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In [I] we claimed the following result: 

Theorem ([l], 2.8). If (7: .9) is a tech extension pair of subcategories of TOP and 

F : .9 +.-/ is a homotopy invariant functor into a complete category .-I, then the tech 
extension of F to .F agrees with its Kan extension and the Kan extension taken in the 
homotopy category composed with the quotient functor. 

A key step in the proof was: 

Theorem ([I], 2.4). If (.& .Y) is a tech extension pair then the codeterminate 
extension of homotopy from .9 to ./ is homotopy over .4. 

Frei points out in [3] that our proof of this second theorem is defective when .Y 

contains polyhedra which are not locally finite. This defect is of a technical rather 

than a conceptual nature. In fact, Theorem (1.7) of [l] implies that if the result is 

true, as indeed it is, there must be a proof using our calculus of codeterminate 

extensions. 

Let P={(z,,z~)EPxP: tl and t2 be in a single simplex of P}, where P is a 

polyhedron and P has the weak topology. The difficulty in the proof of 2.4 arises 

when P is not locally finite. In this situation product maps (f, g) : X -* P need not be 

continuous. This problem can be avoided by factoring through the strong topology. 

We now give details. All numbered references and notation are from [l]. 

For a given polyhedron P, let K : P, -+ P be the map described in ((21, p. 354). K is a 

homotopy inverse of i: P -+ P,. the identity (set) map. 

Lemma. Let R=Ki. Then y=(RxR)(PxP), -t P x P is continuous and moreover 

w(PJ c P. 
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Proof. The continuity of w follows from the fact that it inherits from K the property 
that every point of (P x P), has an open neighborhood whose image lies in a finite 
subcomplex of Px P where the two topologies agree. 

That ~(1s~) c p follows immediately from the various definitions of the spaces and 
maps involved. 

Proof of 2.4. We need only show hks h + Using the notation of 2.1 and 2.6, let 
f, g : X -+ Y be maps in ./ such that fhsg and n : Y -* P be a map in .F such that 
PE ob .P. Then nf - ng. Finally, let QE ob .9 be as in 2.5. 

The data required by 1.7 is: 

Q,=P, @,=71f, rr,,c=id and n,,,=R, 

Qz=~, @Z(X) = rvW~x~, 0WW,ON, ~z,~=P~ and ~Z,I =PZ, 

Q3=Q, @3=n’, n3so=RBon’ and 7r3,~=~8,n’, 

Qd=f! &t(x) = WWW, 11, ns(xN, qo=pI and 714.1 =PZ, 

Qs=P, &=ng, nS,o=~, rrs,,=id. 

The result now follows from 1.7. 
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