wave
scattering is the boundary value problem for the bi-harmonic equation (1.9),
radiation condition given by the second formula in (1.16) and any pair of
boundary conditions on 92y such that the inequality

Eq = glm / ((Fw) T+ (Mw) g—lj) ds+ > Fw| >0 (1.44)

holds. Note that inequality (1.44) coincides with (1.17) for U = 0.

By the similar procedure it can be shown that the difference of two
solutions w = w; — w2 has the far field amplitude ¢(¢) = 0. In the
presence of fluid the fact that the far field amplitude is identically zero



30 Vibrations of Thin Elastic Plates and Classical Point Models

yields due to the Sommerfeld formula (1.37) the solution itself equal to
zero. This 1s the property of the second order differential operator. For the
bi-harmonic operator Sommerfeld formula is not true and absence of the
far field amplitude does not yield w = 0. Nevertheless, to benefit from the
Sommerfeld formula let the function {(z, y) be introduced as

(o) = (& =k Ju(e,v).

The Green’s function for the isolated plate can be expressed in terms of
Bessel functions of the third kind

? .
9o(p-00) = gy (87 (ol = pol) = HY ikl = o)) . (145

Analogously to section 1.3.3 the solution of the problem for isolated plate
can be expressed in the form of convolution with the Green’s function

w=— / wlfgy + a—wMIgo — golFw + %Mw ds. (1.46)
Ov Ov

2297

This representation allows the radiation condition to be specified as

2 p—in)4
~ 1Ko 7 1.4
W~y _k’ope Po(y) (1.47)

Applying operator A — k2 to this formula yields the far field asymptotics
for the function {(z,y). Tt has the same form as (1.47) with the far field
amplitude ¢ (p) = —2k3¢0(p). Noting also that ((z,y) satisfies the two-
dimensional Helmholtz equation with the wavenumber ky and thus Som-
merfeld formula is valid for it one concludes that { = 0. That is the solution
of the problem for flexural waves in isolated plate without sources of the
field if exists satisfies the equation

Aw(zx,y) — kiw(z,y) = 0.

Consider first the case of clamped or hinge-supported boundary. That
is let on the whole contour 92y be satisfied

Ow
w=0, or — =0,
Jv
or on part of 9€2y the first of the above conditions is satisfied and on the rest
of contour the second condition is satisfied (other two boundary conditions

may be arbitrary). In this case the solution is unique. Indeed multiply the
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second order differential equation for w by the complex conjugate solution
w and integrate by parts in the domain bounded by circumference Cg of
large radius R and the obstacle ©y. Due to the fact that ¢g(p) = 0 the
integral over the circumference C'r vanishes in the limit R — 0 which yields
the integral identity

//(|Vw|2+k§|w|2) ds = / g—fw. (1.48)

2297

Due to the boundary conditions the contour integral in the right-hand side
vanishes and, thus, w = 0. That is, the following theorem holds

Theorem 2 Solution of the boundary value problem for the equation (1.9)
wmn the exterior of arbitrary bounded domain €2y is unique if the boundary
conditions are such that (1.44) holds and w = 0 on some part T'y of the
boundary and dw/0v = 0 on the remaining part To = 9Qo \ Ty of the
boundary.

Consider now such problems of scattering that on some part of the
boundary none of the above boundary conditions is satisfied. Let for ex-
ample ¢ be a hole with a free edge, that is

Fw = 0, Mw = 0.

Or let in general case the boundary conditions be of impedance type

ow
F :Z M :Zm—,
w fw, w 61/

where 7; and 7, are the force and momentum impedances.

To prove the uniqueness theorem for the boundary value problem for
the differential equation (1.9) with the impedance boundary conditions it
is sufficient to show that for the solution of the problem without sources
the following inequality holds

Ow__
/ 8—ywds <0.

2297

Then the fact that w = 0 follows from the integral identity (1.48). However
it can be shown that for the general shape of the contour 92y and natural
assumptions for the impedances 7Z; and 7, the above inequality is not
true. Moreover there exists an example of correctly formulated boundary
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conditions (such that (1.44) is satisfied) that allow eigenfunction concen-
trated near the boundary to exist. We discuss this example in the following
Section.

1.3.6 Flexural wave concentrated near a circular hole

Consider stationary vibrations of infinite elastic plate with a round hole of
radius pg. Let the boundary conditions on the edge be
Jw

Mw = w?I—
w w 61/’

Fw = w?Muw,
which correspond to a body of linear mass M and moment of inertia [
attached to the edge.

The purpose of the analysis is to find such values of pg, M and I for
which there exists solution of a homogeneous problem. As it was shown in
the previous section such wave should satisfy the equation (A — k2)w = 0,
that is be of the form

w= H]('l)(ikop)eijw,

where j is arbitrary integer. Note that in general case the solution is de-
composed in the form (see section 3.4.2)

> (ajHﬁl)(kop) + @H}”(ikop)) ¢iie,
j

but the values of M and 7 will be chosen such that coefficient o; be equal

to zero. Computing force and momentum according to the formulae (1.8)

1

and taking into account that functions K;(x) = ! )(zx) of real argument

J
x take real values, one finds

py=i{[1-0-ngin] P+ 0-nghs)

w? 1—0 I ] K;(kopo)
=k S - I :
D 0{ kopo [ ( )(/<70P0)2 K (kopo)

That is if the values of M and [ in the boundary conditions are taken
according to the above formulae with any integer j, then the function

H](»l) (ikop)eid¥ is the solution of the boundary-value problem of free flexural
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Fig. 1.3 Mass and moment of inertia for which eigenfunction exists (¢ = 1/3).

vibrations of the plate. This function exponentially decreases with p and
does not carry energy to infinity.

The values M and I can be conveniently compared with the mass My
and moment of inertia [; of the circular sector

1 1
My = Sheopide,  Io = T5heopy dp.

Taking into account that hgow?/D = kg one finds

W= o L= 0= i) e 0= )

i: 12 {1__0_[1+(1_0.) j2 ]A:j(kopo)}.

Iy (kopo)® | kopo (kopo)?] Ki(kopo)
Figure 1.3 presents above dependencies of mass and moment of inertia on
the dimensionless parameter kgpg for j = 0,1,2 and 3. For j # 0 force
impedance can be either positive or negative (the latter corresponds to a
spring attached to the edge). The momentum impedance Z,, should be
positive.

Discussion of high quality resonances in Kirchhoff plate can be found in

[30] and for Timoshenko-Mindlin plate in [14].
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1.4 Classical point models

The use of approximate plate theory equations instead of Lame equations
of elasticity simplifies the problems of diffraction in thin-walled mechanical
constructions. In some cases this allows simple analytic solutions to be
found in terms of integrals or series. In that case the analysis of the physical
effects becomes the most simple one and many important phenomena were
discovered and analyzed for such simple solutions. See e.g. [45] where
resonances in a plate with two cracks were discovered, or [41], [46] where
edge waves of Rayleigh type were discovered first in isolated and then in
fluid loaded plates.

As it was shown in the previous section the correctly formulated bound-
ary value problem should contain boundary-contact conditions for flexural
displacements at all points (or lines) where the smoothness of the plate is
violated (edges, joints, supports, etc.). Such boundary-contact conditions
can be stated at any line or point which becomes the line or point of plate
discontinuity. Classical point models use this possibility and formulate con-
tact conditions in the midpoint of the obstacle.

1.4.1 Point models in two dimensions

Consider first the problems of scattering by obstacles that are infinitely long
in one direction. We assume that neither geometry, nor the incident field
depend on y co-ordinate. Such problems are reduced to two-dimensional
boundary-value problems for the Helmholtz equation

AU(x,2) + k*U(x,2) =0, z>0

with the boundary condition (1.13) which is satisfied on the plate except
the point & = 0. Such boundary condition can be written for all & with the
d-function and its derivatives in the right-hand side

ot 4\ OU(x,0)

= cod(x) + 18’ (z) + 28" () + 38" ().

(1.49)

The order of derivatives that may be presented in the right-hand side of the
above equation is restricted by Meixner conditions (1.18) for the acoustic
pressure U. The constants cg, ¢1, ¢o and ¢z are unknown and should be
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found from the boundary-contact conditions corresponding to particular
point model.

Consider here some of classical point models. The simplest model is the
model of fixed point which is formulated as

w(0) =0, w'(0)=0. (1.50)

Generally speaking, displacements corresponding to the boundary condition
(1.49) are discontinuous and have discontinuous derivatives at the origin.
So conditions (1.50) mean also that displacement w(z) and angle /() are
continuous functions.

The model of a crack with free edges is formulated as (see [44])

w'(£0) =0, w"'(£0) =0, (1.51)

which means absence of forces and bending momentums (formulae (1.8)
reduce in the case of one-dimensional plate to (1.36)).

Models (1.50) and (1.51) take somewhat extreme positions in the scale
of point models. Other possible model is the model of attached mass and
moment of inertia. To formulate this model one can use the following
approach. Suppose that the plate is cut along the line x = 0. Then the
force, applied to the edge of the left semi-infinite part of the plate is

d3 d3w(-0)

Fr=—-D—w=-D
dl/3w dx3

and the force applied to the edge of the right semi-infinite plate is

d3 d3w (40
Ft=-D ﬁw = D%.
The total force applied to the plate at point = 0 is the sum of forces
F~ and F*. This force is due to the attached mass and is equal to the
product of mass M and acceleration w(0) = —w?w(0). Similarly computing
the bending momentums applied to the edges of semi-infinite plates and
equating the total momentum (difference of momentums applied to edges)
to the product of angular acceleration of the stiffener @' (0) = —w?w’(0)
by moment of inertia I yields the second condition. Thus, the boundary-

contact conditions of a point-wise stiffener are (see [43])

Dlw"] = w*Mw(0), D[w"] = —w?Iw'(0). (1.52)
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Here again w(z) and w'(z) are assumed continuous at * = 0 and w"(x)
and w'/(x) have jumps which are denoted by square brackets.

Note that in all the models the total number of conditions (including
assumed smoothness) is 4 which coincides with the number of unknowns in
the equation (1.49).

Usual procedure for constructing the solution of scattering by a point
model consists of two steps. First so-called general solution u(z, z) is intro-
duced. This function satisfies all the conditions of the problem except the
boundary-contact conditions formulated on the point scatterer. It contains
arbitrary parameters c¢; which play the role of amplitudes of passive sources
applied to the plate. General solution is the linear combination of Green’s
function and its derivatives

ue, z) = ;w (%)Zg(x,z;oy (1.53)

Here G(z, z;0) is the field of a point source applied to the plate. Tt is given
by Fourier integral (1.31)

Gz, z;29) =

exp (z/\(x —xg) — VA — k’zz) ﬂ (1.31)

~2xD L(X\)

Note that representation (1.53) is the reduced two dimensional integral rep-
resentation (1.33) for 2 = {0}. As it was mentioned the order of d-function
derivatives that may be written in the right-hand side of (1.49) is limited by
the Meizner conditions (1.18) to which the acoustic pressure should satisfy.
Analysis of the integrand in (1.31) shows that it decreases with A — +o0
as O(A™5). Thus the Green’s function and its derivatives of orders 1, 2 and
3 are bounded in the point of the source and the fourth-order derivative
by x has logarithmic singularity. That is, general solution with arbitrary
parameters ¢, satisfies the Meixner conditions (1.18), and no higher order
derivatives can be allowed in the equation (1.49) and consequently in the
representation (1.53).

The second step of the procedure is in finding the coefficients ¢, from
the 4 x 4 linear system arising when general solution u is substituted into
the boundary-contact conditions. In the general case it is not possible to
substitute z = 0 into the Green’s function derivatives. The corresponding
values should be considered as appropriate limits.

The solvability question of the system for coefficients ¢; in a particular
point model can not be studied directly because the formulae for the matrix
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elements are too cumbersome. However solvability is directly connected
with the uniqueness theorem. Indeed, following [24] suppose that the de-
terminant of the system 1s zero. Then there exists nontrivial solution of a
homogeneous problem. This solution has the far field amplitude

3
‘
U(9) = Z ce W, (1) (zk cos 79)
£=0
which according to the uniqueness theorem should be identically zero. The
last fact due to the linear independence of trigonometric functions yields
¢; = 0 contradicting our initial supposition. Thus the following theorem

holds

Theorem 3 The determinant of the system for boundary-contact con-
stants s different from zero and the system s solvable uniquely for any
right-hand side.

Consider now the particular problems of scattering and construct solu-
tions in explicit form according to the described above procedure. We shall
also check the optical theorem and the reciprocity principle for incident
spatial plane wave and for incident surface wave.

Scattering by fixed point
The boundary-contact conditions (1.50) yield the system

c1Di +c3D3 =0,
coDi +c2D3 =0,

aU9) (0,0
coDo+c1 Dy +caDs 4 csDs = D#’
22U9) (0,0
CoDl + ClD2 + 62D3 + 63D4 = D#
0z0%

Here the integrals Dy are introduced as limits (see Appendix A)
1 » VAZ — k2 1 ’ VAZ — k2
—/e"'ZO)‘(i/\)Zi i /e”A(i/\)Zidx\
LN s—+0 27 LN
(1.54)

and symmetry properties of Green’s function and its derivatives are taken

D, =
t T o

into account.

Some properties of contact integrals D, can be immediately checked.
The denominator L(A) behaves at infinity as O(|A|®), thus integrals Dy,
D, and D, absolutely converge. Noting that the integrand of D; is odd
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yields Dy = 0. Thus from the first two equations of the above system, that
express the continuity of w(z) and w’(z) at the origin, follows that ¢; = 0
and ¢z = 0. This simplifies the other two equations. One finds

D 9U9(0,0)

_ _ D 9*U9(0,0)
o Do 62 ’ ’

o D2 0z0x

Co C1

If the incident wave is the plane acoustic wave
U® = A exp (zkx cos ¥g — tkz sin 790)

then the geometrical part of the field is the sum of the incident and reflected
plane waves (see (1.25) for the reflection coefficient)

U@ =gl 4 A R(¥g) exp (zkx cos Ug + ikz sin 790) .

Differentiating the above expression and letting # = z = 0 yields

200w? ik sin g 200w? k? sin ¥ cos ¥y
) c =
Dy L(U) YT D, L£(90)

Cop = —

The far field amplitude of the scattered field can be expressed via the far
field amplitude

1 ksind
¥y (V) = 2rD L(Y)

e—ikxg cos

of the Green’s function. One finds

iN k% sin 9 sin 9, 1 k? cos 9 cos 9
V() =A—————F—— _ .
w00 =4 ( )

B 5, (1.55)

The amplitudes of surface waves can be found as residues of ¥(J) by the

formula (1.30)

1/)i(79 ) AQN VK2 — k2 ksin g ( 1 kk cos 9g
0 pu—

T brd— Arikd — k3 L(0o) \Do | T) - (156)
In the case of incident surface wave
Ul = Aexp (imv — \/m,z)
analogous derivations yield

: 3 _ 1.2
¥ (9) :Aiksmﬂ\/ﬁ k 1 rxk cos ¥ ’
2 L(Y)

Dy Dy

(1.57)
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: 2 2 2
,l/):l::Ai 4K_2k4 4<L:FK_)
KHrY —4r2kY — kg \ Doy Do
Comparing the formulae (1.56) and (1.57) it is easy to note coincidence
of angular factors of ¥+ (¥) and W(¥) for ¥ = ¥y. This is the consequence
of the reciprocity principle [51]. To find out the correspondence of the
amplitudes one needs to consider energies.
The linear densities of energy fluxes carried by acoustic plane wave in

the strip of wavelength size and by surface wave can be found from the

formulae (1.40) and (1.41)

71—|14ac.|2 i _ K|Asurf.|2
bl

B = =
ac. opw surf. 4Q0wN

(5;{4 R ké).
The energy flux densities of the scattered waves are given by the two terms
in the second formula in (1.42) expressing the optical theorem

e ()

g = TYOIE e sl (5n* — an?k? - k)
ac. opw ) surf. 4Q0wN 0/

Here EZ. is the linear density of energy flux carried by the diverging cylin-

5
sur.

flux carried by the travelling to the right surface wave. Substituting the
expressions (1.56) and (1.57) in the above formulae and letting ¢ = 9y it is
easy to verify the following identity

drical wave in a unit angle of ¢ and £ ; is the linear density of energy

E. B
ac. _ Zsuf. 1.58
E;urf. EZZEC. ( )

The results (1.55), (1.56) can be checked with the help of the optical
theorem (1.42). Compute first the integral of the far field amplitude

/ﬂm(ﬁ)'zdﬁ_ N? k2 sin?d [ 1 /ﬂk%m?ﬁ
/ w2 Z(v0) | Do|? / Z(9)
k2 cos? ¥y j k*sin? 9 cos? ¥
| D2 Z(V)

dv

dv

Here the denominator Z 1s introduced as

Z(0) = L)L) = N? + k2 sin® 0 (k* cos* 0 — k)" .
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The cross terms with Dy and Ds contain cos? in the first power and do
not contribute to the integral. Introducing new variable of integration A =
k cos ¥ the above integrals can be written as

/ k2 gin? o cost ¥ d9 — / VEZ = A2 Md)
Z(9) N2+ (k2 =A%) (A —k3)?

Computing [¢yT|?+]¢~|? and excluding complex values from denominators
yields

[Wr P+ T =

k2sin? 9, 8N2(k? — k?) 1 n k2k? cos® ¥g
Z(Vo) kK2(5k* — 4k2k% — k3) \ | Dol? | D52

Combining the above expressions one finds the effective cross-section

AN E2sin? 9, Z (k cos ¥g)*

k Z(90) Sy 1Dl

/ VEZ = AZAA N 1 (k% —k?)
oar | N2+ k2 A2) (A% — k3?2 T kbRt — 4Kk2k2 — k¢

On the other hand the effective cross-section can be found as the energy
taken from the reflected wave. Again excluding complex values from the
denominators yields

5 AN k%sin? ¥, ( 1 k2 cos® ¥y

—_— ImDy— ————ImD . 1.
F 2000 UDE ™ T T ™ ) (1.59)

Compute now the imaginary parts of the boundary-contact integrals Dy
and Dy. The path of integration for Dy and Ds can coincide with the real
axis except the small neighborhoods of points A = £+« where the denomi-
nator L(A) has zeros. The point A = & is avoided from below and the point
A = —k is avoided from above. The integrals can be also rewritten as the
principal value integrals along real axis plus the sum of semi-residues in
that points

1 i
DZ:%V.p./...d/\—I—iiizes. ——)\fie_sn...

For |A| > k the integrated functions in the above integrals are real and
imaginary parts of DD, are only due to the integrals form —k to k and
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residues. Excluding complex values from the denominator of the integrated
functions and computing residues yields

k
I Dy — i ﬁ/ VET Z AZALdA PG oL
MEEET N9 ) N2 (k2 A (M — kD)2 T kbet — ARZk2 — K
—k

This formula shows that the two expressions derived above for the effective
cross-section coincide.

Analogously one can check the optical theorem for the case of incident
surface wave.

Numerical characteristics of scattering by fixed point are presented on
Fig. 1.4 (thick line). Discussion of the characteristics see in the end of this
section.

For low frequencies (kh <« 1) substituting the asymptotics (A.11) of the
integrals Dy and retaining only principal order terms yields

¥~ 10(1 + COS(?T/5))]€N_2/SSHI2 ¥g.

Scattering by a pointwise crack

Analysis of this problem requires regularization of the integrals (1.54). The
solution is expressed in terms of integrals Dy and Dg. These integrals
are defined by (1.54) as limits. First the exponential factor exp(icA) is
assumed. Then for positive € the ends of the integration path are shifted
to the upper half-plane of A and convergence of the integrals is achieved
due to exponential decay of the above factor. Finally the limit for ¢ — +0
is taken. Details of regularization and explicit expressions for the integrals
Dy in terms of solutions «; of dispersion equation (1.14) are presented in
Appendix A. In particular the values of odd integrals are

1
Di=0, Dy=gz, D5;=0.

The boundary-contact conditions (1.51) on the crack yield

D PU9(0,0) _ D 2*U9(0,0)

€0 A be Dy 0202 = D¢ 02023

Computing displacements corresponding to the geometrical part of the field
and substituting the above constants into the representation (1.53) gives
explicit formula for the scattered field. Its far field amplitude is given by
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the formula

iN k2sindsindy [ k*cos?Pcos® ¥y kS cos® I cos® g
Dy Ds

W(500) = A L(0)L(D0)

(1.60)

The optical theorem (1.42) can be checked in the same way as it was

done above for the scattering by a fixed point. The effective cross-section
of a pointwise crack is

_ 4Nk»5 sin2 790 COS4 790 (ImD4 kz (jOs2 ﬁolm D6) (1 61)

Y= _
Z(o) | Dal? | Ds |?

For low frequencies the first term dominates and taking into account (A.11)
one finds

Y~ 10(1 — cos(27r/5))k5N_6/5 sin? ¥y cos* ¥g.

In low frequency limit the main contribution to the effective cross-
section 1s due to the surface wave process. For incident flexural wave one
can introduce reflection and transition coefficients of the crack. The con-
nection formula (1.30) allows the amplitudes of surface waves to be found

o ) (1
5/4?4 - 4K2k2 - k’é D4 D6 ’

Substituting the asymptotics (A.11) one finds the amplitude of passed wave

6271'2'/5 _ 671'2'/5

et e B((1- )« 1) a2

and the amplitude of reflected wave

b~ A= (1= i) 4 (14 75)) :A#

One can check the energy conservation law in the form
A+ P+ TP = 1.

Numerical characteristics computed by the formula (1.61) are presented
on Fig. 1.4 by thin lines.
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Scattering by stiffener

Analogously to the case of fixed point continuity of plate at the support
yields ¢; = 0, e = 0. The system arising from the other two conditions
splits and one finds the far field amplitude

ﬂk’z sin ¥ sin ¥q ( 1 k2 cos ¥ cos Yy )

P = A e (0s) \Do— DJ(ML) Dy + DJ(1?)
(1.62)

and the effective cross-section

s AN sin? ¥ ( Im Dy k2 cos? 9o Im D5 )
C Z(Y)

Do — DJ(MwF Dz — D/ (1)

Numerical characteristics are presented on the upper graphs of Fig. 1.4
by medium lines.

The two systems plate-water (left-side graphs) and plate-air (right-side
graphs) are taken for illustration of the scattering process by point models.
Parameters of the systems and characteristic frequencies see in Appendix C.
The frequency characteristics are presented on the upper graphs in Fig. 1.4.
Lower graphs show the portion of energy carried by the surface waves, that
is the ratio of the second term in the last expression of (1.42) to X. At
the bottom graphs of Fig. 1.4 the angular dependencies of effective cross-
sections are plotted for different frequencies.

Comparing the above three point models one can notice some general
properties of the scattering process. At low frequencies (below the coinci-
dence frequency f;) all models distinguish significantly. In that range of
frequencies most of energy is concentrated near the plate and it is natu-
ral that different conditions for displacements cause large difference in the
scattering characteristics. The scattering by a point crack is minimal and
the scattering by a fixed point is maximal. The stiffener occupies inter-
mediate position. For the system 1 of steel plate in water the inequality
Yerack < Lstiffener < Lfixed holds in the whole range of frequencies for which
the model of thin plate is valid. For air loaded steel plate (system 2) one
can consider frequencies above f., where the character of scattering process
changes significantly. At a small interval near coincidence frequency f. en-
ergy redistributes from the surface channel of scattering to acoustic channel
and at frequencies above f. almost all the energy is carried by diverging
cylindrical wave. For weakly loaded plates redistribution of energy appears
very sharp. For the system 1 surface energy begins to decrease already for
f =~ 0.5f.. At frequencies above coincidence frequency all the models have
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Frequency characteristics. Angle of incidence is 99 = 30°.

ZOQHZ 2kII‘IZ 30|I‘IZ 9OQHZ

0° 30° 60° 90° 0° 30° 60° 90°
| Y T

Frequencies: (a) — 20Hz, (b) — 500Hz,
(c) — 1kHz, (d) — 2kHz, (e) — 10kHz

Angular characteristics of scattering for fixed point and point crack.

Frequencies: (a) — 1Hz, (b) — 30Hz,
(c) — 1kHz, (d) — 11kHz, (e) — 27kHz

Fig. 1.4 Effective cross-sections (in dB) of models: fixed point (bold), crack (thin),
stiffener (medium) in 1cm steel plate in water (left) and in 1mm steel plate in air (right).
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close scattering characteristics with a sharp maximum of effective cross-
section (upper right graph of Fig. 1.4). This maximum corresponds to the
critical frequency f* for which the trace of the incident wave front on the
plate moves with the velocity of flexural waves c;. That is kcos?g = ko
and thus f* = f./ cos? . The same sharp maximum is seen on the angular
characteristics at lower-right graph of Fig. 1.4. Angular dependencies of the
effective cross-section of fixed point and of point stiffener (not shown) are
similar. The angular characteristics of the point crack differs significantly.
This difference is due to the factor cos* ¥y presented in the formula (1.61).

1.4.2 Scattering by crack at oblique incidence

The explicitly solvable models discussed above deal with incident waves
running orthogonally to the obstacle. These models allow generalization to
the case of oblique incidence, that is the incident wave can run at some angle
o to the fixed line, crack, stiffener or any other linear inhomogeneity. The
factor e#o¥  py = kcos ¥g cos g of the incident plane wave can be sepa-
rated from all the components of the field and the problems of scattering
can be reformulated as two-dimensional. These two-dimensional problems
differ from the discussed above by replacement of the Laplace operator by
A — pZ and by expressions for force and bending momentum, which after
computing derivatives by y in (1.8) become (prime denotes derivative by x)

Fw = —D(w/” —(2— U)/ng/), Muw = D(w” - ngw).

We consider here only the model of a point crack. Let the field scattered
by the infinite straight crack be denoted by U/(¢). This field can be found
by the same approach as in the previous section. However let the other
approach be demonstrated. This approach is based on Fourier transform
method. Let the solution of the problem be searched in the form of the
integral

eltoy
U(C)(g;’y’z):—Q 5 exp(i/\x—\//\z—l—ug—k’zz) X
T

3 (1.63)
AT
X (Z ce(po) (i) ) 0w )’

£=0

where ¢y are unknown. The path of integration is chosen the same as in the
Fourier representation of the Green’s function G(z, z; 0, 0), the singularities
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on the negative semi-axis are avoided from above and the singularities on
the positive semi-axis are avoided from below. The dependence of U(¢) on
y co-ordinate is inherited from the incident wave.

The representation (1.63) satisfies the Helmholtz equation (1.10) and
the boundary condition (1.13) on the whole plane {#z = 0}. The boundary-
contact conditions on the crack (at @ = 0) yield the system of algebraic
equations for the coefficients ¢;. It is convenient to rewrite the boundary-
contact conditions in the form

Fw(4+0,y) — Fw(=0,y) =0, Muw(+0,y) — Mw(-0,y) =0
and
Fw(4+0,y) =0, Mw(4+0,y) =0.

The first two conditions remain homogeneous when the geometrical part
of the field is separated. Inverting the Fourier integral in these conditions
yields

co = —opics, ag=—-(2- U)ugc&
The other two conditions yield the system
¢l (D4(ﬂ0) —-(2- U)ﬂgDz) +e3 (D6(ﬂ0) —-(2- U)N§D4)

= gowsz(g)(O),
€ (Dz(uo) - UuﬁDO) to (D4(ﬂ0) - Uu§D2) = —gow’Muw'?) (0).

Here the integrals Dy(po) are introduced as

(i) dA
+iOX /32 4 Bk g 1.64
i) = o / v it (1.64)

Note that integrals D, from the previous section are the values of integrals

Dy(po) for po = 0. When computing limits of w(s) and its derivatives at

z = £0 which are involved in the above system the parity properties of

different terms in the representation (1.63) are taken into account.
Computing displacements of the geometrical part U(9)

(9) — _% k sin 790 eikx cos¥g sin g
D L)
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and substituting expressions for the coefficients ¢y and ¢; in the above
system yields

200w?ik? sin Yg cos? ¥g (1 — (1 — o) cos? goo)
L(F0)Ac(po) ’

Cy = —

200wk sin ¥ cos® ¥ sin g (1 + (1 — o) cos? goo)
e
’ L(V0)Ao(p0)

Here the denominators A, and A, are introduced as

Ac(po) = Da(po) — 2015 D3 (p0) + o> g Do(p),

Ao(so) = Ds(po) = 2(2 = o) pg Da(po) + (2 — ) g D2 (p10).

Note that for some values of pg the denominators A,(ug) or A.(pg) can
be equal to zero. Real solutions of dispersion equations

Ae(%e) =0, Ao(%o) =0 (165)

define wave numbers sz, of symmetric and 3¢, of anti-symmetric edge waves
that may run along the crack. Analysis of the above dispersion equations
is carried out in section 4.2. The edge waves are defined by the formula
(1.63) where one lets for symmetric wave ¢y = ngcz, ¢c1 =0, ¢35 =0 and
for anti-symmetric wave ¢g =0, ¢; = (2 — U)ugc;),, ¢o = 0. It can be shown
that both 2, and 3¢, (if exist) are greater than k. So for any angles ¥y and
g coefficients ¢y and c3 are finite.

Applying saddle point method (1.22) to the integral (1.63) allows the
asymptotics of the scattered field to be found. Let the cylindric co-ordinate
system (d, e, y) be introduced by the formulae

x=dcosa, z=dsina.
Then the phase function in (1.63) becomes

D(A\) = Acosa + 1/ k% — p2 — A2 sina

with the saddle point at

A = kEcos a, € =/1 — cos? ¥y cos? .
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observation

reflected

incident
<

Fig. 1.5 Diffraction by straight crack at oblique incidence.

The contribution of the saddle point to the asymptotics of the integral for
d > 1 gives diverging cylindrical wave

U(C)(x, 2) ~ /%eikfd—in/él\p(a)

with the far field amplitude

iNkSE sin « sin ¥ cos® Yy
\I/(a) = . X
m —L(k& cosa, kcos ¥gsin ¥y) L ()
1—(1-— 2
X (Ae(li . g()) Z(())Ss SDSZ(; (cos2 o — cos? ¥ cos? goo(cos2 o — 0'))
1+ (1—c)cos?ypq o
— k )
A, (k cos Ug cos p0) & cos av cos ¥ cos g X

X (cos2 o — cos? ¥ cos? goo(cos2 a—2+ 0'))) .

The residues in the zeros of the denominator L(A, pg) which are crossed
when the contour of integration is shifted to the steepest descent path give
surface waves.

The oblique incident wave diffracts in a diffraction cone. The ray ge-
ometry of the diffraction phenomenon is presented on Fig. 1.5. Consider
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the incident ray that intersects the crack at point (0, yo,0). The diffracted
rays originated from this incident ray form the cone which in Keller ter-
minology is called diffraction cone [36]. The opening angle of this cone is
equal to the angle 7 between the incident ray and the crack. In the case
of orthogonal incidence diffraction cone transforms to diffraction plane and
one deals with two-dimensional problem. The angle of the cone opening 3
is given by the formula

8= cos™! (cos Yy cos goo) .

In the case of plane incident wave all the cones with opening 8 and revo-
lution axis y are equivalent. The point of observation (x,y, z) defines the
particular diffraction cone. The y co-ordinate of its vertex is

Yo =y — dcot 3.

The coordinates (d, o) specify the point on the cone. In order to rewrite the
asymptotics of diverging cylindrical wave in symmetric form let the angle
of elevation ¥ (see Fig. 1.5) be introduced

Y =sin~! (sin 3 sin a) .
Now the asymptotics can be written as

. eikygcosﬁ 2 herin
U yo2) ~ — [ O,

w(9) = iN kS sin ¥ sin 9g ((cos2 ¥ — p)(cos? ¥g — p)

m L(9) L(y) A (kcos f)
(cos? ¥ + p)(cos? dg + p

_ Ao(k — 6) )1472\/(3052 ¥ — cos? ﬁ\/COSZ Yo — cos? ﬁ) .

Here 7 = \/x2 + 22 + (y — yo)? is the distance from the cone vertex to the
observation point and the parameter p is introduced as p = (1 — o) cos? 3.

1.4.3 Point models in three dimensions

For the problems of scattering by compact obstacles in thin elastic plates the
set of classical point models shrinks to such models in which the boundary-
contact conditions are formulated for displacements w only. In infinite plate
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this 1s the model of a fixed point, which is formulated as
w(0,0) = 0. (1.66)

The solution is searched again in two steps. First the general solution
is constructed. This solution satisfies the boundary-value problem with the
inhomogeneous generalized boundary condition (1.13) on the plate. The
right-hand side of this condition contains arbitrary generalized function con-
centrated in the point (z = 0,y = 0). Evidently this is a linear combination
of delta-function and its derivatives. The order of admissible derivatives is
regulated by the Meizner conditions (1.18), (1.19) which are formulated in
that case both for acoustic pressure U and flexural displacements w. It
can be shown that only delta-function itself can be presented and no its
derivatives are admissible

(87 = K)o, v) + 50U, 5.0) = S6(2)5(0).

Therefore the general solution is simply the Green’s function G/(r; 0, 0) mul-
tiplied by an unknown constant ¢. This constant is found from the condition
(1.66).

In order to formulate the point model of an attached to the plate mass
M | the expression for the force F' in a separate point is needed. Note that
the first formula (1.8) gives force on arbitrary line. Let a small circle of
radius € be cut from the plate. The total force with which that circle acts
on the plate is given by the integral of Fw over the circumference. Letting
e — 0 yields

2w
F =lim [ Fwedy = c.
=0
0

Thus the point model of an attached mass M can be written as the condition
c=wMuw(0,0). (1.67)

Scattering by a fixed point
Consider first the case of isolated plate. That is the boundary value problem
for the homogeneous bi-harmonic equation (1.9)

ANw—kjw =0, R?\ {0}

with the condition (1.66) and radiation condition (1.47).
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*

The general solution** satisfies the equation

C

A?pl®) — dpls) = 5(5(9:)5(3/)

with unknown amplitude ¢ in the right-hand side. This amplitude of passive
source should be found from the condition (1.66), which becomes inhomoge-
neous with the flexural displacement of the incident wave in the right-hand
side

w)(0,0) = —w'9(0,0).

The general solution is the Green’s function (1.45) multiplied by the coef-
ficient ¢

ic

W (e,) = cgole,) = gy (M8 kop) = 1 ikop)).

Satisfying the condition in the fixed point, yields

_w(g)(o’o)
gO(Oa 0) .

The two Bessel functions in the formula for g¢ have logarithmic singularities,
but their difference is bounded and the value of Green’s function at the
point of the source is defined. Using the representation of Bessel functions

Hél)(é’) = Jo(&) +iY5(€) in the form of series [1]

- 5 /4 ¢
]:
2 2 /&2 3¢t
YO :;(ln €/2 —|—CE)J0(€) F(%_G%—i_)
yields
90,0 = g5

There is evidently rotational symmetry in the problem of scattering, so
let oo = 0 and the incident wave be

w') = wl9) = Aetho”,

**General solution is denoted here by w(®) as well as the scattered field to which it
transforms when constant ¢ is found.
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Then the scattered field is
wl®) = —4 (Hél)(kop) - Hé”(ikop)) .

At large distances it has the asymptotics of diverging circular wave (1.47)
with the far field amplitude

Yo(p) = _4 (1.68)

The above result satisfies the optical theorem (1.43).

Consider now the case of fluid loaded plate. In the above derivations
the Green’s function gg(z,y) should be replaced by the Green’s function
(1.21) corresponding to a surface source in a fluid loaded plate

U(s) = Cgosz(x; Y, %5 0’ 0)

For the incident spatial wave at angle Jy one finds

2A 1k sin 9g ike cosdo
== .
D L(Yy)

w'9)

The value of the Green’s function g(x,y;0,0) in the point of the surface
source is given by the boundary-contact integral

1 /N2 ¥ 2 — k2
D Doo = —5 Y—————dXdp.
00, 00 =75 // LA ) H

90,0 = Deow?
The analysis of the above integral see in Appendix A.

The far field amplitude of the scattered field differs by a multiplier
—w(9)(0,0)D/Dgo from the far field amplitude of the point source field
G(r;0,0) and can be easily found by differentiating the formula (1.24)

TANE? sin 9 sin g
27T2D00 [,(79),6(790) ’

U (9, p) = (1.69)
In a similar way one can consider the surface wave scattering by the fixed
point, check reciprocity principle (1.58) and optical theorem (1.39).

In the low frequency approximation one can use the asymptotics (A.14)
of the integral Dyg. This yields

20Ak3 icot(2m/5) — 2

Y (v, p) ~
(0,%) m2N3/5 4 4 cot?(27m/5)

sin ¥ sin ¥g.
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Scattering by a pointwise mass

In the case of attached pointwise mass the derivations are analogous. The
solution differs by a multiplier from the corresponding Green’s function for
a point source in isolated or fluid loaded plate. Further one substitutes
w(0,0) = w¥(0,0) 4+ w(*)(0,0) into the condition (1.67) and finds the
amplitude ¢. Finally this yields

T

A 8kZD\
1/)0(30)___ <1+ZW2M)

in the case of isolated plate and

\Ij(ﬁa 30) = -

IANES b D \ " 'sind sindg
272 T Mw? ) L)L)

for acoustic wave diffraction by fluid loaded plate.

1.5 Scattering problems for plates with infinite crack

1.5.1 General properties of boundary value problems

The geometry in the problems of scattering discussed in the previous sec-
tions can be considered as a perturbation of some basic geometry by a
compact or pointwise obstacle. This basic geometry is the geometry of
fluid half-space bounded by the plate. For such problems both in two and
in three dimensions the Green’s functions can be written in explicit form.
This fact is the keynote reason why the point models allow explicit solution
to be constructed in the form of integrals.

Consider now a more complicated basic geometry. Namely let the plate,
bounding fluid half-space, be cut along the line {# = 0}. Such geometry
is already considered in section 1.4.2 when dealing with oblique incidence
at a straight crack. The Green’s function for that basic geometry can be
found explicitly by methods similar to that used in section 1.4.2. Indeed one
can decompose the field of a point source by plane waves which results in
additional Fourier transform by the parameter pg in (1.63). In this chapter
we shall not use that Green’s function, however in Chapter 3 it will be
needed and it is derived there (see section 3.5.4). The Green’s function in
the case of a plate with a crack is essentially more complicated. This is one
technical difficulty that appears due to the crack. The other circumstance
is that infinite crack causes additional channel(s) of scattering to appear.
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This channel is associated with edge waves of Rayleigh type. Edge waves
that run along the free edge and exponentially decrease far from it were
first discovered in the model of isolated plate [41]. Then the influence of
fluid was taken into account as a small perturbation [46]. Further analysis
of edge waves that propagate along a straight crack are presented in [10].
Results of [41] for edge waves in isolated plate are briefly presented in the
section 1.5.2 and summary of results concerning edge waves in fluid loaded
plate can be found in Chapter 4. Presence of edge waves that propagate
along the crack requires additional radiation conditions to be included in
the formulation of the scattering problem. Note also that additional terms
appear in the expression for the effective cross-section. We discuss optical
theorem only in the isolated plate with the crack (see section 1.5.2).

We present only one point model for plates cut by an infinite crack.
This is the model for a joint of two semi-infinite plates. It is formulated
in the form of boundary-contact conditions in separate points of plates
edges. As it was discussed before, such boundary-contact conditions can
be formulated for the displacements only (no derivatives are allowed). The
pointwise joint of two semi-infinite plates is formulated as the continuity
condition for displacements and absence of forces

w(+0,0) — w(=0,0) =0, F(0,0)=0. (1.70)

Actually there are two functions, one wy(z,y) defined for > 0 gives dis-
placements of semi-infinite plate P™ = {x > 0}, the other ws(z, y) defined
for # < 0 expresses displacements in the semi-infinite plate P~ = {# < 0}.
These two functions have coincident values at the point of joint which is
assumed at the origin. The force F' in that point is defined by the same
limiting procedure as in the section 1.4.3.

1.5.2 Scattering problems in isolated plates

Consider first the simpler case of isolated plates. Let an obstacle €2y be of
arbitrary nature. We assume that its boundary 9€2y crosses the crack in
two points y = a and y = b, so that the segment [a, b] belongs to €g. The
boundary value problem of diffraction by an obstacle {2y reads

Azw—kngo, (x,y)ERiU}Rz_\QO,
Fw(+0,y) =0, Muw(+0,y) =0, y<a or y>b
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Besides, the boundary conditions on d€2y and radiation conditions at infin-
ity should be specified for the solution w(z,y). The radiation conditions
combine (1.47) which is valid at some distance from the crack and radiation
conditions for edge waves

Jw(£0,y)

3y — ixw(+0,y) = o(1), y— £oo.

Here 3¢ is the wave number of edge waves (see below).

Note that in the absence of the obstacle flexural waves in two semi-
infinite plates Pt and P~ are completely independent. The incident plane
wave

w(l) — Aexp (Zk’o(—l‘ sin Lo + Yy cos QDO))

in the plate Pt causes two waves to appear. These are the reflected plane
wave and the wave that is concentrated near the edge

w(M=Ar(pg) exp (iko(x sin g + y cos o))

+At(po) exp (—k’ol‘\/ 14 cos? g + thoy cos goo) )

Here the coefficients r(¢) and t(p) are given by the formulae

o) =gy )= 2 gpﬁ;)(gpm_(@),

(1.71)

where

l(p) = isinpAL (¢) + V1 +cos?pAZ(9), Ax(p) = (1 -0)cos’p £ L.

One can easily check that the field w(®) = w(®) 4w satisfies the boundary
conditions on the free edge.

The denominator [(¢) of the above coefficients equals to zero for some
value of the parameter » = k¢ cos 1 which corresponds to complex angle.
The solution of the dispersion equation {(¢*) = 0 can be found explicitly

%:ko((l—U)(BU—1—1—2\/1—20—1—202))_1/4. (1.72)

The boundary conditions on the obstacle 2y should satisfy the correct-
ness condition similar to (1.44). The only difference is that corner forces
contributions given by the last terms in (1.44) should be presented at points
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(0,a) and (0,b) even if 98 is smooth, but 9 intersects the crack (line
z = 0) at nonzero angle.

The scattered field can be shown subject to the integral representation
similar to (1.46) where the Green’s function go(p, py) should be replaced
by the Green’s function for the semi-infinite plate with free edge. The
Green’s function g*(p, py) for the semi-infinite plate P+ with free edge can
be constructed by Fourier method. It i1s convenient to represent it as the
sum of Green’s function go(p, py) for the infinite plate given in (1.45) and a
correction g(c)(p) which causes force and momentum on the edge to vanish

gt (P, po) = g0(p, po) + 9 (p).

The correction is searched in the form of Fourier integral and it is convenient
to represent the Green’s function gy by a similar Fourier integral

1 . e—r-lv—zal  g=v4lz—zal
= i1(y—yo) — d
go(pa pO) 871'ng/6 ( v vt ) H,

1 .
9 ey) = 87k3D / eV (a(prs wo)e ™= + Bl wo)e ) dp.

The functions v4 in the above representations and other functions which
are used in this section are introduced below

v =\ Pk, ax = (1—o)p® £ ki, () =v-af —v4al.
Note that £(p) is connected to {(¢) by the formula
Up) = =kl (cos™ (kg ' ).

Computing force and momentum on the edge at x = 0 yields algebraic
system for functions o(p; zg) and 5(p; o)

a- a

d_oFapf=——e =% 4 Lm0,
7= 7+

v_araF+yya_f =aype 170 —q_eT YO,

Solving this system yields

1 eit(y—yo)
(¢) — 7_"‘ 2 2 —v—(z4z0o)
7T 8akD / M) ((7— ot a*) ‘

—2aja_ (eTV=TTIHTO 4 T NHTY=T0) (1.73)

+ (7—_ai + az_) 6_”(”“)) dp.
7+
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Numerical study of the Green’s function (1.73) is undertaken in [35].

At far distances it has the asymptotics of diverging circular wave and
two edge waves that run in positive and in negative directions of y axis.
Only the first term in the above Fourier integral contributes to the saddle
point asymptotics

2r -7
gt ~ Mk—elk”" /41/)g(g0), p— 0. (1.74)
op

The edge waves running along the edge {& = +0} are due to the residues in
the zeros of the denominator £(jt). These zeros coincide with the wavenum-
bers of edge waves u = +3¢ defined by (1.72)

2 2
g+ ~ w:l:e:l:i%y e—\/%Q—k3|x| _ (1 — U)% — kO e—\/%2+k3|x|
g (1 —0)x?+ k2 © o (1.75)
y — £oo.

We do not present here the expression for the far field amplitude ¢(yp) of
the diverging circular wave. It can be easily derived from the integrand of
the representation (1.73) in which integration variable p should be replaced
by 1ts value kg cos ¢ in the stationary point and a multiplier k¢ sin ¢ should
be included which appears from the second order derivative of the phase
function. Similarly we do not present the formulae for the amplitudes y*
of edge waves.

For #yg = yo = 0 the formulae for the Green’s function simplify. Com-
bining both integrals yields

ape V=% —q_e”H?

1 .
(p: = — LRy du. 1.
97 (p;0,0) %D/e ) It (1.76)

The far field amplitude in the case of the source on the edge is given by a
simple formula

_ 1 kosinpAy(p)

(1.77)

The amplitudes of edge waves can be found the following

1/)i_ i (1—o)»?+ k2
9D 0 (52) ’
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1

- (5(1 = 0)?s* — 2:°k3 (1 — o) (1 + 20) — (3 — do)ky) -

One can check that the formula similar to (1.30) is valid

U(3) = (5(1 — )5 + 2:7k5(1 — o) (1 + 20) — (3 — 40)kg)

1/)5:7& = —2mi Res, be(p), T = cos™(%e/ko). (1.78)
p=yp

The connection formula (1.78) is valid not only for the field of a point source
applied to the edge, but also for the asymptotics of g*(p, py) with arbitrary
coordinates of the point source. Using the same idea as in Section 1.3.3 one
can derive the integral representation for the scattered field in the form
of convolution of some unknown functions and constants with the Green’s
function g% (p, py). If the obstacle is finite the integration in that formula
is carried over a finite contour and the properties of ¥4(¢) are inherited by
the far field amplitude of the scattered field. In particular that yields the
formula (1.78) for the amplitudes ¢/(p) and % of the field scattered by
arbitrary compact obstacle.

The far field asymptotics allow the optical theorem to be derived. We
derive the optical theorem for the case of plane flexural wave incident on
a bounded obstacle in the plate cut by the infinite straight crack. For the
average energy fluxes carried by the incident and by the diverging circular
flexural waves the results of section 1.3.4 can be used. The energy flux
carried by the flexural wave w is given by the quadratic form TI2(w, w).
The energy taken form the geometrical part of the field E, that is the
energy of interaction of geometrical and scattered parts of the field, is only
due to the interaction of diverging circular wave with the plane reflected
wave given by the first term in (1.71). Applying saddle point method one
finds

E = —Hz(w(g),w(s)) — Hz(w(s), w(g)) = QWkagRe (Ar(goo)1/)(g00)).
The energy flux carried by the circular wave can be found as the integral
2w
HZ(wcirc.a wcirc.) — QFWDk(%/ |1/)(§0)|2d30
0

The energy flux carried by the edge waves consists of two parts. One part
expresses the flux in the plate and coincides with Hz(wedge,wedge), the
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other is due to the contribution of corner forces (1.5) and is given by the
expression

M5 (w, w) = —wIm (w(O, y)m) .

Substituting from (1.75) into the above expressions and combining this with
the energy flux carried by circular wave one finds

27
B° = 2maDE [ 16(0)Pdp+wDIBQU P+ 7+ 2 +1077).
0

Here the amplitudes of edge waves are marked with superscript &+ specifying
the direction of edge wave propagation (positive or negative direction along
y-axis) and by subscript indicating the plate Pt of P~ in which the edge
wave propagates. The quantity @ is introduced as follows

B » _((1—0’)%2—1478)4_ s k2 (3% — k2)
MV (1 (o ar)y )<1—a>2%4—k3)'

Dividing the above energy flux by the energy flux carried on a unit front

of the incident wave
E' = |A|*wDk3

gives the formulation of the optical theorem for the isolated plate with
infinite straight crack in the form of two expressions for the effective cross-
section

2w
_2r 2 Q12 —2 42 -2
z—k00/|w<so>| dot g (WEF+ WRP WP +loP)

= _%Re (T(SDO)W) .

The formulae presented in this section show the similarity of diffrac-
tion by an obstacle in isolated semi-infinite plate with the two-dimensional
problem of diffraction by an obstacle in presence of infinite elastic plate.
In both cases the two channels of scattering are presented. One is due to
the diverging wave and the other is due to waves concentrated near the
boundary. In the two-dimensional problems for fluid loaded plate this is
the surface wave and in the problems of scattering in semi-infinite isolated
plate with a free edge this is the Rayleigh type edge wave. In both types of
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problems the scattered field can be represented in the form of convolution
with the appropriate Green’s function. The scattering characteristics in the
two channels are connected by the formulae (1.30) and (1.78) respectively.
These formulae exactly coincide though the edge wave is given by a more
complicated formula (1.75) combining two exponentials. As it was noted
in section 1.3.5 the Sommerfeld formula is not valid for the solution of bi-
harmonic operator. The uniqueness theorem can not be proved by the same
reason as in the absence of the crack, however no example of concentrated
solution is known as well.

1.5.3 Scattering by pointwise joint

Return now back to the problem of scattering by a pointwise joint. That is
let the obstacle €y be the point (0,0) and the conditions on the obstacle be
the conditions (1.70). Excluding w9 reduces the boundary value problem,
to the problem for the scattered field w(®) which differs by the first contact
condition in (1.70) that becomes inhomogeneous with the right hand side

4i A4 (o) sin g
l{¢o)

In order the second condition in (1.70) be satisfied the passive source

_[w(g)] —_A

in the plate PT should be combined with the passive source of the same
amplitude, but opposite phase in the plate P~. That is the general solution
of the problem 1s

(5) cgt(z,y), x>0,
w'®) =
—cgt(—z,y), <0

with some amplitude ¢. Substituting this formula into the first condition
in (1.70) allows that amplitude to be found

_ [w(g)]
T 29 (0’ 0) .

The limiting value of the Green’s function in the point of the source can
be obtained by direct substitution of + = 0 and y = 0 in the formula (1.76)

1 % d
4 _ L g _o/_ﬂ,
g (an) ng [VR) 0 p
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Fig. 1.6 Effective cross-section of the point joint for different values of Poisson’s ratio
o (values of & are indicated at the right margin).

The integrand can be checked to behave at infinity as O(p=3). It is also
convenient to rewrite this integral in dimensionless variable (r = ko_lu)

1 dr
do = — 3 3 :
77/((1—0')7'2—1—1) \/7'2—1—((1—0')7'2—1) V241

This integral plays the role of contact integral and is studied in Appendix A.
Using the far field asymptotics of Green’s function gT allows the far
field amplitude of the scattered circular wave to be found

iAsinp Ay () sin oAy (o)
m do l(¢) l(0)

The optical theorem (1.79) can be checked in the same way as it was

(3 o) = sign(z). (1.80)

done in section 1.4.1. The integral of the far field amplitude can be reduced
to the imaginary part of the integral of 1/£(7) over [—1,1]. When exclud-
ing complex values from the denominator only the terms with /72 —1
contribute to the imaginary part of the integral. The residues of 1/4(7) in
the points 7 = :|:k0_1% coincide with the contribution of edge waves to the
effective cross-section. Finally the formula for the effective cross-section of
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the point-wise joint takes the form

4 sin? gpoA?l_(goo) Imdg

Y=— .
ko sin® g9 A% (90) + (1 4 cos? o) AL (o) Idol®

The only parameter that is involved in nontrivial way in the above
formulae is the Poisson’s ratio o. Angular characteristics kgX (o) computed
numerically by the above formula are presented on Fig. 1.6 for different
values of ¢. One can note that the case of ¢ = 0 is somewhat degenerated.
For that value of Poison’s ratio no edge waves exist (see formula (1.72)
which gives > = kg) and the effective-cross section does not vanish at
grazing incidence (for ¢y = 0) which is the case for all other values of
Poison’s ratio.



Chapter 2

Operator methods in diffraction

2.1 Abstract operator theory

2.1.1 Hilbert space

Let L be a Hilbert space. That means that some operations are defined
on the elements f of the set L and that the set L is supplied with some
structure. To define Hilbert space we need some mathematical objects and
properties to be introduced.

We start with the property of the space to be linear. That property
means that two operations are defined on elements of 1. Namely, these are
the summation of elements f; + fo and the multiplication of an element
by a complex number af, a € C. These two operations satisfy the usual
properties: the order of terms in the sum does not influence the result

h+fo=f+h

and there exists unique zero element 0 for which

f+0=1;
the multiplication by complex constants satisfies the following rules

a(fi+ f2) =afi +afs,
(a1 4+ ag)f = a1 f+asf,
041(042f) = (Oé10é2)f,
1-f=1

An important characteristics of a linear set 1s its dimension. They say
that the elements {fj}j»v:l of a linear set L are linearly independent if the

63
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equality

N
Za]’fj =0
j=1

is possible only if all coefficients are equal to zero, that is a; = 0 for j =
1,2,..., N. In the opposite case the elements { f; }j»\;l are linear dependent.
Evidently that if one of the elements of {f;} is equal to zero, then these
elements are linear dependent.

The dimension of a set is defined as the maximal number of linear
independent elements in this set. The dimension of a linear set can be
finite or infinite, i.e. 1in the latter case the set contains infinitely many
linear independent elements.

The following structure is introduced in Hilbert space. A complex num-
ber {fi, f2) is associated to every pair of elements fi, fa from the set L.
This number 1s the scalar product and it is introduced in such a way that:

(1) (fi, f2) = (f2, fr)
(2) {1 f1 + asfo, f3) = a1 {f1, f3) + a2 {f2, f3)
(3) (f,Yy>0and {f, fy =0onlyif f =0.

The property (2) expresses linearity of scalar product by its first argument.
Analogously combining (1) and (2) the linearity by the second argument
can be written as

(27) (fi,0fs +asfs)y =az (fi, fo) + a3 {f1, fa) -
The quantity ||f]|| = /{/f, f) is the norm of the element f. The property
(3) of scalar product guarantees that norm is non-negative and ||f|| = 0
only if f =0.

The properties of scalar product and norm are described by the following

Theorem 1  The scalar product and the norm possess the following prop-
erties:

(1) Scaling property: ||af|| = |a| - || f]]-

(2) Schwartz inequality: | {f1, f2) | < ||full - || f2|l, and equal sign is pos-
sible only if the elements f1 and fs are linear dependent.

(3) Triangle inequality: ||f1 + f2|] < ||f1l]l + || f2ll, and equal sign takes
place only if f1 and fo are linear dependent.

The scaling property follows directly from the properties (2) and (2’) of
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the scalar product

<O‘f’af>:a<f’af>:aa<f’f>:|O‘|2<f’f>'

To prove Schwartz inequality one can compute the norm of the element
£ =al{f1, f2) |1 + {1, f2) f2, where o € R. Using the linearity of scalar
product one finds that

(O, 00 = 1, Fa) 1P (@ (o, fr) + 20| {fr, o) |+ (f2, f2)) > 0

for any real constant . Thus the discriminant of the quadratic polynomial
in « in the above formula should be non-positive, which yields Schwartz
inequality.

Finally, the triangle inequality follows form Schwartz inequality. Indeed,

F1+ Foll? = (fr, F)+2Re ((Fr, fo)) +(fas F2) < |IAIF 2010 1 Foll 1) F2l)

Introduction of the scalar product and the norm makes the space metri-
zed. The distance from one element f; to another element f5 can be defined
as the norm of their difference f; — fo. Thus, Hilbert space is a metric space.

The other important property of Hilbert space is its completeness. Con-
sider an infinite sequence of elements {f,}°2,. If for any £ > 0 there exists
such number N that ||f, — fm|| < € for any n,m > N, then the sequence
is called fundamental sequence. The limiting element of infinite sequence is
such an element f° that

lim ||, — f°|| = 0.
n—r 00

Generally speaking, not every sequence has its limiting element, moreover
even not every fundamental sequence has its limiting element. However if
the sequence has the limiting element then it is fundamental. In a Hilbert
space all fundamental sequences have their limiting elements, or in another
words the limiting elements of all fundamental sequences belong to the
space. This property expresses the completeness of the space.

Definition 1 An infinite dimensional linear metrized set L which is a
complete space in the metrics generated by the scalar product is called
Hilbert space.

Besides the Hilbert space L one needs to deal with its linear parts.
Remind that subset I’ of L is linear if for any elements f1,f, € L’ all
the elements a1 f1 + asfs also belong to L’. Such subsets can be also
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characterized by dimension which is defined analogously to the definition
of the dimension of the total space L. The dimension of subset can be
finite or infinite as well. One can construct a linear subset by choosing
some number of linear independent elements f;, j = 1,2,..., n of the space
L and defining L’ as the set of all elements

n
>yl
j:l

with arbitrary complex coefficients «;.

The limiting point of a set I’ C L is such a point f° € L that for any
£ > 0 there exists a point f € L' such that ||f — f°|| < . Adding all
limiting points to the set I’ performs the closure of the set. Below closure
is denoted by overline, that is closure of L’ is L’. The property of the linear
subset to be a closed set is analogous to the completeness of the space. The
closed linear set in a Hilbert space is a Hilbert space itself.

One defines the sum of Hilbert spaces I’ and L’ as the set of elements
f"+ f", where elements f’ and f” are arbitrary elements from the corre-
sponding spaces f' € L' and f” € L”. If such representation is unique,
then the sum is direct.

Two elements f, and fo are orthogonal to each other if (fi, f2) = 0. An
element f is orthogonal to the set L’ if it is orthogonal to all elements of
L’. All the elements of L that are orthogonal to L’ compose orthogonal
compliment (L")t of L' in L

L="r &)
Any element f of L can be represented in the form
F=r+yr ret, et
and such representation is unique. The element f’ is the orthogonal projec-
tion of element f on the set L.

A linear set L' is dense in L if for any element f° of L and any positive
number ¢ there exists an element f of I’ such that

7o =fll <e.

Dense sets play an important role which is described by the following

Theorem 2 If L' is dense in L and every element ' € L' is orthogonal
to some element f°, then f° = 0.
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Indeed, let f be an element from L’ such that ||f° — f|| < e. Then the
element f” = f° — f has the norm ||f”|| < e. Further f° is orthogonal to
any element of L', that is to f as well. Therefore

0=(f = NH+U" 0
that 1s

AP =1 A< - IAT< el

which is true only if || f|| < e. Using arbitrariness of € one concludes that

[|7]] = 0, that is f = 0.

2.1.2 Operators

Now one can consider functionals and operators in Hilbert space. The
functionals and operators are defined on elements of some set D which is
part of the space L. Functionals map the elements from D to complex
numbers and operators transform elements form D to another elements
from some other subset R of the space L.

An example of a functional is the scalar product by some fixed element
f° of the space

a(f) ={f,1°)

and an example of an operator is multiplication by some fixed complex
constant «°

A(f) = a°f.

In this particular case the functional a() and the operator A() can be ap-
plied to any element of the space L. However we consider the domains
of definition D(a) and D(A) to be an inseparable part of the functional
and operator. That is, for example, the functional a1 (f) = || f|| defined on
Dy C L and the functional as(f) = || f|| defined on Dy C L where Dy # D5
are different functionals. Both are restrictions of the functional of norm to
subsets Dy and Ds correspondingly. Similarly operators expressed by the
same formula, but defined on different domains are different operators.

Definition 2 If the domain of an operator As contains the domain of
operator Aj, that is Dy C Da, and As(f) = A1(f), when f € Dy, then the
operator As is the extension of the operator Ay, (A1 C As).
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Oppositely the operator A; is the restriction of the operator As to the
domain D;.

The domain of an operator A is denoted below as Dom(A) and the set
of all elements A(f), where f € Dom(A), is denoted as Res(A). That is
A Dom(A) — Res(A4).

If for any different elements f1, fo € Dom(A) the elements A(f1) and
A(f2) do not coincide there exists an inverse operator A~! defined on

Dom(A~!) = Res(A) such that

ATHA(f) = f, f € Dom(4)
and

AATY)) =F,  f € Res(A).

Below only linear operators are considered, that i1s such operators for

which

Alan fi + asfo) = ar A(f1) + a2 A(fo), a2 €C.

For linear operators A(f) is denoted below as Af.
If there exists such positive constant C' that for any f € Dom(A)

1AA < CliAl

then the operator A is bounded and the minimal possible constant in the
above estimate is the norm || A|| of the operator A.
Any number A for which there exists an element f # 0 such that

Af = Af

is the eigen number of the operator A. The element f in that case is the
eigen element (eigen function) and the set of all eigen elements if the eigen
subspace of the operator. The number of linear independent eigen elements
corresponding to an eigen number X is the multiplicity of an eigen number.

2.1.3 Adjoint, symmetric and selfadjoint operators

Consider the scalar product {(Af,g) where f is arbitrary element from
Dom(A). Let ¢ and g* be such elements from L that

(Af.g)=(f.97) (2.1)
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for any f € Dom(A). Evidently such pairs of elements ¢ and g* exist, at
least one can take ¢ = ¢g* = 0. We are going to introduce an operator
that defines the element g* for every element g. Such operator exists if the
domain Dom(A) is dense in L. Indeed, if Dom(A) is not dense in L, then
there exists an element h which is orthogonal to all elements of Dom(A)
and besides (2.1) the equality

(Af, gy =(f,9" +h)
holds. On the contrary if Dom(A) is dense in L, then if for any f € Dom(A)

(Af, gy =(f,97) and (Af,g) =(f95),

then the element g7 — ¢% is orthogonal to Dom(A), which yields g7 = g¢%.

Definition 3 If Dom(A) is dense in L, then the operator A has its adjoint
operator A*. The domain of A* is the set of all elements ¢ for which ¢*
exists such that (2.1) is satisfied for every f € Dom(A) and

A*g = g*.

It is easy to check that the adjoint operator is linear. Let Ker(A) be
the set of elements from Dom(A) such that

Af =0, if feKer(A).
Theorem 3  The following decomposition of the space holds
Ker(A*) @ Res(A) = L.
Indeed, let f be orthogonal to Res(A), that is for any « € Dom(A)
0=(Aw, f) = (2, A"f)

Due to the supposition that Dom(A) is dense in L the above identity means
that A*f = 0, that is

Res(A)T C Ker(A*). (2.2)
Similarly if f € Ker(A*), then for any € Dom(A)
(Az, f) = <$’A*f> =0,

that is f is orthogonal to Res(A) and the opposite to (2.2) inclusion holds.
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Definition 4 The linear operator A is symmetric if Dom(A) is dense in
L and for any two elements fi, fa € Dom(A) the following equality holds

(Af1, fo) = (i, Afa) .

This definition yields that for any f € Dom(A) the scalar product {Af, f)
is real. If besides

<Af’f>26<f,f>, celR

for any f € Dom(A) then the symmetric operator A is semibounded from
below. Similarly if the opposite inequality holds, the operator is semi-
bounded from above. In particular if

(Af,fy>0,  f€Dom(4)
then A is positive operator.

Definition 5 The boundary form of an operator A is defined by the
formula

I[f, 9] =(Af,9) —(f. Ag).

The boundary form of a symmetric operator is equal to zero and oppo-
sitely if the boundary form is equal to zero on the domain of an operator,
then this operator is symmetric.

Theorem 4 If A is symmetric operator, then its adjoint A* is its exten-
sion, that 1s A C A*.

Indeed, let f1, fo € Dom(A), then

(Afr, fo) = {1, Afa) = (f1, A" fa).

That is Afs = A*fy for any fo € Dom(A), which proves the theorem (see
Definition 2).

In the procedure of constructing selfadjoint extensions of symmetric
operators this theorem plays an important role.

If Aisa symmetric extension of a symmetric operator A, then Dom(g*)
C Dom(A*). Indeed, for the definition of adjoint operator A* one needs to
check existence of g and g* such that (2.1) is satisfied for all f € Dom(A).
This defines Dom(A*). Besides the equality (2.1) should be checked for such
/! that belong to Dom(ﬁ), but do not belong to Dom(A4). As Dom(A4) C
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Dom(A) such elements f' # 0 exist and the condition defining Dom(ﬁ)
appears more restrictive than that for Dom(A).
Combining the above two statements yields

ACAC A C A (2.3)

Definition 6 If A = A* (domains Dom(A) and Dom(A*) coincide) the
operator A 1s selfadjoint.

2.1.4 Extension theory

We start with some auxiliary tools that allow the extensions of symmetric
operators to be described.

Definition 7 A point A is the point of reqular type of an operator A if
(A =X > eI e(A) >0
for any f € Dom(A).

If Ag is a point of regular type, then for all points A such that |A — Ag| <
£¢(Ao) and all f € Dom(A) the following estimate holds

104 =211 2 1A = 20) 1 = A= ol
> cO)llAll = 2ea)llAll = el

That is, the domain of regular type points is open (not closed).
Note also that points of regular type can not be eigen numbers.

Definition 8 The deficiency number of an operator A is the dimension
of orthogonal compliment of Res(A)

def(A) = dim (Res(A)") .
The set Res(A)L is the deficiency subspace of the operator A and any

element of deficiency subspace is a deficiency element.

The deficiency number is stable with respect to small perturbations of
an operator. Namely,

Theorem 5  Let operator A’ be semibounded, that is for any f € Dom(A")
|A'fll > C|Ifll, C > 0, and let operator A” be such that Dom(A’ + A”) =
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Dom(A") and ||A"fI| < «||Af|l, a < 1 for any f € Dom(A’). Then
def(A” + A”) = def(A4").

In order to prove this theorem assume the opposite. First, let def(A’ +
A") > def(A’). That is, assume the dimension of orthogonal compliment
of Res(A’) be less than the dimension of the orthogonal compliment of
Res(A’+ A"). Then there exists a non zero element f° from Res(A’+ A”)L
that does not belong to Res(A’)%. That is, it belongs to Res(A’) and can
be represented as f° = A'x, where x € Dom(A’). Further orthogonality of
f° to Res(A’ + A") yields

0= (Az, (A" + A"x) = ||A'x|)? + (A2, A”x) .
That is
|4 z||? = — (A, A"x). (2.4)
Using Schwartz inequality one finds
[A 2| = [(A'2, A") | < ||A%]| - [|A"2| < af| A%,

Due to & < 1 the above is possible only if ||A’z|| = 0, that is A’# = 0 which
contradicts with f° = A’z £ 0.

Assume now that def(A’ + A”) < def(A’). Then by similar arguments
there exists nonzero element f° € Res(A’)L that belongs to Res(A’ + A”)
and therefore can be represented as f° = (A’ + A”)x. Again its orthogo-
nality to Res(A’) yields

(F°, Alzy = (A" + A" )z, Alz) = ||A/l‘||2 + (A" Az,

which again brings to the equality (2.4) and one concludes A’z = 0. As the
operator A’ is assumed semibounded from below, A’z = 0 yields * = 0 and
fo = (A + A”)x = 0 which again contradicts with our supposition.

Thus, def (A’ + A”) can not be less and can not be greater than def(A’).
The theorem is proved.

Definition 9 The deficiency number in the point A of an operator A is
the deficiency number of A — A,

defy(A) = def (A — )).
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Theorem 6 If A is a connected domain of reqular type points of an oper-
ator A, then the deficiency number defy(A) remains the same in all points

AEA

Prove first that deficiency number does not change if the points are
sufficiently close to each other. Indeed, introduce the operators A’ and A"
by the formula

A—X=(A=X)+(ho—A) =4 + 4"

Theorem 5 says that def(A4) = def(A’) if for any f € Dom(A) holds

[|A” f]] < || A’ f||. This estimate is true if |A — Ag| < ¢(Ag), indeed, due to

Ap being regular type point of A the estimate

(A= 20) fIl > c(Xo)lIf]]

holds and one finds

| Ao — A
c(Ao)

Now let Ay, As be two arbitrary points in A. As A is connected, the

A" A1l = Ao = AL [IF1] < 1Al

path from A; to As can be covered by circles of appropriate radii such that
the above estimate holds in every circle and therefore in every circle the
deficiency number does not change. Walking along this path allows the
theorem to be proved.

Consider now symmetric operators. If A is symmetric, then

(A= X FII? = (Af = A, Af = AS)
= [(A=ReA) f]I* + [ImAP|| £]|* > [Tm AJ*[| £]].

The above estimate means that the upper Ct and the lower C~ half-planes
of A are the domains of regular type points. Thus any symmetric operator
has two deficiency numbers, one in Ct and the other in C~.

Definition 10 The deficiency numbers of a symmetric operator A are
the deficiency indices ny (A).

If a symmetric operator A has a real point of regular type then ny(A) =
n_(A). If no real regular type points exist then the deficiency indices can
be different. Below we deal mainly with semi-bounded operators for which
there exist real points of regular type and therefore the deficiency indices
coincide. Moreover the deficiency indices are finite.



74 Operator methods in diffraction

Theorem 7 If A is a symmetric operator, then any non-real number X is
the eigen number of the adjoint operator A*. The multiplicity of this eigen
number is equal to ny of ImA > 0 and is equal to n_ f Im A < 0.

Indeed, if f is arbitrary element of Dom(A) and g is any element of
Res(A — A)*, then

0={g,(A=N)f)=(A%g—Ag, [).
As Dom(A) is dense in L the latter means that
A*g = Ag.

That is any ¢ € Res(A — X)J‘ is the eigen element of A* and therefore the
multiplicity of the eigen number is equal to the dimension of Res(A — X)J‘.
Examine the structure of domains of adjoint operators.

Theorem 8 (First Neumann formula)

Let A be arbitrary symmetric operator and Ry = Res(A — N1, R_ =
Res(A — A)L, (Im A > 0) be any pair of its deficiency subspaces. Then the
domain of the adjoint operator A* can be decomposed into three parts

Dom(A*) = Dom(A) 4 Res(A — A)* + Res(A — \)*
and the decomposition of any element
f=fo+fr+f, f€Dom(A), fr €Ry, f- € R_
1s unique. Besides
Af = Afo+ M4+ N

Proof. Let f € Dom(A*). Decompose A*f — Af into components in
orthogonal subspaces Res(A — A) and Ry

A=A = (Afo = Afo) + 94,

where fy € Dom(A) and g4 € Ry. Note that g4 as an element of Ry is

an eigen element of A* corresponding to an eigen number X. Introducing

fr=(=XN"'gy and f_ = f — fo — fy and computing A*f_, one finds
AfL =AY f— A*fo — gy = (A*_f— M)+ Mf—Afo— Afy

A
:/\f—/\f0+<1—m)g+:/\f—~
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That is, f_ € Ker(A* — A) and according to Theorem 3 the element f_ €
R_. Thus

f=fo+f++f-, fo€eDom(A), fr € Ry.

Finally, the uniqueness of such representation should be proved. For
this let us check that in the decomposition of the zero element both fo, fi
and f_ are zeros. Suppose that

0:f0+f++f_. (25)

Apply operator A* — X to the above equality
0=(Afo=Af) + (A=X) ft.

The two terms in the above sum are orthogonal, therefore fi = 0. Analo-
gously applying A* — X to (2.5) allows to conclude that f_ = 0. Thus from
equality (2.5) follows that

fo=fr=1-=0,

which concludes the proof.
Introduce a linear operator V defined on Ker(A* — A) and taking values

in Ker(A* — X). In our applications the sets Ker(A* — ) and Ker(A* — )
will be of finite and equal dimensions. In that case operator V 1s a matrix
with complex coefficients.

Consider now an extension A of the operator A. Let this extension be
defined on elements fthat can be represented in the form

F=fo+(I+V)fy.

Comparing this with the first Neumann formula yields

Dom(A) C Dom(A*).
Let A C A*. Then
Af = Afo+ XMy + AV fy

We want A to be symmetric, that is

<Ef,f> _ <f,ﬁf> —0.
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This property after cumbersome, but straight forward derivations yields

el = IV I+l

That 1s the operator Ais symmetric if the operator V preserves the norm*.
Generally speaking, the operator V' can be defined on some subset
Dom(V) of Ker(A* — A) and can have Res(V) C Ker(A* — ).

All the above can be formulated as

Theorem 9 (Second Neumann formula)
If A is a symmetric extension of operator A, then

Dom(A) = Dom(A) @ (I 4+ V)Dom(V),

where Dom(V) C Ker(A* — A) and Res(V) C Ker(A* — X). The represen-

tation

f=h+[++V/it (2.6)

15 unique and
Af = Afo+ My + AV 1 (2.7)

The second Neumann formula by the two equalities (2.6) and (2.7) de-
scribes all symmetric extensions A of a given symmetric operator A. In
particular, if the deficiency indices of the operators A are equal (ny =n_)
there exists a selfadjoint extension A for which Dom(V) = Ker(A*—A) and

Res(V) = Ker(A* — A). And vice versa, if n. =n_ and operator V' is such
that Dom(V) = Ker(A* — A) and Res(V) = Ker(A* — ), then A = A*.

2.2 Space Ly and differential operators

2.2.1 Hilbert space Ls

An important example of Hilbert space 1s the space of square integrable
functions Ls. Let €2 be a bounded or unbounded domain in R”™. Define by
L2(R2) the set of functions f(x) such that |f(x)|? is integrable in Lebesgue
sense [66] in the domain Q. The functions that differ only on a domain of
zero measure are not distinguished as elements of L1 (€2).

*The operators that preserve norm are the unitary operators
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The set L2(£2) is linear set. Indeed, the estimate

|f1+ fol” < 2f17 + 2| fo]?

yields that if f1 € L2(Q) and fa € L2(Q), then fi + fa € L2(2). The
possibility to multiply any function by a complex constant « is evident.
The metrics in L2(€) is introduced by the formula

<f1,f2>:/ﬂf1(x)mdx. (2.8)

The existence of the integral in the right-hand side of the above definition
follows from the estimate

1 1
|fifa] < §|f1|2 + §|f2|2~

Using the properties of Lebesgue integral allows the conditions (1), (2)
and (3) of the scalar product (see page 64) to be checked. The norm of a
function is defined as

1=/ [ 17
Q
The Riesz—Ficher theorem [65] establishes the completeness of the space
La(9).

Theorem 10 (Riesz—Ficher)

Let a sequence of functions {f;}52,, f; € L2(Q2) be such that for any e > 0
there exists number N (¢) such that ||fi — f;|| < e for any i,j > N(¢). Then
there exists such function f* € L2(Q) that ||f; — f*|| = 0.

Thus the space L2(£2) is a Hilbert space and the theory briefly presented
in Section 2.1 can be applied. Further the following fact is needed.

Theorem 11  For any function f € L2(Q) and any ¢ > 0 there exists
infinitely smooth function ¢, such that ||f — ¢|| < e.

The proof of this theorem requires some auxiliary tools to be introduced.
For any function f € L(£2) consider the mean function

ort0 = i [ (B20) s, 29)

where w(t) is the kernel possessing the following properties
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e the function w € C*°(R");
e if |t| > 1, then w(?) and all its derivatives are equal to zero;
e the function is normalized by the condition

/w(|x|)dx: 1. (2.10)

The particular formula for the function w(t) is not important. One can take
for example

1
oy =4 € (ﬁ) i<t

0, 1> 1.

The constant C' depends on the dimension n of the domain €2 and is chosen
such that the normalization (2.10) holds.

One can easily check that the mean functions ¢p (x) defined by the for-
mula (2.9) are infinitely smooth (¢, € C*). Indeed, one can change the
order of differentiation and integration and apply differentiation to the ker-
nel w(|x—x’|/h). This is approved because the integral converges absolutely
(see [64]).

Consider the difference f(x) — ¢5(x). Evidently this difference can be
written in the form of integral

£~ pnl) = i [ ('X ;X") (£6x) = 7))

The integration in the above formula takes place on the whole space R”,
but can be restricted to the ball |[x — x'| < h because outside this ball the
kernel is identically equal to zero. Then, using the Schwartz inequality (in

the case of La this inequality belongs to Bounyakovskii), one finds

|f_§0h|2§h% / |f(X/)—f(X)|2dX//w2<|X7lx|)dxl.

|x'—x|<h

Introducing new integration variable y = h=!(x —x’) in the second integral
yields

C
foel <5t [ ) - e,
|x'—x|<h
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where
4 :/w2(|y|)dy.

Integrating the last inequality and changing the order of integration
yields (here x” = x' — x)

C
1=l < 5k [ ax” [ 1reex) - s Pax

x| <h Q
Further, we base on the following theorem [66], [62]

Theorem 12 If f € L3(S2), then for any € > 0 there exists (g) > 0 such
that

/ﬂ Fxty) = F(x)Pdx < ¢

when |y| < §(e).

By appropriate choice of A = §(g) the inner integral can be made less
than any given e. Therefore, introducing constant C as the volume of a
unit ball in R™, one finds

016
hn

1F = onll? < / dx" = ) Che,

|x”|<h

Due to arbitrariness of ¢ this estimate proves the theorem 11.

The theorem 11 allows many properties to be checked only on functions
from C'* which compose a dense set in L2(£2). Moreover it is sufficient
to use only polynomials and even polynomials with rational coefficients.
Below we shall use other dense sets C§° and C§°(€2). These sets are sets
of functions from C'* that have finite support S and in the case of C§*(£2)
the support S is entirely inside the domain 2. To prove the fact that such
sets are dense in Lo requires only to check that these sets are dense in C'™
in the metrics (2.8) which can be easily done.
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2.2.2 Generalized derivatives

Let f € Ly(82). Consider function ¢ continuously differentiable and identi-
cally equal to zero in a vicinity of the boundary 9€2. Introduce notation

Dt o

= R Ty
ot oae (0Tl )

If f is differentiable, then the formula of integration by parts in 2 reads

/fDZgodx:(—l)z/goszdx.
Q Q

The integral over the boundary 02 is not presented in the above formula
because ¢ vanishes in a vicinity of the boundary.
The above formula defines the generalized derivative, namely

Definition 11  Let f and f/ € L2(Q) and

/fD‘godx:(—N/f’godx (2.11)
Q Q

for any ¢ € C§°(Q). Then f' is the generalized derivative of order {¢;} of
function f (f' = D'f).

One can check that the generalized derivative is unique. Indeed, sup-
posing that (2.11) holds for f{ and f4 and subtracting the two formulae
yields

/(f{—fé)sodx:O

This identity expresses orthogonality of f] — f4 to any ¢ from a dense
set C§°(82) in L3(2). Therefore theorem 2 of section 2.1 concludes that
fi— 4 =0, That is, f{ = f}. If function f is differentiable in a usual sense
then the usual derivative and the generalized derivative coincide up to a
function equivalent to zero.

The usual rules of differentiation can be checked applicable to calcu-
lation of generalized derivatives. In particular the operator of generalized
derivative is linear. Combining generalized derivatives one can define any
generalized differential operator with constant coefficients. Below we con-
sider harmonic A and bi-harmonic A? operators.
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2.2.3 Sobolev spaces and embedding theorems

Define now special subsets of the space L3(£2). Let W£(Q) be composed of
all functions f € L2(Q2) that have all generalized derivatives of orders up
to ¢ and all these derivatives belong to L2(£2). The sets W4 () are Hilbert
spaces with the scalar products defined by the following formula [49]

o h O fa
) = dx.
(1 J2)e /Z Z 3931“ Oz 3fo1 Oz *

k=0 ki,...kn

The Hilbert spaces W4 ({2) form the sequence
Ly (Q2) D W5 () D W5 (Q) D

Each of these spaces contains C§°(2) and thus each W(Q) is dense in
WE(Q), k< €.

The spaces W£(Q) are the maximal domains where differential operators
of order £ can be defined. In particular the harmonic (Laplace) operator can
be defined on function from WZ(£2) while bi-harmonic operator A? can be
defined on W3 (). However having in mind that domain of operator is its
inseparable part, below we consider operators A and A? defined on different
subsets of corresponding spaces. In particular additional conditions that
define these subsets can be the boundary conditions on 9. The types of
boundary conditions that can be used are described by embedding theorems
[66], [62], [49]. We remind that functions that differ only on sets of measure
zero are not distinguished as elements of W4 ().

We present only two embedding theorems. The domains 2 are assumed
in R™.

Theorem 13 If f € WE(Q) and € > n/2, then there exists an equivalent
funetion f € C(2) and

m€X|f| <O fllwe oy
where constant C' does not depend on function f.

Theorem 14 Let f € Wi(Q), n > 2¢ and S is any smooth section of
having dimension s with s > n— 2{. Then f € L2(S) and

1llzzcs) < Clifllwea

where constant C' does not depend on function f.
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The section S in the above theorem can consist of a finite set of domains
S = Zj S; such that every domain S; can be transformed to flat domain
in R? and the coordinate transform is expressed by C’Z(Sj) functions. This
section can be the boundary of Q as well.

The last theorem in particular confirms that in two or three dimensional
boundary value problem for a differential operator of order £ in a domain
with not too bad boundary the boundary conditions can be specified for
any derivative of order up to £ — 1.

2.3 Problems of scattering

Here from the general point of view of operator theory in Hilbert space
we examine the problems of scattering by bounded domains formulated in
Chapter 1T, These problems deal with harmonic and bi-harmonic operators.

2.3.1 Harmonic operator

One can start with the operator that corresponds to the problem without
a scatterer. In the case of acoustic waves in a half-space bounded by an
absolutely rigid screen such operator is a harmonic operator. In the case of

~of.
2=0

In the case of two-dimensional problem (that is when neither the incident

three-dimensional scattering problem it is

oU
Az = A, DOHl(A) = {U c W;(Ri), 8_2

field nor the obstacle depend on y co-ordinate) the operator is

=0}
2=0

One can easily check that the above operators are selfadjoint in the
corresponding spaces LQ(REI;_) and LQ(R?I_). Indeed, first check that Az and

dU

As = A, Dom(A) = {U € W3 (R3), -

tGenerally speaking, the connection of the problems of scattering and operators in
Hilbert space is not that simple. Rigorous mathematical explanation of how radiation
conditions appear instead of square integrability lies outside the scope of this book.
Interested reader can be addressed, for example, to monographs [50] and [54], see also
Section 3.1
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As are symmetric, that is the boundary form of these operators vanishes
I3[U, V] = (AsU, V) = (U, AsV) =0

and
LU, V] = (AU, V) = (U, AV} = 0.

This evidently follows from integration by parts. Secondly, one can calcu-
late the deficiency indices (see Definition 10). This requires finding square
integrable solutions of the equations

Afy =Fify

which evidently are only zeros (f+ = 0)*. Thus deficiency indices are equal
to zero and the operators are selfadjoint.

Consider now the case when an obstacle is presented. Let this obstacle
occupy domain €2 with a piecewise smooth boundary. This domain can
consist of a set of connected pieces attached to the rigid screen or separated
from it. Let 9 be the part of the boundary of € which lies outside the
screen. The formulation of the scattering problem requires some boundary
conditions to be fixed on 9. As it was shown in Chapter 1, physically
correct boundary conditions should bring to the inequality

Im (/6 U@ds) > 0. (2.12)

o) 671

This inequality is a particular case of (1.17) when w = 0.

We consider further only such obstacles that do not absorb energy, that
is (see Section 1.3.4) the equal sign is assumed in (2.12). One can check
that the operators A defined on functions U € W2 (RiS\Q) that satisfy the
correctly set boundary conditions on 92 are selfadjoint. Again the bound-
ary form of the corresponding operators vanishes due to the integration by
parts and thus the symmetry property is established. Further, due to the
uniqueness theorem proved in Chapter 1 the kernels of the operators are
empty.

+Solutions of these equations are any combinations of functions
exp <eim/4x cos 19) cos <eiiﬂ'/4z sin 19)

with arbitrary complex angle 9. However these functions do not belong to Ly (Ri)
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2.3.2 Bi-harmonic operator

Consider now the bi-harmonic operators. The operator that describes the
wave process 1n the absence of an obstacle is the selfadjoint operator

By = A?, Dom(B) = W3 (R?).

This follows from integration by parts similarly as in the previous section.

In the case of an obstacle Qg presented in the plate two boundary con-
ditions should be specified on the surface 9€2y. These conditions make the
operator selfadjoint if satisfy the condition (1.44) with equal sign. Indeed,
the boundary form of the bi-harmonic operator defined on functions that
do not satisfy any conditions on the surface of the obstacle can be reduced
to

Ows - 0
Tlwy, ws] = / (lew_2—|—Mw1 o wiFws — -

81/ 6—1/sz) ds

800
+ Z (chlw_2 — wFows)

If the boundary conditions are such that Eg = 0, where Efq is defined in
(1.44), then T[wy, w2] = 0 and the operator is symmetric.

Now we check that in fact this operator is selfadjoint. For that we
calculate deficiency elements and find that they are trivial. In Section 1.3.5
the uniqueness of the solution was studied for the case of real values of kg.
However for complex wavenumbers proof of uniqueness 1s a simple matter.
One assumes that two different solutions exist and considers the equation
for their difference w = w; —wy. Then the equation is multiplied by w and
is integrated over the domain in IR? bounded by the surface of the obstacle
and the circumference Cg of large radius. Applying Green’s formula in this
domain and using the boundary conditions on 9€2y yield

// |Aw|?dz dy — ké/ |w|*dx dy = 0.

When computing deficiency elements one takes k¢ with nonzero imaginary
part. Then the above equality is possible only if w = 0. That is, homoge-
neous equation has only trivial solution and therefore deficiency indices of
the operator are equal to zero. That proves that the operator is selfadjoint.

The example of configuration presented in Section 1.3.6 that allows ex-
istence of solution of homogeneous problem corresponds to an eigennumber
on the continuous spectrum of the operator.
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Consider the case of a plate cut along the straight line {# = 0}. The
bi-harmonic operator of the problem without an obstacle is defined in the
following domain

Dom(B.) = {w € W5 (RY) & Wi (R2) : Fw|p=40 = 0, Mw|s=40 =0} .

Note that second and third order derivatives presented in Fw and Mw
belong to La space on the sections = +0 which follows from the fact that
if w € Wim then Fw € W} and Mw € W4 and by embedding theorem 14
these functions belong to Ly on any one-dimensional section.

Actually the operator B is the sum of two operators Bf and B . The
first acts in Ly(R%), the second in Ly(R2). Bach of these operators is
selfadjoint. In the presence of an obstacle 25 the boundary conditions on
9 can be set in such a way that interaction of the operators Bf and B
appears. One can check that selfadjoint operator appears if the boundary
conditions satisfy the equality

_ ow _
Im /(Fww—l—Mw@—y) ds—i—Zch =0.

o

The corner points where 9y intersects the crack {# = 0} should be in-
cluded in the sum in the left-hand side of the above equality.

2.3.3 Operator of flurd loaded plate

Consider first the case of two-dimensional model. The behavior of the me-
chanical system consisting of acoustic medium occupying half-plain }Ri and
elastic plate on its boundary IR is characterized by two functions: acous-
tic pressure U(wz,z) and displacement of the plate w(z). Therefore the
operator should act upon pairs of functions U = (U(l‘, ), u(x)) The first
component U(z, z) is a function from the Hilbert space Ly(IR%). The second
component u(z) is from L2(R). The total Hilbert space is

L= Ly(R}) & La(R)
with the scalar product
UV ={U,VY+ 0O {u,v).

(We use the same notations for the scalar product in the total space and
in its components. These scalar products are distinguished by their argu-
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ments.) Here O is a positive parameter. It is convenient to choose (see
page 102)
ohey
0= 3 (2.13)

For convenience of physical interpretation the functions U (z, z) and u(x)
can be chosen such that they represent natural physical characteristics.
For the first component we use acoustic pressure U(z,z) and the second
component u(z) is taken proportional to flexural displacement w(z).

First, consider problems that describe wave processes in acoustic medium
and elastic plate separately. The operators that act upon U(z, z) and u(x)
are correspondingly harmonic operator A, = —A and bi-harmonic operator
By = d*/dz*. The operator A, is defined on functions from WZZ(R?I_) that
satisfy the Neumann boundary condition, that is

Dom(As) = {U € W3 (R2), % = o} :

The domain of the operator By is Dom(B;) = W3(R). As it was shown
in the previous section the operator As is selfadjoint. The operator Bj is
ordinary differential operator and it can be easily checked to be selfadjoint,
too.

Combining these two operators yet without interaction yields composite

(A0
Ho = ( 0 B )
that is defined on pairs of functions from Dom(A3) & Dom(B;). In order the
equations in the components of the spectral problem coincide with (1.10)

operator

and (1.11) describing wave processes in acoustic media and in the plate
respectively, one composes the matrix operator pencil

. 1 oh
_ 2 _
Hold = w AU Ao_dlag<cz, )

a

Note that it is possible to invert the operator Ay and rewrite the spectral
problem for the operator pencil as ordinary spectral problem for symmetric
operator

D
dlag (CiAz, —Bl) .
oh
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To introduce interaction of wave processes in acoustic medium and in
the plate one restricts the operator As to functions i whose first com-
ponent satisfies also the Dirichlet condition on {# = 0}. The resulting
operator is denoted below as A$. The domain of the adjoint operator (A$)*
is composed of functions from Dom((A$)*) = W§(R3) with no boundary
condition imposed on {z = 0}. According to the Neumann formula the
selfadjoint extensions of the matrix operator H§ = AS & By are defined on
pairs of functions from Dom((A$)*) @ Dom(B;) that satisfy an additional
linear restriction. The noninteracting operator appears, if one introduces
restriction involving only the first component U(z, z). If both components
are involved into the linear restriction, then interaction of wave processes
in the plate and in the acoustic medium appears.

Let the operator II that takes the trace of function defined in }R?I_ on the
boundary R be introduced

MU (x,z) = U(x,0).

The embedding theorems say that the operator I1 is bounded as an operator
from W3 (R2) to Ly(R). Having in mind the adhesion condition let the
following restriction on the elements U be set

AU (x, z)
P

u(z) = a

The domain of the operator that describes interacting acoustic medium and
elastic plate is the following

Dom(H) = {U c U e WH(RY), ue Wi (R), QH%_Z = u} )

The interaction in the operator is given by nondiagonal terms. Let this
interaction be introduced in the operator Ag, namely let

1
- 0
A= Ca h
e 4
T =
b D

The parameters o and B should be chosen in such a way that the operator
H — w?A is selfadjoint in £ and that the last equation coincides with the
generalized boundary condition (1.13) on the plate. However it is more
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convenient to invert the matric A and consider the operator

—c2A 0

Ho = D d*
D
oh dz?

with the same domain Dom(#H2) = Dom(#). The spectral problem for the
operator Hs can coincide with Helmholtz equation in the first component
and with the boundary condition (1.13) in the second component only if
frequency w is involved into the parameters a and . Namely, one finds

2

o oh

B oow

The other equation that together with the above one fixes the parameters
a and F in a unique way appears form equating to zero the boundary form
of the operator H,. By integrating by parts one finds

oV oU
— (-2 _ - =
Ta, U, V] = (2 — ©af) / (U R v) da.
R

The boundary form 1s zero for any U and V, if the parameters satisfy the
condition

Finally

o D —1 o \/DQO
a=4]/—w ", 8= w.
€o oh

That is the operator describing vibrations of fluid loaded plate takes the
form

N TAY 0
Ho = DQOW D d* (214)
oh oh du*

and is defined on

/D1 _oU
Dom(#2) = {u: UeWiRY), ue Wi(R), o 6—Z:u}.
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Note that the parameter w? which is taken usually as the spectral parameter
appears involved in the definition of the operator. This can be corrected if
the scheme of [21] is used. We describe this scheme briefly in Section 2.3.4.
However this scheme introduces nonphysical objects and the structure of the
operator becomes more complicated. Besides, it is difficult to be generalized
to the case of three-dimensional problems of scattering.

Consider now problems of scattering that do not contain symmetry and
can not be reduced to two-dimensional problems. In that case the functions
introduced above get dependence on y co-ordinate. That is

L= Ly(RY) & Ly(R?).

All the derivations performed above for two-dimensional problems can be
repeated. Finally, the selfadjoint operator describing vibrations of fluid
loaded thin elastic plate can be written in the matrix form

—c2N 0
Hs = DQowH 2A2 (2.15)
oh oh

with the domain

Dom(?—lg) = {L{ U e W;(Ri)’ = W;(RZ)’ &2 1H8U —u}.

ow 0z

The operators H for two and three-dimensional problems are composed
of two differential operators that describe wave processes in the acoustic
medium and in the plate separately. This block structure is inherited by
the selfadjoint perturbations of these operators constructed below.

2.3.4 Another operator model of fluid loaded plate

The approach first suggested in [21] and then developed in [12] uses more
complicated two component function, but yields the usual spectral problem
for the operator rather than for operator pencil. It is applicable only in two-
dimensional case. One introduces ¢ = (U, v) and considers the operator

—c2AU
Hi= | o0 &2 D & (2.16)
O T e 22,
oh dz? oh dz?
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with domain
Dom(H) = {U € Wi(R?),v € WI(R),

D ou (2.17)

€0 1" 2
—MU 4+ —v" =1I— e W5 (R) ;.
By 4 D =5 e wim) |
In [21] the operator H is proved to be selfadjoint.

The boundary-value problem of acoustic wave diffraction on a homoge-
neous elastic plate can be rewritten as the spectral problem

HU = w’U.

It is essential to note that the frequency w 1s not contained in the formula-

tion of the operator and the above problem is a classical spectral problem.

Nevertheless the models of Section 2.3.3 which deal with physical objects

in the channels of scattering are mainly used in the book. Afterwards
reformulation can be made using the formulae

1

v=—w
w2

D
//’ w:_v//+9_0

.
oh oh v

The operator (2.16) is used in Section 4.4.

2.4 Extensions theory for differential operators

Operator extensions are described by Neumann’s second formula (Theo-
rem 9). However when dealing with differential operators it is more con-
venient to characterize the domain of operator extensions by fixing some
kind of “boundary” conditions. We consider such selfadjoint perturbations
that deal with “boundary” conditions fixed in one point #. They say that
such conditions correspond to the zero-range potential and the point where
these conditions are formulated 1s the force center of the zero-range poten-
tial. (For more general cases see [2] and the list of references presented
there). The general scheme for the construction of such selfadjoint pertur-
bations consists of two steps [58]. First the original selfadjoint operator is
restricted to such functions that vanish in a vicinity of some point M which
then becomes the potential center. Closure of such restricted operator is
a symmetric operator with equal and finite deficiency indices. The second

§A more complicated example is presented in Chapter 4.
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step of the procedure is in the description of all selfadjoint extensions of
the restricted operator. One can perform this extension according to the
Neumann’s formulae, but then the domain can be described in terms of
local asymptotic decompositions. In the following sections we present this
scheme for harmonic operator in half-spaces }R?I_ and Ri’_, for bi-harmonic
operator in R?, for the operator describing vibrations of fluid loaded plate
and for the operator corresponding to a plate cut by an infinite straight
crack.

2.4.1 Zero-range potentials for harmonic operator

Zero-range potentials were first introduced by Fermi in early 30’s. He fixed
the value of the logarithmic derivative of wave function in a chosen point
(potential center). Rigorous mathematical analysis of zero-range potentials
in [29] shows that the “boundary” conditions formulated for the logarithmic
derivative of the wave function correspond to some selfadjoint perturbation
of the initial harmonic operator. Further development of the zero-range po-
tentials technique was carried out both by physicists and mathematicians.
For the current state of the theory see [2]. The zero-range potentials for
the harmonic operator are constructed and used for modeling narrow slots
in [59], [69], etc.

Consider first two-dimensional problems. One starts with the harmonic
operator As in a half-space (z,z) € Ri. As noted in Section 2.3.1 this
operator is selfadjoint. Restrict now this operator to such smooth functions
that together with all derivatives vanish near the origin x = z = 0. The
closure of this restricted operator domain in the metrics of W gives

ou
0z

=

Dom(A$) = {U € W3 (R3), =0, U(0,0) = 0} : (2.18)
0
Note that there is embedding of WZ(IR?) to the space of continuous func-
tions and therefore the last condition is sensible.
The operator A = —A on Dom(A$) is symmetric. Tts deficiency indices

are equal to (1,1). Indeed, deficiency elements G1 are such elements that
are orthogonal to Res(A§ + ¢), that is

/ Ge(x,2) (A £ U(x,z)dedz=0

2
L
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for any U € Dom(A$). Integrating by parts yields

/U(x,O)aGi@i(:’o)dx—l—// U(x,z) (A +4) Gy (x, z)de dz = 0.

+

Due to arbitrariness of the function U(x, z) one concludes that

9G4 (x,0)

P =0, z#£0

and
(A+{) Gy =0, (z,z) # (0,0).

The above equations are satisfied for the functions
Gy(w,2) = %Hél) (6”/4\/ z? + 22) ,
G_(z,7) = %Hén (632'77/4 =m 22) .

These are the only nonzero elements that satisfy to the above equations
and belong to the space Lo(IRY).

Now the adjoint operator can be constructed. According to the first
Neumann’s formula (see Theorem 8) the domain of this operator can be
decomposed into the sum of Dom(A$) and two one-dimensional lineals
Ry ={aCGy, a € C} and R_ = {pG_, 5 € C}.

The second step of the procedure is in setting appropriate restrictions
on the domain Dom((A$)*) involving elements of the lineals Ry, that is,
in defining unitary operator V from the second Neumann’s formula (see
Theorem 9) that acts on R4 and maps it on R_. Evidently that in the
considered case of one-dimensional lineals Ry the operator V is simply
multiplication by €, Im@ = 0, that is 3 = ¢'’a. Therefore the domain of
the selfadjoint perturbation A4 is specified as follows

Dom(A%) = Dom(A3) + a (G4 +€PG_).

For differential operators the elements from Dom(.A9) can be more conve-
niently pointed out by their local asymptotics in a vicinity of the potential
center. The asymptotics of Bessel functions of the third kind (see [1]) for
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small argument yield (here Cg is the Euler constant)

(G+—|—ei€G_)~—c%ln(r)—i—b—l—...,r:\/xz—l—zz—)O,

c= (1+ei9), b= (1—|—ei€) %(1112—CE) — (1—6i€) i

Direct calculation shows that for any real parameter @ the coefficients ¢ and
b are proportional to each other with real coefficient

b=5¢, ImS=0.

There is one to one correspondence between parameters  and S

1 sinf

1
§=2n2=Cr) - g9 s

i—X 4
6= —_— X=45—-—=(In2-CEg).
arg<i+X), —(In2 - Cir)
Therefore real parameter S can be used for the parameterization of selfad-
joint perturbations of operator As. Namely, domain Dom(.A3) consists of
functions belonging to W3(R3 \ {0}) that have the asymptotics

1
U~C<—;1HT+S) +O(1)a r— 0. (219)

the operator A5 acts on smooth functions as Laplace operator and on
singular functions g1 as the multiplication by +z. That is

ASU = AU’ —icgy = AU" +icg_,
where
U'=U — cgy € Dom(As), U" =U — ¢g_ € Dom(A3)

and ¢ is the coefficient from (2.19).

Note that one can come to the above parameterization directly by ex-
amining the boundary form of the adjoint operator. This approach is used
below for the construction of zero-range potentials for harmonic operator
Az and for bi-harmonic operator Bs.

Consider the case of three-dimensional problem. Again the initial oper-
ator As is restricted to functions that vanish at the origin. The deficiency
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indices are again equal to (1,1) and the deficiency elements satisfy the
equations

9G4 (x,y,0)

92 =0, (x’y);é(()’())

and
(A+{) Gy =0, (z,y,2) # (0,0,0).

The asymptotics of functions from Dom((A$)*) can be found directly from
these equations

11
Un~c—-+b+o(l), r=+vx2+y2+22 0.
2 r

Consider the boundary form
((A3) U1, Us) = (U, (A5)"Un) = c1b2 — b1z
Here ¢y and by are the coefficients of the asymptotics of function U; and
¢a, ba are the coefficients of Us. Now restrict A§ to selfadjoint operator
A5 which is a perturbation of A3 with zero-range potential. The boundary
form is equal to zero if the functions U; and U satisfy the asymptotics

11
U~c<%;+5)+0(1), r—0 (2.20)

where S is any real parameter (including infinity, which corresponds to
¢ =0 and ¢S arbitrary).

Thus, the selfadjoint operator A3 is defined on functions that satisfy the
asymptotics (2.20). On smooth functions it acts as Laplacian and singular
functions g1 it multiplies by +e.

2.4.2 Zero-range potentials for bi-harmonic operator

Zero-range potentials for bi-harmonic operator were first considered in [39].
Their construction can be performed according to the general scheme de-
scribed in the previous section.

Consider first the case of one-dimensional isolated plate. In that case one
deals with an ordinary differential operator and its perturbations are pa-
rameterized by classical boundary conditions. However, for convenience of
further constructing zero-range potentials for the operator Hs, introduced
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in Section 2.3.2, we present here the analysis of selfadjoint perturbations of
the operator d*/dz* according to the general scheme.

One restricts the operator to functions that vanish near {x = 0} and
after closure in metrics of W gets

47
Dom(B?}) = {u € W;(R) : Wu(o) =0, 7=0, 1,2,3}. (2.21)
X

The adjoint operator is defined on functions from Wi (IR,) & WiH(IR_). For
these functions boundary values at = 0 can be considered and boundary
values for the derivatives up to the third order are defined (see embedding
theorem 13). The particular zero-range potential is defined by setting linear
constraints for those values. Consider the asymptotic decomposition of

function from Wi (R\{0}) when = — £0

: 3 2 3
CBSlgI;(x) +62%+C1%4—60%4-504-51354-52%4-53%4-. .. (2.22)
The formula (2.22) is simply the Taylor decomposition for two functions
defined on positive and negative semi-axes. The terms with the coefficients
¢; form singular part u® of the field, the other terms are regular. The forth
order derivative of functions having the asymptotics (2.22) is a combination
of the generalized functions

30" (z) + 20" (x) + 16" (2) + cod(x)

and regular terms.

The zero-range potential can be characterized by the condition for the
terms of the asymptotics (2.22). To find the class of conditions one examines
the boundary form of the operator (B3)*

Zlu, o] = (=17 ()i (0) - bi()e; () ) - (2.23)

7=0

Let ¢ = (co,—c1,c2,—c3)T and b = (bg, by, bs,b3)T (Here and below T
stands for the transposition of vector). Then the above boundary form is
zero for any u and v and the operator is selfadjoint provided vectors ¢ and
b are related by some Hermitian matrix S

b = Sc. (2.24)
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We denote this selfadjoint perturbation of operator By as By . Evidently the
representation (2.24) exists not for all classical boundary conditions. One
should permit infinitely large values for the elements of the matrix. For
example classical point model of crack in an elastic plate is characterized
by the boundary conditions

w”’(£0) = w"'(£0) =0 .

For the coefficients of the asymptotic expansion (2.22) these conditions
reduce to

" (£0) = i%l Fby=0,  u"(£0) = i%o tbs =0,
that is cg = ¢; = b3 = b3 = 0. If one formally accepts that co - 0 is any

finite number then the boundary conditions on the crack are equivalent to

(2.24) with

* ¥ O O

0
0
*
*

* *
* *
00 %
* 00

where asterisks denote arbitrary numbers.

Description of the domain in the form (2.24) permits to calculate the
number of parameters that uniquely define the zero-range potential. The
number of parameters is equal to the dimension of the space of Hermitian
matrices in C*, that is to 16.

Consider the operator By and construct its selfadjoint perturbations
of the zero-range potential type. Again restrict this operator to smooth
functions that vanish near the origin. Closure yields

0 Ju 0,0 Ju 0,0
Dom(8) = {u € (e, (0,0 =0, 200 =, 20—,
9*u(0,0) 0 9*u(0,0) 0 9*u(0,0) 0
dx2 7 dxoy T oyr |7

Embedding theorems confirm that the above conditions are sensible for
functions from Wi (R3).

The adjoint operator (BS)* is defined on such functions that may have
singularities in the point (0, 0). These singularities are due to the deficiency
elements of the restricted operator BJ. In order to find the deficiency
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elements one considers the scalar product {BSu, g+) which is equal to zero
for any u € Dom(BS). Integrating by parts in this equality yields

(A +i) g =0,  (w,y) #(0,0).

These equations have the following solutions

= ez’;/4 (Hél) (e”/gp) B H((Jl) (esm/sp)) ’

dg+ Og+ g+ 0’9r g4

Ox ' Oy’ 0x2’ 0x0y’ Oy?

and
632'71'/4 (1) ( 3 )
im/8 _ (1) 7in/8
g (7 (270%0) = 1 (777%)).
99— D9- 09— O%g- Og-
Bz’ Oy’ 0x?’ Bxdy’ Oy

Higher order differentiation causes non square integrable singularities to

g =

appear.

That is, there are six deficiency elements corresponding to the spectral
parameter ¢ and six deficiency elements corresponding to the spectral pa-
rameter —¢. The deficiency indices are (6,6) and the domain of the adjoint
operator 1s composed of functions that can be represented in the form

i+5=2 i 7 i+5=2 i 7
0 0 0 0
w=wr 3 () (57) e+ S () (7)o
i,j=0 i,j=0

where uy € Dom(B$) and «;;, (3;; are arbitrary complex constants. As
previously let the functions from Dom((B$)*) be specified by their asymp-
totics as p — 0. Using the asymptotics [1] of function Hél) it is not difficult
to find the general form of the asymptotic decomposition of a function from
Dom((B$)*), namely

U~ Co_opz Inp+ Cl—oplnpcosgo—l— Co—lplnpsingo
8T 4 4
+ 22—7: (lnp—l—cos2 go) + Zl—;cosgosingo
¢ .
+ ﬁ (lnp—l—sm2 go) ~+ boo + brgpcos @

. b
+ bp1psin e + %pz cos?
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b
+ by1p? cos psin @ + %pz sin? ¢ 4 o(r?) (2.25)

and c¢;;, b;; are arbitrary complex constants.

The selfadjoint perturbation of the original operator By can be con-
structed by introducing a unitary operator V that maps the lineal of ele-
ments * T g, /0x'0y’, i+ j < 2 onto the lineal of elements §"+7 g_ /x Oy’ |
¢4 7 < 2. In the basis of the pointed out elements this operator is repre-
sented by unitary 6 x 6 matrices. Another parameterization involves the
coefficients ¢;; and b;; of the asymptotics (2.25). Let such conditions be
fixed in the form

(boo, b10, bo1, bao, b1, boz)T = S (co0, —€10, —Co1, €20, €11, Coz)T . (2.26)

The class of possible matrices S can be found directly by equating the
boundary form to zero

T(u,v) = 3 (=1 (eg5()big(0) — bij (wei (0] ) = 0.

i3

Therefore matrix S should be Hermitian.

When studying perturbations of harmonic operator, we allow parameter
S to be equal to infinity which corresponds to ¢ = 0, that is to the original
operator As or As. Similarly for bi-harmonic operator perturbations the
matrix S can contain infinitely large elements. That is, one can apply
arbitrary permutations of ¢;; and b;; and form two vectors ¢ and b such
that

~ ~

Cij =¢ij, by =biy  or Gy =bi, bij =y
Then the selfadjoint perturbation is fixed by Hermitian matrix
b= Se. (2.27)

In the nondegenerated case the parameterizations in the form (2.26) and
in the form (2.27) are equivalent, but if the matrix S is degenerated then
infinitely large elements appear formally in the equation (2.26).

2.4.3 Zero-range potentials for flurd loaded plates

The zero-range potentials for the components of the matrix operator H
are defined in sections 2.4.1 and 2.4.2. Now the zero-range potentials for
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the matrix operator itself can be constructed. The idea is in replacing the
operators As and d*/dx* or A3 and By by the corresponding operators
with zero-range potentials in the matrices (2.14) or (2.15). However the
procedure used in Section 2.3.3 does not preserve the zero-range potentials.
Indeed restricting the operator A5 (or A3) to functions that satisfy the
Dirichlet boundary condition on {z = 0} brings to the same operator A$
(or A3) as in section 2.3.3. Therefore we apply the restriction-extension
procedure directly to the operators Hs and H3. However, it i1s useful to
notice objects that appear in sections 2.4.1 and 2.4.2 for the zero-range
potentials of operators in components of Hs and Hs.
Consider the restricted matrix operator #§ with the domain
ou

Dom(H3) = {U (U e W3 (RY), ue Wi(R), a]‘[a_ —u,
z

47
U(0,0) =0, —u(0) :0,j:0,1,2,3}.

dzxJ

This domain is obtained by setting constraints to the domain Dom(#) in
the manner similar to (2.18) and (2.21). By direct calculation the deficiency
indices of the operator H9 can be found equal to (5,5), that is to the sums
of the deficiency indices for the components of the operator. The domain
of the adjoint operator (H$)* is the sum of Dom(H$) and linear span of
the deficiency elements. One can find that these deficiency elements (as
generalized functions) satisfy the equations

—E2A 0 e ed(x)d(z)
20 _ 3 :
00 pDat |9-w9=1| p di
S =220 — ) ¢;—d(x)
oh oh dz* oh ]Z:% ! dad

with arbitrary constants ¢ and ¢; in the right-hand side. Consider first the
deficiency element that corresponds to ¢ = 1, ¢g = ¢1 = ¢ = ¢3 = 0. This
deficiency element G = (G, ¢) has singular component G and regular com-
ponent g. The singularity of G can be shown the same as in the deficiency
elements G4 of the harmonic operator Af studied in section 2.4.1. Namely,

1
G~——Inr+b+... r— 0.
T

The deficiency element Gy = (Glo, go) which corresponds to ¢ = ¢y = ¢2 =
cs = 0, ¢g = 1 has regular component Gy and singular component gg.
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The singularity of gy appears the same as the singularity of the deficiency
elements of the operator B, namely

1 z3
g0~ﬁ|l‘|3+boll‘+bozg+, xr — 0. (228)

Other deficiency elements corresponding to nonzero cj, ¢y or ¢s can be
obtained by differentiation of Gy. All these deficiency elements have regular
components G; and the singularities in the components g; are the same as
in the deficiency elements of the operator BY. All the mentioned above
properties of the deficiency elements follow from the well known fact that
singularities of solution are defined by the principal part of differential
operator. However more precise asymptotics of the deficiency elements
will be needed in Chapter 3, so exact expressions for these elements are
presented below.

4 14
G(x,z;w): = / ixr—/AR: A kod/\

L) (2.29)
g(z;w) = 271'\/@70/ oy
Gl zi0) = ﬁ) / T (2:30)

go(z;w - d/\.

)
Here k = w/eq, ki = w?oh/D, N = w?po/D and the symbol L(A) of the
boundary condition 1is

L) = (A — k) VA2 — k% —

When w is complex (one takes w = exp(+in/4) for defining the deficiency
elements) no singularities are presented on the real axis along which the
integration in (2.29) and (2.30) is carried.

The noted above similarity of the deficiency elements with that of har-
monic operator and operator of ordinary fourth order derivative may be
confirmed by the following decompositions

Mok 1 N
LY VATZRZ T LA)WVAZ — 2
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Iy Mok IO k)

Consider the first formula. When substituted into the Fourier integral for
Gz, z;w) the first term gives deficiency element of A§. The second term
decreases at infinity as O(A~°) and the corresponding Fourier integral has
no singularity. When substituting the second formula into the Fourier inte-
gral for go(x;w) the integral of the first term can be computed by residues
theorem. This gives the first singular term in the asymptotics (2.28). The
second term decreases as O(A™?), therefore it does not contribute to singu-
larities even after being three times differentiated.

Using the first Neumann’s formula and combining the asymptotic de-
compositions of the deficiency elements yield representation for functions
from the domain of the adjoint operator (#$)*, namely

Uz, ) = (—c%lnr—i— b) X(r) + Uo(z, 2),

: 3

s1gnix xr xr|r xr

u(z) = (C:%ig; ) + Cz—|2| + 61—|4 | + 60—|1|2 (2.31)
2 3

+bo+byx+ bz% + bg%) x(Jz) + uo(z).
Here y is infinitely smooth function with finite support, that is identically
equal to unity when its argument is less than one. The functions Ug(z, 2)
and ug(z) are functions from the domain of the restricted operator.

To define the selfadjoint operator some constraints should be imposed on
elements from Dom((#$)*). These constraints can be written for the coeffi-
cients of the asymptotic decomposition (2.31) in a vicinity of the zero-range
potential center. The components of the elements from Dom((#$)*) have
the same asymptotics as the elements from Dom((A$)*) and Dom((B$)*).
Therefore one can use the constraints (2.19) and (2.24). Nominally that
corresponds to substituting the operators with zero-range potentials instead
of As and d*/dz* into matrix operator Ho. The number of real parameters
that define the zero-range potential in this case 1s equal to 17. One param-
eter (constant S) characterizes the zero-range potential for the harmonic
operator A5 involved in the composite operator H5 and 16 parameters
(matrix S) fix the zero-range potential in the component By .

Note that the conditions (2.19) and (2.24) are sufficient conditions for
the composite operator to be selfadjoint, but are not necessary conditions.
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Indeed, examining the boundary form Z[U,V] of the operator (H$)* and
equating it to zero yields the following equation

2 (c(UYB(V) = b(U)e(V))
(2.32)

+0

Sk

3
S =17 (e5(wbi (o) = b (we; (o)) = 0.
oh —
]_
Here ¢, b, ¢; and b; are the coefficients of the asymptotics (2.31). The
chosen in (2.13) value of © makes the above equation the most simple, in
that case it reduces to

c(U)6(V) = b(U)e(V) +

(=17 (e (b (0) = bs(w)e; () = 0.

3
:0

J

The more general conditions that guarantee (2.32) to be satisfied are

(4)=s(2)

where ¢ = (co, —c1, ca, —e3)?, b = (bg, by, b2, b3)T and matrix S is arbitrary
Hermitian matrix in C°. Thus, the number of parameters characterizing
the zero-range potential increases up to 25. The additional 8 parameters
that are not involved in the conditions (2.19) and (2.24) and appear in
the condition (2.33) describe interaction of the components U and w in the
zero-range potential of the operator H35. Therefore matrix & has block

S— ( 5 . ) (2.34)

which is exploited in the procedure of choosing parameters of selfadjoint

structure

perturbations in Chapter 3.

The condition (2.33) describes not all the zero-range potentials. Again
one should allow arbitrary interchange of elements of two vectors (see
page 98).

Consider now the case of three-dimensional scattering problem. The
scheme of zero-range potential construction for the operator Hs is exactly
the same as above. The restricted matrix operator H3 is defined on the
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domain
3 412 ou
DOIH(H) Uu: UEWZ(R )a UEWZ(R )a HEZU,
U({0,0,0)=0 o 0,0)=0 2
0.0.0)=0, FTo (0.0 =06+ <2}
The deficiency elements G = (G, ¢) can be found in the form of Fourier
integrals
1 Aeiny—/ipar—iz: A+ p?)? — kg
. - IAT+1 z d\d

d\d
g(z,y;w) = \/QO // P “) (2.35)
. _ QO IANTFipy—/ A2 pu2—k2z dAd/,L
G = 1y 1
ol 59 =3\ I L)

1 oh Datipy VAL B2 —k? VA2 42 — k2
: ireti dAdp
goo(x’ya 471'2 D // (A )

Here the spectral parameter w? is taken complex and the notations of Chap-
ter 1 are used, namely k = w/c,, ki = w?0h/D, N = w?0o/D and

L) = (V4 1) = k) /3 7 = 17 —

The functions defined by the formulae (2.36) can be differentiated by x
and by y up to 2 times, that is, G1g = 0Goo/2, Go1 = Goo/0y, Gao =
02Goo/ 022, G11 = 0%Goo/0x0y and Goo = 92Goo/0y? are also deficiency
elements. The deficiency indices of the operator H$ are (7,7) and the

domain of the adjoint operator (#3)* is composed of functions

(2.36)

21
Ulx,y,2) = (Cﬁ; + b) x(r)+ Uo(z,y, 2),

Coo €10 Co1 .
u(z,y) = (8—71_p2 Inp+ Eplnpcosgp + Eplnpsmgo

€20 2 €11 . Co2 .2
—|—E(lnp—|—cos go)—i—Ecosgosmgo—l—E(lnp—i—sm go) (2.37)

. 1
4+ bog + bropcos g + bp1psin g + b20§p2 cos? ©

. 1,
+b11p? cos wsin @ + bgo §p2 sin? go) x(p) + uo(x, y).
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Here y is infinitely smooth cut-off function as in (2.31) and Uy(z,y, z) and
ug (2, y) are functions from the domain of the restricted operator.

The constraints on elements from Dom((#$)*) that make the operator
selfadjoint can be written for the coefficients of the asymptotic decomposi-
tion of (2.37) in a vicinity of the zero-range potential center

(4)-5(2)

Here ¢ = (Coo,—610,—601,620,611,602)T, b = (boo,b10,501,b20,b11,502)T
and the matrix § is arbitrary Hermitian matrix in C7. Thus, the num-
ber of parameters characterizing the zero-range potential for the operator
3 is 49. Similarly to the case of H3 matrix S has block structure (2.34).

2.4.4 Zero-range potentials for the plate with infinite crack

Consider the zero-range potentials for the operator B, which describes vi-
brations of thin elastic plate cut along the line {# = 0}. For the operators
As, Az, By and Bs the most wide class of selfadjoint perturbations was con-
sidered. For this the initial operator was restricted to such functions that
vanish in a chosen point together with all derivatives which are defined.
However it is possible to deal with partial restrictions and obtain a subset
of selfadjoint perturbations. For the operator B. only six-dimensional set
of perturbations is constructed below. The restricted operator i1s defined
on

DOHl = {U S Wz( ) S W;(Rz_) : Fu|x::l:0 = Oa
Ou(£0,0) 0 Ou(£0,0) 0
Ox - Jy o ’

The deficiency indices of B are (6, 6) and functions from Dom((B2)*) have
the asymptotics for p — 0 of the form

Mtt|p—t0 = 0, u(£0,0) = 0,

1

1 1
+cf + £ (1 ne OSQD——1+U(QDZF7T/2)SHI§0)
- -0

Lo o

2 1
U~ coii)—ﬂ_ (lnp—l— %(lnpcos?gp— (QDZFTF/Q)SHIQQD))

(2.39)

1 1
+ 2ﬁ<1 n(pT 'ngo-I-li_—Z(SD:FF/Q)COSSD)

—|—b0i—|—b1pcosg0—|—bécpsing0—|—..., +m >+ > 0.
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Here the terms with coefficients c;t are singular terms due to six deficiency
elements and the terms denoted by dots belong to the domain of the re-
stricted operator. The boundary form of (B2)* can be found equal to the
following expression involving the coefficients of the asymptotics (2.39)

Zlu, o] = (=1 (ef (b (0) + ¢ ()b (0]

— bF (w)e () = b5 (w)e5 (v)) -

7=0
The restriction of (B2)* that makes the operator selfadjoint can be defined

by setting system of equations for the coefficients of the asymptotics (2.39).
All such perturbations are parameterized by Hermitian matrices from C?
in the form

(bg—’bil—’b;—’ba’bl_’bz_)T = S(CEIJ—’ _CT’C;’C(?’ _Cl_’CZ_)T' (2'40)

Similarly to the above arbitrary interchange of vectors components is al-
lowed in (2.40).

The operator of the problem for fluid loaded elastic plate can be con-
structed similarly to Section 2.4.3. The initial operator of fluid loaded plate
with infinite crack can be written in matrix form

—c2A 0
7-lc == Q0 D 5
QhH Qth
303 ou
Dom(H.) = (U € W5 (R7), u € Dom(B,), 11 5, U

The zero-range potentials for the operator K. can be constructed ac-
cording to the same scheme of [58] as it was done in the previous sections
for other differential operators. Among these zero-range potentials there is
a subset of zero-range potentials that are presented only in the elastic com-
ponent. Only such zero-range potentials are used below. The selfadjoint
operator H? is defined on functions & = (U, u) such that U is bounded at
the origin and w has the asymptotics (2.39) with coefficients satisfying the
system (2.40) with the given matrix S.
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Chapter 3

Generalized point models

3.1 Shortages of classical point models and the general
procedure of generalized models construction

The point models discussed in Chapter 1 allow an explicit form for the
representation of the field. This simplifies analysis of many physical effects.
The obstacle in these models is specified by boundary-contact conditions
formulated in its central point. That is one deals with the same basic idea
that allowed the Lame equations of elasticity in thin layer to be reduced
to the biharmonic equation of Kirchhoff model for flexural displacements.
Evidently that point models can be used only if the size of real obstacle
1s sufficiently small. However problems of diffraction for fluid loaded thin
elastic plates contain many parameters and the applicability question for
a particular point model should be studied. The analysis of applicability
of the point model of stiffener is performed in [22] where the stiffener is
assumed of finite height and the correction to the point model is found (see
also Section 4.4). The applicability of the pointwise crack model was studied
only recently [20]. It was discovered that the classical point model correctly
represents the far field amplitude only under very restrictive conditions
(when the width of the crack is exponentially smaller than the thickness
of the plate and at nonorthogonal direction of observation and incidence).
Therefore the point model of crack studied in Chapter 1 appears hardly
applicable to real problems of scattering and should be corrected.

We noticed also in Chapter 1 that the set of point models in three
dimensional problems of scattering by fluid loaded plates i1s rather small.
Namely 1t 1s restricted to such models for which contact conditions only
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contain displacement and possibly the force in a point. These are the model
of attached mass and its limiting case for infinitely large mass corresponding
to fixed point. The cracks or holes with free edges are described by other
types of contact conditions and can not be represented by classical point
models. This lack of models takes place in the case of isolated plates as
well.

The technique of zero-range potentials allows the set of solvable models
to be enlarged and more precise models of obstacles to be formulated both
in the case of isolated and fluid loaded plates. To apply the technique of
zero-range potentials first notice the connection between the problems of
scattering by compact obstacles in the presence of thin elastic plate and
selfadjoint operators in appropriate Hilbert spaces. Consider the problem
for an operator A in Lo (IR9)

AU =V. (3.1)

Let the operator A be a differential operator and the boundary conditions
be involved as the conditions imposed on the domain of the operator. This
problem differs from the boundary-value problem of diffraction theory by
replacement of conditions U,V € Ls(R9) by radiation conditions for U. In
spite of this difference, however, there is much in common. Namely as was
noted in Chapter 2 if the boundary-value problem is such that conditions
on the obstacle yield Fq = 0 (see (1.17) for definition of Eg), then the op-
erator A is selfadjoint. Oppositely if the operator A is selfadjoint, then the
boundary-value problem that corresponds to it 1s mathematically correct
and its solution satisfies all basic physical properties such as reciprocity
principle and balance of energy (or energy conservation law) expressed by
optical theorem.

Intuitively it is natural that if the conditions specified at finite dis-
tances (boundary and contact conditions) are mathematically correct, then
changing conditions specified at infinitely large distances from one mathe-
matically correct (square integrability) to another mathematically correct
condition (radiation condition) can not spoil correctness of the entire prob-
lem. In another words one can consider all objects locally in L, on any
bounded domain. Rigorous mathematical justification of that connection
uses spectral theory of operators (eigenfunctions of continuous spectrum)
and scattering theory. We address interested readers to classical books [50]

and [54].
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We present here some nonrigorous explanations of why the operator
A should be selfadjoint in order the boundary-value problem be correctly
set and its solution satisfies such basic physical properties as reciprocity
principle and energy balance expressed by optical theorem. Consider the
problem (3.1). Function V is the source of the field and function U is
the solution to be found. Further, let W be the characteristics of the
observer, that is let the measured value of the field be <U, W> Perform
some transformations in this scalar product using symmetric property of
operator A

(U, T7) = (A'V,T7) = (V, A71TF) = (AW, 7).

This equality expresses the reciprocity principle. One can interchange the
source and the observer. Letting W,, and V,, be delta-type sequences and
taking the limit in the above equality states the symmetry of Green’s func-
tion.

Now we try to explain why the operator A should be not only symmetric,
but selfadjoint*. If the operator A is symmetric, but not selfadjoint, then
Res(A)?t is not empty and A~! (which is defined on Res(A)) is defined on
not dense set. Therefore, for example, if the source field V € Res(A)*,
then no solution U exists.

Thus in order to get mathematically correct boundary-value problem
one should start with selfadjoint operator in an appropriate Hilbert space.

Classical point models appear as boundary conditions formulated in
a separate point. In an isolated one-dimensional plate these conditions
describe all possible zero-range potentials By . The zero-range potentials
for the operator H, of fluid loaded plate are parameterized by Hermitian
matrices in C° in the form (2.33). The boundary-contact conditions of
classical point models appear to be a subset of conditions (2.33). In the
case of two-dimensional plate the zero-range potentials for the operator Bs
are parameterized by Hermitian matrices from C° in the form of conditions
(2.27). The variety of such conditions is certainly more reach that the only
model of attached mass (1.67). For fluid loaded plates in three dimensions
the generalized point models are parameterized by Hermitian matrices from
C7 in the form (2.38). Again the conditions of classical point models form
a subset of conditions (2.38).

*Often in techniques and physics these two types of operators are not distinguished as
different because the domain is not included in the definition of the operator.
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All the above shows that the discussed in Chapter 2 zero-range poten-
tials are the generalizations of classical point models of hydroelasticity. The
main idea of the generalized models construction both in two and three di-
mensions for fluid loaded and for isolated plates is in the choice of such
zero-range potential that the field scattered by it approximately coincides
with the field scattered by the real obstacle, and this coincidence is desirable
as close as possible. Generally speaking one can hope to achieve better co-
incidence than in the case of classical point models. The main question that
appears in the procedure of generalized models construction is the choice of
the Hermitian matrices that define the particular zero-range potential. The
block structure of the matrix S presented in (2.34) and physical interpre-
tation of the parameters allow the following HYPOTHESIS to be suggested:

Hypothesis

Let the zero-range potential of the operator A5 (d = 2,3 is
the dimension of the problem) approximate the scattering
process on an obstacle €} in acoustic media bounded by
infinitely rigid screen and let the zero-range potential B;_,
approximate the scattering process on the obstacle §) in
isolated elastic plate. Then the parameters of the zero-
range potential that approximates scattering process on
the obstacle () in fluid loaded elastic plate are given by

the matrix
S s
s S /)7

where S is the parameter of A5, S is the matrix charac-
terizing B3, and vectors s and s* are zero vectors.

We can not prove this HYPOTHESIS for the general case, it will be checked
for some particular obstacles. In Section 3.2 the problem of scattering by a
crack of small, but finite width in fluid loaded plate i1s considered. This is
a two-dimensional problem which is studied in [20] and by zero-range po-
tential approach in [9]. The generalized model of narrow crack is suggested
and examined. In order to choose the parameters two auxiliary problems
are considered. These are the diffraction by a narrow slit in absolutely
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rigid screen and the problem of scattering by the crack in isolated plate.
(These problems are the limiting cases of the original boundary-value prob-
lem for D — oo and for gy — 0 correspondingly). Analysis of the far field
amplitudes of scattered waves in these two problems allows the zero-range
potentials A5 and B} to be chosen. According to the HYPOTHESIS this
determines the element 811 = S and the block {Sij}i,j>2 = S of the com-
plete zero-range potential 5. The problem of scatteriné by this zero-range
potential for fluid loaded plate 1s solved in closed form. In Section 3.2.6
the problem of diffraction by a narrow crack is examined by the classical
approach based on integral equations. The derived asymptotics for the far
field amplitude is compared to the results of Section 3.2.5 which allows the
applicability of the above HYPOTHESIS in the case of narrow crack to be
Jjustified.

Section 3.3 deals with the model of short crack in three-dimensional
problem. First (Section 3.3.1) the case of isolated plate is considered. By
means of Fourier transform the problem is reduced to integral equations
which are then analyzed numerically and asymptotically. Comparing the
far field amplitude asymptotics with the fields scattered by the zero-range
potentials B3 allows the generalized model of short crack in an isolated
plate to be suggested (Section 3.3.2). Further this model is used in the
model of short crack in fluid loaded plate. Evidently that for absolutely
rigid plate an infinitely thin crack is not noticeable. Indeed, such crack is
characterized by contact conditions only. That is, the conditions on the
crack are written for the displacements which are identically equal to zero
in absolutely rigid plate. Thus the parameter S in the model of short crack
should be taken equal to zero. According to the HYPOTHESIS the other
parameters are taken the same as in the case of isolated plate. The field
scattered by the generalized model of short crack is found in explicit form.
It 18 compared to the asymptotics of the far field amplitude derived in
Section 3.3.4 by means of integral equations approach. Again the approach
suggested by the above HYPOTHESIS is justified by this comparison.

For further models (in Sections 3.4 and 3.5) of a small round hole and
of a short joint of semi-infinite plates the HYPOTHESIS is not checked, but
similarity of these obstacles with that considered in Sections 3.2 and 3.3
allows one to believe in its applicability.

It is useful to note that generalized models reproduce only some of the
characteristics of the real scattering process. They give far field ampli-
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tudes and some of the spectral properties, namely those associated with far
fields. The generalized models cause nonphysical singularities to appear at
the potential canter. Therefore these models give wrong results for near
fields. Generally speaking classical point models though not bringing to
singularities of the field do not describe near fields as well. This is seen
for example from the analysis of the applicability conditions for Kirchhoff
model of flexure waves in thin elastic plates and unjustified extension of the
formulae for the force and bending momentum up to the edge or support
of the plate.

3.2 Model of narrow crack

3.2.1 Introduction

Consider the problem of scattering by a straight crack in a fluid loaded
plate. The plate is supposed to be in one-side contact with fluid and the in-
cident field is assumed independent on the coordinate y measured along the
crack. Therefore the problem appears two-dimensional and the zero-range
potentials for such problems are constructed in Section 2.4.3. These zero-
range potentials are parameterized by matrices from C° in the form (2.33).
The matrices of parameters have block diagonal structure and according to
the main HYPOTHESIS proclaimed in the previous section the blocks can be
found separately. The first block consisting of a single element 17 = S can
be found if the solution of the problem of scattering by a slit in absolutely
rigid screen is constructed and analyzed. This problem is well known (see
e.g. [36]). Nevertheless its analysis is presented in Section 3.2.2. The other
diagonal block, consisting of elements &;;, 4,7 = 2,3,4,5 is the matrix S
that can be found if the problem of scattering in the isolated plate is con-
sidered. This problem is very simple as it deals with ordinary differential
operator. It is studied in Section 3.2.3. When all the parameters of the ma-
trix S from (2.33) are defined, one can consider the problem of scattering by
the zero-range potential that models the narrow crack. The corresponding
problem is studied in Section 3.2.4 and the explicit solution is constructed.
Section 3.2.5 deals with the exact formulation of the scattering problem
on the crack of finite width. The asymptotics of the far field amplitude
constructed in this section allows the main HYPOTHESIS to be checked.
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3.2.2 The case of absolutely rigid plate

Consider the acoustic media {—oco < # < 00, z > 0} bounded by the
absolutely rigid screen {—oco < # < 00, z = 0} with the slit at —a¢ < z < a.
Let the source of the field be the plane wave

U = Aexp (zkx cos ¥y — tkzsin 790) .

Then the total field occurs independent of co-ordinate y and the problem
of scattering is actually two-dimensional. It is formulated as follows. The
acoustic pressure U satisfies the Helmholtz equation

(A—i—kz)U(x,z):O, z2>0

with the boundary conditions

U(z,0)=0, |z| < a,
M =0, |l‘| > a.
0z

Except for the incident plane wave all other components of the field carry
energy only to infinity, that is, satisfy the radiation condition

(6—U—ikU) :0(7“_1/2) , T — 00
or

The field satisfies the Meixner conditions (1.18) at points ¢ = +a, z = 0
where the boundary condition changes.

The above problem is well known. It can be solved by variables sepa-
ration method in elliptic coordinates which allows the solution to be rep-
resented in the form of decomposition by Mathieu functions. Though such
representation is exact, it may appear inconvenient for computations. Be-
low following [36] the asymptotic solution for small width ka < 1 is con-
structed.

The problem can be reduced to Rayleigh integral equation. Separating
geometrical part of the field U(9) consisting of the incident field and the
field reflected from a homogeneous rigid screen allows the problem to be
formulated for the scattered field U(*) = 7 —U/(9). Noting that the Green’s
function for the case of Neumann boundary condition on the plate is the
Bessel function of the third kind

Gn(x, z;20,0) = %Hél) (k\/(x—xo)z—i—zz) , (3.2)
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one obtains the integral representation for the scattered field in the form
similar to (1.33)

U(s)(aj,z):—% quo (k\/ (x —xg)? + 2 )dxo

The function ¢(zp) is defined from the integral equation

d)(mo) D (k|la — zo|)deo = —2iUD(2),  |2| < a,
—a

which appears when the above representation is substituted into the Dirich-
let boundary condition on the slit. The function ¢(zg) coincides with the
normal derivative of the total field in the slit. Near the edges of semi-
infinite screens it can have weak singularities which are allowed by Meixner
conditions (1.18).

It is convenient to perform scaling of co-ordinates in such a way that the
crack becomes of unit semi-width. That is let co-ordinate ¢ be introduced
as t = «/a. In new co-ordinates the integral equation takes the form

/ dlato)HY (kalt — to])dto = —2ia™ U (at),  |t| < 1.

The kernel of the above integral equation has logarithmic singularity at
t = t; which can be concluded from the asymptotics [1]

Wy o 2 T
HP () ~ =2 (m(t/z) iz CE) ,
where C'g = 0.5772...1s the Euler constant. Replacing the kernel by this

asymptotics and using the formula (B.3) allows the solution ¢(xg) to be
found in the principal order

1 1
z0) = Va? =2 In(ka/4) + Cg —in /2’

Substituting this expression into the integral representation and applying
the saddle point method (1.22) yields the far field amplitude
i

In(ka/4) + Cp —inj2 ©

T°(¥) = (3.3)
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3.2.3 The case of isolated plate

The other limiting case of diffraction by a narrow crack in an isolated plate
1s described by ordinary differential equations. The two semi-infinite plates
at # < —a and at & > a are completely independent. Let an incident wave
be running from z = —oo

W) = gikor

and be reflected from the free edge at = —a. It is easy to find that the
total field is the sum of the incident and reflected propagating waves and
the reflected exponentially decreasing wave (compare with formula (1.71)
valid for the case of oblique incidence)

w = eFoT 4 p e hoT 4y eThor r < —a.

The coefficients r, and ¢, in the above formula can be found from the
boundary conditions

w”’(—a) =0, w”(—a) = 0.

The exact expressions are

1 . .
ra= =5 (L)%t g = (14 i)ttt

Assuming kga to be small the reflection coefficient reduces to the reflection
coefficient (1.71) from the point crack at # = 0, that is

re R T(T[2) = i.

In particular the above formula means that contact conditions in the model
of narrow crack in isolated plate can be taken the same as for pointwise
crack.

3.2.4 Generalized point model of narrow crack

The formulae of the above sections allow the parameters of the general-
1zed point model to be defined. Following the HYPOTHESIS declared in Sec-
tion 3.1 the matrix § that specifies the zero-range potential in the composite
operator H3 is composed of blocks corresponding to the zero-range poten-
tials of acoustic and elastic components. These parameters are §1; = S
that sets proportionality of the coefficients in the asymptotic decomposi-
tion of acoustic pressure and the contact conditions that are specified for
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flexure displacement. The latter can be taken the same as in the case of
pointwise crack. Thus, to determine the operator H3 describing scattering
by narrow crack one needs to find the only parameter S. For that consider
the problem of scattering for the operator A35. This problem is in finding
such solution of the equation

AU 4 k20 =0, (2,y) £ (0,0), (3.4)

that satisfies the Neumann boundary condition on the screen and being
combined with the incident U() and reflected U(") fields has the asymp-
totics (2.19)

U:U<Z’>+U<’“>+U<S>~c<—llnr+5) +..., r—=0.
T

Let U be the incident plane wave
U = exp(tkx cos ¥y — thzsin ),
then the reflected field U is
Ul = exp(ikz cos Vg + thkzsin ).

The solution of the Helmholtz equation (3.4) that satisfies the radiation
condition and has square integrable singularity is defined up to a multiplier

Ul = C%Hél)(k'r).

The asymptotics of the total field is

(M—i)—k%&o(l), r— 0.

U=—c—Inr—c

T T 2

Comparing it with (2.19) yields

C In(k/2 ]
e (ﬁin(/) - 3) +2=Se. (3.5)
T 2
The parameter S in this equation should be chosen such that the far field
amplitude of U?® approximately coincides with (3.3), that is
e ?

27 " n(ka/4) + Cp — in)2
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Therefore

N 2m
“In(ka/4) + Cg —ir/2

C

and the equation (3.5) defines the parameter S. We neglect smaller order
terms by ka and define S uniquely. Namely

S = %ln(a/Q).

In this particular case the requirement Im S = 0 1s satisfied automatically.
It is important to note that the parameters of the incident field (frequency,
angle of incidence, amplitude) and of the media (sound velocity ¢,) are not
involved in the parameter S. This observation allows one to hope that the
same parameter S can be used in other problems of scattering by a soft
segment of length 2a. In particular according to the HYPOTHESIS we use
this parameter in the generalized model of narrow crack in fluid loaded
elastic plate.

Conditions that fix the generalized model of narrow crack are formulated
as the asymptotics of acoustic field

U~ —Eln(2r/a)—|—o(1), r—0 (3.6)
T
with arbitrary ¢ and the contact conditions
w”(40) = 0, w”(£0) =0 (3.7)

for displacements of the plate.

3.2.5 Scattering by point model of narrow crack

Now consider the problem of scattering by the zero-range potential in the
fluid-loaded plate which is parameterized by conditions (3.6) and (3.7).
Find the scattered field U() that is generated by an incident plane wave.
The field is searched for in the form

5 Go(x, z;w), (3.8)
where G(z,z;w) and Go(z, z;w) are defined by the formulae (2.29) and

(2.30). These functions are the limiting values of the deficiency elements
for Imw — 40 and up to a multiplier coincide with the Green’s functions
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Gz, z; 2o, 20) and G(z, z; zg) presented by formulae (1.28) and (1.31). The
representation (3.8) is the general solution (see page 36) that satisfies the
Helmholtz equation and the boundary condition on the homogeneous plate.
Additionally to representation (1.53) a point source of acoustic pressure
appears in (3.8). The parameters ¢ and ¢; in (3.8) should be chosen such
that the conditions (3.6) and (3.7) are satisfied for the sum of the fields
U9 and U®),

The coefficients of the representation (3.8) can be found from the al-
gebraic system that appears when (3.8) is substituted into the conditions
(3.6), (3.7). Singular solutions G and G, are normalized in such a way that
the coefficients ¢ and ¢; in the representation (3.8) and in the asymptotic de-
compositions (2.31) coincide. Singular solutions manifest themselves also
in smooth terms. To calculate the coefficients b and b, asymptotic de-
compositions of the integrals (2.29) and (2.30) should be examined. The
asymptotic decompositions of the Fourier integrals for » — 0 and © — 0
are defined by the behavior of the transform at the infinity. Consider first
the asymptotics of the component G(r;w). It is convenient to exclude the
Green’s function Gy (z,y;0,0) corresponding to the case of absolutely rigid
screen (with Neumann boundary condition on it). This function given by
formula (3.2) can be rewritten in the form of Fourier integral

— 1 IAT—VA2—k2z dA
Gv=5 |« R

It 1s a simple matter to find that the correction G—G\y is a smooth function.
This yields asymptotic decomposition

1 1 ;
Gz, yw) = —;ln(r) - ;(ln(k/Q) +Cg) + % +NJ+...

Here the following integral is introduced

1 dX

J= 5 TN (3.9)

The component g(x;w) of that singular solution can be decomposed in
Taylor series. Its derivatives up to the third order are bounded. Therefore

2
gz w) = —V/N (Jo—i—Jz%—l—...),
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where
_ LN
2 ) L)

i (=0,2. (3.10)

Consider now the asymptotics of the singular solutions G,. The components
G (r;w) are smooth functions and one finds

Go(0,0) = =N Jo,  G1(0,0) =0, G2(0,0)=—VN Jo, G5(0,0)=0.

The components g;(x;w) were already studied in Section 1.4.1 These are
discontinuous functions. By direct substitution the asymptotics of g, (x;w)
is expressed in terms of contact integrals D, introduced in (1.54) as

1 ’ VAZ — k2
Dy = — / eFOAN)F e .
2w LN
Using properties of integrals D, described in the Appendix A, one finds the
asymptotics
z? z3
go(z;w) = Dy + ?Dz + Esign(d;) + O(x*),
z? z3
gi(z;w)=aDs + Zsign(d;) + FD;; + O(x*),
2
x| o«
g2(w;w) = Dy + % + 5 Dat O(a?),

., sign(x)
gs3(z;w) = 5

3
+ 2D+ %D6 +O(x*).

With the help of the above decompositions for the scattered field one
can find that the total field has the asymptotic behaviour (2.31) near the
zero-range potential center. The coefficients of singular terms coincide with
that in the representation (3.8) and the coefficients of regular terms are the
following

b:—c{w—%—]vj}—\/N(CQJQ—FCQJQ) —|—b(g),

71'
bOZ—\/NCJO‘i‘CODO‘i‘CZDZ'i'bE)g)a by :ClD2+C3D4+b(19)’
bZZ—\/NCJ2+COD2+CZD4+b(Zg)a bSZClD4+‘33D6+bE’>g)'

Here b(9) and bég) are the geometrical part contributions to the correspond-
ing coefficients of representation (2.33).
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Substitution of these formulae into conditions (2.33) that fix the zero-
range potential yields algebraic system for coefficients ¢ and ¢;. Introducing

matrix
-7  —/NJy, 0 —/NJs 0
—V/'N Jy Dy 0 Ds 0
Z(w) = 0 0 Dy 0 Dy |,
—/NJ» Dy 0 Dy 0
0 0 Dy 0 Dg
where

Z = %(111(1{/2) —|—CE) - % ~NJ,

this system can be written in the form

(S—Z(w)) ( : ) - ( f)(é)) ) . (3.11)

It is important to note the structure of the system (3.11). The matrix
S defines the scattering object. It does not depend upon the incident
field and the parameters that characterize properties of acoustic medium
and elastic plate far from the scattering object. All the information on the
incident field 1s concentrated in vector (b(g) , b(g))T. The mechanical system
characteristics are involved only in matrix Z(w). Therefore it is natural to
suggest the main HYPOTHESIS . Indeed taking the limit for D — oo that
corresponds to the case of absolutely rigid screen affects only matrix Z(w)
and matrix § remains unchanged. Another limit for go — 0 also transforms
only matrix Z(w). Note also that for w = i the integrals J, J; and D, are
real and matrix Z becomes Hermitian. That Hermitian matrix Z(¢) could
be added to matrix S, but in this case the structure of the system (3.11)
would be spoiled and the HYPOTHESIS would be wrong.

The far field asymptotics of the scattered field (3.8) can be found by
applying saddle point method to the integrals (2.29) and (2.30). The con-
tribution of the saddle point gives diverging cylindrical wave (1.29) with
the far field amplitude

VN ksind / ¢ 4 a4 4
Y0 = 5Ty (ﬁ(k cost 9 — k)

+ co + cqik cos ¥ — eok? cos? ¥ — csik? cos® 79) .
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The residues in the zeros of the denominator L(A) correspond to surface
waves. The amplitudes of these surface waves can be computed by the
general formula (1.30).

In the case of the generalized point model of narrow crack the system
(3.11) splits. Coefficients ¢y and ¢1 in (3.8) are zeros similarly to the case
of pointwise crack. Coefficients ¢, ¢2 can be found from the system

(Z + lln(a/?)) ¢+ VN Jyco = b9
T

\/NJZ c—+ D4 Cy = —b(zg)

The first equation follows directly from condition (3.6) and the second equa-
tion expresses the condition u”(—0)+«”(4+0) = 0 which follows from (3.7).
One finds

Db 4+ /N J5b Y
" Da(rZ +In(a/2)) + NJZ’
b9 N 4 NJZDT B
Di " DanZ + (af2)) L N2

c =

Cy = —

The coefficient ¢3 is defined from the last condition in (3.7)

1
C3 = —D—6bgg)

The above formulae express the amplitudes of passive sources via coef-
ficients b(9), b(zg) and bgg) of the geometrical part of the field. For the case
of incident plane wave one finds
1k sin ¥q

(k*cos vy — k), b9 = —2AVN "0 ik cos ).
L (1)

1k sin ¥q
L (Vo)
This yields

59 =94

W(d) = ﬂ k2 sin ¢ sin 9 { k* cos® ¥ cos? ¥y B k6 cos® ¥ cos® ¥y
m L(I)L(Iy) Dy Dg
m M (9) M (9o) }
N In(ka/4)+ Cp —in/2—xN J + aNJZD; [’
(3.12)
where
M) = k*cos* 0 — ki + KN gy cos? 1. (3.13)

4
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Using formula (1.30) one computes amplitudes of surface waves

INVEKZ — k2 ksindg | 8282 cos? 9y &%k cos® 9y
B — Ak2k? — k2 KL (Vo) Ds T Dp -
T (k% — kg + N Jox? D5 ) M () } (8.14)

Y= A

N In(ka/4) + Cg —in/2 — #N J + =N JZD; "
In the case of incident surface wave
Ul = Aexp (imv - \/m,z)
only the right-hand sides of the equations for ¢, ¢ and ¢3 change. One finds
b =1, b9 = VN2 — k2%, b = iV N /K2 — k267,

which yields

W) = A 1 ksindvi2 — k2 | £%k%cos® 9 k3k3cos®
T om L(9) Dy De
W Y1 (3.15)
k3 (k* — ki + NJor2Dy 1) M (9)
Nln(ka/4) + Cp —ir/2 —aN J + N JZD;*
and
’l/):t — A i sz — kz T K:_4 :F K:_6
K bkt —4k?k?2 — ki | Dy Ds 2 16
™ (k* — k¢ + NJor?D7 1)’ (3.16)
Nln(ka/4) + Cp —in/2 — 7N J+aNJ3D7 |

The far field amplitudes and the amplitudes of scattered surface waves
given by the formulae (3.12), (3.14), (3.15) and (3.16) are reciprocal and
exactly satisfy the optical theorem (1.42). (For the discussion of reciprocity
of the formulae (3.14) and (3.15) see page 39). Two terms in these formulae
coincide with the corresponding solution of scattering problem by pointwise
crack. Detailed discussion of the above formulae and numerical results are
presented in Section 3.2.7.
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3.2.6 Diffraction by a crack of finite width n fluid loaded
elastic plate

In this section the same problem of plane wave scattering by a submerged
plate weakened by a crack of small width 1s examined by classical asymp-
totic approach. With the use of integral representation (1.33) the problem
is reduced to a system of integro-algebraic equations. Then this system
is analysed asymptotically with respect to small parameter ka < 1. The
asymptotics of the far field amplitude is derived. The results of this section
allow the main HYPOTHESIS to be checked.

Formulation of the problem

Let the acoustic system consist of the homogeneous liquid half space {z > 0}
bounded by thin elastic plate {z = 0} with the crack {|z| < a,z = 0}. The
field in the system satisfies Helmholtz equation in the halfspace

AU+ KU=0, 2>0

and the boundary condition on the plate

d4
D— —o*h w4+ U=0, |z|>a,z=0,
dx*
where w = galw_zﬁU/ﬁzLZ:o is flexural displacement of the plate. The
edges of semi-infinite plates are supposed to be free of forces and bending
momentums. That is expressed by the boundary-contact conditions

w”’(da) =0, w"”(£a)=0. (3.17)
Inside the crack the Dirichlet boundary condition
U=0, |z|<a,z=0,

i1s assumed. This condition describes the free surface of fluid. Meixner
conditions (1.18) near the points {# = +a, z = 0}, where the bound-
ary condition changes, guarantee the finiteness of energy in any compact
domain in acoustic medium.

Note that letting a = 0 yields classical model of pointwise crack.

Let the wave field be generated by the incident plane wave

U9 = Aexp (ik (x cos¥g — zsin ¥p))
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The field U9 that would be generated if the plate has no crack is known
U9 =yl 4 4 R(Vg) exp (ik (x cos ¥y + zsindy)) .

The reflection coefficient R(dy) is given by formula (1.25). The scattered
field () = U — U9 satisfies radiation condition (1.16).

Reducing the problem to integral equations

The boundary value contact problem for the scattered field U®) differs
from that presented above for the total field by introducing inhomogeneous
boundary condition

U = U9, _—g<a<a, z=0, (3.18)
and inhomogeneous contact conditions

d?w(®) dnw(9)
dwn = - dwn , T =dZa,n=23. (3.19)
T T

Here the values w(®) and w(9) denote displacements corresponding to the
fields U() and U9,

Further derivations use the Green’s function G(z, z; zg, 2zp) for homoge-
neous plate (without crack) defined by (1.28). The integral representation
for the scattered field can be derived with the help of Green’s formula writ-
ten for functions U®) and Gz, z; 2o, z0) in the semicircle of large radius.
In the considered case this representation takes the form

a

U(s)(l‘o,ZQ)Z/MG(l‘,O;l‘o,Zo)dl‘

z
_a33g(a'l‘o Z0) PP g(—a; o, z0) (3.20)
2 ) ) ) )
+ 0w D(w(a)T — w(—a)—ﬁgg3
62 . 62 .
—u/(a) g(%’;o’zo)—l—w’(—a) g( 5;21‘0,,20)).

This integral representation 1s the particular form of the representation
(1.33) in the case when fields do not depend on the third coordinate y
and the obstacle that causes diffraction occupies the segment [—a,a] on
the plate. Besides the substitutes like w'(a)g(a,0;xg, z9) are dropped
out due to absence of forces and bending momentums on the edges of
the plates specified by conditions (3.17). The reciprocity principle for the
Green’s functions reads G(#, z; 2, 20) = G(wo, z0; %, 2) and g(x; xo, 20) =
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Gz, zo; ). We remind that the fields of point acoustic source and of point
source applied to the plate are distinguished by the number of arguments
Gz, z; 20, 20) and G(x, z; xg) correspondingly. This allows the represen-
tation (3.20) to be interpreted as the sum of fields generated by acoustic
sources distributed along the segment (first term) and by point sources ap-
plied to the plate in points @ = Za. If the amplitudes of these sources
are known, that is the normal derivative of the total field on the crack
é(x) = 0U(»,0)/0z, the total displacements w(+a), and angles w’(+a) are
known, then the scattered field U(*) can be computed by formula (3.20).
The field U®) given by (3.20) satisfies the Helmholtz equation, the bound-
ary condition on the plate and the radiation condition for any integrable
function ¢(z) and any constants w(=+a), w'(+a). That is the formula (3.20)
defines general solution in the terminology of section 1.4.1.

The scattered field at large distances from the crack is now examined.
The Green’s function and its derivatives involved in the representation
(3.20), can be calculated by the saddle point method (1.22). The field
at large distances from the crack can be represented as the sum of cylindri-
cal diverging wave (1.29) and two surface waves running to the right and
to the left from the crack. The far field amplitude ¥ () of the scattered
cylindrical wave is given by exact formula (see also (1.35) for the general
representation of the far field amplitude)

e—ikxcosﬂ¢($)dx

w(9) = oow? ksind [ k*cos* ¥ — ki /a
T L) 200w?

+ ik? cos? ¥ sin(ka cos V) {w'} — k? cos? ¥ cos(ka cos 9 [w']

—a

(3.21)

— k? cos® ¥'sin(ka cos 9){w} — ik3 cos® 9 cos(ka cos ¥)[w]

The amplitudes of surface waves can be found by taking residue of ¥(¥)
according to the formula (1.30).

The amplitudes of passive sources ¢(z), w(a), w(—a), w'(a) and w'(—a)
should be chosen such, that the field satisfies boundary condition (3.18) on
the crack and contact conditions at free edges. Letting zo — 0 yields the
integral equation

a 3 .
G(I0,0,$,0)¢(x)dx+QOWZD(w(a) a G(g‘;éo;a)

—a
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3G (x0,0; —a 9%G(z0,0;a
— w(—a) —( 301‘3 ) — w'(a) 7(3;2 ) ( )
3.22
2 .
_|_w/(_a) W) :U(g)(l‘o,O), —a < xg < a.

The Meixner conditions (1.18) are used to choose the appropriate form for
the solution ¢(x). Namely ¢(z) can have weak singularities near the ends
of the interval

é(x) ~ (& Fa)’ ™, r— Fa, §>0. (3.23)

Substituting from (3.20) into contact conditions (3.19) yields four equations
(n=2,3)

a

/ o"g(a;x, O)q/)(x)dx n Qosz(w(a) Pt g(a, a) ~ w(—a) 93tng(a, —a)

Ol 030z} 030z}
’ 9?1 g(a, a) 0**tng(a, —a) dn
— ' (q) —2 N_g)—— 2\ ) 9)
w(a) Jx20x} w'(=a) Jx2dx} ) =~ g (a),

a

/3ng(_a;x,0)¢(x)d$+Qosz(w(a)33+ng(_a,a)

Jxy Jx30xy
- 93t g(—a, —a) ,, 0T g(—a, a)
—w(=a) 0x30xy —wia) Jx?0xy
9**trg(—a, —a) dn
g I\ ) 9)(_
tu'(=a) Jx20x} T dan (—a).

Together with the integral equation (3.22) these forms the integro-algebraic
system for the unknown function ¢(x) and four constants w(a), w(—a),
w'(a) and w'(—a).

The above integro-algebraic system is rather cumbersome and it is con-
venient to write it in “matrix” form. Examine first the Green’s functions
involved in that system. The Green’s function G(z,z; 2, zg) represents
pressure U(z, z) produced by an acoustic source placed in the point (zg, zg).
It is given by Fourier integral (1.28). Other Green’s functions can be ex-
pressed in terms of derivatives of G(x, z; g, z0) by z and z;. We present
here only expressions for the traces of Green’s functions on the plate (at
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G(x,0;20,0) = iv.p./e”‘(x_x”) N — kg dA (3.24)
bl bl bl 27T L(A) bl

. _ . _ 1 tA(z—xg) dA
G(x0,0;2) = g(x; 20,0) = 271'D/6 Oy
_ 1 iA(z—xg) Y A2 — k2
gz, z0) = STTRED)) /6 18y dA.

The denominator in the above integrals is the Fourier symbol of the gener-
alized boundary condition (1.13)

L) = VA2 —k2 (M —ky) = N

and the path of integration coincides with the real axis of A except for small
neighborhoods of points A = +x, where symbol L(A) has zeros. These
points are avoided in such a way that A = —k appears below and A = &
appears above the path of integration. The first integral is understood as
the principal value, that i1s the semi-infinite ends of the path of integration
are assumed shifted to the upper for x > x( or lower for x < g half-planes
of complex parameter A.

Analysis of the above Fourier integrals shows that the kernel G(#,0; 2,0)
has logarithmic singularity as + — ®g. Indeed, the denominator L(A) be-
haves at infinity as O(A%) and therefore the integrand of (3.24) decreases
only as O(A~1). The derivatives of the Green’s function G(z, 0; zq, z0) that
are presented in the integro-algebraic system can not be computed by for-
mal differentiation of the above integrated functions. Accurate analysis
of these integrals requires the following limits to be introduced. First the
points z and zg are supposed noncoincident. In that case before letting
zo — 0 the ends of the path of integration can be shifted to the upper (for
x — g > 0) or to the lower (for # — ¢ < 0) half plane of complex variable
A. Then zg can be let equal to zero. Manipulation with the above limits
allows the following formulae to be established
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Therefore the integro-algebraic system can be written in compact form
LW® = Lw'9), (3.25)

where ® = ((/)(x), w(a), w(—a), w'(a), w’(—a))T is the vector of unknown
amplitudes of passive sources,

W (xy) = /G(xo,O;x)qS(x)dx—l— gosz(g”'(l‘o,a)w(a)

—¢"(x0, —a)w(—a) — ¢"(xo, a)w'(a) + ¢" (0, —a)w/(—a))

T
xD:—a)

When rewriting the integral equation in the form (3.25) the following prop-

and L is the differential operator
d* d? d3
- ( i

? 3
To=a da

d3
* ded

ro=—a

d2

? 2
To=a da

= —
dx? " dx?

erty of the geometrical part of the field is used

d4
U (20,0) = - (d_ - ké) Wl (z0),

which follows immediately from the generalized boundary condition on the
plate.
The integro-algebraic system (3.25) is evidently satisfied if

Wd(20) = w9 (). (3.26)

This integral equation can be derived directly if one uses the integral rep-
resentation for the displacements of the plate that appears when applying
Green’s formula to U®) and g(x; xo, 20).

The amplitude of acoustic sources ¢(xz) is searched in the class of func-
tions defined by condition (3.23), that is in the space Sy (see Appendix B).
The integral equation (3.26) has smooth kernel and one can hope for the
solution to exist only due to presence of arbitrary constants w(a), w(—a),
w'(a) and w'(—a). That is, this integral equation determines amplitudes of
all passive sources.

As it was already mentioned the kernel of the integral equation in (3.25)
has logarithmic singularity. Appendix B presents some results on the solv-
ability of such integral equations. In particular it follows that such integral
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equations are subject to Fredholm theory. Therefore the total integro-
algebraic system (3.25) is subject to it, too. The following theorems de-
scribe the solvability properties of the integro-algebraic system (3.25) and
integral equation (3.26).

Theorem 1 Any solution of the integral equation (3.26) satisfies the sys-
tem (3.25). Any solution of the integro-algebraic system (3.25) satisfies the
equation

Wo = w'? + u°
with some function w® such that Lw® = 0.

Theorem 2 If the frequency is different from critical frequencies of op-
erator L (that is Lw = 0 has only trivial solution), then solution ® of
the integro-algebraic system (3.25) exists and is unique for any right-hand
side. If the frequency is critical, the solution ® exists if the right-hand side
satisfies the orthogonality condition

a

d2w(9) w9 (=
_/U<g>(x,o)¢0(x)dx+“C’ZT@‘)UJO(@)+ W) 20 —a)
B w9 (a w9 (—a
T bla) + -0 =0

where Oy = (Po(x), wo(a), wo(—a), wh(a), wi(—a)) is the solution of the

homogeneous system (3.25). In that case ® is defined up to ®q.

Theorem 3  Solution of integral equation (3.26) exists and is unique for
any right-hand side.

Asymptotics of the field for ka < 1

The integro-algebraic system appears more suitable for asymptotic analy-
sis. It is more convenient to rearrange the unknowns as follows. Let the
following quantities be introduced

[w] = w(a) — w(=a), [w]=w'(a)-w(-a),

w(a) + w(-a) w'(a) + w'(—a)
{w} = ————, {W}=—""—F—"—.
2 2
When the width of the crack tends to zero two of the introduces constants
become the jump of displacement on the crack and the jump of bending
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angle. The integro-algebraic system takes the form

a

/(P4(x0 — ) — K Py(xo — a:))(/)(x)dx + oow? ({w’}[Pz](xo)

+ [w'{ P2} (o) — {w}{Ps](20) — [w’]{Ps}(l‘o)) = U9 (0, 0),

: 2+ Ea(2a 2(9)
5 [pesterie + wn2E2C0 e = - {22

a 3w(9)
5 [P + s (2a) + {u)2(Ds - Bot2a) = - |57,

a

1 , d?w(9)
— 5 [1Pl(e)(a)da + )20 - Ea(2a) + [uls2e) = - | S2]

—a

a a 30(9)
5 [t @oteds + (u' (o) - o) 22 D

Here
1 i (i/\)zd/\ 1 i (i/\)zx//\2 — k2d)
i) = ﬁ/e L\ d(@) = ﬁ/e LoV '

Note that Pp(0) = J, where J; are introduced in (3.10) and E,(4+0) = D,
where Dy are introduced in (1.54). Also we introduce
fle—a)+ flx+a)
{FH=) = 5 o U@) = fle—a) = f(x+a).

Consider the case of narrow crack, that 1s let ka <« 1. In that case one
can accept that ¢(z) & ¢o/Va? — #2, ¢o = const. Then one substitutes this
representation into the integro-algebraic system and decomposes the first
equation into Taylor series near zq = 0. The kernel Py(2o—2)—k{ Po(xo—2)
can be replaced by its asymptotics when # — 2y (compare with page 118)

1 1 )
Py —0) = ki Pow = 20) ~ —In o — |+ — (In(k/2) + Cr) - % —NJ+...
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and other functions are decomposed into Taylor series. After calculating the
integrals the symmeterized integro-algebraic system takes in the principal
by ka < 1 order the following form

Q do + 02 DJ>[w'] = U'9(0,0),

d?w9 (0 (3.27)
Jago + Qow2D4[w/] ~ —Dwiz()
dx
and

oow? De[w] ~ — (3.28)

dx3

The coefficient @ in (3.27) is given by the formula
Q=I(ka/))+Cp—in/2—nNJ

and the integrals J and J, are introduced in (3.9) and (3.10). The quan-
tities {w’} and {w} disappear from the leading order terms in the integro-
algebraic equation. Analysis of equations in the next order of ka allows
these constants to be proved bounded as ka — 0. Therefore their contribu-
tion to the far field asymptotics appears of order O ((k’a)z) and 1s neglected
below.

The right-hand sides in the equations (3.27), (3.28) are functions of the
incidence angle g

1k sin ¥q (k4 cost ¥y — ké)
L(¥0o) ’
(g) o 1 Zk Sin 790 ikz cosdo
- gow2 E(ﬁo)

U9(0,0) =

The unknowns are found from the system (3.27) and equation (3.28) as

o= Toagg 1™+ (i) )

2iNksindy [ k2 cos? ¥ Ja ( 1 )}
M=- — MG +0 | ———— ,
=00 { D s R R N
2N Ek*sin dg cos®
w| = + o(1),

where £(9p) is defined in (1.25) and M (¢¥) is defined in (3.13).
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The far field amplitude is given by the formula (3.21). In two principal
orders by ka this yields

iN k%sindsindg [ k*
U(9;9y) = ————— { —cos® Jcos? Y
( ) 0) T E(ﬁ)ﬁ(ﬁo) {D4 COSs COS 0 (3 29)
k6 5.9 cos® 0 2 M (9)M (90) n ’
— — cos” ¥ cos -t p
De 0 NQ

The first two terms coincide with the far field amplitude of scattering by
classical model of pointwise crack. The last term is the logarithmically
smaller correction with respect to ka.

3.2.7 Discussion and numerical results

The above asymptotic formula coincides with the exact expression (3.12)
for the far field amplitudes in the problem of scattering by the generalized
point model of narrow crack up to terms of order 0(1/ ln(ka)). The ampli-
tudes of surface waves are obtained from the formulae (3.29) and (3.12) by
taking residues as specified in (1.30). Therefore asymptotic coincidence of
the amplitudes of surface waves in the two problems follows from such coin-
cidence of far field amplitudes of diverging cylindrical waves. Analogously
one could check that the generalized model of narrow crack reproduces prin-
cipal order terms and logarithmic corrections of the far field amplitude and
amplitudes of surface waves in the case of surface wave scattering. This fact
allows the main HYPOTHESIS to be justified for the problem of scattering
by a narrow crack in fluid loaded elastic plate.

Below we discuss the formulae (3.12) and (3.14) of scattering by the
generalized point model of narrow crack. Note that the two leading terms,
for € = ka <« 1, of the asymptotics (3.12) coincide with those presented
in Chapter 1, see formula (1.60) where scattering by the plate with the
pointwise crack is examined. The correction given by the last term in
(3.12) depends on the width 2a of the crack. Under the assumption that
the problem contains only one small parameter ka the characteristics of
scattering on a narrow crack can be concluded close to those for classical
model. At the same time, if the incidence is orthogonal, then the first
two terms in (3.12) and (3.14) vanish and the main contribution is of order
1/In(ka). That is, classical model of pointwise crack is not applicable if the
incidence angle ¥y or the angle of observation ¥ are close to 7/2, (namely,

if their declination is less than 1/4/|In(ka)|). By similar reason in the
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case of surface wave scattering the classical model of pointwise crack is not
applicable if the direction of observation is close to orthogonal.

Formulae (3.12) and (3.14) contain special integrals D4, Ds J and Ja.
These integrals depend on parameters of the plate and fluid. In the case
of thin plate, (kh <« 1), the integrals can be simplified and hence simpler
formulae can be derived. The asymptotic expressions for contact integrals
are derived in Appendix A. Comparison of the coefficients of trigonometric
functions presented in the asymptotics of the far field amplitude allows the
range of applicability of classical model of pointwise crack to be established.
Substituting from (A.11), (A.12) and (A.13) into the asymptotics (3.12) it
i1s immediately apparent that the last term giving correction with respect
to small ka appears to be leading in parameter € = kh. Indeed, the ratio of
the scattering pattern for the pointwise crack to that given in (3.12) is of
order ¢%/° In(ka). For the amplitudes of surface waves the last term is again
the leading one with respect to ¢, though analogous ratio is larger, namely
it is of order £*/° In(ka). This means that even for nonorthogonal incidence
terms corresponding to the classical model of pointwise crack prevail only
for very small ka, namely in the formula for the far field amplitude if ka <
exp(—E‘S/E’), and in the formula for the amplitudes of surface waves if ka <
exp(—6_4/5). The applicability of the model examined here for such narrow
cracks i1s of doubt and cannot be used for justification of classical model.
However, if ka > kh generalized model of narrow crack is valid and classical
model of pointwise crack is not. The doubts concerning applicability of
generalized model of narrow crack for ka < kh are similar to those for the
applicability of contact conditions briefly discussed in Section 1.1.3.

As for not exponentially small widths a the last terms in (3.12) and
(3.14) give main effect of scattering, it is of interest to describe it by the
asymptotic formulae. For that consider first the denominator of the last
term in the asymptotics (3.12)

7 3w 2mi 1 — e2mi/E
~n(ka/4)+Cp— — + 2 — 4+ 2~ =
Q@ ~1In(ka/4) + Cp 7 + 10 + 5 (1_1_67”./5)2

= In(ka/4) + C' — %

C:C’E+2§tan(f—0).
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Excluding complex values from the denominator one finds

—5i(In(ka/4) + C)

W(9;9g) ~ Bed?— - sin ¥ sin g,
2+ 25 (In(ka/4) + C)
Uy = 2mwede™/® mi +5 (In(ka/4) + C) sin ¥ .

72 + 25 (In(ka/4) + C)*

The above asymptotics can be verified to satisfy the optical theorem (1.42).
Computations show that the main portion of energy scattered by narrow
crack 1s carried away by surface waves. The scattering cross-section has the
asymptotics

2072

Y(d) = ; ed?hsin® ¥g.
25 (In(ka/4) + C)” + w2

We analysed validity of classical model of pointwise crack for plane wave
scattering. Now the case of surface wave scattering is analysed briefly. The
asymptotics (3.16) leads to the expression

_1 278 /5 1 67i/5
e g (=) (1)
9/ 10 5 (In(ka/4) + C) 4 mi

25 (In(ka/4) + C)* + 72

The first two terms correspond to classical model and are the leading terms.
The correction is 1/]In(ka)| times smaller. Hence in the case of surface wave
scattering classical model of pointwise crack gives correct asymptotics.
The above analysis is made with the assumptions of thin plate when the
asymptotics (1.15) is valid. In other cases numerical calculation of integrals
Dy, Dy, Jo and J should be performed. Numerical results are presented
on Figs. 3.1-3.3. Two examples of plate—fluid systems are examined. For
lem steel plate in water the semi-widths a of the crack are assumed 0,
10~19107%, 0.001, 0.01, 0.03 and 0.1m . The effective cross-section ¥
(in dB) and the portion of energy carried by surface waves in that system
are presented on the left-hand side graphs of Fig. 3.1. The right-hand side
graphs correspond to the system of 1mm steel plate in air. For this system
classical and generalized models show larger difference and to follow the

tThe small values of a are taken formally (without respect to the molecular structure)
just to illustrate the limit of ¢ — 0 in the generalized model of narrow crack.
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20Hz 200Hz 2kHz 20kHz 1Hz 30Hz 900Hz 27kHz

-254

_75 75 A ................... ...................

Effective cross-section (in dB) as a function of frequency for J¢ = 30°.

20Hz 200Hz

2kHz 20kHz 1Hz 30Hz
1.0 - ;

900Hz 27kHz

0.0 D et

Portion of energy carried by surface waves.

Fig. 3.1 Scattering by narrow crack: lcm steel plate in water (left) and 1mm steel plate
in air (right). On the left graphs a =0, 10719, 1073, 10~2, 0.01 and 0.1m on curves from
bottom to top on the upper graph and from top to bottom on the lower graph. On the
right graphs =0, 10390, 10—100 50—530 10—20 10—1°, 10—3, 10— and 0.01m.

Fig. 3.2 Angular characteristics of scattering by a narrow crack in lcm steel plate in
water at 1kHz (left) and at 10kHz (right).
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limit of @ — 0 the characteristics for ¢ = 0, 107300, 10199 1050 10—29
1071%,107°, 0.001 and 0.01m are presented. The order of curves on the
graphs is the following. On the graphs for the effective cross-section X
the lower curves correspond to the smaller widths. On the graphs for the
portion of surface energy the order of curves is the reverse.

One can see that even for very narrow cracks the low frequency limits
in the case of classical point model and in the case of generalized model of
narrow crack are different. At larger frequencies the curves approach to each

30Hz 1kHz

11kHz 27kHz

Fig. 3.3 Angular characteristics of scattering by crack in 1mm steel plate in air.
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other and in a vicinity of the critical frequency f* both models give similar
results as the semi-width a does not manifest itself. The lower graph shows
that the balance of energy for a # 0 is different from that in the case of
pointwise crack. In the low frequency range almost all the energy is carried
by surface waves, but in the intermediate domain a significant portion of
energy is scattered by cylindrical wave. This increase of cylindrical wave
contribution starts at about coincidence frequency f.. In the model of
pointwise crack such rearrangement of energy fluxes is not presented.

Figure 3.2 presents angular characteristics for the system lcm plate
— water for frequencies 1kHz and 10kHz. The order of curves and the
parameters a are the same as on the upper left graph of Fig. 3.1. One can
see that the model of pointwise crack gives smaller values of the effective
cross-section. This Figure also illustrates the inapplicability of classical
point model in a vicinity of orthogonal direction which is established above.

Same characteristics for the system 1mm plate — air are presented on
Fig. 3.3 for frequencies 30Hz, 1kHz, 11kHz and 27kHz. The semi-widths of
the crack are accepted the same as on Fig. 3.1 (right), that is the curves from
bottom to top correspond to a = 0, 107399 107100 1050 10-29 10-19,
1075, 0.001 and 0.01 m. One can see that even for very narrow cracks
classical and generalized models give different characteristics. Coincidence
is noticed only in a vicinity of critical frequency f*.

3.3 Model of a short crack

Consider the problem of scattering by a short infinitely narrow crack in
elastic plate. Let the crack be oriented along the z axis, the edges of the
crack be free and fluid occupy the halfspace {z > 0} on one side of the plate.
We assume the length 2a of the crack be small compared to the wavelength
of the incident acoustic or surface wave. In that case to obtain the principal
order terms in the asymptotics of scattered field the obstacle (crack) can be
replaced by a generalized point model in the form of appropriate zero-range
potential for operator Hs. Such zero-range potentials are parameterized by
Hermitian matrices § according to formula (2.38). The matrix S has block
structure as described in Section 2.3.3 and its blocks can be determined as
suggested by the HYPOTHESIS of Section 3.1. That is, the element §11 = 5
is determined from the analysis of scattering by absolutely rigid plate, the
block {Sij}ijz = S is the same as in the case of isolated plate and other
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elements of matrix § are zeros.

The diffraction process is first considered in isolated plate by means
of integral equations method. This allows the far field amplitude of the
scattered flexure wave to be derived and the parameters S of the zero-
range potential to be chosen. Then the generalized model for the crack
in fluid loaded plate is constructed according to the main HYPOTHESIS as
described above. Further scattering by this zero-range potential is studied.
Finally considerations of Section 3.3.4, where the problem of diffraction by
a short crack in fluid loaded plate is solved in classical formulation, justify
the HYPOTHESIS .

3.3.1 Diffraction by a short crack in isolated plate
Problem formulation

The problem of scattering of an incident field of flexural displacements
w' (x,y) by the crack A = {|y| < @, = 0} in an infinite plate is in finding
such scattered field w(s)(x, y), that satisfies the equation

Akl =0, (2,y) €A, (3.30)

and such that the field w = wD + w(®) satisfies the boundary conditions
on both sides of the crack

MEw(®) = —MEw®) | Fre() = —Ft ()

denoting that edges are free of forces and bending momentums. Here

Miw = Dxl—lgl:lO (wxx + Uwyy) = Oa |y| < a,
+, — _ ; _ =

The problem formulation includes the radiation condition and Meixner
conditions (1.19) at the ends of the crack. The latter guarantee the en-
ergy finiteness in any bounded domain and may be written in the form of
asymptotic expansion [16]

w®) = w4 rws(p) + ¥ ws(0) + O(?), 1 —0. (3.31)

Condition (3.31) means that the term r'/%w; () is absent in the expansions
of w(®) in both polar systems with the poles at each end of the crack (0, —a)
and (0, a).
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For further derivations it is convenient to use dimensionless coordinates
z', ¢ and wave number kj:

¥ =wxla, Y =yla, k= koa.

Henceforth the primes are dropped.

Governing integral equations

The scattered field w(®) may be searched in the form of Fourier transform
(compare with (1.73))

3
= ZSIgH] / iny (/i) (,.Y‘i—le—|x|’y_ — ’y‘i__l@_lxh*’) d/,t (332)
7=0

Here v4 = /u? & k2. The integration path in (3.32) goes along the real axis
of pt in such a way that the branch point g = —kg is below and the branch
point p = kg is above 1t. This form of contour is fixed by the radiation
conditions. The integrand in each term satisfies the equation (3.30) and
the number of terms in (3.32) is defined by the order of the differential
operator. The terms with numbers j = 1 and 3 form the odd part of the
field and the other two terms form its even part. Unknown functions p;
should behave at infinity as prescribed by the asymptotics (3.31), namely

pi(n) = O(u*77), = oo, (3.33)

Therefore integrals in (3.32) converge for all values of (x,y), but when
substituted into equation (3.30) or into boundary conditions the integrals
should be treated as Hadamard integrals or should be regularized (see Ap-
pendix B).

The representation (3.32) automatically satisfies the equation (3.30)
when # # 0. The Fourier transform in the formula (3.32) is written in
such a way that 4kZp; is the Fourier transform of the jump of the deriva-
tive by « of order 3 — j at @ = 0. That is, the following formula takes
place

(A% — k) w! ——4k42/ M ps (1) dp (-%)ja(x).
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To satisfy the equation (3.30) everywhere except at the crack it is necessary
to fix conditions for p; (j =0,1,2,3)

/ Wy ()dp =0, |yl > 1. (3.34)

Consider the boundary conditions. It is convenient to rewrite these condi-
tions as

(MF - ) w® =0, (FF —F)w =0, (3.35)

F+ (w(s) + w(i)) =0, M* (w(s) + w(i)) =0, lyl < a. (3.36)

The conditions (3.35) are satisfied on the whole axis and do not contain
the incident field which is continuous. Substituting representation (3.32)
into conditions (3.35) yields integral equations of convolution on the whole
axis. Solving these equations one finds

po(p) = —Uﬂzpz(ﬂ)a pi(p)=—(2- U)/izps(ﬂ)~ (3.37)

The boundary conditions (3.36) yield integral equations

/ewyhz(u)pz(u)du = f2(y), ly| <1,
| (3.38)
/ewyhB(u)ps(u)du = I3(v), ly| <1,
where
Clz Clz
ho(p) = — — =+, hg(p):aify_—az_m_, ax = (1 —o)p? £ k2,
Y- T+
1 1
Jo(y) = —EI\\/JI"'w(Z)(y), J3(y) = —BF-'—U}(Z)(@/)

Superscripts T of operators M and IF can be suppressed because the incident
field w( is continuous.

Equations (3.38) together with equations (3.34) form two systems of
dual integral equations. Note that equations of this kind often appear in
diffraction problems. For sufficiently large values of ky the Wiener-Hopff
method [55] can be applied to find the asymptotics of the scattered field
as the sum of waves many times rescattered by the ends of the crack. The
other case is considered here. The wave number kg is supposed to be small.
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To satisfy the homogeneous equations (3.34) let p, be Fourier transforms
of functions ¢, different from zero only on the interval [—1,1]

pn(p) = /qn(t)e_”“dt. (3.39)

The index n here and below takes values 2 and 3. Integrating over p in
(3.38) gives integral equations for new unknown functions ¢, (¢):

1
Hp ¢n = /Hn(y —1)gn()dt = kf o (y), ly| < 1. (3.40)
21

Here kernels H,(s) are Fourier transforms of h,, () (the factor k'o_z is intro-
duced to exclude frequency from the principal singular parts of the integral
operators):

Ha(s) = k’o_z/ei“shn(u)du.

The kernels can be expressed by Bessel functions of the third kind. Using
representation of Bessel functions in the form of series [1] allows the kernels
to be concluded representable in the form

d2n—2
H,(s) = o2 (In|s| + an(s*) In|s| + b, (s?)) (3.41)

where a(s?) and b(s?) are smooth functions from C*°[—1,1] and a,,(0) = 0.
Indeed, singularities of kernels are defined by the asymptotics of h,, (p) when
@ — oo

ha(p) = —xkglpl + b5 (k). hy(n) = O(u™?),
ha(p1) = xkg|ul® + h5(p),  hs(p) = O(pu").
Here x = (1 — 0)(3 4+ o). Therefore the singular terms are

d2
Hy(s) = _QXEIH |s| + H5(s),

d4
Hs(s) = —2)(@111 |s| + H5(s).
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The kernels H/, are functions integrable on the interval. Therefore to regu-
larize the equations (3.40) one changes the order of integration and differ-
entiation in singular terms. That gives

1
d?
_2xd 5 /ln|y—t|fJ2 dt+/H —)qa(t)dt = kZfa(y), (3.42)
-1

-1

—%(%/lnly—tl%( )dt+/H (v —t)gs(t)dt = k3fa(y).  (3.43)

-1

The solutions ¢, (t) of these equations should belong to spaces defined
by conditions (3.33). Let S,, denote spaces of functions u € C*°(—1,1)
satisfying inequalities (see Appendix B, page 245)

lu(t)] < const (1 — tz)m_H—é , J > 0. (3.44)

Then ¢2(t) € S1 and ¢s(t) € Sz as follows from the properties of Fourier
integralst.

To examine existence and uniqueness of solutions of integral equations
(3.42) and (3.43) in spaces defined by condition (3.44), one can check that
the symbols hy, (i) have positive imaginary part when p is real. That is, the
symbols of the integral equations are sectorial. The analysis of supersingu-
lar integral equations of the convolution on a finite interval can be found
in Appendix B. It uses the representation (3.41) for the kernels H,(s) and
sectorial property of hy, (1) and allows the following result to be formulated

Theorem 4  Solutions of equations (3.42) and (3.43) in the classes Sg
and Sy respectively exist for every right-hand side from C°°[—1,1] and such
solutions are unique.

{One can integrate by parts in (3.39) and check that Fourier transform of g» decreases
at infinity as o(¢ 1) and Fourier transform of g3 decreases as o(u~2). Exact behaviour
can be studied with the use of integral representation for Bessel function

1 1 ewtgy
Jolw) = _/1 V11— 2

and the estimate Jy(p) = O(u_l/2)7 for y — infty.
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Numerical analysts

For numerical analysis of integral equations (3.42), (3.43) it is convenient to
use Galerkin method with orthogonal polynomials as basic functions. The
same method was previously used in [60] when examining static problems
for plates with cuts, ribs, fixtures and other thin inhomogeneities. Solutions
qn(t) are represented in the form of infinite series

\/l—tQZOz]

(3.45)
gs(1) = 3/2 Z 8;C

Here U;(t) are Chebyshev polynomials of the second kind and C'](»z)(t) are
ultraspherical polynomials. These polynomials are used in representation
(3.45) because they are the eigen functions of the singular parts of the
integral operators of equations (3.42) and (3.43) respectively [60]

/1n|y—t|\/1—t2U (G + 1)U;(y),

1
d* 3/2
gt | =t (=Y P 0d = x4 1)G +20 + 307 0).
21
Substituting representations (3.45) into the integral equations gives in-
finite systems of linear algebraic equations for the coefficients «; and g;:

. = m k3 .2
_X(j—|—1)0z]—|—z_:0A] Ozm:?f] ,
) — N - (3.46)
. . . m 0
TUAD?G+2G+3)°0+ Y B b = 2177

m=0

The functions on the right-hand sides of equations (3.42) and (3.43) are
expanded into series in orthogonal polynomials, and fjn) are the coefficients
of these series

1
f}z) / V1 —y*U;(y)dy,
-1
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1

17 =~ [ ) (1= Py

-1

The elements of matrices AT" and BJ" are given by integrals

1

1 1
ar == [ [ i 0T B 0/ T F U ) de
1-1

5

1
T

1 1
BTzz//%@4prW%@mu—yW%muw@
—-1-1

(3.47)

The elements AT" and BJ" having indices of different parity are equal to
zero. This corresponds to the symmetry of the problem. Therefore each
system (3.46) separates into two independent systems for the coefficients of

odd and even with respect to & parts of scattered field.

To avoid integrating twice in expressions (3.47), it is convenient to use
Fourier transforms of kernels H/,. After that, integrals over y and ¢ may be
rewritten in terms of Bessel functions. For that one uses the formulae [1]

(1= E)Ue(t) = 5 (Te(t) = Teya(0)).

l\DI»—k

(1 =) 1) = 2+ 300 — (C+ DU (0)),

1

.y T W
Je(p) = Z_/ cos(EH )do == . / ztuTZ .
0 21

and
20
Jo—1(p) + Jega () = ;Jz(ﬂ)
Finally representations (3.47) are reduced to

oQ

AF = =7 G D+ D[ B0 310 ().
0]

(3.48)



Model of a short crack 145

G+3)( m—|—3
J!

m 1 —2

(o]

/h Jia(p Jm+2(ﬂ)d—it~ (3.49)
0

The integrated functions in expressions (3.48) and (3.49) decrease at infin-
ity rather slowly (only as O(u~°)). To improve convergence singular terms
(y —1)?In|y — t| and In|y — t| can be extracted from kernels H} and H}
respectively. These terms give five diagonal matrices and increase conver-

gence of the integrals up to O(u=1°)

. Convergence can be made as rapid
as desired by extracting further terms from kernels.

Systems (3.46) can be truncated. To prove this, it is necessary to es-
timate the behavior of A7 and Bj" with respect to indices. Consider rep-
resentation (3.48) for A" and divide the interval of integration into two
parts by some point g = 7. For the integral from 0 to T the estimate
|Jm (2)] < (2/2)™/m! for Bessel functions and the integrability of the sym-

bol k4 (p) leads to

G+ 1) 1) | [ B4 ) ()

(/2 (/2 (/2
< (1 garoe) (U e s

For the integral from 7" to infinity the Bessel functions are limited by 1 and
the expression |hf(p)p=?| decreases as Copu~°. Therefore this gives

G+ 0 1) | [ 05101 () 2 < UE D),

The value 7" 1s chosen such as to minimize the sum of the right-hand sides
in the above estimates. More rough, but sufficient estimate appears if one
chooses value of T' simply by equating the right-hand sides in the two above
estimates. This corresponds to

T ((g + 1) (m £ 1)! )1/(j+m+4)

and finally gives

JAP] < Cs(j + 1)(m + 1) (( + 1)(m + 1)1) "I
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Using Stirling formula [1] for the factorials allows to conclude that

= [ On+0)7%), i~ m
I O(m™3), j<m.

An analogous procedure for B leads to insufficiently accurate esti-
mates. Therefore it is necessary to extract singular term CyIn |y — | out of
h%. This term may be explicitly integrated in the representation (3.47):

Cy

m nm m . 9 . (]+1)2
B;" = B; —?{5j (Uj(]+3) +4(j +2) + i+ 4

—4q”%j+n+waWU2—m},

where

n2, =0
TEN i

The described above procedure gives for E;” the following estimate
|B| < Cs(ko/2)°52m® (jlmt) =8/ U+m).
Therefore

B | = O(m+3j), j~m,
J o(m=%), j<Km.

It is shown in [37] that

Theorem 5  Truncation method is applicable to systems
Y+ Y Chyj = Tm
j#m
satisfying the following two conditions:
(i) for any m the sum of nondiagonal terms is finite

Sm = Z |G| < o0
j#m
(ii) there exists some number N such that for any m > N

Sm<l—g, |rm|<l—¢ &>0.
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The estimates for A7" and B" mean that systems (3.46) satisfy condi-
tions (i) and (ii) for any ﬁnlte ko Therefore solutions of truncated systems
converge to solutions of (3.46) if the systems of N equations (N is the
same as in (ii)) are not singular. Calculations show that for large values of
ko matrices of truncated systems become nearly singular. Therefore, the
method is applicable when kg is not large.

Numerical and asymptotic results

When systems (3.46) are solved the scattered field may be calculated ac-
cording to formulae (3.32), (3.37), (3.39) and (3.45). This gives

w) = /eiuypz(ﬂ) (a_—e—lxlv— _ a_+e—|x|v+) du

v- Y+
(3.50)
— Sign(l‘)/eiuypg(/,t) (a_l_e—lxlv— — a_e—lxlw)dﬂ’
peli) = 7Y (=i G+ 2L
iz0 (3.51)

_ FZ@ (I
1
The integrals over ¢ in equation (3.39) are rewritten in terms of Bessel
functions. Properties of the integral equations lead to superpower decrease
of coefficients a;, 3;.

The main characteristics of scattered field at infinity 1s its far field ampli-
tude. The saddle point method (1.22) for the integral (3.50), when kor — oo
is applicable. The factors e~1*17+ in each integral form exponentially small
contributions, the exponentials e~1?17= give circular wave

(5) o |27

thop—im/4
Top bo(p).

The far field amplitude 4o () is expressed by the values of functions ps and
ps 1in the stationary point, that is for u = kg cos ¢

Yo(p) = A—(p)p2(kocos @) + Ay (p)sin ¢ ps(ko cos ¢), (3.52)

where

Ax(p) = (1 —0a)cos’p £ 1.
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The formula (3.52) is valid for any incident field which characteristics
are implicitly presented in functions p, (u) defined by the solutions «;, 5;
of the infinite algebraic systems (3.46). Let the incident field be the plane
wave

w(l) = Aexp (Zk’o(l‘ sin w0 + ycos QDO)) .

If the crack 1s short that 1s if kpa < 1 it 18 possible to derive the asymp-
totics of the far field amplitude ¢/(¢) from the algebraic systems (3.46). For
this purpose the coefficients A7 and B can be replaced by their asymp-
totics. To obtain the leading terms of the asymptotic expansion for ()
1t 1s sufficient to notice that BJ" = o(k3) and to replace all B by zeros.
Indeed, changing the integration variable from u to 7 = p/ko one finds
that H5(s) = O (k¢ In(kos)). Therefore the second formula in (3.47) yields

B = O(kdInkg). For A7 1t 1s necessary to obtain a more precise estimate

i
0 _
Ay = =

_32k§(302+20+3)—|—0(k’§), AP =0(kd), j+m>0.

J

This estimate may be derived by examining expansion of kernel H,(y—t) in
the neighborhood of t = y. Again changing integration variable to 7 = p/kq
yields

}%mka/(ql—ﬂﬁ—l) (1—0)r?+1)

— —|—X|T|) dr + o(1).

2 -1 NZEES
(3.53)
The above integral can be calculated in closed form. In particular its imag-
inary part 1s equal to

! 2
- o)r? -1
2k§/[£i———flz————l—d7:: =307 + 20 + )k
0

and 1ts real part after cumbersome derivations appears equal to zero. Sub-
stituting from (3.53) into the first formula (3.47) gives the above asymp-
totics of A7

The right-hand sides fj(z) and f](?’) for the incident plane wave w() are
expressed via Bessel functions. That gives the asymptotics

Ji41 (ko cos pq)

(2) — A5
f AT+ 1A (po) ==

J
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A (o) (ko cos go)’

) Ji42(ko cos gq)
714 Z9+2\R0 R F0)
+(p0) sin o (kg cos o)
~ At U ; 3) Ay (o) sin g (Lkg cos goo)j .
J!
The Bessel functions in expressions (3.51) may be replaced by the first

terms of their Taylor series. All this gives

Yo(p) = Ai (ko—a)z A-(p)A- (po) {1+ (lm—a)zcossocossoo

2 (1—-0)(3+40) 2
T (koa" Bott 2048 e 3.54
+8<2) (1—0’)(3+0')+O<(k0)>} ( )
[ koa\* A () sin p A (o) sin g
+2i (T) + (1_0-)(-5—1—0' {1+0 ((koa) )}

In the asymptotics (3.54) the former dimensioned variables are used.

The effective cross section is defined as the portion of energy scattered
by the inhomogeneity and is expressed via the far field amplitude in two
ways (1.43). This equality allows the result (3.54) and all numerical results
presented below to be checked. The asymptotics of the effective cross-
section of a short crack is as follows:

s _ k34 3624+ 204+ 3

3280 [T oyr 1 o)r e (#o) + Okda®),

Numerical calculations show that, for not long cracks with kpa < 5 in
order to have an error in optical theorem less than 1%, it is possible to
truncate the systems (3.46) at the 10-th equation. That is, it is necessary
to solve four systems of not more than five equations each. The integrals
(3.48), (3.49) representing matrices A and B were calculated applying basic
integrals subtraction method to improve convergence at infinity.

The obtained results permit to discover some particular features of the
field diffracted by a crack. Figure 3.4 presents the effective cross-section ¥
against the length of the crack for incidence angles ¢q = 0°, 5°, 45° and
90°. The effective cross-section is normalized by the “visible” cross-section
of the crack Xy = asin ¢g when ¢y # 0 and by 0.1a otherwise. These curves
are characterized by presence of maximums approximately at kga = 2-2.5.
Similar maximum exists for diffraction of acoustics waves on a segment with
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Fig. 3.4 Normalized effective cross-section

Neumann boundary condition [36] and can be explained by the interference
of waves scattered by the ends of the segment. This observation means that
the applied in this investigation long wave approach leads to formulae that
are valid at the beginning of the short wave region.

Note that the edge waves of Rayleigh type (see formulae (1.75), (1.72) in
Section 1.5.2) do not cause any resonances. This result may be established
either by examining Fig. 3.4 or concluded from the fact that the integral
equations are solvable for any complex values of parameter k.

Apart from the noted similarity of diffraction processes of flexural and
acoustic waves scattering there are some differences. When an acoustic
incident wave goes along the obstacle the scattered field vanishes, but when
flexural wave goes along the crack the effective cross section is not equal
to zero. This is due to the propriety of elastic deformations. The fact 1s
that deformation of elastic body in one direction causes normal stresses
in all other directions to appear, see (1.1). This effect is characterized by
Poisson’s ratio ¢ and exists for any o # 0.

The formula for scattered field makes it possible to calculate the stress
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Fig. 3.5 Stress intensity coefficients

wintensity coefficients. These coefficients are important for the theory of ma-
terial failure and characterize singularity of stress tensor (see Section 1.1):

Kt = lim 27(y F a) 0zs(y,0)
y—r+(a+0)

By using the following proprieties of orthogonal polynomials [60]

1
1 d? Ui (y)
—— Iy — U ()1 — t2dt = |y| —LL
= dy? n |y —t|U;(t) |yl T

-1

. dU;(y j+1
+ sign(y)vy? — 1# - TUj(y), ly| > 1,

1t 1s not difficult to derive

1 — 0 ;
- - ;
K+ = QFS/ZZEh\/El o JZ_; aj(:lzl)] (.7 + 1)'

Here bending stiffness D is expressed via Young modulus £ and thickness
of the plate h. The above representations allow the asymptotics for a — 0



152 Generalized point models
to be found

- A (o)
K* = —Amka®? Bh—— 0 4 0 (kfa"'?) .
vk (1—-0)(3+40) 0
The numerically calculated stress intensity coefficients are presented on
Fig. 3.5 for two angles of incidence at ¢y = 5° and ¢ = 45°.

3.3.2 Generalized point model of short crack
Isolated plate

The scattering process by a short crack in an isolated plate can be simulated
by means of appropriate zero-range potential of operator B5. Parameters
that define the operator B3, namely Hermitian matrix S from (2.26) can
be chosen with the help of the far field amplitude asymptotics constructed
in the previous section.

The problem of scattering by a zero-range potential of operator Bj is
in finding such scattered field that satisfies the equation

A% — k20 =0, (z,y) #(0,0)

and combined with the incident wave w = w(® + w(®) has the asymptotics
(2.25) with coefficients satisfying condition (2.26) or (2.27) with a given
matrix S.

The general solution of the above equation that locally belongs to Lo (RR?)
has the form of multipole decomposition

i+j<2 "

= ot
(5) — LY .
w — i]Z_:O Czy 6l‘i6ng0(x’y’0’0)’
where go(p, py) is the Green’s function defined by (1.45). The far field
amplitude (3.54) allows coefficients of this decomposition to be found. Re-
placing the Green’s function in the above multipole decomposition by its
asymptotics for large p = /22 + y? yields expression for the far field am-
plitude

U(p)

= ——— | coog + thpcrosin g + thgcgy cos @

— kgczo sin? w— kgcn SIn @ cos @ — kgcoz cos? go) .
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Comparing it with asymptotics (3.54), firstly from the point of view of
symmetry, one concludes that

cio =co1 =c11 = 0.

Then, analysis of angular factors shows that (3.55) can not reproduce some
terms of (3.54) that have the order O((koa)4). Therefore let no terms of
this order be used for further comparison. Finally the coefficients ¢ and
coo are expressed via cgg up to smaller order terms

Ca0 = ko_zcoo +0Q + 0((k0a)2), Con = k0_2c00 +Q+ 0((k0a)2), (3.56)
where () 1s defined by the incident plane flexural wave

s 2 2
5 8IN7 g + 0 Cos” ¢y

Q = —27xD(koa) (1-0)(3+0)

Consider now the system (2.26). Excluding zero amplitudes ¢yq, g1 and
c11 1t can be written 1n the form

€00 Ri1 Ria R boo
C20 = R41 R44 R46 bzo . (357)
€09 Re1 Resa Res bo2

Here matrix R. is the inversion of S from (2.26). The coefficients of regular
part of solution appear not only due to the incident wave, but also from
the scattered field. Using asymptotics of Bessel functions [1] (see page 63)

one finds

3 3
boo =1+ 8kzDCoo-l- (Z-I- o D) a0 + (Z-I- S—D) oz,

3¢
bag = —ko cos? wo + Zeoo + 64Dk’0620 + 64Dk0602’
. 3¢
bos = —kj sin® g + Zeoo + 64Dk3620 + 64Dk3002
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Here

A In(ko/2) + Cp — 1 — m/4).

- 47TD(

With the help of formula (3.56) one expresses all the coefficients of regular
part of the field w(z,y) via the monopole amplitude ¢qg

3
bog = 1 + (Z + 87T—D) (1+0)Q + 22'kj *eqo,
1

bog = —k’g cos? g + k’g(3—|—0')Q—|—Zcoo,

64D
. ?
bos = —k2 sin® g + 64—Dk§(1 +30)Q + Zego.
Here
3 i
7' =7+ — .
+ 8t D + 16D

Substituting these values into the system (3.57) and expressing ea¢ and ¢g2
via cpg yields

/

27
coo0 = (Rnk—z + Ri4Z + R16Z) coo + Ri1 — Riakj cos? pq
0

. 3
— R16k’g SlIl2 Lo + R11 (Z + 87T—D) (1 + O')Q

2

—|—li — (30 + (Q—|—li —(o + (Q
146] 166] ’

/

c 27
% +0Q) = <R41k—2 + RaaZ + R46Z) coo + Ra1 — Raak{ cos® po
0 0

. 3
— R46k’g SlIl2 Lo + R41 (Z + —) (1 + O')Q

8D
ik?2 ik?2
+ Raaop (30 + 1)Q + Ras (o +3)Q,
¢ 27!
% +Q=27 <R61k—2 + ResZ + R66Z) coo + Re1 — R64k§ cos? ©o
0 0

8D
+ R646—4(3U +1)Q + R666—4(U +3)Q.

. 3
— R66kg SlIl2 Lo + R61 (Z + —) (1 + O')Q
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The matrix S and consequently R of the generalized model should not
depend on the incident field. In particular on wave number kg and angle of
incidence ¢g. Assuming R;; not depending on kg allows the above equations
to be split into equations for the coefficients of different powers of kq. It 1s
easy to conclude from the above system that cgg 18 decomposed into series
in even powers of kg,

2 4
600262k0+64k’0—|—...,

with coefficients ¢s, ¢4 possibly containing only logarithms of ky. Neglecting
presence of In(kg) in the coefficient Z one finds in the principal order

0= R1127'¢ca + Ri1,
¢y = Ra12Z'¢s + Ru,
¢y = Re12Z'¢s + Re.

This is only possible if

Ry

Ri1=0 Ry =R =
11 ) 41 615 €2 1= 97 Ry,

(3.58)

Consider the next order equations. Substituting from (3.58) into the
first equation and accounting for the symmetry Ris = R4, Ris = Re1
yields

— 3 i 2
Re (R41) =2 (Z—|— 87T—D + 16—D) |R41| .

Remember now that quantity 7 depends on kg and R4 does not. Therefore
the above equation 1s possible only if R4; = 0. The other two equations of
the same order kZ take the form

o = —R44kg cos? gy — R46k'g sin? ©o,

Q= —R64k8 cos? gy — R66k’g sin? ©0.
Equating coefficients of linear independent trigonometric functions cos? ¢

and sin? ¢y allows the remaining coefficients of the matrix R to be deter-
mined. One finds

2 2 2
( R44 R46 ): wa (0’ 0'). (359)
Rsa  Rss (1—0’)(3—1—0’) c 1
The far field amplitude in the problem of flexural wave scattering by the
zero-range potential Bf corresponding to matrix R with the only nonzero
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elements given in (3.59) can be easily found. For that one should solve the
system of two equations

<620)2<R44 R46)<b20)

Co2 Res HRes bo2

and substitute coefficients cag and cg2 into the formula (3.55) for the far
field amplitude. This yields exact expression

bl p0) = i koa : (sin? g 4 o cos? o) (sin? ¢ + o cos? )
PETINTT ) U= 0)B+o) —in/32 (koa)2(3 + 20 + 302)

This formulais reciprocal (see page 39) and exactly satisfies the optical the-
orem. Both these properties automatically follow from the selfadjointness
of the operator Bt

Fluid loaded plate

The generalized point model of short crack constructed in the previous sec-
tion can be easily transformed to the case of fluid loaded plate. According
to the proclaimed HYPOTHESIS the zero-range potential of operator H3 has
block structure. These blocks correspond to the zero-range potentials in the
components. The first component characterizes the obstacle in absolutely
rigid screen. Infinitely narrow crack in a rigid screen does not manifest
itself. Indeed, in classical formulation of the boundary conditions on such
crack only displacements are used and the latter are identically zeros if the
plate is absolutely rigid. Therefore acoustic passive source 1s not presented
in the model. Therefore S = 0. The block S is inherited from the model for
isolated plate. All this allows the generalized model of short crack in fluid
loaded elastic plate to be suggested. This model specifies the asymptotics
of total displacements in the form (2.37) with

coo = €10 = co1 = c11 = 0,

coefficients bgq, 010, bo1 and by; arbitrary and

2ra’

=) 3+o) (szo + boz) :

C20 = 0Cp2 =

The problem of scattering by the generalized model of short crack in
fluid loaded elastic plate is formulated as follows. The scattered field satis-
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fies Helmholtz equation
(A—I—k’z)U(s)(x,y,z) =0, z >0,
boundary condition on the plate
(A% = kg) w2, 9) + U (2,9,0) =0, (2,y) #(0,0),

where w'®) = o5 'w=20U ) (x,y,0)/0z, radiation conditions (1.16). The

conditions on the obstacle are formulated for the total flexure displace-

ments, namely w = w9 4+ w(®) should have the asymptotics
b b E

w ~ %% (1+0)Inp/a+ ocos® ¢ +sin’ )

, , (3.60)

z
+boo+b1ol‘+bo1y+5207+b11l‘y+boz%+..~, p—0

with arbitrary coefficients b;;.

3.3.3 Scattering by the generalized point model of short crack

Consider the problem of scattering by the generalized model of short crack.
Let the length of the crack be 2a. This dimension is not taken into account
by the geometry of the problem, but is involved in the condition (3.60)
specified at the potential center. Consider the case of incident acoustic
wave

U9 = Aexp (zkx cos ¥ cos ¢g + thy cos ¥y sin g — tkzsin 790) .

The scattered field is searched as usually in two steps. First the general
solution is introduced. It satisfies all the equations of the problem except
the asymptotics (3.60) and has the form of multipole decomposition. In
the general case of scattering by a zero-range potential in fluid loaded plate
there could be 7 passive sources. One is a center of extension in acoustic
media and the others are sourced applied to the plate. The amplitudes
of these sources are presented directly in the asymptotics, specified in a
vicinity of potential center. In the generalized model of short crack only
two passive sources are presented. Therefore the general solution is given
by the following multipole decomposition

2 2

s d d
U (x) = cQO@G(r; 0,0) + Cosz(r; 0,0). (3.61)
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Here G(r;xo,yo) is the Green’s function (1.21) corresponding to the point
source on the plate.

To find the amplitudes of passive sources the asymptotics of displace-
ments w(*) (p) in the general solution (3.61) as p — 0 is required. Compar-
ing coefficients in that asymptotics with that prescribed by the generalized
model yields the system of algebraic equations for amplitudes cop and cpo.

Consider displacements g(p;0,0) caused by the point source applied to
the plate

VAZ 42 — k2 VAT p? =k VAZ 42 — k2
0,0 Pty dAdp.
9(p;0,0) = Dgow2 o) // o A

One can also introduce new integration variables 7 and a by the formulae
A=rTcosa, [ = Tsina

and discover that integral by « gives Bessel function

A2 —k2
e [ 4 L,
QowW* AT

_ _/J( )7vl<72 d
" Dogw? 2r o\Tp L(7) rar
0

g:

In order to find the asymptotics of g(p;0,0) as p — 0 it is convenient to
extract the Green’s function go(p;0,0) for isolated plate given in (1.45).
For this represent the fraction in the above integral as

1 N
+ .
2 2\2 _ L4
2412 =5 0 ) (02 + p2)2 = )

Using the property of Bessel functions
Hy (1) — Hy (e7t) = 200 (1),

the integral with the first fraction can be rewritten as

1 1 1 (1) TdT
= — | H .
Dgow2g0 Dogw? 2w / o (77) ™ — ki

and calculated as the sum of residues in the poles 7 = kg and 7 = iky,
which gives formula (1.45) for go(p;0,0) (the branch cut of function Hél)
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is below the path of integration). Therefore, one finds

(o)
TdT

! (p;0,0)+ L1 /J( )
Dgow2g0 e D2 9x ol7p L(r) (% — k3)
0

9(p;0,0) =

The asymptotics of go(p;0,0) was already used when deriving expres-
sions for coefficients byg, b2g and bgy on page 153. It reads

ki p*
256D

?

8kZD

2
90(p30,0) = pPInp + +Z%"+ +o(p").

87D
In order to derive the asymptotics of the correction one can decompose
Bessel function into Taylor series. In the terms up to the 4-th the integrals
converge. This finally yields

i Dy

2
1 - 4
PPt S Dg? T D2

9(p;0,0) = S Do’

Z D/Z 2 k(% Dﬁl 4 4
+ (290(.02 + 4D2) e (256D90w2 *5apz )P o),

where

(3.62)

,_ 1 (ir)erdr
Dy = 2 0/ L(r)(4 = k$)’

Note that the value ¢(0,0;0,0) = (Dgow?)~!Dgo (see page 52) can be
computed by setting # = y = 0 in the double Fourier integral. That is,
i

Dog = —=
007 8k2

+ NDj.

Using formula (3.62) it is a simple matter to find asymptotics of displace-
ments w(s)(p) in the general solution. Comparing it with the asymptotics
(3.60) specified by generalized model of short crack, one finds equations for
amplitudes coq, ¢z and coefficients bsg and bgs. Namely equating coeffi-
cients of singular terms yields

coo_ obypg+boy a®
4rDoow? (1 —0o)(3+0) 27

co2 _ obypg+boy a®
4rDoow? (1 —0)(3+0) 27
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wherefrom in particular follows
Co20 = OCp2.

Equating coefficients of 2 and y? in the asymptotics of the total field yields

_ kg Dy w'9)(0,0)
bz =8 (256D90w2 + 64D2) (Bea0 + 602) T o
wl9)

k2 D! (0,0)
bos = 8 0 4 3 2y
02 (256D90w2 * 64D2) (620 + 602) L

Solving that system and taking into account that

%ik sin ¥q
D L(¥)

bl

wl?) = — exp (zkx cos ¥ cos g + tky cos ¥y sin goo)

allows the amplitudes of passive sources to be found

7T 3024+ 20+3 [k !
=(1->—+——"——— N D]
( 4(1—a><3+a><4+ ! g
o dirgow?a® k3 sindg cos? ¥g
(1-0)(3+0) L(00)
The scattered field forms an outgoing spherical wave with the far field
amplitude ¥ (¥, ¢). Using the formula (1.24) one finds

(0' cos? g + sin? goo) .

ik Na® k3 sin ¥ cos? §g k3 sin ¥ cos? 9
Fi-)B+o) L) ()
X (0' cos? @y + sin? goo) (0' cos? ¢ + sin® go) X (3.63)
302420 +3 (ki -
- N D] .
(- T (v 20) )

The far field amplitude of surface circular wave can be found by computing

V(d,p) = A

residue of the above expression in the point ¥ = x/k according to formula
(1.26). Note that expression (3.63) for the far field amplitude is symmetric
and can be checked to satisfy the optical theorem. These properties follow
directly from the selfadjointness of the operator in the formulation of the
generalized model of short crack.

In the following section by means of asymptotic analysis of diffraction
by a short crack in fluid loaded elastic plate we check the formula (3.63),
that is check applicability of the HYPOTHESIS .
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3.3.4  Dzffraction by a short crack n flurd loaded plate

Consider the problem of acoustic wave diffraction by an elastic plate with
the short crack A = {# =0, |y| < a}. The boundary-value problem consists
of Helmholtz equation

AU + k*U =0, 2> 0
with the boundary condition on the plate
1
N — kdw + 5U|Z:0 =0, (z,y)¢A, (3.64)

where flexural displacement is defined by adhesion condition

L
T pow? Oz

2=0

The radiation conditions (1.16) are specified for the scattered field and the
conditions on the crack are formulated for displacement w in the same way
as in the case of isolated plate

Fw(+z,y) =0, Muw(tez,y) =0, lyl < a.

The Meixner conditions are specified for the acoustic pressure in a vicinity
of the crack A and for displacements w near the ends of the crack, see (1.18)
and (1.19).

By co-ordinates scaling the length a can be made equal to 1, which is
accepted below. The scattered field () can be expressed as a convolution
of Green’s function (1.20) with unknown displacements and bending angles
on the edges of the crack as explained in Section 1.3.1. However this requires
regularization of integral equations and another approach is used here. Let
the field /(*) be searched in the form of double Fourier transform

z>\x+zuy - >\2+u2—k2 (/\ /’L) dAd
i /] 2w w05

Here P(A, ) is unknown and the exponential is chosen as the solution of
Helmholtz equation corresponding to outgoing waves. The displacement
w'®) is given then by Fourier integral

/ _ L2
J(/)Zxx+wuy X p P(X, p) dXdp.

LA p)

(s)
w(z,y) = gow2 e
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By substituting this representation into the boundary condition on the plate
at y # 0 and taking into account that the order of differential operator by z
in that condition is equal to 4, allows the function P(A, i) to be concluded
polynomial by A of degree 3. That is

P\ 1) = po(p) + pr(1)A + p2 (1) A* + pa(p)A>.

For such P(A,u) with arbitrary p;(u) the boundary condition (3.64) is
satisfied everywhere except the line # = 0. Requirement of condition (3.64)
at {x = 0, |y| > 1} (note that the co-ordinates are scaled to have a = 1)
yields

[ imdn=o. 1l > 1. (3.66)

Similarly to the case of isolated plate conditions on edges of the crack
can be rewritten for the jumps of force and momentum and for mean values
of these quantities. The jumps are equal to zero on the whole line z = 0 and
the integral equations expressing these conditions for jumps can be solved
explicitly (inversion of Fourier transform), which yields

po(p) = op’pa(p),  pi(p) = (2— o)p’ps(p).

The remaining contact conditions reduce to equations

/ewyhn(u)pn(u)du =faly), <l (3.67)
Here and below n = 2,3 and the following functions are introduced

23 N
ha(p) = —0/(ﬂ2+aA2)2—“dA,

G LA p)

2k5 2 02 VA +p? =k,
ha() = =220 [+ 2= )¥?) e A
32w(9)(0’y) 62w(9)(0,y)
f2(y) = 87N Dk2 ( 502 +o e ) ,

63w(9)(0, y)

. 63w(9) O’y
f3(y) = 8in N Dk2 (TJF 2-0 #)

0x 0%y

~—
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Convergence of Fourier integrals and Meixner conditions (1.18) for acous-
tic pressure and for displacements eliminate possible behaviour of functions
p; (1) at infinity, namely

po(p) = O('~"7%),  §>0.

Further derivations follow the scheme of Section 3.3.1. To satisfy equa-
tions (3.66) one represents unknown functions p,(y) as Fourier transforms

Pa(i) = / et (1)

and computes integrals by p in (3.67). This results in integral equations of
convolution on the interval [—1,1]. The kernels of these integral equations
are supersingular and regularization is needed. However using the formula

NXETE 1 N N

Lm0 ) =k Lo (02 4+ 40) = k)

allows the singularities to be concluded the same as in the equations (3.42),
(3.43) for the case of isolated plate. Indeed the above formula allows the
functions hy, () to be represented as

ha(p) = R (1) + bV (),
(0)

where hy/(p) are the symbols (Fourier transforms of kernels) of integral
equations in the case of isolated plate and hﬁf)(ﬂ) rapidly decreasing at
infinity corrections. These corrections give bounded contributions to the
kernels H,(y —t). Therefore integral equations for ¢, (f) can be written as
previously in the form of integro-differential equations

d2
Oy —
-1

Iy~ tlgs(0de + [ Hyfo = ()it = Kifalo), (368)

1
d4
N 1n|y—t|q3(t)dt+/H§,(y—t)q3(t)dt:kas(y)~ (3.69)
-1

-1
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Here x = (1 — 0)(3 4+ o) and kernels H/ (s) are given by cumbersome ex-
pressions involving Fourier integrals

2ky 2/ ins hz ) + k2 )du,
0

Hy(s) = 2kg [ e (ha(n) — xkip®) du.

0\8

Solutions ¢2(¢) and ¢s(f) of integral equations (3.68) and (3.69) are
searched in the classes S and S (see Appendix B) which follows from
the asymptotic behavior of pa(i) and ps(p) at infinity. Smooth compo-
nents that differ the kernels of these equations from that of Section 3.3.1
do not violate the theorem 4 of existence and uniqueness of solutions. The
numerical procedure may remain the same as in section 3.3.1. One can also
check that the principal order contribution to the far field asymptotics is
due to terms containing ¢2(¢) and solution of integral equation (3.69) gives
smaller order correction by ka. For checking the HYPOTHESIS it is sufficient
to derive only the principal order term in the asymptotics of the far field
amplitude. Therefore the leading order approximation for ¢2(#) is needed
only. This approximation 1s

QQ(t) S\ 1— tzao,

where g is the zero-th term in the decomposition (3.45) for ¢a2(¢). Sub-
stituting this approximation into the integral equation and calculating the
left and the right-hand sides at y = 0 yields

1

o —2X7r—|—/H§(t)\/1—t2dt ~ k2 f2(0).

-1

The correction to the kernel H4(t) is a smooth function of ta and for small
a it can be replaced by H/(0). That yields

2 k2 f2(0)
FH/(O) — 4y’

Analysis of the integral for H.(s) allows it to be concluded asymptotically
small. Therefore it is further neglected.
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Applying saddle point formula (1.23) to (3.65) one finds

k* sin ¥ cos? ¥

U, p) ~ —EW

(0' cos? ¢ + sin? go) pa(kcosd cos ).

Calculating Fourier transform of the derived approximation for ¢»(¢) and
substituting it into the above formula yields the leading term of the far field
amplitude asymptotics. In dimensioned variables it reads

ik Na® k3 sin ¥ cos? §g k3 sin ¥ cos? 9
Fi-)B+o)  L() ()

X (0' cos? @y + sin? goo) (0' cos? ¢ + sin? go) .

U(d,¢) ~ A

3.3.5 Discussion

One can note that the above approximate formula coincides with the far
field amplitude of the field scattered by the generalized model of short crack
up to terms of order O((ka)4). Thus one can conclude that the procedure
of generalized models construction based on the main HYPOTHESIS is ap-
plicable in the case of short crack in fluid loaded elastic plate. The validity
of the HYPOTHESIS was checked in the case of two-dimensional problems
taking as an example scattering by narrow crack and in three-dimensional
problem in the case of short crack. The following observation can explain
the reason for the HYPOTHESIS to be valid. The parameterization of the
operator extension in the form of operator with zero-range potential was
chosen such that the parameters (real constant S and Hermitian matrix
S) do not depend on the characteristics of plate, fluid, incident field and
objects located outside a small vicinity of the obstacle. These parameters
contain only the size of the obstacle, depend on its type (boundary or con-
tact conditions on its surface) and shape. Therefore it appears natural that
these parameters remain the same in problems of scattering in two limiting
cases of absolutely rigid plate and of isolated plate.

The other suggestion of the HYPOTHESIS sets the parameters s and s* in
(2.34) equal to zero. Physically these parameters describe additional inter-
action between acoustic pressure and flexure displacements that is caused
by the obstacle. However in both problems considered in this chapter such
interaction is not presented. Indeed the boundary conditions on the narrow
crack can be separated into conditions specified for acoustic pressure only
and conditions that involve flexure displacements only. No conditions on
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the crack contain both acoustic pressure and displacements simultaneously.
This is the case of three-dimensional problem of scattering by a short crack
as well. Therefore approximations of these conditions formulated as asymp-
totic decompositions near the zero-range potential center naturally contain
no terms corresponding to additional interaction of acoustic pressure and
flexure displacements.

Further in this chapter when considering scattering by a circular hole
and by a short joint of two semi-infinite plates no checking of the HYPOTH-
EsIs validity is performed. However the structure of boundary and contact
conditions on the obstacles allows one to believe in the validity of the HY-
POTHESIS and therefore in the applicability of the procedure of generalized
models construction.

3.4 Model of small circular hole

Consider the problem of scattering by a circular hole in elastic plate. Let the
edges of the hole be free and fluid occupy the halfspace {z > 0} on one side
of the plate. The radius a of the hole is supposed to be small. The problem
is in finding the principal order terms in the asymptotics of scattered field
by small ka. For that the hole can be replaced by an appropriate zero-range
potential. The matrix & that parameterizes zero-range potentials has block
structure. According to the HYPOTHESIS of Section 3.1 the element &1 = 5
is the same as in the model of the hole in absolutely rigid plate, the block
{Sij}z,jzz = S is the same as in the model of the hole in isolated plate and
other elements of matrix § are equal to zero. By considering the problem
of diffraction by the hole in rigid screen (Section 3.4.1) and the problem
of flexural wave diffraction by the hole in isolated plate (Section 3.4.2) the
blocks of matrix § can be defined. Then in Section 3.4.3 the problem of
scattering by the generalized model is studied.

3.4.1 The case of absolutely rigid plate

The problem of diffraction by a circular hole in a rigid screen is well known.
It is formulated as follows

(A—i—kz)U(s)(x,y,z) =0, z >0,
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U (x,y,0)
0z
U(S)($’y’ 0) = _f($ay)a x2+y2 <a2.

— 0, 224y’ > a2,

Here f(x,y) is the trace of the geometrical part of the field composed of
incident and reflected waves from the plane {z# = 0} without the hole.
Meixner conditions (1.18) near the edge of the hole z? + y> = a? and
radiation condition conclude the problem formulation.

This problem can be solved by variables separation method in ellipsoidal
coordinates [40]. On the other hand there are works that calculate approxi-
mate solutions by reducing the problem to integral equation (see e.g. [36]).
The derivations of [36] show in particular that at large distances from the
hole the scattered field forms an outgoing spherical wave

%
U@~ — A2t o) (3.70)
Tr
Here A is the amplitude of the incident plane wave and r is the radius in
spherical coordinates. Formula (3.70) corresponds to the far field amplitude

U(, @) ~ —A#ka.

Consider now the problem of scattering by a zero-range potential A5
formulated in Section 2.4.1. That is the scattered field satisfies Helmholtz
equation and Neumann boundary condition on the screen everywhere ex-
cept the origin. In a vicinity of the origin the field should have the asymp-
totics (2.20) with a given parameter S. Evidently that the scattered field
in that case is proportional to Green’s function

Therefore
ik )
S = 62——|—U (0,0,0) 4+ U"Y’(0,0,0).
T
In the case of an incident plane wave

Ut =4 exp (zkx cos ¥y cos g + tky cos ¥y sin g — thzsin 790)
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one finds

47

c=Ao g

On the other hand solution (3.70) corresponds to
c s —4aA.
The above two equations allow the parameter S to be found

1 ok

2 27

S~

However, parameter S should be real to fix selfadjoint operator. Therefore
the second term in the above expression, which is ka times smaller than
the first one, should be neglected. That defines the S parameter of the
zero-range potential

3.4.2 The case of isolated plate

Consider now the other limiting case, namely the case of isolated plate.
That is, the problem is in finding solution of biharmonic equation

(AZ — k’é)w(s)(r, y) =0, 24y >a
with the boundary conditions
Fw(s)|p=a = _Fw(i”p:aa
Maw*) lp=a = —Miw?) lo=a

and radiation condition. Here the operators of force IF and of bending
momentum M are given by the formulae (1.8). In the case of circumference
these operators are reduced to

) 1/ ® 10
F=-D(—A4(l-0)=—"0—-"—
(3/) T <3p3s02 aﬁsoz))’

170 1 09°
u=p(a-0-07 (F+572))
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The above problem is solved in [42] by variables separation method in
polar coordinates. We present these results briefly. Represent the incident
plane wave in polar coordinates

w(z) — Aeikgpsin @

Search the scattered field in the form

+oo
= 3 (ajH](U(kop)+@jH]<.1>(ik0p)) i (3.71)

j=—00

where H](»l) are Bessel functions of the third kind. Representation (3.71)
satisfies the radiation condition. The terms containing coefficients a; rep-
resent outgoing waves and satisfy the equation

(A n kg) HY (kop)eti® = 0,

The terms that contain coefficients §; represent quickly decaying waves
and satisfy an analogous equation with minus before k3 (compare to sec-
tion 1.3.6).

Coefficients a; and 3; are found from the boundary conditions on the
edge of the hole. Substituting representation (3.71) into the boundary
conditions and introducing & = kga yields

+oo
7 (i My(E) + B M, (i€)) €79 = AM(E, isingp)e’€ =¥,

= (3.72)
D7 (o Fi(8) + B Fy(i€)) €% = AF(€, isin p)e’m ¥,

j=—00

where
Mi(€) = (1= ) — €)M (&) - (1 - eV ©),
Fi(©) = (1= o) HV(€) = (€4 (1 - 0)5%€*) V().
Mg s) =€ (7 - (1= 0)5%),
F(€,s)=(1—0)% +2(1 — 0)E%s” 4+ (2 — 0)&3s + (1 — 0)€2.

Equations (3.72) mean that quantities a; M;(§) 4+ 5; M; (i€) and «; F; (&) +
B;F;(i€) are the Fourier coefficients for A M (£, isingp)e¢m¢ and
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AF(& isingp)ett sin¢ correspondingly. Inverse Fourier transform yields lin-
ear algebraic systems for each harmonics

{%M(€)+ﬁy j(1€) = AM(E, j),
a; F;(§) + B F(i€) = AF(&,j)-

Here the following integrals are introduced

(3.73)

M(&, ) /M €,zsmg0)exp(z€smg0 zggp)dgp,

-7
iy

Fed) = 5= [ Fising)exp (igsing — i) ds.

-7

These integrals can be expressed via Bessel functions (see [1], dot denotes
derivative)

Aﬂ&ﬁz(ﬁ—fﬂ—oﬁ%@ﬂfﬂ—@%@%
P(&,9) = —2(1 = o) J;(€) + (€ + (1 = )5%¢) J;©).

Solving systems (3.73) one finds

L MUEGE () — F(E )M ()
IS ITM O F ) — B @M (8)

AEEIE - e DY

05 = AE GO, (€) — My (1) F5 (6)

Replacing the Bessel functions H](»l)(k'op) by their asymptotics for large p
allows the far field amplitude of diverging circular flexural wave to be found

i 2
- __ el
p) = - Z aje
J=—00
In the case of small £ the above formula can be decomposed in series by &
and In¢. In the principal order one finds (next order terms can be found

in [42])

Po(p) = A (koa)® + O((koa)* In(koa)). (3.74)

41— o)
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Now reproduce the same asymptotics in the problem of scattering by
the zero-range potential of operator B3 and choose parameters in its matrix
S. The problem of scattering by the zero-range potential is formulated as
the boundary-value problem for biharmonic operator

(87 = k) (@) =0, (2,9) #(0,0)

with a specific “boundary” condition in the point # = y = 0. This condition
is formulated for the coefficients b;; and c¢;; of the near field asymptotics
(2.25). We use the parameterization of the zero-range potential in the form

(Coo, —C10, —C€01, €20, C11, Coz)T = S(boo, b1o, bo1, 020, 011, boz)T~
The solution is given by multipole decomposition

. oiti .
w®) = i;z Cij Wgo(x, y;0,0),
where go(x,4;0,0) is the Green’s function (1.45) in isolated plate. The
Green’s function is circular symmetric and such should be the principal
order term in the asymptotics of the scattered field according to the formula
(3.74). Therefore the coefficients ¢1p, ¢o1 and ¢17 should be equal to zero
and cag should be equal to ¢ps. That is the matrix S should be such that

w(s) = Coogo(l‘, Y, 0, 0) + CZOAgO(xa Y5 0’ 0)

Therefore the elements S;; with ¢ = 2,3, 5 are equal to zero, and the rows
Sa,; and Ss ; coincide.

Replacing go(z, y; 0, 0) by its asymptotics at large distances (for asymp-
totics of Hél) see [1]) yields the formula for the far field amplitude

1 1
1/)0(80) = _87T—D (% Coo — Czo) .

To reproduce the result (3.74) one should have

1 2 Do
k_2 cop — €20 = —A
0

(koa)?. (3.75)

l1—0

Replacing go(#, y;0,0) by its asymptotics near the source (see page 153)
allows the coefficients b;; to be expressed via coo and cag. Due to the
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symmetry of matrix S only coefficients bgg, b2g and bgs are involved in the
“boundary” condition in the zero-range potential center. Introducing

Z—42ﬂm%dﬂ+CE—U

these coeflicients can be written as

3
boo = A+ SkzDCOO +2 (Z-I- S—D) €20,

2

ik
boo + boy = —AkZ + Zeoo + 8—5620

The equations for the amplitudes of passive sources reduce to
+2( 7+ i
k?DC“ 8D

k,Z
+S14< AkZ + Zego + —620) ;

coo = S

8D

3
ca0 = S1a [ A+ SkzDCoo-l-?(Z-l-S—D) )

.kz
+ Sua ( AkZ + Zego + —620) .

(3.76)

8D

Combining it with (3.75) and assuming that matrix S does not depend on
ko allows the elements Si1, S14 and S4q to be found uniquely. Indeed, let
Cop = ck% and let ¢ and cq0 be decomposed in series by powers of ky. One
can check that system (3.76) yields decomposition

C:CO—FClk’g—F..., CQQZCQ—FCQk’g—F

where ¢; can depend on logarithm of ky. The principal order terms in the
above decompositions coincide which follows form (3.75). Now substitute
decompositions for ¢ and esp into equations (3.76) and separate terms of

order O(kg)
0=>5n1 (A + Z/CO),

m:EKA+Zm) (3.77)

where

3

7=z 8t D 16D
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It is easy to find that such system can be satisfied only if S1; = 0.
In the order O(kZ) the first equation in (3.76) yields

co = 514(—A + (Z—I— SLD) co).

Combining it with the second equation in (3.77) and asking Si4 to be
not dependent on kg yields S14 = 0. Finally, from (3.75) and the second
equation of (3.76) one finds

544 =2r 7 az.
1—¢
Taking into account the noted above symmetry of matrix S allows it to be
written as
0) 0)
1 0 1
S=2 ?
=" o 0 0 0
1 0 1

3.4.3 Generalized point model

Models of the small hole in a rigid screen and in isolated elastic plate are
constructed in the previous sections. According to the HYPOTHESIS the
generalized model of a small hole in fluid loaded elastic plate combines the
above two models and 1s formulated in the form of two asymptotics:

1 1
—e— - — 1 .
U C(Qﬂ'r 2a)—|—0( ), r—=0 (3.78)
and
ca’ .
w=— (bao + bo2) Inp/a + by + bropcos ¢ + borpsing

l-o ) . (3.79)
+by1p%sin 20 + %pz cos? o + %pz sin? o +o(p?), p—0.

Here ¢ and b;; are arbitrary coefficients.

The scattered field can be found by the similar procedure as used in
Section 3.3.3. The general solution is the field of two passive sources
0? 0?

(s) — . 2 .
U¥) =¢G(r;0,0,0)+ ¢ <8x2 + 3y2) G(r;0,0).
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Here G(r;0,0,0) and G(r; 0,0) are the Green’s functions introduced in Sec-
tion 1.3.2. The amplitudes ¢ and ¢’ are defined by two linear constrains
hidden in the asymptotics of U and w, namely by proportionality of coeffi-
cients of singular and regular terms in (3.78) and by proportionality of the
coefficients of singular term and terms p? cos? ¢ and p?sin® ¢ in (3.79).
One needs the asymptotics of Green’s functions for small r. By extract-
ing Green’s function of the problem with absolutely rigid screen it is not

difficult to find

1 ik
G(r;o,o,O):%Jr;_ﬂJrNJ'Jro(l),

where

// dX dp 1 7 rdr
T in? L ) /A2 4 2 — k2 271'0 L(r)V/72 — k2

Using formula (1.21) for Green’s function G(r;0,0) one finds

02 o 2
(w*‘w) G(P,an)——ﬁjz‘i‘O(l),

where

/ / A dA dﬂ
Ji = 472 '

Asymptotics of displacements g(p; 0, 0, 0) corresponding to Green’s function
G(r;0,0,0) can be found by direct decomposition into Taylor series. One
finds

1

P+ o(p?).

Asymptotics of displacements g(p; 0, 0) corresponding to G(r; 0, 0) was found
before and is given by (3.62). Tt yields

0>, (510,0) L e L 16DZ—i Dy
TN 0o L Dy
ax2 T g2 )TV T 9apeN P T 9rpeN T TspEN T D2

k(% Dﬁl 2 2
+<16D2N 1pz ) P~ ol):
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The above formulae for Green’s functions allow the asymptotics (3.78)
and (3.79) to be written in terms of amplitudes ¢ and ¢/

ik 2 1k sin ¥y
U=_— — +NJ | - =J,+ 24 MW 1
27Tr+c<2ﬂ'+ ) ‘D 2t L(¥y) (Vo) +o(1),

d ) 7 !
= — |np— — _

972N P T DT pry
2A ksindy  2A4i k2 sin ¥ cos Y

D e D L) Peslemeo) -

1 i
— +2DZ — -+ ND:
(27T+ 8+ 2)

D '’

/

c k2 A k3 sin ¥ cos? dg
ND 2 2 _ 2
T apIN <4 + 4) + D Ly (¢ = wo) +0(p?),

where
M(9) = k*cos* ¥ — k.

Comparing these formulae with (3.78) and (3.79) yields algebraic system

1 ik 2 ik sin 9o (k* cos® 9o — k)
— 4+ — +NJ ) e— =Jh! =24 0
<2a Tt )C D¢ £(V0) ’

1—0 k2 D), ik3 sin ¥y cos? ¥
2 ! _ o] _4 / — 2 0 0
T2 (27TDNa2 DN T D ) ¢ £ (Vo)

This system allows the amplitudes ¢ and ¢’ of passive sources to be found

ksindg 1 1—¢ k2
= —2iA — AR, ok cos® 9
c ¢ L£(90) Q{(Qﬂ'Ng-az +4N+ 4) (09) + 2J5k” cos® g ¢,

ksindg 1 1 ik 9
—20A—— 2J) M (9 4 NJ ) E? ¥
Z(00) DQ{ 3 (0)—1—(2 +o- ) cos o},

where

l1—0 k2 1 ik
= o) — 4+ NJ' ) —4(JH)%
@ (27TN0'a2 tav T ) (2 tor T J) (72)

Finally one gets exact expression for the far field amplitude of scattered
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field

V(0 p) =

1Ak ksindg ksind 1—0 k2
D) M (%)M (9
272Q L(Jy) L(V) {(27TN0'a2 tan T ) (Vo) M (V)

+ 2k% 7} (cos2 oM (V) + M (V) cos? 790)

1 ik
+ <% 4 ;—ﬂ_ + NJ’) k? cos? ﬂocoszﬁ} )

Two principal order terms by small a are

1A ksin 790 ksinﬁ
2 L(dg) LW

{ (ka — (i QJZJ/) (ka)® + .. ) M (00) M ()

—|—7TN]<73 7 (ka) coszﬁocoszﬁ—l—...}.

V(0 p) =

3.4.4 Other models of circular holes

Consider the case of clamped edge. The problem of scattering in isolated
plate can be solved similarly to the above case of free edge by variables
separation method. Substituting representation (3.71) into the boundary
conditions

yields algebraic equations for coefficients o; and 3; of Fourier series. The
far field amplitude is expressed via the coefficients «; and can be written
in explicit form [42]

Jj (koa)iH ) (ikoa) — Jj (koa) H" (ikoa)
1)

koa)H;”(ikoa) — H (koa)iH ! (ikoa)

el

>]|N.

H

Asymptotic analysis of this expression for kga < 1 yields

_ 1 i cos ¢
1/)0(@)__71' (1 2 ln(koa/2)+CE—i7r/4+'”)'
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One can check that this asymptotics corresponds to the model

boo 0 0 0 Coo

1 1/2
b :n<a>47+/ 01 0 —ew |,
bOl T 0 0 1 —Cp1

which is a particular case of zero-range potential for bi-harmonic operator.
Combining this model with the zero-range potential in the acoustic channel
yields composite generalized model for a circular hole with clamped edges
in fluid loaded elastic plate.

Similarly one can consider other boundary conditions on the edge of
the hole (see [42]) and derive other generalized models. According to the
HYPOTHESIS these models then can be reformulated for fluid loaded plates.

3.5 Model of narrow joint of two semi-infinite plates

In this section we consider an acoustic wave diffraction by two semi-infinite
plates joint along a short segment. Considering the problem for the iso-
lated structure, we derive the generalized point model that reproduces not
only the principal order term in the asymptotics by the width of the joint
(compare to the model of Chapter 1), but also the logarithmically smaller
corrections. Then the model is reformulated for fluid loaded structure.
The asymptotics of the far field amplitude of the diverging from the joint
spherical wave is found.

3.5.1 Problem formulation

Consider mechanical system, consisting of two semi-infinite thin elastic
plates TIx = {z = 0,4&2 > 0}. Let fluid be on one side of these plates
at {z > 0} and let the plates be joined along the short segment A = {z =
z = 0, |y| < a}. The contact is assumed ideal, that is the displacements,
angles, momentums and forces are continuous on A.

Acoustic pressure U(x, y, ) in the fluid and flexure displacements w(x, y)
in the plate satisfy the following boundary value problem

(A+E)U=0, =z>0, (3.80)
(A —ky) w+ NU|,_, =0, z#0, (3.81)
w(z,y) = 9U(x,y,0) (3.82)

Oz ’
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Fw =0, Mw =0, ly| > a, @ = %0,
[w] =0, [we] =0, [Fu] =0, [Mu] =0, |yl <a. (3.83)

(Here [f] denotes the jump f|y=40—fz=—0.) Besides, acoustic field U(z, y, 2)
and displacements w(x, y) satisfy Meixner conditions (1.18) and (1.19) in
all points where the boundary conditions have discontinuities. Namely,
Meixner conditions (1.18) for U(x,y, z) are assumed along the rays {z =
=0,y > a} and {z = 2 = 0,y < —a}, Meixner conditions (1.19) for
w(z,y) are assumed at the tips of semi-infinite cracks, that is in the points
(0,a) and (0, —a).

The operators of force F and bending momentum M on the line z = 0
are given by the formulae (1.8), namely

Fw = Wyes + (2 — 0)Wayy, Mw = wee + owyy.
Let the field in the system be excited by the incident plane wave
U (z,y,2) = Aexp (zk(x cos ¥q 8in g + y cos Yo cos py — zsin 790)).

All the other components of the total field are subject to radiation con-
dition, that is represent waves that propagate to infinity. Mathematical
formulation of radiation conditions for fluid loaded elastic plate with in-
finite crack is given below in the form of asymptotics (3.84), (3.85) and
(3.86).

It is natural to separate from the total field the incident wave and the
wave that would be reflected from a homogeneous plate, i.e.

U (z,y,2) = AR(Vg) exp (zk(x cos Yo sin g + y cos ¥y cos g + 2z sin 790)),

Presence of infinite crack causes an additional component of the field U/(¢)
to appear. This field is found in Section 1.4.2. The field U + U) 4
U(®) satisfies all the conditions of the boundary value problem except the
continuity conditions on the joint. The boundary value problem (3.80)
— (3.83) can be rewritten for the remaining part of the field UG). The
function U (*) (z,y, z) satisfies the same boundary value problem as the total
field except that the conditions (3.83) on the joint become inhomogeneous.
Namely

I =[], =0, Fe]=o.
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One can write the radiation conditions for the scattered field U(*) in the
form of asymptotic decompositions at large distances from the joint. Far
from the plate this field behaves as a diverging spherical wave

I
U® ~ k—”em—”/%(g@, 9), r— +oo. (3.84)
r
In a vicinity of the plate, but far from the edges it forms cylindrical wave
that exponentially decreases with z

UG~ Q—Fei“p_”/41/)(go)e_\/“2_k2'z, p — +oo. (3.85)

Kp
Finally in a vicinity of the semi-infinite cracks specific edge waves (see
Section 4.2) are generated. Tt is natural to represent edge wave process as
the sum of symmetric with respect to # co-ordinate wave U(¥) and anti-

symmetric wave U(%) with amplitudes Y and Y3
U ~ e YV, (2, 2) + ¥ eFVV,(2,2),  y— +oo.  (3.86)

The wavenumbers s, and sz, are the positive solutions of dispersion equa-

tions (1.65)%

Ao(3) =0 (3.87)
and

A,(3,) = 0. (3.88)

Functions V; and V, are given by Fourier integrals similar to (1.63)

+oo
ER
Ve o) = [ e (e = o= 2) STy
+o00 /\2_1_(2_0_)%2
= e ST ) M2l
Vo(z,2) = /exp (z/\x 22+ A2 — k z) e \d)

— 00

Radiation conditions specified in the form of asymptotics (3.84), (3.85)
and (3.86) allow asymptotics of displacements w(*) (z, y) to be written. The

§We examine these dispersion equations in Section 4.2.2 and discover that sz. always
exists and s, may exist or not depending on the parameters of the problem.
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field of displacements at large distances from the joint is represented as
diverging circular wave

o .
W) ~ /H_Zew—w/w(@)\/ﬁz_kz, P — Foo. (3.89)

and edge waves running along the crack

w(®) ~ gpf ey 3‘/68(1‘, 0) e
z

IV, (2,0)

3.5.2 Isolated plate
Boundary value problem

Consider first the case of isolated plate. Evidently the boundary value
problem (3.80-3.83) in this case reduces to the boundary value problem for
flexure displacements w(x, y) in the plates

(A% — k) w(z,y) =0,

Fw =10, WMw =0, ly| > a, 2 =0, (3.91)

[w] =0, [wy] =0, [Fw] =0, [Mw] =0, ly| < a.
Besides, w satisfies Meixner conditions (1.19) at the tips of the cracks and
the scattered field w(*)(x,y) is subject to radiation conditions (3.89) and
(3.90). For the case of isolated plate surface waves propagate with the
wavenumber kg (instead of ) and the dispersion equations (3.87) and (3.88)
for the wavenumbers of symmetric and anti-symmetric waves simplify and
reduce to one equation

((1 o)t kg)zw/%z FkE - ((1 — o)+ kg)z,/%z — k2 =0.

The solution of this equation is known (1.72)

e=ho((1=0)(Br—1+2V/1-20+ 202))_1/4.

The functions V. and V, simplify as well and finally the edge waves are
given by the formula (1.75)

2 2
w(s) ~ ,l/):l:e:l:%y e—\/%Q—k3|x| _ (1 - U)K - kO e—\/%2+k3|x| )
+ (1 —o)k? + k2

This formula shows that in the absence of fluid edge waves propagate
in semi-infinite plates independently with the same wave number 3. This
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is natural as in the absence of fluid no interactions take place across the
crack.

Geometrical part of the field

Let the incident plane wave
w') = Aexp((ik(z sin g — y cos pg)) (3.92)

excite the wave process in the plates. Define the geometrical part of dis-
placements field as

e ={ o (3.93)

Here the reflected field w(") is the sum of plane reflected wave and inhomo-
geneous wave concentrated near the edge (1.71)

w™) = Ar(pg) exp (iko (2 sin g + y cos @)

+ At(po) exp (—k’ox\/ 1 + sin? g + ikoy cos gpo)

with reflection coeflicients

r(p) = —%, tp) = 20 @E?;)(@)A_(gp)’

l(p) = isin @Ai(gp) + /14 cos? pAZ(p), Ax(p) = (1 —0)cos’ p£ 1.

Excluding w(9) reduces the boundary value problem (3.91) to the bound-
ary value problem for scattered field w®) which differs from (3.91) by the
boundary conditions on the joint that become inhomogeneous with the
right-hand sides

(g)] — 44 A-I-(QDO) sin ¥o eikgy cos APD’

(o)

[w(g)] _ diko A_(p0)\/1 + cos? g sin ¢ pikay cos oo

(o)
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Integral equations

With the use of Green’s function g*(p; p,) for semi-infinite plate with free
edge derived in Section 1.5.2 one can reduce the problem (3.91) to two
integral equations of the convolution on the interval —a < y < a [15].
However this yields the first kind integral equation with smooth kernel.
Solution of this equation, which physically corresponds to the force on the
joint, belongs to the class of functions with strong singularities at the ends
of the interval. Another approach is based on Fourier transform. The
solution w(*) (x, y) is searched in the form

wl) (@, y) = sign(y) x

v /eiuy (a—(ﬂ)e—\/mm 4 of"(u)e_\/m'x') ;(l—ﬁ) (3.94)
n /eiuy (5— (p)e~ VI =kilel | g+ (N)e_\/mlxl) Ec(l—ﬁ)

Up) = ab (/2 — kg — a® (pJu2 + k3, ax(p) = (1 - o)p® £ &3

and functions a® (p) and 5% (i) are defined from the boundary conditions.
The first integral in representation (3.94) gives the odd with respect to x
part of the field and the second integral corresponds to the even part of
the field. Noting the symmetry of the two integrals one can eliminate two
unknown functions. For the first integral the condition Mw = 0 is satisfied
on the whole axis. It yields integral equation that can be easily solved by
Fourier transform. This gives

o () = FaT (n)a(p),

where a(u) is a new unknown.
Analogously for the second integral the condition Fw = 0 can be in-
verted and gives

5 (1) = Fas (/02 £ k3B().-

The other conditions give dual integral equations for functions o(p) and
B(p). Consider first integral equations for the odd part of the field

/6““/0[(#) du=0, |yl >a. (3.95)
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2k [ S i = ), bl < (3.96)
Equations (3.95) and (3.96) uniquely determine the function a(y) in the
class of functions with the allowed growth at infinity as O(y).

Note that formal inversion of equation (3.95) yields the first kind integral
equation for the Fourier transform of «(y). The kernel of this equation is
bounded, but the solution due to the allowed growth of a(x) at infinity can
have nonintegrable singularities. (Analysis of [16] allows to find that these
singularities are of order (y % a)~3/2).

Instead of applying Fourier transform directly to e (y) let it be searched
in the form

alp) = p*a(n) + aopo(p) +arpi(p). (3.97)

Here function a(u) decreases at infinity not slower than O(p='=%), § > 0
and can be represented by its Fourier transform p(y). The two remaining in
(3.97) terms compensate the second order zero at g = 0 introduced in the
first term. Functions po(p) and p (p) are fixed functions that do not violate
asymptotics of a(y) at infinity and are such that vectors (po(O), p{)(O)) and
(pl(O),p’l(O)) are linear independent. Besides, it is convenient to choose
functions po(p) and p1 (p) with Fourier transform support on to the interval
—a<y<a.

Substituting representation (3.97) into (3.96) and accounting the men-
tioned above properties of functions pg (1) and py (¢t) yields integro-algebraic
equation

a

/p(y)Ko(y — yo)dy — ko / 6iuyu%ﬂ2dﬂ

2 2 (3.98)
ingo PLUK) o 1
_ kz HYo dy=—= (9) .
The kernel K,(y—yo) coincides with the second order derivative of Green’s
function
. ) 2d
Koy = a0) = 2003+ 0) g 0,.0,0) = 5 [ et LELE (5.0

Equation (3.98) defines function p(y) and constants oy and «y. Due to the
behavior @(u) = O(p~17?%), § > 0, function p(y) should be searched in the
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class S7. That is, 1t can be represented in the form

p(y) = Va* —y*P(y), (3.100)

where P(y) is continuous on [—a, a]. Afterwards function P(y) can be found
smooth.

For the even part function 5(p) decreases at infinity and standard pro-
cedure yields integral equation

a

/Q(y)Ke(y — yo)dy = —%[wég)](yo) (3.101)

—a
for its Fourier transform ¢(y) in the class

Q)

a2_y2

q(y) = , Q € C([—a,a]). (3.102)

The kernel is again related to Green’s function g7, namely

2w

[(e(y_ yO) = 3_|_ gxxg(o yao yO)
(3.103)
— ]{72/ wly—yo) \//'L _k4d/'t
()

Analysis of kernels and asymptotic solution

The singularities of kernels K, and K. of integral equations (3.98) and
(3.101) are defined by the asymptotics of the integrated functions of (3.99),
(3.103) at infinity. It is easy to find that

(N =kixIAP+...,  x=(0-0)3+0).

Therefore function g7 (0,y, 0, yo) is bounded at y = yo and its second order
derivatives g;'y (0,,0,90) and g, (0, y,0, yo) have logarithmic singularities.
More accurate analysis shows that kernels have the following asymptotic
decompositions by small 6 = y — yo

§%1n |8

g+(0a Y, Oa yO) == ]{70_271'd0 +

2
<ln(k0/2) b op it T dz - —) 52+ 0(6%),

+ 4 2

==
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1—o? 1
K,(8) = ln 6]+ = (1n(k0/2) +Cp + ZZ + ngl - §d2) +0(8%),

2 2 ,
Ke(d) = —;1ﬂ|5| 1 (hl(k’o/?) +Cg + z% —(1=0)dy

o2
+(1-0- 7)dz) +0(52).
Here the following integrals are introduced (for dy see Section 1.5.3)

12—t dl

dy = ﬁlz dl, dzz/m, (3.104)

where

L(1) = k55 e(kol) (V12 —1— A2 ()12

Ax(l) = kj%ax(kol) = (1 — o) * £ 1.

Note that integrals (3.104) depend only on Poisson’s ratio ¢ and do not
depend on kga. These integrals can be reduced to sums of residues of
denominator £(/) on both sheets of Riemann surface of complex variable [
as described in Appendix A.

In order to find the asymptotics of solution (p, g, 1) of equation (3.98)
it is convenient to choose functions pg(A) and p1(A) in the form

e~ irs s e~ g ds
= 2 2’ p1(/\) = 2 2’
va? —s a?—s
—a —a

po(A)
Let function p(y) be represented in the form (3.100) and function P(y) from
that representation be decomposed in Taylor series. Substituting this rep-
resentation into integro-algebraic equation (3.98) and equating coefficients
at powers of yg yields a linear algebraic system for the constants oy and
aq and for the Taylor coefficients of P(y). Similarly, solution ¢ of equation
(3.101) is searched in the form (3.102) and function Q(y) is decomposed in
Taylor series. We do not present here cumbersome formulae for coefficients
ag and a; and for the Taylor coefficients of P(y) and Q(y). These formulae
are given in [15].
Calculating integrals in representation (3.94) according to the saddle
point method yields the far field asymptotics of the scattered field. The
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Fig. 3.6 The far field amplitudes |4 ()| for scattering on joints of different widths kga.
Poisson’s ratio is assumed ¢ = 1/3.

contribution of the saddle point gives diverging circular wave with the far
field amplitude

_SIN ¢ 1N g

P = G 1)

B X €OS (p COS g N }
In(koa/4) + Cg + (1 — 0?)dy —do +im/2 =

XA_(QD)A_(QDQ)\/l—I—COSz go\/l—l—cos2 ©0 n (3.105)
In(koa/4)+ Cg —2(1 —o)dy + (2 — 20 — 02)ds +ix/2 ) 7

The asymptotics of edge waves can be found with the help of formula
(1.78).

Numerical analysts of the far field amplitude

Formula (3.105) shows that the principal order term in the asymptotics does
not depend on the width 2a of the joint. This term coincides with the exact
solution (1.80) for diffraction by a pointwise joint of two semi-infinite plates.
The corrections in (3.105) are only logarithmically smaller. Tt is natural
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to expect that validity of the principal term approximation is restricted
to very narrow joints. Numerical results presented on Fig. 3.6 confirm this
expectation. Noticeable difference is seen already for kga = 107°. Therefore
classical point model studied in Section 1.5.3, should be corrected. This is
done in the following section.

3.5.3 Generalized model

Generalized models of obstacles in the plate with infinite crack are derived
in Section 2.4.4. The parameters of the zero-range potential can be cho-
sen according to the HYPOTHESIS from analysis of the problem for isolated
plates. That is, matrix S in (2.40) should be chosen such that the field scat-
tered by the zero-range potential of operator BS approximately coincides
with the asymptotics (3.105).

Analysis of the symmetry of the scattered field (3.105) with respect to
x co-ordinate yields

cf =—c; =¢j, j=0,1,2.

Such zero-range potentials of B, are parameterized by 3 x 3 Hermitian
matrices S’ in the form

Cp bal— — bO_
S| —x | = bt —07 |. (3.106)
—Co b; — bZ_

Consider the problem of scattering by a zero-range potential in an iso-
lated mechanical structure. Let the incident plane wave be given by the
formula (3.92). Excluding geometrical part w(9) (z, y) defined in (3.93) from
the total field w(z,y) one considers the problem

A = kdw) 2 £0,
Fuwl*)(£0,y) =0, y#0,
M) (£0,y) =0, y#£0
in the class of functions that have asymptotics (2.39) with coefficients sat-

isfying equations (3.106).
Evidently solution of this problem is the sum of Green’s functions
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g% (x,9,0,0) and their first derivatives over x and y

) d
w(s)(x, y) = sign(z) (co 4+ 3_) gt (=], y,0,0)
Y (3.107)

J +
+ 628_$g (|$|aya0a0)

Here the symmetry g~ (z,4,0,0) = g*(—=,y,0,0) of Green’s functions for
the plates IIT is used. The coefficients ¢; in the above representation are
the same as in asymptotics (2.39).

Comparison of representation (3.107) with asymptotics (3.105) of the far
field amplitude allows coefficients ¢; to be found. For this consider the far
field asymptotics (1.74), (1.77) of Green’s function g*(z,y,0,0). Formula
(1.74) allows differentiation by y to be performed. The principal order term
1s due to differentiation of the exponential and results in additional multi-
plier ikgcos ¢ in the far field amplitude. The asymptotics of g;'D(x, ¥,0,0)
is similar to (1.74) with the far field amplitude

A_ 2 psi
bouly) = o e (3.108)

Comparing expressions (1.77) and (3.108) with asymptotics (3.105) it is
easy to find that coefficients ¢; in representation (3.107) should be the

following
o r i 4 Ay(po)singo @
' 3+o L(so) do’
A (o) sin o cos o drko(1 — o)
[

L{po) In(koa/4) + Cg + (1 — 02)dy — dy + im/2’

A_(po)/1 4 cos? g sin g «

L{po)

Coy RS

o dirko(1l — o)
In(koa/4) + Cg —2(1 — o)dy + (2 — 20 — 02)ds + in /2’

Now it is easy to find coefficients b;t. Regular terms in (2.39) are partly
due to the geometrical part of the field and partly due to regular terms in
the asymptotics of Green’s function. The contributions of the geometrical
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part are evidently equal to the following values

4: A i
b () = % b () = 0,

3 dko A4 (po) sin g cos @q

+w@) =
by (w'?) (7o) :

b;’(w(g)) — 4iko A—(po)\/1 + cos? g sin 800’ bz_(w(g)) —0.
L(go)
Regular terms in the asymptotics of Green’s function and its derivatives
give
bt () = —b () = 20 A4 (o) sin o

L(so)

_ 2ko A4 (o) sin g cos g
L(go)
111(]{70/2) + CE + (1 — 02)d1 — d2 — 3/2—|— Z7T/2
In(koa/4) + Cg + (1 — c2)dy — da +im/2

bf (W) = =07 (W)

b+(w(s)) _ —b_(w(s)) _ diko A_(p0)\/ 1+ cos? gy sin ¢ o
? ? L(go)
In(ko/2) + Cg — 2(1 — 0)dy + (2 — 20 — 0%)d> + in/2
In(koa/4) + Cg — 2(1 — o)dy + (2 — 20 — 02)d2 + im/2’

Substituting the values of C;»t and b;t into condition (3.106) yields the system
of equations for matrix S’. This system should be completed with equations
expressing Hermitian property of S’. Besides, one takes into account that
S’ does not depend on the angle of incidence ¢y and wavenumber kq. All
this allows matrix S’ to be determined uniquely

2In(a/2) + 3 In(a/2) )

S’ = diag (0, -

in(l—0) = 27(1 —0) (3.109)

The generalized model of narrow joint of width 2a is formulated as
the condition (3.106) for the coefficients of the asymptotics (2.39) of dis-
placements w(z,y). The matrix S’ in that condition is given by (3.109).
According to the HYPOTHESIS this condition remains the same in the case
of fluid loaded plates.
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In terms of parameterization of Section 2.4.4 this corresponds to
S—l _ ( S/ _s/ )
- _S// S// ’

"n_ ren-1_ 71: 47T(1_U) 27T(1_U)
8" =(8))7" = diag (“’21n(a/2)+3’_ In(a/2) )

3.5.4 Scattering by the generalized model of narrow joint

Problem formulation

The problem of scattering by the constructed zero-range potential is for-
mulated as the spectral problem for the operator H? with matrix & =
diag(0,8). This spectral problem for acoustic pressure U(*)(z,y,z) and
flexure displacement w(s)(x, y) in the scattered field can be written as the
boundary-value problem for equations (3.80), (3.81), (3.82) with the bound-

ary conditions
Fw®) (2, +0) = 0, Mw®) (2, £0) =0, y#0

on edges of the plate and the “boundary” condition in the point {a =y =

z = 0} which is specified for coefficients cjt, b;t in asymptotics (2.39) of

w®). This “boundary” condition is formulated in the form of algebraic

system
1 0 0 0 et
—— | 0 2In(a/2) -3 0 —cf
Ar (1 — o) 0 0 ~91n(a/2) I
bt — by w€)(0,+0) — w9 (0, —0)
= o5 —t7 |+ | w0,40)—wl0,-0) |, (3.110)
b~ b wy(0,+0) - w0, ~0)
co CEJI—
—Cy =+ —Cil— = 0.
—c5 —c;

Green’s function

Similarly to the case of isolated plates, the scattered by the zero-range
potential field is expressed in terms of Green’s function for fluid loaded
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plate with infinite crack. This Green’s function is the field of a point source
applied to the plate. It satisfies the following boundary value problem

AG+EG=0, 2>0,

0 1
(82~ k) S| 4 N Glmo = Fie o)y —0), 220
2=0
r —o, m%| 2o (3.111)
0z, 0z |,_g

Besides, Green’s function satisfies the radiation conditions specified in the
form of asymptotics (3.84), (3.85), (3.86) and Meixner conditions (1.18)
near the edges of semi-infinite plates.

Evidently that Green’s function depends on the difference of y and yy.
Below g, 1s taken equal to zero. Let G be searched in the form

g(l‘,y,z;l‘o) == G(l‘ —To,Y, Z) +g/($ayaz;$0)a
where G(z —xg,y, z) = G(r; 2o, 0) is Green’s function for the plate without

crack and G'(»,y, z;20) is a more smooth correction. Green’s function
G(z,y, z) is given by (1.21) in the form of double Fourier transform

— 1 IATFipy—/ A2+ u2—k22 dA d/,L
Glr,y,2) = — =55 //e L0 (1.21)

The correction can be also searched in the form of double Fourier transform

1 . s Ix2 2_r2
G'(x,y, 23 90) = —47T2D//€M+Z“y T

I\ di (3.112)

3
X Mo (i x0) | ——.
]Z:% ! L\, 1)
Expression (3.112) satisfies Helmholtz equation and the boundary condition
on the plate. Functions o;(p; 20) are chosen such that contact conditions
on the crack are satisfied for the total field G. Substituting from (1.21) and
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(3.112) into contact conditions (3.111) yields the system of equations

%ao(u; zo) — (E4(0; 1) — (2 = o) B2 (05 1)) a (15 o)

- iouzaz(u; xo) + (Es(0; 1) — (2 — o) p” Ea(0; 1)) as(p; x0)

2
= Es(xo; u) — (2 = 0)p” Ex(xo; p),
—%ao(u; zo) = (E4(0; 1) — (2 = o) B2 (05 p)) a (45 o)

+ %Uuzaz(u; zo) + (E6(0; 1) — (2 — o) B4(0; 1)) s (p; o)

= Es(wo; p) — (2 — o) Er(wo; ),

(£2(0; 1) — op® Eo(0; 1)) evo (s o) + %al(u; o)

1
= (Ba(05 p1) = op” B5(0; 1)) s (pts o) + 5(2 = o) evs (a3 o)
= —Ea(xo; pt) + opi® Eo(xo; 1),

(B2(0; 1) — o Eo(0; 1)) evo(ps; o) — %al(u; )

— (B4 (0 p) — op® B2(0; 1)) a5 20) — %(2 — o)p’as(p; xo)
= —Ey(wo; p) + op” Eo(wo; ).

Here

1 [ e GNSN 2 — &2
Ee(ws p) = —/e““” ) s dX

2w LA p)

generalize the integrals Fy(x) and Dy(p), Namely, F¢(z;0) = Ey(z) and
E¢(0; 1) = Dy(pt). When deriving the above system the following properties
of integrals F;(+0; u) are used (see (A.6) in Appendix A)

1
By(&0;0) =0, Pa(£0;p) = 5, Bs(&0;p) = £p”.
From the above system one finds

ao(p; z0) = optas(ps zo),  ai(p;xe) = (2 — o)’ as(p; o),
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By(xo; p) — ap® Eo(x0; p
aZ(ﬂ;$0): 2( : )A (/«L) 0( 0 )a

oy Bs(p o) = (2— o) pP By (ps wo)
as(p; o) =4 A .

Note that denominators in the above expressions coincide with the left-
hand sides of dispersion equations (1.65) for symmetric and anti-symmetric
edge waves

Ao(p) = Do(p) = 2(2 = o)p* Da(p) + (2 — 0)* D2 (p),

Ac(p) = Da(p) = 204° D2 () + 0* Do ().

Solution

Taking into account the last three equations of (3.110), which say that ele-
mentary passive sources in the plates IIT and II~ have opposite amplitudes,
the scattered field U?®(z,y, z) is searched in the form

2

Ub(x,y,2) = ch}"j(x,y, z) (3.113)
7=0

where

fO == g($ayaza+0) _g($ayaza_0)

o/ NI NEHIE RS (32 4 (2 — o)) Adud)
47T2D LA, 1) Ao(p) ’

fl = gy(xayaza+0) - gy($’y’z’_0)

_ // e AR (32 4 (9~ ) ) pddpudA
= 47T2D LA, 1) Ao (p) ’

fZ == gxu(xayaz;—i_o) - gfo(xayaz;_o)

z>\x+zuy— >\2+u2—k2 (/\2_|_O_NZ> d/id/\
47T2D // LA, 1) Ac(p) '
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Representation (3.113) satisfies all the equations and boundary conditions
of the scattering problem except the first three equations of (3.110).

In order to find amplitudes ¢; it is necessary to consider near field
asymptotics for displacements w?(z,y), that is, as » = 0. One can show
that w?®(z, y) has asymptotics (2.39). Regular terms in that asymptotics can
be represented as the sum of contributions of U(®) (x, y, z) and U (z, y, 2).
Incident U (x,y, z) and reflected U (x, y, 2) fields are continuous and do
not contribute to system (3.110).

From (1.63) one finds

2k* sin ¥ cos® ¥ A (¢0) sin g
D L(9g)A,(k cos g cos py)

w0, +0) — w' (0, —0) =

2ik5 sin Y cos* ¥p A (o) sin g cos
(© O ) — 0 0A+ (o) sin ¢o cos o
wy(0,40) — w7 (0, =0) D L(9g)A,(k cos g cos py) ’

B 2ik3 sin ¥g cos? Jg A_ (o)
D L(Y)Ac(kcos g cos o)

w®(0,+0) — wl?(0,-0) (3.114)

Coefficients b;t are proportional to the corresponding amplitudes of passive
sources ¢;

Bt _bT D;

Here Dy can be found by direct differentiation of Fy by z and substitution

Po= / Azlftu)'

The denominator A,(p) as follows from the asymptotics (A.8) behaves

ofe=0,y=0and z =0

at infinity as

(o — 1)(3+U)ﬂ3+

AO(F‘) = 4

Differentiating 1 by z and y and excluding logarithmic singularity one
finds

1 . ~ -~ X2 1
Dy =—(2v+2In(k/2) —ir —Dy), D :/ + dy.
! X('V (k/2) ) B (Ao(ﬂ) m) a
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Analogously differentiating F» one finds

— 1 ] D D, = . ;
Dz—§(27+21n(/<7/2)—”_7)2)’ Dz_/(Ae(ﬂﬁ—\/W)dﬂ.

Substituting from (3.114) and (3.115) into (3.110) yields three separate
equations for the amplitudes ¢;. One finds

87N k* sin g cos® 9o A (o) sin g
Dy L(9g) Ay (k cos Iy cos ¢g)

Co = — )

8im N k5 sin ¥ cos? ¥g A4 (o) sin g cos g
a=- L(0g)As(k cos g cos pp) %
(1—-0)(340)
2n(ka/4) + 2y + 3 — i — Dy’

8im N k3 sin ¥ cos? Yo A_ (o) (1—-0)(3+40)
L(V0)Ac(kcosVocos o) 2In(ka/d) + 2y — im — Dy

Co =

The far field amplitude
The far field amplitude of the scattered field U(*) can be found as the sum
of the far field amplitudes of point sources

(0, p) = coWr, (U, 9) + 1V (V,9) + 2V, (V, p).
Applying saddle point method to the integrals F; with the saddle point at
A= kcosdcosp, i = kcosdsinp one finds

W, (9, 0) = ik* cos® dsin¥ Ay (p)singp
P\ = 0D L(0)A,(kcosdcos )’

W (9, 0) = k®  cos*¥sind AL (p)sin g cos ¢
= D LA, (k cosd cos )

bl

W, (9, 0) = k3 cos?dsindA_(p)
F\U,¥) = 472D L(V)Ac(k cos ¥ cos )

Combining these formulae and the values of amplitudes ¢; it is a simple
matter to write the far field amplitude for the field, scattered by the zero-

range potential.
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According to the main HYPOTHESIS this formula gives the principal
order terms in the far field amplitude asymptotics by small width of the
joint. The first term does not depend on the width of the joint and gives
the far field amplitude in the problem of scattering by the classical model
(1.70) of pointwise joint. This field is anti-symmetric by # and is symmetric
by y co-ordinates. The other two terms introduce logarithmically smaller
corrections that discard the symmetry of the total field. Next order terms
that are not reproduced by the suggested generalized model are of order

O ((ka)?) [15].



Chapter 4

Discussions and recommendations
for future research

4.1 General properties of models

Generalized point models of small obstacles in fluid loaded and isolated
thin elastic plates simulate the scattered field by means of appropriate
passive sources placed in the midpoint of the obstacle. The amplitudes
of these passive sources are defined via the local field asymptotics in a
vicinity of the potential center. However this is not a direct proportionality
of the incident field and the amplitudes of passive sources, a kind of “self-
action” is included in the models which can be illustrated by Fig. 4.1.
The incident field (both acoustic and/or flexural) creates near the scatterer
some regular field which is given by its Taylor decomposition. The model
directly connects amplitudes of passive sources with this regular field and
this connection as declared by the hypothesis of Section 3.2 is defined by the
obstacle only. However passive sources produce field which passes through
the media, reflects by distinct objects and contributes to regular field. This
“self-action” depends on the global characteristics of the acoustic media
and the plate, it knows the global geometry of the problem and it does
not know anything of the obstacle. Such separation of parameters that
characterize the obstacle from those describing surrounding media appear
crucial.

Analysis of classical point models shows these models to be particu-
lar examples of generalized point models which involve only such passive
sources that do not bring to singular fields. The structure shown on Fig. 4.1
can be found in classical point models as well.

197
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Incident field

Regular field MODEL Passive sources

Surrounding media and objects

Fig. 4.1 Scheme of generalized models

4.1.1 Generalized models in two dimensions

The generalized model of a narrow crack constructed in Section 3.3 gener-
alizes the classical point model of Section 1.4.1 by adding passive acoustic
source in the acoustic media near the plate. The “boundary” condition that
regulates the amplitude of this source is written in the form of asymptotic
decomposition

1
U= —c In(r/ro) + o(1), r—0,

where ¢ is arbitrary and rg is fixed. Combining such acoustic passive source
with passive sources specified by usual contact conditions on the plate yields
the following two-dimensional models:

(1) Classical point model of crack
c=0, w”’(£0) =0, w"(£0) =0 .
(2) Model of narrow crack (with free edges)

U= —g In(2r/a)+o(1), r—0,  w’(£0)=0, w”(£0)=0.
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(3) Fixed point
c=0, w(+£0) =0, w'(£0)=0.

(4) Model of a narrow slit with clamped edges (2a is the width of the
slit)

U=—"In@2r/a)+o(1), r—0, w(x0)=0, w'(+£0)=0.
T
(5) Model of a bubble (a is the radius of the bubble)
U:—%ln(?r/a)—i—o(l), r — 0, we C3.

Note that for ¢ — 0 the models (2) and (4) are close to classical models
(1) and (3) correspondingly. The bubble presented by model (5) is not
described by contact conditions and has no limiting classical model.

Figure 4.2 presents frequency characteristics of effective cross-section for
the models (1)—(5). The plane wave is incident at ¥y = 30° and two models
of fluid loaded plates are accepted, namely lcm steel plate in water (left)
and Imm steel plate in air (right). The obstacle is taken of width 2a =
5em. Consider first the model of water loaded steel plate. Schematically
one can accept that the above models cause scattering by different types
of passive sources separately. The above models deal with three sources,
namely source of model (1), source of model (3) and acoustic source of
model (5). Other models can be thought as combinations. Narrow crack is

20Hz 200Hz 2kHz 20kHz 1Hz 30Hz 900Hz 27kHz

-257

5O ................... ................

B NS T S o)

Fig. 4.2 Frequency characteristics for the models (1)—(5)
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a combination of pointwise crack and the bubble, narrow slit with clamped
edges is a combination of fixed point and the bubble. We compare scattering
characteristics for the above models and analyse effects caused by different
elementary sources.

Figure 4.2 shows that classical point crack presents the “weakest” obsta-
cle. The energy scattered by the point source corresponding to free edges
of the crack rapidly increases with frequency though remains the small-
est in the whole range of applicability of thin plate theory. The acoustic
source presented in the models (2), (4) and (5) is stronger. Its amplitude
depends on the size of the obstacle and is proportional to the inverse of the
logarithm of effective radius. For intermediate sizes a the acoustic source
appears much stronger than the source of model (1). In particular scat-
tering characteristics do now allow the narrow crack and the bubble to be
distinguished. That is the acoustic source completely hides weather the
plate is cut or not. The strongest source in the low frequency domain is
the source corresponding to a fixed point (or clamped edges of semi-infinite
plates). At larger frequencies both flexural sources behave similarly and
the acoustic source begins to dominate.

Similar conclusions can be made from the analysis of frequency charac-
teristics in the model of air loaded steel plate. Again at low frequencies the
bubble and the narrow crack have close effective cross-sections and other
models distinguish more significantly, with the increase of frequency acous-
tic source begins to dominate. However for steel plate in air there is a large
range of intermediate frequencies where only three models can be distin-
guished, classical point crack, fixed point and the bubble. That is, in the
case of light fluid no interference of sources occurs. If the model possesses
acoustic source then this source defines the scattering characteristics. If
acoustic source is not presented in the model, then the scattering charac-
teristics are defined by one of the sources of flexure vibrations applied to the
plate. The source corresponding to free edges appear weaker than that of
fixed point. Close to critical frequency one can notice rearrangements in the
scattering characteristics. Scaled graphs in a vicinity of critical frequency
are shown on Fig. 4.3. In that domain both sources in the plate behave
similarly and can not be distinguished. Therefore frequency characteristics
of models (1) and (3) almost coincide. Similarly there is little difference
between models (2) and (4) that combine correspondingly passive sources
of models (1) and (3) with the passive source of model (5). However in a
vicinity of critical frequency acoustic source becomes less strong and one
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14.8 15 15.2 15.4

Fig. 4.3 Frequency characteristics for the models (1)—(5) near critical frequency from
14.8kHz to 15.4kHz

can see interference of sources. In particular models (2) and (4) those scat-
tering characteristics at lower frequencies are hardly distinguishable from
scattering characteristics of model (5) can be separated at critical frequen-
cies. For all the models except the bubble effective cross-sections behave
similarly with very sharp maximum. On the contrary, critical frequency
brings minimum to the effective cross-section of the bubble.

0°

257,

-504

-751

Fig. 4.4 Angular characteristics of scattering by models (1) — (5) in water loaded lcm
steel plate at frequencies 1kHz (left) and 10kHz (right)
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0° 30° 60° 20°
[ (2,4,5)
SO ................... ...................
a : ' (3)
-50
_75_

(2:4) (2,4,5)

-50 -504

_754 -754

Fig. 4.5 Angular characteristics of scattering by models (1) — (5) in air loaded 1mm
steel plate at frequencies 1Hz (top left, curve (1) is shifted up by 50 dB), 1kHz (top
right), 11kHz (bottom left) and 12kHz (bottom right)

Figures 4.4 and 4.5 present angular characteristics for scattering by
models (1) - (5). One can conclude that at frequencies below the critical
frequency significant difference is seen only for the model (1) of pointwise
crack. This obstacle scatters no energy in the orthogonal to the plate
direction. Other obstacles produce scattered fields with similar angular
distributions of energy fluxes. At very low frequencies these obstacles can
be distinguished by the amplitudes of scattered fields. At intermediate
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frequencies scattering characteristics of models (2), (4) and (5) coincide
and field scattered by model (3) appears with the same uniform angular
distribution, but it has much smaller amplitude. When approaching critical
frequency model (5) begins to be separated from models (2) and (4) which
remain indistinguishable. It is known that fields scattered by classical point
models have far field amplitudes with very sharp lobes oriented at critical
angles ¥* = cos™! ( fc/f) (see page 45). Similar lobes can be found on

the angular characteristics of scattering by models (2) and (4). However
these lobes are superimposed on stronger than in the case of models (1) and
(3) uniformly directed field. The scattering characteristics of the bubble on
the contrary has very sharp minima at critical angles.

4.1.2 Structure of generalized models in three dimensions

Generalized models in three dimensional problems combine 6 sources in the
channel of flexural waves and 1 acoustic passive source. In two dimensional
models contributions of all the sources applied to the plate do not depend
on the size of the obstacle and the far field amplitudes in models (1)-(4)
appear of order O(a®). In three dimensional models passive sources become
dependent on the size of the obstacle. Analysis of these effect allows the
structure of parameters of the model to be understood better.

Consider first the case of isolated plate. Similarly as in the case of
two dimensions classical point models of Chapter 1 can be formulated as
generalized models with restricted set of passive sources. Combining all
these models and models studied in Chapter 3 gives the following list™:

(6) Fixed point
boo =0, co1 = c10 = c20 = c11 = cg2 = 0,

(7) Attached point mass (compare to page 53)

boo = €00, Co1 = C1p = €29 = €11 = ¢p2 = 0,

w?M
(8) Short crack,
(9) Circular hole with free edge,

(10) Circular hole with clamped edge .

*We use continuous enumeration of models.
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All these models can be written in the form of condition (2.26) or (2.27).
Analyse first flexural components of the generalized models. Matrices S in
the corresponding conditions (2.26) and (2.27) possess specific structure

So 0 0 0 0
0 S 0 0 0 0
o 0 s 0o 0o o0
=1 0 0 0 S5 0 S (4.1)
0 0 0 0 Sy 0
0 0 0 S5 0 Ss

which expresses the symmetry of passive sources with respect to # and y
co-ordinates. The element Sy specifies the mass M of the obstacle

G- D
w*M

This parameter does not depend on the geometry of the obstacle, its size
and shape. For models (8) and (9) this parameter is equal to infinity, which
means that the corresponding passive source is not presented.

The parameters S; and S; characterize dipole source. They are pro-
portional to the logarithm of effective radius and are responsible for log-
arithmically smaller terms in the far field asymptotics. Such sources are
presented in model (10).

The parameters S3. Si, S5 and Ss are proportional to the square of
the effective radius. These parameters characterize quadruple sources and
correspond to contact conditions expressing absence of bending momentum
on some curve. In models (8) and (9) these are the only sources. To
determine the parameters S3, Sa, S5 and Sg in the model of a particular
obstacle one needs to know second order terms in the far field asymptotics.

Note here that rotation of the obstacle causes the following transforma-
tion in the parameters. Let the obstacle be rotated by angle «, then its
matrix S is changed to S’

S’ = R(a)SR(—a),

where

R(a) — 0 Rl 0 ’ Rl — ( CoOSx —sln« )’

sino  cos
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2

cos’a sin 2« sin” a
R, = —% sin2a  cos 2« %sin 2c0
sin? o —sin2a  cos?a

Generalized models for fluid loaded plates differ by the presence of ad-
ditional acoustic source. The parameter 8§11 that characterizes this source
appears proportional to the effective radius. According to the hypothesis
the parameters in the composite model are inherited from the models in
acoustic and flexural components. Therefore the structure (4.1) is preserved
in the composite model as well.

4.1.3 Generalized models in the plate with infinite crack

In this book we studied only a subset of zero-range potentials in the prob-
lems dealing with elastic plates cut by straight infinitely narrow crack. The
sources that are included are of monopole and dipole types. The structure
of the matrix S for such models resembles the 3 x 3 upper left block of (4.1).
One can check that the parameter Sy describes the mass of the attached
obstacle and the parameters 57 and S5 depend on the logarithm of the size
of the obstacle and characterize its shape.

The generalized point models presented in this book were constructed
on the basis of analysis of auxiliary problems of diffraction in the case of
absolutely rigid plate and isolated plate. However after having sufficiently
large set of generalized models and knowing the structure of the matrices S
that is described above, one can distinguish some elementary blocks which
can be used for constructing other generalized models.

4.2 Extending the model of narrow crack to oblique inci-
dence and edge waves analysis

4.2.1 Reformulation of the model

The two dimensional generalized point models can be extended to the anal-
ysis of scattering effects at oblique incidence and in particular to the study
of edge waves running along a narrow straight crack in fluid loaded elastic
plate.

Consider first the formulation of the diffraction problem on a narrow
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straight crack in elastic plate. The crack is described by boundary condition
Uz,y,0) =0, |z] < a (4.2)
and contact conditions
Fw(+a,y) = Mw(+a,y) = 0.

If the incident wave does not depend on y co-ordinate the problem of
diffraction is reduced to two-dimensional problem studied in Section 3.2.6.
Let the incident wave depend on y co-ordinate by the factor e?#°¥. Then
all the components of the field contain this factor and it can be separated.
Again the problem is reduced to two-dimensional one. Namely the above
boundary and contact conditions are reduced tof

U(z,0)=0, |z| < @ (4.3)

w”(da) — (2 — o)pdw' (£a) = 0,

w'(£a) — opdw(+a) = 0. (44

The contact conditions (4.4) are easily transformed into the correspond-
ing conditions of generalized model. One simply lets « = 0 in (4.4). The
boundary condition (4.3) exactly coincides with the corresponding condi-
tion in two-dimensional problem. That is, the assumption of factor e?#o¥
changes only the surrounding media in the scheme of generalized models
presented on Fig. 4.1 . The parameterization of the zero-range potentials
in the generalized models is organized in such a way that the parameters
are completely defined by the obstacle and do not depend on the incident
field, its frequency and direction of incidence. All this allows the zero-range
potential in the cross-section y = const to be concluded the same as defined
by conditions (3.6), that is the same as in the case of gy = 0. Therefore in
the initial three-dimensional formulation the generalized model of straight
narrow crack is defined by fixing asymptotics

U:—@ln (2\/1‘2—1—z2/a)—|—0(1), Vai+2z2 -0 (4.5)

and contact conditions

Fw(+0,y) = Mw(+0,y) = 0. (4.6)

tWe preserve notations U and w for the pressure and displacement in the cross-section
y = const.
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Here ¢(y) is arbitrary function and the asymptotics is valid for any fixed
co-ordinate y.

4.2.2 FEdge waves propagating along a narrow crack

Edge waves that propagate along infinitely narrow cracks are studied in
[46] by means of perturbation technique assuming weak loading. In the
case when perturbation technique is not applicable numerical analysis of
dispersion equations (1.65) is required. We modify these dispersion equa-
tions by taking into account the width of the crack and study edge waves
that can propagate along such cracks. The generalized model (4.5), (4.6)
1s accepted.

Consider solutions in the form of waves propagating along y co-ordinate

U= ei“yv(x, z).

Separating exponential factor yields the eigen problem for parameter p and
function v(x, z)

9? 9? 2 2
0?2 ? Ov
(w‘“z) —k| gy Ne=00 s=0w#0, (48)

v = const log(2v/ 22 + 22 /a) + o(1), Vri+22 -0, (4.9)

d3 5 d Y\ Jv(x,0)
(@ — (2= d_) o

d* 5\ Ov(z,0)
(@ s ) 0z

If p is known, then the general solution v that satisfies the equation

(4.10)

r=%£0

(4.7) and the boundary condition (4.8), is given by Fourier integral

Foo 3
v:% {c{(/\z—l—uz)z—kg}—I—Z_:cz(i/\)z}><

— 00

X exXp (i/\x — \/mz) dX

LA p)
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Substitution of this expression into the conditions (4.9) and (4.10), yields
the linear algebraic system for the constants ¢y, ¢1, ¢2, ¢g and c¢. The
symmetry of the problem allows this system to be split. One subsystem
corresponds to symmetric by x part

co+ oples =0,

(D2(n) = o Do () co + (Dalp) — o Da(p) ) 2
+ N (Ja(p) = op®Jo(p))e = 0, (4.11)
Jo(p)eo + Jo(p)ez

+ % (n (53 =72) + Co + 7N T (1)) e = 0.

The integrals Dy(u) are introduced in (1.64) and integrals J,(p) and J ()
generalize the integrals J, and J introduced in (3.10) and (3.9) for the case

of oblique incidence, namely

L dA _1 A
0 =5 [N 9= 5% | e

Equating determinant of the system (4.11) to zero yields dispersion
equation

TN (Jalp) = opJo(p)”

In (V2 = F2a/2) + Cp + J (1)

Ac(p) — =0, (4.12)

Ae(p) = Da(p) = 204° Do) + * 1" Do ().

For classical model one formally lets ¢ = 0 and drops out the last term
which yields the first equation form (1.65).

The subsystem for the anti-symmetric part of the field does not contain
the width of the crack @ and coincides with the second equation from (1.65)

Ao(n) = Do(p) = 2(2 = o)p* Da(p) + (2 = 0)*u* Do (p) = 0. (4.13)

We denote positive solutions of the above dispersion equations as s
and sz, correspondingly. If these solutions are known the symmetric and
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anti-symmetric edge waves are given by the formulae

U, = ei“ey/exp (i/\x — AT+l - k’zz) N oop?

(Jalpe) = oz dolu)) (2 + 02 =K\
In (Yay/pZ = K2) + Cp + 7N () ) PO po)

— T

. /\2 9 _ 2
U, = e'#e¥ /exp (i/\x — AT+l - k’zz) %/\ dA.
a/’LO

Before proceeding to solving dispersion equations (4.12) and (4.13), in-
vestigate the left-hand sides as functions of complex variable y. One notes
that if 4 is real and is greater than the wavenumber & of surface waves, then
the paths of integration in all the contact integrals Dy(p), Jo(p) and J(p)
can be brought in coincidence with the real axis of A. Therefore for p > &
all these integrals are real. All these integrals can be reduced to sums of
residues in the zeros &, of the denominator (see (A.7)). The explicit for-
mulae for these integrals contain logarithms and it is easy to verify that all
(1 = ks are branch points. Moreover in a vicinity of g = &, the function
Ac(p) infinitely increases while A,(¢) remains bounded. By calculating
the residue in A = /p? — k2 it can be shown that

Mggo Ac(p) = +oo.
It is also easy to determine the sign of the function A () for large positive
. For this one should take into account that the integrals D4(p) and Dg(p)
require regularization which is equivalent to subtraction of quantities 1 and
A? from the respective integrated function. One finds

lim A () < 0.

pu——4co

Analysis of the dispersion equation (4.12) concludes that dependently
on the parameters of the plate — fluid system two cases are possible. Ei-
ther two real solutions exist on the ray g > &, or no real solutions exist.
For the interpretation of this result one should take into account that the
model of narrow crack assumes smallness of a compared to the characteristic
wavelength. That means that the dispersion equation (4.12) is physically
meaningful only in a bounded domain of the complex plane of u, namely
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Fig. 4.6 Even wave wavenumber dependence on the crack width in 1sm steel plate in
water at 5kHz.

when y/pu? — k%2a <« 1. Therefore in the case when two solutions exist on
the ray g > x the smaller solution corresponds to the wavenumber of sym-
metric edge wave and the larger lies outside of the applicability domain
of generalized model. In the case when no real solutions exist generalized
model of narrow crack is inapplicable.

Figure 4.6 shows the dependence of the solution s, of dispersion equa-
tion (4.12) for symmetric edge waves on the crack width a. The system of
lcm steel plate on the surface of water is chosen. If ap 1s small correction
due to the opening of the crack is negligible. For larger values of ay a par-
asitic nonphysical solution approaches from infinity, two solutions collide
and move to the complex plane. In this case the generalized model becomes
inapplicable. Similar behaviour of solutions remains for other combinations
of plate and fluid parameters. Therefore further numerical results are pre-
sented for the classical point model of crack.

The wave numbers of symmetric and anti-symmetric edge waves appear

very close to . To distinguish these values Fig. 4.7 presents quantities s, =
2 _ 2 _
€ 0

of water (left) and in Imm steel plate in air (right). The symmetric wave

»? — k% and s, = 2 — k? for edge waves in lcm steel plate on the surface
exists in both models in the whole range of frequencies. Below coincidence
frequency (f < f¢) its wavenumber k. noticeable differs from the wave

number & of surface waves. Above coincidence frequency (f > f.) .
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Fig. 4.7 Quantities se = u2 — 2 and s, = p2 — x° for edge waves in water (left) and

in air (right) loaded steel plates
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Fig. 4.8 Dependence of s, on frequency f and density of fluid gg

approaches to x and symmetric edge wave becomes weakly localized. Anti-
symmetric edge wave exists only in the case of lightly loaded plate in some
range of frequencies [f1, f2]. For air loaded steel plate fi &~ 0 and fo &2 fe.
For heavier fluids f; increases and f; decreases. In particular for steel plate
in water the interval [f1, f2] is degenerated and no anti-symmetric edge wave
exist. Figure 4.8 presents the wavenumber 3, of anti-symmetric edge wave
in lcm steel plate loaded by some hypothetical fluids with ¢, = 1500m/c
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and variable densities.

Analysis of the profiles of displacements in symmetric and anti-symmet-
ric edge waves shows that both waves are exponentially decreasing far from
the crack. Details see in [13] where energy flows carried by edge waves
and their distribution between acoustic and elastic channels are studied.
See also [56] and [57] where edge waves are studied in a different geometry
for orthotropic plate and for plate described by Timoshenko—Mindlin plate
theory.

4.3 Further generalizations and unsolved problems

4.3.1 Models with internal structure

Generalized models of Chapter 3 describe scattering by such obstacles that
are described by ideal boundary and contact conditions. These are ab-
solutely rigid bodies, or holes with free edges. If one needs to take into
account deformations that may be presented in the obstacle, then more
complicated generalized models should be used. Such models are formu-
lated as zero-range potentials with internal structure [58]. To formulate
such models one adds the third component to the space (d = 2,3 is the
dimension)

Lol = (Lz(Ri) S Lz(Rd‘l)) &L

The two component space £ is the usual space for fluid loaded plate. The
second component L is the space that should be chosen adequately to the
wave process in the obstacle. For example if one deals with a beam of
length H which only allows compressional waves, then the component L
can be taken as Ly ([0, H]).

Let the wave process in detached obstacle be described by selfadjoint
differential operator C'. Then one starts with the operator

diag (H4, C)

which describes noninteracting fluid loaded elastic plate and the obstacle.
Further one restricts this operator, that is restricts both components H, and
C'. Restriction of the operator H4 are performed to functions that vanish in
a vicinity of some chosen point (see Section 2.4.3). Restriction of operator C'
are performed analogously. The deficiency indices of the restricted operator
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are equal to the sums of deficiency indices of its restricted components. If
for example the operator (' is a second order differential operator, then
in the case of d = 2 the indices are (6,6) and in the case of d = 3 the
deficiency indices are (8,8). Selfadjoint extensions are separated into two
types. Some extensions are equivalent to the sum of selfadjoint operators
7-[5 and perturbation C° of operator C'. These are models of nondeformable
obstacle attached to the plate. The other selfadjoint extensions contain
interaction of functions from Dom(#4) and Dom(C'). The eigen oscillations
of the body (eigen numbers of operator ') become resonances of the plate
with the obstacle. Therefore generalized models with internal structure
describe resonance character of scattering phenomena.

4.3.2 Restrictions of accuracy

Two dimensional classical point models reproduce only the principal order
terms in the asymptotics of the scattered fields. These terms do not depend
on the size of the obstacle. The generalized models are designed to give
also the first order correction which is logarithmically smaller by the size
of the obstacle. One may need a more precise model that would reproduce
terms of smaller orders.

Consider for example the problem of scattering by a stiffener of mass
M and moment of inertia [ which protrudes by small height H into fluid
(formulation see in Section 4.4). Asymptotics of diffracted field is found in
[22] by means of integral equations method. The far field amplitude is

(9) = iN A k? sin ¥ sin Jg 1 k% cos ¥ cos g
o L(9)L(Y) Dy —D/(Mw?)  Ds+ D/(Iw?)
- gN(kH)z cos 0 cos Yo M (9) M (Jo) + o((kH)2)} L (4.14)
k% cost ¥ — ké Ja
N Dy + D/(Iw?)’

M) =

In the principal order the stiffener can be replaced by the point mass and
momentum of inertia attached to the plate. The far field amplitude for
this model is given in (1.62). The next order terms which correct the
asymptotics of the scattered field taking into account the height of the
stiffener are proportional to (kH)?. Terms of such order are not reproduced
by the generalized models presented in this book.

Similarly in diffraction by a stiffener of small, but nonzero width a
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considered in [18] the correction to the classical point model appears of
order O ((k’a)z). It is not reproduced by generalized models, too.

Analogous restrictions are presented in three dimensional generalized
models. As is established in Section 4.1.2 the generalized models in elas-
tic component take into account boundary-contact conditions specified for
displacements, angles and bending momentums. The boundary-contact
conditions written only for forces are neglected. In particular in the prob-
lem of diffraction by a short crack (see Section 3.3) one may replace the
condition

Fw(+0,y) =0, lyl < a
by the condition
[w]=0, [Fuw]=0, |y[<a

which will be not noticed by the generalized model. Therefore to be able
to reproduce scattering effects associated with forces one needs to increase
accuracy of generalized point models.

For this one needs to add other passive sources in both channels of
scattering. For example the smaller order corrections in the asymptotics
(4.14) of the far field amplitude in the problem of diffraction by protruding
stiffener correspond to dipole acoustic source ¢’ (2)d(z). The field generated
by such source is 0G(z, z;0,0)/0x. Tt has the asymptotics

9G(x, z;0,0) x

oz " w0

which shows that such derivative does not belong to Lo(R3).

From the point of view of operator extensions necessity to add passive
sources of multipole type means necessity to increase the dimension of the
deficiency subspace.

In the case of the generalized model of narrow joint such enlargement
of deficiency subspace can be achieved. Indeed, when constructing zero-
range potentials for the basic geometry of a plate cut by straight crack, the
initial operator was restricted to functions that vanish at the origin and
those first order derivatives vanish, too. However embedding theorems allow
the second order derivatives to be equated to zero, which causes further
restriction of the operator and increases the dimension of the deficiency
subspace up to 12. The domain of adjoint operator is extended then by



Further generalizations and unsolved problems 215

adding second order derivatives of singular solution G(z,y, z; 2¢) defined in
(3.112).

For all other generalized models the dimension of deficiency subspace
can not be increased. Indeed, the restricted operator can not be further
restricted by adding conditions in the potential center. Besides one can
not add higher order derivatives of singular solutions to the domain of the
operator because such derivatives do not belong to the main space Ly used
for the model construction.

This shows that in order to increase accuracy of the model one needs
to use some other space instead of L,. Two approaches are known. One
deals with spaces La(p) of square integrable functions with appropriately
chosen weight p which vanishes near the origin and therefore higher order
singularities are allowed. This approach is developed for example in [53]
for arbitrary second order differential operator. Generalization to the case
of matrix operator of hydroelasticity may be also possible. However the
approach based on weighted spaces causes spectral parameter to appear in
the matrix that parameterizes zero-range potentials. This property spoils
the structure of the model and the main hypothesis may appear wrong.

Another approach uses Pontryagin spaces [61], [32]. These spaces have
no metrics, but are supplied with the metric-like function which possesses all
the properties of usual metric except it can be negative. Roughly speaking
such constructions are equivalent to adding to L» a span of fixed functions
¢; that do not belong to Ly. Then the “scalar product” is set as

<U’ V> = <u’ v> + Z Uy,
where
Ulr) = U(P)Jrzuy'fbj(r), V(r) =v(r) +Zvjf/>j(1“)~ (4.15)

The set of all functions U that are decomposed in the form (4.15) with
finite complex u; and u € Ly form the Pontryagin space with n negatives
squares. In [61] such spaces are used for constructing models of narrow slits
in rigid screens. No generalizations of the approach based on Pontryagin
spaces to the case of fluid loaded plates are known.

Another attempt is undertaken recently in [11] where the generalized
model of protruding stiffener in absolutely rigid plate is suggested. The
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construction is carried out in a specially designed Hilbert space. Unfortu-
nately this construction becomes very cumbersome if quadruple and higher
order sources are involved. Besides it is difficult to be extended for the case
of fluid loaded elastic plate.

Finally, one can replace the obstacle by a set of passive point sources.
The model of protruding stiffener in the form of zero-range potential with
two potential centers in acoustic component is presented in Section 4.4.

4.3.3 Other basic geometry

The generalized models described in this book deal with elastic plates being
in one side contact to acoustic media. In a similar manner one can con-
sider plates plunged into acoustic media. Moreover one can have different
fluids separated by the plate. In that cases the zero-range potentials are
considered in the space

L= Ly(RL) @ Lo(RY) @ Lo(R)

and the operator of fluid loaded plate is a three component operator. The
additional component increases the deficiency indices by 1.

More essential changes appear if one considers semi-infinite objects.
Only one model is known. Zero-range potentials for isolated plate with
semi-infinite crack are constructed in [38].

4.3.4 Other approzimate theories of vibrations

This book only deals with flexural deformations in the plates described
by Kirchhoff theory. This theory is valid for sufficiently thin plates, or
for sufficiently low frequencies. At higher frequencies shear deformations
become important and Timoshenko—Mindlin equations [67] are used for the
description of plate vibrations. One can reformulate generalized models of
this book for the case of Timoshenko—Mindlin theory.

Symmetric deformations exist in thin plates independently of flexural
deformations and are almost not influenced by fluid loading. However at
wedge-shaped junctions of semi-infinite plates interaction of flexural and
symmetric waves may appear. Such junctions can be also approximated
by generalized models using zero-range potentials. For this the channel of
symmetric waves (additional component of the space) should be added.
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One can also try to extend the zero-range potentials approach to models
of obstacles in thin elastic shells.

4.4 Model of protruding stiffener in elastic plate

4.4.1 Introduction

In this section a simple model of protruding stiffener of small height H is
formulated. This model reproduces not only the principal order terms in
the far field amplitude, but also takes into account corrections proportional
to the height H. We use the operator model of fluid loaded plate formu-
lated in Section 2.3.4. That approach treats the square of frequency as
the spectral parameter and yields a usual spectral problem rather than a
spectral problem for an operator pencil as in models of Chapter 3.

The terms in the asymptotics of the far field amplitude that are pro-
portional to the height of the stiffener require the zero-range potential of
dipole type. As described in previous sections such zero-range potential can
not be constructed in L. Instead we simulate dipole source by zero-range
potential with two potential centers.

The parameters of the zero-range potential are organized in Hermitian
matrix and its block structure is similar to noted in Section 2.4.3. It is
essential that the matrix only depends on the parameters of the stiffener
(its height, mass and momentum of inertia) and does not depend on the
global characteristics of the mechanical system (such as thickness of the
plate, its rigidity, densities of the plate and fluid, etc.) and on the incident
field. The two diagonal blocks characterize the scattering properties of the
obstacle in the isolated channels of scattering. One of these problems of
scattering can be thought of as the limit of the initial scattering problem for
infinitely rigid plate, the other as the limit for infinitely light fluid (vacuum).
The nondiagonal blocks are assumed zero. Afterwards comparison with the
asymptotics (4.14) found in [22] allows the applicability of the model to be
justified for stiffeners of small height, that is for kH < 1.

4.4.2 Classical formulation

Let the acoustic system consist of a homogeneous liquid half-space {z > 0}
bounded by a thin elastic plate {z = 0} supported by protruding stiffener
{r = 0,0 < z < H}. The wave field is formed by an incident harmonic
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plane wave
94 (z,7z) = Aexp (zkx cos ¥g — tkz sin 790).

The acoustic pressure U(x, z) satisfies Helmholtz equation and the gener-
alized impedance boundary condition (1.13) on the plate. The stiffener is
assumed absolutely rigid, that is the following conditions (same as in [22])
are satisfied

aU(0,2)  9*U(0,0)
dr " 0xzdz 0<z<H,
Zrw(0) = w"' (+0) — w"'(-0), (4.16)

—Zmw' (£0) = w”(+0) — w”’(-0)

—+ %/Z(U(—I—O, z) —U(-0, z))dz (#.17)

Here Z; and Z,, are the force and the momentum impedances

thlez thlHS(.dz

Zy = —F— m=

D 3D
01 and hy are the density and the thickness of the stiffener. Besides, in
the singular points of the boundary, that is in the points (0,0) and (0, H),
the Meixner conditions (1.18) for the acoustic pressure U(z, z) are satisfied.
Scattered field is subject to radiation conditions (1.16).

The use of Green’s function (1.28) and integral representation for the
scattered field allows the above boundary value problem to be reduced to an
integro-algebraic system of equations. Asymptotic analysis of this system
allows approximate formula (4.14) for the far field amplitude to be found.
Detailed derivations can be found in [22].

4.4.3 Zero-range potentials

Let the generalized model that reproduces terms of two orders in kH in
the far field amplitude ¥(¥;9y) for kH — 0 be constructed in the form
of zero-range potential for the operator H of Section 2.3.4. This approach
treats frequency as the spectral parameter.
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Zero-range potential in the acoustic component

Consider first zero-range potentials in the acoustic channel. Restrict Lapla-
cian to functions that vanish in a vicinity of the points (¢, 0) and (—e¢, 0).
The closure of this operator is the symmetric operator with the deficiency
indices equal to (2,2). The adjoint operator A* is defined on such functions
from Ly(R3) that can be represented in the form

ct
Ulx,z) = Up(z, 2) + x(=, 2) (——ln ((a: — ) + 22)
27
- (4.18)
+¥re ¢ 2. .2 _r—¢€
+h 2¢ 2ﬂ_ln((x—|—e) +Z)+b 2¢ )

Here Uy belongs to the domain of the restricted operator, x is the cut-off
function and ¢, b% are arbitrary complex constants. The expression (4.18)
is in fact a simple combination of the two asymptotics of the type (2.19).
Following the technique of [58] the selfadjoint operator appears if appro-
priate constrains are set to the constants ¢*, b*. It is easy to find out that
the boundary form reduces to the sum of the boundary forms corresponding

to each center, namely
(AU, Us) = (Uy, AUs) = bf e + by ey — cfbT — ey b

In the case of non-interacting centers linear constrains are taken for con-
stants ¢t b7 and ¢~
two zero-range potentials. The interaction between the centers appears if

,b7 independently. This 1s a simple combination of
the vectors ¢ = (¢*,¢7) and b = (b*,b™) are connected by a Hermitian
non-diagonal matrix.

It is convenient to rewrite these conditions in another form. Instead of
amplitudes ¢t of the passive monopole sources one can take the amplitude
of an equivalent monopole and dipole sources. These amplitudes are

c:c"'—l—c_, c’:e(c"’—c_).
The quantities b are replaced by mean value and by finite difference

BT 4+ b~ bt — b~
(A L R VS Ml

2 2¢
If € approaches zero, the parameter & tends to the derivative of the regular
part of the field and the parameter ¢’ tends to the amplitude of the passive
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dipole source. In terms of these new coefficients the operator is selfadjoint

()=s(¥) 19

and matrix S 1s Hermitian.

provided

Zero-range potentials in the elastic component

For the component v (see Section 2.3.4) the zero-range potential with one
potential center is sufficient to model effects of diffraction by the stiffener.
These are the zero-range potentials for ordinary differential operator and
can be set by usual boundary conditions formulated in the point of the
potential center. To write these conditions in the form convenient for com-
bining the zero-range potential for fluid loaded plate from the acoustic and
elastic components one introduces function

Y(x) = %U(r,O) + (@)

and finds
1" 2 — D
w'(2) = w o), w(z) = QhT(a:). (4.20)

Formulae (4.20) remain valid both in the case of fluid loaded plate and in
the case of isolated plate (when gg = 0).

The parameterization of the zero-range potentials in the elastic compo-
nent can be taken in the form

[Y] {v'}
_[[3 I=s {{;,}} . (4.21)
—v] (r}

Remind that square brackets denote jumps and curly braces stand for mean
values.
Zero-range potentials for fluid loaded plate

The conditions that fix selfadjoint operator can be written in matrix form

c = &b, (4.22)
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Here

o= (Lo Loy g, 1)
b= (S50, b, ('), v} {1} {T})

and § is Hermitian matrix having the block structure similar to (2.34)

h
s=( ®% )
s S

The block S is the 2 x 2 matrix that parameterizes the zero-range potential
in acoustic channel, the block S is the 4 x 4 matrix that parameterizes
the zero-range potential in elastic channel and 2 X 4 matrix s characterizes
interaction of the channels that appears due to the stiffener.

Deficiency elements

Deficiency elements are solutions of boundary-value problem with delta-
functions in the right-hand sides of all equations. Introduce elements G; =
(Gj(a:, z;z0), v (2; xo)) (7 = 1,2,3) as solutions of the following boundary-
value problems

—c2AG(x, 7, 20) = wW?G(z, 2;20) + Cié{é(l‘ — 0)0(z —0),

00 0°Gj(x,0;20) N D 9%y (x; x0)

2 e
oh Oz? oh Ozt =W (w w0)

D .
+ Q—h5‘%5(l‘ — o), (4.23)

0 . D 9%v;(x;w0)  0G;(x,0;20)
oh Gile, 0520 + oh Ox? o 0z

D .
+ g_h(%é(x — xp).

Here df = 1 and (52 = 0 if £ # j. The normalization of the field cor-
responding to the delta-function in the Helmholtz equation is taken such
that the coefficient ¢ in the representation (2.19) for G1(z, z; 0) be equal to
1. The fields produced by other sources are normalized in such a way that
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the jumps [T'}] and [v4] are equal to 1. Here
Tz _ QOG' . "
J($’$0) - B J($’$0) +7j ($’$0)'

The solutions G; of the boundary value problem (4.23) can be found in
the form of Fourier integrals

4 14
1 eiA(x—xD)—x/)\Q—k?z/\ kO d\

gl ($aya $0) = 27T 1 AZ L(A) 3
Q_O_/eiA(x—xD) d\
D 2x LX) 7
_or L ieeeg-vi=R Ly
Golz, =: 20) = 2m LN
28, <, L0} — / 2 )
1 AT —o) A2 — kA d\
2m LN
Bi/e“w—xu)—wtk%_v dA
Gs(w, 23 00) = gh 2m V) LY 1
i eiA(x—xD) A=k + po(ph)_ d\
2m LN

For the deficiency elements of the restricted operator the point source
in the Helmholtz equation can be placed in any of the points (e, +0) and
(—¢,40) and in the elastic channel both d(x) and §’(z) can be presented.
Therefore totally 6 deficiency elements exist

gl(l‘,Z;E), gl(l‘,z;—E)’ gz(x’z;())’ W’

Gs(z,7;0) and e

4.4.4 Scattering by the zero-range potential
Algebraic system for the amplitudes

The field scattered by the zero-range potential can be represented as the
sum of fields radiated by elementary passive sources, namely

9Ga(x, z;0)
Jx
9Gs(x, z;0)
Jx

Ul = c+G1(x, zy€) + ¢~ Gz, z; —€) + [T] + [Y']Ga(z, z;0)

+[v] + [V']G35(=, 2; 0).
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Computing asymptotics of singular solutions in a vicinity of potential
centers and decomposing exponentials exp(ike) and exp(2ike) into Taylor
series by € allows the system (4.22) to be rewritten for vector b defined
only by the geometrical part of the field and vector ¢

(1+5G+0(%))c =5, (4.24)

Here

@z 9 2, 0 NJs 0

0 &z 0 — &, 0 —NJ
G_| BH 0 —Di-gu 0 D, 0 |

0 —S—ZJQ 0 Do + S—ZJQ 0 Dy

NJo 0 D, 0 KDy 0

0 —NJ 0 Dy 0 kg Do

k2 i, N
r_ v _ _ 2 2t 2
7z _.%Tonw/m-+c; ]) ok 2(D0+¢:J)

Z:%OMM%+Q0—%—NJ

Decomposing exponential factors of small argument ¢ke cos ¥ in Taylor
series and preserving only the principal order terms gives the following
approximate expression for vector b(?)

. 200 tksin ¥
(i) — o 0 2
b A £(00) B (Vo) + O(e?), (4.25)

where

tk cos ¥ (k4 cos* ¥ — ké)
k*costd — k
k3 cos® ¥
k? cos? ¥
—ik§ cos ¥

—ké
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Far field amplitude

The asymptotics of the scattered field at large distances can be calculated if
the saddle point method is applied to the Fourier expressing the first com-
ponents of G;. The approximate expression for the far field amplitude ¥ («})
neglecting terms proportional to ¢2 can be written as the scalar product

V() = %%%@@(ﬁw +0(é?). (4.26)

(Note that complex conjugation is contained in the scalar product.)
Inverting matrix in the equation (4.24) yields

iA og k% sin ¥ sin vy

P 0) = ok T E D)D)

<(1_sg)—15<1>(790),<1>(79)>. (4.27)
It is important to note that the neglected terms of order O(e?) in the
formulae (4.24), (4.25) and (4.26) do not spoil the symmetry of the far field
amplitude.

4.4.5 Chotce of parameters in the model

According to the experience of Chapter 3 let the matrices .S and S be taken
the same as in the models of stiffener in rigid and in isolated plates. The
matrix s from (2.34) that describes interaction of acoustic and elastic chan-
nels in all the models of Chapter 3 is equal to zero as no such interaction is
presented in the classical formulation of diffraction problems. For the pro-
truding stiffener with finite impedances Z; and 7, the interaction of two
channels is presented. Tt is due to contact condition (4.17) which contains
both acoustic pressure U on the stiffener and flexure displacement w. Nev-
ertheless, let s = 0. This supposition i1s a posterior: justified by comparing
the far field amplitude with the asymptotics (4.14).

Auxiliary diffraction problems

Consider first two auxiliary problems of diffraction. Assume that the plate
is rigid. In that case the boundary condition (1.13) is replaced by the Neu-
mann boundary condition and the contact conditions (4.16), (4.17) disap-
pear. Solution of such boundary value problem can be obtained from results
on diffraction by rigid strip (see [36]) by taking even part of the field. In
the two orders of small parameter kH the far field amplitude ¥°(¥;dq) is
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given by the formula
WO (d;dg) = %A(k’H)2 cos ¥ cos ¥ X
KH)?
x {1 - %111(1{}1/4) (4.28)

kH)? 1
—1—% (ﬂi+cosz79—|—cosz790—§—20E) —1—}

Instead of considering boundary-value problem for isolated plate, let
the results of Chapter 1 be used. Diffraction by nonprotruding stiffener
is studied in Section 1.4.1 and the far field amplitude is given by formula
(1.62).

Choice of parameters in acoustic channel

The 2 x 2 matrix S can be chosen with the help of the asymptotics (4.28).
Assuming for a moment that matrix S is known, the solution for the prob-
lem of plane wave scattering is searched in the form

U(x,z) = 2A exp(ika cos ¥y) cos(kz sin )
+

c c”
+§Hé”(kr+) + EHé”(m_).

The amplitude of the outgoing cylindrical wave can be easily calculated if
Bessel functions Hél)(k’ri) of large argument are replaced by asymptotics
and the radii r4 are approximated as r F ¢ cosd). This yields

?

\Ijo(ﬁ’ﬁo) — _% <C+ e—ikecosﬂ +e eikecosﬂ)
? kcos?
~N ——— C— C.
27 27

Comparing this formula with the asymptotics (4.28) for diffraction by pro-
truding stiffener in a rigid screen allows the amplitudes ¢ and ¢’ to be found.
Namely,

e=0, ¢ = —Ami H?k cos¥y. (4.29)
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Coefficients b* are given by the formulae

bE = _cxéﬂngm 4ol (ln(ke) +Cp— zg)

T

+ 2A exp (£ike cosvyp) .

If ke <« 1 Bessel function of small argument ke can be replaced by asymp-
totics. This gives approximate expressions

b =24+ O((ke)*In(ke)),

2
b = iAkcos U (1 + @ (ln(ke) +Cp—1-— zg))

+ O((ke)2 ln(ke)).

Using expressions (4.29) and (4.30) it is easy to find matrix S. This
matrix should not depend on angle ¥, therefore the second row can be

(4.30)

found identically zero, that 1s So; = S22 = 0. Hermitian property yields
S12 = 0. Taking into account that S does not depend on the wave number
k, the remaining component Si; is defined uniquely as —wH?/2. Thus
protruding stiffener in rigid screen is modeled by the two centers zero-range
potential with the matrix

1 2
0 0
It is important to note that matrix S fixing the zero-range potential does
not depend on parameter ¢ (which allows the limit ¢ — 0 to be considered)
and is defined only by the geometrical characteristics of the protruding

stiffener. This was achieved by introducing coefficients ¢, ¢/, b and ¥’ instead
of ¢* and b* in the parameterization formula (4.19).

Choice of parameters in elastic component

Comparing (4.21) with contact conditions (1.52) yields the matrix
S = diag(O, 0, zm, zf) .

Here

D h D hy H3
zf:—Zfzgl 1H, o = szl 1_.
w2oh oh
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These quantities do not contain spectral parameter w? and depend only on
characteristics of the stiffener, its relative density g1/p, relative thickness

hi/h and height H.

4.4.6 Generalized model of protruding stiffener in fluid loaded
plate

It was noted above that as both the acoustic pressure and the displacement
of the plate are presented in the contact condition (4.17), the scatterer adds
additional interaction of the scattering channels. Thus, generally speaking,
matrices s and s* in the model of the protruding stiffener can be different
from zero. However, let s = 0 be accepted. That is let the matrix § be

h
S = diag (-p—ﬁfﬂ, 0,0,0, zp, zf) .
po 2

Performing simple though cumbersome calculations by the formula (4.27)
yields expression for the scattering amplitude

\Ij(ﬁ.ﬁ)_iNAkzsinﬁsinﬁo 1 k? cos ¥ cos g
VT T L)L) \ Do—1/Z;  Da+1/Zp,
- gN(kH)zcosﬁcosﬁoM(ﬂ)M(ﬂo)}. (4.31)
Here
M(ﬁ):k‘lcos‘lﬁ—ké_ Jo .
N Do+ 1/Z,,

The two first terms in the formula (4.31) coincide with the far field am-
plitude (1.62) for non-protruding stiffener. The last term gives correction
that appears due to the protruding part. One can compare the asymp-
totics (4.31) with (4.14). This comparison shows that up to terms of order
O((k’H)z) both expressions coincide. That is the additional interaction of
the channels which is described by the condition (4.17) does not influence
upon the terms of order O((k’H)z) and can manifest itself only in smaller
order corrections. These corrections are of the form of a field radiated
by a quadruple passive source and are not reproduced by the suggested
model with two potential centers in the acoustic component. To include



228 Discussions and recommendations for future research

quadrupole sources one can use zero-range potentials with 4 potential cen-
ters. The problem of choosing appropriate parameters s for these zero-range
potentials should be studied.



Appendix A

Regularization and analysis of
boundary-contact integrals

A.1 Boundary-contact integrals in two dimensional prob-

lems

Consider the boundary-contact integrals D,

1 cox (BT — k2 1 o (VAT — k2
D, = L E et d\.

= — dA= lim —
o LV w540 27 LV

The integration path coincides with the real axis of A except for the small
neighborhoods of the poles A = +x which are avoided according to the
limiting absorption principle, that is A = & from below and A = —« from
above (see Fig. A.1). The denominator behaves as O(A®) at infinity, there-
fore integrals with £ > 2 are understood as limits. First the exponential
factor % is introduced and the ends of the integration path are shifted for
positive  to the upper complex half-plane of A. Then the limit as « — +0
is taken in the resulting integral. This limit is symbolically indicated by
the exponential factor €'°* in the above formula.

The deformation of the integration path into the loop around the up-
per branch-cut Ty (see Fig. A.1) performs regularization of the integrals.
Taking into account the residues in the poles; which are crossed, one finds

CN—1(,.2 12 NN VI~
Dy = (ir)~HK* =k )4 n i/ew)‘ (I VA2 — k O\
Z bt — 4Kk — kg 2w LN
n_:fltiy Iy

Here ks are solutions of the dispersion equation
L(ks) = (k% — ki) /K2 — k2 — N = 0. (A1)
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ImA
1
K1 ;F+
L] L]
—Ka
—K
o F+ . ®
K2
> 0 Ko ReA
— Ko >
— ka2
L] ‘F— L]
K3
R
L] L]
— k1

Fig. A.1 Integration path and singularities of the integrand

The integral over I'; can be reduced to the integral over the right-hand
side shore of the branch-cut I',. This excludes growing terms from the
integrand and one can drop out the exponential factor

H 5 (in) "\ (* —K?) N (N VAT Z k2
‘T brd—4r2k? — ki w ) (M — kD22 — k) — N2
< = o o

dX.

Further the integrals by I, can be reduced to integrals over the union
of two loops I'y and I'_ with the help of the formulae

//\f(/\z)\//\z “lPdA =+ / AF(A2)V/AZ = k2d),

4
I ryur_
/f(/\z)\//\Z—kZd/\
T
2 _ L2
S R S P
e

rpur_

In the above formula logarithm is taken positive when A > k.
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Finally integrals by the union of loops can be evidently reduced to sums
of residues. The poles of the denominator coincide with the solutions of the
dispersion equation taken on both sheets of the Riemann surface of square
root v/ A2 — k2. Exploiting the symmetry one expresses the residues in the

poles A = —k; in terms of residues in the poles A = k. This yields exact
formulae
4.
1 (iks) 2 (k2 — k?)
D =— £ A2
e 225/{?—4/{3/{2—1{3’ (A-2)

s=0

4 . )
(ms)zz_l(ﬁ? — k% [ ks + /K2 — k? 1
Doy = — —In| ——2% —]. (A3
* Z b —ARZk2 — k¢ \ n B k + 2 (4.3)

s=0
Analogous derivations for integrals
1@
27 LA)WVAZ — k2

and

yields exact formulae

Ks + /K2 —kz) /k) — /2

brd — Ak2k? — ki ’

J:%iln((

s=0

4 20—1 2 ) 2 ) .
KT RZ—k 1 Ks +\/KZ—k i
=S (=1 (—m (—) - —) ,

brd —AR2k2 — ki \ w k 2

5=0 s

1 Z(—l)z K26\ /KZ — k2 (AA)

Jorgr = —= .
T 5t — 4kZk? — K}

s=0

On the other hand integrals with odd indices can be expressed by simpler
formulae. The limit  — +0 for the integral Dy can be taken in the
integrand. Therefore integrals Dy, J; and Js absolutely converge and as



232 Regularization and analysis of boundary-contact integrals

integrals of odd functions over symmetric path these integrals are equal to
7ero

Dy =0, J1=0, Js=0.
For D3 and Ds one can use the representation

gy 1 N
IOy Mk T ITE (4.5)

The integrals with the second term are equal to zero by the same reason
of symmetry and computing integrals with the first terms by the residue

theorem (poles are at A = kg and A = ikg) yields
1
Ds = 7 Ds = 0.
Computations by the formulae (A.2) and (A.4) can be checked with the
exact values of the integrals which allows accuracy of numerical results to
be controlled.

A.2 Boundary-contact integrals for oblique incidence

Consider the integrals

De(p) =

1 [ aon (NN £ 52 — k2
_/eZOA(Z ) +/’L d\.

2w LA p)

Integrals with odd indices are again easily computed. For that change the
integration variable to 7 = /A% 4+ 2 and apply the formula (A.5). This
yields

1
Di(p) =0, Ds(p)=5, Ds(u)=p" (A.6)
In the integrals with even indices the path deformation to the upper
loop around the branch-cut and then reducing the integrals to the sums of

residues gives formulae similar to (A.3)

4 2\0—1/2 2

1 Z p2) R (kY — k)
Daelp 5.%4 4k2k% — ki X
:0 s

7 VEZ — 2+ /K2 — k2 1
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In particular if g is large this yields

20 -1

1 pt 3 || = 0. (A.8)

Dae(p) ~

When deriving the above asymptotics the factor (7% — /12)[_1/2 was decom-
posed in Taylor series. Then the terms without logarithm give

20 -1

21
Dy
Tty 2

p*3Ds + . (A.9)

The logarithm can be replaced by its asymptotics

2 _ 2 2 _ 2 2 _ L2
N o280 Y o

k2 — 2 K3 = p

When substituting the principal order approximation into the expressions
(A.7) one gets in the leading order by p

(_ 262 k2)3/2 204
25.%4 4rk2k? — k4+0( )

which equals up to a constant to u?*=2(Js + k2J;). Therefore this term is
equal to zero and the asymptotics (A.8) is due to the second term in (A.9).

A.3 Low frequency asymptotics

The boundary-contact integrals are expressed in terms of zeros of the disper-
sion equation (A.1). This equation is equivalent to the fifth power equation
and can not be solved in closed form.

Examine the asymptotics of the integrals Ds, J and Ja; when the plate
1s thin or the frequency is low. For this introduce dimensionless parameters

2

Qo
p=12(1 — o? ,
( )% o

where E and ¢ are the Young modulus and the Poisson’s ratio in the ma-
terial of the plate ¢, is the wave velocity in fluid, g, gg are the densities of
the material of the plate and of fluid and A is the thickness of the plate.

Then

Nh® =pe?,  kih* = pde*.
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The dispersion equation (A.1) can be written as
L(k)h® = ((Kh)‘1 - pd52) (kh)Z — k% — pe2 = 0.
In the principal order one finds the asymptotics
Kkyh my pt/Be2l5e2misls 5=0,1,2,3,4. (A.10)

The corrections can be found in the form of decomposition by powers of
£2/5 in particular

koh = pl/5g28 2misl5 lpz/5d64/564m/5 _ %p3/5d266/566ﬂ'is/5

Loass b ay5\ _s/5 —omis/s
— d — s
+ (125p TP ) +
Therefore the asymptotics (A.10) is valid if
e d P2 o pf3,

Under this assumptions one can neglect all & and %y in the expressions for
the boundary-contact integrals. This allows simple asymptotic formulae for
the integrals Dag, J and Ja¢ to be found

2 23 2mi\\ '
Doy ~ é(-NN‘T (1 — exp ((% - 3)%)) : (A.11)
3i
J~—N"1 A2
TR (A.12)
2i N5 2i  NTUS
Jo ~ 2 y o~ (A.13)

"5 T —exp () 5 1 —exp (52

A.4 Boundary-contact integrals in three dimensions

Consider the three dimensional boundary-contact integrals. The integral

1 AZ + NZ _ kZ
Doy = — -~ dX\d
= 4 // L\ p) g
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can be simplified if variables of integration are changed to 7, by the for-
mulae A = \/Tcosa, i = \/Tsin . This yields

+oo

1 / N
dm ) (P2 — kDT — k2 - N

0

dr.

Doo =

Further, excluding irrationality from the denominator reduces this integral
to the sum of two integrals. Integrand in one is a fraction of two polyno-
mials and the other contains v/7 — k2. Both integrals can be expressed in

elementary functions with coefficients depending on zeros of the denomina-
2

tor 7 = k5. These formulae are rather cumbersome and we present here
only the asymptotics for low frequencies when the zeros are given by the
asymptotics (A.10).

In the case of low frequency, neglecting smaller order terms in the inte-

grand one finds

+ oo + oo
1 ridr  N72/° 2 dt
Doo ~ — / = / :
T
0

47 5_ N 47
0

The integration path in the above integral avoids the pole at 7 = N1/% t =1
from below. Excluding semi-residue one gets the principal value integral.
Further, in the integral over ¢ € [1, o0) one changes the integration variable
to its inverse and combines the result with the integral over ¢ € [0, 1]. This

yields
1
D i -/ N N—2/5/ tdt
0790 Ar B2+t +1
0
Finally
cot(2mw/5)  _, -
Dog ~ ———— L N=2/5 4 —_N=2/5, A4
00 40 *30 (A.14)

Similar expressions can be found for integrals D).
Another approach to computing the asymptotics of the boundary con-
tact integrals in three dimensions see in [7].
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Fig. A.2 Integration path and singularities of the integrated functions

A.5 Boundary-contact integrals for the plate with infinite
crack

Consider the integrals of the problem of diffraction by a joint of isolated
semi-infinite plates. These are the integrals d;

1 dr /7'2—\/7'4—12
do=— | —,  d= | —Y —-r%r
mJ L(r) L)V =1

and

tr= [ st

These integrals can be reduced to sums of residues in the zeros of the
denominator £(r) on the Riemann surface of the square root V74 — 1.
Let the values of square roots be fixed by choosing branch-cuts on the
complex plane of 7 along the rays Ly = [1,1+ io0), Ly = [§, —0c0 + i),
Lz =[-1,—-1—ioc0) and Ly = [—1, 400 — i) (see Fig. A.2).
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Examine the zeros of the denominator

L(r) = ((1 —o)r? + 1)2\/7'2 —-1- ((1 — o)’ — 1)2 T2+ 1.

The zeros are located in pairs on the 4-sheet Riemann surface. There are
four zeros on the “physical” sheet, namely 7 = 79 = s¢/ko, 7= —10, 7= 71
and 7 = —7y, where

T = ((1 —0)(-30c+1+ QW)) —1/462%/4.

On the other sheets of Riemann surface the zeros are in the points 7 = 27y,
T=—ir, T=1im and T = —i7y.

Consider first the integral dy. Deform the integration path to the upper
complex half-plane to the loops around the branch-cuts L; and Ls. The
residues in the poles at 7y and 7, are extracted. The integrals over the loops
C: and (5 around the rays Ly and Ls reduce to integrals along the right-
hand side shores (' and CY. In the integral over C?, change the integration
variable 7 = ¢t which maps the ray Ls to the ray Li. Then combine both
integrals. One can find that the integrals cancel each other. Therefore

do=2 (ﬁ’(lTO) * ﬁ’(lﬁ)) '

The above expression is rather cumbersome, however it can be shown that
Re do =0.

Perform now similar derivations with the integrals d; and ds. The con-

tributions of the integrals over the loops do not cancel for that integrals.
However integrals over the semi-loop C] can be reduced to the sums of
residues on all the sheets of Riemann surface analogously to section A.l.
For this introduce the function

f(T):ln(T— 7'2—1).

One can easily find that f(—7) = ir — f(r) which allows the following
transformation of the integrals to be performed

1+io0
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Now the integrals over the union of loops C7 and C5 can be computed as
sums of residues. Finally one finds

72(72_ 74_)
di =2mi Y L d

j=o1  L'(15) 7-]4—

N EZ T ((1- o)Ti — )" - (i — 1) ((1- o) + 1)

4 f(Tj)’
iz (1=0)(1=0)’B+0)% = 1430) 73 /77 — 1
dy=2mi 3 !
9 = J—
=00 L) /7 =1
2
s (1=0)7f = 1) f(m)
A (1—0) (1= 0)2(3+0)74 — 1 4 30) 73, [T7 -1
In the above formulae ™ = imy, 73 = ¢y, 7w = —7Tp, 5 = —T1, Te = —1IT

and 77 = —imy.



Appendix B

Integral equations of convolution on a
finite interval

Problems of diffraction by a segment like inhomogeneity in fluid loaded or
isolated thin elastic plate can be reduced to integral equations of the convo-
lution on a finite interval. In classical problems of diffraction such equations
usually have kernels with logarithmic singularity. For the case of diffrac-
tion by thin elastic plate the class of possible kernel singularities enlarges.
Theorems of existence and uniqueness of solutions of these equations are
presented here.

B.1 Integral equations of convolution

Consider the integral equation

a

/K(m—t)p(t)dt =f(z), |z/<a (B.1)

—a

with the kernel K (z —t). By introducing scaled coordinates the equations
of convolution can be rewritten for the interval [—1,1]. This is assumed
below. The following types of kernels are studied:

(1) Kernels having logarithmic singularity
K(s) = In|s| 4 a(s?) In |s| 4 b(s?).

(2) Supersingular kernels

d2m

K(s) = (In|s| + a(s®) In|s| + b(s*)), m=1,2,...

dSZm
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(3) Smooth kernels
K(s) = s?In|s| 4+ s%a(s?) In|s| + b(s?).

Here a(s?) and b(s?) are smooth functions from C* and a(0) = 0. Further
the Fourier symbol of the kernel will be used

k(A) = /eMsK(s)ds.
An important class of integral equations that appear in problems of diffrac-

tion have sectorial symbol k(A). That is the domain of values k(A), when
Im A = 0 belongs to a half-plane of complex plane.

B.2 Logarithmic singularity of the kernel

Consider first the simplest case of logarithmic kernel

/(m It — x|+ C)po(t)dt = f(x). (B.2)

The solution of this equation can be written in explicit form as the singular
integral [34]

po(t) = ds+ C

e (e

s—1

Ch =

—1112/\/1—52 i
21

Here the denominator ' — In 2 is assumed not equal to zero. In the case
when €' — In2 = 0 the solution of (B.2) exists only if

and is defined by the first formula in (B.3) with arbitrary constant Cj.
Analysis of the formula (B.3) shows that
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Theorem 1 For f € C"t2[—1,1] the solution of the integral equation
(B.2) has the form

with ¢ € C"[—1,1].

For the proof it is sufficient to show that the n-th order derivative of the
singular integral in (B.3) is bounded. Rewrite the singular integral in the
form

ds — mtf'(t)

s—1

SIZ/Wf@»—fu»¢Tf?

and apply formally n-th order differentiation by ¢

1

n+1 . .
P s =t

dr VI—s? dr
—SI =n! (5) — —_—— —a—tf'(t).
! n/ el RS o (-1 s=magntf )

-1

Noting that the sum in the last multiplier represents the Taylor formula for
f'(s) and using the error estimate [63]

LA f) (s — )it () -
: - < (s —1)
dtv - (-1 | = (n+1)!
allows uniform convergence of the integral to be established. This fact
justifies the change of order of integration and differentiation performed
above. Thus the n-th order derivative of the singular integral in (B.3) is
bounded which proves the theorem.
Let now the kernel be of the form

K(z,t) =1In|t — 2|+ N(x,1).

And let the function N(z,t) be sufficiently smooth by its arguments. With
the help of the formula (B.3) the integral equation can be semi-inverted
and rewritten in the form

p@+/Kmmww=ﬂm



242 Integral equations of convolution on a finite interval

Careful analysis shows that the kernel IA((x,t) is bounded and the above
integral equation is of Fredholm type [34]. That is the two cases are possible

(1) The integral equation is uniquely solvable for any smooth right-
hand side (smoothness is required for the formula (B.3) to be ap-
plicable).

(2) There exists a nonzero solution ¢(¢) of the homogeneous adjoint
equation and for the solvability of the initial integral equation the
right-hand side should be orthogonal to ¢(¢), that is

[aosaar=o

In that case the solution p(t) contains one-parameter arbitrariness.

Theorem 2  For the integral equation with difference kernel K(x —t) and
sectorial symbol k() only the case (1) is possible.

Indeed, as the kernel depends on the difference t — x only, the adjoint
equation coincides with the initial one

1
/K(x —t)q(t)dt =0, |z| <L
-1

Multiplying this equation by ¢(z) and integrating over the interval z €
[—1,1] yields

j/lf((x—t)q(t)@dtdxzo,

Substituting the kernel in the form of Fourier transform and introducing
Fourier transform n(A) of the solution ¢(t) yields

k(N In(3)[2dA = 0.

o\-é-

Sectorial property of the symbol k() allows n(A) to be concluded identically
equal to zero. Thus ¢(¢) = 0 and the case (2) is not possible.
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Examine now the smoothness properties of the solution. First, let the
kernel be of the form

K(s) = In|s| + b(s?).

Such kernels appear in static problems of diffraction [68]. With the help of
formula (B.3) the integral equation can be rewritten in the form

1 1
/ [t — z|p1(t)dt = fi(z /b (t —z)?) pi(t)dt, |z|< 1.
-1 -1

Here the solution of the integral equation is represented as

p(t) = polt) +p1(2),

where pg(t) is defined by the formula (B.3). The function fi(z) in the
right-hand side of the above equation is given by the formula

0= [ 0t -2 - ) i

The function b(s?) is assumed infinitely differentiable. Thus the right-hand
side of the above equation for any integrable pg(t) and pi(t) belongs to
C*[—1,1]. Therefore theorem 1 yields

e1(t)
V1i=12’

Combining this fact and theorem 1 allows the following structure of the

pl(t) = w1 € Coo[_la 1]

solution to be discovered [68]

Theorem 3  The solution P(t) of the integral equation
1
/ (Inft —z|+b((x —1)%)) p(t) dt = f(z), || <1
e

for any b € C* and f € C"t2[—1,1] is representable in the form

iy = AL (B.4)

with ¢ € C"[—1,1]
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Actually one can ask less smoothness from the right-hand side, namely
f € C"t—1,1] and f**! from Holder class of any positive degree. For
details see [68]. However in the problems of diffraction considered in Chap-
ter 3 the right-hand sides are infinitely smooth and theorem 3 is sufficient
for further analysis.

The result of theorem 3 can be generalized to the case of more general
kernels of type (1) with arbitrary smooth a(s?). First, let a(s) be polyno-
mial.

Theorem 4 If the integral equation

[l (Z pelt — x)‘) plt) di = f(a),

is solvable and f € C"t2[—1,1], then ils solution p(t) is representable in
the form (B.4) with ¢ € C"[—1,1].

For the proof the kernel can be rewritten as

N AN-t N
ZNZW (Inft —z[(t — 2)™) + R(t — 2),

where R(t — «) is some polynomial and coeflicients p), are defined by p,.
Changing the order of integration and differentiation yields the differential
equation

N AN-t ;
> brrle) = fa) = [ it = o)pie) d
£=0 el
for the function
1
r(z) = /(t — )N In |t — 2|p(t) dt.
21

The right-hand side of this equation belongs to C"*2[—1, 1], therefore the
solution r(z) is from CNV+7+2[—1 1] and its N-th order derivative is from
CH2—1,1]

1
d N /ln|t—x|—|—(])p(t)dt€C”+2[—1,1].
X

-1
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Finally theorem 3 states the structure (B.4) of the solution p(t).
Now let the function a(s) be arbitrary function from C'*°. Then

Theorem 5 Solution of the integral equation with the kernel K(s) =
In|s|+a(s)In|s|+b(s) is representable in the form (B.4) with ¢ € C"[—1,1]
if f e Cntl—1,1] and a,b € C.

For the proof assume the opposite. Let the N-th order derivative of (%)
be discontinuous. Then decompose a(t — ) according to Taylor formula.
The terms up to NV + 1 keep in the left-hand side and the remainder move
to the right-hand side together with the convolution of p(t) and b(t — ).
Performing differentiation it is not difficult to show that the right-hand
side is a function from C™*2[—1,1]. Thus theorem 4 establishes that ¢ €
CN[~1,1] which contradicts our supposition. Due to the uniqueness of the
solution this proves the theorem.

B.3 Supersingular kernels

Consider not the case of supersingular kernels. Such integral equations can
be considered in the sense of Hadamard integrals or can be regularized.
The regularization is in the change of order of integration and differentia-
tion. That is integral equations with supersingular kernels are considered
as integro-differential equations of the form

d2m

dl=2m

[ K=o at = @), lel <1

K'(s) = In|s|+a (s*) In|s| + b (s*).

(B.5)

Solutions of equations (B.5) are considered in the classes of functions with
special behavior near the ends of the integration interval.

Definition 1  Denote by S,, the class of functions p(¢) that are repre-
sentable in the form

p(t) = (1=t H00(t) withany & >0, p € CY[—1,1].  (B.6)

Theorem 6 The integral equation (B.5) with a,b € C* and sectorial
symbol k(X) has unique solution in Sy, for any f € C[-1,1]. In the
representation (B.6) of this solution § = 1/2 and ¢ € C™*"[—1,1] for
fecnt?-1,1].
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For m = 0 the statement of the theorem combines the theorems 1 and 5.
For m > 0 the proof can be achieved by induction.

Let the theorem be true for some order m’. Then the supersingular
integral equation of order m = m’ + 1 can be integrated twice by . This
yields

d2m

dz2m’ /K/(t —z)p(t) dt = F(z) + co+ 1.

-1

Here F(x) is the double integral of f(#) and ¢g, ¢1 are arbitrary constants
of integration. According to our assumption that the theorem is true for
m’ the solution p() is representable in the form

p(t) = (1 =)™ ~0@1), & et [-1,1]. (B.7)

For the proof of the statement for m = m’ + 1 one need to show that the
constants ¢g and ¢y can be chosen such that

d(£1) = 0. (B.8)

Introducing solutions p.(t), po(t) and p1(t) of the integral equations

o 1 ps(t) F(x)
-1 p1(t) x

the condition (B.8) can be rewritten in the form of linear algebraic system
for constants ¢y and ¢

{ Coq)o(l) + Clq)l(l) = —q)*(l),
Coq)o(—l) + Clq)l(—l) = —q)*(—l)

Here functions @, (t), ®o(¢) and ®1(¢) are the functions from the represen-
tations (B.7) for p.(t), po(t) and p1(¢) correspondingly

pot) | =@ =)™ =2 @)



Supersingular kernels 247

The function Py(t) is even and the function Pi(t) is odd. Therefore
the determinant of the above system is not equal to zero if ®y(1) # 0 and

@y (1) £ 0.

To prove this fact let integrate by parts in the integral equations for
po(t) and py(¢). Then differentiation by x yields

1
d
/A/ p]()dt_j, |z| < 1.

-1

i

d2m

dem’

Assuming that pg € S,,i41 yields dpo/dt € S, and due to the uniqueness
of the solution in S,,s one concludes that dpg(t)/dt = 0. Further using the
structure of the solution given in (B.7) yields pg(t) = 0 which contradicts
the definition of pg(t).

For pi(t) the above procedure yields that

t

pi(t) = /po(t’) dt’. (B.9)

-1

Multiplying the initial equation for py(t) by po(z) and integrating over the
interval [—1, 1] yields

i

1 1 1
2m
/po(x)dizm, /K’(t— z)po(t) dt de = /po(x) dx
—1 -1 -1

Due to the formula (B.9) and our assumption that p; (1) = 0 the last integral
is equal to zero. Performing m’ times integration by parts and expressing

the kernel in the form of Fourier integral yields

k(N In(3)[2dA = 0.

o\-é-

Here substitutions at « = £1 disappear due to the supposition that py €
S and

1
—z>\t
~po(t) dt.
/ g Pol?)
21
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Sectoriality of the symbol yields d™ pg (t)/dtml = 0 which again due to
the structure of the solution contradicts the definition of pg(t). Thus both
po(t) and p1(t) are not equal to zero at ¢ = 1 and the algebraic system for
the constants ¢y and ¢; is solvable for any right-hand side. Therefore the
solution of the supersingular integral equation of order m’ + 1 in the class
Sir41 exists for any f(x) and is unique.

Check the smoothness of the function ¢(¢) in the representation (B.6).
Evidently that for f€ C™+2[—1, 1] its second order integral F'e C"+4[—1,1].
Therefore according to the supposition that the theorem is true for m’ one
concludes that ® € C"+2+m" After division by (1 —t?) its smoothness can
decrease no more than by one. Thus ¢ € C’”+1+ml[—1, 1]. The theorem is
proved for m’ + 1 and by induction for any positive m.

B.4 Smooth kernels

Consider now the third case, namely integral equations with smooth ker-
nels. Solutions of such equations are searched in the class of functions with
nonintegrable singularities near the ends of the interval. More precisely the
solution belongs to S_j.

The first problem that appears is the necessity of regularization. For
this one returns back to the procedure of the integral equation derivation.
Integral equations in the problems of diffraction are obtained with the help
of Green’s formula. First the integral representation for the scattered field
is derived at some distance from the obstacle surface. The limit when the
point of observation tends to the surface is taken formally and may yield in-
tegral equations for nonintegrable functions. Such singularities appear near
the corner points of the obstacle surface. In particular in the simplest case
these are the end points of the interval. By extracting those singularities
the integral equation may be regularized [60].

Another approach is based on Fourier transform. Consider the system
of dual integral equationst

/e“‘xn(/\) dA=0, |z|>1,

/e“%(A)n(A) dr = f(z), |z|< 1.

{Here we repeat derivations of Section 3.5.2 on page 182.
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Here Fourier transform k(A) of the kernel K (t — ) decreases at infinity as
|A|=3 and growth of solution at infinity is allowed as n(A) = O()). The
first integral is understood in the sense of distributions. By inverting it one
formally gets the integral equation of convolution with smooth kernel.

To avoid nonintegrable solutions, let the function n(A) be represented
as

N(A) = A G(X) + nopo(A) + mpi(A). (B.10)

Here the function 7)()\) decreases at infinity not slower than O(A~!) and
can be represented by its Fourier transform p(x). The two remaining in
(B.10) terms compensate the second order zero at A = 0 introduced in
the first term. The functions pg(A) and p;(A) are fixed functions that
do not violate the asymptotics of «(A) at infinity and are such that the
vectors (po(0), p}(0)) and (p1(0), p1(0)) are linear independent. Besides it
is convenient to choose functions pg(A) and pp(A) such that their Fourier
transform support belongs to the segment —1 < z < 1.

Substituting the representation (B.10) into the dual integral equations
and accounting the mentioned above properties of functions pg(A) and p;1(A)
yields the integro-algebraic equation

1

/ OR"(t—z)dt+ > m/ A)dA = f(x). (B.11)

el £=0,1

The kernel K”(t —x) of this equation has logarithmic singularity. Thus the
integral equation of convolution with smooth kernel of the type

K(s) = s?In|s| + s%a(s?) In|s| + b(s?), a(0) =0

on an interval is regularized in the form of integro-algebraic equation (B.11).
The unknowns in that system are the function p which is searched in the
class S; and two constants 7y and 7.

The theory presented in section B.2 for the integral equations with log-
arithmic singularity in the kernel yields that for any 7y and 7; there exists
unique solution p(t) in the class Sy. Therefore the question of solvability of
the integro-algebraic equation (B.11) can be reduced to the analysis of solv-
ability of the algebraic system for the constants 7y and 7;. By introducing
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solutions of the integral equations

1
T *(_”tldt = f(x),

-1

1

/K” () dt MR\ pe(N)dN, £=0,1
-1

this system can be written as

{ noPo(1) +mPi(1) = P.(1),
noPo(—=1) + mPi(—1) = P.(—1).

The solvability question is studied in [4]. Unfortunately there is no elegant
proof of solvability. One may use arbitrariness of functions pg(A) and show
that at least for some py(A) determinant of the above algebraic system
is different from zero and therefore solution of integro-algebraic equation
(B.11) with p € S exists.



Appendix C

Models used for numerical analysis

Numerical results presented in this book are computed for the following
two plate—fluid systems. The first corresponds to the case of heavily loaded
plate, the second to weakly loaded plate.

Model 1

This is a lcm thick steel plate being in one-side contact to water. The
parameters of the model are:

Young modulus E of steel taken equal to 200 - 10%kg/c?m,
Poison’s ratio o is 0.29,

density g of steel is 7800kg/m?,

thickness of the plate & is 0.01m,

sound velocity ¢, in water is taken equal to 1500m/c,
density go of water is 1000kg/m?.

Computing bending stiffness one finds

ER?
D=—————=18197k 2/c2,
(1 = o7) 8 197kg m*/c

The coincidence frequency f. can be found equal to
fe =23 445Hz
and limiting frequency of Kirchhoff model applicability for which kh = 1 is

foo = 23 873Hz.

251
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The stiffener in such plate is considered of height H = 20cm and thick-

ness hy = lem. Its linear mass M can be computed by the formula
M = th H.

Momentum of inertia [ is given by the integral®

w/2 H hi H
I= 9/ dx/ dz(x? + %) = & 112 (R} +4H?).
-W/2 0

One finds
M = 15.6kg/m, I =0.2kg m.
Model 2

This 18 a Imm thick steel plate being in one-side contact to air.

parameters of the model are:

Young modulus F is 200 - 10°kg/c?m,

Poison’s ratio o is 0.29,

density g of steel is 7800kg/m?,

thickness h of the plate is 0.001m,

sound velocity ¢, in air is taken equal to 330m/c,
density go of air is 1.29kg/m?3.

The bending stiffness of such plate is
D =18.197kg m?/c?,
coincidence frequency 1s
fe =11 347Hz
and limit of applicability is
foo =52 521Hz.
The stiffener i1s taken with A1 = Imm, H = 20mm. One finds

M = 0.156kg/m, I=2-10""kg m.

§One can neglect h? compared to H2 which yields

thHs
3

I

accepted for example in [22] and in Section 4.4.

The
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