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Introduction

The field of computational linguistics (CL), together with its engineering domain
of natural language processing (NLP), has exploded in recent years. It has devel-
oped rapidly from a relatively obscure adjunct of both AI and formal linguistics
into a thriving scientific discipline. It has also become an important area of indus-
trial development. The focus of research in CL and NLP has shifted over the
past three decades from the study of small prototypes and theoretical models to
robust learning and processing systems applied to large corpora. This handbook
is intended to provide an introduction to the main areas of CL and NLP, and an
overview of current work in these areas. It is designed as a reference and source
text for graduate students and researchers from computer science, linguistics,
psychology, philosophy, and mathematics who are interested in this area.

The volume is divided into four main parts. Part I contains chapters on the
formal foundations of the discipline. Part II introduces the current methods that
are employed in CL and NLP, and it divides into three subsections. The first
section describes several influential approaches to Machine Learning (ML) and
their application to NLP tasks. The second section presents work in the annotation
of corpora. The last section addresses the problem of evaluating the performance
of NLP systems. Part III of the handbook takes up the use of CL and NLP pro-
cedures within particular linguistic domains. Finally, Part IV discusses several
leading engineering tasks to which these procedures are applied.

In Chapter 1 Shuly Wintner gives a detailed introductory account of the main
concepts of formal language theory. This subdiscipline is one of the primary
formal pillars of computational linguistics, and its results continue to shape the-
oretical and applied work. Wintner offers a remarkably clear guide through the
classical language classes of the Chomsky hierarchy, and he exhibits the relations
between these classes and the automata or grammars that generate (recognize)
their members.

While formal language theory identifies classes of languages and their decid-
ability (or lack of such), complexity theory studies the computational resources
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in time and space required to compute the elements of these classes. Ian
Pratt-Hartmann introduces this central area of computer science in Chapter 2, and
he takes up its significance for CL and NLP. He describes a series of important
complexity results for several prominent language classes and NLP tasks. He also
extends the treatment of complexity in CL/NLP from classical problems, like syn-
tactic parsing, to the relatively unexplored area of computing sentence meaning
and logical relations among sentences.

Statistical modeling has become one of the primary tools in CL and NLP for
representing natural language properties and processes. In Chapter 3 Ciprian
Chelba offers a clear and concise account of the basic concepts involved in the
construction of statistical language models. He reviews probabilistic n-gram mod-
els and their relation to Markov systems. He defines and clarifies the notions of
perplexity and entropy in terms of which the predictive power of a language
model can be measured. Chelba compares n-gram models with structured lan-
guage models generated by probabilistic context-free grammars, and he discusses
their applications in several NLP tasks.

Part I concludes with Mark-Jan Nederhof and Giorgio Satta’s discussion of
the formal foundations of parsing in Chapter 4. They illustrate the problem of
recognizing and representing syntactic structure with an examination of (non-
lexicalized and lexicalized) context-free grammars (CFGs) and tabular (chart)
parsing. They present several CFG parsing algorithms, and they consider prob-
abilistic CFG parsing. They then extend their study to dependency grammar
parsers and tree adjoining grammars (TAGs). The latter are mildly context sen-
sitive, and so more formally powerful than CFGs. This chapter provides a solid
introduction to the central theoretical concepts and results of a core CL domain.

Robert Malouf opens the first section of Part II with an examination of max-
imum entropy models in Chapter 5. These constitute an influential machine
learning technique that involves minimizing the bias in a probability model
for a set of events to the minimal set of constraints required to accommodate
the data. Malouf gives a rigorous account of the formal properties of MaxEnt
model selection, and exhibits its role in describing natural languages. He com-
pares MaxEnt to support vector machines (SVMs), another ML technique, and
he looks at its usefulness in part of speech tagging, parsing, and machine
translation.

In Chapter 6 Walter Daelemans and Antal van den Bosch give a detailed
overview of memory-based learning (MBL), an ML classification model that is
widely used in NLP. MBL invokes a similarity measure to evaluate the distance
between the feature vectors of stored training data and those of new events or enti-
ties in order to construct classification classes. It is a highly versatile and efficient
learning framework that constitutes an alternative to statistical language modeling
methods. Daelemans and van den Bosch consider modified and extended versions
of MBL, and they review its application to a wide variety of NLP tasks. These
include phonological and morphological analysis, part of speech tagging, shal-
low parsing, word disambiguation, phrasal chunking, named entity recognition,
generation, machine translation, and dialogue-act recognition.
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Helmut Schmid surveys decision trees in Chapter 7. These provide an efficient
procedure for classifying data into descending binary branching subclasses, and
they can be quickly induced from large data samples. Schmid points out that
simple decision trees often exhibit instability because of their sensitivity to small
changes in feature patterns of the data. He considers several modifications of
decision trees that overcome this limitation, specifically bagging, boosting, and
random forests. These methods combine sets of trees induced for a data set to
achieve a more robust classifier. Schmid illustrates the application of decision trees
to natural language tasks with discussions of grapheme conversion to phonemes,
and POS tagging.

Alex Clark and Shalom Lappin characterize grammar induction as a problem in
unsupervised learning in Chapter 8. They compare supervised and unsupervised
grammar inference, from both engineering and cognitive perspectives. They con-
sider the costs and benefits of both learning approaches as a way of solving NLP
tasks. They conclude that, while supervised systems are currently more accurate
than unsupervised ones, the latter will become increasingly influential because of
the enormous investment in resources required to annotate corpora for training
supervised classifiers. By contrast, large quantities of raw text are readily avail-
able online for unsupervised learning. In modeling human language acquisition,
unsupervised grammar induction is a more appropriate framework, given that the
primary linguistic data available to children is not annotated with sample classi-
fications to be learned. Clark and Lappin discuss recent work in unsupervised
POS tagging and grammar inference, and they observe that the most successful of
these procedures are beginning to approach the performance levels achieved by
state-of-the-art supervised taggers and parsers.

Neural networks are one of the earliest and most influential paradigms of
machine learning. James B. Henderson concludes the first section of Part II with
an overview in Chapter 9 of neural networks and their application to NLP prob-
lems. He considers multi-layered perceptrons (MLPs), which contain hidden units
between their inputs and outputs, and recurrent MLPs, which have cyclic links to
hidden units. These cyclic links allow the system to process unbounded sequences
by storing copies of hidden unit states and feeding them back as input to units
when they are processing successive positions in the sequence. In effect, they pro-
vide the system with a memory for processing sequences of inputs. Henderson
shows how a neural network can be used to calculate probability values for its
outputs. He also illustrates the application of neural networks to the tasks of
generating statistical language models for a set of data, learning different sorts
of syntactic parsing, and identifying semantic roles. He compares them to other
machine learning methods and indicates certain equivalence relations that hold
between neural networks and these methods.

In the second section (Chapter 10), Martha Palmer and Nianwen Xue address
the central issue of corpus annotation. They compare alternative systems for
marking corpora and propose clear criteria for achieving adequate results across
distinct annotation tasks. They look at a number of important types of linguistic
information that annotation encodes including, inter alia, POS tagging, deep and
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shallow syntactic parsing, coreference and anaphora relations, lexical meanings,
semantic roles, temporal connections among propositions, logical entailments
among propositions, and discourse structure. Palmer and Xue discuss the prob-
lems of securing reasonable levels of annotator agreement. They show how a
sound and well-motivated annotation scheme is crucial for the success of super-
vised machine learning procedures in NLP, as well as for the rigorous evaluation
of their performance.

Philip Resnik and Jimmy Lin conclude Part II with a discussion in the last
section (Chapter 11) of methods for evaluating NLP systems. They consider both
intrinsic evaluation of a procedure’s performance for a specified task, and exter-
nal assessment of its contribution to the quality of a larger engineering system in
which it is a component. They present several ways to formulate precise quan-
titative metrics for grading the output of an NLP device, and they review testing
sequences through which these metrics can be applied. They illustrate the issues of
evaluation by considering in some detail what is involved in assessing systems for
word-sense disambiguation and for question answering. This chapter extends and
develops some of the concerns raised in the previous chapter on annotation. It also
factors out and addresses evaluation problems that emerged in earlier chapters on
the application of machine learning methods to NLP tasks.

Part III opens with Steve Renals and Thomas Hain’s comprehensive account in
chapter 12 of current work in automatic speech recognition (ASR). They observe
that ASR plays a central role in NLP applications involving spoken language,
including speech-to-speech translation, dictation, and spoken dialogue systems.
Renals and Hain focus on the general task of transcribing natural conversational
speech to text, and present the problem in terms of a statistical framework in which
the problem of the speech recogniser is to find the most likely word sequence given
the observed acoustics. The focus of the chapter is acoustic modeling based on hid-
den Markov models (HMMs) and Gaussian mixture models. In the first part of the
chapter they develop the basic acoustic modeling framework that underlies cur-
rent speech recognition systems, including refinements to include discriminative
training and the adaptation to particular speakers using only small amounts of
data. These components are drawn together in the description of a state-of-the-art
system for the automatic transcription of multiparty meetings. The final part of the
chapter discusses approaches that enable robustness for noisier or less constrained
acoustic environments, the incorporation of multiple sources of knowledge, the
development of sequence models that are richer than HMMs, and issues that arise
when developing large-scale ASR systems.

In Chapter 13 Stephen Clark discusses statistical parsing as the probabilistic
syntactic analysis of sentences in a corpus, through supervised learning. He traces
the development of this area from generative parsing models to discriminative
frameworks. Clark studies Collins’ lexicalized probabilistic context-free gram-
mars (PCFGs) as a particularly successful instance of these models. He examines
the parsing algorithms, procedures for parse ranking, and methods for parse
optimization that are commonly used in generative parse models like PCFG.
Discriminative parsing does not model sentences, but provides a way of modeling
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parses directly. It discards some of the independence assumptions encoded in
generative parsing, and it allows for complex dependencies among syntactic fea-
tures. Clark examines log-linear (maximum entropy) models as instantiations of
this approach. He applies them to parsers driven by combinatory categorial gram-
mar (CCG). He gives a detailed description of recent work on statistical CCG
parsing, focusing on the efficiency with which such grammars can be learned,
and the impressive accuracy which CCG parsing has recently achieved.

John A. Goldsmith offers a detailed overview in Chapter 14 of computational
approaches to morphology. He looks at unsupervised learning of word segmen-
tation for a corpus in which word boundaries have been eliminated, and he
identifies two main problems in connection with this task. The first involves iden-
tifying the correct word boundaries for a stripped corpus on the basis of prior
knowledge of the lexicon of the language. The second, and significantly more diffi-
cult, problem is to devise a procedure for constructing the lexicon of the language
from the stripped corpus. Goldsmith describes a variety of approaches to word
segmentation, highlighting probabilistic modeling techniques, such as minimum
description length and hierarchical Bayesian models. He reviews distributional
methods for unsupervised morphological learning which have their origins in
Zellig Harris’ work, and gives a very clear account of finite state transducers and
their central role in morphological induction.

In Chapter 15 Chris Fox discusses the major questions driving work in logic-
based computational semantics. He focuses on formalized theories of meaning,
and examines what properties a semantic representation language must possess
in order to be sufficiently expressive while sustaining computational viability. Fox
proposes that implementability and tractability be taken as conditions of adequacy
on semantic theories. Specifically, these theories must permit efficient computation
of the major semantic properties of sentences, phrases, and discourse sequences.
He surveys work on type theory, intensionality, the relation between proof the-
ory and model theory, and the dynamic representation of scope and anaphora in
leading semantic frameworks. Fox also summarizes current research on corpus-
based semantics, specifically the use of latent semantic analysis to identify lexical
semantic clusters, methods for word-sense disambiguation, and current work
on textual entailment. He reflects on possible connections between the corpus-
based approach to semantics and logic-based formal theories of meaning, and he
concludes with several interesting suggestions for pursuing these connections.

Jonathan Ginzburg and Raquel Fernández present a comprehensive account in
Chapter 16 of recent developments in the computational modeling of dialogue.
They first examine a range of central phenomena that an adequate formal theory
of dialogue must handle. These include non-sentential fragments, which play an
important role in conversation; meta-communicative expressions, which serve as
crucial feedback and clarification devices to speakers and hearers; procedures for
updating shared information and common ground; and mechanisms for adapt-
ing a dialogue to a particular conversational domain. Ginzburg and Fernández
propose a formal model of dialogue, KoS, which they formulate in the type
theoretic framework of type theory with records. This type theory has the full
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power of functional application and abstraction, but it permits the specification of
recursively dependent type structures that correspond to re-entrant typed feature
structures. They compare their dialogue model to other approaches current in the
literature. They conclude by examining some of the issues involved in construct-
ing a robust, wide-coverage dialogue management system, and they consider the
application of machine learning methods to facilitate certain aspects of this task.

In Chapter 17 Matthew W. Crocker characterizes the major questions and the-
oretical developments shaping contemporary work in computational psycholin-
guistics. He observes that this domain of inquiry shares important objectives
with both theoretical linguistics and psycholinguistics. In common with the for-
mer, it seeks to explain the way in which humans recognize sentence structure
and meaning. Together with the latter, it is concerned to describe the cogni-
tive processing mechanisms through which they achieve these tasks. However,
in contrast to both theoretical linguistics and psycholinguistics, computational
psycholinguistics models language understanding by constructing systems that
can be implemented and rigorously tested. Crocker focuses on syntactic process-
ing, and he discusses the central problem of resolving structural ambiguity. He
observes that a general consensus has emerged on the view that sentence process-
ing is incremental, and a variety of constraints (syntactic, semantic, pragmatic,
etc.) are available at each point in the processing sequence to resolve or reduce
different sources of ambiguity. Crocker considers three main approaches.
Symbolic methods use grammars to represent syntactic structure and parsing
algorithms to exhibit the way in which humans apply a grammar to sentence
recognition. Connectionists employ neural nets as non-symbolic systems of induc-
tion and processing. Probabilistic approaches model language interpretation as a
stochastic procedure, where this involves generating a probability distribution for
the strings produced by an automaton or a grammar of some formal class. Crocker
concludes with the observation that computational psycholinguistics (like theo-
retical linguistics) still tends to view sentence processing in isolation from other
cognitive activities. He makes the important suggestion that integrating language
understanding into the wider range of human functions in which it figures is likely
to yield more accurate accounts of processing and acquisition.

Ralph Grishman starts off Part IV of the handbook with a review, in Chapter 18,
of information extraction (IE) from documents. He highlights name, entity, rela-
tion, and event extraction as primary IE tasks, and he addresses each in turn.
Name extraction consists in identifying names in text and classifying them accord-
ing to semantic (ontological) type. Entity extraction selects referring phrases,
assigns them to semantic classes, and specifies coreference links among them.
Relation extraction recognizes pairs of related entities and the semantic type of
the relation that holds between them. Event extraction picks out cases of events
described in a text, according to semantic type, and it locates the entities that
appear in the event. For each of these tasks Grishman traces the development
of IE approaches from manually crafted rule-based systems, through supervised
machine learning, to semi- and unsupervised methods. He concludes the chapter
with some reflections on the challenges and opportunities that the web, with its
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enormous resources of online text in a variety of languages and formats, poses for
future research in IE.

In Chapter 19 Andy Way presents a systematic overview of the current state
of machine translation (MT). He discusses the evolution of statistical machine
translation (SMT) from word-based n-gram language models specified for aligned
multi-lingual corpora (originally developed by the IBM speech and language
group in the 1990s) to the phrase-based SMT (PB-SMT) language models that
currently dominate the field. He also looks at the use of both generative and dis-
criminative language models in SMT, and he considers results achieved with both
supervised and unsupervised learning methods. Way offers a systematic compar-
ison of PB-SMT with other paradigms of MT, including hierarchical, tree-based,
and example-based approaches, as well as traditional rule-based systems, that
continue to figure prominently in commercial MT products. He concludes with a
detailed discussion of the MT work that his research group is doing. This work
applies a hybrid view in which syntactic, morphological, and lexical semantic
information is combined with statistical language modeling techniques to maxi-
mize the accuracy and efficiency of the distinct components of an MT system. He
also discusses the role of MT in contemporary online and spoken applications.

Ehud Reiter describes natural language generation (NLG) in Chapter 20. He
characterizes the generation problem as mapping representations in one format
(or language) into text in a given language. As he observes, NLG is distinguished
from most other areas of NLP by the pervasive complexity of making choices from
a large set of alternatives at each point in the generation process. The mapping
of representations to text involves resolving numerous one-to-many selections.
Reiter identifies three main subtasks for NLG. Document planning determines the
content of the representation to be realized in NL text, and the general structure
of the content. Microplanning specifies the organization and linguistic structure
of the text. Realization produces the text itself. In the course of implementing
this sequence of tasks, an NLG procedure must decide on the general format of
the message to be realized, the nature of the syntactic units in which it will be
encoded, the internal structure of these sentences, and a variety of lexical and
stylistic choices. Reiter reviews a number of current NLG systems, and he dis-
cusses the central role of NLG in a variety of NLP applications. He concludes with
some thoughtful proposals for future research directions in this domain.

Ruslan Mitkov reviews computational analysis of discourse structure in
Chapter 21. He begins with algorithms for segmenting text into discourse ele-
ments. He then describes three major computational treatments of discourse
coherence relations: Hobbs’ coherence account, rhetorical structure theory, and
centering. He follows this with an extended discussion of anaphora resolution. He
points out that accurate anaphora resolution is a necessary condition for success
in many tasks, such as MT, text summarization, NLG, and IE. He concludes by
surveying some of the significant contributions that discourse modeling has made
to a wide variety of NLP applications.

Bonnie Webber and Nick Webb conclude Part IV, and the volume, with a
presentation of current work on question answering (QA) in Chapter 22. They
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trace the development of QA from early procedures that mapped NL questions
into queries in a standard database language for a closed data set, to contempo-
rary open systems that seek answers to questions across a large set of documents,
often the entire web. As with other NLP applications, this development has also
involved a move from manually crafted rules to machine learning classifiers, and
hybrid systems combining rule-based and probabilistic methods. They discuss the
relation between QA and text retrieval. While the latter provides documents in
response to user queries, the former seeks information expressed as natural lan-
guage replies. They survey the design and performance of current QA procedures,
focusing on the challenges involved in improving their coverage and extending
their functionality. An important method for achieving such extension is to incor-
porate methods for identifying text entailments in order to move beyond simple
word pattern matching. These entailments enrich the domain of possible answers
that a QA system can consider by adding a set of semantic implications to a ques-
tion and its range of possible answers. Webber and Webb also take up alternative
ways of evaluating QA systems, and they consider issues for future research.

While we have tried to provide as broad and comprehensive a view of CL and
NLP as possible, this handbook is, inevitably, not exhaustive. Many more chapters
could have been added on a host of important issues, and the field would still not
have been fully covered. Considerations of space and manageability have forced
us to limit the volume to a subset of central research themes. One might take issue
with our selection, or with the way that we have chosen to organize the chapters.
We suspect that this would be true for any handbook of this size. In many cases,
topics to which one might plausibly devote a separate chapter are treated from dif-
ferent perspectives in a number of chapters. So, for example, finite state methods
are discussed in the chapters on formal language theory, complexity, morphology,
and speech recognition. Therefore, we were able to forego a distinct chapter on
this area. In other instances, important new research, like work on text entailment,
is touched on lightly (see the brief discussions of text entailment in the chapters
on semantics and QA), but pressures of space and timely production prevented us
from including fuller treatments.

The survey of work provided here indicates that both symbolic and informa-
tion theoretic methods continue to play a major role across a large variety of tasks
and domains. Moreover, rather than these approaches being in conflict, there is
a strong movement towards hybrid models that integrate different approaches. It
seems likely that this trend will continue, as each method carries strengths and
weaknesses that complement the other. Symbolic techniques offer compact repre-
sentations of high level information that generally eludes statistical models, while
information theoretic procedures achieve a level of robustness and wide coverage
that symbolic systems rarely, if ever, achieve on their own.

Above all the chapters of this volume give a clear view of the remarkable diver-
sity and vitality of research being done in CL and NLP, and the enormous progress
that has been made in these areas over the past several decades. We hope that the
handbook communicates some of the excitement and the satisfaction that we and
our colleagues experience from our work in this amazing field.
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1 Formal Language Theory

SHULY WINTNER

1 Introduction

This chapter provides a gentle introduction to formal language theory, aimed at
readers with little background in formal systems. The motivation is natural lan-
guage processing (NLP), and the presentation is geared towards NLP applications,
with linguistically motivated examples, but without compromising mathematical
rigor.

The text covers elementary formal language theory, including: regular lan-
guages and regular expressions; languages vs. computational machinery; finite
state automata; regular relations and finite state transducers; context-free gram-
mars and languages; the Chomsky hierarchy; weak and strong generative
capacity; and mildly context-sensitive languages.

2 Basic Notions

Formal languages are defined with respect to a given alphabet, which is a finite
set of symbols, each of which is called a letter. This notation does not mean, how-
ever, that elements of the alphabet must be “ordinary” letters; they can be any
symbol, such as numbers, or digits, or words. It is customary to use ‘Σ ’ to denote
the alphabet. A finite sequence of letters is called a string, or a word. For sim-
plicity, we usually forsake the traditional sequence notation in favor of a more
straightforward representation of strings.

Example 1 (Strings). Let Σ = {0, 1} be an alphabet. Then all binary numbers
are strings over Σ . Instead of 〈0, 1, 1, 0, 1〉 we usually write 01101. If Σ =
{a, b, c, d, . . . , y, z} is an alphabet, then cat, incredulous, and supercalifragilisticexp-
ialidocious are strings, as are tac, qqq, and kjshdflkwjehr.

The length of a string w is the number of letters in the sequence, and is denoted
|w|. The unique string of length 0 is called the empty string and is usually denoted ε

(but sometimes λ).
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Let w1 = 〈x1, . . . , xn〉 and w2 = 〈y1, . . . , ym〉 be two strings over the same
alphabet Σ . The concatenation of w1 and w2, denoted w1 · w2, is the string
〈x1, . . . , xn, y1, . . . , ym〉. Note that the length of w1 · w2 is the sum of the lengths of
w1 and w2: |w1 · w2| = |w1| + |w2|. When it is clear from the context, we sometimes
omit the ‘·’ symbol when depicting concatenation.

Example 2 (Concatenation). Let Σ = {a, b, c, d, . . . , y, z} be an alphabet. Then master ·
mind = mastermind, mind · master = mindmaster, and master · master =
mastermaster. Similarly, learn · s = learns, learn · ed = learned, and learn ·
ing = learning.

Notice that when the empty string ε is concatenated with any string w, the
resulting string is w. Formally, for every string w, w · ε = ε · w = w.

We define an exponent operator over strings in the following way: for every
string w, w0 (read: w raised to the power of zero) is defined as ε. Then, for n > 0,
wn is defined as wn−1 · w. Informally, wn is obtained by concatenating w with itself
n times. In particular, w1 = w.

Example 3 (Exponent). If w = go, then w0 = ε, w1 = w = go, w2 = w1 · w = w · w =
gogo, w3 = gogogo, and so on.

A few other notions that will be useful in the sequel: the reversal of a string w
is denoted wR and is obtained by writing w in the reverse order. Thus, if w =
〈x1, x2, . . . , xn〉, wR = 〈xn, xn−1, . . . , x1〉.
Example 4 (Reversal). Let Σ = {a, b, c, d, . . . , y, z} be an alphabet. If w is the string
saw, then wR is the string was. If w = madam, then wR = madam = w. In this case
we say that w is a palindrome.

Given a string w, a substring of w is a sequence formed by taking contiguous
symbols of w in the order in which they occur in w: wc is a substring of w if and
only if there exist (possibly empty) strings wl and wr such that w = wl ·wc ·wr. Two
special cases of substrings are prefix and suffix: if w = wl · wc · wr then wl is a prefix
of w and wr is a suffix of w. Note that every prefix and every suffix is a substring,
but not every substring is a prefix or a suffix.

Example 5 (Substrings). Let Σ = {a, b, c, d, . . . , y, z} be an alphabet and w =
indistinguishable a string over Σ . Then ε, in, indis, indistinguish, and indistin-
guishable are prefixes of w, while ε, e, able, distinguishable and indistinguish-
able are suffixes of w. Substrings that are neither prefixes nor suffixes include
distinguish, gui, and is.

Given an alphabet Σ , the set of all strings over Σ is denoted by Σ∗ (the reason
for this notation will become clear presently). Notice that no matter what the Σ is,
as long as it includes at least one symbol, Σ∗ is always infinite. A formal language
over an alphabet Σ is any subset of Σ∗. Since Σ∗ is always infinite, the number of
formal languages over Σ is also infinite.

As the following example demonstrates, formal languages are quite unlike
what one usually means when one uses the term “language” informally. They
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are essentially sets of strings of characters. Still, all natural languages are, at least
superficially, such string sets. Higher-level notions, relating the strings to objects
and actions in the world, are completely ignored by this view. While this is a rather
radical idealization, it is a useful one.

Example 6 (Languages). Let Σ = {a, b, c, . . . , y, z}. Then Σ∗ is the set of all strings
over the Latin alphabet. Any subset of this set is a language. In particular, the
following are formal languages:

• Σ∗;
• the set of strings consisting of consonants only;
• the set of strings consisting of vowels only;
• the set of strings each of which contains at least one vowel and at least one

consonant;
• the set of palindromes: strings that read the same from right to left and from

left to right;
• the set of strings whose length is less than 17 letters;
• the set of single-letter strings;
• the set {i, you, he, she, it, we, they};
• the set of words occurring in Joyce’s Ulysses (ignoring punctuation etc.);
• the empty set.

Note that the first five languages are infinite while the last five are finite.

We can now lift some of the string operations defined above to languages. If
L is a language then the reversal of L, denoted LR, is the language {w | wR ∈ L},
that is, the set of reversed L-strings. Concatenation can also be lifted to lan-
guages: if L1 and L2 are languages, then L1 · L2 is the language defined as
{w1 · w2 | w1 ∈ L1 and w2 ∈ L2}: the concatenation of two languages is the set of
strings obtained by concatenating some word of the first language with some word
of the second.

Example 7 (Language operations). Let L1 = {i, you, he, she, it, we, they} and L2 =
{smile, sleep}. Then LR

1 = {i, uoy, eh, ehs, ti, ew, yeht} and L1 · L2 = {ismile, yous-
mile, hesmile, shesmile, itsmile, wesmile, theysmile, isleep, yousleep, hesleep,
shesleep, itsleep, wesleep, theysleep}.

In the same way we can define the exponent of a language: if L is a language
then L0 is the language containing the empty string only, {ε}. Then, for i > 0,
Li = L · Li−1, that is, Li is obtained by concatenating L with itself i times.

Example 8 (Language exponentiation). Let L be the set of words {bau, haus, hof,
frau}. Then L0 = {ε}, L1 = L and L2 = {baubau, bauhaus, bauhof, baufrau,
hausbau, haushaus, haushof, hausfrau, hofbau, hofhaus, hofhof, hoffrau, fraubau,
frauhaus, frauhof, fraufrau}.

The language obtained by considering any number of concatenations of words
from L is called the Kleene closure of L and is denoted L∗. Formally, L∗ = ⋃∞

i=0 Li,
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which is a terse notation for the union of L0 with L1, then with L2, L3 and so on
ad infinitum. When one wants to leave L0 out, one writes L+ = ⋃∞

i=1 Li.

Example 9 (Kleene closure). Let L = {dog, cat}. Observe that L0 = {ε}, L1 = {dog,
cat}, L2 = {catcat, catdog, dogcat, dogdog}, etc. Thus L∗ contains, among its infi-
nite set of strings, the strings ε, cat, dog, catcat, catdog, dogcat, dogdog, catcatcat,
catdogcat, dogcatcat, dogdogcat, etc.

As another example, consider the alphabet Σ = {a, b} and the language L =
{a, b} defined over Σ . L∗ is the set of all strings over a and b, which is exactly
the definition of Σ∗. The notation for Σ∗ should now become clear: it is simply a
special case of L∗, where L = Σ .

3 Language Classes and Linguistic Formalisms

Formal languages are sets of strings, subsets of Σ∗, and they can be specified
using any of the specification methods for sets (of course, since languages may
be infinite, stipulation of their members is in the general case infeasible). When
languages are fairly simple (not arbitrarily complex), they can be characterized by
means of rules. In the following sections we define several mechanisms for defin-
ing languages, and focus on the classes of languages that can be defined with these
mechanisms. A formal mechanism with which formal languages can be defined is
a linguistic formalism. We use L (with or without subscripts) to denote languages,
and L to denote classes of languages.

Example 10 (Language class). Let Σ = {a, b, c, . . . , y, z}. Let L be the set of all the
finite subsets of Σ∗. Then L is a language class.

When classes of languages are discussed, some of the interesting properties to
be investigated are closures with respect to certain operators. The previous section
defined several operators, such as concatenation, union, Kleene closure, etc., on
languages. Given a particular (binary) operation, say union, it is interesting to
know whether a class of languages is closed under this operation. A class of lan-
guages L is said to be closed under some operation ‘•’ if and only if, whenever
two languages L1 and L2 are in the class (L1, L2 ∈ L), the result of performing the
operation on the two languages is also in this class: L1 • L2 ∈ L.

Closure properties have a theoretical interest in and by themselves, but they
are especially important when one is interested in processing languages. Given an
efficient computational implementation for a class of languages (for example, an
algorithm that determines membership: whether a given string indeed belongs to a
given language), one can use the operators that the class is closed under, and still
preserve computational efficiency in processing. We will see such examples in the
following sections.

The membership problem is one of the fundamental questions of interest con-
cerned with language classes. As we shall see, the more expressive the class,
the harder it is to determine membership in languages of this class. Algorithms
that determine membership are called recognition algorithms; when a recognition
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algorithm additionally provides the structure that the formalism induces on the
string in question, it is called a parsing algorithm.

4 Regular Languages

4.1 Regular expressions
The first linguistic formalism we discuss is regular expressions. These are expres-
sions over some alphabet Σ , augmented by some special characters. We define a
mapping, called denotation, from regular expressions to sets of strings over Σ , such
that every well-formed regular expression denotes a set of strings, or a language.

DEFINITION 1. Given an alphabet Σ , the set of regular expressions over Σ is defined
as follows:

• ∅ is a regular expression;
• ε is a regular expression;
• if a ∈ Σ is a letter, then a is a regular expression;
• if r1 and r2 are regular expressions, then so are (r1 + r2) and (r1 · r2);
• if r is a regular expression, then so is (r)∗;
• nothing else is a regular expression over Σ .

Example 11 (Regular expressions). Let Σ be the alphabet {a, b, c, . . . , y, z}. Some
regular expressions over this alphabet are ∅, a, ((c · a) · t), (((m · e) · (o)∗) · w),
(a + (e + (i + (o + u)))), ((a + (e + (i + (o + u)))))∗, etc.

DEFINITION 2. Given a regular expression r, its denotation, [[r]], is a set of strings
defined as follows:

• [[∅]] = {}, the empty set;
• [[ε]] = {ε}, the singleton set containing the empty string;
• if a ∈ Σ is a letter, then [[a]] = {a}, the singleton set containing a only;
• if r1 and r2 are two regular expressions whose denotations are [[r1]] and [[r2]],

respectively, then [[(r1 + r2)]] = [[r1]] ∪ [[r2]] and [[(r1 · r2)]] = [[r1]] · [[r2]];
• if r is a regular expression whose denotation is [[r]] then [[(r)∗]] = [[r]]∗.

Example 12 (Regular expressions). Following are the denotations of the regular
expressions of the previous example:

∅ ∅
ε {ε}
a {a}
((c · a) · t) {c · a · t}
(((m · e) · (o)∗) · w) {mew, meow, meoow, meooow, meoooow, . . .}
(a + (e + (i + (o + u)))) {a, e, i, o, u}
((a + (e + (i + (o + u)))))∗ the set containing all strings of 0 or more vowels
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Regular expressions are useful because they facilitate specification of complex
languages in a formal, concise way. Of course, finite languages can still be specified
by enumerating their members; but infinite languages are much easier to specify
with a regular expression, as the last instance of the above example shows.

For simplicity, we omit the parentheses around regular expressions when no
confusion can be caused. Thus, the expression ((a + (e + (i + (o + u)))))∗ is written
as (a + e + i + o + u)∗. Also, if Σ = {a1, a2, . . . , an}, we use Σ as a shorthand
notation for a1 + a2 + · · · + an. As in the case of string concatenation and language
concatenation, we sometimes omit the ‘·’ operator in regular expressions, so that
the expression c · a · t can be written cat.

Example 13 (Regular expressions). Given the alphabet of all English letters, Σ =
{a, b, c, . . . , y, z}, the language Σ∗ is denoted by the regular expression Σ∗. The set
of all strings which contain a vowel is denoted by Σ∗ · (a + e + i + o + u) · Σ∗. The
set of all strings that begin in “un” is denoted by (un)Σ∗. The set of strings that
end in either “tion” or “sion” is denoted by Σ∗ · (s + t) · (ion). Note that all these
languages are infinite.

The class of languages which can be expressed as the denotation of regular
expressions is called the class of regular languages.

DEFINITION 3. A language L is regular iff there exists a regular expression r such that
L = [[r]].

It is a mathematical fact that some languages, subsets of Σ∗, are not regular. We
will encounter such languages in the sequel.

4.2 Properties of regular languages
The class of regular languages is interesting because of its “nice” properties, which
we review here. It should be fairly easy to see that regular languages are closed
under union, concatenation, and Kleene closure. Given two regular languages, L1
and L2, there must exist two regular expressions, r1 and r2, such that [[r1]] = L1 and
[[r2]] = L2. It is therefore possible to form new regular expressions based on r1 and
r2, such as r1 · r2, r1 + r2 and r∗

1. Now, by the definition of regular expressions and
their denotations, it follows that the denotation of r1 · r2 is L1 · L2: [[r1 · r2]] = L1 · L2.
Since r1 · r2 is a regular expression, its denotation is a regular language, and hence
L1 ·L2 is a regular language. Hence the regular languages are closed under concate-
nation. In exactly the same way we can prove that the class of regular languages
is closed under union and Kleene closure.

One of the reasons for the attractiveness of regular languages is that they are
known to be closed under a wealth of useful operations: intersection, complemen-
tation, exponentiation, substitution, homomorphism, etc. These properties come
in handy both in practical applications that use regular languages and in mathe-
matical proofs that concern them. For example, several formalisms extend regular
expressions by allowing one to express regular languages using not only the three
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basic operations, but also a wealth of other operations (that the class of regular
languages is closed under). It is worth noting that such “good behavior” is not
exhibited by more complex classes of languages.

4.3 Finite state automata
Regular expressions are a declarative formalism for specifying (regular) lan-
guages. We now present languages as entities generated by a computation. This
is a very common situation in formal language theory: many language classes
are associated with computing machinery that generates them. The dual view of
languages (as the denotation of some specifying formalism and as the output of a
computational process) is central in formal language theory.

The computational device we define in this section is finite state automata (FSA).
Informally, they consist of a finite set of states (sometimes called nodes or vertices),
connected by a finite number of transitions (also called edges or links). Each of the
transitions is labeled by a letter, taken from some finite alphabet Σ . A computation
starts at a designated state, the start state or initial state, and it moves from one
state to another along the labeled transitions. As it moves, it prints the letter which
labels the transition. Thus, during a computation, a string of letters is printed out.
Some of the states of the machine are designated final states, or accepting states.
Whenever the computation reaches a final state, the string that was printed so
far is said to be accepted by the machine. Since each computation defines a string,
the set of all possible computations defines a set of strings or, in other words, a
language. We say that this language is accepted or generated by the machine.

DEFINITION 4. A finite state automaton is a five-tuple 〈Q, q0, Σ , δ, F〉, where Σ is a
finite set of alphabet symbols, Q is a finite set of states, q0 ∈ Q is the initial state,
F ⊆ Q is a set of final states, and δ : Q × Σ × Q is a relation from states and alphabet
symbols to states.

Example 14 (Finite state automata). Finite state automata are depicted graphically,
with circles for states and arrows for the transitions. The initial state is shaded
and the final states are depicted by two concentric circles. The finite state
automaton A = 〈Q, Σ , q0, δ, F〉, where Q = {q0, q1, q2, q3}, Σ = {c, a, t, r}, F = {q3}, and
δ ={〈q0, c, q1〉, 〈q1, a, q2〉, 〈q2, t, q3〉, 〈q2, r, q3〉}, is depicted graphically as follows:

q0 q1 q2 q3
c a

t

r

To define the language generated by an FSA, we first extend the transition
relation from single edges to paths by extending the transition relation δ to its
reflexive transitive closure, δ̂. This relation assigns a string to each path (it also
assumes that an empty path, decorated by ε, leads from each state to itself). We
focus on paths that lead from the initial state to some final state. The strings that
decorate these paths are said to be accepted by the FSA, and the language of the
FSA is the set of all these strings. In other words, in order for a string to be in the
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language of the FSA, there must be a path in the FSA which leads from the initial
state to some final state decorated by the string. Paths that lead to non-final states
do not define accepted strings.

DEFINITION 5. Given an FSA A = 〈Q, q0, Σ , δ, F〉, the reflexive transitive closure of the
transition relation δ is δ̂, defined as follows:

• for every state q ∈ Q, (q, ε, q) ∈ δ̂;
• for every string w ∈ Σ∗ and letter a ∈ Σ , if (q, w, q′) ∈ δ̂ and (q′, a, q′′) ∈ δ, then

(q, w · a, q′′) ∈ δ̂.

A string w is accepted by A if and only if there exists a state qf ∈ F such that δ̂(q0, w) =
qf . The language of A is the set of all the strings accepted by it: L(A) = {w | there exists
qf ∈ F such that δ̂(q0, w) = qf }.
Example 15 (Language accepted by an FSA). For the finite state automaton of
Example 14, δ̂ is the following set of triples: 〈q0, ε, q0〉, 〈q1, ε, q1〉, 〈q2, ε, q2〉, 〈q3, ε, q3〉,
〈q0, c, q1〉, 〈q1, a, q2〉, 〈q2, t, q3〉, 〈q2, r, q3〉, 〈q0, ca, q2〉, 〈q1, at, q3〉, 〈q1, ar, q3〉, 〈q0, cat, q3〉,
〈q0, car, q3〉. The language of the FSA is thus {cat, car}.
Example 16 (Finite state automata). Following are some simple FSA and the lan-
guages they generate.

FSA, A L(A)

q0 ∅

q0 q1
a

{a}

q0 q1
a
b

{a, b}

q0 {ε}

q0 q1
a

a a+ = {a, aa, aaa, aaaa, . . .}

q0 a a∗ = {ε, a, aa, aaa, aaaa, . . .}

We now slightly amend the definition of finite state automata to include what is
called ε-moves. By our original definition, the transition relation δ is a relation from
states and alphabet symbols to states. We extend δ such that its second coordinate
is now Σ ∪ {ε}, that is, any edge in an automaton can be labeled either by some
alphabet symbol or by the special symbol ε, which as usual denotes the empty
word. The implication is that a computation can move from one state to another
over an ε-transition without printing out any symbol.

Example 17 (Automata with ε-moves). The language accepted by the following
automaton is {do, undo, done, undone}:

q0 q1 q2 q3 q4 q5 q6
u n d o n e

ε ε
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Finite state automata, just like regular expressions, are devices for defining for-
mal languages. The major theorem of regular languages states that the class of
languages which can be generated by FSA is exactly the class of regular languages.
Furthermore, there are simple and efficient algorithms for “translating” a regular
expression to an equivalent automaton and vice versa.

THEOREM 1. A language L is regular iff there exists an FSA A such that L = L(A).

Example 18 (Equivalence of finite state automata and regular expressions). For each of
the regular expressions of Example 12 we depict an equivalent automaton below:

∅ q0

a q0 q1
a

((c · a) · t) q0 q1 q2 q3
c a t

(((m · e) · (o)∗) · w) q0 q1 q2 q3
m e

o

w

(a + (e + (i + (o + u)))) q0 q1
a, e, i, o, u

((a + (e + (i + (o + u)))))∗ q0 a, e, i, o, u

4.4 Minimization and determinization
The finite state automata presented above are non-deterministic. By this we mean
that when the computation reaches a certain state, the next state is not uniquely
determined by the next alphabet symbol to be printed. There might very well be
more than one state that can be reached by a transition that is labeled by some sym-
bol. This is because we defined automata using a transition relation, δ, which is not
required to be functional. For some state q and alphabet symbol a, δ might include
the two pairs 〈q, a, q1〉 and 〈q, a, q2〉 with q1 �= q2. Furthermore, when we extended
δ to allow ε-transitions, we added yet another dimension of non-determinism:
when the machine is in a certain state q and an ε-arc leaves q, the computation
must “guess” whether to traverse this arc.

DEFINITION 6. An FSA A = 〈Q, q0, Σ , δ, F〉 is deterministic iff it has no ε-transitions
and δ is a function from Q × Σ to Q.

Much of the appeal of finite state automata lies in their efficiency; and their
efficiency is in great part due to the fact that, given some deterministic FSA A and
a string w, it is possible to determine whether or not w ∈ L(A) by “walking” the
path labeled w, starting with the initial state of A, and checking whether the walk
leads to a final state. Such a walk takes time that is proportional to the length of w,
and is completely independent of the number of states in A. We therefore say that
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the membership problem for FSA can be solved in linear time. But when automata
are non-deterministic, an element of guessing is introduced, which may impair
the efficiency: no longer is there a single walk along a single path labeled w, and
some control mechanism must be introduced to check that all possible paths are
taken.

Non-determinism is important because it is sometimes much easier to construct
a non-deterministic automaton for some language. Fortunately, we can rely on two
very important results: every non-deterministic finite state automaton is equiva-
lent to some deterministic one; and every finite state automaton is equivalent to
one that has a minimum number of nodes, and the minimal automaton is unique.
We now explain these results.

First, it is important to clarify what is meant by equivalent. We say that two finite
state automata are equivalent if and only if they accept the same language.

DEFINITION 7. Two FSA A1 and A2 are equivalent iff L(A1) = L(A2).

Example 19 (Equivalent automata). The following three finite state automata are
equivalent: they all accept the set {go, gone, going}.

A1

n g
i

g o n e

A2

g o i n g

g o n e

g
o

A3

g o i n g

n e ε

ε
ε

Note that A1 is deterministic: for any state and alphabet symbol there is at most
one possible transition. A2 is not deterministic: the initial state has three out-
going arcs all labeled by g. The third automaton, A3, has ε-arcs and hence is
non-deterministic. While A2 might be the most readable, A1 is the most compact
as it has the fewest nodes.

Given a non-deterministic FSA A, it is always possible to construct an equiv-
alent deterministic automaton, one whose next state is fully determined by the
current state and the alphabet symbol, and which contains no ε-moves. Some-
times this construction yields an automaton with more states than the original,
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non-deterministic one (in the worst case, the number of states in the deterministic
automaton can be exponential in the size of the non-deterministic one). However,
the deterministic automaton can then be minimized such that it is guaranteed that
no deterministic finite state automaton generating the same language is smaller.
Thus, it is always possible to determinize and then minimize a given automaton
without affecting the language it generates.

THEOREM 2. For every FSA A (with n states) there exists a deterministic FSA A′ (with
at most 2n states) such that L(A) = L(A′).

THEOREM 3. For every regular language L there exists a minimal FSA A such that
no other FSA A′ such that L(A) = L(A′) has fewer states than A. A is unique (up to
isomorphism).

4.5 Operations on finite state automata
We know from Section 4.3 that finite state automata are equivalent to regular
expressions; we also know from Section 4.2 that the regular languages are closed
under several operations, including union, concatenation, and Kleene closure. So,
for example, if L1 and L2 are two regular languages, there exist automata A1 and
A2 which accept them, respectively. Since we know that L1 ∪ L2 is also a regu-
lar language, there must be an automaton which accepts it as well. The question
is, can this automaton be constructed using the automata A1 and A2? In this
section we show how simple operations on finite state automata correspond to
some operators on languages.

We start with concatenation. Suppose that A1 is a finite state automaton such
that L(A1) = L1, and similarly that A2 is an automaton such that L(A2) = L2. We
describe an automaton A such that L(A) = L1 · L2. A word w is in L1 · L2 if and only
if it can be broken into two parts, w1 and w2, such that w = w1 · w2, and w1 ∈ L1,
w2 ∈ L2. In terms of automata, this means that there is an accepting path for w1 in
A1 and an accepting path for w2 in A2; so if we allow an ε-transition from all the
final states of A1 to the initial state of A2, we will have accepting paths for words
of L1 · L2. The finite state automaton A is constructed by combining A1 and A2 in
the following way: its set of states, Q, is the union of Q1 and Q2; its alphabet is the
union of the two alphabets; its initial state is the initial state of A1; its final states
are the final states of A2; and its transition relation is obtained by adding to δ1 ∪ δ2
the set of ε-moves described above: {〈qf , ε, q02〉 | qf ∈ F1} where q02 is the initial
state of A2.

In a very similar way, an automaton A can be constructed whose languages
is L1 ∪ L2 by combining A1 and A2. Here, one should notice that for a word to be
accepted by A it must be accepted either by A1 or by A2 (or by both). The combined
automaton will have an accepting path for every accepting path in A1 and in A2.
The idea is to add a new initial state to A, from which two ε-arcs lead to the initial
states of A1 and A2. The states of A are the union of the states of A1 and A2, plus
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the new initial state. The transition relation is the union of δ1 with δ2, plus the new
ε-arcs. The final states are the union of F1 and F2.

An extension of the same technique to construct the Kleene closure of an
automaton is rather straightforward. However, all these results are not surprising,
as we have already seen in Section 4.2 that the regular languages are closed under
these operations. Thinking of languages in terms of the automata that accept them
comes in handy when one wants to show that the regular languages are closed
under other operations, where the regular expression notation is not very sugges-
tive of how to approach the problem. Consider the operation of complementation:
if L is a regular language over an alphabet Σ , we say that the complement of L is
the set of all the words (in Σ∗) that are not in L, and write L for this set. Formally,
L = Σ∗ \ L. Given a regular expression r, it is not clear what regular expression r′
is such that [[r′]] = [[r]]. However, with automata this becomes much easier.

Assume that a finite state automaton A is such that L(A) = L. Assume also that
A is deterministic. To construct an automaton for the complemented language,
all one has to do is change all final states to non-final, and all non-final states to
final. In other words, if A = 〈Q, Σ , q0, δ, F〉, then A = 〈Q, Σ , q0, δ, Q \ F〉 is such that
L(A) = L. This is because every accepting path in A is not accepting in A, and vice
versa.

Now that we know that the regular languages are closed under complementa-
tion, it is easy to show that they are closed under intersection: if L1 and L2 are
regular languages, then L1 ∩ L2 is also regular. This follows directly from funda-
mental theorems of set theory, since L1 ∩ L2 can actually be written as L1 ∪ L2, and
we already know that the regular languages are closed under union and comple-
mentation. In fact, construction of an automaton for the intersection language is
not very difficult, although it is less straightforward than the previous examples.

4.6 Applications of finite state automata in natural
language processing

Finite state automata are computational devices that generate regular languages,
but they can also be viewed as recognizing devices: given some automaton A and a
word w, it is easy to determine whether w ∈ L(A). Observe that such a task can be
performed in time linear in the length of w, hence the efficiency of the represen-
tation is optimal. This reversed view of automata motivates their use for a simple
yet necessary application of natural language processing: dictionary lookup.

Example 20 (Dictionaries as finite state automata). Many NLP applications require
the use of lexicons or dictionaries, sometimes storing hundreds of thousands of
entries. Finite state automata provide an efficient means for storing dictionar-
ies, accessing them, and modifying their contents. Assume that an alphabet is
fixed (say, Σ = {a, b, . . ., z}) and consider how a single word, say go, can be repre-
sented. As we have seen above, a naïve representation would be to construct an
automaton with a single path whose arcs are labeled by the letters of the word go:
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go :
g o

To represent more than one word, add paths to the FSA, one path for each
additional word. For example, after adding the words gone and going, we obtain:

go, gone, going :

g o i n g

g o n e

g
o

This automaton can then be determinized and minimized, yielding:

go, gone, going :

n g
i

g o n e

The organization of the lexicon as outlined above is extremely simplistic. A
possible extension attaches to the final states of the FSA additional information
pertaining to the words that decorate the paths to those states. Such informa-
tion can include definitions, morphological information, translations, etc. FSA are
thus suitable for representing various kinds of dictionaries, in addition to simple
lexicons.

Regular languages are particularly appealing for natural language processing
for two main reasons. First, it turns out that most phonological and morphologi-
cal processes can be straightforwardly described using the operations that regular
languages are closed under, in particular concatenation. With very few excep-
tions (such as the interdigitation word-formation processes of Semitic languages
or the duplication phenomena of some Asian languages), the morphology of most
natural languages is limited to simple concatenation of affixes, with some morpho-
phonological alternations, usually on a morpheme boundary. Such phenomena are
easy to model with regular languages, and hence are easy to implement with finite
state automata. Second, many of the algorithms one would want to apply to finite
state automata take time proportional to the length of the word being processed,
independently of the size of the automaton. Finally, the various closure properties
facilitate modular development of FSA for natural languages.

4.7 Regular relations
While finite state automata, which define (regular) languages, are sufficient for
some natural language applications, it is often useful to have a mechanism for
relating two (formal) languages. For example, a part-of-speech tagger can be
viewed as an application that relates a set of natural language strings (the source
language) to a set of part-of-speech tags (the target language). A morphological
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analyzer can be viewed as a relation between natural language strings (the surface
forms of words) and their internal structure (say, as sequences of morphemes).
In this section we discuss a computational device, very similar to finite state
automata, which defines a relation over two regular languages.

Example 21 (Relations over languages). Consider a simple part-of-speech tagger: an
application which associates with every word in some natural language a tag,
drawn from a finite set of tags. In terms of formal languages, such an applica-
tion implements a relation over two languages. Assume that the natural language
is defined over Σ1 = {a, b, . . . , z} and that the set of tags is Σ2 = {PRON, V, DET,
ADJ, N, P }. Then the part-of-speech relation might contain the following pairs
(here, a string over Σ1 is mapped to a single element of Σ2):

I PRON the DET
know V Cat N
some DET in P
new ADJ the DET
tricks N Hat N
said V

As another example, assume that Σ1 is as above, and Σ2 is a set of part-of-speech
and morphological tags, including {-PRON, -V, -DET, -ADJ, -N, -P, -1, -2, -3, -sg,
-pl, -pres, -past, -def, -indef }. A morphological analyzer is a relation between a
language over Σ1 and a language over Σ2. Some of the pairs in such a relation are:

I I-PRON-1-sg the the-DET-def
know know-V-pres Cat cat-N-sg
some some-DET-indef in in-P
new new-ADJ the the-DET-def
tricks trick-N-pl Hat hat-N-sg
said say-V-past

Finally, consider the relation that maps every English noun in singular to its plu-
ral form. While the relation is highly regular (namely, adding “s” to the singular
form), some nouns are irregular. Some instances of this relation are:

cat cats hat hats
ox oxen child children
mouse mice sheep sheep
goose geese

Summing up, a regular relation is defined over two alphabets, Σ1 and Σ2.
Of course, the two alphabets can be identical, but for many natural language
applications they differ. If a relation in Σ∗ × Σ∗ is regular, its projections on both
coordinates are regular languages (not all relations that satisfy this condition are
regular; additional constraints must hold on the underlying mapping which we
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ignore here). Informally, a regular relation is a set of pairs, each of which consists
of one string over Σ1 and one string over Σ2, such that both the set of strings
over Σ1 and that over Σ2 constitute regular languages. We provide a precise
characterization of regular relations via finite state transducers below.

4.8 Finite state transducers
Finite state automata are a computational device for defining regular languages;
in a very similar way, finite state transducers (FSTs) are a computational device for
defining regular relations. Transducers are similar to automata, the only difference
being that the edges are not labeled by single letters, but rather by pairs of sym-
bols: one symbol from Σ1 and one symbol from Σ2. The following is a preliminary
definition that we will revise presently:

DEFINITION 8. A finite state transducer is a six-tuple 〈Q, q0, Σ1, Σ2, δ, F〉, where Q is
a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, Σ1 and Σ2
are alphabets, and δ is a subset of Q × Σ1 × Σ2 × Q.

Example 22 (Finite state transducers). Following is a finite state transducer relating
the singular forms of two English words with their plural form. In this case,
both alphabets are identical: Σ1 = Σ2 = {a, b, . . . , z}. The set of nodes is Q = {q1,
q2, . . . , q11}, the initial state is q6 and the set of final states is F = {q5, q11}. The transi-
tions from one state to another are depicted as labeled edges; each edge bears two
symbols, one from Σ1 and one from Σ2, separated by a colon (:). So, for example,
〈q1, o, e, q2〉 is an element of δ.

q1 q2 q3 q4 q5

q6 q7 q8 q9 q10 q11

g : g o : e o : e s : s e : e

s : s h : h e : e e : e p : p

Observe that each path in this device defines two strings: a concatenation of the
left-hand-side labels of the arcs, and a concatenation of the right-hand-side labels.
The upper path of the above transducer thus defines the pair goose:geese, whereas
the lower path defines the pair sheep:sheep.

What constitutes a computation with a transducer? Similarly to the case of
automata, a computation amounts to “walking” a path of the transducer, start-
ing from the initial state and ending in some final state. Along the path, edges
bear bi-symbol labels: one can view the left-hand-side symbol as an “input” sym-
bol and the right-hand-side symbol as an “output” symbol. Thus, each path of
the transducer defines a pair of strings, an input string (over Σ1) and an output
string (over Σ2). This pair of strings is a member of the relation defined by the
transducer.
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DEFINITION 9. Let T = 〈Q, q0, Σ1, Σ2, δ, F〉 be a finite state transducer. Define δ̂ ⊆
Q × Σ∗

1 × Σ∗
2 × Q as follows:

• for each q ∈ Q, δ̂(q, ε, ε, q);
• if δ̂(q1, w1, w2, q2) and δ(q2, a, b, q3), then δ̂(q1, w1 · a, w2 · b, q3).

Then a pair 〈w1, w2〉 is accepted (or generated) by T if and only if δ̂(q0, w1, w2, wf ) holds
for some final state qf ∈ F. The relation defined by the transducer is the set of all the
pairs it accepts.

As a shorthand notation, when an edge is labeled by two identical symbols, we
depict only one of them and omit the colon.

The above definition of finite state transducers is not very useful: since each arc
is labeled by exactly one symbol of Σ1 and exactly one symbol of Σ2, any rela-
tion that is implemented by such a transducer must relate only strings of exactly
the same length. This should not be the case, and to overcome this limitation we
extend the definition of δ to allow also ε-labels. In the extended definition, δ is a
relation over Q, Σ1∪{ε}, Σ2∪{ε} and Q. Thus a transition from one state to another
can involve “reading” a symbol of Σ1 without “writing” any symbol of Σ2, or the
other way round.

Example 23 (Finite state transducer with ε-labels). With the extended definition of
transducers, we depict below an expanded transducer for singular–plural noun
pairs in English.

g o : e o : e s e

s h e e p

o
x ε : e ε : n

m

o : i u : ε s : c e

Note that ε-labels can occur on the left or on the right of the ‘:’ separator. The
pairs accepted by this transducer are goose:geese, sheep:sheep, ox:oxen, and
mouse:mice.

4.9 Properties of regular relations
The extension of automata to transducers carries with it some interesting results.
First and foremost, finite state transducers define exactly the set of regular rela-
tions. Many of the closure properties of automata are valid for transducers, but
some are not. As these properties bear not only theoretical but also practical
significance, we discuss them in more detail in this section.

Given some transducer T, consider what happens when the labels on the arcs
of T are modified such that only the left-hand symbol remains. In other words,
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consider what is obtained when the transition relation δ is projected on three of its
coordinates: Q, Σ1, and Q only, ignoring the Σ2 coordinate. It is easy to see that
a finite state automaton is obtained. We call this automaton the projection of T to
Σ1. In the same way, we can define the projection of T to Σ2 by ignoring Σ1 in the
transition relation. Since both projections yield finite state automata, they induce
regular languages. Therefore the relation defined by T is a regular relation.

We can now consider certain operations on regular relations, inspired by similar
operations on regular languages. For example, union is very easy to define. Recall
that a regular relation is a subset of the Cartesian product of Σ∗

1 × Σ∗
2 , that is,

a set of pairs. If R1 and R2 are regular relations, then R1 ∪ R2 is well defined,
and it is straightforward to show that it is a regular relation. To define the union
operation directly over transducers, extend the construction of FSA delineated in
Section 4.5, namely add a new initial state with two edges labeled ε : ε leading
from it to the initial states of the given transducers. In a similar way, concatenation
can be extended to regular relations: if R1 and R2 are regular relations then R1 ·
R2 = {〈w1 · w2, w3 · w4〉 | 〈w1, w3〉 ∈ R1 and 〈w2, w4〉 ∈ R2}. Again, the construction
for FSA can be straightforwardly extended to the case of transducers, and it is easy
to show that R1 · R2 is a regular relation.

Example 24 (Operations on finite state transducers). Let R1 be the following relation,
mapping some English words to their German counterparts: R1 ={tomato:Tomate,
cucumber:Gurke, grapefruit:Grapefruit, pineapple:Ananas, coconut:Koko}. Let R2
be a similar relation: R2 = {grapefruit:Pampelmuse, coconut:Kokusnuß }. Then:
R1 ∪ R2 = {tomato:Tomate, cucumber:Gurke, grapefruit:Grapefruit, grapefruit:
Pampelmuse, pineapple:Ananas, coconut:Koko, coconut:Kokusnuß }.

A rather surprising fact is that regular relations are not closed under intersec-
tion. In other words, if R1 and R2 are two regular relations, then it very well
might be the case that R1 ∩ R1 is not a regular relation. It will take us beyond
the scope of the material covered so far to explain this fact, but it is important to
remember it when dealing with finite state transducers. For this reason exactly it
follows that the class of regular relations is not closed under complementation: since
intersection can be expressed in terms of union and complementation, if regular
relations were closed under complementation they would have been closed also
under intersection, which we know is not the case.

A very useful operation that is defined for transducers is composition. Intuitively,
a transducer relates one word (“input”) with another (“output”). When we have
more than one transducer, we can view the output of the first transducer as the
input to the second. The composition of T1 and T2 relates the input language of
T1 with the output language of T2, bypassing the intermediate level (which is the
output of T1 and the input of T2).

DEFINITION 10. If R1 is a relation from Σ∗
1 to Σ∗

2 and R2 is a relation from Σ∗
2 to Σ∗

3
then the composition of R1 and R2, denoted R1 ◦ R2, is a relation from Σ∗

1 to Σ∗
3 defined

as {〈w1, w3〉 | there exists a string w2 ∈ Σ∗
2 such that w1R1w2 and w2R2w3}.
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Example 25 (Composition of finite state transducers). Let R1 be the following rela-
tion, mapping some English words to their German counterparts: R1 = {tomato:
Tomate, cucumber:Gurke, grapefruit:Grapefruit, grapefruit:Pampelmuse, pine-
apple:Ananas, coconut:Koko, coconut:Kokusnuß }. Let R2 be a similar relation,
mapping French words to their English translations: R2 = {tomate:tomato,
ananas: pineapple, pamplemousse:grapefruit, concombre:cucumber, cornichon:
cucumber, noix-de-coco:coconut}. Then R2 ◦ R1 is a relation mapping French
words to their German translations (the English translations are used to
compute the mapping, but are not part of the final relation): R2 ◦ R1 =
{tomate:Tomate, ananas:Ananas, pamplemousse:Grapefruit, pamplemousse:
Pampelmuse, concombre:Gurke, cornichon:Gurke, noix-de-coco:Koko, noix-de-
coco:Kokusnuße}.

5 Context-Free Languages

5.1 Where regular languages fail
Regular languages and relations are useful for various applications of natural lan-
guage processing, but there is a limit to what can be achieved with such means.
We mentioned in passing that not all languages over some alphabet Σ are regular;
we now look at what kind of languages lie beyond the regular ones.

To exemplify a non-regular language, consider a simple language over the
alphabet Σ = {a, b} whose members are strings that consist of some number, n,
of ‘a’s, followed by the same number of ‘b’s. Formally, this is the language L =
{an · bn | n > 0}. Assume towards a contradiction that this language is regular, and
therefore a deterministic finite state automaton A exists whose language is L. Con-
sider the language Li = {ai | i > 0}. Since every string in this language is a prefix
of some string (ai · bi) of L, there must be a path in A starting from the initial state
for every string in Li. Of course, there is an infinite number of strings in Li, but by
its very nature, A has a finite number of states. Therefore there must be two dif-
ferent strings in Li that lead the automaton to a single state. In other words, there
exist two strings, aj and ak, such that j �= k but δ̂(q0, aj) = δ̂(q0, ak). Let us call this
state q. There must be a path labeled bj leading from q to some final state qf , since
the string ajbj is in L. This situation is schematically depicted below (the dashed
arrows represent paths):

q0 q qf

a j

ak

b j

Therefore, there is also an accepting path akbj in A, and hence also akbj is in L, in
contradiction to our assumption. Hence no deterministic finite state automaton
exists whose language is L.
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We have seen one language, namely L = {an · bn | n > 0}, which cannot be
defined by a finite state automaton and therefore is not regular. In fact, there are
several other such languages, and there is a well-known technique, the so-called
pumping lemma, for proving that certain languages are not regular. If a language is
not regular, then it cannot be denoted by a regular expression. We must look for
alternative means of specification for non-regular languages.

5.2 Grammars
In order to specify a class of more complex languages, we introduce the notion of
a grammar. Intuitively, a grammar is a set of rules that manipulate symbols. We
distinguish between two kinds of symbols: terminal ones, which should be thought
of as elements of the target language, and non-terminal ones, which are auxiliary
symbols that facilitate the specification. It might be instructive to think of the non-
terminal symbols as syntactic categories, such as Sentence, Noun Phrase, or Verb
Phrase. However, formally speaking, non-terminals have no “special,” external
interpretation where formal languages are concerned. Similarly, terminal symbols
might correspond to letters of some natural language, or to words, or to something
else: they are simply elements of some finite set.

Rules can express the internal structure of “phrases,” which should not nec-
essarily be viewed as natural language phrases. A rule is a non-empty sequence
of symbols, a mixture of terminals and non-terminals, with the only requirement
that the first element in the sequence be a non-terminal one (alternatively, one
can define a rule as an ordered pair whose first element is a non-terminal symbol
and whose second element is a sequence of symbols). We write such rules with a
special symbol, ‘→,’ separating the distinguished leftmost non-terminal from the
rest of the sequence. The leftmost non-terminal is sometimes referred to as the head
of the rule, while the rest of the symbols are called the body of the rule.

Example 26 (Rules). Assume that the set of terminals is {the, cat, in, hat} and the
set of non-terminals is {D, N, P, NP, PP }. Then possible rules over these two sets
include:

D → the NP → D N
N → cat PP → P NP
N → hat NP → NP PP
P → in

Note that the terminal symbols correspond to words of English, and not to letters
as was the case above.

Consider the rule NP → D N. If we interpret NP as the syntactic category noun
phrase, D as determiner, and N as noun, then what the rule informally means is that
one possible way to construct a noun phrase is by concatenating a determiner with
a noun. More generally, a rule specifies one possible way to construct a “phrase” of
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the category indicated by its head: this way is by concatenating phrases of the cat-
egories indicated by the elements in the body of the rule. Of course, there might be
more than one way to construct a phrase of some category. For example, there are
two rules which define the structure of the category NP in Example 26: either by
concatenating a phrase of category D with one of category N, or by concatenating
an NP with a PP.

In Example 26, rules are of two kinds: the ones on the left have a single terminal
symbol in their body, while the ones on the right have one or more non-terminal
symbols, but no rule mixes both terminal and non-terminal symbols in its body.
While this is a common practice where grammars for natural languages are con-
cerned, nothing in the formalism requires such a format for rules. Indeed, rules
can mix any combination of terminal and non-terminal symbols in their bodies.

Formal language theory defines rules and grammars in a much broader way
than that which was discussed above, and the definition below is actually only
a special case of rules and grammars. For various reasons that have to do with
the format of the rules, this special case is known as context-free rules. This has
nothing to do with the ability of grammars to refer to context; the term should not
be taken mnemonically. In the next section we discuss other rule-based systems. In
this section, however, we use the terms rule and context-free rule interchangeably,
as we do for grammars, derivations, etc.

DEFINITION 11. A context-free grammar is a four-tuple G = 〈V, Σ , P, S〉, where V
is a finite set of non-terminal symbols, Σ is an alphabet of terminal symbols, P ⊆
V × (V ∪ Σ)∗ is a set of rules and S ∈ V is the start symbol.

Note that this definition permits rules with empty bodies. Such rules, which
consist of a left-hand-side only, are called ε-rules, and are useful both for formal
and for natural languages. Example 33 below makes use of an ε-rule.

Example 27 (Grammar). The set of rules depicted in Example 26 can constitute the
basis for a grammar G = 〈V, Σ , P, S〉, where V = {D, N, P, NP, PP }, Σ = {the, cat,
in, hat}, P is the set of rules, and the start symbol S is NP.

In the sequel we depict grammars by listing their rules only, as we did in Exam-
ple 26. We keep a convention of using uppercase letters for the non-terminals and
lowercase letters for the terminals, and we assume that the set of terminals is the
smallest that includes all the terminals mentioned in the rules, and the same for
the non-terminals. Finally, we assume that the start symbol is the head of the first
rule, unless stated otherwise.

5.3 Derivation
In order to define the language denoted by a grammar we need to define the
concept of derivation. Derivation is a relation that holds between two forms, each a
sequence of grammar symbols (terminal and/or non-terminal).
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DEFINITION 12. Let G = 〈V, Σ , P, S〉 be a grammar. The set of forms induced by G is
(V ∪ Σ)∗. A form α immediately derives a form β, denoted by α ⇒ β, if and only if
there exist γl, γr ∈ (V ∪ Σ)∗ such that α = γlAγr and β = γlγcγr, and A → γc is a rule
in P. A is called the selected symbol.

A form α immediately derives β if a single non-terminal symbol, A, occurs in α,
such that whatever is to its left in α, the (possibly empty) sequence of terminal and
non-terminal symbols γl, occurs at the leftmost edge of β; and whatever is to the
right of A in α, namely the (possibly empty) sequence of symbols γr, occurs at the
rightmost edge of β; and the remainder of β, namely γc, constitutes the body of
some grammar rule of which A is the head.

Example 28 (Immediate derivation). Let G be the grammar of Example 27. The set of
forms induced by G contains all the (infinitely many) sequences of elements from
V and Σ , such as 〈〉, 〈NP〉, 〈D cat P D hat〉, 〈D N 〉, 〈the cat in the hat〉, etc.

Let us start with a simple form, 〈NP〉. Observe that it can be written as γlNPγr,
where both γl and γr are empty. Observe also that NP is the head of some grammar
rule: the rule NP → D N. Therefore, the form is a good candidate for derivation:
if we replace the selected symbol NP with the body of the rule, while preserving
its environment, we obtain γlD Nγr = D N. Therefore, 〈N 〉 ⇒ 〈D N 〉.

We now apply the same process to 〈D N 〉. This time the selected symbol is D
(we could have selected N, of course). The left context is again empty, while the
right context is γr = N. As there exists a grammar rule whose head is D, namely
D → the, we can replace the rule’s head by its body, preserving the context, and
obtain the form 〈the N〉. Hence 〈D N 〉 ⇒ 〈the N〉.

Given the form 〈the N〉, there is exactly one non-terminal that we can select,
namely N. However, there are two rules that are headed by N: N → cat and
N → hat . We can select either of these rules to show that both 〈the N〉 ⇒ 〈the cat〉
and 〈the N〉 ⇒ 〈the hat〉.

Since the form 〈the cat〉 consists of terminal symbols only, no non-terminal can
be selected and hence it derives no form.

We now extend the immediate derivation relation from a single step to an
arbitrary number of steps by considering the reflexive transitive closure of the
relation.

DEFINITION 13. The derivation relation, denoted ‘ ∗⇒,’ is defined recursively as follows:
α

∗⇒ β if α = β, or if α ⇒ γ and γ
∗⇒ β.

Example 29 (Extended derivation). In Example 28 we showed that the following
immediate derivations hold: 〈NP〉⇒〈D N 〉; 〈D N 〉⇒〈the N〉; 〈the N〉⇒〈the cat〉.
Therefore, 〈NP〉 ∗⇒ 〈the cat〉.

The derivation relation is the basis for defining the language denoted by a gram-
mar. Consider the form obtained by taking a single grammar symbol, say 〈A〉; if
this form derives a sequence of terminals, this string is a member of the language
denoted by A. The language of a grammar G, L(G), is the language denoted by its
start symbol.
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DEFINITION 14. Let G = 〈V, Σ , P, S〉 be a grammar. The language of a non-terminal
A ∈ V is

LG(A) = {a1 · · · an | ai ∈ Σ for 1 ≤ i ≤ n and 〈A〉 ∗⇒ 〈a1, . . . , an〉}

The language of the grammar G is L(G) = LG(S).

Example 30 (Language of a grammar). Consider again the grammar G of Exam-
ple 27. It is fairly easy to see that the language denoted by the non-terminal symbol
D, LG(D), is the singleton set {the}. Similarly, LG(P) is {in} and LG(N) = {cat, hat}.
It is more difficult to define the languages denoted by the non-terminals NP and
PP, although it should be straightforward that the latter is obtained by concatenat-
ing {in} with the former. We claim without providing a proof that LG(NP) is the
denotation of the regular expression (the · (cat + hat) · (in· the · (cat + hat))∗).

5.4 Derivation trees
Sometimes two derivations of the same string differ only in the order in which
they were applied. Consider again the grammar of Example 27. Starting with the
form 〈NP〉 it is possible to derive the string the cat in two ways:

(1) 〈NP〉 ⇒ 〈D N 〉 ⇒ 〈D cat〉 ⇒ 〈the cat〉
(2) 〈NP〉 ⇒ 〈D N 〉 ⇒ 〈the N〉 ⇒ 〈the cat〉

Derivation (1) applies first the rule N → cat and then the rule D → the whereas
derivation (2) applies the same rules in the reverse order. But since both use
the same rules to derive the same string, it is sometimes useful to collapse such
“equivalent” derivations into one. To this end the notion of derivation trees is
introduced.

A derivation tree (sometimes called parse tree, or simply tree) is a visual aid
in depicting derivations, and a means for imposing structure on a grammatical
string. Trees consist of vertices and branches; a designated vertex, the root of the
tree, is depicted on the top. Branches are connections between pairs of vertices.
Intuitively, trees are depicted “upside down,” since their root is at the top and
their leaves are at the bottom. An example of a derivation tree for the string the cat
in the hat with the grammar of Example 27 is given in Example 31.

Example 31 (Derivation tree).

NP

NP PP

D N P NP

D N

the cat in the hat
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Formally, a tree consists of a finite set of vertices and a finite set of branches
(or arcs), each of which is an ordered pair of vertices. In addition, a tree has a
designated vertex, the root, which has two properties: it is not the target of any arc,
and every other vertex is accessible from it (by following one or more branches).
When talking about trees we sometimes use family notation: if a vertex v has a
branch leaving it which leads to some vertex u, then we say that v is the mother
of u and u is the daughter, or child, of v. If u has two daughters, we refer to them
as sisters. Derivation trees are defined with respect to some grammar G, and must
obey the following conditions:

(1) every vertex has a label, which is either a terminal symbol, a non-terminal
symbol, or ε;

(2) the label of the root is the start symbol;
(3) if a vertex v has an outgoing branch, its label must be a non-terminal symbol;

furthermore, this symbol must be the head of some grammar rule; and the
elements in the body of the same rule must be the labels of the children of v,
in the same order;

(4) if a vertex is labeled ε, it is the only child of its mother.

A leaf is a vertex with no outgoing branches. A tree induces a natural “left-to-
right” order on its leaves; when read from left to right, the sequence of leaves is
called the frontier, or yield, of the tree.

Derivation trees correspond very closely to derivations. In fact, it is easy to show
that a non-terminal symbol A derives a form α if and only if α is the yield of some
parse tree whose root is A. In other words, whenever some string can be derived
from a non-terminal, there exists a derivation tree for that string, with the same
non-terminal as its root. However, sometimes there exist different derivations of
the same string that correspond to a single tree. The tree representation collapses
exactly those derivations that differ from each other only in the order in which
rules are applied.

Sometimes, however, different derivations (of the same string!) correspond to
different trees. This can happen only when the derivations differ in the rules which
they apply. When more than one tree exists for some string, we say that the string
is ambiguous. Ambiguity is a major problem when grammars are used for certain
formal languages, in particular for programming languages. But for natural lan-
guages, ambiguity is unavoidable as it corresponds to properties of the natural
language itself.

Example 32 (Ambiguity). Consider again the grammar of Example 27, and the
string the cat in the hat in the hat. Intuitively, there can be (at least) two readings
for this string: one in which a certain cat wears a hat-in-a-hat, and one in which a
certain cat-in-a-hat is inside a hat. If we wanted to indicate the two readings with
parentheses, we would distinguish between

((the cat in the hat) in the hat)

and

(the cat in (the hat in the hat))
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This distinction in intuitive meaning is reflected in the grammar, and two different
derivation trees, corresponding to the two readings, are available for this string:

NP

NP

NP PP PP

D N P NP P NP

D N D N

the cat in the hat in the hat

NP

NP PP

D N P NP

NP PP

P NP

D N D N

the cat in the hat in the hat

Using linguistic terminology, in the left tree the second occurrence of the preposi-
tional phrase in the hat modifies the noun phrase the cat in the hat, whereas in the
right tree it only modifies the (first occurrence of) the noun phrase the hat. This
situation is known as syntactic or structural ambiguity.

5.5 Expressiveness
Context-free grammars are more expressive than regular expressions. In
Section 5.1 we claimed that the language L = {anbn | n > 0} is not regular; we now
show a context-free grammar for this language. The grammar, G = 〈V, Σ , P, S〉, has
two terminal symbols, Σ = {a, b}, and one non-terminal symbol, V = {S}. The idea
is that whenever S is used recursively in a derivation (rule 1), the current form is
extended by exactly one a on the left and one b on the right, hence the number of
‘a’s and ‘b’s must be equal.

Example 33 (A context-free grammar for L = {anbn | n ≥ 0}).

(1) S → a S b
(2) S → ε

DEFINITION 15. The class of languages that can be generated by context-free grammars
is the class of context-free languages.

The class of context-free languages properly contains the regular languages:
given some finite state automaton which generates some language L, it is always
possible to construct a context-free grammar whose language is L. We conclude
this section with a discussion of converting automata to context-free grammars.

Let A = 〈Q, q0, δ, F〉 be a deterministic finite state automaton with no ε-moves
over the alphabet Σ . The grammar we define to simulate A is G = 〈V, Σ , P, S〉,
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where the alphabet Σ is that of the automaton, and where the set of non-terminals,
V, is the set Q of the automaton states. The idea is that a single (immediate) deriva-
tion step with the grammar simulates a single arc traversal with the automaton.
Since automata states are simulated by grammar non-terminals, it is reasonable to
simulate the initial state by the start symbol, and hence the start symbol S is q0.
What is left, of course, are the grammar rules. These come in two varieties: first,
for every automaton arc δ(q, a) = q′ we stipulate a rule q → a q′. Then, for every
final state qf ∈ F, we add the rule qf → ε.

Example 34 (Simulating a finite state automaton by a grammar). Consider the automa-
ton 〈Q, q0, δ, F〉 depicted below, where Q = {q0, q1, q2, q3}, F = {q3}, and δ is
{〈q0, m, q1〉, 〈q1, e, q2〉, 〈q2, o, q2〉, 〈q2, w, q3〉, 〈q0, w, q2〉}:

q0 q1 q2 q3
m e

o

w

w

The grammar G = 〈V, Σ , P, S〉 which simulates this automaton has V = {q0, q1,
q2, q3}, S = q0, and the set of rules:

(1) q0 → m q1
(2) q1 → e q2
(3) q2 → o q2
(4) q2 → w q3
(5) q0 → w q2
(6) q3 → ε

The string meoow, for example, is generated by the automaton by walking along
the path q0 − q1 − q2 − q2 − q2 − q3. The same string is generated by the grammar
with the derivation

〈q0〉 1⇒ 〈mq1〉 2⇒ 〈meq2〉 3⇒ 〈meoq2〉 3⇒ 〈meooq2〉 4⇒ 〈meoowq3〉 6⇒ 〈meoow〉
Since every regular language is also a context-free language, and since we have

shown a context-free language that is not regular, we conclude that the class of
regular languages is properly contained within the class of context-free languages.

Observing the grammar of Example 34, a certain property of the rules stands
out: the body of each of the rules either consists of a terminal followed by a
non-terminal or is empty. This is a special case of what are known as right-
linear grammars. In a right-linear grammar, the body of each rule consists of a
(possibly empty) sequence of terminal symbols, optionally followed by a sin-
gle non-terminal symbol. Most importantly, no rule exists whose body contains
more than one non-terminal; and if a non-terminal occurs in the body, it is
in the final position. Right-linear grammars are a restricted variant of context-
free grammars, and it can be shown that they generate all and only the regular
languages.
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5.6 Formal properties of context-free languages
Context-free languages are more expressive than regular languages; this addi-
tional expressive power comes with a price: given an arbitrary context-free
grammar G and some string w, determining whether w ∈ L(G) takes time pro-
portional to the cube of the length of w, O(|w|3) (in the worst case). In addition,
context-free languages are not closed under some of the operations that the regular
languages are closed under.

It should be fairly easy to see that context-free languages are closed under union.
Given two context-free grammars G1 = 〈V1, Σ1, P1, S1〉 and G2 = 〈V2, Σ2, P2, S2〉,
a grammar G = 〈V, Σ , P, S〉 whose language is L(G1) ∪ L(G2) can be constructed
as follows: the alphabet Σ is the union of Σ1 and Σ2, the non-terminal set V is a
union of V1 and V2, plus a new symbol S, which is the start symbol of G. Then,
the rules of G are just the union of the rules of G1 and G2, with two additional
rules: S → S1 and S → S2, where S1 and S2 are the start symbols of G1 and G2
respectively. Clearly, every derivation in G1 can be simulated by a derivation in
G using the same rules exactly, starting with the rule S → S1, and similarly for
derivations in G2. Also, since S is a new symbol, no other derivations in G are
possible. Therefore L(G) = L(G1) ∪ L(G2).

A similar idea can be used to show that the context-free languages are closed
under concatenation: here we only need one additional rule, namely S → S1 S2,
and the rest of the construction is identical. Any derivation in G will “first” derive
a string of G1 (through S 1) and then a string of G2 (through S 2). To show clo-
sure under the Kleene-closure operation, use a similar construction with the added
rules S → ε and S → S S1.

However, it is possible to show that the class of context-free languages is
not closed under intersection. That is, if L1 and L2 are context-free languages,
then it is not guaranteed that L1 ∩ L2 is context-free as well. From this fact
it follows that context-free languages are not closed under complementation
either. While context-free languages are not closed under intersection, they are
closed under intersection with regular languages: if L is a context-free lan-
guage and R is a regular language, then it is guaranteed that L ∩ R is context-
free.

In the previous section we have shown a correspondence between two spec-
ification formalisms for regular languages: regular expressions and finite state
automata. For context-free languages, we focused on a declarative formalism,
namely context-free grammars, but they, too, can be specified using a computa-
tional model. This model is called push-down automata, and it consists of finite
state automata augmented with unbounded memory in the form of a stack. Com-
putations can use the stack to store and retrieve information: each transition
can either push a symbol (taken from a special alphabet) onto the top of the
stack, or pop one element off the top of the stack. A computation is success-
ful if it ends in a final state with an empty stack. It can be shown that the class
of languages defined by push-down automata is exactly the class of context-free
languages.
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5.7 Normal forms
The general definition of context-free grammars stipulates that the body of a rule
may consist of any sequence of terminal and non-terminal symbols. However, it is
possible to restrict the form of the rules without affecting the generative capacity
of the formalism. Such restrictions are known as normal forms and are the topic of
this section.

The best-known normal form is the Chomsky normal form (CNF): under this
definition, rules are restricted to be of either of two forms. The body of any rule in
a grammar may consist either of a single terminal symbol, or of exactly two non-
terminal symbols (as a special case, empty bodies are also allowed). For example,
the rules D → the and NP → D N can be included in a CNF grammar, but the
rule S → a S b cannot.

Unlike the right-linear grammars defined in Section 5.5, which can only gen-
erate regular languages, CNF grammars are equivalent in their weak generative
capacity to general context-free grammars: it can be proven that for every context-
free language L there exists a CNF grammar G such that L = L(G). In other words,
CNF grammars can generate all the context-free languages.

The utility of normal forms is in their simplicity. When some property of context-
free languages has to be proven, it is sometimes much simpler to prove it for
the restricted version of the formalism (e.g., for CNF grammars only), because
the result can then extend to the entire class of languages. Similarly, processing
normal-form grammars may be simpler than processing the general class of gram-
mars. Thus, the first parsing algorithms for context-free grammars were limited
to grammars in CNF. In natural language grammars, a normal form can embody
the distinction between “real” grammar rules and the lexicon; a commonly used
normal form defines grammar rules to have either a single terminal symbol or any
sequence of zero or more non-terminal symbols in their body (notice that this is a
relaxation of CNF).

6 The Chomsky Hierarchy

6.1 A hierarchy of language classes
We focus in this section on grammars as formalisms which denote languages. We
have seen two types of grammars: context-free grammars, which generate the class
of context-free languages; and right-linear grammars, which generate the class of
regular languages. Right-linear grammars are a special case of context-free gram-
mars, where additional constraints are imposed on the form of the rules. More
generally, constraining the form of the rules can constrain the expressive power
of the formalism. Similarly, more freedom in the form of the rules can extend the
expressiveness of the formalism.

One way to achieve this is to allow more than a single non-terminal symbol
in the head of the rules or, in other words, restrict the application of rules to a
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specified context. In context-free grammars, a rule can be applied during a deriva-
tion whenever its head, A, is an element in a form. In the extended formalism such
a derivation is allowed only if the context of A in the form, that is, A’s neighbors to
the right and left, are as specified in the rule. Due to this reference to context, this
formalism is known as context-sensitive grammars. A rule in a context-sensitive
grammar has the form α1 A α2 → α1βα2, where α1, α2, and β are all (possibly
empty) sequences of terminal and non-terminal symbols. The other components
of context-sensitive grammars are as in context-free grammars.

As usual, the class of languages that can be generated by context-sensitive gram-
mars is called the context-sensitive languages. Considering that every context-free
grammar is a special case of context-sensitive grammars (with an empty con-
text), it should be clear that every context-free language is also context-sensitive
or, in other words, that the context-free languages are contained in the set of the
context-sensitive ones. As it turns out, this containment is proper, and there are
context-sensitive languages that are not context-free.

This establishes a hierarchy of classes of languages: the regular languages are
properly contained in the context-free languages, which are properly contained
in the context-sensitive languages. These, in turn, are known to be properly con-
tained in the set of languages generated by the so-called unrestricted or general
phrase-structure grammars (this set is called the recursively enumerable languages).
Each of the language classes in this hierarchy is associated with a computational
model: FSA and push-down automata for the regular and context-free languages
respectively; linear bounded Turing machines for the context-sensitive languages;
and Turing machines for the recursively enumerable languages.

This hierarchy of language classes is called the Chomsky hierarchy of languages,
and is schematically depicted in Figure 1.1.

6.2 The location of natural languages in the hierarchy
The Chomsky hierarchy of languages reflects a certain order of complexity: in
some sense, the lower the language class is in the hierarchy, the simpler are its
possible constructions. Furthermore, lower language classes allow for more effi-
cient processing (in particular, the recognition problem is tractable for regular and
context-free languages, but not for higher classes). If formal grammars are used
to express the structure of natural languages, then we must know the location of
these languages in the hierarchy.

Chomsky presents a theorem that says “English is not a regular language” (1957:
21); as for context-free languages, he says “I do not know whether or not English
is itself literally outside the range of such analyses” (1957: 34). For many years,
however, it was well accepted that natural languages were beyond the expres-
sive power of context-free grammars. This was only proven in the 1980s, when
two natural languages (Dutch and a dialect of Swiss German) were shown to
be trans-context-free (that is, beyond the expressive power of context-free gram-
mars). Still, the constructions in natural languages that necessitate more than
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Phrase-structure
languages

Context-sensitive
languages

Context-free
languages

Regular
languages

Figure 1.1 Chomsky’s hierarchy of languages.

context-free power are few and very specific. (Most of these constructions boil
down to patterns of the form anbmcndm, known as cross-serial dependencies; with
some mathematical machinery, based mostly on closure properties of the context-
free languages, it can be proven that languages that include such patterns cannot
be context-free.) This motivated the definition of the class of mildly context-sensitive
languages, which we discuss in Section 7.

6.3 Weak and strong generative capacity
So far we have only looked at grammars as generating sets of strings (i.e., lan-
guages), and ignored the structures that grammars impose on the strings in their
languages. In other words, when we say that English is not a regular language
we mean that no regular expression exists whose denotation is the set of all and
only the sentences of English. Similarly, when a claim is made that some natu-
ral language, say Dutch, is not context-free, it should be read as saying that no
context-free grammar exists whose language is Dutch. Such claims are propo-
sitions about the weak generative capacity of the formalisms involved: the weak
generative capacity of regular expressions is insufficient for generating English;
the weak generative capacity of context-free languages is insufficient for Dutch.
Where natural languages are concerned, however, weak generative capacity might
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not correctly characterize the relationship between a formalism (such as regular
expressions or context-free grammars) and a language (such as English or Dutch).
This is because one expects the formalism not only to be able to generate the strings
in a language, but also to assign them “correct” structures.

In the case of context-free grammars, the structure assigned to strings is a
derivation tree. Other linguistic formalisms may assign other kinds of objects to
their sentences. We say that the strong generative capacity of some formalism is
sufficient to generate some language if the formalism can (weakly) generate all
the strings in the language, and also to assign them the “correct” structures. Unlike
weak generative capacity, which is a properly defined mathematical notion, strong
generative capacity is poorly defined, because no accepted definition of the
“correct” structure for some string in some language exists.

7 Mildly Context-Sensitive Languages

When it was finally proven that context-free grammars are not even weakly ade-
quate as models of natural languages, research focused on “mild” extensions of
the class of context-free languages. In a seminal work, Joshi (1985) coined the term
mildly context-sensitive languages, which is loosely defined as a class of languages
that:

(1) properly contains all the context-free languages;
(2) can be parsed in polynomial time;
(3) can properly account for the constructions in natural languages that context-

free languages fail to account for, such as cross-serial dependencies; and
(4) has the linear-growth property (this is a formal property that we ignore here).

One formalism that complies with these specifications (and which motivated
their design) is tree adjoining grammars (TAGs). Motivated by linguistic consider-
ations, TAGs extend the scope of locality in which linguistic constraints can be
expressed. The elementary building blocks of the formalism are trees. Whereas
context-free grammar rules enable one to express constraints among the mother in
a local tree and its immediate daughters, the elementary trees of TAG facilitate the
expression of constraints between arbitrarily distant nodes, as long as they are part
of the same elementary tree. Two operations, adjunction and substitution, construct
larger trees from smaller ones, so that the basic operations that take place dur-
ing derivations are not limited to string concatenation. Crucially, these operations
facilitate nesting of one tree within another, resulting in extended expressiveness.

The class of languages generated by tree adjoining grammars is naturally called
the tree adjoining languages. It contains the context-free languages, and several
trans-context-free ones, such as the language {anbmcndm | n, m ≥ 0}. As usual, the
added expressiveness comes with a price, and determining membership of a string
w in a language generated by some TAG can only be done in time proportional
to |w|6.



“9781405155816_4_001” — 2010/5/14 — 17:13 — page 41 — #31

Formal Language Theory 41

Several linguistic formalisms were proposed as adequate for expressing the
class of natural languages. Noteworthy among them are three formalisms: head
grammars, linear indexed grammars, and combinatory categorial grammars. All three
were developed independently with natural languages as their main motivation;
and all three were proven to be (weakly) equivalent to TAG. The class of tree
adjoining languages, therefore, may be just the correct formal class in which all
natural languages reside.

8 Further Reading

Much of the material presented in this chapter can be found in introductory text-
books on formal language theory. Hopcroft and Ullman (1979, chapter 1) provide
a formal presentation of formal language theory; just as rigorous, but with an
eye to linguistic uses and applications, is the presentation of Partee et al. (1990,
chapters 1–3). For the ultimate reference, consult the Handbook of Formal Languages
(Rozenberg & Salomaa 1997).

A very good formal exposition of regular languages and the computing machin-
ery associated with them is given by Hopcroft and Ullman (1979, chapters 2–3).
Another useful source is Partee et al. (1990, chapter 17). Theorem 1 is due to Kleene
(1956); Theorem 2 is due to Rabbin and Scott (1959); Theorem 3 is a corollary of the
Myhil–Nerode theorem (Nerode 1958). The pumping lemma for regular languages
is due to Bar-Hillel et al. (1961).

For natural language applications of finite state technology refer to Roche and
Schabes (1997a), which is a collection of papers ranging from mathematical prop-
erties of finite state machinery to linguistic modeling using them. The introduction
(Roche & Schabes 1997b) can be particularly useful, as will be Karttunen (1991).
Kaplan and Kay (1994) is a classic work that sets the very basics of finite state
phonology, referring to automata, transducers, and two-level rules. As an example
of an extended regular expression language, with an abundance of applications to
natural language processing, see Beesley and Karttunen (2003). Finally, Karttunen
et al. (1996) is a fairly easy paper that relates regular expressions and relations
to finite automata and transducers, and exemplifies their use in several language
engineering applications.

Context-free grammars and languages are discussed by Hopcroft and Ullman
(1979, chapters 4, 6) and Partee et al. (1990, chapter 18). The correspondence
between regular languages and right-linear grammars is due to Chomsky and
Miller (1958). A cubic-time parsing algorithm for context-free languages was first
proposed by Kasami (1965); see also Younger (1967). Push-down automata were
introduced by Oettinger (1961); see also Schützenberger (1963). Chomsky (1962)
proved that they were equivalent to context-free grammars.

A linguistic formalism that is based on the ability of context-free grammars to
provide adequate analyses for natural languages is generalized phrase-structure
grammars, or GPSGs (Gazdar et al., 1985).
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The Chomsky hierarchy of languages is due to Chomsky (1956, 1959). The
location of the natural languages in this hierarchy is discussed in several
papers, of which the most readable, enlightening, and amusing is Pullum and
Gazdar (1982). Several other works discussing the non-context-freeness of nat-
ural languages are collected in Part III of Savitch et al. (1987). Rounds et al.
(1987) inquire into the relations between formal language theory and linguistic
theory, in particular referring to the distinction between weak and strong gen-
erative capacity. Works showing that natural languages cannot be described by
context-free grammars include Bresnan et al. (1982) (Dutch), Shieber (1985) (Swiss
German), and Manaster-Ramer (1987) (Dutch). Miller (1999) is dedicated to gener-
ative capacity of linguistic formalisms, where strong generative capacity is defined
as the model theoretic semantics of a formalism.

Tree adjoining grammars were introduced by Joshi et al. (1975) and are dis-
cussed in several subsequent papers Joshi (1985; 1987; 2003). A polynomial-time
parsing algorithm for TAG is given by Vijay-Shanker and Weir (1993) and Satta
(1994). The three formalisms that are equivalent to TAG are head grammars
(Pollard 1984), linear-indexed grammars (Gazdar 1988), and combinatory cate-
gorial grammars (Steedman 2000); they were proven equivalent by Vijay-Shanker
and Weir (1994).
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2 Computational Complexity
in Natural Language

IAN PRATT-HARTMANN

We have become so used to viewing natural language in computational terms that
we need occasionally to remind ourselves of the methodological commitment this
view entails. That commitment is this: we assume that to understand linguistic
tasks – tasks such as recognizing sentences, determining their structure, extracting
their meaning, and manipulating the information they contain – is to discover the
algorithms required to perform those tasks, and to investigate their computational
properties. To be sure, the physical realization of the corresponding processes in
humans is a legitimate study too, but one from which the computational inves-
tigation of language may be pursued in splendid isolation. Complexity theory is
the mathematical study of the resources – both in time and space – required to
perform computational tasks. What bounds can we place – from above or below –
on the number of steps taken to compute such-and-such a function, or a function
belonging to such-and-such a class? What bounds can we place on the amount
of memory required? It is therefore not surprising that, in the study of natural
language, complexity-theoretic issues abound.

Since any computational task can be the object of complexity-theoretic investiga-
tion, it would be hopeless even to attempt a complete survey of complexity theory
in the study of natural language. We focus therefore on a selection of topics in
natural language where there has been a particular accumulation of complexity-
theoretic results. Section 2 discusses parsing and recognition; Section 3 discusses
the computation of logical form; and Section 4 discusses the problem of determin-
ing logical relationships between sentences in natural language. But we begin with
a brief review of complexity theory itself.

1 A Brief Review of Complexity Theory

Any account of complexity theory rests on some model of computation. The most
widely used such model is the multi-tape Turing machine; and that is the model
we use here. Throughout this chapter, we employ standard notation for strings: if
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Σ is an alphabet (a finite, non-empty set of symbols), Σ∗ denotes the set of strings
(finite sequences of elements) over Σ . The length of any string σ is denoted |σ |;
the empty (zero-length) string is denoted ε; and the concatenation of strings σ and
τ is denoted στ . We follow standard practice in ignoring the difference between
elements of Σ and the corresponding one-element strings.

1.1 Turing machines and models of computation
Informally, a multi-tape Turing machine comprises a finite number of tapes, a finite
set of states, and an instruction table. The tapes may be thought of as the machine’s
memory, the states as the line numbers of its program, and the instruction table as
the instructions of that program. The tapes are numbered consecutively from 1 to
(say) K ≥ 2; Tape 1 is referred to as the input tape and Tape K as the output tape;
all other tapes are work-tapes (Figure 2.1). Each tape consists of a one-way infinite
sequence of squares (i.e., there is a leftmost square, but no rightmost square), and
is scanned by its own tape-head, which is always located over one of these squares.
Every square contains a unique symbol, which is either a member of some non-
empty, finite set Σ , called the alphabet of the Turing machine, or one of the special
symbols �� (read: ‘blank’) or � (read: ‘start’).

The set of states, Q, is assumed to contain a pair of distinguished states: the
initial state q0 and the halting state q1; otherwise, states have no internal structure.
The instruction table of the Turing machine is a finite set T of quintuples

(1) 〈p, s̄, q, t̄, d̄〉,

where p and q are states (i.e., elements of Q), s̄ = (s1, . . . , sK) and t̄ = (t1, . . . , tK)

are K-tuples of symbols (i.e., elements of Σ ∪ {��, �}), and d̄ = (d1, . . . , dK) is a K-
tuple whose elements are the special tags left, right, and stay. Informally, the
Turing machine interprets the instruction (1) as follows:

(2)

If the current state is p, and, for each k (1 ≤ k ≤ K), the square currently
being scanned on Tape k contains the symbol sk, then set the new state to be
q, and, for each k (1 ≤ k ≤ K) do the following: write tk on the square cur-
rently being scanned on Tape k, and place Tape k’s head either one square
left, or one square right, or in its current location, as directed by dk.

We can make Tape 1 a read-only tape by insisting that it is never altered (i.e., that
t1 = s1); likewise, we can make Tape K a write-only tape by insisting that its head
never moves to the left. The symbol � is used to indicate the extreme left of a tape:
we insist that, if any tape-head is over this symbol, it never receives an instruction
to move left; moreover, � is never written or overwritten. The halting state q1
indicates that the computation is over, and we insist that no instruction can be
executed in this state. (It is easy to specify these conditions formally.) Technically
speaking, a Turing machine is simply a tuple M = 〈K, Σ , Q, q0, q1, T〉 conforming
to the above specifications.
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s1 sm �� Tape 1

Tape 2�

...

� t1 tl �� Tape K

T

Figure 2.1 Architecture of a multi-tape Turing machine.

Turing machines perform computations, which proceed in discrete time-steps. At
each time-step, the machine is in a specific configuration, consisting of its current
state q, the position of the tape-head for each of the tapes, and the contents of each
of the tapes. The initial configuration is as follows: the current state is q0 (the initial
state), with each tape-head positioned over the leftmost square of the tape; Tape 0
has the symbol � in the leftmost square, followed by a string σ ∈ Σ∗, called the
input of the computation, and is otherwise filled with ��; all other tapes have the
symbol � in the leftmost square, and are otherwise filled with ��. At each time-step,
an instruction from T of the form (1) is executed as specified in (2), resulting in the
next configuration. The computation halts when (and only when) no instruction
in T can be executed. Note that, if the halting state q1 is reached, the computation
necessarily halts at that point. A run is a (finite or infinite) sequence of configura-
tions obtained in this way; if the run is finite, so that the Turing machine halts, we
call it a terminating run. Given a terminating run, the output of the computation
is the string of Σ∗ which, in the final configuration, is written on the output tape
(strictly) between the � and the first ��. Notice that, in general, a Turing machine
may be able to execute more than one instruction at any given time. In that case,
we should think of the choice being made freely by the machine. We call a Turing
machine deterministic just in case, for any state p and any K-tuple of symbols s̄, T
contains at most one instruction of the form (1) starting with the pair 〈p, s̄〉 (i.e., the
machine never has a choice as to which instruction to perform). A non-deterministic
Turing machine is just another term for a Turing machine.

DEFINITION 1 (COMPUTABLE). Let M be a deterministic Turing machine over alphabet
Σ . For any string σ ∈ Σ∗, either M halts on input σ , or it does not. In the former case, M
will output a definite string τ ∈ Σ∗, and we can define the partial function fM : Σ∗ → Σ∗
as follows.

fM(σ ) =
{

τ if M halts on input σ

undefined otherwise
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We say that M computes the function fM. A partial function f : Σ∗ → Σ∗ is Turing
computable (or just: computable) if it is computed by some deterministic Turing
machine.

The instruction table of a Turing machine is fixed. Thus, a Turing machine is not
a model of a computing machine in the sense we normally imagine, but rather of
a computer program: there is only one thing it computes. On the other hand, since
Turing machines are, formally, just tuples of finite objects, any Turing machine
M can easily be coded as a string σ ′

M over a suitable alphabet Σ ′, and that string
can be input to another Turing machine, say M′. It can be shown that there exists a
universal Turing machine U, which is able to simulate any Turing machine M over an
alphabet Σ in the following sense: for any string, σ ∈ Σ∗, M has a non-terminating
run on input σ if and only if U has a terminating run on input σ ′

Mσ ; moreover, in
case of termination, the output of M′ is the same as the output of M. Any such
Turing machine U is a model of a computing machine in the sense we normally
imagine: it is able to execute an arbitrary ‘program’ σ ′

M on arbitrary ‘data’ σ . Given
such a coding scheme, consider the halting function, H : (Σ ′)∗ → {�, ⊥} defined as

H(σ ′)=
{
� if σ ′ encodes a Turing machine M that has a terminating run on input ε

⊥ otherwise

This function is clearly well defined, and indeed total. Perhaps the most funda-
mental fact in computability theory is due to Turing (1936–7):

THEOREM 1 (TURING). The halting function is not computable.

Definition 1 applies to functions f : Σ∗ → Σ∗ for any alphabet Σ . However,
this definition can be extended to functions with other countable domains and
ranges, relative to some coding of the relevant inputs and outputs as strings over
an alphabet. Consider for instance the familiar coding of natural numbers as bit
strings (elements of {0, 1}∗). For n ∈ N, denote by n̄ the standard binary represen-
tation of n (without leading zeros); and for s ∈ {0, 1}∗, denote by #s the natural
number represented by s. If f : N → N is a function, we consider f computable if
the function g : {0, 1}∗ → {0, 1}∗ defined by

g(s) = ( f (#s))

is computable in the sense of Definition 1. Computability of functions with other
domains and ranges – e.g., rational numbers, lists, graphs, etc. – is understood sim-
ilarly. Technically, this extended notion of computability is relative to the coding
scheme employed. In practice, however, all reasonable coding schemes usually
yield the same computability (and complexity) results; if so, it is legitimate to
speak of such functions as being computable or non-computable, leaving the
operative coding scheme implicit.

The architecture of Turing machines given above is, in all essential details, that
set out in Turing (1936–7). We have followed more recent practice in distinguish-
ing input, output and work-tapes (Turing’s machine had a single tape) to make it
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a little easier to talk about space-bounded computations. But this makes no dif-
ference to any of the results reported here. The thesis that Turing computability
captures our pre-theoretic notion of computability is generally referred to as the
Church–Turing thesis. It is important to appreciate that this thesis does not rest on
the existence of universal Turing machines, or indeed on any purely mathematical
fact. Methodologically, the apparatus introduced above is an exercise in concep-
tual analysis: the proposed replacement of an informally understood notion with
a rigorous definition. Historically, several competing analyses of computability
were proposed at more or less the same time, most notably Gödel’s notion of
recursive function and Church’s λ-calculus. All three notions in effect coincide, how-
ever; so there is general consensus about the formal model presented here. For an
accessible modern treatment, see Papadimitriou (1994, Chapter 2).

The fundamental goal of complexity theory is to analyze the resources, in either
time or space, required to perform computational tasks. The first step is to measure
the computational resources required by particular algorithms.

DEFINITION 2. Let M be a Turing machine with alphabet Σ , and let g : N → N be a
function. We say M runs in time g if, for all but finitely many strings σ ∈ Σ∗, any run
of M on input σ halts within at most g(|σ |) steps. Similarly, M runs in space g if, for all
but finitely many strings σ ∈ Σ∗, any run of M on input σ uses at most g(|σ |) squares
on any of its work-tapes.

Allowing M to break the bound g in finitely many cases avoids problems caused by
zero-length inputs and other trivial anomalies. Notice also the asymmetry in the
definitions of time and space complexity: because measures of space complexity
include only the work-tapes (and so exclude the input and output tapes), they can
be sublinear. For time complexity, sublinear bounds make little sense, because they
do not give the machine the opportunity to read its input.

Unfortunately, Definition 2 is too fragile to provide a meaningful measure of
algorithmic complexity. Suppose M is a deterministic Turing machine computing
some function in time g, and let c be a positive number. Provided g is mod-
erately fast-growing (say, faster than linear growth), it is routine to construct
another deterministic Turing machine M′ – perhaps with more tapes or more
states or a larger alphabet – that computes the same function in time cg(n). That
is: we can always speed up M by a linear factor! Since M and M′ do not rep-
resent interestingly different algorithms, the statement that a Turing machine
runs in time – say – 3n2 + n + 4 as opposed to 14n2 + 87n + 11 is, from an
algorithmic point of view, not significant. Similar remarks also apply to space
bounds.

DEFINITION 3. Let M be a Turing machine, and G a set of functions from N to N. We
say that M runs in time G if, for some g ∈ G, M runs in time g. Similarly, we say that M
runs in space G if, for some g ∈ G, M runs in space g.

In particular, the following classes of functions suggest themselves.



“9781405155816_4_002” — 2010/5/8 — 14:38 — page 48 — #6

48 Ian Pratt-Hartmann

DEFINITION 4 (O-NOTATION). Let g : N
k → N be a function. Denote by O( g) the set

of functions

O( g) = {
g′ : N

k → N | there exist c ∈ N, n′
1, . . . , n′

k ∈ N s.t.

for all n1 > n′
1 . . . for all nk > n′

k, g′(n1, . . . , nk) ≤ cg(n1, . . . , nk)
}

Informally, O( g) is the class of functions which are eventually dominated by some
positive multiple of g. Combining Definitions 3 and 4, it makes sense to say, for
example, that a given Turing machine runs in time (or space) O(n2), or O(n3),
or O(2n). And this sort of complexity measure, it turns out, is robust under the
expansions of computational resources considered above. For example, it can be
shown that, for any k > 0, there is a function that can be computed by a deter-
ministic Turing machine running in time O(nk+1) which cannot be computed by
any deterministic Turing machine running in time O(nk); and similarly for space
bounds. (The precise statement of these theorems, known as separation theorems,
is somewhat intricate; see Kozen, 2006, Lecture 3, or Papadimitriou, 1994: 143ff.)
O-notation has the further advantage of permitting a useful degree of informality
when analyzing the complexity of an algorithm, since a pseudo-code description
of that algorithm, of the sort standardly found in computing texts, often suffices
to show that it will run in time or space O( g) (for some function g) without our
having first to compile that description into a Turing machine. Finally, a word
of caution. Knowing that a Turing machine (or algorithm) has time complexity
O( g) at best imposes a bound on how rapidly the cost of computation grows
with the size of the input. That is, the complexity measures in question are asymp-
totic. In many cases, algorithms with suboptimal asymptotic complexity measures
perform best in practice.

1.2 Decision problems
So far, we have discussed complexity measures for particular algorithms, under-
stood as deterministic Turing machines. We now develop this idea in two crucial –
though logically quite separate – ways.

The first development extends Definition 1 to non-deterministic computation.
To do this, we first restrict attention to functions whose range contains just two
elements – we conventionally employ � and ⊥ – representing ‘YES’ and ‘NO’
respectively. A function f : A → {�, ⊥}, where A is a countable set, is called a deci-
sion problem, or simply a problem. While decision problems may initially seem of
limited practical interest, they play a central role in complexity theory. Moreover,
the restriction to decision problems is less severe than might at first appear: the
complexity of many functions can often be usefully characterized in terms of the
complexity of closely related decision problems.

Now, any decision problem f : A → {�, ⊥} can alternatively be regarded as a
subset of A – namely, the subset {a ∈ A | f (a) = �}. In particular, if A = Σ∗ for some
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alphabet Σ (or if the encoding of A in Σ∗ is obvious), a decision problem defined
on A is, in effect, a set of strings over Σ , or, in the parlance of formal language
theory, a language over Σ . Conversely, of course, any language L ⊆ Σ∗ may be
regarded as a decision problem f : Σ∗ → {�, ⊥} given by:

f (σ ) =
{

� if σ ∈ L
⊥ otherwise

The observation that decision problems and languages are essentially the same
thing prompts the following definition.

DEFINITION 5. Let M be a Turing machine over the alphabet Σ , and suppose without
loss of generality that Σ contains the symbol �. We say that M accepts a string σ ∈ Σ∗
if there exists a terminating run of M with input σ and output �. The language L ⊆ Σ∗
recognized by M, denoted L(M), is the set of strings accepted by M.

It is important to bear in mind that, in Definition 5, M can be non-deterministic. That
is: L(M) is the set of inputs for which M may yield the output �. (It is sometimes
convenient to imagine a benign helper guiding M to make the ‘right’ choice of
instructions required to accept a string σ ∈ L.) Equally important is that, if σ �∈ L,
there is no requirement for M to produce any particular output (as long as it is not
�, of course), or indeed to halt at all.

The case where M halts on every input is of particular interest, however:

DEFINITION 6 (DECIDABLE). Let L be a language. We call L decidable if it is
recognized by a Turing machine guaranteed to halt on every input.

It is routine to show that any decidable language is in fact recognized by a deter-
ministic Turing machine that halts on every input. Furthermore, that machine can
easily be modified so as always to produce one of the two outputs �, ⊥. Thus, a
decision problem f : Σ∗ → {�, ⊥} is a computable function, in the sense of Defi-
nition 1, just in case the corresponding language L = {σ | f (σ ) = �} is decidable,
in the sense of Definition 6. Henceforth, then, we shall identify decision problems
and languages, employing whichever term is most appropriate in context.

We may think of Definition 5 as a generalization of Definition 1 to the case of
non-deterministic computation. The significance of this generalization is that, while
deterministic and non-deterministic Turing machines recognize the same class of
languages, they may not in general do so within the same computational bounds,
a possibility which plays a central role in complexity theory.

We can generalize the above observations on linear speedup to the case of non-
deterministic computation for decision problems. We give a reasonably precise
version here:

THEOREM 2. Let L be a language over some alphabet, let g : N → N and h : N → N

be functions, let c ≥ 1, and suppose g(n) ≥ n + 1, and h(n) ≥ log n. If L is recognized
by some Turing machine running in time cg(n), then it is recognized by some Turing
machine running in time g(n). If L is recognized by some Turing machine running in
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space ch(n), then it is recognized by some Turing machine running in space h(n). The
previous statements continue to hold when “Turing machine” is replaced throughout by
“deterministic Turing machine.”

Now for the second development in our analysis of complexity. So far, we
have provided measures of the time and space requirements of particular Turing
machines (or, by extension, and using O-notation, of particular algorithms). But
what primarily interests us in complexity theory are the time and space require-
ments of a maximally efficient Turing machine for computing a particular function or,
more specifically, solving a particular decision problem. Recalling the equivalence
between decision problems and languages discussed above, we define:

DEFINITION 7. Let L be a language over some alphabet, and let G be a set of functions
from N to N. We say that L is in TIME(G) (or SPACE(G)) if there exists a deterministic
Turing machine M recognizing L, such that M runs in time (respectively, space) G.

Classes of languages of the form TIME(G) or SPACE(G) are referred to as (deter-
ministic) complexity classes. To avoid notational clutter, if g is a function from N

to N, we write TIME( g) instead of TIME({g}); and similarly for other complexity
classes.

So far, we have encountered classes of functions of the form O( g) for various g.
When analyzing the complexity of languages (rather than of specific algorithms),
however, larger classes of functions are typically more useful.

DEFINITION 8. Let P, E, and Ek ( for k > 1) be the sets of functions from N to N defined
as follows:

P = {
nc | c > 0

}

E =
{

2nc | c > 0
}

E2 =
{

22nc | c > 0
}

Ek =
{

2 2···2
}nc

k times | c > 0

}

A function g : N → N which is in Ek for some k is said to be elementary.

Non-elementary functions grow rapidly. However, it is easy to define a com-
putable function which is non-elementary:

f (n) = 2
2···2

}
n times
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Combining Definitions 7 and 8, we obtain complexity classes which are often
known under the following, more pronounceable names:

LOGSPACE = SPACE(log n)

PTIME = TIME(P) PSPACE = SPACE(P)

EXPTIME = TIME(E) EXPSPACE = SPACE(E)

k-EXPTIME = TIME(Ek) k-EXPSPACE = SPACE(Ek)

Thus, PTIME is the class of languages recognizable by a deterministic Turing
machine in polynomial time, EXPSPACE, the class of languages recognizable by
a deterministic Turing machine in exponential space, and so on. In some texts,
LOGSPACE is referred to as L, PTIME as P, and EXPTIME as EXP. Notice, inciden-
tally, that there is no point in defining, say, G = {log(nc) | c > 0} and then setting
LOGSPACE = SPACE(G), since, by Theorem 2, linear factors may be ignored.
Finally, if L is not recognizable by any Turing machine running in time bounded
by an elementary function, then L is said to have non-elementary complexity. We
shall encounter examples of decidable, but non-elementary, problems below.

Definition 7 may be adapted directly to deal with non-deterministic
computation.

DEFINITION 9. Let L be a language over some alphabet, and let G be a set of functions
from N to N. We say that L is in NTIME(G) (or NSPACE(G)) if there exists a Turing
machine M recognizing L, such that M runs in time (respectively, space) G.

Classes of languages of the form NTIME(G) or NSPACE(G) are referred to as (non-
deterministic) complexity classes.

Combining Definitions 8 and 9, we obtain complexity classes which are often
known under the following, more pronounceable names:

(3)

NLOGSPACE = NSPACE(log n)

NPTIME = NTIME(P) NPSPACE = NSPACE(P)

NEXPTIME = NTIME(E) NEXPSPACE = NSPACE(E)

Nk-EXPTIME = NTIME(Ek) Nk-EXPSPACE = NSPACE(Ek)

In some texts, NLOGSPACE is referred to as NL, NPTIME as NP, and NEXPTIME
as NEXP.

Notice the asymmetry involved in the notion of non-deterministic computation:
M recognizes L ⊆ Σ∗ just in case, for each string σ ∈ Σ∗, σ ∈ L if and only if there
exists a successfully terminating run of M (i.e., a terminating run with output �)
on input σ – that is to say, σ ∈ Σ∗ \ L if and only if all runs of M on input σ fail to
halt successfully. This asymmetry prompts us to define the complement classes as
follows.

DEFINITION 10. If C is a class of languages, then Co-C is the class of languages L such
that Σ∗ \ L is in C, where Σ is the alphabet of L.

It is easy to see that, for any interesting class of functions G, TIME(G) = Co-
TIME(G) and SPACE(G) = Co-SPACE(G). For this reason, we never speak of
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Co-PTIME, Co-PSPACE, etc. The situation with non-deterministic complexity
classes is different, however. It is not known whether NPTIME = Co-NPTIME;
and similarly for many other classes of the form Co-NTIME(G). Indeed, such
complexity classes are regularly encountered. In particular, putting together
Definition 10, and the NTIME-classes listed in (3), we obtain the complexity
classes Co-NPTIME, Co-NEXPTIME, and Co-Nk-EXPTIME. (And similarly for the
corresponding space-complexity classes; but see Theorem 4.)

1.3 Relations between complexity classes
It is obvious from the above definitions that any language in TIME(G)

(or SPACE(G)) is non-deterministically recognizable within the same bounds.
Formally,

TIME(G) ⊆ NTIME(G) SPACE(G) ⊆ NSPACE(G)

A little less obviously, we see that:

NPTIME ⊆ EXPTIME NEXPTIME ⊆ 2-EXPTIME · · ·

Consider the first of these inclusions. If M non-deterministically recognizes L, and
p is a polynomial such that M is guaranteed to halt within time p(n) on input of
size n, the number of possible runs of M on inputs of this size is easily seen to be
bounded by 2q(n) for some polynomial q. But then a deterministic Turing machine
M′, simulating M, can check all of these runs in exponential time, outputting � if
any one of them halts successfully. Hence, NPTIME ⊆ EXPTIME. The inclusion
NEXPTIME ⊆ 2-EXPTIME follows analogously; and so on up the complexity hier-
archy. In fact, similar arguments establish the following more elaborate system of
inclusions.

(4)
PTIME ⊆ NPTIME ⊆ PSPACE ⊆

EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE ⊆
2-EXPTIME ⊆ 2-NEXPTIME · · ·

The following result establishes that, for classes of sufficiently ‘large’ functions,
non-determinism makes no difference to space complexity (Savitch 1970).

THEOREM 3 (SAVITCH). If g(n) ≥ log n, then NSPACE(g(n)) ⊆ SPACE((g(n))2)

In some statements of this theorem, certain technical conditions are imposed on
g; but see, e.g., Kozen (2006: 15–16). Since the classes of functions P, E, E2,
etc. are closed under squaring, we have NPSPACE = PSPACE, NEXPSPACE =
EXPSPACE, and so on. As an instant corollary, since these deterministic classes are
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equal to their complements, we have NPSPACE = Co-NPSPACE, NEXPSPACE =
Co-NEXPSPACE, and so on.

Care is required when applying the reasoning of the previous paragraph. Setting
g(n) = log n, Theorem 3 tells us that NLOGSPACE ⊆ SPACE((log n)2); however,
this is not sufficient to imply that NLOGSPACE ⊆ LOGPSPACE. Nevertheless, the
following result establishes that equivalence under complementation continues to
hold even in this case (Immerman 1988).

THEOREM 4 (IMMERMAN–SZELEPCSÉNYI). If g(n) ≥ log n, then NSPACE(g(n)) =
Co-NSPACE(g(n))

In some statements of this theorem, certain technical conditions are imposed on
g; but again, see Kozen (2006: 22–4). As a special case, we have NSPACE(n) =
Co-NSPACE(n), which settled a long-standing conjecture in formal language the-
ory (see Section 2.3 below). As an instant corollary of Theorem 4, NLOGSPACE =
Co-NLOGSPACE.

Adding these ‘small’ complexity classes to the inclusions (4), we obtain

(5)
LOGSPACE ⊆ NLOGSPACE ⊆ PTIME ⊆ NPTIME ⊆

PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆
EXPSPACE ⊆ 2-EXPTIME ⊆ 2-NEXPTIME · · ·

1.4 Lower bounds
Notwithstanding the above caveats on the interpretation of asymptotic
complexity measures, saying that a language is in a complexity class C places
some kind of upper bound on the resources required to recognize it. But what of
lower bounds? What if we want to say that a language cannot be recognized within
certain time or space bounds? For the complexity classes introduced above, useful
lower-bound characterizations are indeed possible.

The basic idea is that of a reduction of one language (or decision problem) to
another. Let L1 and L2 be languages, perhaps over different alphabets Σ1 and Σ2.
Suppose that there exists a function g : Σ∗

1 → Σ∗
2 such that, for any string σ ∈ Σ∗

1 ,
σ ∈ L1 if and only if g(σ ) ∈ L2. We may think of g as a means of ‘translating’ L1 into
L2: in particular, any Turing machine recognizing L2 can be modified to recognize
L1 by simply prepending the translation g. If the cost of this translation is small,
then we may regard L2 as being ‘at least as hard to recognize as’ L1.

DEFINITION 11 (REDUCTION). Let Σ1 and Σ2 be alphabets, and let Li be a language
over Σi (i = 1, 2). A reduction of L1 to L2 is a function g : Σ∗

1 → Σ∗
2 , such that g can

be computed by a (deterministic) Turing machine in space O(log n), and for all σ ∈ Σ∗
1 ,

σ ∈ L1 if and only if g(σ ) ∈ L2; in that case, we say that L1 is reducible to L2. If, instead,
g can merely be computed in time O(nk) for some k, we call it a polynomial reduction,
and we say that L1 is polynomially reducible to L2.
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Let C be any of the complexity classes mentioned in (5), or the complement of any
of these classes. It can be shown that, if L2 is in C, and L1 is reducible to L2, then
L1 is in C. We say that C is ‘closed under reductions’. If C is any of the complexity
classes mentioned in (4), then C is, similarly, ‘closed under polynomial reductions.’

THEOREM 5. The relation of reducibility is transitive: if L1 is reducible to L2, and L2 to
L3, then L1 is reducible to L3.

We remark that Theorem 5 is not obvious (though its analogue in the case of
polynomial reducibility is) see, e.g., Papadimitriou (1994: 164).

Now we can give our characterization of lower complexity bounds.

DEFINITION 12 (HARDNESS AND COMPLETENESS). Let C be a complexity class. A
language L is said to be hard for C, or C-hard, if any language in C is reducible to
L; L is said to be complete for C, or C-complete, if L is C-hard and also in C. Addi-
tionally, L is said to be C-hard under polynomial reduction if any decision problem
in C is polynomially reducible to L; similarly for C-completeness under polynomial
reduction.

It follows from Theorem 5 that, if L1 is C-hard for some complexity class C, and L1
is reducible to L2, then L2 is C-hard. Similarly, mutatis mutandis, for hardness under
polynomial reductions. Notice that the notion of LOGSPACE-completeness is
uninteresting: any problem in LOGSPACE is by definition LOGSPACE-complete.
Under polynomial reductions, the notion of PTIME-completeness is similarly
uninteresting. Definition 12 reflects the fact that reducibility in logarithmic space
is taken to be the default in complexity theory. However, for most higher complex-
ity classes, it is generally easier and just as informative to work with reducibility
in polynomial time; and this is what is often done in practice. Hardness results,
in the sense of Definition 12, are sometimes referred to, for obvious reasons, as
‘lower complexity bounds.’ However, it is important not to be misled by this ter-
minology: for example, it is easy to show that there are PTIME-hard problems in
TIME(n); but TIME(n) is properly contained in PTIME!

Many natural problems (it is easier here to speak of problems rather than lan-
guages) can be shown to be complete for the complexity classes introduced above.
Here are three very well-known examples. In the context of propositional logic,
a literal is a proposition letter or a negated proposition letter; proposition letters
are said to be positive literals, their negations negative literals. A clause is a disjunc-
tion of literals; a clause is said to be Horn if it contains at most one positive literal.
Theorems 6–9 are among the most fundamental in complexity theory. For an acces-
sible treatment, see, e.g., Papadimitriou (1994: 171, 176, and 398 respectively).
Theorem 6 is due to Cook (1971).

THEOREM 6 (COOK). The problem of determining whether a given set of clauses is
satisfiable is NPTIME-complete.

THEOREM 7. The problem of determining whether a given set of Horn clauses is
satisfiable is PTIME-complete.
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THEOREM 8. The problem of determining the satisfiability of a given set of clauses, all of
which contain at most two literals, is NLOGSPACE-complete.

Theorem 8 is very closely related to the following graph-theoretical problem.
Given a finite directed graph, one node in that graph is said to be reachable from
another if there is a finite sequence of directed edges in that graph leading from
the first node to the second.

THEOREM 9. The problem of determining whether, in a given directed graph, one node is
reachable from another, is NLOGSPACE-complete.

Note that, in each case, we assume that inputs (clauses, graphs, . . .) are coded in
some standard way as strings over some alphabet. All reasonable coding schemes
yield the same complexity results.

Such completeness results are often less surprising than they at first appear. For
example, Theorem 6 is established by showing that, given a non-deterministic
Turing machine M that runs in polynomial time, the conditions for a sequence of
configurations of M to be a run of M with input σ can be encoded, in a natural way,
as a set of clauses whose size is bounded by a polynomial function of the length
of σ . And once one language L is shown to be hard for a complexity class, other
languages can be shown to be hard for that class by showing that L is reducible to
them.

2 Parsing and Recognition

As already mentioned, in the context of formal language theory, a language is a
set of strings over some alphabet Σ . Some languages are specified by grammars,
which are themselves finite objects whose semantics is defined by a grammar frame-
work. Familiar grammar frameworks are: context-sensitive grammars, definite
clause grammars, tree adjoining grammars, context-free grammars, and non-
deterministic finite state automata. Within a given grammar framework F , any
grammar G recognizes a unique language L(G), namely, the set of strings accepted
by G. Thus, the apparatus of the multi-tape Turing machine also constitutes a
grammar framework in this sense. Each grammar in that framework – that is,
each specific Turing machine M over signature Σ – recognizes the language L(M)

comprising the set of strings over Σ accepted by M, in the sense of Definition 5.
If F is a grammar framework, we understand the universal recognition problem

for F to be the following problem: given a grammar G in F and a string σ over the
alphabet of G, determine whether σ ∈ L(G). This problem is to be distinguished
from the fixed-language recognition problem for any G in F : given a string σ over
the alphabet of G, determine whether σ ∈ L(G). The complexity of the universal
recognition problem for a framework F is in general higher than that of the fixed-
language recognition problem for any grammar in F .

In this section, we survey the complexity of the universal recognition problem
and the fixed-language recognition problem for various grammar frameworks. For
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the framework of Turing machines, we already know the answer: it is (essentially)
a restatement of Theorem 1 that the universal recognition problem for Turing
machines is undecidable; and it is an immediate consequence of the existence of a
universal Turing machine that there exist Turing machines whose fixed-language
recognition problem is undecidable. For less expressive grammar frameworks,
however, there is much more to be said, as we shall see.

2.1 Regular languages
Let us begin with one of the least expressive of the commonly encountered
grammar frameworks. A non-deterministic finite state automaton (NFSA) is a tuple
A = 〈Σ , Q, q0, q1, T〉, where Σ is an alphabet, Q a set (the set of states of A), q0
and q1 distinct elements of Q (the initial state and the accepting state respectively),
and T a finite set of triples 〈p, s, q〉 (the transitions of A), where p, q ∈ Q and s ∈ Σ .
Informally, the transition 〈p, s, q〉 has the interpretation

If the current state is p, and the next symbol to be read is s, then set the new
state to be q.

An NFSA A is said to accept the string σ = s1, . . . , sn if, starting in the state q0, and
reading the symbols s1, . . . , sn successively, there is a sequence of transitions in T
leading to the state q1. NFSAs may be pictured as labeled graphs in the obvious
way: the nodes are labeled by elements of Q, and the edges by elements of Σ . A
string is accepted if it is possible to step through the graph from the initial state to
the final state in such a way that the string is exactly consumed.

It is a standard result of formal language theory that the class of languages
accepted by NFSAs coincides with the class of regular languages. A regular expres-
sion over an alphabet Σ is defined recursively to be any expression of the forms ∅,
ε, s, e1 ∪ e2, e1e2, or e∗, where s ∈ Σ and e, e1, and e2 are regular expressions. Any
regular expression e recognizes a language L(e) over Σ , defined (with harmless
abuse of notation) as follows:

L(∅) = ∅ L(e1 ∪ e2) = L(e1) ∪ L(e2)

L(ε) = {ε} L(e1e2) = {στ | σ ∈ L(e1) and τ ∈ L(e2)}
L(s) = {s} for s ∈ Σ L(e∗) = {σ1 . . . σk | k ≥ 0 and σi ∈ L(e) for all i (1 ≤ i ≤ k)}

A regular language is any language L(e), where e is a regular expression.
Deciding whether a given NFSA accepts a given string is easily reducible to

the problem of reachability in directed graphs, and vice versa. By Theorem 9,
therefore, we have:

THEOREM 10. The universal recognition problem for NFSAs is NLOGSPACE-complete.

What about the fixed-language recognition problem? An NFSA can be thought of
as a Turing machine with a finite memory – that is, a Turing machine which never
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uses more than a constant amount of space on any of its work-tapes. With a little
care, this equivalence can be shown to be exact: a language is regular if and only
if it can be recognized by a Turing machine with fixed space bound. Hence:

THEOREM 11. For any NFSA A, L(A) is in SPACE(c) for some constant c.

Thus, the universal recognition problem for NFSAs has higher complexity
than the recognition problem for any specific regular language. A subtly differ-
ent illustration of this phenomenon is provided by the grammar framework of
extended regular expressions. An extended regular expression over an alphabet Σ is
defined exactly as for regular expressions, except that we have a complementation
operator ē, with semantics given by:

L(ē) = Σ∗ \ L(e)

A well-known theorem of formal language theory states that the class of regu-
lar languages is closed under complementation, and hence is equal to the class of
languages recognized by extended regular expressions. Thus, the grammar frame-
works of NFSAs and extended regular expressions are equal in expressive power.
However, Stockmeyer and Meyer (1973: 3) show that:

THEOREM 12. The universal recognition problem for extended regular expressions is in
PTIME.

Theorem 12 does not immediately follow from Theorem 10: extended regular
expressions constitute a more compact way of specifying regular languages than
do NFSAs. Of course, when it comes to the fixed-language recognition prob-
lem for languages defined by extended regular expressions, this must be the
same as for NFSAs, because they are the same languages. For a useful list of
complexity-theoretic results regarding regular languages, see Yu (1997: 96ff.).

2.2 Context-free languages
Probably the most familiar and useful grammar framework in linguistics is that
of context-free grammars. Formally, a context-free grammar (CFG) is a quadruple
G = 〈N, Σ , S, P〉, where N is a set of non-terminals (typically, category labels such
as S, NP, VP, etc.), Σ an alphabet, S a distinguished start symbol in N (for example,
the category S), and P a list of productions for rewriting non-terminals (such as S →
NP VP, NP → Det N, etc.). Elements of Σ are usually referred to as terminals in this
context. A CFG accepts the string of terminals σ if some sequence of productions
can be found which rewrites the start symbol S to σ . A language recognized by a
CFG is called a context-free language. For example, the language {anbn | n ≥ 0} is
context-free, but not regular. (For a detailed discussion, see Chapter 1, Section 6.)

A number of well-known algorithms exist to determine whether, given a CFG G
and a string σ , G accepts σ . Perhaps the best known is the CYK algorithm, named
after its simultaneous inventors, Cocke, Younger, and Kasami (see, e.g., Younger
1967). Under reasonable assumptions about what qualifies as a constant-time
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operation, this algorithm runs in time O(mn3), where m is the number of produc-
tions in G, and n is the length of σ ; however, it requires that the given grammar G
be in Chomsky normal form. The slightly more sophisticated algorithm of Earley
(1970) dispenses with this assumption. Thus, the universal recognition problem
for context-free languages is in PTIME. Furthermore, it is easy to reduce this prob-
lem to the satisfiability problem for Horn clauses in propositional logic, whence,
by Theorem 7, it is also PTIME-hard (Jones & Laaser 1977). Hence:

THEOREM 13. The universal recognition problem for CFGs is PTIME-complete.

On the other hand, for the fixed-language recognition problem, we can again do a
little better (Lewis et al., 1965; Nepomnyashchii 1975):

THEOREM 14. For any CFG G, L(G) is in SPACE((log n)2). Moreover, there exists a
context-free language which is NLOGSPACE-hard.

The proof in both cases is rather technical.
CFGs are not the only way of describing context-free languages: the framework

of Lambek grammars (Lambek 1958) provides an alternative. We content ourselves
with an informal explanation here, referring the reader to, e.g., Carpenter (1997).
The Lambek calculus (with product) is a logical system allowing the derivation of
sequents involving category expressions. A category expression is either a basic cat-
egory or a derived category of the forms X/Y, Y\X, or X · Y. Examples of basic
categories are S and NP. Examples of derived categories are NP\S, NP · NP, and
(NP\S)/NP. Intuitively, a category expression X/Y describes a string which, when
a string of category Y is placed to its right, will result in a string of category X; sim-
ilarly, Y\X describes a string which, when a string of category Y is placed to its left,
will result in a string of category X; and finally, X ·Y describes a string which is the
result of concatenating a string of category X and a string of category Y. Thus, an
intransitive verb, and indeed any verb phrase, might be assigned category NP\S,
while a transitive verb might be assigned category (NP\S)/NP.

A sequent in the Lambek calculus is an expression of the form

X1 · · · Xn → X,

where X1, . . . , Xn and X are category expressions. Intuitively, such a sequent has
the meaning: “The result of concatenating any strings of categories X1, . . . , Xn,
in that order, is a string of category X.” An example of a sequent is

(6) NP (NP\S)/NP NP → S,

which thus has the informal interpretation

(7)
if σ1, σ2, and σ3 are strings of categories NP, (NP\S)/NP, and NP
respectively, then σ1σ2σ3 is of category S.

We remark that, under the advertised interpretations of the relevant derived cat-
egories, (7) is a true statement. Formally, however, it is the rules of the Lambek
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S → S NP → NP
NP (NP\S) → S

(\I)
NP → NP

NP (NP\S)/NP NP → S
(/I)

Figure 2.2 A derivation in the Lambek calculus.

calculus (rather than judgments such as (7)) that determine whether any given
sequent is derivable. We do not give these rules here. As an example, how-
ever, Figure 2.2 shows the derivation of sequent (6). It can be shown that the
rules of the Lambek calculus are correct and complete for the interpretation given
above (Pentus 1994).

A Lambek grammar (with product) over a signature Σ is a finite list G of pairs of
the form (s, C) where s ∈ Σ and C is a category expression. We say that the gram-
mar G accepts the string σ = s1 . . . sn just in case there exist category expressions
C1, . . . , Cn such that: (i) (si, Ci) ∈ G for each i (1 ≤ i ≤ n), and (ii) the sequent
C1 · · · Cn → S can be derived in the Lambek calculus. (Again, S is a distinguished
start symbol.) For example, if G contains the pairs

(John, NP), (Mary, NP), (loves, (NP\S)/NP),

then, since (6) is a valid sequent, G accepts the sentence ‘John loves Mary.’ It
is known (Pentus 1993, 1997) that the class of languages recognized by Lambek
grammars is exactly the class of context-free languages.

A crucial result concerning the Lambek calculus is the so-called cut-elimination
theorem (Lambek 1958), which allows us to show that the problem of determin-
ing the validity of a given sequent in the Lambek calculus is in NPTIME. More
recently, Pentus (2006) has shown that the problem of determining the validity
of a sequent in the Lambek calculus (with product) is NPTIME-complete. This
immediately translates, in the present context, to the following result.

THEOREM 15 (PENTUS). The universal recognition problem for Lambek grammars
(with product) is NPTIME-complete.

We remark in passing that the corresponding problem for the Lambek calculus
without the product operation · (i.e., just the operations / and \) is, at the time of
writing, open. This restriction does not decrease the class of languages which can
be recognized by such grammars: these are still exactly the context-free languages.

2.3 More expressive grammar frameworks
As the preceding discussion illustrates, the complexity of the universal recogni-
tion problem for a grammar framework cannot be read off in any simple way from
its expressive power. Nevertheless, commonly encountered grammar frameworks
with higher expressive power do tend, by and large, to exhibit higher recogni-
tion complexity. A well-known example is provided by the class of tree adjoining
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grammars (TAGs). A more detailed explanation of TAGs can be found in Chapter 4,
Section 7. Very roughly, a TAG is a finite set of ‘local’ trees which can be combined
into larger trees to license sentences, much as CFGs combine productions (which
can equally be thought of as local trees) into phrase structures. The essentially
new element in TAGs is the operation of adjunction, in which a local tree may be
‘spliced’ into an existing tree. A language recognized by a TAG is called a tree
adjoining language.

The more elaborate apparatus of TAGs leads to an increase in recognition capac-
ity: the languages {anbncn | n ≥ 1} and {anbncndn | n ≥ 1} are tree adjoining
languages, but not context-free languages. It also leads to an increase in recog-
nition complexity. Various parsing algorithms have been developed which show
that the recognition problem for a TAG can be solved in time O(n6), where n is
the length of the input string (Schabes 1994). Interestingly, TAGs turn out to be
expressively equivalent to several other natural grammar frameworks, includ-
ing head grammars, linear-indexed grammars, and combinatory categorial grammars
(Vijay-Shanker & Weir 1994). These equivalences can be used to establish that all
these grammar frameworks have universal recognition problems with comparable
complexity.

More expressive still is the framework of definite clause grammars (DCGs). Again,
we give only an informal explanation here. Like a CFG, a DCG consists of a set of
productions over fixed sets of terminal and non-terminal symbols, together with
a distinguished non-terminal S. The only difference is that the non-terminals now
take arguments drawn from a term-language T . The expressions of T are built up
from a fixed vocabulary of individual constants, variables, and function symbols.
We assume that there is at least one individual constant in T . Each non-terminal
in a DCG is associated with a non-negative integer, called its arity, and, in any
production, is supplied with a list of arguments according to that arity. A typical
DCG production has the form

(8) A(s1, . . . , sn) → B1(t1,1, . . . , t1,�1) · · · Bm(tm,1, . . . , tm,�m),

where A is a non-terminal with arity n, and the Bi are non-terminals with arity �i
for all i (1 ≤ i ≤ m). (In general, the right-hand side is also allowed to contain
terminals.) The distinguished non-terminal S is assumed to have arity 0. A ground
instance of a production is the result of consistently substituting, for the variables
in that production, terms which contain no variables. The notion of acceptance is
then defined in the same way as for a CFG, by regarding each production as the
set of its ground instances. (Of course, this set of productions may be infinite, and
thus will not in general constitute an actual CFG.)

Figure 2.3 shows a set of productions for a DCG G with non-terminals
{S, A, B, C, D, E} and terminals {a, b, c, d, e}. Each of the non-terminals has arity 1,
except for S, the distinguished non-terminal. Figure 2.4 shows a derivation of
the string aabbccddee in G, where the variable x in the first production takes
the value f(1). This variable in effect counts the number of times the rules
for the non-terminals A, . . . , E are invoked (with a value f n−1(1) encoding n
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S → A(x) B(x) C(x) D(x) E(x)

A(1) → a A(f(x)) → a A(x)
B(1) → b B(f(x)) → b B(x)
C(1) → c C(f(x)) → c C(x)
D(1) → d D(f(x)) → d D(x)
E(1) → e E(f(x)) → e E(x)

Figure 2.3 Productions of a DCG recognizing the language {anbncndnen | n ≥ 0}.

S

A(f(1))

a A(1)

a

B(f(1))

b B(1)

b

C(f(1))

c C(1)

c

D(f(1))

d D(1)

d

E(f(1))

e E(1)

e

Figure 2.4 Derivation of the string aabbccddee in the DCG of Figure 2.3.

invocations), and ensures that this number is the same in each case. Thus,
L(G)= {anbncndnen | n ≥ 0}; this language is not a tree adjoining language.

The DCG framework is of interest in part because it is so attractive to implement:
indeed, DCGs are a built-in feature of the Prolog programming language (Pereira
& Warren 1980). The basis for such implementations is the concept of unification.
We say that any terms t1 and t2 of T unify if there is a simultaneous substitu-
tion of terms for variables in t1 and t2 which make these expressions identical.
If two terms unify, then there is a ‘most general’ unifier, which is unique up
to renaming of variables. In a DCG-parser, when a non-terminal A(u1, . . . , un) is
expanded by the production (8), the most general unifier of the terms A(u1, . . . , un)

and A(s1, . . . , sn) is first computed; if this unifier exists, all variable bindings thus
created are carried through to all the non-terminals B1(t̄1), . . . , Bm(t̄m), which are
then subject to expansion as before. Computing an explicit representation of the
most general unifier of two terms is computationally expensive, because that rep-
resentation is in general exponentially large in the size of the terms. However,
determining whether two terms unify is much easier (Paterson & Wegman 1978;
de Champeaux 1986):

THEOREM 16. The problem of determining whether two terms unify is in TIME(n + 1).

DCGs thus present an interesting object of study from a complexity-theoretic
point of view. We have:

THEOREM 17. The universal recognition problem for DCGs is undecidable. Indeed, there
is a DCG G such that L(G) is undecidable.
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Theorem 17 follows almost directly from Theorem 1, because the operation of any
Turing machine M can easily be simulated using a DCG in which the values of
variables are used to store configurations of M.

However, by imposing various reasonable constraints on DCGs, decidability
can be restored. Let us say that a production is consuming if the right-hand side
either consists of a single terminal or has a length of at least 2; and let us say
that a DCG is consuming if all its productions are. For example, the production
a(f(x))→a(x) is not consuming, because its right-hand side consists of a single non-
terminal; on the other hand, the DCG of Figure 2.3 is consuming. It is easy to show
that, if a consuming DCG accepts a string σ of length n, the resulting parse-tree
has at most 3n − 1 nodes, so decidability in this case should not be a surprise. In
fact, we have:

THEOREM 18. The universal recognition problem for consuming DCGs is NPTIME-
complete. Indeed, there exists a consuming DCG G such that L(G) is NPTIME-complete.

The upper bound in Theorem 18 follows from the following observations. Given
a consuming DCG G and a string σ of length n, we first guess a parse-tree
featuring at most 3n − 1 nodes. Each non-leaf node is labeled with the (unin-
stantiated) production of G responsible for generating it, and each leaf node is
labeled with a terminal, so as to form the string σ . (If the same production is
used at more than one non-leaf node, new copies are made containing fresh vari-
ables.) We need only check that the terms in the copies of the productions at
each node can be simultaneously unified in the obvious way. This check amounts
to determining the unifiability of two (polynomially large) terms, and can be
carried out in polynomial time by Theorem 16. The NPTIME-hardness of L(G)

for certain consuming DCGs G is easily shown by a simple reduction of the
satisfiability problem for propositional logic clauses; the result then follows by
Theorem 6.

Alternatively, we might say that a DCG is function-free if there are no func-
tion symbols in its productions. (Thus, the DCG featured in Figure 2.4 is not
function-free, because several of its productions feature the function symbol f.)
We have:

THEOREM 19. The universal recognition problem for function-free DCGs is EXPTIME-
complete. However, for any fixed function-free DCG G, L(G) is in PTIME.

Theorem 19 follows straightforwardly from the close connection between
function-free DCGs and the logic programming language DATALOG (see,
e.g., Libkin 2004, Chapter 10, or Dantsin et al., 2001). More generally, there is a
close connection between DCGs on the one hand and so-called fixed-point logics
on the other, which allows standard results from complexity theory to be carried
over to the study of DCGs. For example, Rounds (1988) describes two DCG-
like grammar frameworks, one able to recognize all and only the languages in
TIME(2n), the other able to recognize all and only the languages in PTIME. Rounds
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shows that the second of his two grammar frameworks is at least as expressive as
that of TAG (and its equivalents), mentioned above.

A more traditional grammar framework generalizing CFGs is that of the
context-sensitive grammars. A context-sensitive grammar (CSG) is like a CFG,
except that the productions are now of the form α → β, where α and β are strings
of symbols such that |α| ≤ |β|. These productions are interpreted as rewrite rules,
in much the same way as productions of a CFG. For comparison, note that, in a
CFG, all productions have the form A → β, where A is a non-terminal. Indeed,
if we assume (which we may without essential loss of generality) that produc-
tions in CFGs have non-empty right-hand sides, the condition |α| ≤ |β| is then
trivially satisfied, whence CFGs are a special case of CSGs. Recalling the equiva-
lence of languages and decision problems, it is routine to show that the class of
context-sensitive languages is exactly the complexity class NSPACE(n). In fact, we
have the following result concerning recognition complexity for context-sensitive
languages.

THEOREM 20. The universal recognition problem for CSGs is PSPACE-complete.
Indeed, there exists a CSG G such that L(G) is PSPACE-complete.

For a formal definition of context-sensitive grammars and a proof of Theorem 20,
see Hopcroft and Ullman (1979b: 223 and 347ff.). It was long conjectured that
the complement of a context-sensitive language is itself a context-sensitive lan-
guage. This conjecture was settled, positively, by Theorem 4, using the fact that
the context-sensitive languages coincide with NSPACE(n).

All the grammar frameworks examined so far have precise formal definitions,
which makes for a clear-cut complexity analysis. However, many mainstream
grammar frameworks which aspire to describe natural languages are much less
rigidly defined (and indeed much more liable to periodic revision); consequently,
it is harder to provide definitive results about computational complexity. Trans-
formational grammar is a case in point. Let us take a transformational grammar
to consist of two components: a CFG generating a collection of phrase-structure
trees – so-called deep structures – and a collection of transformations which map
these deep structures to other phrase-structure trees – so-called surface structures.
A string σ is accepted by G just in case σ can be read off the leaves of some sur-
face structure obtained in this way. Absent a formal specification of the sorts of
transformations allowed in transformational grammar, it is impossible to deter-
mine the complexity of its recognition problem. However, analyzing a version of
Chomsky’s aspects theory, Peters and Ritchie (1973) show the existence of trans-
formational grammars which can recognize undecidable languages. Certainly,
then, the universal recognition problem for transformational grammars (thus
understood) is undecidable. Other analyses of grammar frameworks in the trans-
formational tradition paint a picture of lower complexity, however. Thus, Berwick
and Weinberg (1984: 125ff.) analyze the complexity of government-binding gram-
mars, a formalization of the approach taken in Chomsky (1981), and show that
recognition complexity for such grammars is in the class PSPACE.
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2.4 Model-theoretic semantics
Recent trends in linguistics – particularly within the transformational
tradition – have shown a preference for specifying grammars not in terms of gener-
ative mechanisms but, rather, in terms of constraints to which sentence structures
are required to conform. On this view of grammar, a string σ is grammatical just
in case it has a structure which satisfies those constraints. How can we determine
the complexity of the recognition problem when grammars are presented in this
way? The answer is to employ a formal language: this formal language must be
powerful enough to express the constraints constituting the grammar in question,
and yet not so powerful that working with it leads to undecidable problems.

Monadic second-order logic (MSO) is a formal language containing two sorts of
variables: those ranging over objects (as in ordinary first-order logic), and those
ranging over sets of objects. For the moment, let us suppose that the ‘objects’ in
question are positions in a string σ over an alphabet Σ . We confine ourselves to
a language containing a unary atomic predicate s, for every s ∈ Σ , and binary
predicates ∈ and ≤. We now interpret these predicates over the set of positions in σ

as follows (we adopt the convention of using lowercase letters for object variables
and uppercase letters for set variables): x ∈ X means ‘x is a member of X’; x ≤ y
means ‘x is non-strictly to the left of y’; and s(x) means ‘position x is filled with
symbol s,’ for each s ∈ Σ . Formulas are built up from atomic formulas using
Boolean connectives and quantifiers (over both sorts of variables) in the normal
way. The standard semantics for these connectives then determines, for a given
formula ϕ (with no free variables) and a given string σ , whether ϕ is true in σ .
That is: any σ ∈ Σ∗ is a structure (in the logicians’ sense) interpreting the above
language.

On this view, we can think of an MSO-formula ϕ (with no free variables) as a
grammar: a string σ is accepted by ϕ just in case ϕ is true in σ . The following result
was proved by Büchi (1960).

THEOREM 21 (BÜCHI). A language is recognized by an MSO-formula if and only if it
is regular.

Now, this approach to defining languages using formulas of MSO can be gen-
eralized in the following way. Suppose we take our variables to range, not over
positions in strings, but over positions (nodes) in finite trees. (Think of the trees
in question as phrase structures of sentences.) And suppose we take our language
to feature the binary predicates ∈, �1, and �2, as well as unary predicates drawn
from a finite set of labels. These predicates are then interpreted as follows: x ∈ X
again means ‘x is a member of X’; x �1 y means ‘x is the mother of y’; x �2 y means
‘x is a left sister of y’; and s(x) means that x is labeled with s, for each label s. All
other formulas are then interpreted according to the usual semantics of MSO. In
this way, we can think of an MSO-formula ϕ (with no free variables) as licensing a
set of labeled trees: namely, the trees in which ϕ is true. It was shown by Thatcher
and Wright (1968) that the sets of trees (i.e., tree languages) recognized in this way
are – to within some additional labeling – the sets of trees generated by CFGs.
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Indeed, one can interpret MSO-formulas over ‘trees’ of higher dimensions,
obtaining grammar frameworks of still greater expressive power. This approach
to syntax is often referred to as model-theoretic syntax (Rogers 2003). Its appeal is
partly due to the fact that MSO can express many relationships dear to linguists’
hearts. For example, it is straightforward to write down a formula ϕC(x, y) which
is satisfied by nodes x and y in a tree just in case node x C-commands node y
in that tree. Rogers (2003) notes that some principles of Rizzi’s theory of rela-
tivized minimality (Rizzi 1990) can be expressed using formulas of the language
sketched above. From a complexity-theoretic point of view, this approach is inter-
esting because the problem of determining whether a formula of MSO is satisfiable
over finite trees is decidable (see, e.g., Börger et al., 1997: 315ff.):

THEOREM 22. The problem of determining the satisfiability of a formula of MSO over
finite trees is decidable, but has non-elementary complexity.

3 Complexity and Semantics

Most linguistic theories are more than a criterion for defining a set of acceptable
sentences: they also assign one or more levels of structure to those sentences which
they do accept. The question then arises as to the computational complexity of
recovering that structure.

Consider, for example, context-free grammars. Let G be a CFG. If σ ∈ L(G),
then G assigns to σ one or more phrase structures representing the derivation of
σ by the productions of G. It is easy to construct a CFG G for which there exists a
sequence {σn}n∈N of strings accepted by G, such that the length of σn is bounded
above by some polynomial function of n, while the number of phrase structures
which G assigns to σn is bounded below by an exponential function of n. That is:
the number of parses produced by a CFG G can grow exponentially. Nevertheless,
the set of phrase structures assigned to any string σ by G may always be compactly
represented in the form of an acyclic directed graph, which can be expanded into
a complete list of the phrase structures in question; moreover, using a variant of
the CYK or Earley algorithms, that compact representation may be computed in
time O(n3m). (Trivially, listing all the represented phrase structures will in general
take exponential time.) For a general discussion on the relationship between the
complexity of recognition and parsing, see Ruzzo (1979).

Arguably, determining the syntactic structure of a sentence is of little value
unless we can use that structure to recover the sentence’s meaning. The notion of
meaning in general is too vague to admit of immediate formal analysis. However,
we might sensibly begin with the more specific problem of recovering, at least
for certain fragments of natural languages, logical form, in the sense of producing
translations such as:

(9)
Every boy loves some girl who admires him
∀x(boy(x) → ∃y(girl(y) ∧ admire(y, x) ∧ love(x, y)))
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IP/y1(y2) → NP/y1 I′/y2
I′/y1 → is a N′/y1
I′/λx[¬y1(x)] → is not a N′/y1
NP/y1 → PropN/y1
NP/y1(y2) → Det/y1 N′/y2
N′/y1 → N/y1.

Det/λpλq[∃x(p(x) ∧ q(x))] → some
Det/λpλq[∀x(p(x) → q(x))] → every
Det/λpλq[∀x(p(x) → ¬q(x))] → no

N/cynic → cynic
N/philosopher → philosopher
. . .

PropN/λp[p(socrates)] → Socrates
PropN/λp[p(diogenes)] → Diogenes
. . .

Figure 2.5 Semantically annotated CFG generating the language of the syllogistic.

The framework of CFGs (and indeed the other grammar frameworks mentioned
above) can be modified to yield such logical forms. Approaches vary, but one
popular technique is to associate with each vocabulary item an expression of the
simply typed λ-calculus (STLC) representing its meaning, and to associate with
each production a prescription for combining the meanings of the items in its
right-hand side. In the following explanation, we assume basic familiarity with
STLC; for an in-depth account, the reader is referred to Hindley and Seldin (1986,
Chapter 13). A production in such a grammar has the form

A/ξ → B1/y1 . . . Bm/ym

where y1, . . . , ym are distinct variables, and ξ is an STLC-expression whose free
variables are confined to y1, . . . , yn. Such a production functions exactly as in
an ordinary CFG, except that the meaning of the phrase A is computed by
substituting the (already computed) meanings of the B1, . . . , Bm for all occur-
rences of the corresponding variables y1, . . . , ym in ξ , and then β-reducing. This
approach is, more or less, that championed by Montague (1974) (see Chapter 15,
Section 2.1). For an accessible modern treatment, including a relatively non-
technical explanation of the relevant aspects of higher-order logic, see Blackburn
& Bos (2005).

Consider, for example, the productions shown in Figure 2.5. The underlying
CFG evidently recognizes the sentence ‘Every cynic is a philosopher,’ via the
parse-tree shown in Figure 2.6. By computing the semantic values of each node
in that tree, as shown, the (expected) first-order translation

∀x(cynic(x)∧ → philosopher(x))

is eventually generated. In fact, the grammar of Figure 2.5 recognizes the set of
English sentences having the forms

⎧
⎪⎪⎨

⎪⎪⎩

⎧
⎨

⎩

Every
Some
No

⎫
⎬

⎭
L

S

⎫
⎪⎪⎬

⎪⎪⎭

{
is a
is not a

}

M,
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IP
∀x(cynic(x) → philosopher(x))

NP
λq[∀x(cynic(x) → q(x))]

Det
λpλq[∀x(p(x) → q(x))]

Every

N′
cynic

N
cynic

cynic

I′
philosopher

is a N′
philosopher

N
philosopher

philosopher

Figure 2.6 Meaning derivation in a semantically annotated CFG.

where S is a proper noun, and L and M are common nouns, yielding, in each case,
the expected translation into first-order logic. The question now arises: what is the
computational complexity of recovering logical forms in this way?

The answer depends on how, exactly, logical forms are allowed to be repre-
sented. If the underlying grammar G is a CFG, then the CYK or Earley algorithms
can again be modified to produce, in polynomial time, a compact representation of
all meanings which G assigns to a given string σ , just as for parse-trees. However,
these representations will not be β-reduced. That is, in order to produce ordi-
nary logical translations such as (9), we need to compute the normal forms for the
expressions which our parser yields. That these normal forms can be computed
follows at once from the normalization theorem for STLC, though the complexity
of the relevant function is high (Statman 1979):

THEOREM 23. The problem of deciding whether one expression in STLC is the normal
form of another has non-elementary complexity.

In practice, however, the normalization of semantic representations produced by
realistic semantically annotated CFGs is never a problem.

4 Determining Logical Relationships between
Sentences

Computing anything is of little use if nothing is then done with the results. And
while the uses to which humans put computed meanings may perhaps forever
remain lost in the mists of psycholinguistics, complexity theory does have some-
thing to say about the more definite subject of determining logical relationships
between sentences in natural language. That is the topic of this final section.
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That sentences in natural language exhibit interesting logical relationships was
recognized in antiquity. For example, the argument

(10)

Every logician is a philosopher
Some stoic is a logician
No dentist is a philosopher
Some stoic is not a dentist

is evidently valid: every possible situation in which the premises are true is one
in which the conclusion is true. Likewise valid, but less evidently so, is the
argument

(11)

Every skeptic recommends every skeptic to every cynic
No skeptic recommends any stoic who hates any cynic

to any philosopher
Diogenes is a cynic whom every skeptic hates
Every cynic is a philosopher
No stoic is a skeptic

Observe that argument (11) uses a wider variety of grammatical constructions
than argument (10), specifically: transitive and ditransitive verbs, as well as rel-
ative clauses. The question therefore arises as to how the difficulty of determining
logical relationships between sentences in naturally delineated fragments of natu-
ral languages depends on the grammatical resources included in those fragments.
Are ditransitive verbs really harder than transitive verbs? Passives harder than
actives? How much extra effort is required to deal with relative clauses (either
subject relatives or object relatives)? Is ‘donkey-anaphora’ more computationally
intensive than other forms of bound-variable anaphora? And so on.

Consider the grammar of Figure 2.5, which, as we saw in Section 3, yields the
language of the traditional syllogistic. In particular, this grammar recognizes all
the sentences in argument (10), and translates that argument to the first-order
sequent

∀x(logician(x) → philosopher(x))

∃x(stoic(x) ∧ logician(x))

∀x(dentist(x) → ¬philosopher(x))

∃x(stoic(x) ∧ ¬dentist(x))

Since the primary form-determining element in this fragment of English is the
copula, we refer to it as Cop. With translations into first-order logic at our disposal,
we can now formally characterize a notion of validity in this fragment. Specifically,
we take an argument in the fragment Cop to be valid just in case the first-order
sequent into which it is translated is valid according to the semantics of first-order
logic. Likewise, we take a set of sentences in Cop to be satisfiable just in case the set
of formulas to which they are translated is satisfiable according to the semantics
of first-order logic.
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I′/y1 → VP/y1
I′/y1 → NegP/y1
NegP/λx[¬y1(x)] → Neg VP/y1
VP/y1(y2) → TV/y1 NP/y2
Neg → does not

TV/λsλx[s(λy[admire(x, y)])]
→ admires

TV/λsλx[s(λy[despise(x, y)])]
→ despises

. . .

Figure 2.7 Productions for extending the syllogistic with transitive verbs.

Thus, the fragment Cop is more than a mere set of strings (the grammatical sen-
tences): it is a set of strings together with associated logical concepts of validity and
satisfiability. In particular, we may pose the satisfiability problem for Cop: given
a set E of sentences in Cop, determine whether E is satisfiable. Furthermore, since
every sentence in Cop is logically equivalent to the negation of some other, satisfi-
ability and validity are dual notions, in the familiar sense: an argument is valid just
in case its premises together with the negation of its conclusion are unsatisfiable.
Hence, the complexity of the validity problem for Cop can be read off immediately
from the complexity of the satisfiability problem.

It is routine to show that determining the satisfiability of a collection of sen-
tences in the fragment Cop is essentially the same as the problem of determining
the satisfiability of a collection of propositional clauses each of which contains at
most two literals. Recalling Theorem 8, we have:

THEOREM 24. The problem of determining the satisfiability of a set of sentences in Cop
is NLOGSPACE-complete.

It follows of course that the problem of determining the validity of an argument
in Cop is also NLOGSPACE-complete, by Theorem 4. This confirms our subjective
impression that this problem is nearly trivial.

What happens if we expand the fragment Cop? Let us define the fragment
Cop+TV to be the set of sentences recognized by the productions of Figure 2.5
together with those of Figure 2.7. (We have simplified the treatment by ignor-
ing verb inflections and negative-polarity determiners; these simplifications are
not computationally significant.) It is easy to see that this fragment contains the
following sentence, and translates it to the indicated first-order formula.

(12)
Every stoic hates every sceptic
∀x(stoic(x) → ∀y(sceptic(y) → hate(x, y)))

We need to address the issue of scope ambiguities in the context of Cop+TV. There
are two possibilities here: either we can resolve these ambiguities by fiat, tak-
ing subjects always to outscope objects; or we can augment the language with
some form of marking to indicate quantifier scope. For simplicity, we choose the
former course (though the latter would lead to essentially the same complexity
results). Similarly, let Cop+TV+DTV be the fragment which extends Cop with both
transitive and ditransitive verbs. (Writing the required productions is completely
routine.) Thus, Cop+TV+DTV contains the following sentence, and translates it to
the indicated first-order formula.
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(13)
No stoic recommends every sceptic to some cynic
∀x(stoic(x) → ¬∀y(sceptic(y) → ∃z(cynic(z) ∧ recommend(x, y, z))))

Again, we take subjects to outscope direct objects, and direct objects to outscope
indirect objects.

Is inference in these larger fragments more complex? The following two results
(substantially) answer this question.

THEOREM 25. The problem of determining the satisfiability of a set of sentences in
Cop+TV is NLOGSPACE-complete.

THEOREM 26. The problem of determining the satisfiability of a set of sentences in
Cop+TV+DTV is in PTIME.

The proofs of these theorems are more elaborate than for Cop; we refer the
reader to Pratt-Hartmann and Moss (2009) and Pratt-Hartmann and Third (2006)
respectively.

Returning to the fragment Cop, what happens if we now add relative clauses?
Thus, for example, we have the valid argument

Every philosopher who is not a stoic is an Epicurean
No Epicurean is a beekeeper
No stoic is a beekeeper
No philosopher is a beekeeper

It is straightforward to write a semantically annotated context-free grammar
accepting such sentences, and generating the obvious semantics. Let us call the
resulting fragment of English Cop+Rel (see Pratt-Hartmann 2004 for a formal def-
inition). The first-order formulas into which Cop+Rel sentences are translated all
have one variable – that is to say, they lie within the one-variable fragment of first-
order logic. The satisfiability problem for this fragment is essentially the same as
that for clauses of the propositional calculus. Thus, from Theorem 6:

THEOREM 27. The problem of determining the satisfiability of a set of sentences in
Cop+Rel is NPTIME-complete.

On the other hand, the fragment Cop+Rel+TV+DTV recognizes all the sentences
in argument (11), and translates them into the first-order sequent

∀x(sceptic(x) → ∀y(sceptic(y) → ∀z(cynic(z) → recommend(x, y, z))))
∀x(sceptic(x) → ¬∃y(stoic(y) ∧ ∃z(cynic(w) ∧ hate(y, w))∧

∃z(philosopher(z) ∧ recommend(x, y, z))))
cynic(diogenes) ∧ ∀x(sceptic(x) → hate(x, diogenes))
∀x(cynic(x) → philosopher(x))

∀x(stoic(x) → ¬sceptic(x))

Again, we have the question: does adding transitive and ditransitive verbs to
Cop+Rel lead to an increase in complexity? This time, the answer is yes.
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THEOREM 28. The problem of determining the satisfiability of a set of sentences in
Cop+Rel+TV is EXPTIME-complete.

THEOREM 29. The problem of determining the satisfiability of a set of sentences in
Cop+Rel+TV+DTV is NEXPTIME-complete.

Theorem 29 confirms our subjective impression that determining the validity of
argument (11) is harder than determining the validity of argument (10). For proofs
of the above theorems, see Pratt-Hartmann (2004) and Pratt-Hartmann and Third
(2006).

A remark is in order at this point to correct a false impression that the foregoing
discussion may have created. As we have observed, the complexity of determin-
ing entailments within a fragment of a natural language evidently depends on
the constructions made available by the syntax of that fragment. However, it also
depends, of course, on the presence in the lexicon of words with a ‘logical’ charac-
ter. Consider, for example, the effect of expanding the fragments Cop and Cop+TV
with numerical determiners, yielding sentences such as

(14) At least 13 artists are beekeepers

in the former case, and

(15) At most 5 carpenters admire at most 4 dentists

in the latter. Calling the resulting fragments Cop+Num and Cop+TV+Num, we
obtain the following results (Pratt-Hartmann 2008):

THEOREM 30. The problem of determining the satisfiability of a set of sentences in
Cop+Num is NPTIME-complete; the problem of determining the satisfiability of a set of
sentences in Cop+TV+Num is NEXPTIME-complete.

Thus, the complexity-theoretic impact of such numerical expressions is dramatic.
Finally, we consider the complexity-theoretic consequences of adding bound-

variable anaphora to our fragments. Consider the sentences

No artist admires any beekeeper who does not admire himself
No artist admires any beekeeper who does not admire him

It is routine to add grammar rules to Cop+Rel+TV producing the conventional
translations into first-order logic:

∀x(artist(x) → ∀y(beekeeper(y) ∧¬admire(y, y) → ¬admire(x, y)))

∀x(artist(x) → ∀y(beekeeper(y) ∧¬admire(y, x) → ¬admire(x, y)))

For such anaphoric fragments, two further issues regarding the first-order trans-
lations arise. First, we assume the (standard) universal interpretation of ‘donkey-
sentences’
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Every farmer who owns a donkey beats it
∀x∀y(farmer(x) ∧ donkey(y) ∧ own(x, y) → beat(x, y))

Second, we must decide how to treat anaphoric ambiguities. The sentence

(16) Every sceptic who admires a cynic despises every stoic who hates him

has two interpretations:

(17)
∀x(sceptic(x) ∧ ∃y(cynic(y)∧admire(x, y)) →

∀z(stoic(z) ∧ hate(z, x) → despise(x, z)))

(18)
∀x∀y(sceptic(x) ∧ cynic(y)∧admire(x, y) →

∀z(stoic(z) ∧ hate(z, y) → despise(x, z)))

according as the pronoun ‘him’ takes as antecedent the NP headed by ‘sceptic’ or
the NP headed by ‘cynic’. (The NP headed by ‘stoic’ is not available as a pronoun
antecedent here.)

Note that, in the (standard) phrase-structure tree for this sentence, the NP
headed by ‘sceptic’ is closer to the pronoun than is the NP headed by ‘cynic’. This
observation suggests making the artificial stipulation that pronouns must take their
closest allowed antecedents. Here, closest means ‘closest measured along edges of the
phrase-structure’ and allowed means ‘allowed by the principles of binding theory.’
(We ignore case and gender agreement.) Thus, under this stipulation, sentence (16)
has only the reading (17). Let the resulting fragment of English, with the stipula-
tion of closest available pronomial antecedents, be called Cop+Rel+TV+RA (‘RA’
for restricted anaphora).

Formula (17) can be equivalently written

∀x(sceptic(x) ∧ ∃y(cynic(y) ∧ admire(x, y)) →
∀y(stoic(y) ∧ hate(y, x) → despise(x, y)))

with the variable z replaced by y. The resulting formula has only two variables.
Indeed, it can be shown that every sentence of Cop+Rel+TV+RA translates into a
formula in the two-variable fragment of first-order logic. The satisfiability problem
for this fragment is known to be NEXPTIME-complete (see, e.g., Börger et al.,
1997, Chapter 8). Moreover, Cop+Rel+TV+RA can easily be shown to encode a
NEXPTIME-hard problem. Hence, we have:

THEOREM 31. The problem of determining the satisfiability of a set of sentences in
Cop+Rel+TV+RA is NEXPTIME-complete.

We mention in passing that the reduction of NEXPTIME-hard problems to satisfia-
bility for sets of Cop+Rel+TV+RA sentences does not require the use of sentences
featuring donkey-anaphora. However awkward such sentences may be for the
smooth running of formal semantics, they do not lead to more complex inferential
problems.
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The restriction that pronouns take their closest possible antecedents is essential
to the complexity bound of Theorem 31. As an alternative treatment of anaphoric
ambiguity, we might augment the sentences of Cop+Rel+TV+RA with indices
indicating antecedents in the normal way. Thus, for example, the sentence

Every sceptic1 who admires a cynic2 despises every stoic3 who hates him2

would have (18) as its only reading. Let the resulting fragment be denoted by
Cop+Rel+TV+GA (‘GA’ for general anaphora). It is possible to show:

THEOREM 32. The problem of determining the satisfiability of a set of sentences in
Cop+Rel+TV+GA is not decidable.

It seems clear that many more results of the kind outlined in this section await
discovery.

See also: Chapter 1, FORMAL LANGUAGE THEORY, Chapter 4, THEORY OF
PARSING, and Chapter 15, COMPUTATIONAL SEMANTICS.
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3 Statistical Language
Modeling

CIPRIAN CHELBA

Many practical applications such as automatic speech recognition, statistical
machine translation, and spelling correction resort to variants of the well-
established source-channel model for producing the correct string of words W
given an input speech signal, sentence in foreign language, or typed text with
possible mistakes, respectively. A basic component of such systems is a statis-
tical language model which estimates the prior probability values for strings of
words W.

1 Introduction to Statistical Language Modeling

A statistical language model estimates the prior probability values P(W) for
strings of words W in a vocabulary V whose size is in the tens, or hundreds of
thousands. Typically the string W is broken into sentences, or other segments such
as utterances in automatic speech recognition, which are assumed to be condition-
ally independent. For the rest of this chapter, we will assume that W is such a
segment, or sentence.

Estimating full-sentence language models is computationally hard if one seeks
a properly normalized probability model1 over strings of words of finite length in
V∗. A simple and sufficient way to ensure proper normalization of the model is
to decompose the sentence probability according to the chain rule and make sure
that the end-of-sentence symbol </s> is predicted with non-zero probability in
any context. With W = w1, w2, . . . , wn we get:

(1) P(W) =
n∏

i=1

P(wi|w1, w2, . . . , wi−1)

Since the parameter space of P(wk|w1, w2, . . . , wk−1) is too large, the language
model is forced to put the context Wk−1 = w1, w2, . . . , wk−1 into an equivalence
class determined by a function Φ(Wk−1). As a result,
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(2) P(W) ∼=
n∏

k=1

P(wk|Φ(Wk−1))

The word strings encountered in a practical application are of finite length. The
probability distribution P(W) should assign probability 0.0 to strings of words of
infinite length, and thus sum up to 1.0 over the set of strings of finite length –
the support of P(W). From a modeling point of view in a practical situation,
the text gets broken into sentences, and the language model needs to predict the
distinguished end-of-sentence symbol </s>. It can be easily shown that if the lan-
guage model is smooth, i.e., P(wk|Φ(Wk−1))> ε > 0, ∀wk, Wk−1, then we also have
P(</s>|Φ(Wk−1))> ε > 0, ∀Wk−1 which in turn ensures that the model assigns
probability 1.0 to the set of word sequences of finite length.

Research in language modeling consists of finding appropriate equivalence
classifiers Φ and methods to estimate P(wk|Φ(Wk−1)).

The most successful paradigm in language modeling uses the (n − 1)-gram
equivalence classification, that is, defines

Φ(Wk−1)
.= wk−n+1, wk−n+2, . . . , wk−1

Once the form Φ(Wk−1) is specified, only the problem of estimating
P(wk|Φ(Wk−1)) from training data remains.

In most cases, n = 3, which leads to a trigram language model. The latter
has been shown to be surprisingly powerful and, essentially, all attempts to
improve on it in the last 30 years have failed. The one interesting enhancement,
facilitated by maximum entropy estimation methodology, has been the use of
triggers (Rosenfeld 1994) or of singular value decomposition (Bellegarda 1997)
(either of which dynamically identify the topic of discourse) in combination with
n-gram models. Other widespread choices are class-based language models,
which further restrict the equivalence class of the context to Φ(Wk−1) to use
explicit equivalence classes on words, [w]; one can also predict the next word
using its class: P(wk|[Wk−1]) = P([wk]|[Wk−1]) · P(wk|[wk]), if the class member-
ship [w] is a function of w – a case referred to as hard clustering; if the class mem-
bership is ambiguous – soft clustering – one needs to sum over all possible class
assignments for both the context and predicted words.

1.1 Measures of language model quality

1.1.1 Perplexity A statistical language model can be evaluated by how well it
predicts a string of symbols Wt – commonly referred to as test data – generated by
the source to be modeled.

Assume we compare two models M1 and M2 using the same vocabulary2 V .
They assign probability PM1(Wt) and PM2(Wt), respectively, to the sample test
string Wt. The test string has been neither used nor seen at the estimation step of
either model and it was generated by the same source that we are trying to model.
‘Naturally,’ we consider M1 to be a better model than M2 if PM1(Wt) > PM2(Wt).
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A commonly used quality measure for a given model M is related to the entropy
of the underlying source and was introduced under the name of perplexity
(PPL) (Jelinek 1997):

(3) PPL(M) = exp

(

− 1
N

N∑

k=1

ln [PM(wk|Wk−1)]
)

To give intuitive meaning to perplexity, it represents the number of guesses the
model needs to make in order to ascertain the identity of the next word, when
running over the test word string from left to right. It can be easily shown that
the perplexity of a language model that uses the uniform probability distribution
over words in the vocabulary V equals the size of the vocabulary; a good language
model should of course have lower perplexity, and thus the vocabulary size is an
upper bound on the perplexity of a given language model.

Very likely, not all words in the test string Wt are part of the language model
vocabulary. It is common practice to map all words that are out-of-vocabulary to a
distinguished unknown word symbol, and report the out-of-vocabulary (OOV)
rate on test data – the rate at which one encounters OOV words in the test
string Wt – as yet another language model performance metric besides perplex-
ity. Usually the unknown word is assumed to be part of the language model
vocabulary – open vocabulary language models – and its occurrences are counted
in the language model perplexity calculated in equation (3). A situation far less
common in practice is that of closed vocabulary language models where all words
in the test data will always be part of the vocabulary V .

1.1.2 Task-specific measures In many practical applications the language
model is used as part of a larger statistical system, and the metrics for evaluating
such systems are dictated by the problem at hand. Typical applications that use
language models include, but are not restricted to: speech recognition, machine
translation, spelling correction, case restoration (true-casing), spam filtering, and
other text classification applications.

Although the language model performance in such a system is still reasonably
correlated with perplexity, this correlation is not always strong. A particular class
of systems is that using the source-channel paradigm, e.g., speech recognition or
machine translation: given an input sequence F of continuous or discrete valued
symbols, one wishes to determine the most likely word sequence W that would
give rise to it:

(4) arg max
W

P(W|F) = arg max
W

P(W) · P(F|W)

For such situations the discriminative power of the language model relative to the
channel model P(F|W) is what matters most, rather than performance in isolation
on correct text, as measured by perplexity.
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An intuitive explanation is that, during the search for the maximum scor-
ing word sequence in equation (4), the decoder examines a large set of word
sequences, each being accompanied by the channel model score P(F|W). Depend-
ing on the channel model quality, the language model may be asked the prob-
ability of n-grams that are rarely seen on correct text, and yet they may receive
a reasonably high language model probability under the maximum likelihood
estimate, instead of a strong negative vote of confidence.

Recent work demonstrates that significant performance gains can be obtained
by training the language model in this way (Collins 2000). For the particular
case of speech recognition, Chelba (2006) proposes an alternative to perplex-
ity named acoustic-sensitive perplexity as an objective function for evaluating
language models used in a source-channel setup.

1.2 Smoothing
Since the language model is meant to assign non-zero probability to unseen strings
of words (or, equivalently, ensure that the cross-entropy of the model over an
arbitrary test string is not infinite), a desirable property is that:

(5) P(wk|Φ(Wk−1)) > ε > 0, ∀wk, Wk−1

This is also known as the smoothing requirement.
A large body of work has accumulated over the years on various smooth-

ing methods for n-gram language models that ensure this to be true. The two
most widespread smoothing techniques are probably Kneser–Ney (1995) and Katz
(1987). Goodman (2001) is an excellent overview that is highly recommended to
any practitioner of language modeling.

A simple smoothing method for discrete probability models due to Jelinek and
Mercer (1980) is recursive linear interpolation among relative frequency estimates
of different orders fk(·), k = 0 . . . n using a recursive mixing scheme (see Figure 3.1).

Let U be the vocabulary in which the predicted random variable u (not
necessarily a word) takes values.

Pn(u|z1, . . . , zn) =
λ(z1, . . . , zn) · Pn−1(u|z1, . . . , zn−1) + (1 − λ(z1, . . . , zn)) · fn(u|z1, . . . , zn),

P−1(u) = uniform(U)

where:

• z1, . . . , zn is the context of order n when predicting u;
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fn (u|z1 ... zn)

fn–1 (u|z1 ... zn–1)

f0 (u)

P–1 (u) = 1/|U|
P0 (u)

Pn–1 (u|z1 ... zn–1)

Pn (u|z1 ... zn)

Figure 3.1 Recursive linear interpolation.

• fk(u|z1, . . . , zk) is the order-k relative frequency estimate for the conditional
probability P(u|z1, . . . , zk):

fk(u|z1, . . . , zk) = C(u, z1, . . . , zk)/C(z1, . . . , zk), k = 0 . . . n,

C(u, z1, . . . , zk) =
∑

zk+1∈Zk+1

. . .
∑

zn∈Zn

C(u, z1, . . . , zk, zk+1 . . . zn),

C(z1, . . . , zk) =
∑

u∈U
C(u, z1, . . . , zk);

• λ(z1, . . . , zk) ∈ [0, 1], k = 0 . . . n are the interpolation coefficients.

The λ(z1, . . . , zk) coefficients are grouped into equivalence classes – tied – based
on the range into which the count C(z1, . . . , zk) falls; the count ranges for each
equivalence class – also called buckets – are set such that a statistically suffi-
cient number of events (u|z1, . . . , zk) fall in that range. The approach is a standard
one (Jelinek & Mercer 1980). In order to determine the interpolation weights, we
apply the deleted interpolation technique:

(1) split the training data in two sets – development and cross-validation respec-
tively;

(2) get the relative frequency – maximum likelihood – estimates
fk(u|z1, . . . , zk), k = 0 . . . n from development data;

(3) employ the expectation-maximization (EM) algorithm (Dempster et al., 1977)
for determining the maximum likelihood estimate from cross-validation data
of the tied interpolation weights λ(C(z1, . . . , zk)).

The cross-validation data cannot be the same as the development data; if this were
the case, the maximum likelihood estimate for the interpolation weights would be
λ(C(z1, . . . , zk)) = 0, disallowing the mixing of different order relative frequency
estimates and thus performing no smoothing at all.

It is a simple exercise to cast such a language model as a back-off n-gram
model (Katz 1987).

As a final comment on LM smoothing, most of the techniques currently in use
(Katz, Kneser–Ney, etc.) have been developed for tasks using relatively small
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ARPA LM format with back-off rule for probability calculation:

p(wd3|wd1,wd2)=
if(trigram exists) p_3(wd1,wd2,wd3)
else if(bigram w1,w2 exists) bo_wt_2(w1,w2)*p(wd3|wd2)
else p(wd3|w2)

p(wd2|wd1)=
if(bigram exists) p_2(wd1,wd2)
else bo_wt_1(wd1)*p_1(wd2)

All probs and back-off weights (bo_wt) are given in log10 form.

Everything before the beginning of the data mark is a comment
Beginning of data mark: \data\ on a line by itself
End of data mark: \end\ on a line by itself
The data block is thus encoded as follows:

\data
ngram 1=nr # number of unigrams
ngram 2=nr # number of bigrams
ngram 3=nr # number of trigrams

\1-grams:
p_1 wd bo_wt_1

\2-grams:
p_2 wd1 wd2 bo_wt_2

\3-grams:
p_3 wd1 wd2 wd3

\end\

Figure 3.2 ARPA format for language model representation.

amounts of training data (1–100 million words). While the importance of LM
smoothing cannot be overemphasized, the impact of a particular choice for the
smoothing technique used in building a language model may become less impor-
tant as large amounts of training data become available for a task of interest (Brants
et al., 2007).

1.3 Language model representation in practice
A commonly accepted way of representing back-off n-gram models is the ARPA
format described in Figure 3.2, which we consider to be self-explanatory.

In many practical situations, including automatic speech recognition, it is
convenient to represent an n-gram language model as a finite state machine
(FSM) that drives the decoding (search) process. An excellent starting point is the
OpenFst toolkit (Allauzen et al., 2007).

In such a representation, the transitions are labeled with words in the lan-
guage model vocabulary, and the costs on such arcs are the language model
probabilities in an appropriate representation (usually as log-probabilities since
that also has computational advantages in terms of the precision of floating point



“9781405155816_4_003” — 2010/5/8 — 11:41 — page 80 — #7

80 Ciprian Chelba

operations); the states in the FSM are the n-gram contexts of the LM. We note that,
due to the smoothing constraint (see equation (5)), all VN−1 contexts of length
N − 1 would have to be represented, which is intractable for common vocabulary
sizes of 100,000 words or more. A widespread approximation used for represent-
ing back-off language models as FSMs is to use as states only the contexts listed
in the ARPA representation of the language model and to add back-off transitions
whose cost is the back-off weight. This reduces the LM state space drastically,
at a small cost in modeling accuracy – the LM representation is not exact, and
non-deterministic.

As increasing amounts of training data become available, it becomes of par-
ticular interest to reduce the number of parameters, as well as efficiently store
language models. The number of n-grams in an LM can be reduced while having
the least possible impact on model perplexity by using pruning techniques. They
range from simple count cut-off pruning (discarding n-grams whose count in the
training data is below a certain threshold) to the more sophisticated entropy-based
pruning techniques (Seymore & Rosenfeld 1996; Stolcke 1998). The interaction
between pruning and various smoothing techniques deserves a more careful
study, in particular for more aggressive pruning regimes. One such example is the
rapid deterioration of Kneser–Ney models with entropy pruning (Siivola et al.,
2007).

The use of a trie for storing n-gram back-off language models is well estab-
lished: the CMU (Rosenfeld 1995), SRILM (Stolcke 2002) toolkits, as well as others
(Whittaker & Raj 2001; Hsu & Glass 2008) all rely on it in one form or another.
Its refinement using array indexes instead of pointers for the trie representation
is also an established idea – it was implemented in later versions of the CMU
(Clarkson & Rosenfeld 1997) toolkit, as well as the more recent MITLM (Hsu &
Glass 2008). The array sizes are known in advance and can be pre-allocated to
avoid memory fragmentation.

The quantization of LogP/BoW values is also an established procedure for
reducing the storage requirements. The work in Whittaker and Raj (2001) applies
both techniques, and in addition makes the important connection between LM
pruning and compression/quantization. By representing LogP/BoWs on a vari-
able number of bits (codewords) at each n-gram order, quantizing recursively
the differences between actual LogP value and quantized back-off estimate, and
removing redundant n-grams using a similar criterion to Stolcke (1998) and
Seymore and Rosenfeld (1996), the authors show that the LM performance on an
ASR task can be preserved while dramatically reducing the memory footprint of
the model.

More recent approaches (Harb et al., 2009) enhance the standard use of integer
arrays to represent the trie by applying block compression techniques in order to
reduce the storage requirements for both skeleton and payload. The compression
methods used are lossless.

In a significant departure from traditional techniques, randomized encoding
schemes (Talbot & Osborne 2007; Talbot & Brants 2008) achieve excellent compres-
sion performance by using a lossy representation of the model. These can store
parameters in constant space per n-gram independent of either vocabulary size
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or n-gram order, but return an incorrect value for a ‘random’ subset of n-grams
of tunable size: the more errors allowed, the more succinct the encoding. In the
case of Talbot and Brants (2008), n-grams can also be looked up in constant time
independent of the compression rate. On the other hand, these schemes cannot
easily store a list of all future words for each n-gram context as required by certain
applications, e.g., when representing the language model as an FSM.

We conclude our introduction to language modeling (in particular n-gram
models) here. The rest of the chapter contains a presentation of the structured lan-
guage model (Chelba & Jelinek 2000). This novel language modeling approach
attempts to leverage n-gram modeling techniques in order to exploit the syn-
tactic structure exhibited by natural language. Section 2 outlines the underlying
probabilistic model and its estimation from training data annotated with syntac-
tic parse-tree information. Section 3 details experiments in an automatic speech
recognition setup, followed by Section 4 which presents refinements to the orig-
inal formulation in an attempt to better capture the syntactic dependencies in
language. Section 5 compares our approach to related ones, followed by conclu-
sions suggesting research directions for language modeling, and the structured
language model in particular.

2 Structured Language Model

As outlined in equation (2), a language model predicts the next word in a string of
words based on an equivalence classification of the word prefix Φ(Wk−1).

From a theoretical point of view, the finite-order Markov assumption on which
the estimation of n-gram models rests is inadequate for modeling the dependen-
cies in natural language. The main criticism is that such a model operates on the
surface of the word string, and ignores the more complex dependencies exhibited
in natural language syntax – best described using parse-trees. A more expressive
formal language that is able to take into account such dependencies is the class of
context-free grammars (CFGs).

The structured language model (SLM) we present addresses this problem by
using a parser for classifying the word prefix hierarchically and proposing several
possible equivalence classifications Φ l(Wk−1), l = 1 . . . N for a given word prefix
Wk−1, each accompanied by a probability P(Φ l(Wk−1)|Wk−1).

We wish to emphasize that the encoding for a word sequence together with a
parse-tree used by the SLM is different from that provided by a CFG. The excel-
lent study in Abney et al. (1999) contrasts CFGs and the class of probabilistic
push-down automata (to which the SLM belongs) from a learning, and power
of expression, point of view.

The remaining part of the SLM presentation is structured as follows: the basic
idea behind the hierarchical method for organizing the word prefix is outlined in
the next section. One main constraint imposed on it by the incremental operation
of the language model in a speech recognizer – see equation (1) – is that it has to
proceed left to right through the word sequence.
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ended_VBD cents_NNS after

cents_NP

of_PP

loss_NP

loss_NP

ended_VP’

with_PP

contract_NP

with_IN a_DT loss_NN of_IN 7_CDthe_DT contract_NN

Figure 3.3 Partial parse.

Section 2.2 presents a model that assigns probability to each possible pair
consisting of a word sequence and parse. This is then used to assign probabil-
ity P(Φ l(Wk−1)|Wk−1) to each equivalence classification of Wk−1 considered by
the model, and finally mix them to get a word-level probability P(wk|Wk−1), as
described in Section 2.4. A few shortcuts are introduced to make the compu-
tation feasible. Section 2.6 describes two successive stages of model parameters
re-estimation. Finally, Section 2.7 presents experiments carried out on the UPenn
Treebank corpus and compares the results of our approach to those obtained from
the 3-gram model.

2.1 Basic idea and terminology
Consider predicting the word after in the sentence: the contract ended
with a loss of 7 cents after trading as low as 9 cents. A 3-
gram approach has to predict after from (7, cents) whereas it is intuitively
clear that the strongest predictor would be (contract, ended) which is
outside the reach of even 7-grams.

The linguistically correct partial parse of the word history when predicting
after is shown in Figure 3.3; the word ENDED is called the headword of the
constituent (ENDED ended (WITH with (. . .))) and ENDED is an exposed head-
word when predicting after – topmost headword in the largest constituent that
contains it. A model that uses the two most recent exposed headwords would
predict after from CONTRACT, ENDED, in agreement with our intuition. Another intu-
itive argument in favor of the headword prediction is the fact that the headword
context is invariant to the removal of the (OF of (CENTS 7 cents)) constituent –
yielding a correct sentence – whereas the trigram predictor is not invariant to this
transformation.

Our working hypothesis is that syntactic structure filters out irrelevant words
and points to the important ones – exposed headwords – thus providing an equiv-
alence classification of the word prefix and enabling the use of long-distance
information when predicting the next word.
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h_0 = (h_0.word, h_0.tag)h_{–1}h_{–m} = (<s>, SB) h_{–2}

(<s>, SB) ....... (w_r, t_r) (w_{p –1}, t_{p –1}) (w_p, t_p) (w_{p+1}, t_{p+1}) ........ (w_k, t_k) w_{k+1}.... </s>

Figure 3.4 A word-and-parse k-prefix.

(<s>, SB) (w_1, t_1) ..................... (w_n, t_n) (</s>, SE)

(</s>, TOP)

........

(</s>, TOP’)

(</s>, TOP’)

Figure 3.5 Complete parse.

The SLM will attempt to build the syntactic structure incrementally while
traversing the sentence left to right. It will assign a probability to every word
sequence W and parse T – every possible POS tag assignment, binary branching
parse, non-terminal label, and headword annotation for every constituent of T.
The probability assignment is based on a simple encoding of the (W, T) pair that
is described in the next section.

2.1.1 Word sequence and parse encoding Let W be a sentence of length n
words to which we have prepended <s> and appended </s> so that w0 = <s> and
wn+1 = </s>. Let Wk = w0 . . . wk be the word k-prefix of the sentence and WkTk
the word-and-parse k-prefix. To stress this point, a word-and-parse k-prefix
contains only those binary subtrees whose span is completely included in
the word k-prefix, excluding w0 = <s>. Single words along with their POS
tag can be regarded as root-only trees. Figure 3.4 shows a word-and-parse
k-prefix; h_0. . .h_{-m} are the exposed heads, each head being a pair (head-
word, non-terminal label), or (word, POS tag) in the case of a root-only tree.
A complete parse – Figure 3.5 – is defined to be any binary parse of the
(<s>, SB) (w1, t1) . . . (wn, tn)(</s>,SE)3 sequence with the restrictions that:

• (</s>, TOP) is the only allowed head;
• (w1, t1) . . . (wn, tn) (</s>, SE) forms a constituent headed by (</s>,

TOP’).

Note that in a complete parse (w1, t1) . . . (wn, tn) need not form a constituent4 but,
for the parses where it does, there is no restriction on which of its words is the
headword or what the non-terminal label is that accompanies the headword. To
clarify this point, the constituents available at the time the end-of-sentence </s>
is predicted are attached to </s> under the TOP’ non-terminal tag. For example, a
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valid SLM parse is one in which each word in the sentence is a separate constituent
of span length one – corresponding to the regular n-gram model.

The model operates by means of three modules:

• WORD-PREDICTOR predicts the next word wk+1 given the word-and-parse
k-prefix and then passes control to the TAGGER;

• TAGGER predicts the POS tag of the next word tk+1 given the word-and-
parse k-prefix and the newly predicted word and then passes control to the
CONSTRUCTOR;

• CONSTRUCTOR grows the already existing binary branching structure by
repeatedly generating transitions from the set (unary, NTlabel), (adjoin-left,
NTlabel), or (adjoin-right, NTlabel) until it passes control to the PREDICTOR
by taking a null transition. NTlabel is the non-terminal label assigned to the
newly built constituent and {left, right} specifies where the new headword is
inherited from.5

The operations performed by the CONSTRUCTOR are illustrated in
Figures 3.6–3.8 and they ensure that all possible binary branching parses with
all possible headword and non-terminal label assignments for the w1 . . . wk word

<s>

T_{–m}

h_{–1} h_0h_{–2}

......... T_{–2} T_{–1} T_0

Figure 3.6 Before an adjoin operation.

...............

T’_0

T_{–1} T_0<s> T’_{–1} <–T_{–2}

h_{–1} h_0

h’_{–1} = h_{–2}

T’_{–m+1}<–<s>

h’_0 = (h_{–1}.word, NTlabel)

Figure 3.7 Result of adjoin-left under NTlabel.

............... T’_{–1} < – T_{–2} T_0

h_0h_{–1}

<s>

T’_{–m+1} < – <s>

h’_{–1} = h_{–2}

T_{–1}

h’_0 = (h_0.word, NTlabel)

Figure 3.8 Result of adjoin-right under NTlabel.
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PREDICTOR TAGGER

PARSER

predict word

tag word

adjoin_{left,right}

null

Figure 3.9 Language model operation as a finite state machine.

Transition t; // a CONSTRUCTOR transition
predict (<s>, SB);
do {

//WORD-PREDICTOR and TAGGER
predict (next_word, POStag);
//CONSTRUCTOR
do {

if (h_{-1}.word != <s>) {
if (h_0.word == </s>) {
t = (adjoin-right, TOP’);

} else {
if (h_0.tag is in set of NTlabels)
t = [(adjoin-{left,right}, NTlabel), null];

else
t = [(unary, NTlabel), (adjoin-{left,right}, NTlabel), null];

}
} else {
if (h_0.tag is in set of NTlabels)
t = null;

else
t = [(unary, NTlabel), null];

}
} while(t != null) //done CONSTRUCTOR

} while(!(h_0.word==</s> && h_{-1}.word==<s>))
t = (adjoin-right, TOP); //adjoin <s>_SB; DONE;

Figure 3.10 SLM operation.

sequence can be generated. The finite state machine in Figure 3.9 presents a
simplified operation of the model. Algorithm (10) below formalizes the above
description of the sequential generation of a sentence with a complete parse. The
unary transition is allowed only when the most recent exposed head is a leaf of
the tree – a regular word along with its POS tag – hence it can be taken at most
once at a given position in the input word string. The second subtree in Figure 3.4
provides an example of the structure that results from a unary transition followed
by a null transition.



“9781405155816_4_003” — 2010/5/8 — 11:41 — page 86 — #13

86 Ciprian Chelba

It is easy to see that any given word sequence with a complete parse – see
Figure 3.5 – and headword annotation is generated by a unique sequence of model
actions.6 Conversely, a generative model running according to algorithm (10) can
only generate a complete parse.

2.2 Probabilistic model
The language model operation provides an encoding of a given word sequence
along with a parse-tree (W, T) into a sequence of elementary model actions. In
order to obtain a correct probability assignment P(W, T) one has to simply assign
proper conditional probabilities to each transition in the finite state machine that
describes the model – see Figure 3.9.

The probability P(W, T) of a word sequence W and a complete parse T can be
calculated as:

P(W, T) =
n+1∏

k=1

[
P(wk|Wk−1Tk−1) · P(tk|Wk−1Tk−1, wk) · P

(
Tk

k−1

∣
∣Wk−1Tk−1, wk, tk

)]

P
(

Tk
k−1|Wk−1Tk−1

)
=

Nk∏

i=1

P
(

pk
i

∣
∣
∣Wk−1Tk−1, wk, tk, pk

1 . . . pk
i−1

)

where:

• Wk−1Tk−1 is the word-parse (k − 1)-prefix;
• wk is the word predicted by WORD-PREDICTOR;
• tk is the tag assigned to wk by the TAGGER;
• Tk

k−1 is the parse structure attached to Tk−1 that generates Tk = Tk−1 ‖ Tk
k−1; we

use ‖ to denote this particular concatenation operation;
• Nk − 1 is the number of operations the CONSTRUCTOR executes at position

k of the input string before passing control to the WORD-PREDICTOR (the
Nk-th operation at position k is the null transition); Nk is a function of T;

• pk
i denotes the i-th CONSTRUCTOR action carried out at position k in the word

string: pk
i ∈ { (adjoin-left, NTtag), (adjoin-right, NTtag)}, 1 ≤

i < Nk, pk
i = null, i = Nk.

Note that each
(
Wk−1Tk−1, wk, tk, pk

1 . . . pk
i−1

)
defines a valid word-parse

k-prefix WkTk at position k in the sentence, i = 1 . . . Nk.
To ensure a proper probabilistic model over the set of complete parses for any

sentence W, certain CONSTRUCTOR and WORD-PREDICTOR probabilities must
be given specific values:7

• P(null|WkTk) = 1, if h_{-1}.word = <s> and h_{0} �= (</s>, TOP’) –
that is, before predicting </s> – ensures that (<s>, SB) is adjoined in the
last step of the parsing process;
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• P((adjoin-right, TOP)|WkTk)= 1, if h_0 = (</s>, TOP’) and
h_{-1}.word = <s>
P((adjoin-right, TOP’)|WkTk)= 1, if h_0 = (</s>, TOP’) and
h_{-1}.word �= <s>
both ensure that the parse generated by our model is consistent with the
definition of a complete parse;

• ∃ε > 0 s.t. ∀Wk−1Tk−1, P(wk = </s>|Wk−1Tk−1)≥ ε ensures that the model
halts with probability 1, and thus is a proper probability model over strings
of words of finite length; once the end of sentence symbol </s> is gener-
ated, the model wraps up (completes) the parse with probability 1. In practice
smoothing (see equation (5)) makes sure this requirement is met.

2.2.1 Model component parameterization In order to be able to estimate the
model components we need to make appropriate equivalence classifications of
the conditioning part for each component. The equivalence classification should
identify the strong predictors in the context and allow reliable estimates from a
treebank. Our choice relies heavily on exposed heads: the experiments in Chelba
(1997) show that exposed heads are good predictors for the WORD-PREDICTOR
component of the language model; Collins (1996) shows that they are useful for
high accuracy parsing, making them the favorite choice for the CONSTRUCTOR
model as well; our experiments showed that they are also useful in the TAGGER
component model.8

P(wk|Wk−1Tk−1) = P(wk|[Wk−1Tk−1]) = P(wk|h0, h−1)(6)

P(tk|wk, Wk−1Tk−1) = P(tk|wk, [Wk−1Tk−1]) = P(tk|wk, h0.tag, h−1.tag)(7)

P
(

pk
i |WkTk

)
= P

(
pk

i |[WkTk]
)

= P
(

pk
i |h0, h−1

)
(8)

The above equivalence classifications are limited by the severe data sparseness
problem faced by the 3-gram model and by no means do we believe that they
cannot be improved upon, especially that used in CONSTRUCTOR model (8).
Richer equivalence classifications should use a probability estimation method that
deals better with sparse data than the one presented in Section 2.2.2.

It is worth noting that the 3-gram model belongs to the parameter space of our
model: if the binary branching structure developed by the parser were always
right-branching – the null transition has probability 1 in the CONSTRUCTOR
model – and we mapped the POS tag vocabulary to a single type, then our model
would become equivalent to a trigram language model.

2.2.2 Modeling tool All model components – WORD-PREDICTOR, TAG-
GER, CONSTRUCTOR – are conditional probabilistic models of the type
P(u|z1, z2, . . . , zn) where u, z1, z2, . . . , zn belong to a mixed set of words, POS
tags, NTtags, and CONSTRUCTOR actions (u only). The smoothing technique
of Jelinek and Mercer (1980) has been used for estimating all models.
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2.3 Pruning strategy
Since the number of parses for a given word prefix Wk grows faster than exponen-
tial9 with k, Ω(2k), the state space of our model is huge even for relatively short
sentences. We thus have to prune most parses without discarding the most likely
ones for a given prefix Wk. Our pruning strategy is a synchronous multi-stack
search algorithm.

Each stack contains hypotheses – partial parses – that have been constructed
by the same number of PREDICTOR and the same number of CONSTRUCTOR opera-
tions. The hypotheses in each stack are ranked according to the ln(P(Wk, Tk)) score,
highest on top. The ordered set of stacks containing partial parses with the same
number of PREDICTOR operations but different number of CONSTRUCTOR
operations is referred to as a stack-vector.

The amount of search is controlled by two parameters:

• the maximum stack depth – the maximum number of hypotheses the stack can
contain at any given time;

• log-probability threshold – the difference between the log-probability score of
the topmost hypothesis and the bottommost hypothesis at any given state of
the stack cannot be larger than a given threshold.

Figure 3.11 shows schematically the operations associated with the scanning of a
new word wk+1.10 First, all hypotheses in a given stack-vector are expanded with
the following word. Then, for each possible POStag the following word can take,
we expand the hypotheses further. Due to the finite stack size, some are discarded.
We then proceed with the CONSTRUCTOR expansion cycle, which takes place in
two steps:

(1) first all hypotheses in a given stack are expanded with all possible CON-
STRUCTOR actions excepting the null transition. The resulting hypotheses
are sent to the immediately lower stack of the same stack-vector – same
number of WORD-PREDICTOR operations and exactly one more CON-
STRUCTOR move. Some are discarded due to finite stack size;

(2) after completing the previous step, all resulting hypotheses are expanded
with the null transition and sent into the next stack-vector. Pruning can still
occur due to the log-probability threshold on each stack.

2.4 Left-to-right perplexity
To maintain a left-to-right operation of the language model, the probability
assignment for the word at position k + 1 in the input sentence was made using:

P(wk+1|Wk) =
∑

Tk∈Sk

P(wk+1|WkTk) · ρ(Wk, Tk),(9)

ρ(Wk, Tk) = P(WkTk)/
∑

Tk∈Sk

P(WkTk)
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p parser op

k+1 predict.

p+1 parser 

k+1 predict.
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Figure 3.11 One search extension cycle.

where Sk is the set of all parses present in our stacks at the current stage k. This
leads to the following formula for evaluating the perplexity:

L2R-PPL = exp

(

−1/N
N∑

i=1

ln
[
P

(
wi|Wi−1

)]
)

(10)

2.5 Separate left-to-right word predictor in the
language model

An important observation is that the next-word predictor probability P(wk+1|
WkTk) in (9) need not be the same as the WORD-PREDICTOR probability (6) used
to extract the structure Tk. Thus P(wk+1|WkTk) can be estimated separately. To be
more specific, we can in principle have a WORD-PREDICTOR model component
that operates within the parser model whose role is to strictly extract syntactic
structure and a second L2R-WORD-PREDICTOR model that is used only for the
left to right probability assignment:

(11) P2(wk+1|Wk) =
∑

Tk∈Sk

PWP(wk+1|WkTk) · ρ(Wk, Tk),
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ρ(Wk, Tk) = P(WkTk)
/ ∑

Tk∈Sk

P(WkTk)(12)

In this case the interpolation coefficient given by (12) uses the regular WORD-
PREDICTOR model whereas the prediction of the next word for the pur-
pose of word-level probability assignment is made using a separate model
PWP(wk+1|WkTk).

2.5.1 Initial parameters Each model component – WORD-PREDICTOR, TAG-
GER, CONSTRUCTOR – is initialized from a set of parsed sentences – a treebank –
after the parses undergo headword percolation and binarization, as explained
below.

Using the same notation as in the previous section, each binary parse-tree
(W, T) with headword annotation is decomposed into its derivation d(W, T).
Separately for each m-th model component, we then:

• gather joint counts C(m)(u(m), z(m)) from the derivations that make up the
development data – about 90 percent of the training data;

• estimate the interpolation coefficients on joint counts gathered from cross-
validation data – the remaining 10 percent of the training data – using the EM
algorithm (Dempster et al., 1977). The buckets used for tying the interpolation
weights are determined heuristically.

These are the initial parameters used with the re-estimation procedure
described in the previous section.

2.5.1.1 Headword percolation In order to obtain training data for our model, we
need to binarize the UPenn Treebank-style parse-trees and percolate headwords
(Marcus et al., 1993). The procedure used was to first percolate headwords using a
context-free (CF) rule-based approach and then binarize the parses by again using
a rule-based approach. Inherently a heuristic process, we were satisfied with the
output of an enhanced version of the procedure described in Collins (1996).

The procedure first decomposes a parse tree from the treebank into its phrase
constituents, identified solely by the non-terminal/POS labels. Within each con-
stituent we then identify the headword position and then, in a recursive third
step, we fill in the headword position with the actual word percolated up from the
leaves of the tree.

The headword percolation procedure is based on rules for identifying the head-
word position within each constituent. They are presented in Table 3.1.11 Let
Z → Y1 . . . Yn be one of the context-free (CF) rules that make up a given parse.
We identify the headword position as follows:

• identify in the first column of the table the entry that corresponds to the Z
non-terminal label;

• search Y1 . . . Yn from either left or right, as indicated in the second col-
umn of the entry, for the Yi label that matches the regular expressions
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Table 3.1 Headword percolation rules

TOP right _SE _SB
ADJP right <∼QP|_JJ|_VBN|∼ADJP|_$|_JJR>

<ˆ∼PP|∼S|∼SBAR|_.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>

ADVP right <_RBR|_RB|_TO|∼ADVP>

<ˆ∼PP|∼S|∼SBAR|_.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>

CONJP left _RB <ˆ_.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>

FRAG left <ˆ_.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>

INTJ left <ˆ_.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>

LST left _LS <ˆ_.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>

NAC right <_NNP|_NNPS|∼NP|_NN|_NNS|∼NX|_CD|∼QP|_VBG>

<ˆ_.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>

NP right <_NNP|_NNPS|∼NP|_NN|_NNS|∼NX|_CD|∼QP|_PRP|_VBG>

<ˆ_.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>

NX right <_NNP|_NNPS|∼NP|_NN|_NNS|∼NX|_CD|∼QP|_VBG>

<ˆ_.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>

PP left _IN _TO _VBG _VBN ∼PP
<ˆ_.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>

PRN left ∼NP ∼PP ∼SBAR ∼ADVP ∼SINV ∼S ∼VP
<ˆ_.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>

PRT left _RP <ˆ_.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>

QP left <_CD|∼QP> <_NNP|_NNPS|∼NP|_NN|_NNS|∼NX> <_DT|_PDT>

<_JJR|_JJ> <ˆ_CC|_.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>

RRC left ∼ADJP ∼PP ∼VP <ˆ_.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>

S right ∼VP <∼SBAR|∼SBARQ|∼S|∼SQ|∼SINV>

<ˆ_.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>

SBAR right <∼S|∼SBAR|∼SBARQ|∼SQ|∼SINV>

<ˆ_.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>

SBARQ right ∼SQ ∼S ∼SINV ∼SBAR <ˆ_.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>

SINV right <∼VP|_VBD|_VBN|_MD|_VBZ|_VB|_VBG|_VBP> ∼S ∼SINV
<ˆ_.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>

SQ left <_VBD|_VBN|_MD|_VBZ|_VB|∼VP|_VBG|_VBP>

<ˆ_.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>

UCP left <ˆ_.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>

VP left <_VBD|_VBN|_MD|_VBZ|_VB|∼VP|_VBG|_VBP>

<ˆ_.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>

WHADJP right <ˆ_.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>

WHADVP right _WRB <ˆ_.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>

WHNP right _WP _WDT _JJ _WP$ ∼WHNP
<ˆ_.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>

WHPP left _IN <ˆ_.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>

X right <ˆ_.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>

listed in the entry; the first matching Yi is going to be the headword of
the (Z (Y1 . . .) . . . (Yn . . .)) constituent; the regular expressions listed in one
entry are ranked in left-to-right order: first we try to match the first one, if
unsuccessful we try the second one, and so on.
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Figure 3.12 Binarization schemes.

A regular expression of the type <_CD|~QP> matches any of the con-
stituents listed between angular parentheses. < ... > are used for constituent
types which are desired as headwords, whereas <^ ... > are used for con-
stituent types which are not acceptable as headwords. For example, the
<^_.|_,|_’’|_‘‘|_‘|_’|_:|_LRB|_RRB> regular expression will match any
constituent that is not – list begins with <^ – among any of the elements in the list
between <^ and >, in this case any constituent which is not a punctuation mark is
eligible to be a headword. The terminal labels – POS tags – have _ prepended to
them – as in _CD; the non-terminal labels have the ~ prefix – as in ~QP; | is merely
a separator in the list.

2.5.1.2 Binarization Once the position of the headword within a constituent is
identified to be k, we binarize the constituent – equivalent with a CF production
of the type Z → Y1, . . . Yn, where Z, Y1, . . . Yn are non-terminal labels or POS tags
(only Yi can be a POS tag) – as follows: a fixed rule is used to decide which of the
two binarization schemes in Figure 3.12 to apply depending only on the value of
Z. The intermediate nodes created by the above binarization schemes receive the
non-terminal label Z′.

The choice among the two schemes is made according to the list of rules pre-
sented in Table 3.2, based on the identity of the label on the left-hand side of a CF
rewrite rule. Notice that whenever k = 1 or k = n – a case which is very frequent –
the two schemes presented above yield the same binary structure.

Another problem when binarizing the parse-trees is the presence of unary pro-
ductions. Our model allows unary productions of the type Z → Y only, where Z
is a non-terminal label and Y is a POStag. The unary productions Z → Y where
both Z and Y are non-terminal labels were deleted from the treebank, only the Z
constituent being retained: (Z (Y (.) (.))) becomes (Z (.) (.)).

Binarization brings the training data parse-trees to Chomsky normal form,
and renders them suitable for the next stage of parameter estimation in our
statistical model. Each tree is fed as input to the finite state machine that describes
the model – see Figure 3.9. Each transition generates an n-gram event for one of
the model components.

2.6 Model parameter re-estimation
As outlined in Section 2.4, the word-level probability assigned to a training/test
set by our model is calculated using the proper word-level probability assignment
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Table 3.2 Binarization rules

## first column : constituent label
## second column: binarization type : A or B
TOP A
ADJP B
ADVP B
CONJP A
FRAG A
INTJ A
LST A
NAC B
NP B
NX B
PP A
PRN A
PRT A
QP A
RRC A
S B
SBAR B
SBARQ B
SINV B
SQ A
UCP A
VP A
WHADJP B
WHADVP B
WHNP B
WHPP A
X B

in equation (9). An alternative which leads to a deficient probability model is to
sum over all the complete parses that survived the pruning strategy.

The estimation procedure of the SLM parameters takes place in two stages:

(1) the N-best training algorithm (see Section 2.6.1) is employed to increase
the training data ‘likelihood’ calculated using the deficient sum-probability
assignment. The initial parameters for this first estimation stage are gath-
ered from a treebank. The perplexity is still evaluated using the formula in
equation (9);

(2) estimate a separate L2R-WORD-PREDICTOR model such that the likelihood
of the training data according to the probability assignment in equation (11)
is increased. The initial parameters for the L2R-WORD-PREDICTOR compo-
nent are obtained by copying the WORD-PREDICTOR estimated at stage one.
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As a final step in refining the model we have linearly interpolated the structured
language model (9) with a trigram model.

Section 2.6.1 presents the basic idea behind the N-best training stage.
Section 2.6.2 presents the training of a separate L2R-WORD-PREDICTOR model –
the second re-estimation stage.

2.6.1 N-best EM re-estimation We would like to estimate the model compo-
nent probabilities (6–8) such that the likelihood of the training data is increased.
Since our problem is one of maximum likelihood estimation from incomplete
data – the parse structure along with POS/NT tags and headword annotation for
a given observed sentence is hidden – our approach makes use of the expectation-
maximization algorithm (EM) (Dempster et al., 1977). Two specific modifications
we make are:

• E-step: instead of scanning all the hidden events allowed – parses T – for a
given observed one – sequence of words W – we restrict the algorithm to oper-
ate with N-best hidden events;12 the N-best are determined using the search
strategy described in Section 2.3. For a presentation of different modifications
to the EM, the reader is referred to Byrne et al. (1998).

• M-step: assuming that the count ranges and the corresponding interpolation
values for each order are kept fixed to their initial values – see Section 2.5.1 –
the only parameters to be re-estimated using the EM algorithm are the maximal
order counts C(m)(u, z1, . . . , zn) for each model component. The interpolation
scheme outlined in Section 2.2.2 is then used to obtain a smooth probability
estimate for each model component.

The derivation of the re-estimation formulas, the initial parameter values and
further comments and experiments on the first model re-estimation stage are
presented in Chelba and Jelinek (2000).

2.6.2 Second stage parameter re-estimation Once the model is trained accord-
ing to the procedure described in the previous section, we proceed into a
second stage of parameter re-estimation. In order to improve performance, we
develop a model to be used strictly for word prediction – see (11) – different
from the WORD-PREDICTOR model (6). We will call this new component the
L2R-WORD-PREDICTOR.

In order to train this fourth model component, the key step is to recognize in (11)
a hidden Markov model (HMM) with fixed transition probabilities – although
dependent on the position in the input sentence k – specified by the ρ(Wk, Tk)

values.
The E-step of the EM algorithm (Dempster et al., 1977) for gathering joint

counts C(m)(y(m), x(m)), L2R-WORD-PREDICTOR-MODEL, is the standard one
whereas the M-step uses the same count smoothing technique as that described
in Section 2.6.1. The second re-estimation step operates directly on the LL2R(C, Pθ )

likelihood.
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The second re-estimation pass is seeded with the WORD-PREDICTOR model
joint counts C(m)(y(m), x(m)) resulting from the first parameter re-estimation pass
(see Section 2.6.1).

2.7 UPenn Treebank perplexity results
During the original development of the SLM we chose to work on the UPenn
Treebank corpus (Marcus et al., 1993) – a subset of the WSJ (Wall Street Journal) cor-
pus. This is a well-known corpus and the existence of a manual treebank makes it
ideal for our experiments.

Unless specified otherwise in a specific section, the vocabulary sizes were:

(1) word – also WORD-PREDICTOR operation – vocabulary: 10,000, open – all
words outside the vocabulary are mapped to the <unk> token;

(2) POStag – also TAGGER operation – vocabulary: 40,000, closed;
(3) non-terminal tag vocabulary: 52,000, closed;
(4) CONSTRUCTOR operation vocabulary: 107,000, closed.

The training data was split into:

(1) development set (929,564 words (sections 00–20));
(2) cross-validation set (73,760 words (sections 21–2));
(3) test set (82,430 words (sections 23–4).

The development and cross-validation sets were used strictly for initializing the
model parameters as described in Section 2.5.1 and then with the re-estimation
techniques described in Sections 2.6.1 and 2.6.2.

The parameters controlling the search – see Section 2.3 – were set to:
maximum-stack-depth = 10 and LnP-threshold = 6.91.

As explained in Section 2.6.1, the first stage of model parameter re-estimation
re-evaluates the maximal order counts for each model component.

Each iteration involves parsing the entire training data which is a time-
consuming process – about 60 hours of Sun Sparc Ultra-2 CPU-time. Table 3.3
shows the results of the re-estimation iterations; E0-3 denote iterations of the
re-estimation procedure described in Section 2.6.1; L2R0-5 denote iterations of
the re-estimation procedure described in Section 2.6.2. A deleted interpolation tri-
gram model derived from the same training data had perplexity 167.14 on the
same test data.

Simple linear interpolation between our model and the trigram model:

Q(wk+1/Wk) = λ · P(wk+1/wk−1, wk) + (1 − λ) · P(wk+1/Wk)

yielded a further improvement in PPL, as shown in Table 3.4. The interpolation
weight was estimated on check data to be λ = 0.36. An overall relative reduction
of 11 percent over the trigram model has been achieved.
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Table 3.3 Parameter re-estimation results

Iteration DEV set TEST set
number L2R-PPL L2R-PPL

E0 24.70 167.47
E1 22.34 160.76
E2 21.69 158.97
E3 21.26 158.28
L2R0 (=E3) 21.26 158.28
L2R5 17.44 153.76

Table 3.4 Interpolation with trigram results

TEST set PPL
Iteration
number λ = 0.0 λ = 0.36 λ = 1.0

E0 167.47 152.25 167.14
E3 158.28 148.90 167.14
L2R0 (=E3) 158.28 148.90 167.14
L2R5 153.76 147.70 167.14

2.7.1 Maximum depth factorization of the model The word-level probability
assignment used by the SLM can be thought of as a model factored over different
maximum reach depths. Let D(Tk) be the depth in the word prefix Wk at which the
headword h−1.word can be found:

(13) P(wk+1|Wk) =
d=k∑

d=0

P(d|Wk) · P(wk+1|Wk, d),

where:

P(d|Wk) =
∑

Tk∈Sk

ρ(Wk, Tk) · δ(D(Tk), d)

P(wk+1|Wk, d) =
∑

Tk∈Sk

P(Tk|Wk, d) · P(wk+1|Wk, Tk)

P(Tk|Wk, d) = ρ(Wk, Tk) · δ(D(Tk), d)/P(d|Wk)

We can interpret equation (13) as a linear interpolation of models that reach back
to different depths in the word prefix Wk. The expected value of D(Tk) shows how
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Table 3.5 Maximum depth evolution
during training

Iteration number Expected depth E[D]

E0 3.35
E1 3.46
E2 3.45

far the SLM reaches in the word prefix:

ESLM[D] = 1/N
k=N∑

k=0

d=k∑

d=0

d · P(d|Wk)(14)

For the 3-gram model we have E3−gram[D] = 2. We evaluated the expected depth
of the SLM using the formula in equation (14). The results are presented in
Table 3.5.

It can be seen that the memory of the SLM is considerably higher than that of
the 3-gram model – whose depth is 2.

Figure 3.13 shows13 the distribution P(d|Wk), averaged over all positions k in
the test string:

P(d|W) = 1/N
N∑

k=1

P(d|Wk)

It can be seen that the SLM makes a prediction which reaches farther than the
3-gram model in about 40 percent of cases, on the average.

2.7.1.1 Non-causal ‘Perplexity’ Attempting to calculate the conditional perplex-
ity by assigning to a whole sentence the probability:

P(W|T∗) =
n∏

k=0

P
(
wk+1

∣
∣WkT∗

k
)

,(15)

where T∗ = argmaxTP(W, T) – the search for T∗ being carried out according to
our pruning strategy – is not valid because it is not causal: when predicting wk+1
we would be using T∗ which was determined by looking at the entire sentence.
In order to have a valid perplexity calculation we would need to factor in the
uncertainty of guessing the prefix of the final best parse T∗

k before predicting wk+1,
based solely on the word prefix Wk.

However, the perplexity value calculated using (15) is an indication of the lower
bound for the achievable perplexity of our model; for the above search parameters
and E0 model statistics this bound was 98, corresponding to a relative reduction
of 40 percent over the perplexity of the 3-gram model. For comparison, the value
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Figure 3.13 Structured language model maximum depth distribution.

when conditioning on the manual parses in the UPenn Treebank – which was used
to get the E0 statistics – was 115. This shows that the parses found by our model
are better predictors – under the exposed heads parameterization – than those in
the treebank.

This suggests that a better parameterization in the SLM – one that reduces
the entropy H(ρ(Tk|Wk)) of guessing the ‘good’ parse given the word prefix –
would lead to a better model. Indeed, as we already pointed out, the trigram
model is a particular case of our model for which the parse is always right-
branching and we have no POS/NT tag information, leading to H(ρ(Tk|Wk)) = 0
and a standard 3-gram WORD-PREDICTOR. The 3-gram model is thus an
extreme case of the structured language model: one for which the ‘hidden’
structure is a function of the word prefix. Our result shows that better mod-
els can be obtained by allowing richer ‘hidden’ structure – parses – and that
a promising direction of research is to find the best compromise between the
predictive power of the WORD-PREDICTOR – measured by H(wk+1|Tk, Wk)) –
and the ease of guessing the most desirable hidden structure Tk|Wk –
measured by H(ρ(Tk|Wk)) – on which the WORD-PREDICTOR operation is based.
The re-estimation procedure we presented is one such method.
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3 Speech Recognition Lattice Rescoring Using the
Structured Language Model

The SLM was developed primarily for use in speech recognition. A simple way to
evaluate a complex language model in such applications is a two-pass recognition
approach:

• a computationally cheap decoding step is run as the first pass;
• a set of hypotheses is retained as an intermediate result;
• a more sophisticated recognizer is run over these in a second pass – usually

referred to as the rescoring pass.

The search space in the second pass is much more restricted compared to the first
pass so we can afford to use better – usually also computationally more intensive –
acoustic and/or language models.

The two most popular two-pass strategies differ mainly in the number of inter-
mediate hypotheses saved after the first pass and the form in which they are
stored.

In the so-called N-best rescoring method,14 a list of complete hypotheses along
with acoustic/language model scores are retained and then rescored using more
complex acoustic/language models.

Due to the limited number of hypotheses in the N-best list, the second pass
recognizer might be too constrained by the first pass so a more comprehensive
list of hypotheses is often needed. The alternative preferred to N-best list rescor-
ing is lattice rescoring (Aubert et al., 1994). The intermediate format in which the
hypotheses are stored is a directed acyclic graph in which the nodes are a subset
of the language model states in the composite hidden Markov model and the arcs
are labeled with words. Typically, the first pass acoustic/language model scores
associated with each arc – or link – in the lattice are saved and the nodes contain
time alignment information.

Compared to N-best lists, lattices typically offer a higher density of paths for a
given graph size (measured in number of arcs/nodes). For both cases one can cal-
culate the ‘oracle’ word error rate (WER): the word error rate along the hypothesis
with the minimum number of errors. The oracle WER decreases with the number
of hypotheses saved; thinking of it as an ‘achievable’ WER is misleading, since there
may not exist an AM/LM in the class of models used that can actually select the
word sequence attaining it.

Of course, a set of N-best hypotheses can be assembled as a lattice, the difference
between the two being just in the number of different hypotheses – with differ-
ent time alignments – stored in the lattice. One reason which makes the N-best
rescoring framework attractive is the possibility to use ‘whole sentence’ language
models: models that are able to assign a score only to complete sentences due
to the fact that they do not operate in a left-to-right fashion. The drawbacks are
that the number of hypotheses explored is too small and their quality reflects the
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models used in the first pass. To clarify the latter assertion, assume that the second
pass language model is dramatically different from the one used in the first pass
and that if we extracted the N-best list using the second (better) language model,
different kinds of errors, specific to this language model, would be observed. In
that case, simple rescoring of the N-best list generated using the weaker language
model may prevent the stronger language model from showing its merits.

It is thus desirable to have as complete a sample as possible of the possible word
hypotheses – not biased towards a given model – and one of a manageable size.
This is what makes lattice rescoring the chosen method in our case.

There are several reasons that make A∗ appealing for lattice decoding using the
SLM:

• the lattice can be conceptually structured as a prefix tree of hypotheses –
the time alignment is taken into consideration when comparing two-word
prefixes;

• the algorithm operates with whole prefixes x, making it ideal for incorporating
language models whose memory is the entire utterance prefix;

• a reasonably good overestimate h(y|x) and an efficient way to calculate hL(x)

are readily available using the n-gram language model.

We have applied the SLM for rescoring lattices on both Wall Street Journal (WSJ)
and Switchboard (SWB). The word error rate reduction over a state-of-the-art
3-gram model was:

• 1% absolute (10.6% to 9.6%, 9% relative) on WSJ;
• 1% absolute (41.3% to 40.3%, 2% relative) on SWB.

We have also evaluated the perplexity reduction relative to a standard deleted
interpolation 3-gram trained under the same conditions as the SLM. We have achieved
a relative reduction in PPL of 15 percent and 5 percent on WSJ and SWB
respectively.

4 Richer Syntactic Dependencies

The statistical parsing community have used various ways of enriching the depen-
dency structure underlying the parameterization of the probabilistic model used
for scoring a given parse-tree (Collins 1999; Charniak 2000). Recently, such mod-
els (Charniak 2001; Roark 2001a) have been shown to outperform the SLM in
terms of both PPL and WER on the UPenn Treebank and WSJ corpora respec-
tively. In Chelba (2001), a simple way of enriching the probabilistic dependencies
in the CONSTRUCTOR component of the SLM also showed better PPL and WER
performance; the simple modification to the training procedure brought the WER
performance of the SLM to the same level with the best reported in Roark (2001a).
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Figure 3.14 Comparison of PPL, WER, labeled recall/precision error.

The work reported in Xu et al. (2002) presents three simple ways of enriching
the syntactic dependency structure in the SLM, extending on the work in Chelba
(2001). The results show that indeed a good parser (as measured by LP/LR) is
helpful in reducing the PPL and WER. Another remarkable fact is that a lan-
guage model exploiting elementary syntactic dependencies obviates the need for a
3-gram model in N-best rescoring.

In particular, the best-performing enriching scheme achieved a 0.4 percent abso-
lute WER reduction over the performance of the standard SLM. Overall, the
enriched SLM achieves 10 percent relative reduction in WER over the 3-gram
model baseline result.

The enriched SLM outperformed the 3-gram used to generate the lattices and
N-best lists, without interpolating it with the 3-gram model. Although the N-best
lists are already highly restricted by the 3-gram model during the first recognition
pass, this fact still shows the potential of a good grammar-based language model,
especially when the SLM was trained on 20 million words of WSJ, while the lattice
3-gram model was trained on 45 million words of WSJ text. Our results are not
indicative of the performance of SLM as a first pass language model.

It is very interesting that labeled recall and language model performance
(WER/PPL) are well correlated. Figure 3.14 compares PPL, WER (λ = 0.0 at train-
ing iteration 0), and labeled precision/recall error (100-LP/LR) for all models.
Overall, the labeled recall is well correlated with the WER and PPL values. We
believe that these results show that improvements in parser accuracy are expected
to lead to improvements in WER.
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5 Comparison with Other Approaches

The SLM shares many features with both class-based language models (Brown
et al., 1992) and skip n-gram language models (Rosenfeld 1994); an interesting
approach combining class-based language models and different order skip-bigram
models is presented in Saul and Pereira (1997). It seems worthwhile to make two
comments relating the SLM to these approaches.

The smoothing involving NT/POS tags in the WORD-PREDICTOR is similar
to a class-based language model using NT/POS labels for classes. We depart,
however, from the usual approach by not making the conditional independence
assumption P(wk+1|wk, class(wk)) = P(wk+1|class(wk)). Also, in our model, the ‘class
assignment’ – through the heads exposed by a given parse Tk for the word prefix
Wk and its ‘weight’ ρ(Wk, Tk), see equation (9) – is:

• highly context-sensitive – it depends on the entire word prefix Wk;
• is randomized – a few equivalence classes are extracted from each context, each

weighted by ρ(Wk, Tk);
• and is syntactically motivated through the operations of the CONSTRUCTOR.

We also found the POS/NT labels in the PREDICTOR equivalence classification to
be useful for better word prediction.

Recalling the depth factorization of the model in equation (13), our model can
be viewed as a skip n-gram where the probability of a skip P(d0, d1|Wk) – d0, d1 are
the depths at which the two most recent exposed headwords h0, h1 can be found,
similar to P(d|Wk) – is highly context-sensitive. Note that the hierarchical scheme
for organizing the word prefix allows for contexts that do not necessarily consist
of adjacent words, as in regular skip n-gram models.

6 Conclusion

Among the directions which we consider worth exploring in the future for
improving the structured language model, there are:

• automatic induction of the SLM initial parameter values;
• study of other binarization schemes, in particular left-corner ones promise to

be extremely suitable to the SLM operation;
• better integration of the 3-gram model and the SLM;
• better parameterization of the model components;
• study of the interaction between SLM and other language modeling techniques

such as cache and trigger or topic language models.

In the broader scope, a couple of important and promising directions in
statistical language modeling are:
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• language model adaptation: how to leverage data sources that may not be
fully matched to a scenario of interest; finding relevant data to be used in an
adaptation setup (Berger & Miller 1998) is of course equally important;

• discriminative training for language models – n-gram or more general ones –
used in a source-channel paradigm.

Of particular interest is a direction worth highlighting separately: scalability.
Scaling to very large training data sets and language models, along the lines
of Brants et al. (2007), is a significant disruption as far as modeling techniques
are concerned. Many techniques developed on small to medium data sets (10–
100 million words) may lose their edge, while others prove valuable by being
more effective learners. Computational issues aside, the rate at which a given
model improves when presented with increasing amounts of relevant training
data becomes a critical aspect in such a data-rich regime. Despite its simplis-
tic treatment of natural language, the n-gram model is extremely successful in
practice, not least because of its ability to easily make use of large amounts of
data. Techniques that attempt to model language better need to balance modeling
power with simplicity in order to scale well with increasing amounts of data.

Finally, it is worth putting in perspective the fact that in a source-channel
approach (see equation (4)), the language model is nothing more than a prior guess
on the word sequence W, which completely disregards the input signal F. As
such, its ability to reduce the conditional entropy H(W|F) is expected to be lim-
ited, especially when the channel model is poor and provides limited information
about the W string that gave rise to the signal F. An intuitive explanation is that
the language model is our best guess for what the user might say or type at the
input of an automatic speech recognition or statistical machine translation system
respectively, before the input speech, or sentence F, is revealed!

From this point of view, it is unrealistic to expect a large impact on performance
coming from the language model alone; it can do so to the extent that it comple-
ments the channel model well. Speculatively comparing the impact of similar-size
language models across different applications (ASR, SMT, spelling correction) and
similar tasks seems to support this view. The SMT noisy channel constrains the
choice of output words much more than the ASR one: the latter starts from a pres-
sure wave instead of a sentence in foreign language. As such, the sensitivity of
SMT accuracy to LM performance is generally higher than in ASR. The same rela-
tionship seems to hold when comparing similar LMs used in spelling correction
and SMT, the former being a more constrained noisy channel.
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NOTES

1 We note that in some practical systems the constraint on using a properly normalized
language model is sidestepped at a gain in modeling power and simplicity.

2 Language models estimated on different vocabularies cannot be directly compared
using perplexity, since they model completely different probability distributions.

3 SB/SE is a distinguished POS tag for sentence begin and end respectively.
4 The set of complete parses is a superset of the parses in the UPenn Treebank which

insist that (w1, t1) . . . (wn, tn) forms a constituent.
5 Obviously, the headword origin after a unary transition is fully determined.
6 This will prove very useful in initializing our model parameters from a treebank – see

Section 2.5.1.
7 The set of constraints on the probability values of different model components is

consistent with algorithm 10.
8 Since the word to be tagged is in itself a very strong predictor for the POS tag, we limit

the equivalence classification of the TAGGER model to include only the NTlabels of
the two most recent exposed heads.

9 Thanks to Bob Carpenter, Lucent Technologies Bell Labs, for pointing out this
inaccuracy in our paper (Chelba & Jelinek 1998).

10 Pk is the maximum number of adjoin operations for a k-length word prefix; since the
tree is binary we have Pk = k − 1.

11 The origin of this table of rules is not clear, they are attributed to Magerman and Black.
12 For a better understanding, this procedure can be thought of as analogous to a com-

promise between the forward-backward and Viterbi re-estimation for hidden Markov
models.

13 The non-zero value of P(1|W) is due to the fact that the prediction of the first word in
a sentence is based on context of length 1 – sentence begin – in both SLM and 3-gram
models.

14 The value of N is typically 100–1,000.
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1 Introduction

In the context of natural language processing, the term parsing refers to the process
of automatically analyzing a given sentence, viewed as a sequence of words, in
order to determine its possible underlying syntactic structures.

Parsing requires a mathematical model of the syntax of the language of interest.
In this chapter, these mathematical models are assumed to be formal grammars.
A formal grammar consists of a collection of rules that specify how elements of the
language, e.g., words, may be combined to form sentences, and how sentences
are structured. Rules may be concerned with purely syntactic information, such
as grammatical functions, subject–verb agreement, word ordering, etc., but some
models may also incorporate issues such as lexical semantics.

There is a wide range of grammatical formalisms, which depend on various
syntactic theories, and the structures that result from parsing, or parses, may differ
substantially between one such formalism and another. Many formalisms spec-
ify the syntactic analysis of a sentence in terms of a phrase structure, which is an
ordered, labeled tree that expresses hierarchical relations among certain group-
ings of words called phrases. An alternative representation is dependency structure,
which indicates binary grammatical relations between words in a sentence.

In contrast to these ‘deep’ representations, there are also ‘shallow’ representa-
tions of syntactic structures, where the maximum depth is severely restricted. Such
representations are typically obtained using finite state techniques.

The main importance of parse structures lies in the grammatical information
they convey to modules that implement semantic, pragmatic, and discourse pro-
cessing, which are crucial in applications such as text summarization, question
answering, and machine translation. Parsing can therefore be seen as a central part
in typical natural language processing systems, and the accuracy of the parses can
have much impact on the success of an application as a whole.

In this chapter we do not further discuss the interaction between parsing and
the other types of linguistic processing mentioned above, nor do we discuss the
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criteria for the possible choices of grammatical formalisms and parse structures.
Instead, we cast the parsing problem into an abstract framework, and analyze
mathematical and computational aspects of parsing algorithms.

Parsing is related to recognition, which is the process of determining whether an
input sentence is in a chosen language or, equivalently, whether some underlying
syntactic structure can be assigned to a given sentence. Many of the algorithms
that we will discuss in this chapter are recognition algorithms, but since they can
be straightforwardly extended to perform parsing, we will sometimes blur the
distinction between parsing and recognition.

The set of parses that a natural language grammar allows for a given input sen-
tence is typically very large. This is because formal grammars often fail to capture
subtle properties of the structure, meaning, and use of language, and consequently
allow many parses that humans would not find plausible. Significant practical
difficulties in computing and storing the parses can be avoided by computing iso-
lated fragments of these and storing them in a table. The advantage of this is that
one such fragment may be shared among many different parses. This is called
tabular parsing.

Many tabular parsing methods are capable of computing and storing expo-
nentially many parses using only polynomial time and space. Tabular parsing,
invented in the field of computer science in the period roughly between 1965 and
1975, also became known later in the field of computational linguistics as chart
parsing. Tabular parsing is a form of dynamic programming, a standard paradigm
in the design of computer algorithms.

In natural language systems, parsing is commonly one stage of processing
among several others. The effectiveness of the stages that follow parsing gener-
ally relies on having obtained a small set of preferred parses, ideally only one,
from among the full set of parses. This process is called syntactic disambiguation.

One common approach is to augment each grammar rule with some kind of
numeric value, or weight. During parsing these values are combined to give
values for entire parses, and the optimal value (which might be the minimum
or the maximum, depending on the nature of the values) then determines the
preferred parse.

One special case of this is probabilistic parsing, which relies on the assignment of
probabilities to grammar rules. The probability of a parse is defined as the product
of the probabilities of the rules out of which it is constructed. Disambiguation is
achieved by selecting the parse with the highest probability. The success of prob-
abilistic parsing, and weighted parsing in general, is due to their flexibility and
scalability, in contrast to approaches to syntactic disambiguation that rely on much
deeper knowledge of language.

The structure of this chapter is as follows. In Section 2 we look at simple recogni-
tion algorithms for context-free grammars. We then consider the parsing problem
for context-free grammars in Section 3, and its probabilistic extension in Section 4.
Section 5 explores the parsing problem for context-free grammars that have been
augmented with lexical information. The related subject of dependency pars-
ing is discussed in Section 6. Parsing of tree adjoining grammars, a formalism
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generatively more powerful than context-free grammars, is discussed in Section 7.
In Section 8 we show how parsing algorithms can be exploited in syntax-based
machine translation.

2 Context-Free Grammars and Recognition

In this section we consider two algorithms that perform context-free recogni-
tion. The input consists of a context-free grammar G = (Σ , N, S, R) and a string
w = a1a2 · · · an. Here Σ and N are two disjoint sets of terminal and non-terminal
symbols respectively, S ∈ N is the start symbol, and R is the set of rules of
the grammar. The output is a Boolean value, depending on whether w is in the
language generated by G.

Both algorithms are tabular, and run in polynomial time, both in the size of the
input grammar and in the length of the input string. Furthermore, they are among
the best-known and most widely used recognition algorithms in natural language
processing, often in an extended form as parsing algorithms, as will be explained
in the next section.

The older of the two algorithms is called the Cocke–Kasami–Younger algorithm,
or CKY algorithm for short, after the three authors by whom it was independently
discovered. The algorithm implements a pure bottom-up strategy, which means it
starts by recognizing non-terminal occurrences near the leaves of parse-trees, and
works upwards from there.

The CKY algorithm requires the grammar to be in Chomsky normal form (CNF),
that is, each rule must have one of the following two forms:

A → B C, where B, C ∈ N;
A → a, where a ∈ Σ .

Any CFG, provided it does not derive the empty string, can be cast into CNF
by a transformation that preserves the language. To accommodate for the empty
string, some definitions of CNF include S → ε as an allowable rule, provided
that S does not occur in the right-hand side of any rule. To keep the presentation
simple, however, we will further ignore rules of the form S → ε.

We let T denote the table of the CKY algorithm. The elements stored in the
table, which we will refer to as items, have the form [i, A, j], where A ∈ N and
0 ≤ i < j ≤ n, and n is the length of the input string w = a1 · · · an. The numbers i
and j are best thought of as input positions: the position 0 precedes a1, each position
i with 1 ≤ i ≤ n − 1 separates the symbol occurrences ai−1 and ai in w, and n is the
position following an.

If an item [i, A, j] is added to the table, this signifies that the substring ai+1 · · · aj
of w can be derived from non-terminal A, or formally A ⇒+ ai+1 · · · aj. This can be
seen as a partial recognition result, and the main goal of the algorithm is to add
item [0, S, n] to the table. This item is found at the end of the process if and only if
the input string is correct.
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1: Function CKY(G, w) {w = a1 · · · an; R the rules of G}
2: T ← ∅;
3: for all j from 1 up to n do
4: for all rules A → aj in R do
5: add [j − 1, A, j] to T ;
6: for all i from j − 2 down to 0 do
7: for all k from i + 1 up to j − 1 do
8: for all rules A → B C in R do
9: if [i, B, k] and [k, C, j] are both in T then

10: add [i, A, j] to T ;
11: if [0, S, n] is in T then
12: return true;
13: else
14: return false;

Figure 4.1 The CKY recognition algorithm.

1 2 3 4
0 A S, A S, A S, A
1 A A A
2 S S
3 S

Figure 4.2 Table T obtained by the CKY algorithm.

The algorithm is presented in Figure 4.1. The table is initially empty (line 2).
For each input position j, the algorithm considers substrings ending in j, and finds
the non-terminals from which the substrings can be derived. First, substrings aj of
length 1 are considered. The Chomsky normal form implies that any parse of such
a substring consists of a single rule occurrence of the form A → aj. This justifies
lines 4 and 5.

Then, substrings ai+1 · · · aj of length greater than 1 are considered ( j > i + 1).
The CNF implies that if such a substring can be derived from A, then there is
a rule A → B C, for some B and C, from which ai+1 · · · ak and ak+1 · · · aj can be
derived respectively, for some choice of k, where i < k < j. This is the basis for
lines 6 through 10.

As an example, consider the CFG with Σ = {a, b}, N = {S, A}, and with rules
S → S S, S → A A, S → b, A → A S, A → A A, and A → a, and consider the input
string w = aabb. The table T produced by the CKY algorithm is given in Figure 4.2,
represented as an upper triangular matrix. Each cell at row i and column j contains
all the non-terminals B such that [i, B, j] is in T . This means that the main diagonal
represents derivations of substrings of length 1, the next diagonal corresponds to
substrings of length 2, etc. In the example, the string w is recognized since the start
symbol S is found in the cell in the upper right corner.

An alternative way of describing a tabular algorithm is by means of a deduction
system, where we have logical, declarative expressions in place of procedural ones.
This is exemplified for CKY recognition in Figure 4.3. A deduction system contains
a set of inference rules, each consisting of a list of antecedents, which stand for items
that we have already added to T , and, below a horizontal line, the consequent,
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[ j − 1, A, j]
{

A → aj (a)

[i, B, k]
[k, C, j]
[i, A, j]

{
A → B C (b)

Figure 4.3 The CKY recognition algorithm, expressed as a deduction system.

which stands for an item that we derive from the antecedents and that is added
to T unless it is already present. To the right of the horizontal line, we may also
write a number of side conditions, which indicate when rules may be applied, on
the basis of the given grammar.

One difference between pseudo-code as in Figure 4.1 and deduction systems as
in Figure 4.3 is that the latter does not specify the exact order of the steps. Let us
consider the upper triangular matrix in Figure 4.2. The contents of a cell depend,
directly or indirectly, on cells that are (1) on the same row or a row further down,
and (2) on the same column or a column further to the left. These dependencies
between cells are consistent with an algorithm that computes the columns from
left to right, and within each column computes the rows from bottom to top. This
is realized in Figure 4.1. Another algorithm could for example compute the rows
from bottom to top, and within each row compute the columns from left to right.
The deduction system allows both strategies, as well as several others.

The time complexity of a recognition algorithm is commonly determined by the
number of steps, but not by their relative order. A deduction system can therefore
allow a simpler and more abstract description of an algorithm, while the computa-
tional properties remain identical to those of a specification of the same algorithm
in pseudo-code.

In the case of the CKY algorithm, the complexity is dominated by the inference
rule in Figure 4.3(b). As this inference rule involves one grammar rule and three
input positions, the number of corresponding steps is O(|R| n3) = O(|G| n3), and
this is also the total time complexity of the CKY algorithm. The number of items
of the form [i, A, j] is O(|N| n2) = O(|G| n2), and this is also the space complexity.

When considering the size of the grammar in the above analysis, one should
remember that transformation to CNF is needed before the CKY algorithm can be
applied, and such transformations may increase the size by a square function. The
second algorithm we consider, called Earley’s algorithm, circumvents this problem
by allowing the input grammar to be an arbitrary context-free grammar. To sim-
plify the presentation, however, we will assume that there is only one rule in R of
the form S → α. (If this does not hold, it suffices to add a new start symbol S† and
a rule S† → S.)

The items for Earley’s algorithm are of the form [i, A → α • β, j], where A →
αβ is a rule from R. The components A → α • β are often called dotted rules.
Intuitively, the dot separates the grammar symbols that have already been found
to derive some portion of the input string (between positions i and j) from those
grammar symbols that are still to be processed. Whereas CKY parsing only used
combinations of i and j such that i < j, Earley’s algorithm relaxes this constraint
to i ≤ j. The added case i = j is particularly relevant if α is the empty string, but
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1: Function EARLEY(G, w) {w = a1 · · · an; R the rules of G}
2: T ← A ← {[0, S → • σ , 0]};
3: for all j from 0 to n do
4: for all items [i, A → α • aα′, j − 1] in T do
5: if a = aj then
6: add [i, A → αa • α′, j] to T and to A;
7: while A 	= ∅ do
8: remove some [k, A → α • α′, j] from A;
9: if α′ = Bβ then

10: for all rules B → γ in R do
11: if item [j, B → • γ , j] is not in T then
12: add [j, B → • γ , j] to T and to A;
13: for all items [j, B → γ • , j] in T do
14: if item [k, A → αB • β, j] is not in T then
15: add [k, A → αB • β, j] to T and to A;
16: if α′ = ε then
17: for all items [i, B → β • Aγ , k] in T do
18: if item [i, B → βA • γ , j] is not in T then
19: add [i, B → βA • γ , j] to T and to A;
20: if [0, S → σ • , n] is in T then
21: return true;
22: else
23: return false;

Figure 4.4 The Earley recognition algorithm.

it may also occur if α merely derives the empty string by epsilon rules. (By epsilon
rule, we mean a rule with an empty right-hand side.)

In addition, an item of the form [i, A → α • β, j] is only added to the table T if an
occurrence of A → αβ starting at position i is consistent with the input preceding
position i. More precisely, [i, A → α • β, j] is eventually added to T if and only if:

(1) S ⇒∗ a1 · · · aiAγ , for some γ , and
(2) α ⇒∗ ai+1 · · · aj.

The second condition mirrors the condition for items in the CKY algorithm,
whereas the first condition introduces a type of left-to-right directionality, in such
a way that no rule occurrence can be considered unless it fits in a parse-tree that is
consistent with the input to the left of the position currently considered.

Earley’s algorithm is presented as pseudo-code in Figure 4.4. Next to the famil-
iar table T , there is another set A, in which items are stored that still need to be
processed. We call this set the agenda. We ensure that items are never added to the
agenda more than once, so that the parsing process is guaranteed to terminate.

Initially, in line 2, the agenda is made to contain a single item, with dotted rule
S → • σ . This is sometimes called the initializer step. The intuition is that it starts
the investigation whether the input can be derived from S, under the assumption
we made earlier that S → σ is the only rule with left-hand side S. The dot is at
the beginning of the right-hand side as no grammar symbols have been matched
against the input yet.
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[0, S → • σ , 0] (a)

[i, A → α • Bβ, j]
[j, B → • γ , j]

{
B → γ (b)

[i, A → α • aβ, j − 1]
[i, A → αa • β, j]

{
a = aj (c)

[i, A → α • Bβ, k]
[k, B → γ • , j]

[i, A → αB • β, j] (d)

Figure 4.5 Deduction system for Earley’s algorithm.

Lines 4 to 6 are called the scanner step, as the processed part of the right-hand
side is extended by matching one terminal symbol against a symbol from the input
string. Lines 10 to 12 are called the predictor step, as they predict an occurrence of a
rule starting at position j. The completer step consists of lines 13 to 15 and of lines 17
to 19. Both code fragments do essentially the same, namely combining two items
associated with two consecutive substrings into a third item associated with the
joint substring. One or the other code fragment is used depending on whether
the first or the second of these items is found first. Lines 13 to 15 are in fact only
necessary if there are epsilon rules; otherwise γ in line 13 cannot derive the empty
string and therefore the item on that line cannot exist.

In the formulation as deduction system, in Figure 4.5, the completer step is
expressed more succinctly, as inference rule (d). The initializer step appears as
rule (a), the predictor step as rule (b), and the scanner step as rule (c).

The step that dominates the running time is clearly the completer step, as
that involves three input positions and two rules, making the time complexity
O(|G|2 n3), which can be improved to O(|G| n3) with a small trick that we will not
discuss here. The space complexity is O(|G| n2).

Let us consider the CFG consisting of the rules S → E, E → E − E, and E → a,
and consider the input string w = a − a − a. The table produced by Earley’s algo-
rithm can be represented as an upper triangular matrix, as illustrated in Figure 4.6.
Each cell at row i and column j contains all the dotted rules A → α • β such that
[i, A → α • β, j] is in T .

This matrix is similar to the one in Figure 4.2, which was constructed by the CKY
algorithm. One difference is that there is now an extra diagonal, which contains
items that correspond to the empty string. Items resulting from the predictor step
will end up in cells in this diagonal.

Observe that [0, E → E − E • , 5] can be derived from [0, E → E− • E, 4] and
[4, E → a • , 5] or from [0, E → E− • E, 2] and [2, E → E − E • , 5]. This indicates
that w is ambiguous.

3 Context-Free Parsing

In this section we look at the computation of parse-trees, and consider how
recognition algorithms can be extended to become parsing algorithms. Since the
number of parse-trees can be exponential in the length of the input string, and



“9781405155816_4_004” — 2010/5/8 — 11:42 — page 112 — #8

112 Mark-Jan Nederhof and Giorgio Satta

0 1 2 3 4 5
0 S → • E

E → • E − E
E → • a

E → a •
S → E •
E → E • −E

E → E− • E E → E − E •
S → E •
E → E • −E

E → E− • E E → E − E •
S → E •
E → E • −E

1

2 E → • E − E
E → • a

E → a •
E → E • −E

E → E− • E E → E − E •
E → E • −E

3

4 E → • E − E
E → • a

E → a •
E → E • −E

5

Figure 4.6 Table T obtained by Earley’s algorithm.

even infinite when G is cyclic, one first needs to find a way to compactly represent
the set of all parse-trees.

Let us assume a CFG G = (Σ , N, S, R) and an input string w = a1 · · · an over Σ .
A representation of all parse-trees of w is called a parse forest and is itself a CFG Gw.
The alphabet of Gw is the same as that of G, and the non-terminals of Gw have the
form (j, X, i), where X ∈ N ∪ Σ and 0 ≤ j ≤ i ≤ n. The start symbol of Gw is (0, S, n).

If w is in the language generated by G, then the rules of Gw should ideally
be the rules (i − 1, ai, i)→ ai (1 ≤ i ≤ n) plus the rules (i0, A, im)→ (i0, X1, i1) · · ·
(im−1, Xm, im) such that:

(1) (A → X1 · · · Xm) ∈ R,
(2) S ⇒∗ a1 · · · ai0 Aaim+1 · · · an, and
(3) Xj ⇒∗ aij−1+1 · · · aij for 1 ≤ j ≤ m.

In words, there are two kinds of rules in Gw. The first, of the form (i − 1, ai, i) → ai,
is little more than a notational convenience. It attaches appropriate input posi-
tions to occurrences of terminals in the input. The second kind, of the form
(i0, A, im) → (i0, X1, i1) · · · (im−1, Xm, im), is obtained by taking a rule from G and
annotating it with input positions that project the members of the right-hand side
onto consecutive substrings of the input. Constraint (2) above guarantees that the
rule occurrence thus specified is part of at least one complete parse-tree, which
spans the entire input string and has label S at the root.

In intermediate stages of parsing, however, constraint (2) and sometimes also
constraint (3) may be violated, which means that Gw contains useless rules, that is,
rules that either do not derive any string, or that cannot be reached from the start
symbol. Useless rules can be removed from a CFG by a process called reduction,
which has a running time that is linear in the size of the grammar.
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(0, a, 1) → a
(1, a, 2) → a
(2, b, 3) → b
(3, b, 4) → b
(0, A, 1) → (0, a, 1)

(1, A, 2) → (1, a, 2)

(2, S, 3) → (2, b, 3)

(3, S, 4) → (3, b, 4)

(0, S, 2) → (0, A, 1) (1, A, 2)

(0, A, 2) → (0, A, 1) (1, A, 2) †

(1, A, 3) → (1, A, 2) (2, S, 3)

(2, S, 4) → (2, S, 3) (3, S, 4)

(0, S, 3) → (0, A, 1) (1, A, 3)

(0, S, 3) → (0, S, 2) (2, S, 3)

(0, A, 3) → (0, A, 1) (1, A, 3) †
(0, A, 3) → (0, A, 2) (2, S, 3) †

(1, A, 4) → (1, A, 2) (2, S, 4)

(1, A, 4) → (1, A, 3) (3, S, 4)

(0, S, 4) → (0, A, 1) (1, A, 4)

(0, S, 4) → (0, S, 2) (2, S, 4)

(0, S, 4) → (0, S, 3) (3, S, 4)

(0, A, 4) → (0, A, 1) (1, A, 4) †
(0, A, 4) → (0, A, 2) (2, S, 4) †
(0, A, 4) → (0, A, 3) (3, S, 4) †

Figure 4.7 Parse forest associated with table T from Figure 4.2.

If the input string w is not in the language generated by G, then reduction of Gw
removes all rules, including those of the form (i − 1, ai, i) → ai, and thereby Gw
generates the empty language. If the string is in the language, then Gw generates
the singleton language {w}. Furthermore, the parse-trees of Gw are isomorphic to
those parse-trees of G that derive w.

Many recognition algorithms can be easily extended to become parsing algo-
rithms. For the CKY algorithm, this involves adding a rule of the form (i, A, j) →
(i, B, k) (k, C, j) to Gw each time an item [i, A, j] is found, based on the existence
in the table of items [i, B, k] and [k, C, j] and a rule A → BC. In the resulting parse
forest, constraint (3) is always satisfied, but constraint (2) may be violated, and
a top-down traversal may be needed to remove rules that are not reachable
from (0, S, n).

Let us return to the grammar from Section 2 with rules S → SS, S → AA, S → b,
A → AS, A → AA, A → a, and input w = aabb. We have seen the table in Figure 4.2
that is produced by CKY recognition. The corresponding parse forest is given in
Figure 4.7. Rules that are subsequently eliminated by reduction are marked by †.

As the CKY algorithm assumes the input grammar G is in CNF, the size of Gw
is dominated by the number of rules of the form (i, A, j) → (i, B, k) (k, C, j), which
is O(|G| n3). From the resulting parse forest Gw, an individual parse-tree can be
extracted in time proportional to the size of the parse-tree itself, which is O(n).
In contrast, the table T can be stored with only O(|G| n2) space, but extracting an
individual parse-tree directly from T requires running time O(n2).

For general CFGs, CKY parsing is not applicable, but we can extend Earley’s
algorithm to produce parse forests, as a side-effect of recognition. The size of a
parse forest is then |Gw| = O(|G| np+1), where p is the length of the longest right-
hand side of a rule in G, which is considerably bigger than if the input grammar
were in CNF.

For this reason, practical systems often store the set of parse-trees using a mod-
ified form of parse forests, with rules having no more than two members in
the right-hand side. The main differences with Chomsky normal form are that
unary rules and epsilon rules are allowed. For such parse forests, extraction of an
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individual parse-tree is more involved, but can still be done in linear time in the
size of that parse-tree.

4 Probabilistic Parsing

Many parsing algorithms can be extended to compute probabilities of strings or
of parses, which we refer to as probabilistic parsing. One application is to iden-
tify the most likely parse of an input sentence, as a form of disambiguation. To
simplify the presentation, we will here consider a form of disambiguation that
is strictly separated from the parsing process. More precisely, we assume that a
parse forest is constructed as first step, for example by CKY parsing or Earley’s
algorithm. Subsequently, the parse forest is analyzed to identify the parse-tree
with the highest probability. The presentation is further simplified by showing
only how to compute that highest probability, rather than the parse-tree itself.

In order to assign probabilities to parse-trees, we define a probabilistic context-free
grammar (PCFG) to be of the form G = (Σ , N, S, R, p), where (Σ , N, S, R) is a CFG
and p is a mapping from rules in R to real numbers between 0 and 1. We say a
PCFG is proper if for every non-terminal A:

∑

A→α

p(A → α) = 1

In other words, properness means that for each A, p defines a probability
distribution over the rules with left-hand side A.

Let us define the probability of an occurrence of a rule in a parse-tree as the
probability of that rule, as specified by p. The probability of a parse-tree is then
defined as the product of the probabilities of the rule occurrences out of which
it is constructed. We say that a PCFG is consistent if the sum of probabilities of
all allowable parse-trees is 1. Many proper PCFGs that arise in practice are also
consistent, but consistency is not guaranteed by properness.

Given a probabilistic CFG G and a string w, a parse forest Gw is constructed
much as in the previous section. One difference in the present section is that Gw is
itself also a probabilistic CFG. A rule of Gw of the form (i − 1, ai, i) → ai is assigned
the probability 1, and a rule of the form (i0, A, im) → (i0, X1, i1) · · · (im−1, Xm, im)

is assigned the probability p(A → X1 · · · Xm), where p is the probability assign-
ment of the input grammar G. The parse forest Gw is in general neither proper nor
consistent, even when G is proper and consistent.

Consider for example the PCFG G with the following rules, with probabilities
between brackets:

S → A (0.7)

S → A S (0.3)

A → a (0.8)

A → A A (0.2)
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1: Function KNUTH(G)

2: E ← Σ

3: repeat
4: F ← {A | A /∈ E ∧ ∃A → X1 · · · Xm[X1, . . . , Xm ∈ E]}
5: if F = ∅ then
6: return ‘failure’
7: for all A ∈ F do
8: q(A) ← max

π=(A→X1 ··· Xm):
X1, ..., Xm∈E

p(π) · pmax(X1) · . . . · pmax(Xm)

9: choose A ∈ F such that q(A) is maximal
10: pmax(A) ← q(A)

11: E ← E ∪ {A}
12: until S ∈ E
13: return pmax(S)

Figure 4.8 Knuth’s generalization of Dijkstra’s algorithm, applied to finding the most
probable parse in a probabilistic context-free grammar G.

With input w = aa, Gw is the following PCFG:

(0, S, 2) → (0, A, 2) (0.7)

(0, S, 2) → (0, A, 1) (1, S, 2) (0.3)

(0, A, 2) → (0, A, 1) (1, A, 2) (0.2)

(1, S, 2) → (1, A, 2) (0.7)

(0, A, 1) → (0, a, 1) (0.8)

(1, A, 2) → (1, a, 2) (0.8)

(0, a, 1) → a (1)

(1, a, 2) → a (1)

The two parse-trees in Gw have probabilities 0.7 ∗ 0.2 ∗ 0.8 ∗ 0.8 = 0.0896 and
0.3 ∗ 0.8 ∗ 0.7 ∗ 0.8 = 0.1344 respectively. Disambiguation could therefore opt for
the second of these parses.

We have already observed in the previous section that parses of w have roughly
the same structures as parses in Gw. Because the probabilities of corresponding
parses are identical as well, we can reduce the problem of finding the most likely
parse of w with grammar G to the problem of finding the most likely parse in
grammar Gw.

Let us therefore consider an arbitrary PCFG G, which may, but need not, be a
parse forest produced by CKY parsing or a comparable parsing algorithm. One
way of finding the most likely parse in G is the algorithm in Figure 4.8, which
is due to Knuth. It generalizes Dijkstra’s algorithm to compute the shortest path
in a weighted graph. Knuth’s algorithm finds the probability pmax(A) of the most
probable subparse with root labeled A. The value pmax(S), where S is the start
symbol, then gives us the probability of the most probable parse.

The set E contains all grammar symbols X for which pmax(X) has already been
established. At the beginning, this is just the set of terminals, assuming pmax(a) = 1
for all a ∈ Σ .
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At each iteration, the set F contains non-terminals A such that a subparse with
root labeled A exists consisting of a rule A → X1 · · · Xm, and subparses with roots
labeled X1, . . . , Xm matching the values of pmax(X1), . . . , pmax(Xm) found earlier.
From these candidates, the non-terminal A for which such a subparse has the
highest probability is then added to E . The process ends normally when pmax(S)

is found. If there are no parses at all in the grammar, which may happen if the
grammar is not reduced, then the algorithm returns a ‘failure’ value.

The number of iterations of Knuth’s algorithm is linear in the number of non-
terminals. Values of the form p(π) · pmax(X1) · . . . · pmax(Xm) need to be computed
only once for each rule. The set F can be reused between two subsequent itera-
tions, with minor modifications. The choice of A in line 9 relies on the arrangement
of the elements in F in a priority queue according to the values of q. It follows
that the running time is O(|G| + |N| log(|N|)), where the factor log(|N|) corre-
sponds to the running time of operations of the priority queue containing up to
|N| elements.

In the example above, the first two values of pmax that are found are
pmax((0, a, 1)) = 1 and pmax((1, a, 2)) = 1. As the values are identical, they can
be found in any order. Similarly, the next two values, pmax((0, A, 1)) = 0.8 and
pmax((1, A, 2)) = 0.8, can be found in either order. Then, pmax((1, S, 2)) = 0.7 ∗
pmax((1, A, 2)) = 0.56 and pmax((0, A, 2)) = 0.2 ∗ pmax((0, A, 1)) ∗ pmax((1, A, 2)) =
0.128 are found, and, lastly, pmax((0, S, 2)) is found as the maximum of 0.7 ∗
pmax((0, A, 2)) = 0.0896 and 0.3 ∗ pmax((0, A, 1)) ∗ pmax((1, S, 2)) = 0.1344, which
is 0.1344, as we have seen before.

If the input grammar is in Chomsky normal form, values of the form
pmax((i, A, j)) can be computed in a fixed order, in such a way that all pmax((i, B, k))
and pmax((k, C, j)) are computed before any value pmax((i, A, j)). This is achieved
by a probabilistic extension of CKY recognition. It is also regarded as an extension
to CFGs of Viterbi’s algorithm for probabilistic finite state models.

The probabilistic CKY algorithm is given by Figure 4.9. It is instructive to com-
pare this to CKY recognition as presented in Figure 4.1. Instead of adding elements
[i, A, j] to T , the probabilistic algorithm assigns non-zero values to pmax([i, A, j]).
The two algorithms have the same time complexity. Finding the most likely parse
based on values of pmax also has the same time complexity as the extraction of a
parse-tree from T .

5 Lexicalized Context-Free Grammars

A central issue in modeling the syntax of natural language is the sensitivity of
syntactic structures to the choice of terminal symbols, also called lexical elements.
Consider the difference between the following two sentences:

(1) our company is training workers
(2) our problem is training workers

In the first case, ‘training workers’ should be parsed as verb phrase with ‘is’ as aux-
iliary verb. In the second case, ‘training workers’ is used nominally as argument of
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1: Function CKY(G, w) {w = a1 · · · an; R the rules of G}
2: for all j from 1 up to n do
3: for all non-terminals A do
4: if there is a rule A → aj then
5: pmax([j − 1, A, j]) ← p(A → aj);
6: else
7: pmax([j − 1, A, j]) ← 0;
8: for all i from j − 2 down to 0 do
9: for all non-terminals A do

10: pmax([i, A, j]) ← 0;
11: for all k from i + 1 up to j − 1 do
12: for all rules A → B C in R do
13: pmax([i, A, j]) ←
14: max(pmax([i, A, j]),

p(A → B C) · pmax([i, B, k]) · pmax([k, C, j]));
15: return pmax([0, S, n]);

Figure 4.9 The probabilistic CKY algorithm.

‘is,’ which requires a different parse. Traditional CFGs with non-terminals for basic
categories such as noun, verb, noun phrase, etc., lack the means to distinguish
between lexical elements, needed to disambiguate sentences such as the above.

A common solution is to incorporate a lexical element as a so-called head in
each non-terminal of the CFG. These heads play an important role in the syn-
tactic and semantic content of the derived string. In this section we consider a
model called bilexical context-free grammar. This model is used extensively in
natural language parsing. It allows us to write rules of the form S[training] →
NP[company] VP[training], which expresses that a noun phrase whose main
element is ‘company’ can combine with a verb phrase whose main element is
‘training.’ One might, however, want to exclude a rule of the form S[training] →
NP[problem] VP[training] as, typically, a problem cannot be the subject of training.
Alternatively, in probabilistic bilexical context-free grammars, which are discussed
further at the end of this section, such a rule may be given a very low probability.

Formally, a bilexical context-free grammar (2-LCFG) is a CFG with non-terminal
symbols of the form A[a], where a is a terminal symbol and A is a symbol drawn
from a set of so-called delexicalized non-terminals, which we denote as VD. Every
rule in a 2-LCFG has one of the following forms:

A[a] → B[b] C[a],
A[a] → B[a] C[c],
A[a] → B[a],
A[a] → a.

Note that the terminal symbol associated with the left-hand side non-terminal is
always inherited from the right-hand side.

We assume the existence of a dummy terminal $ to the right of each sentence
and nowhere else. A dummy delexicalized non-terminal represented by the same
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S[$]

S[training]

NP[company]

PosPr[our]

our

N[company]

company

VP[training]

Aux[is]

is

VP[training]

V[training]

training

NP[workers]

N[workers]

workers

$[$]

$

Figure 4.10 A parse of ‘our company is training workers,’ assuming a bilexical
context-free grammar.

symbol allows terminal $ to be derived by $[$] → $. The start symbol of a 2-LCFG
is S[$] and there are rules expanding it to S[a] $[$], where a can be, for example,
the main verb of a sentence. Figure 4.10 presents a possible parse-tree.

A 2-LCFG can have Θ|VD|3 · |Σ |2 binary rules, where Σ denotes the set of
terminals. Whereas VD is typically small, the set Σ can be very large. When
parsing with a 2-LCFG, it is therefore preferable to restrict the grammar to those
rules that contain lexical elements occurring in the input sentence w. With gen-
eral context-free parsing as discussed in Section 3, the time complexity would
then be O(|VD|3 · |w|5), under the reasonable assumption that |w| < |Σ |. Note
that this is two factors of |w| worse than the time complexity of unlexicalized
parsing.

A recognition algorithm that was specifically designed for lexicalized grammars
reduces the time complexity by one factor of |w|. It is presented by Figure 4.11.
It uses several types of items, the first of the form [i, A, h, j]. This encodes that
the lexicalized non-terminal A[ah] can derive the substring ai+1 · · · aj of w. It is
comparable to an item [i, A[ah], j] that we would have in the case of the CKY
algorithm. In some steps of the algorithm below, it is convenient to ignore
either the index i or the index j from [i, A, h, j], by replacing one or the other by
a hyphen.

There are also items of the form [B, h, A, j, k]. Such an item indicates that
[−, B, h, j] and [j, C, h′, k] were derived, for some C and h′ such that A[ah] → B[ah]
C[ah′ ] is a rule. This represents an intermediate step in establishing [i, A, h, k], as
illustrated in Figure 4.12. The reduction of the time complexity comes from the
possibility to temporarily ignore the left boundary i of the substring derived from
the left child B[ah].
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[h − 1, A, h, h]
{

A[ah] → ah
1 ≤ h ≤ n + 1

(a)

[i, B, h, j]
[i, A, h, j]

{
A[ah] → B[ah] (b)

[−, B, h, j]
[j, C, h′, k]

[B, h, A, j, k]
{

A[ah] → B[ah] C[ah′ ] (c)

[i, B, h′, j]
[j, C, h, −]
[i, j, A, C, h]

{
A[ah] → B[ah′ ] C[ah] (d)

[i, A, h, j]
[i, A, h, −] (e)

[i, A, h, j]
[−, A, h, j] (f)

[i, B, h, j]
[B, h, A, j, k]
[i, A, h, k] (g)

[j, C, h, k]
[i, j, A, C, h]
[i, A, h, k] (h)

Figure 4.11 Deduction system for recognition with a 2-LCFG. We assume
w = a1 · · · an, an+1 = $.

B[ah]

ai ah aj

(f)

B[ah]

? ah aj

C[ah′ ]

aj ah′ ak

(c)

A[ah]

B[ah]

? ah aj

?

ak

(g)

A[ah]

ai ah ak

Figure 4.12 Illustration of the use of inference rules (f), (c), and (g) of bilexical
recognition.

Items of the form [i, j, A, C, h] have a symmetrical meaning, that is, they indicate
that [i, B, h′, j] and [j, C, h, −] were derived, for some B and h′ such that A[ah] →
B[ah′ ] C[ah] is a rule.

Each of the inference rules involves no more than four input positions and three
delexicalized non-terminals. This corresponds to O(|VD|3 · |w|4) applications of
each inference rule, which is also the total time complexity of the algorithm.

The above recognition algorithm can be extended to parsing, and especially
probabilistic parsing with bilexical grammars. This requires only minor modifi-
cations. In practice, explicit representation of a probabilistic 2-LCFG as a set of
lexicalized rules would require a prohibitive amount of storage and, furthermore,
obtaining accurate probabilities for each of the rules is very hard.

Therefore, lexicalized rules are often produced on-the-fly during parsing of the
input string, and their probabilities are then computed as the product of proba-
bilities of a number of features that together determine the rule. For example, the
probability of A[b] → B[b] C[c] can be expressed as the probability of B given A
and b, times the probability of C as second member in the right-hand side, given
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A, b, and B, times the probability of c given A, b, B, and C as second member. The
last probability can be approximated as, for example, the probability of c given b
and C.

6 Dependency Grammars

Dependency grammars are a formalism for the syntactic representation of natu-
ral language based on dependencies between pairs of words. This formalism has a
long tradition in descriptive linguistics. From a computational perspective, depen-
dency grammars have also proved to be a simple yet flexible formalism, which can
be applied to several natural language processing tasks.

A dependency grammar represents syntactic structures by means of depen-
dency trees. A dependency tree for a sentence w is a directed tree whose nodes are
all the words of w. Each arc of the tree represents a single syntactic dependency
directed from a word to its modifier, and is labeled with the specific syntac-
tic function that is encoded, e.g., SBJ for subject and NMOD for modifier of a
noun. Figure 4.13 presents an example of a dependency tree. An artificial token
representing the root of the dependency tree is appended to the sentence as the
right-most word, similarly to what we have done for 2-LCFGs.

A dependency tree is called projective if its edges can be drawn in the plane above
the words of the sentence, without any edges crossing each other. Figure 4.13 is
an example of a projective tree. In a non-projective dependency tree, this property
is violated, as illustrated by Figure 4.14. Non-projectivity is typically needed to
handle long-distance dependencies and flexible word order.

In this section we mainly focus on dependency grammars that derive projec-
tive dependency trees and that are augmented with probabilities. Dependency
grammars deriving projective trees can be enriched with probabilities in several
ways. We consider here one of the simplest models, called edge-factored, which
assigns a probability to each modifier word conditioned on the headword, and
which assumes that decisions are independent, within the global constraint that
the resulting structure must be a projective tree. To simplify the presentation, we
also ignore dependency labels.

More formally, a probabilistic projective dependency grammar (PPDG) is a tuple
G = (Σ , p), where Σ is a finite alphabet and p is a function with two arguments
as explained below, taking real values in the interval [0, 1]. The notation includes
special symbols L, R, $, and ⊥ not in Σ . The symbols L and R represent left
and right direction respectively for a dependency relation, $ represents the root
symbol, and ⊥ indicates halting of the generation process. Function p is defined
over the terms:

p($ → a,L), a ∈ Σ

p(a → b, D), a, b ∈ Σ , D ∈ {L,R}
p(a → ⊥, D), a ∈ Σ , D ∈ {L,R}
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Mr Tomash will remain as a director emeritus $

VC PP

NP

NMODNMOD SBJ NMOD

$

Figure 4.13 A projective dependency tree.

A hearing is scheduled on the issue today $

PP

VC

TMP
NP

NMOD SBJ NMOD

$

Figure 4.14 A non-projective dependency tree.

The root $ takes a unique dependent from Σ , always to its left. The probability
that such a dependent is word a is p($ → a,L). The probability of generating a
dependency between headword a and modifier word b at its left, conditioned upon
a, is p(a → b,L), and the probability of stopping the generation of left dependents
of a is p(a → ⊥,L). Probabilities p(a → b,R) and p(a → ⊥,R) have a symmetrical
meaning with respect to the generation of dependents at the right direction.

The following normalization conditions must be satisfied by p:

∑

a∈Σ

p($ → a,L) = 1

and for every a ∈ Σ and D ∈ {L,R}:

p(a → ⊥, D) +
∑

b∈Σ

p(a → b, D) = 1

For a dependency tree t, we define p(t) as the product of the probabilities of all
the involved dependencies, including the stop events. For a sentence w, we define
p(w) as the sum of all p(t), with t a dependency tree of w. It is not difficult to see
that a PPDG induces a probability distribution over projective dependency trees
and over the generated strings.

There is a natural mapping from the class of PPDGs to the probabilistic 2-LCFGs
from Section 5. This mapping preserves the probabilities of trees, modulo straight-
forward restructuring operations. Let G = (Σ , p) be some PPDG. We construct a
probabilistic 2-LCFG G′ = (Σ ∪ {$}, N, R, S[$], p′) with

N = {A[a] | A ∈ {H1,H2}, a ∈ Σ} ∪ {S[$], $[$]}

and with R including all of the following rules with associated probabilities:1
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S[$] → H1[a] $[$] p′(·) = p($ → a)
H1[a] → H1[b] H1[a] p′(·) = p(a → b,L)

H1[a] → H2[a] p′(·) = p(a → ⊥,L)

H2[a] → H2[a] H1[b] p′(·) = p(a → b,R)

H2[a] → a p′(·) = p(a → ⊥,R)

$[$] → $ p′(·) = 1

It is not difficult to see that G ′ satisfies the usual properness conditions defined
for PCFGs.

The above mapping allows us to reuse all of the algorithms developed for (prob-
abilistic) CFGs, in order to do parsing for a PPDG, transferring the resulting parses
back to projective dependency trees. For example, the recognition algorithm for
2-LCFGs from Section 5 would provide a O(|G| n4) time recognition algorithm
for (probabilistic) PDGs.

In what follows, we derive a more efficient recognition algorithm, running
in time O(|G| n3). The improvement is obtained by specializing the recognition
algorithm for 2-LCFGs to the specific grammars resulting from the above map-
ping. Since this is a recognition algorithm, we focus on the underlying 2-LCFG,
disregarding the probabilities attached to the rules.

The algorithm is based on the following idea. We observe that in G′ there are
no structural dependencies between the left and the right arguments (comple-
ments or modifiers) of any headword a. The sequences of the left arguments and
the sequences of the right arguments can therefore be processed independently,
and joined only when this is computationally convenient. We call left (right) split
any partial parse consisting of a head and some of its left (right, respectively)
arguments.

To simplify the presentation of the algorithm, we ignore the recognition of the
rules S[$] →H1[a] $[$], and $[$] → $, which is straightforward. We use items of
the form [h − 1,R, j] to represent a right split with headword ah, with zero or more
right arguments extending up to position j ≥ h. Similarly, an item [i,L, h] repre-
sents a left split with i ≤ h − 1. An item [h − 1,R, h′) represents a headword ah
with zero or more right arguments, followed at the right by the left split of one of
its right arguments with headword ah′ , h′ > h. Items of the form (h′ − 1,L, h], with
h′ < h, have a symmetric interpretation.

The algorithm is given in Figure 4.15 by means of a deduction system. Inference
rules (a) and (d) initialize a right and left split respectively, consisting of a single
headword. Rule (b) extends a right split with headword ah to the right, by means of
a left split with headword ah′ , provided a constituent headed in ah′ is a valid right
argument for a constituent headed in ah. As already discussed, the right arguments
of the headword ah′ can be ignored at this point.

Inference rule (e) completes the process started by (b), by attaching the missing
right arguments of the headword ah′ . Inference rules (c) and (f) have a symmetrical
interpretation.

The time complexity of the algorithm is determined by the maximum number
of input positions in inference rules. This is 3, and the running time is therefore



“9781405155816_4_004” — 2010/5/8 — 11:42 — page 123 — #19

Theory of Parsing 123

[h − 1,R, h]
{
H2[ah] → ah,
1 ≤ h ≤ n

(a) [h − 1,L, h]
{
H1[ah] → H2[ah],
1 ≤ h ≤ n

(d)

[h − 1,R, i]
[i,L, h′]

[h − 1,R, h′)
{
H2[ah] → H2[ah] H1[ah′ ] (b)

[j,L, h]
[h′ − 1,R, j]
(h′ − 1,L, h]

{
H1[ah] → H1[ah′ ] H1[ah] (c)

[h − 1,R, h′)
[h′ − 1,R, j]
[h − 1,R, j] (e)

(h′ − 1,L, h]
[i,L, h′]
[i,L, h] (f)

Figure 4.15 Deduction system for recognition with PDGs. We assume w = a1 · · · an,
and disregard the recognition of an+1 = $.

O(n3). By looking at the maximum number of instantiations of the four types
of items, we can conclude that the space complexity is O(n2). These complex-
ity results are independent of the size of the input grammar. For this reason,
dependency parsing is sometimes called ‘grammarless.’

Several algorithms for non-projective parsing have been proposed in the lit-
erature, often based on local relaxation of non-projectivity. Allowing arbitrary
crossing of branches, however, amounts to treating the input as a multiset of
words, and the resulting dependency structures as unordered trees. The pars-
ing problem can then be reduced to the problem of finding the optimal spanning
tree of a weighted graph. This graph has one vertex for each word in the input
sentence, and one edge with appropriate weight for each allowable dependency
between a corresponding pair of words. A standard method is applied for find-
ing the directed spanning tree in the graph having the highest weight. This
corresponds to the dependency tree with the highest probability.

Common algorithms to find spanning trees in directed graphs make use of
greedy approaches, and run in time O(m log(n)) for general graphs with m arcs
and n vertices, and in time O(n2) for dense graphs. In the case of dependency
grammars, the graph is usually dense, and therefore non-projective dependency
parsing can be done in quadratic time in the length of the input, whereas pro-
jective dependency parsing has a cubic time complexity. However, if the model
is enriched with certain kinds of contextual information, then non-projective
dependency parsing becomes NP-hard.

7 Tree Adjoining Grammars

For modeling the syntax of natural language, several grammatical formalisms
have been investigated that fall beyond the generative power of context-free gram-
mars. Of particular linguistic relevance is the class of tree adjoining grammars,
which is a mildly context-sensitive formalism.

A tree adjoining grammar (TAG) is a tuple G = (Σ , N, S, I,A), where Σ and N
are finite, disjoint sets of terminal and non-terminal symbols respectively, S ∈ N is
the start symbol, and I and A are finite sets of elementary trees, called initial and
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η
=⇒

(a)

α

η
γ

γη

=⇒

(b)

β

γη

Figure 4.16 Substitution (a) and adjunction (b) in a tree adjoining grammar.

auxiliary trees respectively. In an elementary tree, internal nodes are labeled by
symbols in N, and leaf nodes are labeled by symbols in N ∪ Σ ∪ {ε}. In addition,
each auxiliary tree has a special leaf node, called foot node, having the same non-
terminal label as its root node.

In a TAG, the notion of derivation is based on two operations involving tree
composition, defined in what follows. A substitution node η in an elementary
tree (or a derivation thereof, see below) is a leaf node labeled by a non-terminal
symbol and annotated with a set Subst(η) of initial trees with root labeled by the
same symbol as η. The substitution operation takes an initial tree α ∈ Subst(η) and
replaces η with a copy of α, as illustrated in Figure 4.16(a).

An internal node η in an elementary tree γ (or a derivation thereof) is associated
with a set Adj(η) of auxiliary trees with root (and foot node) labeled by the same
symbol as η. Let γη denote the complete subtree of γ rooted in η. The adjunction
operation takes an auxiliary tree β ∈ Adj(η) and produces a new tree specified as
follows:

(1) γη is excised from γ ;
(2) a copy of β replaces γη in γ , with the root of β replacing the excised node η;
(3) γη is attached to the resulting tree, with the foot node of β replacing η in γη.

This is illustrated in Figure 4.16(b).
In a TAG, a derivation is the process of recursive composition of elementary trees

using the substitution and the adjunction operations. The resulting trees are called
derived trees. The language generated by a TAG is the set of strings that are yields of
derived trees with S as root label and terminal symbols as labels of the leaf nodes.

We will now discuss a bottom-up tabular recognition algorithm for TAGs. To
simplify the presentation, we assume that all elementary trees are binary, and that
no leaf node is labeled by the empty string ε. The input string has the form w =
a1 · · · an, n ≥ 1 and ai ∈ Σ for each i with 1 ≤ i ≤ n.

The algorithm uses items of the form [ηX, i, j, f1, f2], denoting a complete sub-
tree of an elementary tree, with possible substitutions and adjunctions. Here η is
the root of the subtree, spanning the substring ai+1 · · · aj of w, and the foot of the
subtree spans the substring af1+1 · · · af2 . We let f1 = f2 = − if there is no foot node
in the subtree. Symbol X ∈ {⊥, �} records whether adjunction at η has already
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[η⊥, i − 1, i, −, −]
{

η labeled
by ai

(a)

[ηβ
⊥, i, j, i, j]

⎧
⎨

⎩

ηβ foot
of β ∈ A,
i < j

(b)

[η′�, i, k, −, −]
[η′′�, k, j, f1, f2]
[η⊥, i, j, f1, f2]

{
η′, η′′
children of η

(c1)

[η′�, i, k, f1, f2]
[η′′�, k, j, −, −]
[η⊥, i, j, f1, f2]

{
η′, η′′
children of η

(c2)

[η′�, i, k, −, −]
[η′′�, k, j, −, −]
[η⊥, i, j, −, −]

{
η′, η′′
children of η

(c3)

[ηα�, i, j, −, −]
[η�, i, j, −, −]

{
α ∈ Subst(η),
ηα root of α

(d)

[η⊥, i, j, f1, f2]
[η�, i, j, f1, f2] (e)

[ηβ
�, i, j, f1, f2]

[η⊥, f1, f2, f ′1, f ′2]
[η�, i, j, f ′1, f ′2]

{
β ∈ Adj(η),
ηβ root of β

(f)

Figure 4.17 The TAG bottom-up recognition algorithm, expressed as a deduction system.

been checked (X = �) or not (X = ⊥). This is done to avoid multiple adjunction at
a single node, which is forbidden in traditional TAGs.

The algorithm is presented by Figure 4.17. Rules (a) and (b) initialize the parsing
table with items representing leaf nodes that are labeled with a terminal sym-
bol, and leaf nodes that are foot nodes, respectively. In the latter case, we have
to blindly guess the span over the input string, because at this point no lexical
elements have been scanned to restrict allowable derivations.

Rules (c1), (c2), and (c3) combine items for two sibling nodes η′ and η′′ into a
new item for their parent node η. Note that the spans of the two antecedent items
must be adjacent within w. The three rules differ in whether η′ or η′′ dominates a
foot node, or whether none of them does.

Rule (d) deals with the substitution at node η of an initial tree α ∈ Subst(η).
Rule (e) deals with the case that no adjunction is performed at an internal node
η. This is done simply by recording that adjunction has already been checked,
through symbol �, and leaving the rest of the item unchanged. If η does not
dominate a foot node, then f1 and f2 are both −.

Finally, rule (f) processes adjunction of auxiliary tree β ∈ Adj(η) at η. This step
involves an antecedent representing a subtree rooted at node η, along with an
antecedent representing a completely parsed auxiliary tree β ∈ Adj(η). Note that
the span of β must wrap around the span of node η. Again, f ′

1 and f ′
2 may both be −.

We define the size of a TAG G, written |G|, as the total number of nodes in all
the trees in the set I ∪ A. It is not difficult to see that inference rule (f) dominates
the time complexity of the algorithm. The maximum number of instantiations of
that rule is O(|G|2 |w|6), which is therefore the running time of the algorithm. With
a small trick, this can be reduced to O(|G| |w|6). The space complexity is O(|G| |w|4).

8 Translation

Automatic translation between natural languages is one of the most challenging
applications in NLP. State-of-the-art approaches to this task are based on syntactic
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models, usually enriched with statistical parameters. In this section we consider
one such model, called synchronous context-free grammar (SCFG).

A SCFG consists of synchronous rules, each obtained by pairing two CFG rules
with the same left-hand side. The right-hand sides of such a pair of rules must
consist of identical multisets of non-terminals, possibly ordered differently, and
possibly combined with different terminal symbols. Furthermore, there is an
explicit bijection that pairs occurrences of identical non-terminals in the two
right-hand sides.

As an example, the synchronous rule 〈VP → VB 1 PP 2 , VP → PP 2 VB 1 ga〉
states that an English verb phrase composed of the two constituents VB (‘verb
in base form’) and PP (‘prepositional phrase’) can be translated into Japanese
by swapping the order of the translations of these constituents and by inserting
the word ‘ga’ at the right. Note the use of integers within boxes as superscripts
to indicate a bijection between non-terminal occurrences in the two context-free
rules.

A SCFG can derive pairs of sentences as follows. Starting with the pair of non-
terminals 〈S 1 , S 1 〉, synchronous rules are applied to rewrite pairs of non-
terminals that have the same index. At the application of a rule, the indices in the
newly added non-terminals are consistently renamed, in order to avoid clashes
with indices introduced at previous rewriting steps. The process stops when all
non-terminals have been rewritten.

As an example, consider the SCFG based on the following synchronous rules:

s1 : 〈 S → A 1 C 2 , S → A 1 C 2 〉 s5 : 〈 A → a1, A → a2 〉
s2 : 〈 C → B 1 S 2 , C → B 1 S 2 〉 s6 : 〈 A → a1, A → ε 〉
s3 : 〈 C → B 1 S 2 , C → S 2 B 1 〉 s7 : 〈 B → b1, B → b2 〉
s4 : 〈 C → B 1 , C → B 1 〉

An example derivation of the string pair 〈a1b1a1b1, a2b2b2〉 by the above SCFG is:

〈S 1 , S 1 〉 ⇒s1 〈A 2 C 3 , A 2 C 3 〉
⇒s3 〈A 2 B 4 S 5 , A 2 S 5 B 4 〉
⇒s1 〈A 2 B 4 A 6 C 7 , A 2 A 6 C 7 B 4 〉
⇒s4 〈A 2 B 4 A 6 B 8 , A 2 A 6 B 8 B 4 〉
⇒s5 〈a1B 4 A 6 B 8 , a2A 6 B 8 B 4 〉
⇒s7 〈a1b1A 6 B 8 , a2A 6 B 8 b2〉
⇒s6 〈a1b1a1B 8 , a2B 8 b2〉
⇒s7 〈a1b1a1b1, a2b2b2〉
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Figure 4.18 A pair of trees associated with a derivation in a SCFG. The dotted lines link
pairs of non-terminal occurrences that had the same index during the rewriting process.

In the same way as a derivation in a CFG can be associated with a parse-tree, a
derivation in a SCFG can be associated with a pair of parse-trees. These trees are
obtained one from the other by reordering of internal sibling nodes, and relabeling,
insertion, and deletion of leaf nodes, as illustrated in Figure 4.18. We will refer to
the two trees in a pair as the input tree and the output tree.

Given a SCFG G and a string w = a1 · · · an, the expression w ◦ G denotes the set
of all pairs of parse-trees associated with derivations in G whose input tree has
yield w. Note that all the strings that are translations of w under G can be easily
produced if we can enumerate the elements of w ◦ G.

The set w ◦G can have size exponential in |w|, and the number of possible trans-
lations of w under G can likewise be exponential. (There may even be an infinite
number of translations if there are synchronous rules whose left components are
epsilon rules or unit rules.) In Section 3 we discussed a compact representation of
a large set of parse-trees, in the form of a CFG. We will extend this to a construc-
tion of a SCFG G ′ that represents w ◦ G in a compact way. This is referred to as left
composition.

We assume, without loss of generality, that synchronous rules from G are either
of the form 〈A → α, A → α′〉, where α and α′ are non-empty strings of indexed
non-terminals, or of the form 〈A → x, A → y〉, where x and y can each be a termi-
nal symbol or the empty string. In the former case, we let a permutation π denote
the bijective relation that pairs the non-terminal occurrences in α and α′, and write
a synchronous rule as:

〈A → B 1
1 · · · B m

m , A → B
π(1)

π(1)
· · · B

π(m)

π(m)
〉

The non-terminals of G′ have the form [i, A, j], where i and j are input positions
within w, and A is a non-terminal from G. The algorithm for the left composition is
given in Figure 4.19. It may introduce many synchronous rules that are useless.
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1: Function LEFTCOMPOSITION(w,G) {w = a1 · · · an}
2: G′ ← SCFG with start non-terminal [0, S, n] and empty set of synchronous rules

3: for all 〈A → B 1
1 · · · B m

m , A → B
π(1)

π(1)
· · · B

π(m)

π(m)
〉 from G do

4: for all i0, . . . , im (0 ≤ i0 ≤ . . . ≤ im ≤ n) do

5: add to G′ the synchronous rule 〈[i0, A, im] → [i0, B1, i1] 1 · · · [im−1, Bm, im] m ,

[i0, A, im] → [iπ(1)−1, Bπ(1), iπ(1)] π(1) · · · [iπ(m)−1, Bπ(m), iπ(m)] π(m) 〉
6: for all i (1 ≤ i ≤ n) and 〈A → ai, A → y〉 from G do
7: add to G′ the synchronous rule 〈[i − 1, A, i] → ai, [i − 1, A, i] → y〉
8: for all i (0 ≤ i ≤ n) and 〈A → ε, A → y〉 from G do
9: add to G′ the synchronous rule 〈[i, A, i] → ε, [i, A, i] → y〉

10: return G′

Figure 4.19 An algorithm for the left composition of a sentence w and a SCFG G.

Techniques to eliminate useless rules from G ′ are very similar to well-known
techniques to eliminate useless rules from CFGs.

If we remove the left components from synchronous rules of G ′, then we obtain a
CFG G′′ that generates parse-trees for all possible translations of w under G. These
parse-trees differ from the output trees in w◦G only in the labels of internal nodes.
In the former case these are of the form [i, A, j] where in the latter they are A.

With the SCFG from the running example, w = a1b1a1b1 can be translated into
the five strings a2b2a2b2, a2a2b2b2, a2b2b2, b2a2b2, and b2b2. There are eight pairs
of trees in w ◦ G, as there are three derivations with output a2b2b2, and two
derivations with output b2b2. After applying left composition and reduction of
the grammar, we obtain the following set of synchronous rules:

〈 [0, S, 4] → [0, A, 1] 1 [1, C, 4] 2 , [0, S, 4] → [0, A, 1] 1 [1, C, 4] 2 〉,
〈 [1, C, 4] → [1, B, 2] 1 [2, S, 4] 2 , [1, C, 4] → [1, B, 2] 1 [2, S, 4] 2 〉,
〈 [1, C, 4] → [1, B, 2] 1 [2, S, 4] 2 , [1, C, 4] → [2, S, 4] 2 [1, B, 2] 1 〉,
〈 [2, S, 4] → [2, A, 3] 1 [3, C, 4] 2 , [2, S, 4] → [2, A, 3] 1 [3, C, 4] 2 〉,
〈 [3, C, 4] → [3, B, 4] 1 , [3, C, 4] → [3, B, 4] 1 〉,
〈 [0, A, 1] → a1, [0, A, 1] → a2 〉,
〈 [0, A, 1] → a1, [0, A, 1] → ε 〉,
〈 [1, B, 2] → b1, [1, B, 2] → b2 〉,
〈 [2, A, 3] → a1, [2, A, 3] → a2 〉,
〈 [2, A, 3] → a1, [2, A, 3] → ε 〉,
〈 [3, B, 4] → b1, [3, B, 4] → b2 〉.

The size of a SCFG G, written as |G|, is defined as the sum of the number of non-
terminal and terminal occurrences in its synchronous rules. Let r be the length
of the longest right-hand side of a context-free rule that is the input or output
component of a synchronous rule. The time complexity and space complexity of
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left composition are both O(|G| · nr+1), where n is the length of the input string. In
many practical applications, it is possible to factorize synchronous rules in such a
way that the parameter r is reduced to a small integer. In the general case, however,
a SCFG cannot be cast into an equivalent form with r bounded by a constant. This
implies exponential behavior for our algorithm in the worst case.

9 Further Reading

For chart parsing, we refer to Thompson and Ritchie (1984). Transformation of
CFGs to Chomsky normal form is discussed by Harrison (1978). Reduction of a
CFG can be carried out in linear time in the size of the grammar, as shown in Sippu
and Soisalon-Soininen (1988). For deduction systems in the context of parsing,
see Shieber et al. (1995).

Earley’s algorithm and some variants are due to Earley (1970); Aho and
Ullman (1972); Graham and Harrison (1976); Graham et al. (1980). A more
complex parsing strategy that is sometimes used for natural language process-
ing is tabular LR parsing, also called generalized LR parsing in Tomita (1986). Its
presentation requires the additional definition of push-down automaton, which
was not discussed in this chapter, but see for instance Nederhof and Satta (2004).

The parse forest representation is originally due to Bar-Hillel et al. (1964), with
states of a finite automaton in place of positions in an input string. Parse forests
have also been discussed by Tomita (1986). Construction of parse forests using
push-down transducers is discussed by Billot and Lang (1989). Similar ideas were
proposed for tree adjoining grammars by Lang (1994).

The problem of finding the most probable parse in a PCFG is discussed by Knuth
(1977), who proposes a generalization of the algorithm by Dijkstra (1959). The
probabilistic CKY algorithm is described by Jelinek et al. (1992) and is similar
to Viterbi (1967).

The 2-LCFG formalism is an abstraction of several head-driven grammar
models that have been used in statistical parsing; see for instance Collins (2003)
and references therein. Our 2-LCFG recognition algorithm was originally pre-
sented by Eisner and Satta (1999).

The PPDGs defined in this chapter are a simplification of a model discussed by
Klein and Manning (2004). Our reduction from PPDGs to 2-LCFGs is related to
one of the lexicalized CFG models proposed by Collins (2003). The PPDG recog-
nition algorithm we have presented is related to a method originally discussed by
Eisner (2000). The reduction from non-projective dependency parsing to the prob-
lem of spanning trees was first proposed by McDonald et al. (2005a). The discussed
hardness results for non-projective parsing are taken from McDonald and Satta
(2007). See Koo et al. (2007) for further algorithms related to probabilistic parsing
of non-projective dependency models.

A good introduction to TAGs can be found in Joshi and Schabes (1997). The
discussed recognition algorithm is due to Vijay-Shanker and Joshi (1985).
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SCFGs are a syntactic variant of the syntax-directed translation schemata of
Aho and Ullman (1972). See the same publication for the discussed negative result
on the factorization of synchronous rules.

NOTE

1 Symbol → indicating the dependencies of G is now overloaded by the same symbol
indicating the rules in G′. The intended interpretation will always be clear from the
context.
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5 Maximum Entropy Models

ROBERT MALOUF

1 Introduction

Maximum entropy (MaxEnt) models, variously known as log-linear, Gibbs,
exponential, and multinomial logit models, provide a general-purpose machine
learning technique for classification and prediction which has been successfully
applied to fields as diverse as computer vision and econometrics. In natural
language processing, recent years have seen MaxEnt techniques used for sentence
boundary detection, part-of-speech tagging, parse selection and ambiguity resolu-
tion, machine translation, and stochastic attribute value grammars, to name just a
few applications (Berger et al., 1996; Abney 1997; Ratnaparkhi 1998; Johnson et al.,
1999; Foster 2000). Beyond these purely practical applications, statistical modeling
techniques also offer a powerful set of tools for analyzing natural language data. A
good statistical model can both clarify what the patterns are in a complex, possibly
noisy, set of observations and at the same time shed light on the underlying
processes that lead to those patterns (Breiman 2001b; McCullagh 2002).

The fundamental problem for stochastic data analysis is model selection. How
do we choose a model out of a given hypothesis space which best fits our observa-
tions? In all but the most trivial cases, our hypothesis space will provide an infinite
range of possible models. This is a general problem: how do we pick a probability
distribution given possibly incomplete information?

More technically, suppose we have a random variable X, which can take on
values x1, . . . , xn. How do we choose a model, or an assignment of probabilities
to outcomes? Any distribution we choose must satisfy this constraint:
∑

i

P(xi) = 1

In addition, we presumably have some information about the real-world phe-
nomenon that we are attempting to model, and we would like our probability
distribution to reflect that knowledge.
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The principle of insufficient reason (variously attributed to Bernoulli, Laplace,
Bayes, etc.) provides one model selection criterion: in the absence of any reason
to believe that one outcome is more likely than another, we must assume that all
outcomes are equally likely. More specifically, if all we know about a random vari-
able X is that it has n possible outcomes, then each outcome should be assigned
the probability 1

n .
But what if we are not in a position of ‘insufficient reason,’ and we have a strong

suspicion that not all outcomes are equally likely? Suppose that we have recorded
the outcome of a very large number of flips of a coin, and from that we can see
that heads came up much more often than tails. A uniform distribution is still a
possible model for this coin. After all, in any finite sample, we will probably not
get exactly as many heads as tails. However, if there are many more heads than
tails, intuitively it seems like some non-uniform distribution would be a better
model.

For this situation, Jaynes (1957) proposed an alternative to the principle of insuf-
ficient reason – the maximum entropy principle: the least informative probability
distribution maximizes the entropy H subject to known constraints. Here Jaynes is
proposing to use Shannon’s information entropy H as a measure of our ignorance
about the value of X:

H(X) = −
∑

i

P(xi) log P(xi)

By choosing the distribution which maximizes the entropy, we are choosing the
distribution with the least informational content. In other words, our probability
estimates should reflect what we know and what we do not know: in general,
ignorance is preferable to error.

Observations of the real world, in the form of training data, impose a set of con-
straints on our models. In most cases, however, the constraints underdetermine
the model: many models will be consistent with the observed facts yet lead to
very different conclusions. The MaxEnt principle gives us a general way of select-
ing a model out of the infinite range of possible models. MaxEnt models diverge
from a uniform distribution only enough to respect the constraints. In the case
where there are no known constraints beyond the number of possible outcomes,
the distribution which maximizes the entropy is simply the uniform distribution.
Given other kinds of empirical constraints, the MaxEnt principle leads to a wide
variety of distributions (Kapur 1993; Jaynes 2003). In this chapter, we will consider
distributions which are derived from the MaxEnt principle which are particularly
useful for computational linguistics and natural language processing.

If the goal is to minimize the information content of the model, it is still
reasonable to ask why one would want to maximize this particular measure
of information content. Both Shannon and Jaynes show that other measures
of information content either are equivalent to the information entropy H or
lead to inconsistencies. Jaynes (1986) also offers another rationale for choosing
the distribution that maximizes the information entropy while still satisfying
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the constraints created by the testable information. Suppose that, rather than
constructing the model ourselves, we can leave model construction to an impar-
tial third party – say, research assistants, or in Jaynes’ example, monkeys. We
give our assistants n balls, each worth δ = 1/n of the available probability mass,
and have them randomly throw them into bins representing the m possible
outcomes.

After all the balls have been distributed, we can count the balls in each bin, and
assign a probability to each outcome. If outcome i received ni balls, then we say its
probability is

pi = ni δ = ni

n

If the resulting distribution fits the constraints, then we are done. We have found
a distribution which fits the testable information but is otherwise free of bias or a
priori assumptions. If it does not fit the constraints, though, we retrieve the balls
for our assistants and try again.

For a method like this to give good results even as a thought experiment, n
needs to be much larger than m, and we might need a lot of attempts before we
get a distribution that fits the constraints. Instead of actually carrying out this
procedure, we can find the most likely distribution of balls into bins given some
simple assumptions.

The probability of any particular assignment of n balls into m bins n1 . . . nm is
given by the multinomial distribution:

P(n1, . . . , nm) =
(

n
n1, . . . , nm

)

m−n = n!
n1! · · · nm!m−n

Since n and m are fixed, the most likely assignment is one that maximizes:

W = n!
n1! · · · nm!

Equivalently, we could maximize a monotonic increasing function of W, for
example, 1

n log W:

1
n

log W = 1
n

log
n!

n1! · · · nm!

= 1
n

log
n!

np1! · · · npm!

= 1
n

(

log n! −
∑

i

log npi!
)



“9781405155816_4_005” — 2010/5/14 — 17:16 — page 136 — #4

136 Robert Malouf

Now we can bring in Stirling’s approximation (log n! ≈ n log n − n) to get:

1
n

log W = 1
n

(n log n − n −
∑

i

(npi log npi − npi)

= −
∑

i

pi log pi

Thus, the distribution which our research assistants are most likely to achieve by
throwing balls into bins is the one which maximizes the information entropy of
the resulting distribution. So, by maximizing the entropy, we are constructing a
model which imposes the least structure on the problem beyond what is enforced
by the choice of constraints.

2 Maximum Entropy and Exponential Distributions

The MaxEnt principle provides a general strategy for choosing distributions given
certain testable pieces of information, but does not in itself lead to any specific
distribution. The particular parametric form for a ‘maximum entropy’ distribution
will depend on the nature of the testable information we have about the situation.
As we have seen, in the simple case where all we know is the number of possible
outcomes, the uniform distribution is the one which maximizes the entropy. In
most situations, however, we will have some additional useful information about
the problem we are trying to model.

For many problems in computational linguistics, the testable information con-
sists of event counts derived from a training corpus. In a large annotated sample
of text, we can, for example, count how many times the word respect is tagged as a
noun, or how many times the token Mr. ends a sentence. By itself, the raw count is
difficult to interpret, since it is in large part determined by the size of the corpus,
which in turn is generally determined by external non-linguistic factors. But we
can take the observed count as an estimate of the expected count given a corpus
of a particular size.

More specifically, we can divide the training corpus into observational units or
events (words, sentences, etc.), each of which can be described by d-dimensional
real-valued feature vector function f . For a part-of-speech tagging application,
the events might be word/tag pairs, and one feature might be the indicator
function:

fm(w, t) =
{

1 if w is ‘respect’ and t is NOUN

0 otherwise

In the context of a probabilistic context-free parser, an event might be a tree, and
one feature would be the number of times a particular rule was applied in the
derivation of the tree.
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In any case, the collected feature vectors constitute the testable information for
the problem. For each possible event type x in the space of possible event types X,
we can estimate the expected value of the feature vector:

Ê[ f ] =
∑

x∈X

p̂(x)f (x)

from the observed probability of x in the training data. Our goal now is to
construct a model distribution p which satisfies the constraints imposed by the
empirical distribution p̂, in the sense that:

(1) E[ f ] = Ê[ f ]

Additionally, our model p must be a proper probability distribution:

(2)
∑

x∈X

p(x) = 1

In general, this problem is ill posed: a wide range of models will fit the constraints
in (1) and (2). In accordance with the principle of maximum entropy, we need to
find among these the distribution which maximizes the entropy H(p).

This is a constrained optimization problem – maximize a function given a set of
constraints – which can be solved using the method of Lagrange multipliers. First,
we restate the constraints:

0 =
∑

i

∑

x

p(x)fi(x) − Ê[ fi]

0 =
∑

x

p(x) − 1

Next, we introduce the Lagrangian function:

L(p, λ, γ ) = −
∑

x

p(x) log p(x) −
∑

i

λi

(
∑

x

p(x)fi(x) − Ê[ fi]
)

− γ

(
∑

x

p(x) − 1

)

The new variables, one −λi for each feature in the testable information plus −γ

for the requirement that p be a proper probability distribution, are the Lagrange
multipliers corresponding to the constraints. Since both the objective function and
the constraints are convex, the maximum of L corresponds to a solution to the con-
strained problem posed above. We can now solve this unconstrained optimization
problem by finding the p where the gradient of L is zero:

∇L(p, λ, γ ) = 0
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We start with the partial derivative of L with respect to p for some particular event
type x:

0 = ∂

∂p
L(p, λ, γ )

= −(1 + log p(x)) +
∑

i

λifi(x) + γ

Solving for p(x), we get:

p(x) = exp (γ − 1) exp

(
∑

i

λifi(x)

)

We know that any solution p must satisfy the constraint in (2), so:

∑

x

p(x) = 1

∑

x

exp (γ − 1) exp

(
∑

i

λifi(x)

)

= 1

exp (γ − 1) =
(

∑

x

exp

(
∑

i

λifi(x)

))−1

Finally, substituting in p(x), we get the parametric form of the MaxEnt distribution
given known expected values:

(3) p(x) = exp
(
λTf (x)

)

∑
y∈X exp

(
λTf (y)

)

where λ is a d-dimensional parameter vector and λTf (x) is the inner product of the
parameter vector and a feature vector.

3 Parameter Estimation

Given the general model form in (3), a set of event types, a feature function over
events, and empirical expected values derived from a training corpus, the next
step in constructing a MaxEnt distribution is to find values for the parameters λi
such that:
∑

x

p(x)fi(x) = Ê[ fi(x)]
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Unfortunately, while parameter estimation for MaxEnt models is conceptually
straightforward, in practice MaxEnt models for typical natural language tasks are
very large. Estimation of such large models is not only expensive, but also, due to
sparsely distributed features, sensitive to round-off errors. Thus, highly efficient,
accurate, scalable methods are required for estimating the parameters of practical
models.

One theoretical complication which makes models of this form difficult to apply
to problems in natural language processing is that the events space X is often very
large or even infinite, making the denominator in (3) impossible to compute. One
modification we can make to avoid this problem is to consider conditional prob-
ability distributions instead (Berger et al., 1996; Chi 1998; Johnson et al., 1999).
Suppose now that in addition to the event space X and the feature function f , we
have also a set of contexts W and a function Y which partitions the members of
X. In our PCFG example, W might be the set of possible strings of words, and
Y(w) the set of trees whose yield is w ∈ W. Computing the conditional probability
p(x|w) of an event x in context w as

(4) p(x|w) = exp
(
λTf (x)

)

∑
y∈Y(w) exp

(
λTf (y)

)

now involves evaluating a more much tractable sum in the denominator.
Given the parametric form of a MaxEnt model in (4), fitting a MaxEnt model

to a collection of training data entails finding values for the parameter vector λ

which minimize the Kullback–Leibler divergence between the model pλ and the
empirical distribution p̂:

D(p̂||pλ) =
∑

w,x
p̂(x, w) log

p̂(x|w)

pλ(x|w)

or, equivalently, which maximize the log-likelihood:

(5) L(λ) =
∑

w,x

p̂(w, x) log pλ(x|w)

Again, we are faced with finding the maximum of a concave function, and we
proceed in the same way as we did in the previous section. The gradient of the
log-likelihood function, or the vector of its first derivatives with respect to the
parameter, λ, is:

G(λ) = ∂L(λ)

∂λi

=
∑

x,y

p̂(x, y)f (y) −
∑

x,y

p̂(x)pλ(y|x)f (y)

or, simply:

(6) G(λ) = Ê[ f ] − Epλ [ f ]
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Since the likelihood function (5) is concave over the parameter space, it has a
global maximum where the gradient is zero (when Ê[ f ] = Epλ

[ f ]). Unfortunately,
simply setting G(λ) = 0 and solving for λ does not yield a closed form solution, so
we proceed iteratively, following this general schema:

ESTIMATE(p̂)

1 λ0 ← 0
2 k ← 0
3 repeat
4 compute p(k) from λ(k)

5 compute update δ(k)

6 λ(k+1) ← λ(k) + δ(k)

7 k ← k + 1
8 until converged
9 return λ(k)

At each step, we adjust an estimate of the parameters λ(k) to a new estimate
λ(k+1) based on the divergence between the estimated probability distribution
p(k) and the empirical distribution p̂. We continue until successive improvements
fail to yield a sufficiently large decrease in the divergence. Since the function
that is being maximized is convex, this algorithm will converge to a unique
solution.

While all parameter estimation algorithms we will consider take the same gen-
eral form, the method for computing the updates δ(k) at each search step differs
substantially. This difference can have a dramatic impact on the number of updates
required to reach convergence.

3.1 Iterative scaling
One widely used method for iteratively refining the model parameters is gener-
alized iterative scaling (GIS), due to Darroch and Ratcliff (1972). An extension of
iterative proportional fitting (Deming & Stephan 1940), GIS scales the probability
distribution p(k) by a factor proportional to the ratio of Ê[ f ] to Ep(k) [ f ], with the
restriction that

∑
j fj(x) = C for some constant c and for each event x in the training

data (a condition which can be easily satisfied by the addition of a ‘correction’ fea-
ture). We can adapt GIS to estimate the model parameters λ rather than the model
probabilities p, yielding the update rule:

δ(k) = log

(
Ê[ f ]

Ep(k)[ f ]

) 1
C

GIS has the advantage of being very simple, both conceptually and in terms
of its implementation. However, in Malouf’s (2002) comparison, GIS performed
quite poorly. A key limitation of GIS is that the step size, and thus the rate of
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convergence, depends on the constant C: the larger the value of C, the smaller the
step size. In case not all rows of the training data sum to a constant, the addition
of a correction feature effectively slows convergence to match the most difficult
case. Both Goodman (2002) and Curran and Clark (2003) consider variations on
traditional GIS which avoid this problem, leading to methods which converge
more quickly.

In an earlier move to improve on the slow convergence of GIS and the need for
a correction feature, Della Pietra et al. (1997) propose an improved iterative scaling
(IIS) algorithm, whose update rule is the solution to the equation:

Ê[ f ] =
∑

w,x

p̂(w)p(k)(x|w)f (x) exp(M(x)δ(k))

where M(x) is the sum of the feature values for an event x in the training data.
This is a polynomial in exp(δ(k)), and the solution can be found straightforwardly
using, for example, the Newton–Raphson method.

3.2 First-order methods
Iterative scaling algorithms have a long tradition in statistics and are still widely
used for analysis of contingency tables. Their primary strength is that on each
iteration they only require computation of the expected values Ep(k) . They do
not depend on evaluation of the gradient of the log-likelihood function, which,
depending on the distribution, could be prohibitively expensive or simply impos-
sible. In the case of MaxEnt models, however, the vector of expected values
required by iterative scaling essentially is the gradient G. Thus, it makes sense
to consider methods which use the gradient directly.

The most obvious way of making explicit use of the gradient is by Cauchy’s
method, or the method of steepest ascent (Zhu et al., 1997). The gradient of a func-
tion is a vector which points in the direction in which the function’s value increases
most rapidly. Since our goal is to maximize the log-likelihood function, a natural
strategy is to shift our current estimate of the parameters in the direction of the
gradient via the update rule:

δ(k) = α(k)G(λ(k))

where the step size α(k) is chosen to maximize L(λ(k) + δ(k)). Finding the opti-
mal step size is itself an optimization problem, though only in one dimension
and, in practice, only an approximate solution is required to guarantee global
convergence.

Since the log-likelihood function is concave, the method of steepest ascent is
guaranteed to find the global maximum. However, while the steps taken on each
iteration are in a very narrow sense locally optimal, the global convergence rate
of steepest ascent is very poor. Each new search direction is orthogonal (or, if
an approximate line search is used, nearly so) to the previous direction, leading
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to a characteristic ‘zig-zag’ ascent with convergence slowing as the maximum is
approached.

One way of looking at the problem with steepest ascent is that it considers the
same search directions many times. We would prefer an algorithm which consid-
ered each possible search direction only once, in each iteration taking a step of
exactly the right length in a direction orthogonal to all previous search directions.
This intuition underlies conjugate gradient methods which choose a search direc-
tion which is a linear combination of the steepest ascent direction and the previous
search direction. The step size is selected by an approximate line search, as in the
steepest ascent method. Several non-linear conjugate gradient methods, such as
the Fletcher–Reeves and the Polak–Ribière positive algorithms, have been proposed.
While theoretically equivalent, they use slightly different update rules and thus
show different numeric properties.

3.3 Second-order methods
Another way of looking at the problem with steepest ascent is that, while it takes
into account the gradient of the log-likelihood function, it fails to take into account
its curvature, or the gradient of the gradient. The usefulness of the curvature is
made clear if we consider a second-order Taylor series approximation of L(λ + δ):

(7) L(λ + δ) ≈ L(λ) + δTG(λ) + 1
2
δTH(λ)δ

where H is Hessian matrix of the log-likelihood function, the d × d matrix of its
second partial derivatives with respect to λ. If we set the derivative of (7) to zero
and solve for δ, we get the update rule for Newton’s method:

(8) δ(k) = H−1(λ(k))G(λ(k))

Newton’s method converges very quickly (for quadratic objective functions, in
one step), but it requires the computation of the inverse of the Hessian matrix on
each iteration.

While the log-likelihood function for ME models in (5) is twice differentiable,
for large-scale problems the evaluation of the Hessian matrix is computationally
impractical, and Newton’s method is not competitive with iterative scaling or first-
order methods. Variable metric or quasi-Newton methods avoid explicit evaluation
of the Hessian by building up an approximation of it using successive evaluations
of the gradient. That is, we replace H−1(λ(k)) in (8) with a local approximation of
the inverse Hessian B(k):

δ(k) = B(k)G(λ(k))

with B(k) a symmatric, positive definite matrix which satisfies the equation:

B(k)y(k) = δ(k−1)

where y(k) = G(λ(k)) − G(λ(k−1)).



“9781405155816_4_005” — 2010/5/14 — 17:16 — page 143 — #11

Maximum Entropy Models 143

Variable metric methods also show excellent convergence properties and can be
much more efficient than using true Newton updates, but, for large-scale problems
with hundreds of thousands of parameters, even storing the approximate Hessian
is prohibitively expensive. For such cases, we can apply limited memory variable
metric methods, which implicitly approximate the Hessian matrix in the vicinity
of the current estimate of λ(k) using the previous m values of y(k) and δ(k). Since in
practical applications values of m between 3 and 10 suffice, this can offer a sub-
stantial saving in storage requirements over variable metric methods, while still
giving favorable convergence properties (for algorithmic details and theoretical
analysis of first- and second-order methods, see, e.g., Nocedal & Wright 1999).

3.4 Comparing parameter estimation methods
The performance of optimization algorithms is highly dependent on the spe-
cific properties of the problem to be solved. Worst-case analysis typically does
not reflect the actual behavior on actual problems. Therefore, in order to evalu-
ate the performance of the optimization techniques sketched in previous sections
when applied to the problem of parameter estimation, we need to compare the
performance of actual implementations on realistic data sets (Dolan & Moré 2002).

Minka (2001) offers a comparison of iterative scaling with other algorithms for
parameter estimation in logistic regression, a problem similar to the one consid-
ered here, but it is difficult to transfer Minka’s results to MaxEnt models. First,
he evaluates the algorithms with randomly generated training data. However,
the performance and accuracy of optimization algorithms can be sensitive to the
specific numerical properties of the function being optimized; results based on
random data may or may not carry over to more realistic problems. Second,
Minka measures performance in terms of the number of floating point opera-
tions required to achieve a particular precision. But large-scale sparse problems
are typically memory bandwidth bound, not CPU bound. Therefore, the number
of floating point operations is not a very good indicator of the total time required
to find a solution. And the test problems Minka considers are relatively small
(100–500 dimensions). As we have seen, though, algorithms which perform well
for small- and medium-scale problems may not always be applicable to problems
with many thousands of dimensions.

To address these issues, Malouf (2002) undertook an empirical evaluation of
several parameter estimation algorithms. This implementation (now available
as the Toolkit for Advanced Discriminative Modeling),1 was based on PETSc
(the Portable, Extensible Toolkit for Scientific Computation), a software library
designed to ease development of programs which solve large systems of partial
differential equations (Balay et al., 2002). PETSc offers data structures and rou-
tines for parallel and sequential storage, manipulation, and visualization of very
large sparse matrices.

For any of the estimation techniques, the most expensive operation is comput-
ing the probability distribution p and the expectations Ep[ f ] for each iteration. In
order to make use of the facilities provided by PETSc, we can store the training
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data as a (sparse) matrix F, with rows corresponding to events and columns to
features. Then, given a parameter vector λ, the unnormalized probabilities ṗλ are
the matrix–vector product:

ṗλ = exp Fλ

and the feature expectations are the transposed matrix–vector product:

epλ
[ f ] = FTpλ

By expressing these computations as matrix–vector operations, we can take advan-
tage of the high-performance sparse matrix primitives of PETSc. In addition, there
are many possible optimizations which can be applied for particular classes of
MaxEnt models (Lafferty & Suhm 1996; Wu & Khudanpur 2000; Lafferty et al.,
2001) to speed up normalization of the probability distribution p. These improve-
ments take advantage of a model’s structure to simplify the evaluation of the
denominator in (4). For general data sets and feature functions, such optimiza-
tions are unlikely to give any improvement. However, when these optimizations
are appropriate, they will give a proportional speed-up to all of the algorithms.
Thus, the use of such optimizations is independent of the choice of parameter
estimation method.

In Malouf’s (2002) evaluation experiments, iterative scaling methods performed
relatively poorly, while Benson and Moré’s (2001) limited memory variable met-
ric algorithm as implemented in TAO (Benson et al., 2007) consistently performed
the best, both in speed of convergence and in the accuracy of the final model.
These results have been further supported by evaluations based on different
types of realistic data sets (e.g., Sha & Pereira 2003). In comparing GIS and
IIS, while IIS converges in fewer steps than GIS it takes substantially more
time, as the additional bookkeeping overhead required by IIS more than cancels
any improvements in speed offered by accelerated convergence for unstructured
problems.

In addition, the agreement between the estimated model and real held-out data
was more or less the same for all of the algorithms for most of the data sets.
Some degree of variability is to be expected, since all of the data sets consid-
ered in the evaluation were badly underdetermined and ill-conditioned. With a
very large number of very rare features, the accumulation of numerical errors
becomes important and many (apparently) different parameter settings will yield
essentially the same likelihood. Which of these models the algorithm ultimately
converges to will be determined by the particular sequence of arithmetic oper-
ations, and differences in test accuracy between these models is generally well
below the threshold of statistical significance.

In a few cases, however, the prediction accuracy differs more substantially. For
some problems, GIS showed a small advantage over the other methods. More dra-
matically, both iterative scaling methods performed very poorly on the one very
sparse data set. In this case, many features were nearly ‘pseudo-minimal’ in the
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sense of Johnson et al. (1999). That is, for many features fi, event types x for which
fi(x) �= 0 are not observed in the training data. For these features, Ê[ fi] = and λi
receives values approaching −∞. Smoothing the reference probabilities or apply-
ing model regularization (see the next section) would likely improve the results for
all of the methods and reduce the observed differences. However, this does sug-
gest that gradient-based methods are robust to certain problems with the training
data.

4 Regularization

The procedures described in the previous section find a parameter vector λ which
minimizes the KL divergence between the model and the training data. In other
words, we find the model which maximizes the likelihood of the training data.
Maximum likelihood estimation of model parameters from natural language train-
ing data is well known to run into problems. Natural language data is notorious
for being noisy and incomplete, with many event types occurring only once and
many more possible event types (by chance) failing to occur at all. Just as maxi-
mum likelihood estimation causes problems for simple n-gram models, it often
leads to overtraining effects and poor model performance in MaxEnt models
as well.

In addition to the well-known problems with maximum likelihood estimation
in general, the particular form of MaxEnt models makes them especially sus-
ceptible to sparse data problems. For a maximum likelihood bigram model, say,
any sentence which contains a bigram which did not occur in the training data
will be assigned a probability of 0 (clearly an undesirable result). For sentences
which contain only attested bigrams, however, the model will still perform well.
For a MaxEnt model, on the other hand, the only way an event type x can be
assigned a probability of 0 (or 1) is if one or more of the parameters λi for the fea-
tures fi such that fi(x)> 0 has the value −∞ (or ∞). Given the iterative algorithm
used to estimate MaxEnt models, no feature will ever be assigned a non-finite
weight. Instead, the magnitude of the weights will become larger and larger
on each iteration, leading to poor numerical accuracy for all the weights in the
model.

Therefore, addressing sparse data problems is at least as important for MaxEnt
models as it is for other model classes. And, in fact, the same methods devel-
oped for use with n-gram models (e.g., Chen & Goodman 1996) can be applied
directly to smoothing the empirical expectations Ê[ f ]. However, a more widely
used approach to smoothing MaxEnt models that is more in keeping with the
MaxEnt principle’s Bayesian roots is to incorporate a prior distribution over
parameter values into the estimation procedure. That is, we replace the maximum
likelihood estimation of the previous section, which finds λ such that:

λMLE = argmax
λ

p(x|w; λ)
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with a maximum a posteriori estimate:

λMAP = argmax
λ

q(x|w; λ) p(λ)

The prior p(λ) is the probability of a particular parameter vector, independent from
any evidence derived from the training data – in effect, the maximum likelihood
estimates assumes a uniform p(λ).

Building on an idea they attribute to Lafferty, Chen and Rosenfeld (1999) explore
using a Gaussian prior distribution with a mean of 0 and a variance of σ for p(λ).
In the previous section, we found the parameter vector which maximized the log-
likeliood (5). To find the parameters which maximize the posterior probability, we
can maximize the penalized log-likelihood:

L′(λ) = L(λ) +
∑

i

log
1√

2πσ 2
exp

(−λi

2σ 2

)

(9)

= L(λ) −
∑

i

λ2
i

2σ 2 + C

and the gradient G in (6) becomes:

G′(λ) = G(λ) −
∑

i

λi

σ 2
i

Like L, L′ is a concave function and can be maximized using the same methods.
The hyperparameter σ controls the influence of the prior in the final estimate, with
smaller values of σ leading to more aggressive smoothing. While it is possible to
set different values of σi for each feature i, in practice a single value is typically
used, with its value selected by cross-validation.

As Chen and Rosenfeld (1999) point out, using a Gaussian prior has much the
same effect as discounting feature counts. At the solution, the constraints (1) are
not met exactly. Instead, we find λ such that:

Eλ[ fi] = Ê[ fi] − λi

σ 2
i

Effectively reducing the observed count for feature i by λi/σ
2
i , the observed expec-

tation is discounted by λi/σ
2
i , an amount that increases logarithmically with the

observed frequency.
While the Gaussian prior is justified on Bayesian grounds and Chen and

Rosenfeld (1999) explore its similarity to n-gram smoothing methods, it is also
worth noting the similarity between the penalized log-likelihood (9) and the
loss function minimized by support vector machines (SVMs), a non-parameteric
machine learning method based on statistical learning theory (Vapnik 1996). As
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Hastie et al. (2001) observe, both MaxEnt models and SVMs involve maximizing
a penalized loss function. In the case of MaxEnt models, the loss function is the
log-likelihood (5), while for classical SVMs the loss function is the ‘hinge loss,’ an
upper bound on the error rate of the model on the training data. In both cases, the
penalty is the same: the sum of the squares of the model parameters. For SVMs,
however, the quadratic penalty is not introduced as a prior. For SVMs, the penalty
term is used to control the representational capacity of the learner. By controlling the
capacity of the model, we can avoid overtraining, the tendency for complex models
to simply memorize accidental properties of noisy training data and miss the larger
generalizations. The structural risk minimization principle, a key part of Vapnik’s
statistical learning theory, shows how model complexity can be balanced against
the model’s fit to the training data in order to maximize the model’s expected
accuracy on new, unseen data. This provides an alternative explanation as to why
a Gaussian prior is as successful as it is for such a wide range of applications.

More recently, researchers have begun exploring the use of alternative regular-
ization terms in the penalized likelihood. One that has received a fair amount
of attention is the exponential prior over parameter values (Tibshirani 1996;
Goodman 2004; Kazama & Tsujii 2005). This leads to the following penalized
likelihood:

(10) L′(λ) = L(λ) −
∑

i

αi|λi|

While the penalized likelihood in (9) tends to give models with parameter val-
ues close to zero, the likelihood in (10) yields models with many parameters
exactly equal to zero. Since these parameters will have no effect in the final model,
the corresponding features can be ignored, and the resulting sparse models can
be applied much more efficiently than standard MaxEnt models. Unfortunately,
(10) does not have a smooth gradient and so the model parameters cannot be
found using standard efficient optimization techniques. However, a number of
specialized algorithms have been proposed for estimating these models (Riezler &
Vasserman 2004; Andrew & Gao 2007; Schmidt et al., 2007).

5 Model Applications

Maximum entropy models of the form (3) or (4) can be applied to any task in
natural language processing which requires one to assign a probability to an event
which can be described by a feature vector.

5.1 Classification
Berger et al. (1996), early proponents of MaxEnt models in NLP, consider two case
studies in the use of MaxEnt models in statistical machine translation systems.
One of these is a good example of a classification problem, a type of task which is
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frequently encountered in NLP and for which MaxEnt models are well suited. In
this problem, Berger et al. are concerned with translations of French noun phrases
of the form NOUN de NOUN into English. In some cases a word-for-word transla-
tion is best (e.g., conflit d’intérêts → conflict of interest), but in other cases translation
as a compound noun is preferable (e.g., taux d’intérêt → interest rate). Berger et al.
approach this as a classification problem: for each French NOUN de NOUN source
phrase, we assign the label no-interchange if a direct translation is best and
the label interchange if a compound noun translation is best. The training data
consists of a collection of French noun phrase types, with their labels. The feature
vector is made up of indicator functions which pick out conjunctions of a word
and a class. For example, one feature might be:

f (x, y) =
{

1 if x’s left member is système and y is interchange

0 otherwise

This feature will be ‘active’ for events like système de surveillance and système de
quota, noun phrases whose left member is système and which are best translated
as compound nouns. This feature will be inactive for noun phrases whose left
member is not système and/or which should not be translated as a compound.
Other features might depend on the right member or both members of the French
noun phrases.

After training, each feature fi will be associated with a weight λi. Given a novel
noun phrase type x, the class ŷ predicted by the model is the one which maximizes
the conditional probability p(y|x):

ŷ = argmax
y

p(y|x)

= argmax
y

∑
i λi fi(x, y)

∑
i λi fi(x,interchange) + ∑

i λi fi(x,no-interchange)

= argmax
y

∑

i

λi fi(x, y)

In the experiments reported by Berger et al., the model assigned p(interchange
|x)≈ 0 for noun phrases like chambre de commerce (‘chamber of commerce’) and
p(interchange|x)≈ 1 for noun phrases like saison d’hiver (‘winter season’).
Many noun phrases like coût de transport (‘transport cost, cost of transport’),
which can be translated either way, received model probabilities p(interchange
|x)≈ p(no-interchange|x). Overall, the model chose the right translation for
80.4 percent of the noun phrases in a test sample, compared to 70.2 percent
accuracy for a simple model which translated all noun phrases directly.

This same basic strategy can be applied to any classification problem. The sys-
tem builder needs to define a set of feature templates which pick out properties of
the events to be classified. The model features then will be conjunctions of feature
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templates and classes. In the noun phrase translation example, the feature tem-
plates looked at the first word, the second word, and both words in the French
noun phrases. For a problem like text classification, the feature templates may be
based on a bag-of-words model. Nigam et al. (1999) propose a MaxEnt version of
a naïve Bayes text classifier which uses features of the type:

(11) fw(d, c) =
{

N(d,w)
N(d)

if d’s class is c

0 otherwise

where N(d, w) is the number of times word w occurs in document d, and N(d) is
the total number of words in d. Nigam et al. report that their MaxEnt model out-
performs a standard naïve Bayes classifier on the majority of test samples. Others
(e.g., Kazama & Tsujii 2005) have explored using features values that combine the
term frequency as in (11) with inverse document frequency, with broadly similar
results.

5.2 Sequence models
MaxEnt models are also widely used for sequence labeling tasks, such as part-
of-speech tagging and named entity recognition (Ratnaparkhi 1998; Borthwick
1999; McCallum et al., 2000). In the simplest sequence labeling models, the tag
probabilities depend only on the current word:

P(t1 . . . tn|w1 . . . wn) =
∏

i=1,n

P(ti|wi)

The effect of this is that each word in the test data will be assigned the tag which
occurred most frequently with that word in the training data. Such a model does
maximize the entropy given the constraints, but the constraints are too simple to
capture very much of the linguistic reality of what we are trying to model. A more
useful approach is suggested by a simple hidden Markov model (DeRose 1988;
Charniak 1993), in which the tag probabilities depend on the current word and
the previous tag. Suppose we assume that the word/tag probabilities and the tag
sequence probabilities are independent, or:

(12) P(wi|ti, ti−1) = P(wi|ti)P(ti|ti−1)

Then by Bayes’s theorem and the Markov property, we have:

P(t1 . . . tn|w1 . . . wn) = P(w1 . . . wn|t1 . . . tn)P(t1 . . . tn)

P(w1 . . . wn)

=
∏

i=1,n P(wi|ti)P(ti|ti−1)

P(w1 . . . wn)
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Since the probability of the word sequence P(w1 . . . wn) is the same for all
candidate tag sequences, the optimal sequence of tags satisfies:

(13) S = argmax
t1 ... tn

∏

i=1,n

P(wi|ti)P(ti|ti−1)

The probabilities P(wi|ti) and P(ti|ti−1) can easily be estimated from training data.
Using (13) to calculate the probability of a candidate tag sequence, the optimal
sequence of tags can be found efficiently using dynamic programming (Viterbi
1967).

While this kind of HMM is simple and easy to construct and apply, it has its
limitations. For one, (13) depends on the independence assumption in (12). One
can avoid this by using a conditional MaxEnt model to estimate tag probabilities.
In such a model, the optimal tag sequence satisfies:

S = argmax
t1 ... tn

∏

i=1,n

P(ti|wi, ti−1)

where

(14) P(ti|wi, ti−1) =
exp

(∑
j λjfj(ti−1, wi, ti)

)

∑
τ∈T exp

(∑
j λjfj(ti−1, wi, τ)

)

The indicator functions fj ‘fire’ for particular combinations of contexts and
tags. For instance, in the context of a named entity recognition system, one such
function might indicate the occurrence of the word Javier with the tag B-PER:

(15) f (ti−1, wi, ti) =
{

1 if wi = Javier & ti = B-PER

0 otherwise

and another might indicate the tag sequence O B-PER:

(16) f (ti−1, wi, ti) =
{

1 if ti−1 = O & ti = B-PER

0 otherwise

Each indicator fj function also has an associated weight λj, which is chosen so
that the probabilities (14) minimize the relative entropy between the empirical
distribution P̃ (derived from the training data) and the model probabilities P,
or, equivalently, which maximize the likelihood of the training data. Unlike the
parameters of an HMM, there is no closed form expression for estimating the
parameters of a MaxEnt model from the training data. However, the iterative
methods described in the previous section can be used to efficiently estimate the
model’s parameters.
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Using indicator functions of the type in (15) and (16), the model encodes exactly
the same information as the HMM in (13), but with much weaker independence
assumptions. This means we can add information to the model from partially
redundant and overlapping sources. Features that have been explored for use in
MaxEnt tagging models include capitalization features, which indicate whether
the current word is capitalized, all upper case, all lower case, mixed case, or non-
alphanumeric, and whether or not the word is the first word in the sentence. We
can also add additional context sensitivity, so that the tag probabilities depend on
the previous word, as well as the previous tag and the current word.

One potential problem with MaxEnt Markov models is what Lafferty et al.
(2001) call the label bias problem: all probability going into one state in the model
is passed on to successors and, in general, states with fewer outgoing transitions
will be preferred to those with more. Lafferty et al. (2001) propose the use of con-
ditional random fields to eliminate this source of error by assigning a probability
to an entire labeled sequence in one step:

p(t1 . . . tn|w1 . . . wn) = 1
Z(w1 . . . wn)

exp
∑

i

λi fi(w1 . . . wn, t1 . . . tn)

The challenge in applying conditional random fields is to compute the partition
function Z(w1 . . . wn), as in general there will be a very large number of possi-
ble tag sequences for a given word sequence. However, if our features are like
those from typical HMM taggers, we can use a variant of the forward–backward
algorithm to compute feature expectations during training.

5.3 Parsing models
As is the case for simple models like naïve Bayes text classifiers and hidden
Markov models for tagging, we can easily construct a MaxEnt version of prob-
abilistic context-free grammars (PCFGs). In a standard PCFG, we assume that the
probability of a tree t is the product of the individual rule probabilities:

(17) p(t) =
∏

i

p(ri(t))

This depends crucially on the assumption that rule probabilities are independent.
This assumption does not generally hold in the case of context-free grammars
and, as Abney (1997) shows, is systematically violated by attribute value grammar
rules.

Fortunately, the model in (17) can be straightforwardly recast as a MaxEnt
model, with rules as features:

(18) p(t) = exp
∑

i λi ri(t)∑
t′ exp

∑
i λi ri(t′)

This version removes the independence assumptions of (17), allowing it to be
applied in a wider range of situations (Abney 1997; Johnson et al., 1999; Riezler
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et al., 2002; Malouf & van Noord 2004; Clark & Curran 2007b). However, a potential
drawback of MaxEnt models is that even the conditional version of equation (18)
requires access to all parses of a given corpus sentence to compute the denominator.
As the number of parses for a sentence grows exponentially with the length of the
sentence, this model is difficult to use in practice.

Two classes of solutions to this problem have been proposed. On the one hand,
Geman and Johnson (2002) and Miyao and Tsujii (2002) present approaches where
training data consists of parse (or feature) forests rather than sets of independent
parses. If we enforce a strong locality condition on features, the denominator in
(18) can be computed efficiently by dynamic programming. Geman and Johnson
(2002) suggest that it is always possible to localize arbitrary features in an attribute
value grammar. However, for some classes of features used in practical systems,
this localization would dramatically complicate the grammar and have severe
impacts on parsing efficiency. Another type of solution which does not depend
on feature locality is offered in Osborne (2000). Osborne shows that it suffices
to provide training instances from an ‘informative sample’ of Y(w). The feature
weights chosen by maximizing (18) depend only on the expected values of the
features in the training data. So any subsample of the parses in the training data
which yields unbiased estimates of the feature expectations should result in as
accurate a model as the complete set of parses. The vast majority of possible
parses have a very small probability and do not contribute much to the sum in
the denominator, so a relatively small sample can yield a fairly good estimate of
the normalizing factor in (18).

A remaining issue is how the model, once it has been learned from the train-
ing data, can be applied efficiently. In the approaches of Geman and Johnson
(2002) and Miyao and Tsujii (2002) features are localized, and therefore an effi-
cient dynamic programming algorithm can be used to extract the best parse from
a parse forest. Malouf and van Noord (2004) present a beam-search generalization
of such an algorithm, and they show that the algorithm can be used efficiently to
recover the best parse even in the presence of non-local features.

6 Prospects

MaxEnt models provide a general technique for constructing models given
limited information integrated from multiple potentially overlapping sources.
While MaxEnt models have been successfully used in many applications, they
have recently fallen out of favor for classification problems and have been replaced
by non-parameteric methods like the support vector machine. However, active
research on MaxEnt models continues on at least two fronts.

As alluded to in section 4 above, MaxEnt models and SVMs share many
important properties. Both incorporate information from training data via sets of
constraints on feature functions, and both depend on minimization of a penalized
loss function. So, while these two model classes have very different theoretical
origins, in actual practice their application is not as different as one might expect.
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This has led to the development of hybrid methods which incorporate aspects of
both MaxEnt and SVM estimation in model construction (Sears 2007). For exam-
ple, Smith et al. (2007) explores alternative loss functions for MaxEnt models, and
Lafferty et al. (2004) and Zhu and Hastie (2005) consider the use of kernel functions
to allow MaxEnt models to capture non-linear decision boundaries.

Another area in which active development of MaxEnt models continues is for
applications in which non-parametric methods are not appropriate. For exam-
ple, state-of-the-art machine translation systems based on noisy channel models
combine probabilities estimated using several different models. Unlike classifica-
tion systems, in which the identity of an assigned label is more important than
the estimate of its probability, Bayesian and noisy channel models depend on
accurate estimation of complete probability distributions. Systems which replace
components of the noisy channel model with MaxEnt distributions have shown
considerable promise (Och & Ney 2001; Varea et al., 2002).

NOTE

1 http://tadm.sourceforge.net
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1 Introduction

Most natural language processing (NLP) tasks require the translation of one level
of representation to another. For example, in text to speech systems, it is necessary
to have a component that translates the spelling representation of words to a cor-
responding phonetic representation; in part-of-speech (POS) tagging, the words of
a sentence are translated into their contextually appropriate POS tags. Some tasks
in NLP involve segmentation: identifying the syllable boundaries in a word or the
syntactic phrases in a sentence are examples of such chunking tasks. Other tasks,
such as document categorization and word-sense disambiguation require a choice
between a limited number of possibilities.

What all these types of NLP tasks have in common is that they can be formulated
as a classification task, and are therefore appropriate problems for discriminative
supervised machine learning methods. With some effort, even tasks like corefer-
ence resolution and machine translation can be cast as a classification problem. In
this chapter, we will see an assortment of examples of NLP problems formulated
as classification-based learning.

Classification-based learning starts from a set of instances (examples) consisting
each of a set of input features (a feature vector) and an output class. For example,
for the NLP task of predicting the pronunciation of a word, given a number of
words with their phonetic transcription as training material, we could create an
instance for each letter, as in Table 6.1. One of the input features is the letter to
be transcribed (here indicated as the focus feature) and other features would be
the spelling symbols before and after the focus; in this case a context of three such
symbols to the left and to the right are used to make a total of seven predictive
features. The output class is the phoneme corresponding with the focus letter in
that context. Data like this can be used as training material to construct a classifier
that is subsequently used to classify feature vectors belonging to new words, not
part of the training data. In this way, the classifier generalizes from the original
training data, which is the purpose of machine learning.
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Table 6.1 Examples generated for the letter–phoneme conversion task, from
the word–phonemization pair booking–[bukIN], aligned as [b-ukI-N]

Instance number Left context Focus letter Right context Classification

1 _ _ _ b o o k b
2 _ _ b o o k i –
3 _ b o o k i n u
4 b o o k i n g k
5 o o k i n g _ I
6 o k i n g _ _ –
7 k i n g _ _ _ N

Memory-based learning (MBL) is one of the techniques that has been proposed
to learn these NLP classification problems. Many other techniques for supervised
classification-based learning exist. See Chapter 5, MAXIMUM ENTROPY MODELS,
Chapter 7, DECISION TREES, Chapter 9, ARTIFICIAL NEURAL NETWORKS. In this
chapter, we will show how MBL differs from these approaches.

MBL has as its defining characteristic that it stores in memory all available
instances of a task, and that it extrapolates from the most similar instances in
memory to solve problems for which no solution is present in memory. What the
most similar instances (the nearest neighbors) are is defined by an adaptive similarity
metric. The general principle is well known in artificial intelligence and cogni-
tive psychology, and can be found under different labels (case-based reasoning,
exemplar-based models, k-NN, instance-based learning, memory-based reason-
ing, etc.). The approach has been used in application areas ranging from vision
and speech via expert systems to robotics and models of human categorization.

In the remainder of this chapter, we introduce an operationalization of MBL,
implemented in the open source software package TiMBL in Section 2. Applica-
tions in computational linguistics and computational psycholinguistics are dis-
cussed in Sections 3 and 4 respectively. We then move to a discussion of the
strengths and limitations of the approach in Section 5, and show how Fambl, a
variant of MBL based on careful abstraction, discussed in Section 6, can strike a
balance between abstraction and memory.

2 Memory-Based Language Processing

MBL, and its application to NLP, which we will call memory-based language
processing (MBLP) here, is based on the idea that learning and processing
are two sides of the same coin. Learning is the storage of examples in mem-
ory, and processing is similarity-based reasoning with these stored examples.
The approach is inspired by work in pre-Chomskyan linguistics, categorization
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psychology, and statistical pattern recognition. The main claim is that, contrary to
majority belief since Chomsky, generalization (going beyond the data) can also be
achieved without formulating abstract representations such as rules. Abstract rep-
resentations such as rules, decision trees, statistical models, and trained artificial
neural networks forget about the data itself, and only keep the abstraction. Such
eager learning approaches are usually contrasted with table lookup, a method that
obviously cannot generalize. However, by adding similarity-based reasoning to
table lookup, lazy learning approaches such as MBL are capable of going beyond
the training data as well, and on top of that keep all the data available. This is
arguably a useful property for NLP tasks: in such tasks, low-frequency or atypical
examples are often not noise to be abstracted from in models, but on the contrary
an essential part of the model. In the remainder of this section, we will describe a
particular instantiation of memory-based approaches, MBLP, that we have found
to work well for language processing problems and for which we make available
open source software (TiMBL). The approach is a combination and extension of
ideas from instance-based learning (Aha et al., 1991) and memory-based reason-
ing (Stanfill & Waltz 1986), and a direct descendent of the k-NN algorithm (Fix &
Hodges 1951; Cover & Hart 1967).

2.1 MBLP: an operationalization of MBL
An MBLP system has two components: a learning component which is memory-
based, and a performance component which is similarity-based. The learning com-
ponent is memory-based as it involves storing examples in memory without
abstraction, selection, or restructuring. In the performance component of an MBLP
system the stored examples are used as a basis for mapping input to output;
input instances are classified by assigning them an output label. During classi-
fication, a previously unseen test instance is presented to the system. The class of
this instance is determined on the basis of an extrapolation from the most simi-
lar example(s) in memory. There are different ways in which this approach can
be operationalized. The goal of this section is to provide a clear definition of
the operationalizations we have found to work well for NLP tasks. TiMBL is an
open source software package implementing all algorithms and metrics discussed
here.1

First, a visual example serves to illustrate the basic concepts of memory-based
or k-nearest neighbor classification. The left part of Figure 6.1 displays part of a
two-dimensional Euclidean space with three examples labeled black (i.e., they are
examples of the class ‘black’), and three examples labeled white. Each example’s
two coordinates are its two numeric feature values. An example occupies a piece
of the space, a Voronoi tile, in which it is the closest example. The so-called Voronoi
tesselation depicted in the left part of Figure 6.1 is essentially a map of the decision
boundaries of the 1-nearest neighbor classification rule: the tile on which a new
instance is positioned determines the single nearest neighbor, and the subsequent
classification step simply copies the class label of that nearest neighbor (here, black
or white) to the new instance.
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Figure 6.1 An example 2D space with six examples labeled white or black. Left: the
Voronoi tesselation of the space. Right: around a new test item t, nearest neighbors are
found at four different distances; some examples are equidistant. The parameter k can
regulate the number of either nearest neighbors or distances. Alternatively, a distance d
can specify the circle (Parzen window) within which nearest neighbors are sought.

Rather than pre-computing the Voronoi tesselation, which is restricted to be
used for single nearest-neighbor classification, the common mode of operation of
the more generic k-nearest neighbor classifier is to perform a search for the nearest
examples around each new instance t to base a classification on. The key parame-
ter k determines the number of examples within an expanding circle (or hyperball)
around the new instance. This can either be the actual number of examples found
while extending outwards, or the number of distance rings on which equidistant
examples are found. In Figure 6.1, the six visible examples are found at four dif-
ferent distances. Alternatively, a distance d can be specified as the fixed size of the
hyperball or Parzen window (Parzen 1962) in which nearest neighbors are sought.
Using Parzen windows implies ignoring the local example density; a Parzen win-
dow may contain no examples or all examples. In contrast, the k-nearest neighbor
approach in its most basic form ignores the actual distance at which the k-nearest
neighbors are found, and adapts the hyperball to the local example density around
the new instance. In the remainder of this chapter we adopt the k-nearest neighbor
approach, and show how the distance of the target to different neighbors can be
factored into the classification.

As a side note, the k-nearest neighbor classifier has some strong formal consis-
tency results. With k = 1, the classification rule is guaranteed to yield an error
rate no worse than twice the Bayes error rate (the minimum achievable error
rate given the distribution of the data) as the amount of data approaches infinity
(Cover & Hart 1967). Another useful property of the classifier is its insensitivity to
the number of classes; this number is a factor neither in learning (storage) nor in
classification.
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Abstracting over the particular type of feature spaces (such as Euclidean space
in the example of Figure 6.1), the similarity between a new instance X and all
examples Y in memory is computed using a similarity metric (that actually mea-
sures distance) Δ(X, Y). Classification works by assigning the most frequent class
within the k most similar example(s) as the class of a new test instance.

The most basic metric that works for instances with symbolic features such as
many data sets in language and speech processing is the overlap metric given in
equations (1) and (2), where Δ(X, Y) is the distance between instances X and Y,
represented by n features, and δ is the distance per feature. The distance between
two patterns is simply the sum of the differences between the features. In the
case of symbolic feature values, the distance is 0 with an exact match, and 1
with a mismatch. The k-NN algorithm with this metric is called IB1 in Aha et al.
(1991).

(1) Δ(X, Y) =
n∑

i=1

δ(xi, yi)

where:

(2) δ(xi, yi) =

⎧
⎪⎨

⎪⎩

| xi−yi
maxi−mini

| if numeric, otherwise
0 if xi = yi

1 if xi �= yi

Our definition of this basic algorithm is slightly different from the IB1 algorithm
originally proposed by Aha et al. (1991). The main difference is that in our ver-
sion the value of k refers to k-nearest distances rather than k-nearest examples. As
illustrated in the right-hand side of Figure 6.1, several examples in memory can be
equally similar to a new instance. Instead of choosing one at random, all examples
at the same distance are added to the nearest-neighbor set.

The distance metric in equation (2) simply counts the number of (mis)matching
feature values in two instances being compared. In the absence of information
about feature relevance, this is a reasonable choice. Otherwise, we can use domain
knowledge to weight or select different features. We can also compute statistics
about the relevance of features by looking at which features are good predictors of
the class labels, using feature weighting methods such as information gain.

Information gain (IG) weighting looks at each feature in isolation, and estimates
how much information it contributes to our knowledge of the correct class label.
The information gain estimate of feature i is measured by computing the difference
in uncertainty (i.e., entropy) between the situations without and with knowledge
of the value of that feature (the formula is given in equation (3)), where C is the set
of class labels, Vi is the set of values for feature i, and H(C) = −∑

c∈C P(c) log2 P(c)
is the entropy of the class labels. IG is used in decision tree learning (Chapter 7,
DECISION TREES) as an ordering criterion.

(3) wi = H(C) −
∑

v∈Vi

P(v) × H(C|v)
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The probabilities are estimated from relative frequencies in the training set. For
numeric features, an intermediate step needs to be taken to apply the symbol-
based computation of IG. All real values of a numeric feature are temporarily
discretized into a number of intervals. Instances are ranked on their real value,
and then spread evenly over the intervals; each interval contains the same num-
ber of instances (this is necessary to avoid empty intervals in the case of skewed
distributions of values). Instances in each of these intervals are then used in the IG
computation as all having the same unordered, symbolic value per group. Note
that this discretization is only temporary; it is not used in the computation of the
distance metric.

The IG weight of a feature is a probability-weighted average of the informa-
tiveness of the different values of the feature. This makes the values with low
frequency but high informativity invisible. Such values disappear in the average.
At the same time, this also makes the IG weight robust to estimation problems in
sparse data. Each parameter (weight) is estimated on the whole data set.

A well-known problem with IG is that it tends to overestimate the relevance
of features with large numbers of values, MBLP therefore also includes the gain
ratio normalization and several alternative feature-relevance weighting methods
(chi-squared, shared variance, special metrics for binary features, etc.).

The choice of representation for instances in MBLP is the key factor determining
the accuracy of the approach. The feature values and classes in NLP tasks are often
represented by symbolic labels. The metrics that have been described so far, i.e.,
(weighted) overlap, are limited to either a match or a mismatch between feature
values. This means that all values of a feature are seen as equally dissimilar to each
other. However, we would like to express that some feature-value pairs are more
or less similar than other pairs. For instance, we would like vowels to be more
similar to each other than to consonants in problems where features are letters
or phonemes, nouns more similar to other nouns than to verbs in problems where
features are words, etc. As with feature weights, domain knowledge can be used to
create a feature system expressing these similarities, e.g., by splitting or collapsing
features. But again, an automatic technique might be better in modeling these
statistical relations.

For such a purpose a metric was defined by Stanfill and Waltz (1986) and further
refined by Cost and Salzberg (1993). It is called the (modified) value difference
metric (MVDM; equation (4)), a method to determine the similarity of the val-
ues of a feature by looking at co-occurrence of values with target classes. For the
distance between two values v1, v2 of a feature, we compute the difference of the
conditional distribution of the classes C1 ... n for these values.

(4) δ(v1, v2) =
n∑

i=1

|P(Ci|v1) − P(Ci|v2)|

MVDM differs considerably from overlap-based metrics in its composition of
the nearest-neighbor sets. Overlap causes an abundance of ties in nearest-neighbor
position. For example, if the nearest neighbor is at a distance of one mismatch
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from the test instance, then the nearest-neighbor set will contain the entire parti-
tion of the training set that contains any value for the mismatching feature. With
the MVDM metric, however, either the nearest-neighbor set will contain pat-
terns which have the value with the lowest δ(v1, v2) in the mismatching position,
or MVDM will select a totally different nearest neighbor which has less exactly
matching features, but a smaller distance in the mismatching features (Zavrel &
Daelemans 1997).

MBLP also contains different metrics for extrapolation from nearest neighbors
(linear or exponential distance-based decay) and for computing exemplar sim-
ilarity with weighted examples. Such weights could be based on frequency of
instances, or on their goodness or typicality according to some criterion. MBLP
is not a new algorithm, rather, it is a set of algorithm parameterizations selected
and optimized for use with language processing data. We will not go into fur-
ther details of MBLP here. However, we will return to the crucial discussion about
generalization and abstraction in lazy and eager learning methods in Section 6.
First we provide an overview of application areas of MBLP.

3 NLP Applications

As explained in Section 1, MBL shares its generic applicability to classification
tasks with any other machine learning classifier. Hence, when an NLP task is
framed as a classification task, memory-based learning can be applied to it. In
the past decade, memory-based learning has indeed been applied across a wide
range of NLP tasks. Before we turn to the limitations of memory-based learning in
Section 5, we provide an overview of types of NLP tasks in which memory-based
learning has been successful in this and the next section.

3.1 Morpho-phonology
Tasks at the phonological and morphological levels are often framed as sliding-
window tasks over sequences of letters or phonemes, where the task is framed
as a mapping of one symbol set to another (letters to phonemes), or a mapping
from an unsegmented string to a segmented string (words to morphological anal-
yses). In case of segmentation tasks such as syllabification, the output symbol set
typically consists of a ‘null’ value that signifies that no boundary occurs at the
focus input symbol, and one or more positive values marking that some type of
boundary does occur at the focus letter. Example morpho-phonological tasks to
which memory-based learning has been applied are hyphenation and syllabifica-
tion (Daelemans & van den Bosch 1992); grapheme-to-phoneme conversion (van
den Bosch & Daelemans 1993; Daelemans & van den Bosch 1996); and morpholog-
ical analysis (van den Bosch & Daelemans 1999; de Pauw et al., 2004). Although
these examples are applied mostly to Germanic languages (English, Dutch, and
German), applications to other languages with more complicated writing sys-
tems or morphologies, or with limited resources, have also been presented: for
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example, letter–phoneme conversion in Scottish Gaelic (Wolters & van den Bosch
1997), morphological analysis of Arabic (Marsi et al., 2006), or diacritic restoration
in languages with a diacritic-rich writing system (Mihalcea 2002; de Pauw et al.,
2007).

Most of these studies report the important advantage of the memory-based
approach to faithfully reproduce all training data; essentially, the method can be
seen as a compressed lexicon that also generalizes to unseen words if needed. As
an average training lexicon typically covers unseen text at about 95 percent (i.e.,
5 percent of the words in a new text are not in the lexicon), the key goal of the
memory-based learner is to process the 5 percent unknown words as accurately
as possible. In the reported studies, most attention is indeed paid to evaluating
the classifiers’ generalization performance on unseen words, often at the word
level. Actual percentages are intrinsically linked to the task, the language, and
the amount of training data, and can typically only be assessed properly in the
context of a higher-level task, such as comparative human judgments of the
understandability of a speech synthesizer with and without the module under
evaluation.

3.2 Syntacto-semantics
In the mid-1990s, memory-based learning was among the early set of machine
learning classifiers to be applied to tasks in shallow parsing and lexical seman-
tics: part-of-speech tagging (Daelemans et al., 1996; Zavrel & Daelemans 1999;
van Halteren et al., 2001) and PP-attachment (Zavrel et al., 1997), mostly on
English benchmark tasks. Also, early developments of shallow parsing modules
using memory-based learning contributed to the development of the field of shal-
low parsing: subcategorization (Buchholz 1998); phrase chunking (Veenstra 1998;
Tjong Kim Sang & Veenstra 1999); and the integration of memory-based modules
for shallow parsing (Daelemans et al., 1999a; Buchholz et al., 1999; Yeh 2000a).
More recently, memory-based learning has been integrated as a classifier engine in
more complicated dependency parsing systems (Nivre et al., 2004; Sagae & Lavie
2005; Canisius et al., 2006).

Memory-based learning has been applied succesfully to lexical semantics, in
particular to word-sense disambiguation (Stevenson & Wilks 1999; Kokkinakis
2000; Veenstra et al., 2000; Hoste et al., 2002; Mihalcea 2002; Decadt et al., 2004),
but also in other lexical semantic tasks such as determining noun countability
(Baldwin & Bond 2003), animacy (Orăsan & Evans 2001), and semantic relations
within noun compounds (Kim & Baldwin 2006; Nastase et al., 2006).

3.3 Text analysis
Extending the simple sliding-window approach that proved to be useful in
phrase chunking, memory-based learning has also been used for named entity
recognition (Buchholz & van den Bosch 2000; de Meulder & Daelemans 2003;
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Hendrickx & van den Bosch 2003; Sporleder et al., 2006; Leveling & Hartrumpf
2007), and domain-dependent information extraction (Zavrel et al., 2000; Zavrel &
Daelemans 2003; Ahn 2006).

Many NLP tasks beyond the sentence level tend not to be phrased (or
phrasable) in simple sliding-window representations. Some tasks require more
complicated structures, such as pairs of phrases in their context bearing some
relation to be classified, as in anaphora and coreference resolution (Mitkov
et al., 2002; Preiss 2002a; Hoste 2005), while other tasks appear to be best
solved using vector space or bag-of-words representations, to which memory-
based learning is also amenable, such as text classification (Spitters 2000), question
classification (Cumbreras et al., 2006; Dridan & Baldwin 2007), or spam filtering
(Androutsopoulos et al., 2000).

3.4 Dialogue and discourse
In the field of discourse and dialogue modeling, memory-based learning has been
used for shallow semantic analysis of speech-recognised utterances (Gustafson
et al., 1999; van den Bosch et al., 2001; Lendvai et al., 2002; 2003a; Lendvai
& Geertzen 2007), in disfluency detection in transcribed spontaneous speech
(Lendvai et al., 2003b), and in classifying ellipsis in dialogue (Fernández et al.,
2004). In most of these studies, the task is framed as a classification task into a
limited number of labels (usually, some dialogue-act labeling scheme), while the
input can be a mix of bag-of-word features, dialogue history features (e.g., pre-
vious dialogue acts), and acoustic features of recognized speech in the context of
spoken dialogue systems. As memory-based learning handles numeric features as
easily as symbolic features, it is unproblematic to mix these heterogeneous feature
sets in a single classifier.

3.5 Generation, language modeling, and translation
While the general scope of natural language generation, language modeling, and
translation comprises full sequences, memory-based learning has been applied
to word or phrase-level subtasks within these more general problem fields.
For instance, in natural language generation, memory-based learning has been
applied particularly to morpho-syntactic generation subtasks: inflection gener-
ation, such as diminutive formation (Daelemans et al., 1998), article generation
(Minnen et al., 2000), or determining the order of multiple prenominal adjectives
(Malouf 2000).

Language modeling has mostly been the domain of stochastic n-gram models,
but as Zavrel & Daelemans (1997) have already shown, there is an equivalence
relation between back-off smoothing in n-gram models and memory-based classi-
fication. Essentially, language modeling in n-gram models can be phrased as the
classification task of predicting the next word given a context of previous words.
Indeed, memory-based language models can be developed that perform this task
(van den Bosch 2006a). As a specialization of these generic language models,
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memory-based confusable-specific disambiguators can be trained to determine
which of a confusable set of words (e.g., to, too, and two) is appropriate in a
certain context. An accurate confusable disambiguator can be useful as a spelling
correcting module in a proofing environment.

In machine translation, memory-based learning bears a close relation to
example-based machine translation (EBMT). A first EBMT implementation using
memory-based learning is described in van den Bosch et al. (2007b). Analogous
to memory-based language modeling, memory-based translation maps a local
context of words (a part of a source-language sentence) to a target word or n-gram
of words (part of the corresponding target sentence), where the target word or cen-
ter of the target n-gram is aligned to the source word according to an externally
computed word alignment.

We have not tried to be exhaustive in this section. There are other implemen-
tations of k-nearest neighbor classification apart from TiMBL that have been used
in NLP, and alternative memory-based algorithms have been proposed for spe-
cific tasks. As a good example, Bob Damper and colleagues have developed a
psycholinguistic proposal for modeling pronunciation (Pronunciation by Anal-
ogy) into a state-of-the-art grapheme-to-phoneme conversion approach (Damper
& Eastmond 1997). Other researchers have argued for richer analogy processes in
memory-based approaches than the basic overlap metric and its extensions that
are used in the research described in this section (Pirrelli & Yvon 1999; Lepage &
Denoual 2005a; Yvon & Stroppa 2007). This work is also relevant when memory-
based approaches are intended as models of human language acquisition and
processing as in the work we turn to next.

4 Exemplar-Based Computational Psycholinguistics

From the time Chomsky substituted the vague notions of analogy and induction
existing in linguistics in his time (for instance in the work of de Saussure, Bloom-
field, and Harris) by a better formalized notion of rule-based grammars, most
mainstream linguistic theories, even the functionally and cognitively inspired
ones, have assumed rules to be the only or main means to describe any aspect
of language. Also in computational modeling of human language processing and
human language acquisition, mental rule application and acquisition has been
the standard approach. See Chapter 17, COMPUTATIONAL PSYCHOLINGUISTICS. A
good example is the dual mechanism model advocated by Pinker (1999) and others
for inflectional morphology. In such a model, a mental rule governing the regu-
lar cases in inflectional morphology is complemented by an associative memory
explaining subregularities and exceptions. In contrast, single mechanism models
(mostly based on neural network approaches following Rumelhart & McClelland
1986) model regular and exceptional language behavior in a single model. See
Chapter 9, ARTIFICIAL NEURAL NETWORKS.

MBLP can be considered an operationalisation of the pre-Chomskyan ana-
logical approach to language, and as a predictive model for human language
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acquisition and processing that is an alternative to both rule-based and neural
network approaches. The main advantage from a theoretical point of view is
that no ontological distinction has to be made between regular and exceptional
cases, and that the gradedness of language learning and processing is an emer-
gent phenomenon of the way the model works. The approach is also incremental,
in that the addition of new experience immediately affects processing without any
need of recomputation of knowledge structures. Conceptually, to model language
acquisition and processing, memorized experiences of previous language use are
searched looking for instances similar to a new item, and a decision is extrapolated
for the new item from these nearest neighbors. Language acquisition is simply the
incremental storage of experience.

The analogical modeling (AM) approach of Skousen (1989; 1992; 2002) is an
early alternative example of a computational operationalization of analogy in a
memory-based context and its application in modeling language. It is memory-
based in that all available training data (experience) is used in extrapolating to
the solution for a new input. As it searches combinatorial combinations of input
features, it is exponential in the number of features, which makes the approach
impractical for problems with many features. The approach has been applied to
different problems in language processing, mainly in the phonology and morphol-
ogy domains. Although algorithmically very different from and more costly than
MBLP (which is linear in the number of features), empirical comparisons have
never shown important accuracy or output differences between AM and MBLP
(Eddington 2002a; Daelemans 2002; Krott et al., 2002).

Inflectional morphology has proven a useful and interesting testing ground for
models of language acquisition and processing because of the relative simplicity
of the processes (compared to syntax), the availability of lexical databases, and
the ample psycholinguistic experimental data in the form of accounts of acquisi-
tion, adult processing experiments, production tasks on pseudo-words, etc. This
makes possible controlled comparisons between different computational models.
Problems like English past-tense formation, German and Dutch plural forma-
tion, etc., have therefore become important benchmark problems. Memory-based
psycholinguistic models of inflectional morphology have been provided for the
English past tense by Keuleers (2008), for Dutch plural formation by Keuleers
et al. (2007); and Keuleers and Daelemans (2007); for Spanish diminutive for-
mation by Eddington (2002c), and for Dutch and German linking phenomena in
compounds by Krott et al. (2001; 2007). See Hay and Baayen (2005) for an overview
of the state of the art in modeling morphology and the role of memory-based
models in current theory formation. In phonology, memory-based models have
been proposed and matched to psycholinguistic empirical data for such tasks as
final devoicing in Dutch (Ernestus 2006), Italian conjugation (Eddington 2002b),
stress assignment in Dutch (Daelemans et al., 1994), Spanish (Eddington 2004),
and English compounds (Plag et al., 2007), etc.

Much less work has attempted to develop memory-based models of syntac-
tic processing. Data-oriented parsing (DOP) (Scha et al., 1999; Bod 2006b) is
one influential algorithm where parsing is seen as similarity-based lookup and
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reconstruction of memorized fragments of previously analyzed sentences, kept
in memory. It has led to experiments modeling priming effects in syntactic pro-
cessing (Snider 2007). See Hay and Bresnan (2006) for additional empirical work
in exemplar-based syntax. In addition to work based on traditional parsing
approaches rooted in phrase-based or dependency-based grammar theory, the
memory-based shallow parsing research described in the previous section also
makes possible psycholinguistic studies (e.g., on attachment preferences).

As for our overview of memory-based approaches in computational linguistics,
we have not tried to be exhaustive here, but rather to point to interesting stud-
ies and starting points in the literature illustrating the power of memory-based
models as models of language acquisition and use.

5 Generalization and Abstraction

As discussed in Section 3, the memory-based learning approach is functionally
similar to other supervised discriminative machine learning methods capable of
learning classification tasks. It is hard, if not fundamentally impossible, to say
in general that one discriminative machine learning algorithm is better than the
other (Wolpert 2002). Yet certain advantages of memory-based learning in learn-
ing NLP tasks have been noted in the literature. First, we expand in some detail
the tenet that “forgetting exceptions is harmful in language learning” (Daelemans
et al., 1999b); then, we review a few algorithmic advantages of memory-based
learning.

“Forgetting” training examples is a common trait of many machine learning
algorithms; the identity of training examples is lost while, in exchange, each train-
ing example influences to a small extent the construction of an abstract model
composed of probabilities or rules. In machine learning, learning is often equated
with abstraction; in turn, abstraction is often equated with the capacity to gen-
eralize to new cases. A key realization is that memory-based learning is able to
generalize, yet does not abstract from the data. In two studies, memory-based
learning was contrasted against abstracting learners, namely decision tree learn-
ers and rule learners (Daelemans et al., 1999b; Daelemans & van den Bosch
2005), resulting in the consistent observation that the abstracting learners do not
outperform the memory-based learners on any of a wide selection of NLP tasks. In
a second series of experiments, Daelemans and van den Bosch show that selected
removal of training examples from the memory of a memory-based classifier,
guided by criteria that supposedly express the utility of an individual example
in classification, does not produce better generalization performance, although,
with some tasks, up to 40 percent of the examples can be removed from memory
without damaging performance significantly (Daelemans & van den Bosch 2005).
A safe conclusion from these studies is that when high accuracy is more important
than optimal memory usage or speed, it is best to never forget training examples.

In practical terms, the k-nearest neighbor classifier has a number of advan-
tages that make memory-based learning the method of choice in certain particular
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situations, compared to other rival discriminative supervised machine learning
algorithms:

(1) the basic version of the k-NN classifier that uses the overlap metric is insen-
sitive to the number of class labels, in terms of efficiency both in training and
in classification. This makes memory-based learning suited for classification
tasks with very large numbers of classes, such as word prediction or machine
translation;

(2) memory-based learning is able to reproduce the classification of training data
flawlessly, as long as there are no identical training instances in memory with
different class labels. This advantage, an important component of the “forget-
ting exceptions is harmful” tenet, is especially useful in NLP tasks in which
much of the training data can be expected to recur in new data, such as in
word pronunciation, where a typical lexicon used for training will already
contain the pronunciation of approximately 95 percent of all words in a
new text;

(3) memory-based learning allows for incremental learning at no cost, or with
little cost if the similarity function uses weighting functions; this is practical
in situations in which training examples become available over time, and the
classifier needs to be retrained preferably with the availability of each new
training example, e.g., in active learning (Thompson et al., 1999). Also, the
algorithm is equally easily decremental, allowing for fast leave-one-out testing,
a powerful evaluation scheme (Weiss & Kulikowski 1991);

(4) as mentioned earlier, it has been shown that the 1-nearest neighbor classifier
has an attractive error upper bound: as the amount of data approaches infin-
ity, it is guaranteed to yield an error rate no worse than twice the Bayes error
rate (the minimum achievable error rate given the distribution of the data)
(Cover & Hart 1967).

The main disadvantage of memory-based learning, compared to most rival
approaches, is its slow classification speed. Its worst-case complexity of clas-
sification is O(nf ), where n is the number of memorized examples, and f is
the number of features; each new example needs to be compared against all of
the memorized examples, each time involving a comparison of all f features.
Implementing k-nearest neighbor classification in a trie (Knuth 1973) can under
the proper conditions, namely highly differing feature weights, or by dropping the
guarantee of finding the exact nearest neighbors (Daelemans et al., 1997b), reduce
classification time to O(f ).

Another disadvantage of the memory-based learning approach that it shares
with other discriminative classifiers is that its strength is in classification tasks
with relatively low dimensionality in the class space. In the larger context of
NLP tasks with structured output specifications, such as parsing or machine
translation, it is widely recognized that discriminative classification alone is not
enough to perform these global tasks, as the class spaces that would cover
entire sequences, or large subsequences, would be too high-dimensional, thus too
sparse to allow for sufficient amounts of examples per class. Even memory-based
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learning, with its insensitivity towards the number of classes, suffers directly
from such sparseness. Currently, the generally adopted solution is to combine
discriminitive classifiers with an inference method that searches for an optimal
global solution.

6 Generalizing Examples

To alleviate the computational inefficiency of the classification process in memory-
based learning, part of the early work in k-NN classification focused on editing
methods, i.e., methods for the removal of certain examples in memory that are
estimated to be useless or even harmful to classification. Yet bad estimates may
lead to the removal of useful examples, thus to loss of generalization performance.
While keeping full memory may be a safe guideline to avoid any eventual harmful
effect of editing, in the interest of speed of classification it is still interesting and
tempting to explore other means to reduce the need for memory, provided that
performance is not harmed. In this section we explore methods that attempt to
abstract over memorized examples in a different and more careful manner, namely
by merging examples into generalized examples, using various types of merging
operations.

We start, in subsection 6.1, with an overview of existing methods for gen-
eralizing examples in memory-based learning. Subsequently, in subsection 6.2,
we present Fambl, a memory-based learning algorithm variant that merges sim-
ilar same-class nearest-neighbor examples into ‘families.’ In subsection 6.3 we
compare Fambl to pure memory-based learning on a range of NLP tasks.

6.1 Careful abstraction in memory-based learning
Paths in decision trees can be seen as generalized examples. In IGTREE (Daelemans
et al., 1997b) and C4.5 (Quinlan 1993) this generalization is performed up to the
point where no actual example is left in memory; all is converted to nodes and
arcs. Counter to this decision tree compression, approaches exist that start with
storing individual examples in memory, and carefully merge some of these exam-
ples to become a single, more general example, only when there is some evidence
that this operation is not harmful to generalization performance. Although overall
memory is compressed, the memory still contains individual items on which the
same k-nearest neighbor classification can be performed. The abstraction occurring
in this approach is that after a merge, the merged examples incorporated in the
new generalized example are deleted individually, and cannot be reconstructed.
Example approaches to merging examples are NGE (Salzberg 1991) and its batch
variant BNGE (Wettschereck & Dietterich 1995), and RISE (Domingos 1996). We
provide brief discussions of two of these algorithms: NGE and RISE.

NGE (Salzberg 1991), an acronym for Nested Generalized Exemplars, is an incre-
mental learning theory for merging instances (or exemplars, as Salzberg prefers
to refer to examples stored in memory) into hyper-rectangles, a geometrically
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Figure 6.2 Two examples of the generation of a new hyper-rectangle in NGE: from
a new example and an individual exemplar (top) and from a new example and the
hyper-rectangle from the top example (bottom).

motivated term for merged exemplars. NGE adds examples to memory in an
incremental fashion (at the onset of learning, the memory is seeded with a small
number of randomly picked examples). Every time a new example is presented,
it is matched with all exemplars in memory, which can be individual or merged
exemplars (hyper-rectangles). When it is classified correctly by its nearest neigh-
bor (an individual exemplar or the smallest matching hyper-rectangle), the new
example is merged with it, yielding a new, more general hyper-rectangle.

Figure 6.2 illustrates two mergings of examples of a morphological task
(German plural) with exemplars. On the top of Figure 6.2, the example -urSrIftF
(from the female-gender word Urschrift), labeled with class en (representing the
plural form Urschriften), is merged with the example t@rSrIftF (from the female-
gender word Unterschrift), also of class en, to form the generalized exemplar
displayed on the right-hand side. On the first two features, a disjunction is formed
of, respectively, the values - and t, and u and @. This means that the generalized
example matches on any other example that has value - or value t on the first fea-
ture, and any other example that has value u or value @ on the second feature.
The lower part of Figure 6.2 displays a subsequent merge of the newly general-
ized example with another same-class example, forSrIftF (the female-gender word
Forschrift), which leads to a further generalization of the first two features.

In nested generalized examples, abstraction occurs because it is not possible to
retrieve the individual examples nested in the generalized example; new gener-
alization occurs because the generalized example not only matches fully with its
nested examples, but would also match perfectly with potential examples with
feature-value combinations that were not present in the nested examples; the
generalized example in Figure 6.2 would also match torSrIft, f@rSrIft, furSrIft,
-orSrIft. These examples do not necessarily match existing German words, but
they might – and arguably they would be labeled with the correct plural inflection
class.

RISE (Rule Induction from a Set of Exemplars) (Domingos 1995; 1996) is a
multi-strategy learning method that combines memory-based learning with rule
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Figure 6.3 An example of an induced rule in RISE, displayed on the right, with the set of
examples that it covers (and from which it was generated) on the left.

induction (Michalski 1983; Clark & Niblett 1989; Clark & Boswell 1991). As in NGE,
the basic method is that of a memory-based learner and classifier, only operating
on a more general type of example. RISE learns a memory filled with rules which
are all derived from individual examples. Some rules are example-specific, and
other rules are generalized over sets of examples.

RISE inherits parts of the rule induction method of CN2 (Clark & Niblett 1989;
Clark & Boswell 1991). CN2 is an incremental rule-induction algorithm that
attempts to find the ‘best’ rule governing a certain amount of examples in the
example base that are not yet covered by a rule. ‘Goodness’ of a rule is estimated
by computing its apparent accuracy, i.e., class prediction strength (Cost & Salzberg
1993) with Laplace correction (Niblett 1987; Clark & Boswell 1991).

RISE induces rules in a careful manner, operating in cycles. At the onset of learn-
ing, all examples are converted to example-specific rules. During a cycle, for each
rule a search is made for the nearest example not already covered by it that has
the same class. If such an example is found, rule and example are merged into a
more general rule. Instead of disjunctions of values, RISE generalizes by inserting
wild-card symbols (that match with any other value) on positions with differing
values. At each cycle, the goodness of the rule set on the original training mate-
rial (the individual examples) is monitored. RISE halts when this accuracy measure
does not improve (which may already be the case in the first cycle, yielding a plain
memory-based learning algorithm).

Figure 6.3 illustrates the merging of individual examples into a rule. The rule
contains seven normally valued conditions, and two wild cards, ‘*’. The rule now
matches on every female-gender example ending in SrIft (Schrift). When process-
ing new examples, RISE classifies them by searching for the best-matching rule.

6.2 Fambl: merging example families
Fambl, for FAMily-Based Learning, is a variant of MBL that constitutes an alterna-
tive approach to careful abstraction over examples. The core idea of Fambl, in the
spirit of NGE and RISE, is to transform an example base into a set of example family
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expressions. An example family expression is a hyper-rectangle, but the procedure
for merging examples differs from that in NGE or in RISE. First, we outline the
ideas and assumptions underlying Fambl. We then give a procedural description
of the learning algorithm.

Classification of an example in memory-based learning involves a search for
the nearest neighbors of that example. The value of k in k-NN determines how
many of these neighbors are used for extrapolating their (majority) classification
to the new example. A fixed k ignores (smoothes) the fact that an example is often
surrounded in example space by a number of examples of the same class that is
actually larger or smaller than k. We refer to such a variable-sized set of same-class
nearest neighbors as an example’s family. The extreme cases are on the one hand
examples that have a nearest neighbor of a different class, i.e., they have no family
members and are a family on their own, and on the other hand examples that have
as nearest neighbors all other examples of the same class.

Thus, families represent same-class clusters in example space, and the number
and sizes of families in a data set reflect the disjunctivity of the data set: the degree
of scatteredness of classes into clusters. In real-world data sets, the situation is
generally somewhere between the extremes of total disjunctivity (one example
per cluster) and no disjunctivity (one cluster per class). Many types of language
data appear to be quite disjunct (Daelemans et al., 1999b). In highly disjunct data,
classes are scattered among many small clusters, which means that examples have
few nearest neighbors of the same class on average.

Figure 6.4 illustrates how Fambl determines the family of an example in a sim-
ple two-dimensional example space. All nearest neighbors of a randomly picked

Figure 6.4 An example of a family in a two-dimensional example space (left). The family,
at the inside of the circle, spans the focus example (marked with number 1) and the three
nearest neighbors labeled with the same class (indicated by their color). When ranked in
the order of distance (right), the family boundary is put immediately before the first
example of a different class, the gray example with number 5.
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Figure 6.5 An example of family creation in Fambl. Five German plural examples (left)
are merged into a family expression (right).

starting example (marked by the black dot) are searched and ranked in the order
of their distance to the starting example. Although there are five examples of the
same class in the example space, the family of the starting example contains only
three examples, since its fourth-nearest example is of a different class.

Families are converted in Fambl to family expressions, which are hyper-
rectangles, by merging all examples belonging to that family simultaneously.
Figure 6.5 illustrates the creation of a family expression from an example family.
In contrast with NGE,

• family expressions are created in one non-incremental operation on the entire
example base, rather than by step-wise nesting of each individual family
member;

• a family is abstracted only once and is not merged later on with other examples
or family expressions;

• families cannot contain ‘holes,’ i.e., examples with different classes, since the
definition of family is such that family abstraction halts as soon as the nearest
neighbor with a different class is met in the local neighborhood.

The general mode of operation of Fambl is that it randomly picks examples from
an example base one by one from the set of examples that are not already part of a
family. For each newly picked example, Fambl determines its family, generates a
family expression from this set of examples, and then marks all involved examples
as belonging to a family (so that they will not be picked as a starting point or mem-
ber of another family). Fambl continues determining families until all examples
are marked as belonging to a family.

Families essentially reflect the locally optimal k surrounding the example
around which the family is created. The locally optimal k is a notion that is also
used in locally weighted learning methods (Vapnik & Bottou 1993; Wettschereck &
Dietterich 1994; Wettschereck 1994; Atkeson et al., 1997); however, these methods
do not abstract from the learning material. In this sense, Fambl can be seen as a
local abstractor.
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Procedure FAMBL FAMILY-EXTRACTION:
Input: A training set TS of examples I1 ... n, each example being labeled with a family-membership

flag set to FALSE
Output: A family set FS of family expressions F1 ... m, m ≤ n
i = f = 0
1 Randomize the ordering of examples in TS
2 While not all family-membership flags are TRUE, Do

• While the family-membership flag of Ii is TRUE Do increase i
• Compute NS, a ranked set of nearest neighbors to Ii with the same class as Ii, among all

examples with family-membership flag FALSE. Nearest-neighbor examples of a different
class with family-membership flag TRUE are still used for marking the boundaries of the
family

• Set the membership flags of Ii and all remaining examples in NS to TRUE
• Merge Ii and all examples in NS into the family expression Ff and store this expression along

with a count of the number of examples merged in it
• f = f + 1

Figure 6.6 Pseudo-code of the family extraction procedure in Fambl.

The Fambl algorithm converts any training set of labeled examples to a set of
family expressions, following the procedure given in Figure 6.6. After learning,
the original example base is discarded, and further classification is based only on
the set of family expressions yielded by the family-extraction phase. Classification
in Fambl works analogously to classification in pure memory-based learning (with
the same similarity and weighting metrics as we used so far with MBL): a match
is made between a new test example and all stored family expressions. When a
family expression contains a disjunction of values for a certain feature, a match is
counted when one of the disjunctive values matches the value at that feature in the
new example. How the match is counted exactly depends on the similarity metric.
With the overlap metric, the feature weight of the matching feature is counted,
while with the MVDM metric the smallest MVDM distance among the disjuncted
feature values is also incorporated in the count.

6.3 Experiments with Fambl
We performed experiments with Fambl on four language processing tasks. We
first introduce these four tasks, ranging from morpho-phonological tasks to
semanto-syntactic tasks, varying in scope (word level and sentence level) and
basic type of example encoding (non-windowing and windowing). We briefly
describe the four tasks here and provide some basic data set specifications in
Table 6.2. At the same time, we also provide results for standard MBLP for
comparison.

(1) GPLURAL, the formation of the plural form of German nouns. The task is to
classify a noun as mapping to one out of eight classes, representing the noun’s
plural formation. We collected 25,753 German nouns from the German part of
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the CELEX-2 lexical database.2 We removed from this data set cases without
plurality marking, cases with Latin plural in -a, and a miscellaneous class of
foreign plurals. From the remaining 25,168 cases, we extracted or computed
for each word the plural suffix, the gender feature, and the syllable structure
of the last two syllables of the word in terms of onsets, nuclei, and codas
expressed using a phonetic segmental alphabet. We use a 50–50 percent split
in 12,584 training examples and 12,584 test instances. Generalization perfor-
mance is measured in accuracy, namely the percentage of correctly classified
test instances.

(2) DIMIN, Dutch diminutive formation, uses a similar scheme to the one used in
the GPLURAL task to represent a word as a single example. The task and data
were introduced by Daelemans et al. (1997a). A noun, or more specifically
its phonemic transcription, is represented by its last three syllables, which
are each represented by four features: (1) whether the syllable is stressed
(binary), (2) the onset, (3) the nucleus, and (4) the coda. The class label rep-
resents the identity of the diminutive inflection, which is one out of five (-je,
-tje, -etje, -pje, or -kje). For example, the diminutive form of the Dutch noun
beker (cup) is bekertje (small cup). Its phonemic representation is [’bek@r]. The
resulting example is _ _ _ _ + b e _ − k @ r tje. The data are extracted from
the CELEX-2 lexical database (Baayen et al., 1993). The training set contains
2,999 labeled examples of nouns; the test set contains 950 instances. Again,
generalization performance is measured in accuracy, namely the percentage
of correctly classified test instances.

(3) PP, prepositional-phrase attachment, is the classical benchmark data set intro-
duced by Ratnaparkhi et al. (1994). The data set is derived from the Wall Street
Journal Penn Treebank (Marcus et al., 1993). All sentences containing the pat-
tern ‘VP NP PP’ with a single NP in the PP were converted to four-feature
examples, where each feature contains the headword of one of the four con-
stituents, yielding a ‘V N1 P N2’ pattern such as ‘each pizza with Eleni,’ or
‘eat pizza with pineapple.’ Each example is labeled by a class denoting whether
the PP is attached to the verb or to the N1 noun in the treebank parse. We
use the original training set of 20,800 examples, and the test set of 3,097
instances. Noun attachment occurs slightly more frequently than verb attach-
ment; 52 percent of the training examples and 59 percent of the test examples
are noun attachment cases. Generalization performance is measured in terms
of accuracy (the percentage of correctly classified test instances).

(4) CHUNK is the task of splitting sentences into non-overlapping syntactic
phrases or constituents, e.g., to analyze the sentence ‘He reckons the current
account deficit will narrow to only $ 1.8 billion in September.’ as

[He]NP [reckons]VP [the current account deficit]NP [will narrow]VP [to]PP [only $ 1.8
billion]NP [in]PP [September]NP.

The data set, extracted from the WSJ Penn Treebank through a flattened,
intermediary representation of the trees (Tjong Kim Sang & Buchholz 2000),
contains 211,727 training examples and 47,377 test instances. The examples
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represent seven-word windows of words and their respective part-of-speech
tags computed by the Brill tagger (Brill 1992) (which is trained on a disjoint
part of the WSJ Penn Treebank), and each example is labeled with a class
using the IOB type of segmentation coding as introduced by Ramshaw &
Marcus (1995). Generalization performance is measured by the F-score on
correctly identified and labeled constituents in test data, using the evaluation
method originally used in the ‘shared task’ subevent of the CoNLL-2000 con-
ference (Tjong Kim Sang & Buchholz 2000) in which this particular training
and test set were used.

As a first experiment, we varied both the normal k parameter (which sets
the number of equidistant neighbors in the nearest neighbor set used in
k-NN classification), and the Fambl-specific parameter that sets the maximum k
distances in the family extraction stage, which we will refer to as K. The two
parameters are obviously related – the K can be seen as a pre-processing step
that ‘pre-compiles’ the k for the k-NN classifier. The k-nearest neighbor classifier
that operates on the set of family expressions can be set to 1, hypothetically,
since the complete example space is pre-partitioned in many small regions of
various sizes (with maximally K different distances) that each represent a locally
appropriate k.

If the empirical results would indeed show that k can be set to 1 safely when
K is set at an appropriately large value, then Fambl could be seen as a means
to factor the important k parameter out of MBL. We performed comparative
experiments with normal MBL and Fambl on the four benchmark tasks, in
which we varied both the k parameter in MBL, and the K parameter in Fambl
while keeping k = 1. Both k and K were varied in the pseudo-exponential series
[0, 1, . . . , 9, 10, 15, . . . , 45, 50, 60, . . . , 90, 100]. The results of the experiments are
illustrated in Figure 6.7.

A very large value of K means that Fambl incorporates virtually any same-class
nearest neighbor at any furthest distance in creating a family, as long as there
are no different-class nearest neighbors in between. It would be preferable to be
able to fix K at a very high value without generalization performance loss, since
this would effectively factor out not only the k parameter, but also the K param-
eter. This situation is represented in the graph displaying the results of GPLURAL
(top left corner of Figure 6.7). While a larger k in IB1 leads to a steady decline in
generalization accuracy on test data of the GPLURAL task, Fambl’s accuracy
remains very much at the same level regardless of the value of K. The results with
the other three tasks also show a remarkably steady generalization accuracy (or
F-score, with CHUNK) of Fambl, with increasing K, but in all three cases Fambl’s
score is not higher than IB1’s. Especially with the DIMIN and PP tasks, matching
on families rather than on examples leads to less accurate classifications at wide
ranges of K.

While it retains a similar performance to MBL, Fambl also attains a certain level
of compression. This can be measured in at least two ways. First, in Figure 6.8
the amount of compression (in terms of percentages) is displayed of the number
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Table 6.2 Number of extracted families at a maximum fam-
ily size of 100, the average number of family members, and
the raw memory compression, for four tasks

Number of Av. number of Memory
Task families members compression (%)

GPLURAL 1,749 7.2 62.0
DIMIN 233 12.9 73.4
PP 3,613 5.8 23.4
CHUNK 17,984 11.8 51.9

of families versus the original number of examples, with increasing values of K,
for four of our tasks. As Figure 6.8 shows, the compression rates converge for
all four tasks at similar and very high levels; from 77 percent for GPLURAL to
92 percent for DIMIN. Apparently, setting K at a large enough value ensures that
at that point even the largest families are identified; typically there will be 100
different distances or less in any found family.

Some more detailed statistics on family extraction are listed in Table 6.2,
measured for four tasks at the K = 100 mark. The actual number of families varies
widely among the tasks, but this correlates with the number of training examples.
The average number of members lies at about the same order of magnitude for
the four tasks – between 6 and 13. The table also shows the raw memory compres-
sion when compared with a straightforward storage of the flat example base. In
the straightforward implementation of Fambl, storing a family with one example
uses more memory than storing one example because of the bookkeeping infor-
mation associated with storing possible disjunctions at each feature. The net gains
of the high compression rates displayed in Figure 6.8 are still positive: from 23
percent to 73 percent compression. This is, however, dependent on the particular
implementation.

Two example families, one for the PP and the other for the CHUNK task, are
displayed in Table 6.3. The first example family, labeled with the Verb attachment
class, represents the attributed . . . to . . . pattern, but also includes the example bring
focus to opportunities, which is apparently the closest neighbor to the other four
examples having the same class. The second family represents cases of the begin-
ning of a noun phrase starting with most of. The context left of most of deviates
totally between the four examples making up the family, while the right context
represents a noun phrase beginning with the or his. This family would also per-
fectly match sentence fragments inside the family hyper-rectangle, such as because
computers do most of the top, or he still makes most of the 50, and many more recom-
binations. Analogously, the PP family example displayed in Table 6.3 would also
perfectly match attributed decline to increases, bring focus to demand, etc.

Overall, the comparison between Fambl and MBL shows that Fambl does not
profit from the relatively large generalizing capacity of family expressions that
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Table 6.3 Two example families (represented by their members)
extracted from the PP and CHUNK data sets respectively. The
part-of-speech tags in the CHUNK example family are left out for
legibility. The bold words in the CHUNK example are the focus
words in the windows

Task Example family Class

PP attributed gains to demand Verb attachment
attributed improvement to demand
attributed performance to increases
attributed decline to demand
bring focus to opportunities

NP because computers do most of the work B-NP
demand rights to most of the 50
he still makes most of his furs
screens, said most of the top

in principle would allow some unseen examples to attain a higher score in the
similarity function. Apart from the question of whether this relative re-ranking of
examples would have any effect on classification, it is obvious that many examples
covered by family expressions are unlikely to occur — consider, for example,
because computers do most of his furs.

We conclude that Fambl has two main merits. First, Fambl can compress an
example base down to a smaller set of family expressions (or a generalizing hyper-
rectangle), attaining various compression rates in the same ballpark as attained by
editing methods, but with a steady generalization accuracy that is very close to
IB1’s. Second, Fambl almost factors out the k parameter. Fairly constant perfor-
mance was observed while keeping k = 1 and varying K, the maximal number of
family members, across a wide range of values. To sum up, Fambl is a successful
local k pre-compiler.

In this section, we discussed the fundamental eager–lazy dimension in machine
learning from the point of view of lazy learning approaches such as MBL. We
argued that it makes sense to keep all training data available (including ‘excep-
tional’ cases) in learning language tasks because they may be good models to
extrapolate from. At the same time, while being the cheapest possible learning
approach, it is also an inherently expensive strategy during classification. There
are several ways in which this problem can be alleviated: by using fast approxi-
mations of MBL such as IGTREE (Daelemans et al., 1997b; Daelemans & van den
Bosch 2005), special optimized algorithms (Liu et al., 2003), or even use of spe-
cial hardware (Yeh et al., 2007). In this section, we showed that an alternative
way to approach this problem is to develop algorithms for weak, bottom-up
generalization from the original instance space, making possible an efficiency
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increase while keeping generalization accuracy at the same levels as with
normal MBL.

7 Further Reading

General introductions to memory-based learning (lazy learning, k-nearest neigh-
bor classification, instance-based learning) and its relation to other strands of
machine learning can be found in (Mitchell 1997). Key historic publications on k-
nearest neighbor classification are Fix and Hodges (1951), Cover and Hart (1967),
Dudani (1976), Dasarathy (1991). The field of machine learning adopted and
adapted the k-nearest neighbor algorithm under different names, such as memory-
based reasoning (Stanfill & Waltz 1986), instance-based learning (Aha et al., 1991),
and locally weighted learning (Atkeson et al., 1997). An important development
in these latter publications has been the introduction of similarity functions for
non-numeric features (Aha et al., 1991; Cost & Salzberg 1993), which enabled the
application to be used in symbolic language tasks. Stanfill (1987) and Weijters
(1991) both showed that the neural network approach to grapheme–phoneme con-
version of Sejnowski and Rosenberg (1987) could be emulated and improved by
using a k-nearest neighbor classifier. From the beginning of the 1990s onwards,
memory-based learning has been applied to virtually all areas of natural lan-
guage processing. Daelemans and van den Bosch (2005) is a book-length treatise
on memory-based language processing.

Sections 3 and 4 already pointed to studies using MBL and alternative memory-
based approaches in various areas of computational linguistics and computational
psycholinguistics. More references can be found in the regularly updated reference
guide to the TiMBL software (Daelemans et al., 2007).

Relations to statistical language processing, in particular the interesting equiva-
lence relations with back-off smoothing in probabilistic classifiers, are discussed
in Zavrel and Daelemans (1997). Relations between classification-based word
prediction and statistical language modeling are identified in van den Bosch (2005;
2006b).

In machine translation, k-nearest neighbor classification bears a close relation
with example-based machine translation (EBMT). A first EBMT-implementation
using TiMBL is described in van den Bosch et al. (2007b).

The first dissertation-length study devoted to the approach is van den Bosch
(1997), in which the approach is compared to alternative learning methods for
NLP tasks related to English word pronunciation (stress assignment, syllabifi-
cation, morphological analysis, alignment, grapheme-to-phoneme conversion).
TiMBL is also central in the PhD theses of Buchholz (2002), Lendvai (2004),
Hendrickx (2005), and Hoste (2005). In 1999 a special issue of the Journal for Exper-
imental and Theoretical Artificial Intelligence (Vol. 11.3), was devoted to memory-
based language processing. In this special issue, the approach was related also to
exemplar-based work in the data-oriented parsing (DOP) framework (Scha et al.,
1999) and analogy-based reasoning in NLP research (Pirrelli & Yvon 1999).
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NOTES

1 The software, reference guide, and instructions on how to install it can be down-loaded
from http://ilk.uvt.nl/timbl

2 Available from the Linguistic Data Consortium (www.ldc.upenn.edu/).
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7 Decision Trees

HELMUT SCHMID

1 NLP and Classification

Many natural language processing (NLP) tasks require the annotation of linguistic
entities with class labels: A part-of-speech tagger, for instance, assigns a part of
speech to each word. Word-sense disambiguation chooses the correct reading of
a word from a set of possible readings, and anaphora resolution decides whether
two nominal expressions are coreferent or not.

Decision trees are one of the techniques for solving classification problems of this
kind. Figure 7.1 shows a simple decision tree for the disambiguation of periods
(‘.’), which is a subtask of word segmentation. A period is in English either a full
stop marking the end of the sentence (‘He snored.’), or part of an abbreviation (‘Mrs.
Jones’), or both at the same time (‘This was proposed by Mr. Smith et al.’). Correspond-
ingly, the decision tree in Figure 7.1 assigns periods to one of the three classes part
of a token, punctuation, or both.

A decision tree is applied as follows: We start at the top node and find the
answer to the test question of this node. Depending on the test result, we branch to
the ‘yes’ or ‘no’ subnode and repeat this process until a terminal node is reached,
whose label is returned as the result class. In order to disambiguate the period
in the question ‘You like London, Mr. Klipstein?’ with the decision tree shown in
Figure 7.1, we first check whether the period is followed by whitespace, which is
the case. We follow the ‘yes’ link, examine the preceding word, and find that it is
a known abbreviation. Finally, we check whether the following word is a capital-
ized word which would normally be written in lowercase (such as ‘The’). This is
not the case. We conclude that the period is part of a token, and not a punctuation
mark.

Decision trees are easy to create (with one of the many available tools), to
understand, and to apply, and they are quite accurate, but they are, of course,
not the only classification method applied in NLP. Other important methods are
maximum entropy models (see Chapter 5 of this book) memory-based learn-
ing (see Chapter 6 of this book), neural networks (see Chapter 9 of this book),
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Is the period followed by
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a known abbreviation? part of a token

Is the period followed by a
capitalized regular word?
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by a regular word?

Is the period followed
by a lowercase word?

punctuationpart of a token

Figure 7.1 A simple decision tree for period disambiguation.

support vector machines (Joachims 2001), and transformation-based learning
(Brill 1992).

The remainder of this chapter is organized as follows. Section 2 describes how
decision trees are induced from training data. Section 3 presents NLP applications
of decision trees. Section 4 discusses the advantages and disadvantages of decision
trees, and lists available software packages. Section 5 concludes this chapter with
suggestions for further reading.

2 Induction of Decision Trees

Decision trees are learned from training data. Each data item consists of a set of
features describing an object and the class of the object. Table 7.1 shows a toy
example with seven data items.

Decision trees are recursively built beginning with the topmost node by (1)
computing the best test for the current node according to some splitting criterion,
(2) creating a subnode for each possible outcome of the test, and (3) recursively
expanding each subnode in the same way until a given stopping criterion is satis-
fied. Usually, the decision tree is afterwards simplified (pruned) in order to avoid
overfitting of the training data (see Section 2.4 below.)

The test of the topmost node divides the training data into two subsets. One
subset contains the elements which pass the test, the other contains the elements
which fail the test. During the induction of the tree, the two subsets are passed
on to the ‘yes’ and ‘no’ subnodes respectively. The feature tests of the subnodes
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Table 7.1 Training data consisting of seven
objects which are characterized by the features
‘size,’ ‘color,’ and ‘shape.’ The first four items
belong to class ‘+,’ the others to class ‘−.’

Size Color Shape Class

medium blue circle +
small red square +
large green trapezoid +
large green square +
small red triangle −
large red triangle −
large red trapezoid −

further subdivide the data subsets, and so on. The majority class of the data which
reaches a terminal node becomes the result class of that node.

2.1 The splitting criterion
The best test for a node is selected according to the splitting criterion. A frequently
used splitting criterion is the information gain. It is the difference between the
entropy of the data set at the current node and the entropy in the two subsets
induced by the test. The entropy of a data set measures to which degree the data
is scattered over several classes. If a data set is pure, i.e., if all elements belong to
the same class, the entropy is 0. If half of the data belongs to class A and half of
the data to class B, the entropy is 1. The entropy is defined by the formula

(1) H(p) = −
∑

c

p(c) log2 p(c)

where p(c) is the relative frequency (= empirical probability) of class c in the data
set, i.e., the frequency of class c divided by the size of the data set.

The information gain is defined as follows:

(2) G = H(p) − w1H(p1) − w2H(p2)

where p(c) is the relative frequency of class c in the current data set, p1(c) and p2(c)
are the relative frequencies of class c in the two subsets, and w1 and w2 are the
proportions of data in the first and second subset.

Consider the data in Table 7.1. The relative frequency of class ‘+’ is 4/7 in this
sample, and the relative frequency of class ‘−’ is 3/7. The entropy at the top node
is therefore:

(3) −
(

4
7

log2
4
7

+ 3
7

log2
3
7

)

≈ 0.985
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yes no

4 +, 3 −
color = red?

1 +, 3 − 3 +, 0 −

Figure 7.2 State of the decision tree after the expansion of the root node. Each box shows
the number of objects of each class in the corresponding data subset and the feature test
(if available).

no

noyes

yes

4 +, 3 −
color = red?

1 +, 3 −
shape = square?

3 +, 0 −
class +

1 +, 0 −
class +

0 +, 3 −
class −

Figure 7.3 Decision tree learned from the example data. The number of objects of each
class in the respective subset of the training data is given for each node.

Now we compute the information gain of the feature test ‘color=red?’ The data
subset with the test result ‘yes’ contains the four red training objects, three of class
‘+’ and one of class ‘−.’ The entropy in this subset is:

(4) −
(

1
4

log2
1
4

+ 3
4

log2
3
4

)

≈ 0.811

The entropy in the other subset with non-red objects is 0 because all the green
and blue objects belong to the class ‘+.’ The information gain of the test ‘color=red?’
is therefore:

(5) 0.985 − 4/7 × 0.811 − 3/7 × 0 = 0.521

The information gain of any other test is lower. Thus the most informative test
for the top node is ‘color=red?’ Figure 7.2 shows the state of the decision tree after
the top node was expanded.

The three non-red objects in the data subset of the right subnode all belong to the
class ‘+.’ Hence we can stop here and create a terminal node with the class ‘+.’ The
data subset of the left subnode with four red elements still contains objects of both
classes. We compute the best test for this subset which is the test ‘shape=square?’
It divides the data into two pure subsets. After creating a terminal node for each
outcome of the test, the induction of the decision tree is finished. Figure 7.3 shows
the result.
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Figure 7.4 Partitions of the two-dimensional feature subspace spanned by the features
‘color’ and ‘shape.’ The leftmost partition is induced by the decision tree of Figure 7.3.

This decision tree divides the feature space into three regions. Each region cor-
responds to one leaf node of the decision tree and contains training objects of only
one class. The first table of Figure 7.4 shows this partition for the two-dimensional
space spanned by the features ‘color’ and ‘shape.’ Objects in regions which are
enclosed by bold lines are assigned to the class ‘+,’ the others to the class ‘−.’
The second table shows another partition which results in the same classifica-
tion. It corresponds to a decision tree which examines the ‘shape’ feature prior
to the ‘color’ feature. The partition of the last table defines a different classifica-
tion because objects with the feature combination ‘red’ and ‘circle’ are assigned
to the class ‘+’ rather than ‘−.’ This partition is induced by a decision tree with
four test nodes. This example shows that the classification problem is in general
underdetermined and that several solutions exist.

The larger the number of terminal nodes of a decision tree, the smaller the aver-
age number of data items reaching a terminal node. And the smaller the number
of data items at a node, the less reliable the classification at that node because the
influence of incidental properties of the training data increases. A decision tree
learning algorithm should therefore choose the simplest (i.e., smallest) decision
tree which accurately describes the training data.

The number of possible decision trees for a given data set is usually too large to
compare all of them against each other in order to find the simplest tree. This
is the reason why most decision tree learning algorithms apply the ‘greedy’1

search strategy based on the information gain (or a similar criterion) which was
described in this section. It quickly finds a decision tree whose size is close – but
not necessarily equal – to the optimum.

Another popular splitting criterion uses the Gini index which measures the
impurity of a data set. It is the sum of products of all pairs of class probabilities.

(6) Gini(p) =
∑

c�=c′
p(c)p(c′) =

∑

c

p(c)(1 − p(c)) = 1 −
∑

c

p(c)2

The Gini index reaches its maximum when all class frequencies are equal. It is
zero if all data elements belong to the same class. The splitting criterion based on
the Gini index selects the test for which the sum of the weighted Gini indices of
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the data subsets is minimal. For binary splits, the following expression is to be
minimized:

(7) w1Gini(p1) + w2Gini(p2)

where w1 and w2 are the proportions of data in the two subsets.

2.2 Stopping criterion
The recursive expansion of the decision tree is stopped if either the data subset
is pure or if all data items have the same feature representation. The latter case
occurs when the data contains objects with identical feature values, but different
classes. When such contradictory class assignments exist, there is no decision tree
which correctly classifies all the training data.

Sometimes these stopping criteria are augmented by other criteria which may
terminate the induction process earlier, such as:

(1) the size of the data set being below a certain threshold;
(2) the value of the splitting criterion for the best test being below a threshold.

2.3 Feature tests
Until now, we only considered feature tests which check whether some feature
has a certain value or not, such as ‘color=red?’ If the feature values are numeric –
and in particular if they are real-valued – such equality tests often produce highly
unbalanced data partitions with a very large subset and a very small subset. Tests
which compare the feature value with some threshold (such as ‘height > 1.75m?’)
create more balanced splits and are better suited for numeric features.

Many decision tree learning algorithms also allow multi-valued tests such as
‘color=?’ with the possible outcomes ‘red,’ ‘green,’ and ‘blue.’ The information
gain criterion is not a good measure for the comparison of multi-valued tests
because it strongly prefers tests with a large number of different outcomes, and
creates decision trees which are overly complex and fragment the training data
unnecessarily.

Why are tests with many outcomes preferred? The information gain of a binary-
valued test is limited to 1. This is the information gain obtained when a data set
with 50 percent positive and 50 percent negative examples is split into two pure
subsets. A test with four possible outcomes is able to separate objects from four
different classes. The maximal information gain is here −4

( 1
4 log2

1
4

) = 2. To give
an extreme example, assume that some test assigns each data item to a separate
subset. The information gain criterion will always select this test because it reduces
the entropy to 0. The resulting classifier, however, will perform poorly because it
fails to generalize to new data with unseen values of the test feature.

The information gain of a multi-valued test whose outcome t has the prob-
ability p(t) could approach but never exceed the entropy of the test split
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Figure 7.5 Data with overlapping classes and the class boundaries found by a decision
tree.

−∑
t p(t) log2 p(t). By dividing the information gain with this test entropy, we get

the gain ratio criterion proposed by Quinlan (1986) which penalizes multi-valued
tests with many possible outcomes. Other splitting criteria for multi-valued tests
were introduced, e.g., in Breiman et al. (1984) and in Mántaras (1991). A good
splitting criterion tends to create smaller decision trees, but the effect on the clas-
sification accuracy is usually small. Therefore the choice of the splitting criterion
is not so important if only the accuracy counts.

2.4 Pruning
Decision trees which are grown to their maximal size as described above tend to
overfit the training data. Overfitting occurs when the classification of the decision
tree depends on accidental properties of the training data. Overfitting is a problem
because it leads to errors on new data. In order to avoid overfitting, most decision
tree learning algorithms add another step which simplifies the decision tree with
pruning. Pruning identifies irrelevant feature tests and replaces the corresponding
non-terminal nodes with terminal nodes.

Consider Figure 7.5 which shows a data sample with two classes and two real-
valued features. A decision tree which is trained on this data first splits the two-
dimensional feature space along the solid line. Then it adds four more boundaries
(dotted lines) in order to isolate the negative training item from the surrounding
positive items. The resulting decision tree is shown in the left side of Figure 7.6. If
the negative item within the cloud of positive items is just a random outlier, the
classification performance of the full decision tree on new data will be worse than
the performance of the simpler tree shown on the right side in Figure 7.6. Thus the
left tree should be pruned back to the tree on the right side.

Many different pruning methods have been proposed. Critical-value pruning
(CVP) (Mingers 1987) prunes at a node if the score of the splitting criterion (infor-
mation gain, gain ratio, or other) is below a given threshold. The pruning proceeds
bottom-up, and it only considers nodes whose subnodes are terminal nodes or
pruned nodes. Let us take the decision tree in Figure 7.7 as an example. With a
threshold of 4, CVP replaces the whole subtree headed by node N2 with a ter-
minal node. With a threshold of 3, only N4 is pruned because N2 dominates the
unpruned node N5 whose score exceeds the threshold.
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Figure 7.6 Decision tree induced from the data in Figure 7.5 before and after pruning.
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2.7
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1.5

N5
3.5

Figure 7.7 Decision tree with node numbers and information gain scores.

The size of the pruned tree depends on the threshold. Higher thresholds lead
to smaller trees. In order to determine the optimal threshold, the decision tree is
pruned with different thresholds. The pruned trees are evaluated on test data by
computing the classification accuracy, which is the proportion of correctly clas-
sified test items. The tree with the highest accuracy is selected. It is important
that the data used for this evaluation is fresh data which was not used to induce
the tree. Otherwise, the tree will not be pruned because the full tree achieves the
highest accuracy on the training data. If only a fixed amount of training data is
available for tree induction and pruning, part of the data has to be set aside for
pruning before the tree is induced.

The reduced error pruning (REP) method invented by Quinlan (1987) also requires
separate data for pruning, which is here directly used to decide which nodes
to prune. A node is pruned if the number of errors on the pruning data is not
increased by the pruning, i.e., if the total classificatioln error of the subnodes is at
least as high as the classification error of the node after pruning. Again, nodes are
only pruned if all non-terminal subnodes have been pruned before.

Figure 7.8 shows a decision tree in which each node is annotated with the
respective number of classification errors on the pruning data. Node N4 is pruned
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Figure 7.8 Decision tree with classification error counts.

because the number of errors at the subnodes (2+3 errors) is higher than the num-
ber of errors at N4 (4 errors). Similarly, N5 is pruned since the number of errors is
unchanged (1+2 vs. 3). Pruning at N2 or N3 would increase the number of errors.
N1 is not considered for pruning because of its unpruned non-terminal subnodes.

Breiman et al. (1984) developed another important pruning strategy called cost-
complexity pruning (CCP) which attempts to find a balance between the complexity
of the decision tree and the number of classification errors on the training data.
CCP computes the pruned tree T which minimizes the expression

(8) Rα(T) = R(T) + α|T|
where R(T) is the number of training items which are incorrectly classified by T,
|T| is the number of terminal nodes in T, and α is a balancing factor.

For a given factor α, there is a unique pruned subtree that minimizes the cost-
complexity measure Rα(T). Furthermore, for α1 > α2, the optimally pruned subtree
corresponding to α1 is a subtree of the one corresponding to α2. By steadily increas-
ing the complexity parameter, a finite sequence of pruned subtrees is generated.
The best pruned tree from this sequence is selected by evaluating the accuracy of
the different trees on separate test data and choosing the one with the smallest
classification error.

2.5 Bagging, boosting, and random forests
Decision tree induction is often unstable in the sense that a small change in the
training data leads to a rather large change in the resulting decision tree, and its
performance. Such classifiers are also said to have a high variance. Instability is
undesirable because the classification accuracy depends on accidental properties
of the data, and is therefore often suboptimal. Pruning increases the stability of
decision-tree induction and partially solves the problem. Further improvements
are possible with the three methods presented next.

2.5.1 Bagging Breiman (1996) proposed a method (called bagging) which com-
bines a set of decision trees in order to obtain a more reliable classifier. The
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individual trees are induced from bootstrap samples of the original training set.
A bootstrap sample has the same size as the original data set, and is created by draw-
ing a random sample with replacement from the original set. The classifications of
the different trees are combined by choosing the most frequently predicted class.

Assume that the training data is the set {a,b,c,c,d}. Possible bootstrap samples
obtained from this set are {a,a,b,c,d} and {a,c,c,c,d}, for instance.

Bagged decision trees are less likely to reflect accidental properties of the train-
ing data. Bagging therefore often increases the accuracy of decision trees if the
induction of a single tree is unstable. On the other hand, bagging can also slightly
degrade the performance if the tree induction is stable.

2.5.2 Boosting Freund and Schapire (1995) also create multiple classifiers with
bootstrap sampling, and combine their votes, but they use different sampling and
voting methods. The bootstrap sampling method of bagging selects each data ele-
ment with the same probability, whereas boosting chooses data elements which
are hard to classify with a higher probability, thereby focusing the learning algo-
rithm on the difficult cases. The weight of a data element is proportional to the
probability that the sampling algorithm chooses this element.

The induction of boosted decision trees starts with an initial decision tree which
is induced from the original data set (without resampling). The data weights are
initialized to 1/N (where N is the size of the training data). The training data is
then reclassified with the decision tree, and the weight of misclassified elements
is increased. Now a random bootstrap sample is drawn, a new decision tree is
induced from this sample, and the votes of the two decision trees are combined.
The algorithm continues until a predefined number of trees (e.g., 50) has been
generated. In each step i, a decision tree ti is induced, the data is reclassified, an
update factor βi is computed, the weights are adjusted, and a new bootstrap sam-
ple is drawn. The update factor is given by βi = (1 − ε)/ε, where ε is the sum of
the weights of the misclassified data. The weights of the misclassified elements are
multiplied by this factor. All weights are renormalized (i.e., divided by the sum of
weights) in order to obtain a probability distribution for sampling.

Assume that the training data contains 10 elements and that the initial decision
tree induced from this data correctly classifies eight elements, and gets two ele-
ments wrong. The total weight of the misclassified elements is 0.2 (because the
initial weight of each element is 0.1). β1 is therefore 0.8/0.2 = 4.0. After the renor-
malization, the weight of the correctly classified elements is 1/16 = 0.0625 and the
weight of the misclassified elements is 4/16 = 0.25.

The boosting algorithm combines the different decision trees by weighting the
vote of each tree ti with the factor log βi and returning the majority vote.

2.5.3 Random forests The random forest method (Breiman 2001a) is very sim-
ilar to bagging. The only difference is that the feature set from which the best
test (according to the splitting criterion) is chosen is restricted to a small random
subset of the available features. Surprisingly, this modification often improves the
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Figure 7.9 Probabilistic decision tree induced from the data in Figure 7.5.

classification performance considerably. A possible explanation is that the boot-
strap samples of the bagging method are often very similar and the decision trees
are therefore highly correlated. The restriction on the feature selection enforces
more diversity in the decision trees. Random forests have a similar performance
as boosted decision trees, but the training is more efficient because only a subset of
the features is considered at each node. Furthermore, the induction of the different
trees can be performed in parallel. This is not possible with boosting where each
new tree depends on the previous trees.

No decision tree variant consistently outperforms the others. Which method
is best depends on the problem and the training data. The same holds for
classification methods in general.

2.6 Decision trees for probability estimation
The result class which is assigned to a terminal node of a decision tree is the most
probable class in the data subset of this node, but not necessarily the only possible
class. The higher the fraction of items from other classes in the data set, the higher
the probability of a classification error at that node. In order to provide some infor-
mation about the reliability of the decisions, it is useful to store the probability of
the different classes together with the result class. The (empirical) probability is
estimated by dividing the frequency of the class by the size of the data subset.
Figure 7.9 shows an example.

Decision trees which are extended in this way can also be used to estimate the
conditional probabilities of the different classes given the feature representation of
an object. Figure 7.9 shows a decision tree which returns, for an arbitrary object
from the feature space displayed in Figure 7.5, the estimated probability that it
belongs to class ‘+’ or ‘−.’

Provost and Domingos (2003) observed that frequently used tree induction algo-
rithms such as CART (Breiman et al., 1984) or C4.5 (Quinlan 1993) often perform
poorly when they are used to estimate probabilities. They attributed this to the
following factors:

(1) Pruning eliminates nodes which are relevant for probability estimation, but
have no effect on the classification accuracy. (The second split in Figure 7.5 is
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a good example. It is probably irrelevant for the classification performance,
but might provide better probability estimates because it distinguishes the
borderline region between a and c from the rest.)

(2) The data subsets at the leaf nodes are often too small to obtain reliable
probability estimates, in particular for infrequent classes.

(3) Because decision trees divide the feature space into disjoint regions, the prob-
ability estimates are constant within a region and jump at the boundaries. A
smoother distribution is often desirable.

Provost and Domingos modified the widely used C4.5 tree induction algorithm
in order to obtain better probability estimates. They turned off pruning, and
they smoothed the probability estimates with the ‘Laplace correction’ (see, e.g.,
Manning & Schütze 1999). The Laplace correction is a very simple smoothing
technique which adds 1 to each frequency count and computes the probability
estimates from the modified counts.

Liang et al. (2006a) evaluated Provost and Domingos’ method and observed
that the probability estimates were better than those of the competing methods.
They also noted that bagging did not increase the accuracy of the probability esti-
mates. Bagging was superior, however, when only the ranking2 was evaluated. It
seems that bagging increases the accuracy of the probability estimates relative to
each other, but decreases the match with the actual probabilities by flattening the
probability distributions.

The Laplace correction used by Provost and Domingos is too simple a smooth-
ing method. Ferri et al. (2003) proposed a better method where the probability
distribution of each node is recursively smoothed with the distribution of the
parent node, similar to the back-off smoothing strategies applied in language
modeling (see Chapter 3 of this book).

3 NLP Applications

Decision trees have been applied to a wide range of NLP problems including
grapheme-to-phoneme conversion (Black et al., 1998a; Suontausta & Hakkinenen
2000; Kienappel & Kneser 2001), part-of-speech tagging (Black et al., 1992; Schmid
1994; Màrquez & Padró 1997; Schmid & Laws 2008), tokenization (Palmer &
Hearst 1997), parsing (Magerman 1994; Haruno et al., 1998), language modeling
(Bahl et al., 1989; Xu & Jelinek 2006), classification of unknown proper names
(Béchet et al., 2000), phrase-break prediction (Kim & Lee 2000; Sun & Applebaum
2001), coreference resolution (McCarthy & Lehnert 1995), and spam detection
(Rios & Zha 2004).

Many of these methods directly apply decision trees as classifiers. Others (Bahl
et al., 1989; Black et al., 1992; Schmid 1994; Haruno et al., 1998; Màrquez 1999;
Béchet et al., 2000; Sun & Applebaum 2001; Xu & Jelinek 2006; Schmid & Laws
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2008) use the decision trees to estimate the conditional probabilities of a statistical
model. The next two sections describe a typical representative of each class.

3.1 Grapheme-to-phone conversion with decision trees
General-purpose speech synthesizers need a component which predicts the
pronunciation of unknown words from their orthographic form. Such a grapheme-
to-phone converter may be implemented with manually written rules. A better
approach, however, is to learn the conversion rules from data.

Such a data-driven system is described in Black et al. (1998a). It uses decision
trees to map each letter of an unknown word to zero, one, or two phones. The
phone sequences are concatenated to obtain the pronunciation of the word. The
decision trees are trained on data from a pronunciation dictionary. The dictio-
nary data is initially pre-processed by semi-automatically aligning the letters and
phones of each word as exemplified here:

d e p a r t m e n t
D ih p aa r t m ah n t

Black et al. create a separate decision tree for each letter which predicts its pro-
nunciation based on the surrounding letters. The training data for the decision
tree of a given letter is extracted from the aligned dictionary data by finding all
occurrences of that letter and taking the three preceding and three following let-
ters as features and the phone sequence aligned with the target letter as the class.
For the conversion of the letter ‘a’ of the word ‘department,’ for instance, the letters
‘d,’‘e,’‘p,’ and ‘r,’‘t,’‘m’ are used as context. The non-terminal nodes of the decision
trees are decorated with questions such as ‘l−2=‘e’?’ (or more verbosely: ‘Is the let-
ter two positions to the left of the target letter the letter ‘b’?’). The terminal nodes of the
decision trees are labeled with the resulting phone sequence (such as ‘aa’).

This grapheme-to-phone converter was successfully applied in the Festival
speech synthesizer (Black et al., 1998b).

3.2 Using decision trees to estimate the contextual
probabilities of a POS tagger

The application presented next is a part-of-speech (POS) tagger which uses deci-
sion trees to obtain more reliable estimates of conditional probabilities, instead of
directly classifying the data as in the previous example. Before explaining how the
decision trees are used here, I will briefly summarize what POS tagging is, how
POS tagging with hidden Markov models works, and why the probability param-
eters need to be smoothed. Then I will explain how decision trees help to obtain
better probability estimates.

3.2.1 Part-of-speech tagging A part-of-speech (POS) tagger assigns a POS label
to each word of an input text. The tagger first obtains the set of possible POS tags
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for each word from a lexicon and then disambiguates between them based on
the word context. Here is an example sentence from the Penn Treebank corpus
(Marcus et al., 1993) with the possible POS tags3 of each word. The correct tags are
underlined.

Put NN VB VBD VBN
down IN JJ NN RB RP
that DT IN RB WDT
phone NN VB VBP

3.2.2 Hidden Markov models A hidden Markov model tagger (Manning &
Schütze 1999) computes the POS tag sequence t1, t2, . . . , tn whose joint probabil-
ity with the input word sequence w1, w2, . . . , wn is maximal. In a hidden Markov
model (HMM), the joint probability is decomposed into a product of the contex-
tual probabilities p(ti|ti−2ti−1) – such as p(NN|IN,DT) – and the lexical probabilities
p(wi|ti) – such as p(phone|NN) – of all input words wi:

(9) p(w1, t1, w2, t2, . . . , wn, tn) =
n∏

i=1

p(ti|ti−2ti−1)︸ ︷︷ ︸
contextual prob.

p(wi|ti)︸ ︷︷ ︸
lexical prob.

3.2.3 Parameter estimation The lexical and contextual probabilities of the
HMM are estimated from training data. The larger the number of different POS
tags is, and the more preceding POS tags a POS tag depends on, the more difficult
it is to estimate the contextual probabilities because many possible combinations
of POS tags do not appear in the training data (sparse data problem).

The German Tiger treebank (Brants et al., 2002) contains about 700 different
POS tags encoding information about number, gender, case, and other morpho-
syntactic features. A simple trigram POS tagger needs to estimate 343 million
parameters from about 900,000 tokens contained in the Tiger treebank.

The POS tagger described in Schmid & Laws (2008) approaches this sparse data
problem as follows:

(1) The POS tags ti (e.g., ‘ART.Def.Nom.Sg.Neut’) are split into feature vectors
ti,1, . . . , ti,K, and the contextual probability p(ti|ti−k, . . . , ti−1) is replaced by
the product

(10)
K∏

l=1

p(ti,l|ti−k, . . . , ti−1, ti,1, . . . , ti,l−1)

(2) The conditioning contexts are simplified by choosing the most informative
context features for the prediction of the new feature.

The probability p(ADJA.Pos.Nom.Sg.Neut|ART.Def.Nom.Sg.Neut, PART.Zu),
for instance, is replaced by the product



“9781405155816_4_007” — 2010/5/8 — 11:47 — page 194 — #15

194 Helmut Schmid

p(ADJA | ART.Def.Nom.Sg.Neut, PART.Zu)
× p(Pos | ART.Def.Nom.Sg.Neut, PART.Zu, ADJA)
× p(Nom | ART.Def.Nom.Sg.Neut, PART.Zu, ADJA.Pos)
× p(Sg | ART.Def.Nom.Sg.Neut, PART.Zu, ADJA.Pos.Nom)
× p(Neut | ART.Def.Nom.Sg.Neut, PART.Zu, ADJA.Pos.Nom.Sg)

and then simplified to

p(ADJA | ART, PART.Zu)
× p(Pos | ART, PART, ADJA)
× p(Nom | ART.Nom, PART, ADJA)
× p(Sg | ART.Sg, PART, ADJA)
× p(Neut | ART.Neut, PART, ADJA)

These parameters can be reliably estimated from the treebank, and they capture
all the information needed for disambiguation.

3.2.4 Estimation of contextual probabilities with decision trees How are the
relevant context attributes determined? The tagger has to find those combina-
tions of context attributes which provide most information about the predicted
attribute. This is exactly what a decision tree learning algorithm does.

The tagger described in Schmid & Laws (2008) therefore uses decision trees to
estimate the conditional probabilities of the predicted attributes given the context
attributes. One option would be to create one decision tree for each feature (e.g.,
‘Gender’) which provides probability estimates for the probabilities of all feature
values (‘Masc,’ ‘Fem,’ ‘Neut’).

Schmid & Laws instead create a separate decision tree for each feature value
(such as ‘Masc’). Figure 7.10 shows an example tree. The advantage of this
approach is that each decision tree is more focused, and that the training data is
not fragmented by splits needed to discriminate between the other possible feature
values. A drawback is that the probabilities of ‘Masc,’ ‘Fem,’ and ‘Neut’ usually do

2:N.Reg

p = 0.571 p = 0.938

p = 0.999

0:N.Name

1:ART.Nom

0:N.Name 0:N.Name

....

1:ADJA.Nom

yes

yes

noyes no

yes no

no

yes

p = 0.948 p = 0.998

no

Figure 7.10 Part of a probabilistic decision tree for the nominative case of nouns.
The test ‘1:ART.Nom’ checks if the preceding word (position 1) is a nominative article. All
features are word-class dependent: the case features of nouns and adjectives for example
are considered as different features.
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not exactly sum to 1 because the three decision trees use different tests and there-
fore produce different splits of the training data from which the probabilities are
estimated. In order to obtain a well-defined probability distribution, the probabil-
ity of ‘Masc,’ for instance, is renormalized by a division with the total probability
of ‘Masc,’ ‘Fem,’ and ‘Neut.’

The tagger uses binary tests as shown in Figure 7.10 and applies pre-pruning
with the critical-value pruning strategy, i.e., the recursive expansion of the deci-
sion tree stops if the information gain of the best test is below a given threshold.
The probabilities at the terminal nodes of the decision trees are recursively
smoothed with the parent node probabilities.

The new parameter estimation technique for the contextual probabilities was
integrated into an HMM POS tagger. In an evaluation (Schmid & Laws 2008) on
two treebanks with very fine-grained tagsets – the German Tiger treebank and the
Czech Academic corpus (Hladká et al., 2007) – this tagger outperformed state-of-
the-art taggers.

4 Advantages and Disadvantages of Decision Trees

Decision trees are a fast classification method in terms of both training time and
processing time. They are easy to interpret and require no parameter tweaking to
obtain good results. Furthermore, they work with large data sets, large numbers
of features, and mixtures of nominal and numeric features.

For many classification problems, the performance of simple decision trees is
not state-of-the-art, but boosted trees and random forests are reported to be com-
petitive with advanced methods such as support vector machines (Rios & Zha
2004; Bruce et al., 2007; Coussement & Var den Poel 2008), although there are also
contradictory results (Statnikov & Aliferis 2007).

An advantage of decision trees is also the availability of mature software pack-
ages. The most widely used tools are probably C4.5 (Quinlan 1993), and CART
(Breiman et al., 1984). Wagon is a reimplementation of CART which is part of the
free Edinburgh Speech Tools Library (available at www.cstr.ed.ac.uk/projects/
speech_tools). DTREG (www.dtreg.com) is a commercial software for boosted
trees. A Fortran implementation of random forests is available from Leo Breiman’s
homepage at the University of Berkeley (www.stat.berkeley.edu/users/breiman).
There are also open source implementations of decision trees in the IND package
available from the NASA, in the WEKA collection of machine learning algorithms
(http://sourceforge .net/projects/weka), and in the CRAN archive of the R project
(http://cran.r-project.org).

5 Further Reading

The books written by Quinlan (1993) and Breiman et al. (1984) are good starting
points to learn more about decision trees. Breiman et al. (1984) also discuss the
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application of decision trees to regression problems which is not covered in this
chapter. The book by Manning and Schütze (1999) includes a section on decision
trees from the perspective of statistical NLP. The website4 of the AAAI organiza-
tion includes a collection of pointers to online literature on decision trees. Further
literature on more specific topics can be found via the references in the respective
sections.

NOTES

1 A greedy search strategy makes locally optimal decisions which may be suboptimal in
a broader global context.

2 A and B are ranked correctly if the one with the higher probability according to the
decision tree is in fact more likely.

3 The meaning of the tags is as follows: NN=regular noun, DT=determiner,
IN=preposition, JJ=adjective, RB=adverb, RP=particle, VB=base verb, VBP=finite
verb, VBN=past participle, WDT=relative pronoun.

4 www.aaai.org/aitopics/pmwiki/pmwiki.php/AITopics/DecisionTrees
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8 Unsupervised Learning and
Grammar Induction

ALEXANDER CLARK
AND SHALOM LAPPIN

In this chapter we consider unsupervised learning from two perspectives. First,
we briefly look at its advantages and disadvantages as an engineering tech-
nique applied to large corpora in natural language processing. While supervised
learning generally achieves greater accuracy with less data, unsupervised learn-
ing offers significant savings in the intensive labor required for annotating text.
Second, we discuss the possible relevance of unsupervised learning to debates
on the cognitive basis of human language acquisition. In this context we explore
the implications of recent work on grammar induction for poverty of stimulus
arguments that purport to motivate a strong bias model of language learning, com-
monly formulated as a theory of universal grammar (UG). We examine the second
issue both as a problem in computational learning theory, and with reference to
empirical work on unsupervised machine learning (ML) of syntactic structure. We
compare two models of learning theory and the place of unsupervised learning
within each of them. Looking at recent work on part-of-speech tagging and the
recognition of syntactic structure, we see how far unsupervised ML methods have
come in acquiring different kinds of grammatical knowledge from raw text.

1 Overview

1.1 Machine learning in natural language processing
and computational linguistics

The machine learning methods presented in this handbook have been applied
to a wide variety of problems in natural language processing. These range from
speech recognition (Chapter 12) through morphological analysis (Chapter 14) and
syntactic parsing (Chapter 4), to the complex text and discourse understanding
applications dealt with in Part IV. ML has produced increasingly successful sys-
tems for handling a large domain of natural language engineering tasks. When
evaluating different types of ML there are a variety of technological issues that
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arise, some of which we will consider in the context of the distinction between
supervised and unsupervised learning procedures.

From an engineering perspective, the main issue to be addressed when compar-
ing the relative merits of supervised vs. unsupervised learning, for a particular
task, is the degree of accuracy that each method achieves in proportion to the
cost of resources that it requires. As we will see, characterizing an optimal bal-
ance between accuracy and cost is not always straightforward. It is necessary to
consider a variety of factors in calculating both of the values that determine this
balance.

It is also interesting to consider if ML has implications for some of the scientific
questions that animate linguistics and cognitive science. Specifically, it is worth
asking if the success of ML methods in solving language engineering problems
illuminates the sorts of learning processes that humans could, in principle, employ
in acquiring knowledge of their language. Clearly the fact that an ML procedure is
able to efficiently acquire important elements of human grammatical knowledge
from corpora does not, in itself, show that human learning operates according to
this procedure. However, to the extent that grammar induction through domain-
general learning methods succeeds on the basis of evidence of the kind available
to children, we achieve insight into the computational credibility of such methods
as models of language acquisition.

1.2 Grammar induction as a machine learning problem
A machine learning system implements a learning algorithm whose output is a
function from a domain of input samples to a range of output values. We divide a
corpus of examples into a training and a test set. The learning algorithm is spec-
ified in conjunction with a model of the phenomenon to be learned. This model
defines the space of possible hypotheses that the algorithm can generate from the
input data. When the values of the model’s parameters are determined through
training of the algorithm on the test set, an element of the hypothesis space is
selected. In the case of grammar induction the algorithm learns from the train-
ing data to construct a parser that assigns descriptions of syntactic structure to
input strings from the test data. It provides a learning procedure for acquiring a
grammar that parses new strings in the corpus.

If we have a gold standard of correct parses in a corpus, then it is possible to
compute the percentage of correct parses that the algorithm produces when tested
on an unseen subpart of this corpus. A more common procedure for scoring an
ML algorithm on a test set is to evaluate its performance for recall and precision.1

The recall of a parsing algorithm A is the percentage of brackets of the test set
that it correctly identifies, where these brackets specify the constituent tree struc-
ture of each sentence in the set. A’s precision is the percentage of the brackets
that it returns which correspond to those in the gold standard. A unified score
for A, known as an F-score, can be computed as an average of its recall and its
precision.
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The choice of parameters and their possible values defines a bias for the lan-
guage model by imposing prior constraints on the set of learnable hypotheses. All
learning requires some sort of bias to restrict the set of possible hypotheses for the
phenomenon to be learned. This bias can express strong assumptions about the
nature of the domain of learning. Alternatively, it can define comparatively weak
domain-specific constraints, with learning driven primarily by domain-general
procedures and conditions.

One way of formalizing a learning bias is as a prior probability distribution on
the elements of the hypothesis space that favors some hypotheses as more likely
than others. The paradigm of Bayesian learning in cognitive science implements
this approach.2 The simplicity and compactness measure that Perfors et al. (2006)
use is an example of a very general prior. We can describe this measure as follows.

Let D be data, and H a hypothesis. Maximum likelihood chooses the H which
makes the D most likely (the maximum probability value of D given H):

(1) arg max H(P(D|H))

Posterior probability is proportional to the prior probability times the likelihood.

(2) P(H|D) ∝ P(H)P(D|H)

The maximum a posteriori approach chooses the H which maximizes the
posterior probability:

(3) arg max H(P(H)P(D|H))

The bias of the model is explicitly represented in the prior P(H). Perfors et al.
(2006) define this prior to give higher values to grammars whose rule sets are
of smaller cardinality, and whose rules are formulated with fewer non-terminal
symbols.

1.3 Supervised learning
When the samples of the training set are annotated with the classifications and
structures that the learning algorithm is intended to produce as output for the test
set, then learning is described as supervised. Grammar induction that is supervised
involves training an ML system on a corpus annotated with the parse structures
that correspond to a gold standard of correct parse descriptions. The learning algo-
rithm infers a function for assigning appropriate parse output to input sentences
on the basis of a training set of sentence argument-parse value pairs.

As an example of supervised grammar induction, consider the learning of
a probabilistic context-free grammar (PCFG).3 Such a grammar conditions the
probability of a child sequence on that of the parent non-terminal. Each of
its context-free grammar (CFG) rules N → X1 . . . Xn expands a non-terminal
N into a sequence X1 . . . Xn of non-terminal and terminal symbols, and the
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rule is assigned a probability value. The grammar provides conditional prob-
abilities of the form P(X1 . . . Xn | N) for each non-terminal N and sequence
X1 . . . Xn of items from the set of non-terminals and the vocabulary of termi-
nals in the grammar. It also specifies a probability distribution over the label
of the root of the tree Ps(N). For a PCFG G, the conditional probabilities
P(X1 . . . Xn | N) correspond to probabilistic parameters that govern the expansion
of a node in a parse-tree according to a corresponding context-free rule N →
X1 . . . Xn in G.

The probabilistic parameter values of a PCFG can be learned from a parse anno-
tated training corpus by computing the frequency of CFG rules instantiated in the
corpus, in accordance with a maximum likelihood estimation (MLE) condition.

(4)
c(A→β1 ... βk)

c(A→γ )

where c(R) = the number of occurrences of a rule R in the annotated corpus.

In practice, MLE does not perform as well as more sophisticated estimation
methods based on distribution-free techniques (see Collins 2004).

It is possible to significantly improve the performance of a PCFG by adding
additional bias to the language model that it defines. Collins (1999) constructs
a lexicalized probabilistic context-free grammar (LPCFG) in which the probabilities
of the CFG rules are conditioned on lexical heads of the phrases that non-
terminal symbols represent. In Collins’ LPCFG non-terminals are replaced by
non-terminal/head pairs. The probability distributions of the model are of the
form Ps(N/h) and P(X1/h1 · · · H/h · · · Xn/hn | N/h) (where H is the category of
the head of the phrase that expands N) . Collins’ LPCFG achieves an F-measure
performance of approximately 88 percent. Charniak and Johnson (2005) present
an LPCFG with an F-score of approximately 91 percent.

Rather than encoding a particular categorical bias into his language model by
excluding certain context-free rules, Collins allows all such rules. He incorporates
bias by adjusting the prior distribution of probabilities over all lexicalized CFG
rules. The model imposes the requirements that (1) sentences have hierarchical
constituent structure, (2) constituents have heads that select for their siblings, and
(3) this selection is determined by the headwords of the siblings.

The bias that Collins, and Charniak and Johnson, specify for their respective
LPCFGs does not express the complex syntactic parameters that have been pro-
posed as elements of a strong bias view of universal grammar (UG). So, for exam-
ple, these models do not contain a parameter for head-complement directionality.
However, they still learn the correct generalizations concerning head-complement
order. The bias of a statistical parsing model has implications for the theory of UG.
It expresses the prior constraints on the hypothesis space required for a particular
learning procedure to achieve effective grammar induction from the input data
that the corpus supplies.
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1.4 Unsupervised learning
In unsupervised learning we do not annotate the training corpus with the struc-
tures or properties that the learning algorithm is intended to produce as its output
values. Rather, the algorithm is provided with the data alone, and must learn some
interesting structure through identifying distributional patterns and clustering
properties of more basic features in the training data. In a machine learning sense,
the most basic task of unsupervised learning is density estimation, which in NLP
generally involves language modeling (see Chapter 3 of this book, STATISTICAL
LANGUAGE MODELLING).

In the case of grammar induction, we are interested in recovering phrases and
hierarchical constituent structure, which could be used for language modeling,
machine translation, or other NLP tasks.

We will also briefly consider semi-supervised learning (see Abney 2008). This
approach recognizes that in reality there will only be limited amounts of annotated
data, and yet such data can be extremely useful when combined with much larger
amounts of unannotated data.

2 Computational Learning Theory

One way of gaining insight into the problem of unsupervised learning is through
theoretical analysis. While supervised learning has been the subject of detailed
theoretical investigation that has yielded the design of efficient classification algo-
rithms (Vapnik 1998), unsupervised learning of language offers a different kind
of challenge. The initial formulations of the problem, most notably by Gold
(1967), suggested that it is fundamentally intractable. Subsequent accounts within
the PAC (probably approximately correct) learning framework (Valiant 1984;
Kearns & Vazirani 1994) appeared to confirm this conclusion. As a result, while
there have been numerous attempts over the years to learn grammars from raw
data, very few have been informed by theoretical learning models. Instead, these
efforts have relied primarily on heuristics. The very earliest attempts at unsuper-
vised grammar induction (Lamb 1961) lacked any theoretical underpinnings, and
most current work in this area continues to pursue a non-theoretical, heuristic
approach.

In our view, the theoretical problems have been misunderstood, and, in some
cases, not properly formulated. Learnability results depend on quite subtle details
of the formalisms. Small changes in the modeling assumptions can produce rad-
ically different results. In this section, we will review some of the competing
theoretical models for unsupervised learning of natural languages, and draw con-
clusions that depart substantially from the received wisdom of the field. Our goal
is to use formal methods to illuminate the nature of learning through realistic
assumptions. If the model trivializes the learning problem so that anything is
learnable, then it is vacuous. Conversely, if it rules out efficient learning where
we know that learning takes place, then it is clearly misguided.
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As we have noted, the field of grammatical inference owes its origins to Gold
(1967). In his paper Gold presents a number of different learning paradigms.
We limit ourselves to the one in which the learner must acquire a language
class only from positive data. As has been pointed out before, this model suf-
fers from a number of serious shortcomings.4 On one hand, it fails to place
restrictions on the learner that are necessary to achieve rapid learning within the
available resources of time and computation. On the other hand, it imposes exces-
sively stringent limitations on learning by requiring that languages be acquired
under far more difficult circumstances than those which children have to deal
with.

We will discuss one of these problems briefly to give a sense of what is
involved. In the Gold paradigm the learner is provided with an infinite sequence
of examples. His/her model requires the learner to produce correct grammatical-
ity judgments after making only a finite number of errors. The learner must do this
for every possible presentation of the language. A presentation is characterized
so that every string in the language (every grammatical sentence) appears at least
once in the data, and no ungrammatical sentences are included. These are the min-
imum requirements for a presentation to fully exhibit a particular language (rather
than others). But on reflection this paradigm makes absurd demands on human
learning. The learner is obliged to acquire a language on every presentation, even
when the sequence of data samples are chosen by an infinitely powerful adver-
sary, with knowledge of the internal structure of the learner, who is designing the
presentation in order to make learning maximally difficult. This situation does not
correspond to the one in which children normally acquire their language. They are
generally exposed to helpfully organized sequences of sentences from supportive
adults interested in facilitating learning. It is instructive to work through the proof
of Gold’s most celebrated result, that no supra-finite language class is identifiable
in the limit, to see the crucial role that unconstrained presentations of data play in
this proof.5

Conversely, because sample presentations are not restricted, Gold cannot con-
strain either the speed or the complexity of the learning process (although subse-
quent researchers have tried to add constraints to control these properties, such as
Pitt (1989) and de la Higuera (1997)).

In the Gold model, there are two important positive results. The first is that
the class of all finite languages is learnable. The second is that any finite class of
languages is learnable. The first class is infinite, but its members are all finite. The
second is finite, but one or more of its elements can be infinite. Both of these results
use fairly trivial learning algorithms.

To learn the class of all finite languages the learner uses rote learning. He/she
does not need to generalize at all, but can simply memorize the examples that
have been seen. At each point, the learner returns the maximally conservative
hypothesis that the language he/she is learning consists of only those sentences
that he/she has already seen. It is easy to see that this very simple process of
enumeration allows for only a finite number of errors, where the number of errors
is bounded by the size of the language.
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To learn a finite class of languages from a presentation, the learner proceeds as
follows. The learner has access to a hypothesis space of all the languages in the
class, where these languages are arranged in a superset hierarchy. The smallest
language appears at the lowest point of the hierarchy and the largest at the top. As
we noted, every data presentation consists of the strings of a language containing
at least one appearance of each string. When a learner encounters a sentence in a
presentation, he/she deletes from the hypothesis hierarchy any language that does
not contain that sentence. He/she returns the first language (hence the smallest)
that is compatible with the strings of the presentation. It is easy to see that, as the
presentation approaches the limit, the learner will return the correct language for
the data.

Gold proves a negative result to the effect that no supra-finite language class
can be learned in the limit from positive data samples presented arbitrarily from
a corpus. However, he also demonstrates that with negative as well as positive
evidence the class of primitive recursive languages can be learned in the limit.
This class includes the set of context-sensitive languages as a proper subset. In
this Gold learning paradigm negative evidence is provided by an informant who
acts as a decision procedure, telling the learner for each data sample presented
whether it is in the language to be learned, or in its complement set.

The view of learnability for language classes that is associated with Gold’s theo-
rems has provided one of the motivations for the principles and parameters (P&P)
view of UG.6 If the relevant formal results concerning grammar induction are
those just cited and we assume that children do not have access to negative evi-
dence, then, given that they do generalize, one might conclude that they can only
effectively acquire their grammar if there is a finite number of possible human
languages. This would seem to follow from Gold’s learnability results, and the
assumptions that (1) natural languages are infinite, and (2) children do not have
access to negative evidence. The assertion that the class of natural languages is
finite follows from the P&P claim that UG contains a finite set of parameters, with
a finite set of values, ideally binary (Chomsky 1981). While both advocates and
critics of linguistic nativism have, for the most part, agreed in the past that neg-
ative data does not play a significant role in language acquisition, this issue has
become increasingly controversial in recent years.7

In fact the assumption that effective learning requires a finite hypothesis space
of possible grammars is incorrect. There are many positive results even within
the Gold paradigm which establish that infinite classes of infinite languages are
learnable with some non-trivial algorithms (Angluin & Laird 1988; Clark & Eyraud
2007).

It is important to keep in mind that, because the Gold paradigm does not accu-
rately reflect the situation of the child learner, any conclusions we draw from it
are not likely to be reliable. Rather than trying to repair it by adding various
constraints on presentations and polynomial bounds on the amount of possible
computation, generating samples by a fixed distribution, etc., we take a differ-
ent approach. We will construct a model based on the actual facts of language
learning, rather than first starting with a model and then trying to force it onto
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the facts. We shall end up with a model that resembles that of Valiant (1984), but
which departs from it in several key respects.

We start with some standard assumptions. The objects being learned are lan-
guages, which will normally be infinite objects, and these will be represented by
finite systems. These systems can be thought of as grammars, though they might
be encoded in another kind of formalism. The learner is provided with some
information about the language. In the most basic case this will be examples of
sentences in the language, though other sources of information may be consid-
ered. We assume that the learner is provided with the information one piece at
a time, in a sequence of steps, and that at each step the learner either selects a
hypothesis in the form of a representation of the language, or he/she abstains in
the early phases of the algorithm. We say that the learner has successfully learned
the language if, as the amount of data increases, the hypothesis converges (in a
sense to be made precise) to the correct language.

This very rough outline provides a framework within which we can construct
particular models of learning, through specifying precisely details like the classes
of representations and languages, the sorts of information that the learner is
provided with, the definition of convergence, and additional constraints one
might want to place on the learner. Obviously, in order to achieve computational
tractability we will need to make certain simplifying assumptions. In some cases,
these assumptions will make learning more difficult, while in others they may
make it easier. It is important to monitor these assumptions closely when interpret-
ing the formal properties of each model. We need to emphasize that learning does,
of course, occur in the real world. Therefore, if our model predicts that learning is
impossible, it is clearly wrong.

We now proceed to develop this framework by making appropriate choices for
the components that we have indicated. The first and most critical one to consider
is the class of languages (or representations of them). This class corresponds to
the set of possible grammars from which the child must select the grammar of
his/her language. We know that it must include all of the attested natural lan-
guages, and presumably all languages that differ from them only through lexical
changes, and other minor differences. The key questions are the following. How
much larger can this class be while remaining effectively learnable? What are the
defining properties of this class that determine its learnability?

We assume for the moment that the learner is provided only with positive exam-
ples. There are three possibilities to consider. First, the samples are provided by an
adversary, as in Gold’s model. Second, the samples are presented randomly. Under
standard assumptions we can say that they are generated independently and iden-
tically from some fixed distribution. Third, the samples are produced helpfully, by
a teacher trying to assist the learner (Goldman & Mathias 1996). While this last
possibility may seem the most plausible, it is difficult to formalize in a way that
does not trivialize the learning problem. Therefore, we will choose the random
option as a reasonable model.

We observe that the child learns rapidly, in the sense that languages are complex
objects, yet the amount of data which the child requires is only in the range of
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tens of millions of words. Hence we require the learner to learn in a time that
is polynomially bounded in the size of the representation being learned, and we
constrain the learner to be efficient, in that the computation it requires is bounded
also by a polynomial function for the amount of data it sees.8

As for convergence, in the real world we generally do not see exact identifica-
tion of a correct hypothesis: indeed we cannot directly observe the hypotheses.
Instead we find that disagreements on grammaticality judgments are infrequent
among members of a speech community. Generational differences do, of course,
emerge as languages change. As a convergence criterion we can require that the
probability of disagreement between the learner and the adult grammar tend to
zero as it sees more data, and this must happen rapidly.

These conditions naturally yield a version of the PAC learning paradigm. In this
framework a hypothesis (such as a grammar) is learned to within a range of error,
represented by a constant ε, and a range of probability, expressed by a constant
δ, in relation to the size of a data sample. An algorithm A PAC-learns a class of
representations for languages R, if and only if,

(1) there is a polynomial q, such that
(a) for every R ∈ R, which defines a language L
(b) every probability distribution D on the samples of the data, and
(c) every ε, δ > 0,

(2) whenever A sees a number of examples greater than q(1/ε, 1/δ, |R|),
(a) it returns a hypothesis H such that,
(b) with probability greater than 1 − δ,
(c) the error of the hypothesis PD((H − L) ∪ (L − H)) < ε, and

(3) A runs in polynomial time in the total size of the examples seen.

These conditions require that learning be rapid for any language, that com-
plex languages take more time than simple ones, but that the growth in time for
learning in proportion to complexity of the language be slow.

Note that for a realistic model it is important to incorporate this dependency of
learning time on language complexity, as removing it leads to the absurd conclu-
sion that a rote learner cannot acquire finite languages. Thus for the class of finite
grammars, where the representation is just a list of the grammatical sentences, it is
unrealistic to expect the learner to be able to learn any list, no matter how long, in a
fixed amount of time. A rote learner can learn lists of a restricted size within a rea-
sonable time, but will require more time to learn longer lists. Thus it is reasonable,
and standard in the machine learning literature, to allow the number of samples,
as expressed by the polynomial q, to depend on the size of the representation |R|.

A standard PAC-model is distribution free, which entails that learning is equally
rapid for all possible probability distributions on the data. From a mathematical
perspective, this assumption is very convenient, and it forms the basis for the VC
(Vapnik–Chervonenkis) theory of learnability (Vapnik 1998). However, it is unre-
alistic. The samples to which a child is exposed are generated by people in his/her
environment who speak the language he/she is acquiring. The distributions of
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samples in the primary linguistic data (PLD) are not selected to make learning dif-
ficult, but rather to help it proceed.9 Clearly, the distribution of the samples must
depend on the language being learned: French children hear different sentences
from English ones.

Many researchers (Li & Vitányi 1991) have noted that the distribution free
assumption of the classical PAC framework is harsh, but yields powerful tech-
niques. This approach may be mathematically desirable, and it might provide
improvements over other estimation methods (Collins 2004). However, if we
require learnability for any distribution, we find that learning becomes intractably
hard. By contrast, if we restrict the class of distributions in some way, for example
to simple distributions (Li & Vitányi 1991; Denis 2001) or to distributions gen-
erated by the stochastic variations of the representations, such as probabilistic
deterministic finite state automata (PDFA) or PCFGs, then we find that efficient
learning is possible (Clark & Thollard 2004; Clark 2006).

Additional problems for learnability derive from the computational complex-
ity of the learning problem. Learning statistical models of the kinds standardly
employed in current NLP work is hard. So, for example Abe and Warmuth (1992)
show that training a hidden Markov model (HMM) is computationally hard under
common assumptions.10 On standard cryptographic methods, computationally
hard problems can be embedded in the learning of even simple acyclic determin-
istic automata (Kearns & Valiant 1989; Kearns et al., 1994). The natural conclusion
is that the child would not be able to learn such classes. Indeed the sorts of lan-
guages that these problems give rise to bear no relation to natural languages, as
they involve computing parity functions, or multiplying large integers together.
From a formal point of view this means that uniform learning over the entire class
of languages is not possible.

However, Ron et al. (1998) suggest a useful strategy for dealing with these dif-
ficulties. A class of languages can be stratified by a parameter that separates it
into subclasses according to how hard each one is to learn. The specific parameter
for Ron is a distinguishability condition. Similar approaches can be applied to the
learnability of context-free grammars (Clark 2006).

2.1 Summary
What insight can we gain from these formal results and considerations? Unsuper-
vised learning of languages is difficult but possible. This is a favorable outcome,
as it implies that the study of learnability can offer us useful guidance in dealing
with both engineering and cognitive issues in grammar induction.

Under the best possible theoretical analysis, we can see that negative results
rule out uniform learning from positive data of the full classes of regular lan-
guages and context-free languages, but that regular languages, represented by
deterministic finite state automata, and some subclasses of context-free languages,
may be learnable when the distributions of examples are benignly specified.
Both of these representations are based on observable properties of languages.
The non-terminals or states are identified with distributional properties of the
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substrings of the languages. In the case of the regular languages, these are the
residual languages (Clark & Thollard 2004), and with context-free languages these
are the congruence classes (Clark 2006). Conversely it seems that representations
based on deep hidden structures, such as trees, especially trees with many empty
nodes, where the structure is not directly detectable from the surface utterance,
may be hard to learn.

We might also be able to obtain positive results for a class of languages that
is very restricted or even finite, although the languages in this class may them-
selves be infinite. But even here we may encounter problems. Finiteness in itself
does not ensure efficient computation. For example, the negative results in Kearns
et al. (1994) are based on finite sets of finite languages. Despite the fact that they are
finite, they are unlearnable, because the problem of identifying the correct hypoth-
esis is too hard. Even though these families of languages are specified by a small
number of binary valued parameters, the parameters are very tightly entwined
in the computation of a parity function. This causes the class to be not efficiently
learnable.

From a theoretical point of view, the interesting question is whether these results
rule out domain-general learning approaches, and necessitate a very restricted
class of languages. The answer seems to be that they do not. They clearly point to
different language classes from those in the Chomsky hierarchy. The classes that
we use in our learning analyses do not necessarily correspond to normal families
of languages, and certainly not to the Chomsky classes, such as context-free gram-
mars. They might include, for example, some regular languages, some context-free
languages, and some context-sensitive languages, but they may not cover all the
members of these classes. It is also important not to confuse the hypothesis class
of the learner with the class of languages that may be learnable. As Poggio et al.
(2004: 422) say:

Thus, for example, it may be possible that the language learning algorithm may
be easy to describe mathematically while the class of possible natural language
grammars may be difficult to describe.

The hypothesis class could be very much larger than the class of languages for
which it is guaranteed to learn. So, for example, the learner in Clark (2006) repre-
sents its hypotheses as context-free languages. All of these hypotheses lie within
the (smaller) class of non-terminally separated (NTS) languages. The proof given
there establishes that it will learn a PAC-learnable class of unambiguous languages
under some plausible assumptions about the data sample distributions. But if
the samples are generated adversarially (as in one of Gold’s paradigms), then
the learner is only guaranteed to acquire the still smaller class of substitutable
languages (Clark & Eyraud 2007). The algorithm, however, remains unchanged.

These are rather different conclusions from other recent analyses. For example,
Nowak et al. (2002) and Niyogi (2006) claim that the PAC-analysis rules out learn-
ing without specific restrictions. This is largely because their approach does not
allow the size of the language representation to depend on the amount of data
that the learner can have, as discussed above in Section 1.1.
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Our theoretical understanding of learning is changing rapidly. Modifying
Chomsky’s terminology somewhat, we can say that linguistic representations
may achieve varying levels of adequacy. Observational adequacy is the require-
ment that the representations are sufficiently powerful to express the distinc-
tion between grammatical and ungrammatical sentences. Explanatory adequacy
imposes the additional requirement that the representations can be learned from
the available data.

We have not yet achieved explanatory adequacy. The most descriptively ade-
quate frameworks use very powerful systems of representation, such as tree
adjoining grammar (TAG) (Joshi 1987) or head driven phrase structure grammar
(HPSG) (Pollard & Sag 1994), while the grammars developed to date that can be
efficiently learned are not powerful enough to cover the full complexity of natural
language syntax. Whether there are observationally adequate grammars that can
be learned using unsupervised learning from raw corpora remains very much an
open question. Our theoretical analysis points in general towards shallower lin-
guistic representations, regardless of whether these are conceived of in terms of
parameters of a language model, formal grammars, or a more situated account
of learning, which leverages extralinguistic context to a far greater extent than
considered here.

3 Empirical Learning

We now turn to empirical work on unsupervised learning, where ML algorithms
are applied to naturally occurring natural language corpora. We will look in detail
at two NLP tasks. One is the unsupervised learning of word classes, and the other
is unsupervised induction of syntactic parsing.

First, we will briefly take up the problem of evaluation, which is particularly
problematic in the case of unsupervised learning.11 Three methodologies have
been used. The first is naïve. It involves having observers evaluate an algo-
rithm’s output on the basis of their intuitions concerning the property or structure
that the procedure is designed to identify. This approach may offer some insight
into the strengths and weaknesses of the method, but it is both subjective and
imprecise.

A second evaluation technique measures the correspondence between the
results that the algorithm generates and those of a gold standard for the corpus.
So, for example, when evaluating induced word classes one can compare the word
classes that an ML procedure generates for a corpus with the traditional lexical
categories that are assigned to the corpus by a reliable part-of-speech (POS) tagger
that uses these categories. This comparison can be done using standard informa-
tion theoretic criteria. For example the conditional entropy of the gold standard
tags with respect to the induced tags will tell you how much of the information
in the gold standard tags remains unaccounted for by the induced tags. If this
number is very low or zero, then the gold standard tags are predictable from the
induced tags.
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Table 8.1 Comparison of different tag sets on IPSM data. Conditional entropy
of row given column. Blanks (–) are where the two sets have different tokeniza-
tion due to differing treatment of the possessive clitic

Tag set n H Brown ICE LLC LOB Parts POW Sec UPenn

Brown 3.16 0.00 – 0.34 0.22 1.10 0.99 0.32 –
ICE 3.38 – 0.00 – – – – – 0.84
LLC 3.34 0.52 – 0.00 0.44 1.30 1.00 0.45 –
LOB 3.24 0.31 – 0.35 0.00 1.20 1.00 0.24 –
Parts 2.46 0.41 – 0.40 0.41 0.00 0.75 0.38 –
POW 2.72 0.55 – 0.42 0.46 1.00 0.00 0.43 –
Sec 3.24 0.40 – 0.35 0.24 1.20 0.95 0.00 –
Upenn 2.92 – 0.38 – – – – – 0.00

This comparison yields objective numerical evaluation, but the gold standard
in linguistic annotation often incorporates theoretical assumptions that may not
be well motivated. Alternative annotations of the text may be possible. The gold
standard might simply reflect the prestige of the organization that produced the
annotation, the theoretical framework it employs, the amount of data annotated, the
availability of the corpus, or other factors irrelevant to a sound evaluation standard.

In part-of-speech annotations of English, for example, there are significant
differences between various tag sets. Using data provided by the AMALGAM
(Automatic Mapping Among Lexico-Grammatical Annotation Models) project
(Atwell et al., 1995), which provided text annotated with eight different tag sets,
we measured the conditional entropy of each tag set with respect to the others.
Table 8.1 shows the results. We see that the conditional entropy here varies up to
1.3 for these equally valid, manually constructed tag sets,12 and it is zero, as one
would expect, down the leading diagonal. By comparing these competing gold
standards against each other, we observe the range of possible outcomes that we
might expect.

In unsupervised parsing this approach involves using a treebank and measuring
derived trees against gold standard trees: an evaluation approach first employed
by van Zaanen (2000).

The third and final evaluation technique is to invoke some objective and
theoretically neutral evaluation strategy. For example, one can compute the pre-
dictive power of a derived language model for word class induction (Ney et al.,
1994). This is usually defined in terms of perplexity, which measures the ability
of the model to predict the next word in a string or corpus.13 This evalua-
tion metric has two advantages. First, it directly measures a useful property of
the model. Such models can be used in speech recognition, and models with
lower (better) perplexity will perform with a lower error rate. Second, the met-
ric does not depend on linguistic annotations, which as we have noted, are not
uncontroversial. It relies solely on raw, naturally occurring data.
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Alternatively, we could consider performance in an end-to-end problem in
which the results of one procedure are taken as input for a second application.
The output of the latter provide an indirect measure for the success of the former.
Bod (2007a) does this when he uses the trees of his unsupervised parser to sup-
port a machine translation system. However, it is not clear how well this approach
captures the linguistic accuracy of the first algorithm.

3.1 Learning word classes
One of the earliest NLP problems to which unsupervised learning was success-
fully applied is the induction of parts of speech. The words in every language can
be divided into lexical categories that partially correspond to traditional parts of
speech. Nearly all lexical resources use some fixed categories of this type, as do
syntactically annotated corpora. While for many purposes manual tagging of text
is adequate, it is frequently desirable, for reasons of efficiency, to extract lexical
classes from corpora automatically. Moreover, from a cognitive perspective it is
important to determine the extent to which purely distributional algorithms can
learn these categories, as they provide the basis for post-lexical syntactic analysis.

Corresponding to engineering and to cognitive concerns we find two strands
of research. The cognitive science approach is most notably represented by Nick
Chater and his co-workers (Finch et al., 1995; Redington et al., 1998). The engineer-
ing direction focuses on statistical language modeling, where lexical categories
are invoked to smooth n-gram models by specifying conditional probabilities for
strings in terms of word classes rather than individual lexical items. The basic
methods of this approach are studied in detail by Ney et al. (1994), Martin et al.
(1998), and Brown et al. (1992).

We assume a vocabulary of words V = {W1, . . . }. Our task is to learn a deter-
ministic clustering, which we can represent as a class membership function g from
V into the set of class labels {1, . . . , n}. The clustering can be used to define a num-
ber of simple statistical models. The objective function we try to maximise will
be the likelihood of some model, understood as the probability of the data with
respect to that model. The simplest candidate is the class-bigram model, though
this approach can be extended to class-trigram models. Suppose we have a corpus
w1, . . . , wN of length N. We can assume an additional sentence boundary token.
Then the class-bigram model defines the probability of the next word given the
history as

(5) P
(

wi

∣
∣
∣wi−1

1

)
= P(wi|g(wi))P(g(wi−1)|g(wi−2))

It is not computationally feasible to search through all of the exponentially many
possible partitions of the vocabulary to find the one with the highest likelihood
value. Therefore we need a search algorithm that will give us a local optimum.
The standard techniques (Ney et al., 1994; Martin et al., 1998) use an exchange
algorithm similar to the k-means algorithm for clustering. This procedure (1) itera-
tively improves the likelihood of a given clustering by moving each word from its
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current cluster to the cluster that will give the maximum increase in likelihood,
or (2) leaves it in its original cluster if no improvement can be found. There are
a number of different ways in which an initial clustering can be chosen. It has
been found that the initialization method has little effect on the final quality of the
clusters, but it can have a marked effect on the speed of convergence for the algo-
rithm. A more important variation for our purposes is how rare words are treated.
Martin et al. (1998) leave all words with a frequency of less than 5 in a particular
class, from which they may not be moved.

These techniques, using purely distributional evidence, work remarkably well
for frequent words. However, as Rosenfeld (2000b: 1313–14) points out, in lan-
guage modeling the most important task is to cluster the infrequent words. We
have sufficiently reliable information about the statistical properties of the fre-
quent words that they do not need to be smoothed with the clusters, and so it
is the infrequent words that are most in need of smoothing.14 But it is these words
that are most difficult to cluster.

Distributional data is of course not the only information relevant to identify-
ing the syntactic category of a word class. Words are not atoms, but sequences
of letters or phonemes, and this information can be used by a learning algo-
rithm. Moreover, words have relative frequency, and infrequent words will exhibit
different frequency patterns from frequent words. Pronouns, for example, tend to
be very frequent.

Consider a trivial case of the first type from written language. If we encounter
an unknown word, say £212,000, then merely looking at the sequence of characters
that compose it may well be sufficient to allow us to reliably estimate its part of
speech. Less trivially, suffixes like -ing or -ly on an English word are a strong clue
as to its lexical category.

Clark (2003) presents a method for determining how frequency and morpho-
logical information can be incorporated into this approach, and tests the method
on a number of different languages from different families. He uses texts pre-
pared for the MULTEXT-East project (Erjavec & Ide 1998), which consists of data
(George Orwell’s novel 1984) in seven languages: the original English together
with Romanian, Czech, Slovene, Bulgarian, Estonian, and Hungarian.

Table 8.2 from Clark (2003) shows the results of the cross-linguistic evaluation
of this data (to get a sense of how to interpret the values in this table it is worth
consulting Table 8.1 again).

This method was also evaluated by comparing the perplexity of a class-based
language model derived from these classes.

3.2 Unsupervised parsing
Initial experiments with unsupervised grammar induction (like those described
in Carroll & Charniak 1992) were not particularly encouraging. Far more promis-
ing results have been achieved in work over the past decade. Klein and Manning
(2002) propose a method that learns constituent structure from POS tagged input
by unsupervised techniques. It assigns probability values to all subsequences of
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Table 8.2 Cross-linguistic evaluation: 64 clusters, left all words, right f ≤ 5. We
compare the baseline with algorithms using purely distributional (D) evidence,
supplemented with morphological (M) and frequency (F) information

Base D0 D5 D+M D+F D+M+F Base D0 D+M D+F D+M+F

H(G|C) All words f ≤ 5

English 1.52 0.98 0.95 1.00 0.97 0.94 2.33 1.53 1.20 1.51 1.16
Bulgarian 2.12 1.69 1.55 1.56 1.63 1.53 3.67 2.86 2.48 2.86 2.57
Czech 2.93 2.64 2.27 2.35 2.60 2.31 4.55 3.87 3.22 3.88 3.31
Estonian 2.44 2.31 1.88 2.12 2.29 2.09 4.01 3.42 3.14 3.42 3.14
Hungarian 2.16 2.04 1.76 1.80 2.01 1.70 4.07 3.46 3.06 3.40 3.18
Romanian 2.26 1.74 1.53 1.57 1.61 1.49 3.66 2.52 2.20 2.63 2.22
Slovene 2.60 2.28 2.01 2.08 2.21 2.07 4.59 3.72 3.25 3.73 3.55

tagged elements in an input string, construed as possible constituents in a tree.
The model that this method employs imposes the constraint of binary branch-
ing on all non-terminal elements of a parse-tree. Klein and Manning invoke
an expectation maximization (EM) algorithm to select the most likely parse for a
sentence. Their method identifies (unlabeled) constituents through the distribu-
tional co-occurrence of POS sequences in the same contexts. The model partially
characterizes phrase structure by the condition that sister phrases do not have
(non-empty) intersections. Binary branching and the non-overlap requirement are
biases of the model.

Evaluated against Penn Treebank parses (Marcus 1993) as the gold standard, this
unsupervised parse procedure achieves an F-measure of 71 percent on Wall Street
Journal (WSJ) test data. This score is achieved despite a serious limitation imposed
by the gold standard. The Penn Treebank allows for non-binary branching for
many constituents. A binary branching parse algorithm of the sort that Klein and
Manning employ can only achieve a maximum F-score of 87 percent against this
standard. As it turns out, many of the algorithm’s binary constituent analyses that
are excluded by the gold standard are, in fact, linguistically defensible parses. So,
for example, while the treebank analyzes noun phrases as having flat structure, the
iterated binary branching constituent structure that the Klein–Manning procedure
assigns to NPs is well motivated on syntactic grounds.

The Klein–Manning parser is, in fact, constructed by semi-supervised, rather
than fully unsupervised, learning. The input to the learning algorithm is a corpus
annotated with the POS tagging of the Penn Treebank. If POS annotation is, in
turn, provided by a tagger that uses unsupervised learning, then the entire pars-
ing procedure can be construed as a sequenced process of unsupervised grammar
induction.15

Klein and Manning (2002) report an experiment in which their parser achieves
an F-score of 63.2 percent on WSJ text annotated by an unsupervised POS tag-
ger. They observe that this tagger is not particularly reliable. Other unsupervised
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taggers, like the one presented in Clark (2003), produce good results that might
well allow the Klein–Manning unsupervised constituency parser to perform at a
level comparable to that which it achieves with Penn Treebank tags.

Klein and Manning (2004) present an unsupervised learning procedure for
acquiring lexicalized head-dependency grammars. It assigns probabilities to pos-
sible dependency relations in a sentence S by estimating the likelihood that each
word in S is a head for particular sequences of words to its left and to its right,
taken as its syntactic arguments or adjuncts. The probabilities for these alternative
dependency relations are computed on the basis of the context in which each head
occurs. The context consists of the words (word classes) that are immediately adja-
cent to it on either side. The dependency structure model associated with the learn-
ing algorithm requires binary branching as a condition on dependency relations.
The procedure achieves an F-measure of 52.1 percent on Penn Treebank test data.

Klein and Manning (2004) combine their dependency and constituent structure
grammar induction systems into an integrated model that produces better results
than either of its component parsers. The composite model computes the score for
a tree as the product of the dependency and constituency structure grammars. This
procedure employs both constituent clustering and head dependency relations to
predict binary constituent parse structure. It achieves an F-score of 77.6 percent
with Penn Treebank POS tagging, and an F-score of 72.9 percent with Schütze’s
(1995) unsupervised tagger.

Bod (2006a; 2007a; 2007b) proposes an alternative system for unsupervised
parsing, which he refers to as unsupervised data-oriented parsing (U-DOP). U-DOP
generates all possible binary branching subtrees for a sentence S. The preferred
parse for S is the one which can be obtained through the smallest number of sub-
stitutions of subtrees into nodes in larger trees. In cases where more than one
derivation satisfies this condition, the derivation using subtrees with the highest
frequency in previously parsed text is selected. Bod (2006a) reports an F-score of
82.9 percent when U-DOP is combined with a maximum likelihood estimator and
applied to the WSJ corpus on which Klein and Manning tested their parsers.

While U-DOP improves on the accuracy and coverage of Klein and Manning’s
(2004) combined unsupervised dependency-constituency model, it generates a
very large number of subtrees for each parse that it produces. Bod (2007a)
describes a procedure for greatly reducing this number by converting a U-DOP
model into a type of PCFG. The resulting parser produces far fewer possible sub-
trees for each sentence, but at the cost of performance. It yields a reported F-score
of 77.9 percent on the WSJ test corpus (Bod 2007a).

An important advantage that U-DOP has over simple PCFGs is its capacity to
represent discontinuous syntactic structures, like subject–auxiliary inversion in
questions, and complex determiners such as more . . . than . . ., as complete construc-
tions.16 U-DOP incorporates binary branching tree recursion as the main bias of
its model. It can parse structures not previously encountered, either through the
equivalent of PCFG rules, or by identifying structural analogies between possible
tree constructions for a current input and those assigned to previously parsed
strings in a test set.
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ADIOS is another recent unsupervised algorithm for grammar induction (Solan
et al., 2005). It is interesting not so much for the algorithmic properties that it
exemplifies (these are largely taken from other models, although they are com-
bined in a novel way), but for the extensive and original method of evaluation to
which it is subjected. Solan et al. (2005) use a number of different techniques to
demonstrate the robustness of ADIOS. These include a language modeling task,
and application of the algorithm to test children’s reading comprehension.

3.3 Accuracy vs. cost in supervised, unsupervised,
and semi-supervised learning

In general supervised learning algorithms achieve greater accuracy than unsu-
pervised procedures. So LPCFG parsers trained on WSJ corpora annotated with
constituent structure information in the Penn Treebank obtain F-measures of
88 percent to 91 percent (Collins 1999; Charniak and Johnson 2005), while efficient
unsupervised parsers currently score in the mid to high 70s (Klein & Manning
2004; Bod 2007a). However, hand annotating corpora for training supervised algo-
rithms adds a significant cost that must be weighed against the accuracy that these
procedures provide. To the extent that unsupervised algorithms do not incur these
costs, they offer an important advantage, if they can sustain an acceptable level of
performance in the applications for which they are designed.

Banko and Brill (2001) use a method of semi-supervised learning that combines
some of the benefits of both systems. They train 10 distinct classifiers for a word
disambiguation problem on an annotated test set. They then run all the classi-
fiers on an unannotated corpus and select the instances for which there is full
agreement among them. This automatically annotated data is added to the origi-
nal hand annotated corpus for a new cycle of training, and the process is iterated
with additional unannotated corpora. In the experiments they describe how accu-
racy is improved through unsupervised extensions of a supervised base corpus up
to a certain phase in the learning cycles, after which it begins to decline. They sug-
gest that this effect may be due to the learning process reaching a point at which
the benefits that additional data contribute are outweighed by the distortion of
sample bias imported with the new samples, which causes overfitting of the data.

Bank and Brill’s approach can be generalized to grammar induction and pars-
ing. This would involve training several supervised parsing systems on an initial
parsed corpus and then optimizing these procedures through iterated parsing of
text containing only POS tagging. The tagging can be done automatically using a
reliable tagger.

There are, in fact, good engineering reasons for investing more research effort
in the development of robust unsupervised and semi-supervised learning proce-
dures. Very large quantities of raw natural language text are now available online
and easily accessible. While supervised grammar induction has achieved a high
level of accuracy, generating the necessary training corpora is an expensive and
time-consuming process. The use of unsupervised and semi-supervised learning
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algorithms reduces much of this expense. The amount of data that hand annotated
training sets provide is very limited in comparison to the corpora of unanno-
tated text currently available at little or no cost. As the accuracy and coverage
of unsupervised systems improves, they become increasingly attractive alterna-
tives to supervised methods. It is reasonable, then, to expect a greater focus on the
development of these systems in future NLP work.

4 Unsupervised Grammar Induction and Human
Language Acquisition

The promising results of recent work on unsupervised procedures for grammar
induction raise interesting questions for long-standing debates over the cognitive
basis for human language acquisition. Theoretical linguistics has been dominated
for the past 50 years by a strong version of linguistic nativism.17 On this view, a
set of rich, domain-specific biases provide the basis for language acquisition. These
biases are formulated as the constraints of a universal grammar, which constitutes
a biologically determined, task-specific language faculty.

The main consideration offered in support of this notion of a language faculty
is the argument from the poverty of the stimulus (APS). According to the APS the
amount and quality of the primary linguistic data available to children acquiring
their first language is not sufficient to account for the grammar that expresses adult
linguistic competence if acquisition of the adult grammar is mediated primarily
by domain-general procedures of induction, such as those applied in machine
learning. A classic instance of the APS is the use of subject–auxiliary inversion
to claim that language learners have an innate bias towards learning grammati-
cal rules formulated in terms of a hierarchical phrase structure representation of
sentences.18

(6) a. Is the student who is in the garden hungry?
b. *Is the student who in the garden is hungry?

The rule of auxiliary inversion requires that (something like) the following
structures be assigned to (6a), (6b), respectively.

(7) a. [S′ is2 [S[NP the [N′ student [RC who [VP is1 in the garden]]]] [VP [V e2]
hungry]]]

b. [S′ is1 [S[NP the [N′ student [RC who [VP e1 in the garden]]]] [VP [V is2]
hungry]]]

Advocates of the APS maintain that the data to which children are exposed does
not provide an adequate basis for inferring a structure-dependent rule of subject–
auxiliary inversion unless the children come to the task of language acquisition
already equipped with a mechanism for organizing strings of words into phrasal
constituents of the sort that facilitate the formulation of this rule.
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The APS has recently been subject to strong challenges.19 Both sides of this
debate have tended to focus on the availability of evidence for grammar induction
through data-driven methods. However, it is not possible to decide how much,
and what sort of, data is required for effective language acquisition independently
of a clearly specified theory of learning. This question is meaningful and interest-
ing only when considered in relation to a particular learning theory or class of such
theories. Linguistic nativists have generally argued for the paucity of data without
specifying a strong bias model that will generate the class of grammars which they
posit, given the set of linguistic samples which they assume as evidence. Similarly,
some critics of the APS have insisted that the child has access to sufficient linguis-
tic data to produce the grammar of his/her first language without indicating how
learning is achieved.

To the extent that machine learning algorithms can acquire accurate and the-
oretically viable grammars of languages from corpora through unsupervised
methods, employing weak rather than strong learning biases, they undermine
the APS as an argument for strong linguistic nativism.20 Specifically, they show
that it is possible to implement a learning algorithm that can effectively acquire
a significant element of human linguistic knowledge relying primarily on gener-
alized information theoretic techniques for classifying data, with comparatively
weak domain-specific constraints on the set of possible grammars in its hypothe-
sis space. As we have observed, unsupervised grammar induction has recently
yielded encouraging results for parsing WSJ text according to the gold stan-
dard given by the Penn Treebank. Moreover, Bod (2006a, 2007a), and Clark and
Eyraud (2006) present systems that learn subject–auxiliary inversion rules effi-
ciently without being exposed to sample sentences like (6a) or its full declarative
counterpart.

(8) The student who is in the garden is hungry.

However, most of these unsupervised grammar-induction procedures incorpo-
rate learning biases that restrict their hypothesis spaces to constituent structure
grammars of some kind.21 An advocate of the APS can claim that these biases
are precisely the sort of conditions that the argument is intended to motivate as
necessary learning priors for language acquisition.

In fact it is possible to argue that a preference for hierarchical constituent
structure is not, in itself, an irreducible bias on a language model. It can be
derived from a more basic and general learning prior. As we have seen, Perfors
et al. (2006) define a very general prior for smaller grammars with fewer rules
and fewer non-terminal symbols. It does not specify a bias towards constituent
structure. They apply their Bayesian posterior probability measure, given in (3)
(arg max H(P(H)P(D|H))), to a hypothesis space of three types of grammar, which
they evaluate on a subset of CHILDES (MacWhinney 1995), a corpus of child
directed discourse.

The three types of grammar that Perfors et al. (2006) consider are:

(1) a flat grammar that generates strings directly from S without intermediate
non-terminal symbols;
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(2) a probabilistic regular grammar (PRG); and
(3) a probabilistic context-free grammar (PCFG).

They compute the posterior probability of each grammar for the CHILDES sen-
tences. The PCFG receives a higher posterior probability value and covers signifi-
cantly more sentence types in the corpus than either the PRG or the flat grammar.
The grammar with maximum a posteriori probability makes the correct gener-
alization. This result suggests that it may be possible to decide among radically
distinct types of grammars on the basis of a Bayesian model with relatively weak
learning priors, when using a corpus that accurately reflects the linguistic data
that children are exposed to in the course of first language acquisition. The prior
that Perfors et al. (2006) invoke does not impose a constituent structure bias, but a
general preference for smaller, more compact hypotheses.

While the success of weak bias unsupervised ML procedures in grammar induc-
tion (and related tasks) vitiates the APS case for strong domain-specific learning
priors as necessary conditions for language acquisition, it does not tell us anything
about the actual cognitive mechanisms that humans employ in acquiring their first
language. Even discounting the APS, a strong nativist view of UG could, in prin-
ciple, turn out to be correct on the basis of the psychological and biological facts
of language acquisition.

Is there, then, any psycholinguistic evidence showing that ML methods play a
significant role in human language learning? In fact there is. Saffran et al. (1996)
report a set of experiments in which eight-month-old infants learn to identify
word boundaries in continuous syllable sequences on the basis of a two-minute
exposure to training data. The words are nonsense terms constructed out of three-
syllable sequences. The transitional probabilities between syllables within a word
are maximal (set at 1), while those between syllables crossing word boundaries are
low (generally around 0.33). The transitional probability of a syllable pair XY (X
followed by Y) is computed as the conditional probability P(Y|X) according to its
Bayesian MLE condition (where c(α) is the frequency count for the sequence α).

(9) P(Y|X) = c(XY)

c(X)

The infants were able to distinguish familiar words heard in the training sam-
ples from novel non-words on the basis of very limited exposure to a word set.
Saffran et al. (1996) conclude that they employed the difference in transitional
probabilities between word internal syllable sequences and word external pairs
in order to infer word boundaries.22

Thompson and Newport (2007) extend this experimental approach to investi-
gate the learning of phrasal boundaries and constituent structure. They describe
a series of experiments in which English-speaking adults are exposed to training
sets of samples from simple artificial languages with six word classes, each con-
taining three words (the word number of some classes is modified for one of the
experiments). Phrases consist of word pairs where each element of the pair comes
from a distinct word class. The training sets contain a canonical phrasal pattern of
word class sequences, and variations on these patterns involving:
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(1) the presence of repeated phrases,
(2) optional constituents,
(3) permutations of phrases (moved constituents), and
(4) variation in the lexical size of two of the four phrase types.

Each of the three conditions in (1)–(3) introduces a significant difference in
intra-phrasal vs. inter-phrasal transitional probabilities between word classes. The
former are set at 1, while the latter are lower. For each of these four conditions a
control group is exposed to a training set in which the conditions do not apply to
discrete phrases, but are formulated only for word classes. As a result, there is no
substantial difference in the transitional probabilities that hold between different
word class pairs in the control language.

After training, both the experimental and the control groups were tested on
their ability to identify well-formed sentential and phrasal patterns in the lan-
guage. Thompson and Newport (2007) found that for conditions (1)–(3) the
experimental group outperformed the control group in learning both sentence and
phrasal structure. When all four conditions were combined in a single language,
the difference between intra-phrasal and inter-phrasal transitions substantially
increased. In an experiment with variants of this language type in which the
two groups were exposed to a comparatively small set of canonical sentence
patterns (5 percent of the training set), the experimental subjects achieved far
greater success than the control subjects in learning both sentence and phrasal
patterns.

These results indicate that transitional probabilities can provide an important
cue for identifying constituent structure from word sequences. While the experi-
ments provide data only on syntax learning by adults, when taken together with
Saffran et al.’s (1996) research on infant identification of word boundaries, they
strongly suggest that Bayesian inference of the kind employed by ML methods in
NLP plays a significant role in human language acquisition at a variety of levels
of morphological and syntactic structure.

This work also gives credence to a bootstrapping view of language learn-
ing on which information theoretic methods yield an initial classification of
linguistic entities that can then be used to construct successive levels of repre-
sentation. Each previous cycle of learning provides a set of structural constraints
on the entities out of which the next stage is developed by the same kinds
of Bayesian inference. If this view is sustained by further research, then the
weak bias model of language learning proposed in Lappin (2005), Lappin and
Shieber (2007), and Clark (2004) will achieve psychological as well as computa-
tional credibility. Clearly much additional work remains to be done in clarifying
these issues before any such model can be endorsed with any confidence as
an account of human language acquisition. It does, however, provide a serious
alternative to the strong nativist approach that has dominated linguistics and cog-
nitive science for the past five decades, generally without a learning theory to
motivate it.
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5 Conclusion

Unsupervised learning is a rich and varied area of research. It includes differ-
ent motivations, techniques, and methods of evaluation. In this chapter we have
surveyed the field and provided an overview of what we regard as the most
significant theoretical and engineering developments.

It is important to recognize that while the application of these techniques to
practical problems in NLP is still at an early stage, unsupervised learning is almost
certain to expand as an area of interest and activity.

It is also plausible to hope that, as we make progress in understanding the capac-
ities and limits of unsupervised methods, we will achieve deeper insight into how
much and what kinds of linguistic knowledge can be acquired by domain-general
learning algorithms operating on raw linguistic data. Such insight is of direct
significance to work in theoretical linguistics and the study of human cognition.

NOTES

1 See, Chapter 18 of this book, INFORMATION EXTRACTION, Section 3.4, and Jurafsky
and Martin (2009: 455) for discussions of recall, precision, and weighted F-measures.

2 See Manning and Schütze (1999) for a discussion of Bayesian inference and the role of
Bayesian reasoning about probability in statistical NLP.

3 See Chapter 13 of this book, STATISTICAL PARSING, Manning and Schütze (1999),
and Jurafsky and Martin (2009) for accounts of probabilistic context-free grammars
and lexicalized probabilistic context-free grammars as language models for supervised
grammar induction.

4 See Lappin and Shieber (2007) and Clark (2001a, chapter 4) for discussions of some of
the problematic assumptions in Gold’s identification in the limit learning paradigm.

5 A supra-finite class includes all finite languages and at least one infinite language.
6 See, for example Crain and Thornton (1998) for arguments to the effect that, because

the class of natural languages is unlearnable from positive evidence only, a rich innate
UG must be posited to explain human language acquisition.

7 See, for example, Saxton (1997) and Chouinard and Clark (2003) for psycholinguistic
research supporting the widespread availability and effectiveness of negative evidence
in child grammar induction. See also Clark and Lappin (2009) for a proposal on how
indirect negative evidence can be stochastically modeled within a PAC framework.

8 See Chapter 2, COMPUTATIONAL COMPLEXITY, for the relevant notions of complexity
and efficiency of computation.

9 Questions have been raised about the extent to which this helps the child (Gleitman
et al., 2001).

10 The Baum–Welch algorithm (also known as the forward–backward algorithm) used
to estimate the parameter values for such models only finds a local optimum. See
Manning and Schütze (1999) for discussion of this procedure.
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11 See Chapter 11, EVALUATION OF NLP SYSTEMS, and Chapter 10, LINGUISTIC ANNO-
TATION, for discussions of this and related issues in connection with a variety of NLP
tasks.

12 The texts were tagged automatically, which might introduce some variability.
13 See Chelba, STATISTICAL LANGUAGE MODELING, and Manning and Schütze (1999),

Section 2.2 for discussions of perplexity and entropy.
14 See Chapter 3, STATISTICAL LANGUAGE MODELING, and Pereira (2000) on the applica-

tion of smoothing techniques for statistical modeling, originally introduced by Good
(1953), in NLP.

15 Actually, an unsupervised POS tagger will also rely on morphological analysis of the
words in a corpus. This can be provided by an unsupervised morphological analyzer.
See Goldsmith (2001), Chapter 14 of this book, SEGMENTATION AND MORPHOLOGY,
and Schone and Jurafsky (2001) for alternative systems of unsupervised morphological
analysis.

16 See Clark and Eyraud (2006) for a simple unsupervised distributional algorithm that
learns a PCFG which correctly handles subject–auxiliary inversion.

17 See, inter alia, Chomsky (1965; 1971; 1981; 1986; 1995; 2000; 2005), and Pinker (1989;
1996).

18 See Chomsky (1971); Crain and Nakayama (1987); Crain (1991); Berwick and Chomsky
(2009) for versions of this argument, and Clark and Lappin (2010) for critical discussion
of it.

19 Pullum and Scholz (2002) and their critics conduct a lively debate on the APS in Volume
19 (2002) of The Linguistic Review. Scholz and Pullum (2006) offer an updated version
of some of their criticisms of the APS.

20 For detailed discussion of the relevance of work in machine learning and computa-
tional learning theory to APS-based claims for linguistic nativism see Lappin (2005);
Lappin and Shieber (2007); Clark (2004); and Clark and Lappin (2010).

21 This is not the case for the algorithm proposed in Clark and Eyraud (2006), which uses
a simple criterion of distributional congruence to identify equivalence classes of words
and phrases.

22 Yang (2004) disputes this conclusion. He reports a word identification experiment on a
subset of the CHILDES corpus using transitional syllable probabilities. The results of
the experiment indicate poor recall and precision for this procedure. As he observes,
this is due to the fact that 85 percent of the words in his test set are monosyllabic.
Therefore there is no significant distinction between intra-word and inter-word transi-
tional probabilities for most of the terms in this corpus. Yang claims that his experiment
shows that transitional probability is not an adequate cue for word boundary identi-
fication in realistic data of the sort that children receive. In fact, this claim is seriously
undermotivated. Child directed speech of the kind that appears in CHILDES does not
exhaust the linguistic samples to which children are exposed in their normal envi-
ronments. They generally have access to the full range of multi-syllabic utterances
of normal adult speech, even when it is not directed to them. There is no reason to
exclude this additional data from the range of evidence that children can make use
of when computing transitional probabilities for syllable pairs. It is not unreasonable
to hypothesize that, when one takes account of the full range of evidence available
to child language learners, a significant correlation between transitional probability
patterns and word boundaries in real language data will prove robust.
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JAMES B. HENDERSON

1 Introduction

Artificial neural networks (ANNs) have been used in a variety of ways in the
study of language. In this chapter we will focus on work in NLP within the
framework of statistical modeling.1 For statistical modeling, the most useful ANN
architecture is the multi-layered perceptron (MLP). MLPs can be used for prob-
ability estimation and feature induction, and have been extended for modeling
both sequential and structured data. Their most successful applications in NLP
have been language modeling and parsing. MLPs have also been inspirational for
much current research in machine learning methods, and can be reinterpreted in
terms of approximations to latent variable models.

In this chapter we will first cover background material, and then discuss con-
temporary research. The emphasis will be on the usefulness of ANNs as an
engineering tool, but theoretical motivations and context will be given wherever
possible. ANNs have the advantages of being robust in training and testing, of
being fast in testing, and of requiring little prior knowledge of the domain. ANNs
are also interesting because they discover compact feature-based representations
specific to the task they are trained on.

2 Background

The term ‘artificial neural network,’ or often just ‘neural network,’ refers to a
variety of computational models which share certain properties inspired by the
networks of neurons found in the brain. They consist of a distributed network of
simple processing units, and usually they are designed to be trained from data.
These were some of the earliest machine learning methods in artificial intelligence
(AI), and they have been influential in many aspects of machine learning research.
Within AI, most research on ANNs has lost any pretence of being neurologically
motivated, and today is mostly of engineering interest. It is mostly its usefulness
for engineering solutions which has interested research in NLP.
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Another property typically associated with ANNs is the unsupervised induc-
tion of representations during learning. Some of the processing units in the ANN
have no predefined meaning; they acquire their meaning during training. In some
cases, these units are the output of the ANN, as for example for the unsupervised
clustering of self-organizing maps (Kohonen 1984). In other cases, these units form
an intermediate representation in between the input and the output of the ANN.
Such units are called ‘hidden units,’ and are similar to latent variables, as we will
discuss in Section 3.3. By far the most popular form of ANN has been the multi-
layered perceptron (MLP), and its recurrent variants. MLPs are used for function
approximation, categorization, and sequence modeling.

2.1 Multi-layered perceptrons
Multi-layered perceptrons (MLPs) (Rumelhart et al., 1986) were developed as an
answer to the criticism that the perceptron algorithm could only learn a very lim-
ited class of problems (Minsky & Papert 1969). The perceptron algorithm learns
to discriminate between output classes based on a linear combination of its input
features. This linearity means that a perceptron can only solve linearly separable
problems, where a line (or more generally a hyperplane) can be drawn in input
space which separates the output classes. A simple example of a problem which
is not linearly separable is the XOR function, since no line can separate the zero
cases (〈0, 0〉, 〈1, 1〉) from the one cases (〈0, 1〉, 〈1, 0〉).

MLPs address this limitation by having multiple layers of units, where the
middle layers have processing units whose outputs are a continuous non-linear
function of their inputs. These middle layers, called hidden layers, allow an MLP
to map the input space into a new space of features where the output classes are
linearly separable. In fact, the non-linearity of the hidden units means that MLPs
can approximate any arbitrary function (Hornik et al., 1989). Also, because the hid-
den unit functions are continuous, there is a simple learning algorithm for MLPs,
called backpropagation (Rumelhart et al., 1986). In this section we discuss the MLP
architecture and learning methods in more detail.

2.1.1 The MLP architecture An MLP is illustrated in Figure 9.1. The nodes of
the graph are the processing units, and the edges are weighted links. The units are
organized into input units, output units, and hidden units. Given a vector of input
values x placed on the input units, the MLP will compute a vector of output values
y on its output units. In the process it will iteratively compute values for each layer
of hidden units. MLPs are feed-forward networks, which means that there can be
no loops in the directed graph of links, so this iterative computation can be done
in a single pass from the inputs to the outputs.

A unit j computes its output value, called its activation, as a function of the
weights wji on links from units i to unit j and the activations zi of these units i.
Usually this computation is some function of the weighted sum wj0 + ∑

i ziwji of
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Figure 9.1 A multi-layered perceptron.

j’s inputs zi, where wj0 is the bias of j and wji is 0 if no such link exists. For the
hidden units, the output of each unit zj is often a normalized log-linear function of
its weighted inputs, called a sigmoid function:

(1) zj = 1
1 + exp

(−(
wj0 + ∑

i ziwji
))

This non-linear function ranges from 0 to 1.2

For the output units yj, we can approximate a continuous function by simply
using the weighted sum wj0+∑

i ziwji, or we can do binary classification by thresh-
olding this sum. Multi-class classification can be done using one output unit per
class, and choosing the maximum weighted sum. But most often in NLP we are
interested in a probability distribution over classes. For two classes, we can use
the sigmoid function (as in logistic regression), and for more than two classes we
can use a normalized exponential function. These will be discussed in more detail
below when we discuss probability estimation.

The computation performed by a single layer of an MLP should be familiar to
anyone familiar with logistic regression or maximum entropy models. The main
interest of MLPs (and neural networks in general) is in their layers of hidden units
between their inputs and outputs. There are several ways of interpreting hidden
layers, but the most intuitive for our purposes is interpreting them as computing
a new set of continuous-valued features from their input features. These vectors
of features are often called distributed representations, to contrast them with the
atomic symbols used in many other AI methods. As discussed above, the original
motivation for this computation was to map into a new feature space where the
problem could be solved with a (log-)linear model. Although this motivation has
since been largely superseded by kernel methods, MLPs still have the advantage
that their space of mappings is very general and efficient, whereas kernels need to
be chosen specific to a problem to balance power against speed. A second motiva-
tion is to map a large number of features into a relatively small number of features
(in contrast to the explosion of features with kernel methods). This compression
provides both greater efficiency and a form of smoothing across sparse feature
spaces. As we will see in Section 2.2, this compression can be repeated iteratively
to allow unbounded inputs to be compressed into finite feature vectors.

2.1.2 Learning in MLPs The first learning algorithm developed for MLPs was
the backpropagation algorithm (Rumelhart et al., 1986). Backpropagation is a
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simple gradient descent algorithm; the algorithm starts with a random set of
weights, and at each step changes the weights a little bit in the direction which
will maximally reduce the error (discussed below). Calculating the direction for
this update step requires computing the first derivative of the error with respect
to every weight for a given datapoint, and then summing over datapoints in the
training set. Computing this derivative can be easily done in MLPs by iteratively
computing the derivative of the error for each layer, starting from the outputs and
proceeding backward towards the inputs. As with computing outputs, computing
these derivatives can be done in a single pass through the network. This process of
propagating the error derivatives back through the network gives rise to the name
‘backpropagation.’

There are now many other learning algorithms for MLPs, one of the most pop-
ular being conjugate gradient descent. These generally require more complex
computations at each step, but converge in many fewer steps. However, due to its
simplicity and applicability to many types of ANNs, we will focus on techniques
for backpropagation.

While the non-linearity of MLP units gives MLPs the power to approximate
any arbitrary function (Hornik et al., 1989), this non-linearity also makes learn-
ing much more difficult. In particular, a fundamental difficulty of learning in
MLPs is that pure gradient descent algorithms will only find a locally optimal
set of weights. If we view an MLP’s error as a function of its weights (called the
‘error surface’), this function can have many positions where moving in any direc-
tion results in an increase in error, called local minima. When gradient descent
reaches the bottom of a local minimum it will get trapped, thereby preventing
it from finding the global minimum. Usually we do not care about finding the
exact best set of weights, as long as we find a model that is reasonably close to
the best, but it is still generally necessary to apply some technique to avoid local
minima.

Two common techniques for avoiding local minima are multiple random initial-
izations and stochastic gradient descent. Just by running our learning algorithm
multiple times with different random initializations, we can get a sample of the
minima and take the best one. This sample also gives us an idea about the extent
to which local minima are a problem. Stochastic gradient descent adds random-
ness directly to each update step, so that the weights sometimes move uphill on
the error surface. This allows the weights to ‘jump’ out of shallow local minima,
but is not enough to jump out of the good deep minima. One simple and very
common way to implement stochastic gradient descent is to perform updates after
each datapoint in the training set (called on-line learning). Pure gradient descent
learning requires summing the updates over the whole training set (called batch
learning) before changing any weights. By changing weights after each datapoint,
the total change is essentially the same as the summed updates, but individual
changes vary randomly around that total.

In addition to on-line learning, several techniques have been developed for
training MLPs which have proved important to their success. One is momen-
tum, which computes the next update as a weighted average between the current
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datapoint’s update and the previous update:

Δt
ji = mΔt−1

ji + (1 − m)δt
ji

where Δt
ji is the update actually performed for step t, m is the momentum weight,

and δt
ji is the gradient descent update computed on datapoint t. This results in

an update which is an exponentially decaying average over the gradient descent
updates from the most recent datapoints. Momentum in effect makes on-line
learning less random and more like batch learning, meaning that the stochastic
gradient descent is less stochastic. This speeds up learning, at the risk of being
more susceptible to local minima. By adjusting the momentum m, we can adjust
this trade-off.

A second parameter which we can adjust is the learning rate. Weights are
updated proportionately to a learning rate η:

wt
ji = wt−1

ji + ηΔt
ji

To guarantee that gradient descent will converge, η needs to be arbitrarily small,
but to speed up learning η needs to be sufficiently large. Thus the learning rate is
set at a high level early in training and reduced as training proceeds.

Neural networks are very powerful models, so it is important to prevent them
from tailoring their weights so precisely to the training data that they do not gen-
eralize to the testing data, called ‘overfitting.’ In particular, the larger the MLP’s
weights become, the more the MLP is able to overfit the training data. Overfitting
is avoided through regularization. Two common forms of regularization for MLPs
are weight decay and early stopping.

Weight decay penalizes large weights by subtracting a proportion ρ of each
weight from itself:

wt
ji = (1 − ρ)wt−1

ji + ηΔt
ji

This is equivalent to a Gaussian prior over weights. It is not applied to the bias
weights, since we do not want to assume that unit outputs tend to be near 0.5.
As with the learning rate, typically training starts with ρ at a high value and ρ is
reduced during training.

Early stopping involves holding out a development set from the training set,
and periodically evaluating the MLP on this development set. We stop training
when performance on this development set goes down, and we use the best-
performing set of weights as our final model. As with weight decay, by stopping
training before performance on the training set reaches its maximum, we prevent
weights from growing too large.

2.1.3 Probability estimation Statistical approaches to NLP often require mod-
els which produce proper probability estimates. MLPs can be trained to produce
probability estimates by choosing appropriate functions for the output and the
error. If we use a normalized exponential output function and cross-entropy error
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Figure 9.2 Category probabilities estimated by an MLP.

function, then after training, the MLP will output an estimate of the probability
distribution over output categories (Bishop 1995).

The normalized exponential output function (often called ‘softmax’) takes
the exponential function of the weighted sum of each category’s inputs, and
normalizes across categories:

(2) yj = exp(wj0 + ∑
i ziwji)

∑
j′ exp(wj′0 + ∑

i ziwj′i)

where zi is the activation of unit i, wji is the weight of the link from unit i to unit j,
wj0 is the bias, and j′ ranges over the set of alternative categories including j. The
normalization ensures that this function fulfils the formal requirements for a prob-
ability distribution over the alternative output categories. When there are only two
categories, it is equivalent to use the sigmoid function given in equation (1), where
one category has probability estimate yj and the other 1 − yj.

The cross-entropy error function is the negative log probability assigned to the
correct category, summed over the training data:

(3) error = −
∑

k

log
(

yk
targetk

)

where yk
targetk is the output for datapoint k for the correct category targetk.

Training tries to find the weights which minimize the cross-entropy error func-
tion given the normalized exponential output function. Given enough data, the
global minimum will be at weights which give us the true probability distribu-
tion P(yk|xk) over output categories given the input xk (Bishop 1995).3 Since our
training data is always limited, we cannot expect the model to compute the true
probability distribution, but this property ensures that we can consider the outputs
as estimates of the true probability.

2.2 Recurrent MLPs
Multi-layered perceptrons compute a function from a fixed-length vector of input
values to a fixed-length vector of output values. This is often insufficient for NLP
tasks, because inputs and outputs are sequences which can be arbitrarily long,
such as the words in a sentence. For such problems we can use recurrent MLPs.
They are called ‘recurrent’ because their graph of links includes links which loop
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Figure 9.3 A recurrent MLP, specifically a simple recurrent network.

back towards the input, as illustrated by the dotted arrows in Figure 9.3. However,
these recurrent links do not represent loops in the flow of information through the
network, but instead are interpreted as connecting one position t in the sequence
to the subsequent position t + 1 in the sequence.

With this definition of the recurrent links, for any given sequence we can redraw
the recurrent MLP as a feed-forward MLP by making a copy of the network for
each position t in the sequence, and connecting each pair of adjacent copies t and
t + 1 with the recurrent links (Rumelhart et al., 1986). Thus the weighted input
for a unit j in the copy for position t + 1 is wj0 + ∑

i zt+1
i wji + ∑

i zt
iw

′
ji, where

zt
i is the activation of the copy of unit i at position t, the wji are the normal

link weights and the w′
ji are the recurrent link weights. This ‘unfolding’ can be

done for any finite sequence length, so we can apply such a model to arbitrarily
long sequences. The weights wji and w′

ji of links in each of the copies is the same
as in the original recurrent network, which ensures that the regularities learned
by the network generalize across positions t in the sequence. On the other hand,
when we compute the activations of the units in the unfolded network, these acti-
vations zt

i may differ across positions t in the sequence, allowing different inputs,
hidden values, and outputs for each position.

As mentioned in section 2.1.1, hidden layers can be used to compress their
input features into a smaller number of hidden features. With recurrent connec-
tions between hidden layers, a recurrent network can compute a compressed
representation which itself includes information from previous compressed rep-
resentations. By performing this compression repeatedly, at each step adding new
input features, a recurrent network can compress an unbounded sequence into
a finite vector of hidden features. This compression is trained to preserve the
information about the sequence history which will be needed for future outputs.
However, there is a strong bias in this training towards discovering correlations
between inputs and outputs which are close together in the chain of connected
hidden layers. If information must be passed through many hidden layers to reach
an output with which it is correlated, then learning is unlikely to discover this cor-
relation. For this reason, the pattern of interconnection between hidden layers has
a big impact on the inductive bias of learning.

One simple and effective recurrent MLP architecture which uses unbounded
compression is simple recurrent networks (SRNs) (Elman 1991), illustrated in
Figures 9.3 and 9.4. SRNs use a single hidden layer at each position in a sequence,
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position t position t + 1

Figure 9.4 A recurrent MLP unfolded over the sequence.

which has links from that position’s input units and from the previous position’s
hidden units. It is appropriate for modeling sequences where correlations tend to
be local in the sequence, because of the inductive bias discussed above.

Many natural language phenomena are best modeled with structures which
are more complicated than sequences, such as constituency trees, dependency
graphs, or predicate–argument structures. While such structures can be flattened
into a sequential derivation, attempts to apply SRNs directly to these derivation
sequences have not successfully scaled up beyond small parse-trees (Ho & Chan
1999). This is because correlations are local in the structure, not in the deriva-
tion sequence, so a sequential pattern of interconnection imposes an inappropriate
inductive bias. Also, the same link weights are applied between any two deriva-
tion steps, while the structural relationship between two adjacent decisions can
change radically depending on the preceding derivation.

One neural network architecture which has been proposed for such structured
classification problems is recursive neural networks (RNNs) (Frasconi et al., 1998).
RNNs can be applied to any directed acyclic graph, such as a tree. With this
approach, a copy of the network is made for each node of the graph, and recur-
rent connections are placed between any two copies which have an edge in the
graph. This architecture is a direct instantiation of the idea that the pattern of
interconnection between hidden layers should reflect locality in the structure
being modeled. However, such a simple and direct interpretation of the structure
does not always achieve good empirical performance, as was found when it was
applied to constituency parsing (Costa et al., 2001).

Another recurrent MLP architecture which has been successfully applied to
structure processing is simple synchrony networks (SSNs) (Lane & Henderson
2001; Henderson 2003). SSNs model structures through their derivation sequence
(as with SRNs), but the pattern of interconnection between hidden layers is
defined in terms of the structure (as with RNNs), not just the sequence. An exam-
ple of such a pattern of interconnection is given in Figure 9.6. Several architectures
were originally proposed involving hidden layers assigned to both sentence posi-
tions and derivation steps (Lane & Henderson 2001), but recent work has only
used the simplest form of SSN architecture, which only has one hidden layer for
each derivation step. This architecture is illustrated in Figure 9.5. A given deriva-
tion step’s hidden layer is linked to hidden layers from previous steps based on
the partial structure which has been constructed at that derivation step. A set of
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Figure 9.5 The SSN architecture, unfolded over a derivation sequence, with derivation
decisions Dt and hidden layers St. Connections which are local in the derived structure
can be arbitrarily long in the derivation sequence.

structural relationships are defined which reflect how the designer expects deci-
sions about different nodes in the structure to be correlated, and link weights are
learned for each of these relationships. Whenever one of these relationships holds
between the current decision and a previous one, their hidden layers are connected
with the associated link weights. This architecture allows the system designer to
tailor the inductive bias of the model to the appropriate notion of structural local-
ity for the specific task. SSNs have achieved competitive results in several natural
language parsing tasks, as will be discussed more in Section 3.2.

3 Contemporary Research

In recent years, artificial neural networks have often been viewed as a good engi-
neering tool. They have achieved impressive empirical performance in a number
of applications. Of particular note is their success in discovering useful features of
words and joint models of multiple tasks. Experience from these successes contin-
ues to inspire research in other machine learning methods, such as kernel methods
and latent variable models.

3.1 Language modeling
One of the main challenges in many NLP applications is the very large number
of words that occur in any given language. Typically in NLP each different word
(or at least each different lemma) is treated as a distinct atomic category, mak-
ing it difficult to generalize from one word to another. A good example of this
problem occurs in language modeling, where n-gram models are standard. Neu-
ral networks have been used to exploit similarities between words by training
feature-based representations of them.

Language modeling is the task of predicting the probabilities of sentences for
a given language. The probability of a sentence P(s1, . . . , sm) can be decomposed
into a sequence of probabilities

∏
t P(st|s1, . . . , st−1) for individual words st given

the words preceding it. Typically these individual probabilities are estimated from
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a window of n − 1 previous words P(st|st−n+1, . . . , st−1), using smoothed counts
of n-grams of words. But n-gram counts become unreliable with large n, because
the number of possible n-grams grows with the number of distinct words to the
power of n.

3.1.1 Neural network language models The application of neural networks
to language modeling has been successful at improving accuracy over n-gram
models by exploiting similarities between words, and thereby estimating reliable
statistics even for large n-grams. Bengio et al. (2003) proposed a model con-
sisting of two parts, one which models the similarities between words and one
which models the individual probabilities P(st|st−n+1, . . . , st−1). The latter compo-
nent is an MLP for estimating probabilities over multiple classes, as discussed in
Section 2.1.3. The input to this MLP is the concatenation of n − 1 feature vectors,
one for each preceding word st−n+1, . . . , st−1. These word features are computed
with the first component of the model.

The first component of the model maps a word sk to a vector of continuous
valued features C(sk). The vector C(sk) is not dependent on the position of the
word, so a given word is input to the MLP component as the same word features
regardless of its relative position. This makes C(sk) a kind of lexicon. We want the
feature vectors in this lexicon to reflect the similarities between words by having
similar words share features. In addition, different pairs of words can be similar
in different ways, as reflected in which features they share.

The word features C(sk) and the MLP estimating P(st|st−n+1, . . . , st−1) are trained
jointly to optimize the probability estimate. This results in word features C(sk)

which are trained to reflect exactly the word similarities which are needed by
the probability estimation model. For this reason, they work better than finding
similarities based on some independent criteria (such as latent semantic indexing,
Deerwester et al., 1990), or trying to specify them by hand.

In empirical comparisons, Bengio et al. (2003) found that their neural network
model performed significantly better than state-of-the-art n-gram models. Further
improvement could be achieved by mixing these two models, indicating that these
two types of model do well on different parts of the data. Also, as the size of the
word window n was increased, the neural network continued to improve with
larger n while the n-gram models had stopped improving. This indicates that the
representation of word similarity C(sk) succeeded in overcoming the unreliable
statistics of large n-grams.

The main disadvantage Bengio et al. (2003) found was that training times
for the neural network language model were very computationally demanding,
requiring sophisticated methods for speeding up and parallelizing the computa-
tions. Schwenk and Gauvain (2005) succeeded in scaling this model up to even
larger data sets (600 million words), and demonstrated an improvement in speech
recognition using it.

3.1.2 Neural syntactic language models One alternative to n-gram language
models is to use a syntactic parse to select which previous words are conditioned
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on when predicting the next word, called a structured language model (Chelba &
Jelinek 2000) (SLM, discussed in more detail in Chapter 3). Since the parse cannot
be determined unambiguously, such models sum over a selected set of the most
probable parses to compute the probability of the word sequence. To improve
the accuracy of the language model, while keeping the parsing models simple
enough to make parsing efficient, some SLM models include a separate compo-
nent which re-estimates the language model probabilities after the best parses
have been found.

Emami and Jelinek (2005) investigated combining the advantages of SLMs with
the techniques developed for the neural network language models of Bengio
et al. (2003). They found significant improvements over their baseline SLM by
using neural networks. In particular, the largest gain came from replacing the
re-estimation component with a neural network. Also replacing the parsing com-
ponents of the SLM model with neural networks achieved slightly better results,
but at substantial computational cost.

3.2 Parsing
Natural language parsing (see Chapters 4 and 13) is an important challenge for
any machine learning method, both because of the complexity of its structured
outputs and because of its significance for linguistic and cognitive theories. Neu-
ral network parsing models have been amongst the best natural language parsers
since Henderson (2003). There are neural network-based models for constituency
parsing, dependency parsing, and semantic role parsing.

3.2.1 Constituency parsing The most common benchmark task for natural
language parsing is training and testing on the Wall Street Journal portion of the
Penn Treebank (WSJ). This is a corpus of sentences labeled with constituency trees.
The standard performance measure is the harmonic mean of precision and recall
on labeled constituents, called F-measure.

The only neural network architecture to achieve competitive results on the WSJ
corpus has been simple synchrony networks. Henderson (2003) exploited SSNs’
ability to encode structurally defined inductive biases to train an SSN to be a
statistical model of binarized left-corner derivations of the trees, and achieved
89.5 percent F-measure on the WSJ test set. The model includes enough types
of interconnection between hidden layers so that any information in the history
of the derivation could in theory be passed through a sequence of hidden layers
to reach the current derivation decision, so the model imposes no hard indepen-
dence assumptions. However, decisions about structurally local nodes in the tree
are closer together in this flow of information, so correlations tend to be learned
for these decisions. An example of the pattern of interconnections between hidden
layers is given in Figure 9.6. Experiments where these hidden–hidden connec-
tions are replaced with hand-crafted features (non-terminal labels) indicate that
the ability to pass information between hidden layers was the main reason for the
good empirical performance of this model. The lack of improvement when head
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Figure 9.6 An SSN unfolded over a constituency structure.

identification was added to the model suggests that the SSN was able to discover
the need to identify heads from the distributions in the data without heads being
labeled.

As is often the case with neural network models, one of the challenges in design-
ing a successful SSN parser was efficiency. The choice of binarized left-corner
derivations in Henderson (2003) was made because it allowed near-deterministic
incremental parsing. This allowed the space of possible parses to be explored
using a beam search through the space of possible derivations. The search could
be pruned to a small number of candidates after each time the derivations reached
a word.

The statistical model estimated by the SSN in Henderson (2003) is generative,
meaning that it estimates the joint probability of both the output constituency tree
and the input sentence. This means that the SSN tries to learn to accurately predict
the words of the sentence, even though we know what those words are before we
start parsing. This prediction is important to the model, because it manifests cor-
relations between words and decisions which are made prior to that word in the
derivation. If there is a decision in a given candidate derivation which is incom-
patible with a word to be predicted subsequently, then the model should give that
word prediction a very small probability, thereby penalizing the whole deriva-
tion. In this way, derivations with compatible previous decisions will be given
higher probabilities than those with incompatible previous decisions. Henderson
(2004) proposed a method for training the SSN model of Henderson (2003) which
maintained this ability to discriminate between compatible and incompatible pre-
vious parses, while removing the requirement to learn to accurately predict words
which do not discriminate. The SSN was trained to optimize an approximation to
the conditional probability of the constituency tree given the sentence. By itself,
this discriminatively trained SSN parsing model performed slightly better than
the generative SSN model. When the discriminatively trained SSN was used to
re-rank candidate parses selected by the generative SSN, there was a substantial
improvement, achieving state-of-the-art accuracies (90.1 percent F-measure on the
WSJ test set) and relatively fast parsing times.

3.2.2 Dependency parsing Dependency structures encode syntactic structure
with labeled directed arcs (dependencies) between the headwords of constituents.
Titov and Henderson (2007b) applied SSNs to this task for 10 different languages,
achieving the best result for a single-model system in the CoNLL 2007 shared
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task (Nivre et al., 2007). The approach taken was the same as that taken in
Henderson (2003). The SSN is trained to estimate the probabilities for a genera-
tive model of dependency structure derivations. Efficiency is ensured by using
derivations that allow near-deterministic parsing, in particular a version of the
MALT parser derivations (Nivre et al., 2004). A set of hidden-to-hidden intercon-
nections are defined which bias towards learning structurally local correlations,
and do not impose any hard independence assumptions. The learning of hidden
vectors proved to be particularly robust across languages, because it did not suf-
fer from the lack of expertise on particular languages, as would have been the case
with methods which require hand-coded feature engineering. Also, the ability to
use a very small beam in searching the space of MALT-style derivations means
that the parser is rather fast.4

3.2.3 Functional and semantic role parsing As exemplified in Bengio et al.
(2003), work on neural networks has often found that sharing hidden represen-
tations for multiple related purposes can help the model generalize. This idea
has been applied in several neural network models of parsing, where hidden
layers are trained jointly for both syntactic parsing and parsing some form of
semantic representation. The SSN architecture has been successfully trained on the
combinations of constituency parsing with functional parsing (Merlo & Musillo
2005), constituency parsing with semantic role labeling (Musillo & Merlo 2006),
and dependency parsing with semantic role labeling (Henderson et al., 2008b;
Gesmundo et al., 2009).

Although it has generally been ignored in work on parsing, the Penn Tree-
bank corpus (Marcus et al., 1993) includes extensions to some non-terminal labels
which reflect the syntactic or semantic function of the constituents, such as NP-
SBJ for subject noun phrases or PP-TMP for temporal prepositional phrases. Merlo
and Musillo (2005) propose a parser which recovers this extended annotation by
extending the SSN syntactic parser of Henderson (2003). By jointly training on
both the syntactic annotation and the extended functional annotation, they achieve
good accuracies on function parsing and a small (but non-significant) increase in
performance on syntactic parsing.

Musillo and Merlo (2006) applied the same approach to jointly parse syntactic
constituency structures and the semantic role labeling in PropBank (Palmer et al.,
2005). Again, they modified the SSN parser of Henderson (2003) by extending
syntactic constituent labels with semantic role labels. However, this approach does
not directly encode the structural relationships between the constituents labeled
with semantic roles and their predicates in the sentence, which limits the extent
to which an appropriate structural domain of locality can be defined. Empirical
results showed no significant change in syntactic parsing performance, and good
performance on the joint task, although not as good as the state of the art.

Henderson et al. (2008b) solve the problem of recovering both syntactic struc-
ture and semantic structure using a synchronous parsing approach. In this work,
both syntax and semantics are annotated as dependency structures, consisting of
labeled arcs between the headwords of constituents. Two different derivations are
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defined, one for the syntactic dependency structure and one for the semantic role
dependency structure. Both these derivations process the sentence incrementally
from left to right. A joint model of the two structures is defined by synchronizing
these two derivations at each word, alternating between the two derivations each
time they reach the prediction of a word.

Henderson et al. (2008b) use an SSN to estimate the probabilities for this joint
model of syntactic and semantic structure. Hidden states are divided into two
types, those used for making syntactic derivation decisions and those used for
making semantic derivation decisions. This division reflects the large differences
in the generalizations which need to be learned for the two structures. Interconnec-
tions are defined both between hidden states of the same type and between hidden
states of different types. The between-derivation interconnections allow the two
derivations to condition their decisions on each other, thereby reflecting the fact
that the two structures are highly correlated. Empirical results for this joint model
demonstrated good accuracy, amongst the best group of systems on the CoNLL
2008 and 2009 shared tasks (Surdeanu et al., 2008; Hajič et al., 2009). When the two
derivations are modeled separately, without the interconnections between syntac-
tic and semantic hidden states, there is a very large drop in accuracy, indicating
that joint modeling is crucial to this model’s success.

3.2.4 Semantic role tagging Semantic role labeling is defined as the task of
labeling semantic relationships between predicates and the syntactic constituents
which are their arguments. Finding candidate syntactic constituents (or their
dependency counterparts) for a predicate’s argument roles requires a more com-
plex processing architecture than is necessary for sequence labeling tasks, such
as language modeling or part-of-speech tagging. However, not all applications
require this form of semantic representation, so it is interesting to consider alter-
native tasks based on SRL. Collobert and Weston (2007) propose a task where, for
each predicate, all the words in a constituent are tagged with the semantic role
assigned to that constituent. Words which are not part of any constituent with a
semantic role are given the null tag. We will call this task semantic role tagging
(SRT). Accuracy is measured as the percentage of words tagged correctly, without
trying to map these tags back to constituents.5

Collobert and Weston (2007) solve this sequence labeling problem by applying
an MLP at each individual position of the sentence. The MLP is trained to esti-
mate the probability of each semantic role tag for that word, given a window of
words in the sentence. The novel aspect of this model is the way the inputs to the
MLP are calculated. This calculation is a linear combination of two sets of param-
eters: features of each word in the window, and a weight matrix for the distances
between this word and the target word and the predicate word. As with the lan-
guage model of Bengio et al. (2003), the same word features are used wherever
the word appears. These features, the distance parameters, and the MLP probabil-
ity estimator are all trained jointly to optimize the SRT task. This relatively simple
model performs well. It outperformed a state-of-the-art SRL system, when the SRL
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system was evaluated on the SRT task. How well the neural network SRT system
would work if it were somehow evaluated on the SRL task is not clear.

A subsequent version of this neural network SRT system (Collobert and Weston
2008) also achieved impressive accuracies on the SRT task. It used a slightly more
complicated neural network architecture, which was designed to allow joint learn-
ing of a large number of tasks (part-of-speech tagging, chunking, named entity
tagging, semantic role tagging, language modeling, and identifying synonyms).
As in the previous model, a lexicon of word feature vectors plays a central role
in this architecture. These word features are trained jointly across all the tasks.
Because only this lexicon is shared, there is no requirement that all the tasks be
annotated on the same data set, thereby allowing each task to be trained on what-
ever data is available for that task. Collobert and Weston (2008) demonstrate that
training jointly with other tasks helps find word features which generalize well
for SRT. The largest gain in SRT accuracy is from training the word features in a
language model on a large amount of unlabeled data.

3.3 Theoretical advances
Neural networks were one of the earliest machine learning methods, and they
have had a large influence on recent advances in machine learning. For exam-
ple, maximum entropy models can be thought of as single-layer neural net-
works, without any hidden layers. Also, much of the theory behind support
vector machines is related to the theory behind categorization with neural net-
works. More importantly, latent variables in graphical models have an obvious
resemblance to the hidden vectors of neural networks.

One way to understand the relationship between the hidden vectors of neural
networks and the latent variables of graphical models has recently been formal-
ized by Titov and Henderson (2007a). They show that MLPs can be interpreted
as an approximation to a Bayesian network with the same graphical structure
and with normalized exponential potential functions. In particular, they propose
a form of Bayesian network called incremental sigmoid belief networks (ISBNs),
which can be approximated by SSNs. Titov and Henderson (2007a) show that a
more accurate alternative approximation performs better as a model of natural
language parsing, but this alternative is much slower, so in many cases it is bet-
ter to use an SSN. This was the reason SSNs were used in Titov & Henderson
(2007b) and Henderson et al. (2008b), despite the discussion being cast in terms of
ISBNs. This latent-variable interpretation of MLP models should allow a more the-
oretically driven advancement of neural network architectures, while maintaining
the attractive engineering properties which have resulted in the wide range of
empirical successes they have achieved.

4 Further Reading

Due to our focus on statistical modeling, we have not discussed self-organizing
maps (SOMs) (Kohonen 1984). SOMs are a clustering method which discovers a
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multi-dimensional grid of related clusters. Using a two-dimensional grid, they
have been applied to visualizing and browsing very large collections of text doc-
uments (Kohonen et al., 2000). The SOM learns to place related documents close
together on the grid, resulting in a two-dimensional display of the range of topics
in the text collection.

The early neurological motivations behind artificial neural networks have led to
many claims about the cognitive plausibility, or lack thereof, of various models.
This perspective often goes by the name of connectionism, and contrasts with the
non-statistical rule-based symbolic systems that were popular in AI at the time
when MLPs were being popularized. Many of the original motivations for these
arguments (experience-based, soft constraints, graceful degradation, etc.) are now
subsumed by all statistical models. Chapter 17, COMPUTATIONAL PSYCHOLIN-
GUISTICS, discusses several connectionist models and their use in psycholinguistic
modeling.

The more extreme variants of connectionism, called the ‘subsymbolic’ app-
roach, eschew any use of system-internal symbols (St. John & McClelland 1992;
Miikkulainen 1993), and typically do not consider any architecture to be connec-
tionist if it is more powerful than a recurrent MLP for sequence processing (as in
Ho & Chan 1999). This perspective has been criticized on the grounds that such an
architecture is not sufficiently powerful to account for the generalizations which
exist in natural language (Fodor & McLaughlin 1990). The adequacy of such archi-
tectures has been investigated empirically in Lawrence et al. (2000), achieving
very limited levels of generalization. A second, looser interpretation of connec-
tionism allows for more powerful computational architectures, but preserves the
distributed nature of computation (Henderson 1994; Stevenson 1994; Henderson
& Lane 1998). These are sometimes referred to as hybrid connectionist-symbolic
approaches. The cognitive plausibility of more powerful neural network architec-
tures can be justified by theories of neurological mechanisms to solve the variable
binding problem (Shastri & Ajjanagadde 1993; Henderson 2001).

NOTES

1 Note that we consider cognitive models to be outside the scope of this chapter, and con-
nectionist models will only be surveyed briefly due to their poor empirical performance.
See Chapter 17, COMPUTATIONAL PSYCHOLINGUISTICS, for discussion of these topics.

2 Often MLPs use the tanh function instead of the sigmoid function. This is just the sig-
moid function rescaled so it ranges from −1 to 1. It makes no theoretical difference, but
seems to work better in practice.

3 For this to be exactly true, we need to assume that the true probability distribution has
an appropriate form, but this is a weak assumption when we have sufficient hidden
units. See Bishop (1995) for details.

4 Much of Titov and Henderson (2007b) and Henderson et al. (2008b) (discussed below)
describes their models in terms of a latent variable model, incremental sigmoid belief
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networks, discussed in Section 3.3. However, the approximation to ISBNs which they
use is an SSN, so the actual model tested is an SSN.

5 Collobert and Weston (2007) refer to this new task also as semantic role labeling, but
this is inaccurate given the very different nature of the task. In particular, the evaluation
measure they use gives equal weight to identifying the null tag, which forms the major-
ity of tags for their task. It is therefore not surprising that models trained to optimize
SRL do not perform as well on SRT as models trained to optimize SRT.
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1 Introduction

The recent availability of linguistically annotated electronic text has revolution-
ized the fields of natural language processing and machine translation. The
creation of the Penn Treebank (Marcus et al., 1993) and the word-sense annotated
Semcor (Miller 1995; Fellbaum et al., 1998) showed how even limited amounts of
annotated data can result in major improvements in complex natural language
understanding systems. These and other annotated corpora have led to the train-
ing of stochastic natural language processing components which have resulted
in high-level improvements for parsing and word-sense disambiguation (WSD),
similar to the improvements for part-of-speech tagging attributed to the annota-
tion of the Brown corpus and, more recently, the British National Corpus (BNC)
(Burnard 2000b). These successes have encouraged the development of an increas-
ingly wide variety of corpora with richer and more diverse annotation. These
include the Automatic Content Extraction (ACE) annotations (named entity tags,
nominal entity tags, coreference, semantic relations and events); semantic annota-
tions, such as more coarse-grained sense tags (Palmer et al., 2007); semantic role
labels as in PropBank (Palmer et al., 2005), NomBank (Meyers et al., 2004), and
FrameNet (Baker et al., 1998); and pragmatic annotations, such as coreference
(Poesio & Vieira 1998; Poesio 2004), temporal relations as in TimeBank
(Pustejovsky et al., 2003; 2005), the Opinion corpus (Wiebe et al., 2005), and the
Penn Discourse Treebank (Miltsakaki et al., 2004b), to name just a few.

The depth of representation that NLP systems currently aspire to is in fact
defined by the availability of corresponding linguistic annotations. For machine
learning systems to be trained to produce transformations that add substantially
new information to textual input, they have to first be exposed to similar informa-
tion in context. In most cases these systems do an admirable job of automatically
reproducing the same types of annotation, assuming the annotation has been
carried out consistently. The higher the inter-annotator agreement, and the greater
the consistency and coherence of the original annotation, the higher the probability
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of acceptable performance of the trained systems. Not surprisingly, there is now
an insatiable demand for more and more annotated data: the same types of anno-
tations for different genres and different languages; newer, richer annotations
for the original languages; parallel annotations of parallel corpora; the merging
of annotations that were first done independently; and new formatting for pre-
existing annotations that makes them easier to merge. For today’s NLP systems,
the annotation defines the task, and increasingly rich annotations are the key
to more sophisticated systems. Clearly annotation work needs to become much
more widely distributed to cope with this need. The field requires a better under-
standing of reliable annotation processes for several different types of linguistic
annotation that can be readily ported.

It is tempting to assume that recent advances in semi-supervised and unsu-
pervised machine learning (see Chapter 8) may eventually obviate the need
for linguistic annotation, but this is not likely. Even unsupervised systems rely
on manually annotated data for evaluation purposes. The ready portability of
these systems to other genres and languages will simply increase the clamor for
additional annotation, albeit in smaller amounts than would be necessary for
supervised approaches. Meanwhile, applications that are aiming at the highest
possible accuracy levels continue to rely on supervised machine learning.

In this chapter we first present details of several different specific annota-
tion projects and then review the basic elements that must be considered to
achieve consistent annotation, which are generally applicable to different types
of annotation. These include:

• target phenomena definition;
• corpus selection;
• annotation efficiency and consistency;
• annotation infrastructure;
• annotation evaluation;
• the use of machine learning for pre-processing and sampling.

2 Review of Selected Annotation Schemes

Covering every individual annotation scheme in every language is beyond the
scope of this chapter. In this section we review a representative set of widely used
resources that range from syntactic annotation to pragmatic annotation, including:

Syntactic structure, e.g., treebanking Associating a manual syntactic parse (a
complicated structure) with every sentence in a corpus consisting of a set of
documents. Whether the target structure is dependency structure or phrase struc-
ture, this is an unusually difficult type of annotation that requires in-depth
training of annotators. A pre-processing step that involves tokenization, end-of-
sentence detection and part-of-speech tagging is usually involved. Because of the
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labor-intensive nature of treebanking, it is usually done with single annotation –
one person looks at each sentence.

Independent semantic classification, e.g., sense tagging Based on a pre-existing sense
inventory or set of semantic classes, every instance of a specific lemma (a word
form corresponding to a unique lexical entry) in a corpus is manually tagged
with its relevant sense, or class. This usually involves the same pre-processing
as treebanking, including part-of-speech tagging, and is typically done as double-
blind annotation (two independent taggers) with adjudication of discrepancies. It
requires only minimal training.

Semantic relation labeling, e.g., semantic role labeling This is a more complex task,
since it involves identifying a target relation and one or more participants in that
relation. Semantic role labeling often begins with a corpus of parsed sentences,
and the arguments associated with distinct subcategorization frames of verbs are
given consistent label names according to a predefined lexical resource of frame
descriptions. This is also typically done as double-blind annotation, and can be
applied to predicative nouns as well as verbs, or to other types of relations, such
as discourse relations and temporal relations. Training must include familiarizing
the annotators with the parses, if provided, and the relation descriptions.

Discourse relations Since they typically involve relations between sentences or
sentence fragments, discourse relations can be viewed as an additional type of
semantic relation. For example, the Penn Discourse Treebank (PDTB), funded by
NSF, is based on the idea that discourse connectives such as and, but, then, while,
. . . can be thought of as predicates with associated argument structures (Miltsakaki
et al., 2004a).

Temporal relations Our final example of semantic relations consists of temporal
relations, such as those found in TimeBank. Given a corpus where both nominal
and verbal events and their participants have been identified, relations between
the events, such as temporal and subordinating relations, are identified and
labeled using a predefined set of relationship types.

Coreference tagging References to entities in a document are identified as men-
tions, and mentions of the same entity are linked as being coreferent, or members
of a coreference set. These can include pronouns, nominal entities, named enti-
ties, elided arguments, and events. Techniques for annotating and evaluating
entire sets of coreferences are significantly more complex than techniques for
straightforward class-labeling or relation-labeling tasks.

Opinion tagging The annotation of opinions, evaluations, emotions, sentiments,
and other private states in text is collectively described as opinion tagging or senti-
ment tagging. At its simplest this could be seen as a type of semantic classification
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task, but since the tagging typically includes filling in several different feature
values rather than simply assigning class labels, it is discussed separately.

These different types of annotation are all described in more detail below.

2.1 Syntactic structure, e.g., treebanking
The dramatic improvement in natural language parsing achieved during the last
two decades or so has been generally attributed to the emergence of statistical
and machine learning approaches (Collins 1999; Charniak 2000). However, sta-
tistical and machine learning methods are only possible with the availability of
large-scale treebanks, corpora of hand crafted syntactic trees. The Penn Treebank
(PTB) (Marcus et al., 1993) played a special role in providing a shared data set on
which competing parsing approaches are trained and tested. In our view, there
are two main factors that contributed to the success of the Penn Treebank. The
first one has to do with its size. Although not the first syntactically annotated cor-
pus, the Penn Treebank is the first one that covers over two million words of text.
Statistical approaches to natural language parsing require large quantities of train-
ing data to get reliable statistics for the large number of grammatical and lexical
phenomena in a language, and this is provided by the Penn Treebank. The one-
million-word Wall Street Journal subcorpus of the PTB is the most frequently used
data set even though Wall Street Journal articles are not particularly representative
of the English language. The other factor for the PTB’s success is its pragmatic
approach. Many key annotation decisions are driven by engineering desiderata
rather than purely by linguistic considerations. This often means that theoretically
important linguistic distinctions that are hard to make are left unspecified for the
sake of annotation consistency. For example, the argument/adjunct distinction
has been a key building block for theoretical linguistics, but is avoided in the Penn
Treebank. In hindsight, this decision cuts both ways. On the one hand, it simplifies
the annotation task and has led to more consistent annotation. On the other hand,
it leaves out key information that has to be recovered later in the semantic layer
of annotation. For example, the argument/adjunct distinction had to be made at
least superficially in the development of the PropBank (Palmer et al., 2005), which
adds a layer of predicate–argument annotation to the Penn Treebank.

2.1.1 Phrase-structure treebanks The success of the Penn Treebank inspired
the development of treebanks in other languages. At Penn, the Chinese (Xue et al.,
2005), Korean (Han et al., 2002) and Arabic (Maamouri & Bies, forthcoming) tree-
banks have all been developed using a similar annotation scheme. This annotation
scheme is characterized by labeled phrase structures, supplemented by functional
tags that represent grammatical relations such as subject (-SBJ), temporal (-TMP)
and locational modifiers (-LOC), as well as empty categories and co-indices that
link empty categories to their explicit coreferents, a hallmark of generative gram-
mar. Empty categories and co-indices are used to represent left-displacement, but
they are by no means the only way to represent movement phenomena. The
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Figure 10.1 An example PTB tree.

different aspects of the representation scheme are illustrated in Figure 10.1: The
other half is an NP with the functional tag -TPC, indicating it is an NP playing the
role of a topic, a grammatical position in English syntax. This topic originates in
the object position of the verb have and then moves to the sentence-initial position.
This information is represented by the empty category *T* in the object position
co-indexed with the topic in the sentence-initial position. The empty category and
co-indexation mechanism localize the arguments for a predicate and thus make
it easier to extract the predicate–argument structure. The other half is made adja-
cent to the verb have by positing an empty category *T* that is co-indexed with
it. Although head is a prominent notion in generative grammar, it is not explic-
itly represented in the Penn Treebank. However, the notion of head is implicitly
built into the structural configuration of a phrase and in principle can be identi-
fied via a finite set of rules defined for each syntactic category. For example, the
verb have is assumed to be the head of the VP have *T*-1 before long by virtue of
being the first verb in this VP. This set of rules is generally referred to as a head
table and is widely referenced in statistical parsing literature (Xia & Palmer 2001).
In practice, due to annotation errors and underspecified annotation, the head can-
not always be reliably identified. Therefore, in some phrase-structure annotation
schemes, the head is explicitly marked to avoid such pitfalls when extracting the
head. For example, the Tiger corpus for German (Brants et al., 2002) explicitly
marks the head of a phrase.

2.1.2 Dependency treebanks The Prague Dependency Treebank (Hajič 1998)
represents a radically different annotation scheme in the functional generative
description framework, following the Prague dependency tradition. At the core of
this annotation scheme is the dependency relation between a head and its depen-
dent. While in a phrase-structure representation the explicit markup of the head is
optional, identifying the head is essential in a dependency structure. The depen-
dency relation between a head and its dependent is the building block of the
dependency structure of a sentence. A dependency structure representation of the



“9781405155816_4_010” — 2010/5/8 — 11:55 — page 243 — #6

Linguistic Annotation 243

Figure 10.2 A labeled dependency structure.

same sentence as in Figure 10.1 is provided in Figure 10.2. While in a PTB-style
phrase structure the dependency between the verb have and the topic the other
half is mediated via a co-indexation mechanism, in the dependency structure this
relation is represented directly. Another key difference is that, while the syntac-
tic categories of constituents in a phrase-structure tree represent the distributional
properties of the constituents, e.g., noun phrases generally occur in subject and
object positions, etc., the focus of a dependency representation is on the relation
between a head and its dependent. Therefore, while the nodes in a dependency
tree are labeled by the head, which is not particularly informative other than say-
ing the parent is the head and the child is the dependent, the edges are often
labeled with dependency relations such as subject and object. For example, there
is a SBJ relation between have and we, and a TPC relation between have and the
other half. As Xia & Palmer (2001) showed, since there are no phrasal labels in a
dependency representation and, more importantly, the subject and complement
are all attached to the head at the same level, it is generally not possible to auto-
matically convert a dependency tree such as the one in Figure 10.2 to the PTB-style
phrase-structure representation. On the other hand, assuming that the head can be
reliably identified, it is possible to automatically derive this dependency-structure
representation from a phrase-structure representation. However, since there is no
limit to the possible labels for dependency relations, it might be possible to label
dependency relations in such a way that a phrase-structure representation can be
reconstructed.

There is a growing realization that both dependency- and phrase-structure
treebanks are needed. In fact, both tree adjoining grammar (TAG) and lexical
functional grammar (LFG) provide in a sense a combination of phrase-structure
and dependency-structure representations, with the LFG c-structure (constituent
structure) corresponding to the phrase-structure layer and the LFG f-structure
(functional structure) corresponding to the dependency-structure layer. With TAG
the derivation tree is the constituent structure and the derived tree is closer to
the dependency structure. Although there are no manually annotated large-scale
LFG style or TAG-style treebanks that we are aware of, there have been efforts
to convert the phrase-structure annotation of the Penn Treebank into both TAG
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structures (Xia et al., 2001) and LFG f-structures (Cahill et al., 2002), and this has
provided training data for successful statistical TAG and LFG parsers. There is a
recent initiative funded by NSF to build a Hindi/Urdu dependency treebank that
has rich enough annotation that it can be readily converted to a phrase structure
treebank (Bhatt et al., 2009).

2.2 Semantic classification, e.g., sense tagging
Sense tagging is essentially a semantic classification task. Given a set of predefined
semantic labels for a distinct lexical item, one or more labels are associated with
each occurrence of that item in a sentential context in a corpus. For instance, the call
lemma in (1) is tagged with the OntoNotes (see Section 2.8) Sense 1, corresponding
to communicate orally, usually in a loud, distinct tone.

(1) “You people here think this is Russian music,” she said with disdain, and called
over to the waitress: “Could you turn it off?”

In contrast, (2) is tagged with Sense 5, to label with a name or quality.

(2) “A spokesman for the state, however, calls the idea ‘not effective or cost
efficient.’ ”

The traditional assumption is that the labels correspond to sense entries from
a pre-existing sense inventory, such as a dictionary, and annotators apply these
labels after reading the sentence containing the lemma.

There are other closely related tasks such as nominal entity tagging which are
also basically semantic classification tasks but with different notions of where
the class labels come from. Nominal entity tagging, as defined by the Automatic
Content Extraction (ACE) project (Strassel et al., 2008), is focused primarily on
nouns and consists of choosing a semantic category from a predefined category
list (PERson, ORGanization, GeoPoliticalEntity, LOCation, FACility, SUBstance,
VEHicle, WEApon)1 for each occurrence of the noun in context in a corpus.
Several nouns, especially proper nouns such as the White House, can have multiple
tags, such as PER, GPE, or LOC. In these cases, determining which tag is
appropriate, given a specific sentence as the context, amounts to the equiva-
lent of a sense-tagging task. An important difference is that for nominal entity
tagging there is one set of sense tags for all nouns, rather than a unique set of sense
tags for each lexical item. However, the entity type tags can easily be mapped
to standard dictionary sense entries, which for nouns in particular are often
separated according to semantic category. For instance, in the following exam-
ple the definition of regulator has two senses, one of which can be mapped to the
SUBstance category and the other of which can be mapped to the ORGanization
or PERson category. If a corpus containing this word had already been annotated
with nominal entity categories, then those category labels for regulator could be
deterministically mapped to either Sense 1 or Sense 2, providing a sense-tagged
corpus.
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regulator

1: a device to control the rate of some activity,
e.g., chemical or mechanical – SUBSTANCE

2: an official with responsibility to supervise some
domain of social activity – ORG, PER

2.2.1 Choosing the sense inventory Clearly the most important decision in
creating sense-tagged corpora (or nominal entity tagged corpora) is the choice of
the sense inventory (or label set) that will be used. For classic sense-tagging tasks
this is a computational lexicon or a machine readable dictionary that partitions
the meaning of each word into numbered senses, allowing the word plus a num-
ber to uniquely refer to an entry. An ideal sense inventory should make clear and
consistent sense distinctions for each word. Unfortunately, sense inventories for a
language can be discouragingly diverse, with significant differences with respect
to entries for polysemous words, and different levels of granularity of the sense
distinctions. Corpora tagged with two different English sense inventories will not
provide coherent training data unless a comprehensive mapping can be provided
between every entry, and the mappings are often not one-to-one (Palmer et al.,
2007).

The sense-tagged data itself can be framed as either lexical sample data or as
an all-words corpus. In the all-words corpus, all words (or all content words) in a
running text or discourse are tagged. While superficially similar to part-of-speech
tagging,2 all-words tagging via a sense inventory is significantly different in that
a different set of sense tags is required for each lemma. If public distribution is
desired, this severely limits the choice of possible sense inventories, because it
requires access to a publicly available, wide-coverage dictionary that is preferably
also free or at least low-cost. For a lexical sample corpus, a sample of words is
carefully selected from the lexicon, along with a number of corpus instances of
each word to be tagged. Unlike all-words tagging, dictionary entries are required
only for these selected words, so given a small enough sample of words, there
could be more flexibility in dictionary choice.

The methodology for manual annotation depends on the type of tagging. Words
can be annotated more quickly and consistently if all instances of a word (type)
are tagged at once (targeted tagging), instead of tagging all words sequentially as
they appear in the text. The advantages of targeted tagging make lexical sample
tagging easier to implement than all-words tagging. The largest all-words cor-
pus, SemCor, based on the Brown corpus (Francis & Kucera 1982), is tagged with
WordNet senses (Miller 1995). Created by George Miller and his team at Prince-
ton University, WordNet (Miller et al., 1990b; Miller & Fellbaum 1991; Fellbaum
et al., 1998) is a large electronic database organized as a semantic network built
on paradigmatic relations including synonymy, hyponymy, antonymy, and entail-
ment. WordNet has become the most widely used lexical database today for NLP
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research, and its approach has now been ported to several other languages, such
as several European languages in EuroWordNet (Vossen 1998) and in BalkaNet
(Stamou et al., 2002), as well a Japanese (Bond et al., 2008) and a Chinese Word-
Net (Xu et al., 2008). WordNet lists the different senses for each English open-class
word (nouns, verbs, adjectives, and adverbs). Sense tagging is typically done as
double-blind annotation by two linguistically or lexicographically trained anno-
tators, with a third tagger adjudicating between inter-annotator differences to
create a gold standard. Because of issues that have been raised about low ITA
rates due to fine-grained sense distinctions in English WordNet, and correspond-
ing unacceptably low system performance, manual groupings of WordNet senses
are now being used for tagging in a large DARPA-funded project (see Section 2.8).

2.3 Semantic relation labeling, e.g., semantic
role labeling

A closely related but distinct semantic annotation task involves identifying within
a single sentence a relation and its arguments, and then labeling the arguments.
The classic example is a verb where the labels of the verb arguments, once they
have been identified, correspond to semantic role labels. The semantic role labels are
intended to indicate a specific semantic relation between a verb and its argument
that holds consistently even when the argument is in different syntactic positions.
This description covers several current semantic role labeling tasks, in which the
semantic roles can come variously from PropBank (Palmer et al., 2005), FrameNet
(Baker et al., 1998), VerbNet (Kipper et al., 2006), or the Prague tecto-grammatical
formalism (Hajič et al., 2000). It can also be extended to similar semantic roles that
are introduced by other parts of speech, such as nominal or adjectival elements.
A major difference between sense tagging and semantic role labeling is the inter-
dependence between the semantic role labels. If the Agent, or Arg0, of a verb has
already been labeled, that changes the available choices for the remaining argu-
ments. This interdependence of labels is also the case for discourse relations and
temporal relations; however, given the distinctive nature of these annotation tasks,
they will be dealt with in separate sections. ACE relations, which are also similar,
are discussed at the end of this section.

2.3.1 The Proposition Bank The Proposition Bank, originally funded by ACE
(DOD), focuses on the argument structure of verbs, and provides a corpus
annotated with semantic roles, including participants traditionally viewed as
arguments and adjuncts. Correctly identifying the semantic roles of the sentence
constituents, or Who did what to whom, and when, where and how? is a crucial part
of interpreting text and, in addition to forming a component of the information
extraction problem, can serve as an intermediate step in machine translation,
automatic summarization, or question answering.

At the beginning of the PropBank project, the decision was made to associate
the semantic role labels directly with nodes in the Penn Treebank phrase-structure
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parses. The boundaries of the constituents corresponding to the nodes were
already defined, so the annotators did not have to add that task to their duties,
simplifying their cognitive load. The PTB also had indicated empty arguments,
so these could easily be given semantic role labels as well, making the annota-
tion more complete. Finally, the assumption was that the syntax and semantics
would be highly correlated, with the semantic roles occurring within the domain
of locality of the predicating element. Therefore having access to the syntactic
structure should help in simplifying and focusing the task for the annotators.
In contrast, FrameNet (see below) annotation did not initially begin with pre-
parsed sentences, and this was found to lower agreement among the annotators,
primarily because of different constituent boundary decisions. Another feasible
method is to annotate dependency structure parses directly with semantic role
labels, and the Hindi/Urdu Treebank project will explore this approach in depth.
One of the questions to be addressed is the issue of empty arguments; if empty
arguments have not been inserted by the dependency annotation, should they
be added at the PropBank level? Since the goal of this project is to eventually
convert the dependency structure + PropBank annotation automatically into a
phrase-structure treebank, having the empty arguments in place could simplify
the conversion process (Bhatt et al., 2009).

The one-million word Penn Treebank II Wall Street Journal corpus has been
successfully annotated with semantic argument structures for verbs and is now
available via the Penn Linguistic Data Consortium as PropBank I (Palmer et al.,
2005). More specifically, PropBank annotation involves three tasks: argument
labeling, annotation of modifiers, and creating coreference chains for empty argu-
ments. The first goal is to provide consistent argument labels across different
syntactic realizations of the same verb, as in

(3) a) “[ARG0 John] [REL broke] [ARG1 the window]”
b) “[ARG1 The window] [REL broke].”

The Arg1 or PATIENT in (3a) is the same window that is annotated as the Arg1
in (3b), even though it is the syntactic subject in one sentence and the syntac-
tic object in the other. As this example shows, semantic arguments are tagged
with numbered argument labels, such as Arg0, Arg1, Arg2, where these labels
are defined on a verb-by-verb basis. The second task of the PropBank annotation
involves assigning functional tags to all modifiers of the verb, such as MNR (man-
ner), LOC (locative), TMP (temporal), DIS (discourse connectives), PRP (purpose)
or DIR (direction), and others, as in (4).

(4) “[ARG0 John] [REL broke] [ARG1 the window] [ARGM:TMP yesterday ].”

Finally, PropBank annotation involves finding antecedents for empty arguments
of the verbs, as in (5).

(5) “You people here think this is Russian music,” she said [*T*-1] with disdain, and
called over to the waitress: “Could you turn it off?”



“9781405155816_4_010” — 2010/5/8 — 11:55 — page 248 — #11

248 Martha Palmer and Nianwen Xue

The object of the verb say in this example, You people here think this is Russian
music is represented as an empty category [*T*-1] in the treebank. In PropBank, all
empty categories that could be coreferred with an NP within the same sentence
are linked in coreference chains. So the [*T*-1] is linked to You people here think this
is Russian music. The primary goal of PropBank is to supply consistent, simple,
general-purpose labeling of semantic roles for a large quantity of coherent text
that can provide training data for supervised machine learning algorithms, in the
same way the Penn Treebank has supported the training of statistical syntactic
parsers. PropBank also provides a lexicon which lists, for each broad meaning
of each annotated verb, its Frameset, i.e., the possible arguments in the predicate
and their labels and all possible syntactic realizations. PropBank’s focus is verbs,
so NomBank, an annotation of nominalizations and other noun predicates using
PropBank style Framesets, was done at NYU, also funded by ACE (Meyers et al.,
2004).

2.3.2 FrameNet FrameNet consists of collections of semantic frames, lexical
units that evoke these frames, and annotation reports that demonstrate uses of
lexical units. Each semantic frame specifies a set of frame elements, or arguments.
Semantic frames are related to one another via a set of possible relations such as
is-a and uses. Frame elements are classified in terms of how central they are to a
particular frame, distinguishing three levels: core, peripheral, and extra-thematic.
FrameNet is designed to group lexical items based on frame semantics, and sets
of verbs with similar syntactic behavior may appear in multiple frames, while a
single FrameNet frame may contain sets of verbs with related senses but different
subcategorization properties. FrameNet places a primary emphasis on providing
rich, idiosyncratic descriptions of semantic properties of lexical units in context,
and making explicit subtle differences in meaning. As such it could provide an
important foundation for reasoning about context-dependent semantic represen-
tations. However, the large number of frame elements and the current sparse-
ness of available annotations for each one has been an impediment to machine
learning.

2.3.3 VerbNet VerbNet is midway between PropBank and FrameNet in terms
of lexical specificity, and is closer to PropBank in its close ties to syntactic struc-
ture. It consists of hierarchically arranged verb classes, inspired by and extended
from classes of Levin (1993). Each class and subclass is characterized by its set
of verbs, by a list of the arguments of those verbs, and by syntactic and seman-
tic information about the verbs. The argument list consists of thematic roles (23
in total) and possible selectional restrictions on the arguments expressed using
binary predicates. Additional semantic predicates describe the participants dur-
ing various stages of the event described by the syntactic frame, and provide
class-specific interpretations of the thematic roles. VerbNet now covers over 6,000
senses for 5,319 lexemes. A primary emphasis for VerbNet is the coherent syntactic
and semantic characterization of the classes, which will facilitate the acquisition of
new class members based on observable syntactic and semantic behavior.
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2.3.4 SemLink Although PropBank, FrameNet, and VerbNet have all been
created independently, with differing goals, they are surprisingly compatible in
their shared focus on labeling verb arguments. PropBank uses very generic labels
such as Arg0, as in (6).

(6) “[ARG0 President Bush] has [REL approved] [ARG1 duty-free treatment for
imports of certain types of watches].”

In addition to providing several alternative syntactic frames and a set of seman-
tic predicates, VerbNet marks the PropBank Arg0 in this sentence as an Agent,
and the Arg1 as a Theme. FrameNet labels them as Grantor and Action respec-
tively, and puts them in the Grant_Permission class. The additional semantic
richness provided by VerbNet and FrameNet does not contradict PropBank, but
can be seen as complementary. These resources can also be seen as complemen-
tary with WordNet, in that they provide explicit descriptions of participants and
ties to syntactic structure that WordNet does not provide. The PropBank labels,
being the most generic, will cover the widest number of WordNet senses for
a particular word. A verb in a VerbNet class will also usually correspond to
several WordNet senses, which are explicitly marked. FrameNet provides the
finest sense granularity of these resources, and specific FrameNet frames are
more likely to map onto individual WordNet senses. There are significant dif-
ferences in the coverage of lexemes and the structuring of data in each of these
resources, which could be used to bootstrap coverage extensions for each one.
The simple labels provided by PropBank are more amenable to machine learning,
and have resulted in the training of successful automatic semantic role labeling
systems. A semi-automatic mapping from PropBank to VerbNet has been pro-
duced (and hand corrected) which has been used to successfully train systems
that can produce either PropBank or VerbNet semantic role labels (Yi et al., 2007).
Altogether, 3,465 types have been mapped, comprising over 80 percent of the
tokens in the PropBank. In parallel a type-to-type mapping table from VerbNet
class(es) to FrameNet frame(s) has been created, as well as a mapping from role
label to frame element. This will facilitate the generation of FrameNet represen-
tations for every VerbNet version of a PropBank instance that has an entry in the
table.

2.3.5 ACE relations This style of annotation also bears a close resemblance
to the ACE relation task, which is aimed at detecting within a sentence a par-
ticular type of relation and its arguments (LDC 2008). There is a shift in focus
with ACE, however, from a lexically oriented, linguistically motivated task, such
as semantic role labeling, to a more pragmatic, relation-type task. The relation
types include: PHYSICALly located, as in LOCATED or NEAR (see (7)); PART-
WHOLE, which could be a GEOGRAPHICAL PART-WHOLE relation, such as
Colorado being PART of the United States, or SUBSIDIARY, as in Umbria being
a SUBSIDIARY or PART of JD Powers; PERSONAL-SOCIAL, as in BUSINESS
(co-workers), FAMILY (siblings), or LASTING-PERSONAL (life-long neighbors);
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ORG-AFFILIATION, which includes EMPLOYMENT, OWNERSHIP, FOUNDER,
etc.; AGENT-ARTIFACT, and others. For example, there is a PHYSICALly Located
relation between ‘Barack Obama’ and ‘Germany’ in (7). An important distinction
is that the same ACE relation type could be introduced by a verb, a noun or a
preposition, so the annotators need to focus more on semantic content and less on
syntactic structure.

(7) “Barack Obama traveled to Germany to give a speech at Buchenwald.”

2.4 TimeBank
TimeBank (Pustejovsky et al., 2003) is a corpus annotated with temporal infor-
mation based on TimeML (Pustejovsky et al., 2005), a general-purpose temporal
markup language that has been adopted as an ISO (International Organization for
Standardization) semantic annotation standard (ISO/TC 37/SC 4/WG 2, 2007).
The basic elements of the TimeML are events, time expressions, and signals, as
well as temporal relations between these temporal entities. For example, in (8),
glossed, warnings, strikes, do, and harm would all be identified as anchors of events
in the TimeBank annotation; Thursday would be marked up as a temporal expres-
sion; and on would be marked as a signal for the temporal relation between the
glossing-over event and the temporal expression Thursday. Temporal relations also
hold between events. For example, the strike event would precede the harm event,
which would in turn be annotated as identical to the do event.

(8) “President Clinton, meantime, glossed over stern warnings from Moscow on
Thursday that US air strikes against Iraq could do serious harm to relations
with the Kremlin.”

TimeML adopts a broad definition of event. Event for TimeBank is a cover term
for situations that happen or occur. Events can be punctual or last for a period
of time. The TimeBank events also include states or circumstances in which some-
thing obtains or holds true. However, TimeBank does not mark up all states in
a document. It only annotates states that are relevant to temporal interpretation,
for example, states that are identifiably changed during the document time (9a), or
states (9b) that are directly related to a temporal expression. States that persistently
hold true are excluded from annotation. Syntactically, events can be realized as
verbs, nominalizations, adjectives, predicative clauses, or prepositional phrases.

(9) a) “All 75 on board the Aeroflot Airbus died.”
b) “They lived in U.N.-run refugee camps for 2 1/2 years.”

A time expression belongs to one of four types: Date, Time, Duration or Set. A
Date describes a calendar time, and examples are Friday, October 1, 1999, yesterday,
last week. Time refers to a time of day, even if it is indefinite, e.g., ten minutes from
three, five to eight, late last night. Durations are assigned to explicit durations such
as 2 months, and 48 hours. Finally, a Set describes a set of times, e.g., twice a week or
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every two days. Time expressions are also annotated with a normalized value. For
example, twelve o’clock midnight would be normalized to T24:00.

A signal is a textual element that makes explicit the temporal relation between
a temporal expression and an event, or between a temporal expression and a tem-
poral expression, or between an event and an event. Signals are generally temporal
prepositions such as on, in, at, from, to, or temporal conjunctions such as before, after,
while, when, as well as special characters like ‘-’ and ‘/’ that indicate ranges of time.

Events, time expressions, and signals are temporal entities that are linked by
temporal relations to form an overall temporal interpretation of a text. The main
temporal relations are represented by Temporal Links (TLINKs), which represent
the temporal relation between events, betwen times, or between an event and a
time. The TLINK annotation is illustrated in (10), where there is a BEFORE relation
between the events anchored by invited and come, which means the inviting event
happens before the coming event.

(10) “Fidel Castro invited John Paul to come for a reason.”

Subordination Links (SLINKs) are another type of temporal link, and they are
used to represent modal, factive, counter-factive, evidential, and negative eviden-
tial relations, as well as conditional relations that usually hold between a main
event and a subordinate event. For example, in (11), an SLINK can be established
between the events anchored by adopt and ensure.

(11) “The Environmental commission must adopt regulations to ensure people are
not exposed to radioactive waste.”

A third and final type of link is the Aspectual Link (ALINK), which represents
the relationship between an aspectual event and its argument event. The relation
that an ALINK represents can be one of five types: Initiates, Culminates, Termi-
nates, Continues, or Reinitiates. The example in (12) represents an Initiates relation
between the events anchored by began and trading.

(12) “The stock began trading this summer at $14 apiece.”

Achieving consistency in the TimeBank annotation has proven to be very
difficult, with temporal ordering of events being the most challenging part of the
annotation. It is neither feasible nor necessary to temporally order each pair of
events in a document, but without some clear guidance, different annotators tend
to choose different pairs of events to annotate, leading to poor inter-annotator
agreement. In practical temporal annotation, some form of temporal inference
mechanism has to be implemented (Verhagen 2005) so that the temporal order-
ing of some pairs of events can be automatically inferred. The fine-grained nature
of some temporal relations also makes it difficult to separate one relation from
another.
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2.5 Discourse relation annotation
Treebank and PropBank annotations are all focused on getting linguistic informa-
tion from within the sentence. More recently, there have been efforts to annotate
linguistic structures beyond the sentence level. These new efforts make the struc-
ture of a whole text their target of annotation. In this subsection we discuss two
such projects, the RST Corpus and the Penn Discourse Treebank project, which
have taken very different approaches to discourse-structure annotation.

2.5.1 RST Corpus The RST Corpus (Carlson et al., 2003) consists of 385 articles
from the Penn Treebank, representing over 176K words of text. The RST Corpus is
hierarchically annotated in the framework of Rhetorical Structure Theory (Mann
and Thompson 1988). In rhetorical structure theory, the discourse structure of a
text is represented as a tree, and the leaves of the tree are text fragments that rep-
resent the minimal units of discourse, called elementary discourse units or EDUs.
Each node in the discourse tree is characterized by a rhetorical relation that holds
between two or more adjacent nodes, and corresponds to contiguous spans of text.
The rhetorical relation between the children of a node is characterized by nucle-
arity, with the nucleus being the essential unit of information, while a satellite
indicates a supporting or background unit of information.

The annotation of the RST Corpus starts off by identifying the elementary dis-
course units, or EDUs, which are building blocks of a discourse tree. The EDUs
roughly correspond to clauses, although not all clauses are EDUs. For example,
a subordinate clause that is an adjunct to the main clause is usually an EDU, but
clauses that are subjects, objects, or complements of a main clause are not usually
EDUs.

The discourse relations between child discourse units of a node in the discourse
tree can be either mononuclear or multinuclear, based on the relative salience of
the discourse units. A mononuclear relation is between two discourse units where
one is the nucleus and another is the satellite. The nucleus represents the more
salient or essential information while the satellite indicates supporting and back-
ground information. A multinuclear relation is between two or more discourse
units that are of equal importance and thus are all nuclei. This in a way paral-
lels the endocentric and exocentric structures at the sentence level. A total of 53
mononuclear and 25 multinuclear relations are used to annotate the RST Corpus;
these 78 relations fall into 16 broad classes. These discourse relations are identified
empirically, based on evidence from the corpus. ‘Elaboration’ is an example of a
mononuclear discourse relation, while ‘list’ is a multinuclear discourse relation.
For the complete set of discourse relations tagged in the RST, the reader is referred
to the discourse tagging manual of the RST Corpus.

2.5.2 The Penn Discourse Treebank While the RST annotation of discourse
relations is organized around EDUs, the building blocks of the Penn Discourse
Treebank (Miltsakaki et al., 2004) are discourse connectives and their argu-
ments. The annotation framework of the Penn Discourse Treebank is based on
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a theoretical framework developed in Webber and Joshi (1998), where discourse
connectives are considered to be predicates that take abstract objects such as
events, states, and propositions as their arguments. The Penn Discourse Treebank
annotates both explicit and implicit discourse connectives and their arguments.
Explicit discourse connectives include subordinating conjunctions and coordi-
nating conjunctions, as well as discourse adverbials. While in most cases the
arguments of discourse connectives are local and adjacent to the discourse con-
nective, they do not have to be. Webber et al. (Webber & Joshi 1998) considers
subordinating and coordinating conjunctions to be structural in the sense that their
arguments are local to the discourse connective, while discourse adverbials are
considered to be anaphorical, because their first arguments can be long-distance.

Where explicit discourse connectives are absent, implicit discourse connectives
are inserted between paragraph-internal sentence pairs, as illustrated in (13). In
some cases, it may not be possible to insert a discourse connective because the dis-
course relation is expressed with a non-discourse connective element, or because
discourse coherence is achieved by an entity chain, or simply because there is no
relation of any kind.

(13) “Motorola is fighting back against junk mail. [ARG1 So much of the stuff poured
into its Austin, Texas, offices that its mail rooms there simply stopped delivering
it]. Implicit=so [ARG2 Now, thousands of mailers, catalogs and sales pitches go
straight into the trash].”

The lexically grounded approach of the Penn Discourse Treebank opens the door
for the possibility that one discourse connective might be a lexical realization of
multiple discourse relations. The Penn Discourse Treebank addresses this by spec-
ifying an inventory of discourse relations that serve as senses of the discourse
connectives. In a way, this inventory is similar to the set of discourse relations
adopted by the RST, while the actual discourse relations posited might be dif-
ferent. Like the RST Corpus, the discourse relations are hierarchically organized.
The top level has four major semantic classes: TEMPORAL, CONTINGENCY,
COMPARISON, and EXPANSION. For each class, a second level of type is defined,
and then for each type, there may be a third level of subtype defined. There are 16
types and 23 subtypes. Some types do not have subtypes. The reader is referred to
the PDTB annotation manual for details.

2.5.3 A comparison of the two approaches The RST Corpus and the Penn
Discourse Treebank represent very different approaches to the annotation of dis-
course relations. The most fundamental difference is that the RST Corpus is
committed to building a discourse tree representation for the entire text. The leaves
of the tree are elementary discourse units or EDUs, which are non-overlapping
spans of text. Discourse units built on the EDUs are also non-overlapping spans
of text, and discourse relations are always local in the sense that they only hold
between adjacent discourse units. The Penn Discourse Treebank, on the other
hand, is not committed to a tree representation of the entire text. The building
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blocks are discourse connectives, which are treated as predicates, the arguments of
which are identified for each discourse connective instance in a text, whether they
are explicit or implicit. Although the text spans that are identified as arguments
of a discourse connective never overlap, there is no guarantee that arguments of
different connectives do not overlap. In fact, Lee et al. (2006) show that there is
a variety of possible patterns of dependencies between pairs of discourse rela-
tions, including nested, crossed, and other non-tree-like configurations. Part of
the reason for this complex structure is due to the anaphoric discourse relations
for discourse adverbials, whose arguments are not necessarily local, as discussed
above.

Another reason why there exist complex dependencies in the Penn Discourse
Treebank is the way attribution is annotated. PDTB adopts the strict view that
discourse relations are between abstract objects such as events, states, and propo-
sitions. Since attributions are relations between an agent and a proposition, the
attribution annotation is treated as a separate layer of annotation. Depending on
the context, the attribution may be included as part of an argument in some cases
but excluded in others – (14) is an example. The higher verb ‘He said’ is included
as an argument of ALTHOUGH, but excluded as an argument of ALSO. There is
only a partial overlap between the arguments for these two discourse connectives.
If the attribution is excluded from the discourse processing, then the discourse
relation for ALTHOUGH would be properly contained as an argument for ALSO.
RST, on the other hand, includes attribution as one type of discourse relation, not
distinguished from other discourse relations. The RST Corpus also does not con-
sider ALSO as a trigger for a discourse relation. Discourse connectives are used as
cues to identify EDUs and determine their discourse relations, but they have no
formal role in the RST annotation scheme.

(14) “He (Mr. Meek) said the evidence pointed to wrongdoing by Mr. Keating ‘and
others,’ ALTHOUGH he didn’t allege any specific violation. Richard Newsom,
a California state official who last year examined Lincoln’s parent, American
Continental Corp., said he ALSO saw evidence that crimes had been committed.”

A final difference between the RST annotation and the PDTB annotation is that
PDTB only considers discourse relations between clauses, while RST also consid-
ers discourse relations between subclause relations. For example, EDUs in the RST
Corpus can be phrases. A discourse relation can be between the head NP and its
postmodifiers.

Measuring annotation consistency for discourse annotation can be very compli-
cated. Carlson et al. (2003) report inter-annotator agreement on four levels of the
RST Corpus: elementary discourse units, hierarchical spans, hierarchical nucle-
arity, and hierarchical relation assignments. The agreement is the highest for the
identification of EDUs (0.97 kappa) and the lowest in discourse relation assign-
ment (0.75 kappa), which is not unexpected. Miltsakaki et al. (2004a) reported
inter-annotator agreement on the Penn Discourse Treebank using two different
measures. The first measure is more lenient and is calculated on a per-argument
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basis. That is, if two annotators assign the same argument label to the same spans
of text, it is counted as a match, regardless of whether the other argument of the
same discourse connective is a match or not. By this measure, the average agree-
ment score is 90.2 percent. The second measure is more stringent and is calculated
on a per-discourse relation basis. That is, two annotators have to agree on both
arguments of a discourse connective in order for that to be counted as a match.
By this measure the agreement is 82.8 percent. Although the consistency measures
are not comparable between the two discourse annotation projects, it appears that
both projects have achieved reasonably consistent scores, indicating the viability
of these annotation schemes (see Section 3.5).

2.6 Coreference
References to entities in a document are identified as mentions, and mentions of
the same entity are linked as being coreferences, or members of a coreference
set. These can include pronouns, nominal entities, named entities, elided argu-
ments, and events. For example, Barack Hussein Obama II and he in (15) corefer.
Researchers at Essex (UK) were responsible for the coreference markup scheme
developed in MATE (Poesio et al., 1999; Poesio 2004), partially implemented in
the annotation tool MMAX and now proposed as an ISO standard. They have also
been responsible for the creation of two small, but commonly used, anaphorically
annotated corpora: the Vieira/Poesio subset of the Penn Treebank (Poesio & Vieira
1998), and the GNOME corpus (Poesio 2004). Their work also includes extended
guidelines (Mengel et al., 2000), and annotation of Italian. Parallel coreference
annotation efforts funded first by ACE and more recently by DARPA GALE (see
Section 2.8) have resulted in similar guidelines, best exemplified by BBN’s recent
efforts to annotate named entities, common nouns and pronouns consistently
(Pradhan et al., 2007c). These two approaches provide a suitable springboard for
an attempt at achieving a community consensus on coreference.

(15) “Barack Hussein Obama II is the 44th and current President of the United
States. He is the first African American to hold the office.”

Techniques for annotating and evaluating entire sets of coreferences are signifi-
cantly more complex than techniques for straightforward class-labeling tasks.

2.7 Opinion annotation
The Pittsburgh Opinion annotation project (Wiebe et al., 2005) funded by IARPA,
focuses on the annotation of opinions, evaluations, emotions, sentiments, and
other private states in text. A fine-grained annotation scheme has been developed
for annotating text at the word and phrase levels. For every expression of a private
state, a private state frame is defined that identifies whose private state it is, what
the private state is about, and various properties involving intensity, significance,
and type of attitude. For example, in (16) a private state frame is anchored by fear.
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The source of the private state is attributed to the US, and the attitude type of the
private state is negative. The intensity of the private state is medium. A corpus of
over 15,000 sentences has been annotated according to the scheme. The corpus is
freely available at: nrrc.mitre.org/NRRC/publications.htm.

(16) “The US fears a spill-over.”

There are several applications for corpora annotated with rich information
about opinions. Government, commercial, and political information analysts
are all interested in developing tools that can automatically track attitudes and
feelings in the news and in online forums. They would also be interested in
tools that would support information extraction systems trying to distinguish
between factual and non-factual information as well as question answering
systems that could present multiple answers to non-factual questions based
on opinions derived from different sources. In addition there is an interest in
multi-document summarization systems, which would summarize differing
opinions and perspectives.

2.8 Multi-layered annotation projects
The annotation resources we have described so far in this section are mostly one-
dimensional tasks that focus on a single language processing goal. Treebanks
are used to develop syntactic parsers and propbanks are used to train semantic
role labelers. A recent trend in linguistic annotation is aimed at building multi-
layered linguistic resources, fueled by the realization in the natural language
processing community that there is great value in annotating the same linguistic
source with multiple levels of linguistic information. A major advantage of
having a multi-layered linguistic resource is that information encoded in one
layer of representation can be used to infer that of another. For example, the
role of syntactic parsing in semantic role labeling, a form of semantic parsing,
is well documented (Gildea & Palmer 2002; Punyakanok et al., 2005). It is
perhaps not a coincidence that many semantic annotation projects are built on
top of syntactic annotation projects, as discussed in Section 2.3. For example,
PropBank (Palmer et al., 2005) is built on top of the Penn Treebank (Marcus et al.,
1993). The Salsa Project (Burchardt et al., 2006), a semantic annotation project for
German, is built on top of the Tiger treebank (Brants et al., 2002), a syntactically
annotated corpus. The Prague Dependency Treebank has a syntactic (the analyt-
ical layer) and semantic (the tectogrammatical layer) annotation layer. Perhaps the
most ambitious multi-layered annotation project is OntoNotes (Pradhan et al.,
2007a), funded through GALE, a large-scale DARPA program focused on auto-
matic machine translation and summarization of Arabic and Chinese speech and
text. OntoNotes is a five-year, multi-site collaboration between BBN Technologies,
the Information Sciences Institute of the University of Southern California, the
University of Colorado, the University of Pennsylvania, and Brandeis University.
The goal of the OntoNotes project is to provide linguistic data annotated with
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Figure 10.3 OntoNotes: a model for multi-layer annotation.

a skeletal representation of the literal meaning of sentences including syntactic
parse, predicate–argument structure, coreference, and word senses linked to an
ontology, allowing a new generation of language understanding technologies to
be developed with new functional capabilities. The OntoNotes annotation covers
multiple genres (newswire, broadcast news, broadcast conversation, and weblogs)
in multiple languages (English, Chinese, and Arabic). The guiding principle has
been to find a ‘sweet spot’ in the space of inter-tagger agreement, productivity,
and depth of representation. Figure 10.3 illustrates the inter-connection between
the different layers of linguistic annotation in OntoNotes.

Many new challenges come with multi-layered annotation, particularly for
annotation models like OntoNotes. Since the different layers of annotation are
performed in different sites following different guidelines, incompatibilities can
arise; (17) is an example with the same sentence annotated with both syntactic
parses and semantic roles. By assigning different semantic roles to a letter (Arg1)
and for Mary (Arg2), the PropBank annotator makes the implicit judgment that
for Mary is an argument to the verb wrote and should be attached to this verb
instead of the noun phrase a letter, a judgment that is different from the treebank
annotation where the PP for Mary is treated as a modifier of a letter. In order to
achieve coherent annotation, these incompatibilities need to be reconciled. Babko-
Malaya et al. (2006) describe the many inconsistencies between syntactic parses
and predicate–argument structure annotation that need to be resolved under the
OntoNotes annotation effort.

(17) a) “(S (NP She)(VP wrote (NP (NP a letter)(PP for Mary))))”
b) “[Arg0 She] wrote [Arg1 a letter] [Arg2 for Mary]”

A linguistic source with multiple linguistic annotation also accentuates the data
access problem. The most effective use of such a resource requires simultaneous



“9781405155816_4_010” — 2010/5/8 — 11:55 — page 258 — #21

258 Martha Palmer and Nianwen Xue

access to multiple layers of annotation. OntoNotes addresses this by storing the
corpus as a relational database to accommodate the dense connectedness of the
data and ensure consistency across layers. In order to facilitate ease of under-
standing and manipulability, the database has also been supplemented with an
object-oriented Python API (Pradhan et al., 2007a).

3 The Annotation Process

Linguistic annotation is still in its infancy, and only a small portion of possible
annotation schemes have been clearly defined and put into practice. The creation
of each new level of annotation involves equal amounts of linguistic knowledge,
inspiration, and experimentation: linguistic knowledge of the phenomena that
need to be identified and described as a justifiable layer of annotation; inspira-
tion as to achievable levels of granularity and precision; and experimentation to
determine the gaps and weaknesses in the guidelines. For any particular scheme
a finite list of allowable annotations must be specified, with careful attention
being paid to accounting for all possible contexts and to the cognitive load on
the annotators. A clear understanding of linguistic phenomena does not neces-
sarily translate directly into the development of annotated data that is suitable
for training machine learning systems. The more precise the description of the lin-
guistic phenomena, the greater the likelihood of a sparse data problem. Issues with
respect to consistency, coherence, and clarity of the annotation scheme need to be
well understood; a goal that can only be attained through trial implementations.
From the perspective of the annotators, the ideal annotation scheme is clear and
unambiguous in all circumstances and can be learned quickly by someone with-
out an extensive linguistic background. This absolute goal may be unattainable,
but efforts in its direction are rewarded by rapid, consistent annotation.

The development of an annotation scheme requires addressing at a minimum
the following issues, each of which will be discussed in turn below:

• target phenomena definition;
• corpus selection;
• annotation efficiency and consistency;
• annotation infrastructure;
• annotation evaluation;
• the use of machine learning for pre-processing and sampling.

3.1 The phenomena to be annotated
The most important decision has to do with the phenomena to be annotated.
Annotation can be an extremely expensive and labor-intensive process, so the
first question is: is it absolutely essential that this phenomena be manually anno-
tated, or will automatic techniques be almost as good? Having decided that
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automatic techniques are insufficient, there are several other questions that need
to be addressed, such as: what is the scope of this annotation task, what other
resources, including other annotation layers, might the annotators need access to,
and what level of training will they require?

For example, with respect to defining the scope of the task, given a corefer-
ence task, are bridging references and event references to be considered as well?
Adding these types of coreference might make the annotation task more diffi-
cult for the annotators but, on the other hand, it might be impossible to define
a coherent coreference task that does not include them.

With respect to other resources, given a semantic or pragmatic target area, the
annotators might need access to prior syntactic or semantic annotation. For exam-
ple, if a researcher is interested in relative clauses, is it possible to annotate a
corpus for relative clauses in isolation without having to consider the overall syn-
tactic structure of the sentence? If not, will it matter whether the syntactic analysis
is phrase-structure based or dependency based? Alternatively, if the annotation
task is sense tagging, which sense inventory will be the most appropriate lexical
resource? How fine-grained do the senses need to be? If a parallel corpus is being
annotated with sense tags, does a bilingual sense inventory need to be used?

As an example of determining necessary training, if a researcher is interested
in providing syntactic analyses of sentences from biomedical texts, do all of the
annotators need to become experts in biomedical terminology as well as in syntax?

The answers to any of these questions cannot be determined precisely without
considering the task as a whole, the cognitive load on the annotators and the avail-
ability of appropriate corpora, resources, and tools. We will return to this topic at
the end of this section, but for now will assume that a researcher starts with at
least a general idea of the phenomena of interest in mind.

3.2 Choosing a target corpus
The criteria for corpus selection depend closely on the objectives for intended
use. A large amount of data in a single genre, with as little variation in topic as
possible, will yield the best possible performance when tested on similar data. If
the characteristics of the test corpus are known in advance, then matching them
as closely as possible in the training corpus is effective. However, a significant
decrease in performance can be expected when testing on a disparate corpus.
The same amount of data selected from a broader, more representative set of
documents will yield lower initial performance but more robust results when
tested on diverse data. The field is only too familiar with the degradation in per-
formance that occurs when parsers trained on the one-million-word Wall Street
Journal Treebank are tested on different corpora. This was showcased in the 2005
CoNLL shared task for semantic role labeling (SRL) which included an evalu-
ation on the Brown corpus, to “test the robustness of the presented systems”
(Carreras & Màrquez 2005). The Charniak POS tagger degrades by 5 percent,
and the Charniak parser F-score degrades by 8 percent, from 88.25 percent to



“9781405155816_4_010” — 2010/5/8 — 11:55 — page 260 — #23

260 Martha Palmer and Nianwen Xue

80.84 percent. For the 19 systems participating in the semantic role labeling
evaluation, there was in general a 10 percent performance decrease from WSJ to
Brown. The DARPA-GALE funded OntoNotes project (see Section 2.8) is specifi-
cally targeting 200,000 and 300,000 word selections of data from broadcast news,
broadcast conversation (talk shows), newsgroups, and weblogs for treebanking,
propbanking, sense tagging, and coreference annotation. The assumption is that a
more balanced, more representative training corpus will improve the portability
of systems trained on the data. For systems that are intended to be broad coverage,
portability issues are of paramount importance.

3.2.1 Isolated sentences Alternatively, broader coverage can be achieved by
augmenting a target corpus with a hand selected set of constructions. Standard
evaluation against a treebank simply selects a 10 percent or smaller chunk of
the data for evaluation purposes. This has the benefit of testing against naturally
occurring sentences, but there is no control over which types of phenomena, such
as wh-movement, gapping, reduced relative clauses, etc., are covered. Unfortu-
nately, a particular corpus may provide few instances of rare phenomena, and
therefore this type of testing may not adequately cover performance on these
types of constructions, especially if the initial corpus is small. If necessary a set of
selected instances of rare constructions that are poorly represented in the training
and test corpus can be prepared and added to the treebank corpora. Sentence (18)
is an example of a statement that has a participial modifier, sometimes also called a
reduced relative, that is in the passive voice and coincides with an infinitival con-
struction. This may not occur frequently, but a few more similar examples should
provide a statistical parser with sufficient training material to correctly analyze it
when it does occur.

(18) “The student, found to be failing several subjects, was still promoted to the next
grade.”

Another technique, given a large enough original target corpus, would be
to carefully select a subset for annotation that ensures coverage of particular
phenomena. A good illustration of hand selection/construction of instances of
particular phenomena are the Test Suites for English pioneered by Stephen Oepen
and Dan Flickinger (Oepen & Flickinger 1998; Oepen et al., 2002). The following
examples illustrate the types of phenomena with marked word order for which a
parser might require additional examples.3

• Heavy NP-shift: “We saw on Tuesday a most amazing film.”
• Relative clause extraposition: “Someone walked in whom I hadn’t met.”
• Locative inversion: “In the corner stood an antique coatrack.”

The difficulty of corpus selection is exacerbated when primarily lexical phe-
nomena are under consideration. Discourse oriented annotation tasks such as
coreference or discourse connectives require coherent chunks of text. Unfortu-
nately, even a one-million-word corpus of coherent articles such as the WSJ
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treebank will not contain sufficient numbers of representative instances of most
verbs to be suitable as a training corpus for semantic role labeling or sense tag-
ging. Over half the verbs in WordNet are not present at all, and for those that are
present, two thirds (2,167 out of 3,100) occur less than 10 times. Accurate auto-
matic performance on these verbs can only be achieved by augmenting the WSJ
corpus with additional instances. Yet annotating an additional 10 million words is
clearly not feasible, and would also involve extremely tedious, unnecessary anno-
tation of the 700 verbs that constitute 80 percent of the token coverage, and already
have sufficient instances. The only solution is to once again augment the original
target corpus with selected instances from other sources, with the knowledge that
the lack of coherence in the augmentation will render it of little use to discourse
annotation tasks.

Similar in spirit to the subset selection approach mentioned above, the
OntoNotes sense-tagging group at Colorado is currently experimenting with both
active learning and language modeling as techniques for finding more examples of
rare senses to provide a more even distribution of the training data for a particular
lemma (Dligach & Palmer 2009). The arithmetic sense of add is perhaps the most
familiar one, but it actually occurs quite infrequently. The say sense, as in “And
I miss you, too.” he added mendaciously occurs more frequently by far. However, in
certain domains it would be critical to correctly detect the arithmetic sense, and
a few carefully selected additional training examples can significantly improve
performance for this type of lemma.

3.2.2 Parallel corpora Perhaps the greatest challenge to corpus selection
involves parallel corpora. Parallel treebanks and PropBanks are of increasing
interest to syntax- and semantics-based statistical machine translation efforts,
especially for evaluation purposes.4 However, the ideal parallel corpus is almost
impossible to find. It should be equally fluent with respect to both the source
and the target languages, yet at the same time provide a translation that is as
literal as possible and where each individual sentence can be aligned with a
corresponding translated sentence, criteria that are at best at odds with each
other. Parliamentary proceedings, such as the Hansards (the official records of the
Canadian Parliament), the documents available through Europa (the European
Union online), and radio shows that are simultaneously broadcast in multiple
languages, such as FBIS, offer the most promising sources and are treasured by
the community. Indeed, the availability of the Hansards sparked a major transfor-
mation in machine translation. These are kept by law in both French and English,
and may be legally reproduced and distributed as long as “it is accurately repro-
duced and that it does not offend the dignity of the House of Commons or one of
its Members.” The researchers at IBM were thus provided with a large parallel
French/English corpus of closely aligned, literal translations that proved ideal
for statistical word alignment techniques (Brown et al., 1990). The astonishingly
accurate translations their system was able to produce revolutionized the machine
translation field, and their approach is the basis for increasingly accurate statistical
machine translation of Chinese and Arabic to English (funded by DARPA-GALE).
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3.3 Annotation efficiency and consistency
When considering which phenomena are to be annotated, it is crucial to think
through the decision making process the annotators will be faced with, and
whether the task is best done as a single step or with multiple passes. If it is to
be done in multiple passes, then the boundaries between the different layers of
annotation need to be clearly defined. Sometimes the most time-intensive step
in the annotation process is comprehending the sentence or phrase to be anno-
tated. There is always a trade-off between defining simple, modular annotation
steps with coherent decision spaces and multiplying the number of times a sen-
tence has to be comprehended. The success of the annotation process will depend
almost entirely on how constrained the choices are and on how clear and com-
prehensive the guidelines are. It is also important to consider the efficacy of the
resulting annotations with respect to training machine learning systems. Although
it is no absolute guarantee, human accuracy at the task provides an encouraging
indication of at least potential system accuracy. Poor human performance almost
certainly presages poor system performance.

3.3.1 Annotation errors A primary goal in achieving efficient, consistent
annotation is reducing unnecessary annotation errors. Apart from expected errors
caused by carelessness or fatigue, which can usually be caught through dou-
ble annotation, other annotation disagreements are almost entirely a direct result
of confusion about the guidelines. The annotator may not have read the guide-
lines thoroughly enough, but more often the guidelines are themselves vague or
ambiguous with respect to particular phenomena. It is also sometimes the case
that the instances in the data are also vague and/or ambiguous, and open to mul-
tiple interpretations. It is important to give the annotators an escape hatch when
they do not have a clear intuition about an appropriate label, so that they do not
spend too much time agonizing.

3.3.2 Alternative guideline styles Each different type of annotation requires
a stable, language-independent methodology based on guidelines and widely
accessible tools. The guidelines need to explicate the details of each individual
annotation type as well as interactions between the different types of annotation.
For instance, the guidelines for the Proposition Bank outline a process that begins
with creating a Frameset for each individual verb in the corpus to be annotated.
The Framesets provide invaluable additional direction for the annotation of the
individual verbs over and above the general annotation guidelines. The Nom-
Bank annotation in turn begins by referencing the verb Framesets for associated
nominalizations whenever possible. The same approach has been used success-
fully for the Chinese PropBank/NomBank. In contrast, the guidelines for the
treebank constitute over 300 pages of detailed syntactic description which have
to be thoroughly analyzed and memorized before a treebanker can be considered
to be fully trained.



“9781405155816_4_010” — 2010/5/8 — 11:55 — page 263 — #26

Linguistic Annotation 263

Syntactic parsing, or treebanking, is undoubtedly one of the most demanding
annotation tasks. Every single possible syntactic phenomenon has to be accounted
for in the guidelines, with examples and explanations, and clearly distinguished
from other, similar phenomena that it could be confused with, such as subject-
control and object-control verbs, raising verbs, etc. The general rule of thumb
is that the treebanking guidelines should not be finalized until at least 100,000
words have been successfully treebanked, which can easily take a year. It takes six
months to fully train a treebanker, and there are no shortcuts. For phrase-structure
treebanking, starting with a solid grounding in generative grammar helps, but
since the guidelines make many departures from an exact theoretical interpre-
tation, the treebanker also has to be flexible and open minded, and not adhere
too rigidly to theoretical generative grammar. However, given highly motivated
annotators with a thorough understanding of syntax and the ability to pay close
attention to detail, inter-annotator agreement rates of 95 percent and above have
been achieved for English, Chinese, and Korean treebanking.

OntoNotes verb sense tagging, on the other hand, requires a very short train-
ing period of approximately 20 to 30 hours, which can take as little as two weeks.
The guidelines amount to only 11 pages, 4 of which are very detailed instruc-
tions for logging onto unix and running the annotation tool. Sense taggers only
need to know enough syntax to distinguish certain parts of speech, such as a main
verb as opposed to a verbal past participle used as a modifier, or to recognize the
difference between verb arguments that are noun phrases rather than sentential
complements. One of the reasons for this brevity is that all of the information for
distinguishing between the different senses of a verb has to be made explicit in the
entry for that verb in the sense inventory. Each verb is different, and there are no
overarching general principles for disambiguation that apply equally to all verbs.
The sense inventory itself is the most critical component of the sense-tagging
guidelines.

3.3.3 The annotation process As an illustration of the contrast between
treebanking and sense tagging, treebanking is done on coherent text, sentence
by sentence. Having the entire discourse context in mind can be helpful to the
treebanker faced with referring pronouns and ambiguous attachment choices. On
the other hand, sense tagging is most effectively done using a lexical sample
approach, where all of the sentences from the target corpus containing the lemma
to be tagged are extracted and displayed to the tagger in a single task. While
tagging these instances the tagger only has to have the single lemma and its senses
in mind, and does not have to stop and become familiar with several new entries
for every sentence to be tagged.5 This approach also facilitates the tagger making
consistent choices for that lemma. Even so, if the lemma has too many senses, the
cognitive load on the tagger is simply too high. All of the senses cannot be kept in
mind, and the tagger has to repeatedly read through the sense entry looking for an
appropriate sense label for each instance. This slows down the process and leads to
inconsistencies, since the relevant sense might easily be missed. A useful number to
keep in mind is Miller’s 7, plus or minus 2. Taggers can manage up to 9 or 10 senses,
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or even in some cases as many as 12. More than that leads to inconsistency and
delay. For the GALE OntoNotes annotation, senses for verb particle constructions
for highly polysemous verbs (often accounting for close to half the instances) were
split off from the entry for the main verb, and the instances for the verb were
tagged in two passes. The first pass allowed for selecting one of 10 to 12 entries
for the verb or an additional entry for multi-word expressions including verb particle
constructions (MWE). The instances given the MWE tag were tagged in a second
pass using a separate entry which split the verb particle constructions as well as
idioms and metaphors into several senses. Overall, OntoNotes sense tagging has
an ITA of 89 percent and is three to four times as fast as WordNet sense tagging.

3.3.4 Determining tagging candidates Determining what constitutes an item
to be tagged is just as important as knowing the set of possible labels. In treebank-
ing the span is the entire sentence, so there is no room for confusion. For sense
tagging, it is a single lexical item (or a multi-word expression based on a spe-
cific item) which has been predetermined and appears highlighted in the sentence.
However, the choice of tagging candidates is not always so clear cut. For the ACE
event tagging, the annotators had to select from a sentence the string of words that
corresponded to each event participant, a major source of inter-annotator disagree-
ment. For the initial TimeML annotation, the annotators could pick and choose
which events in a paragraph were supposed to have temporal relations, again, a
major source of disagreement. A major simplifying assumption for the PropBank
annotation was the decision to base it on the existing treebank parses. The events
corresponded to clausal verbs, and the event participants that received semantic
role labels were all arguments of the verb. The annotators simply had to choose a
node in the tree that corresponded to a verb argument and assign a label to it; the
span of the node was already predetermined.

3.3.5 The necessity of pilots Finally, no matter how much thought has gone
into defining the guidelines and constraining annotator choices, a pilot annotation
phase is still essential. Annotators may not interpret the guidelines as intended,
the data may present much more variance than was predicted, there could be
(and almost certainly are) bugs in the annotation tools. Guidelines should never
be finalized until they have been thoroughly tested on a substantial representative
data set with several annotators. Any annotation proposal should include time for
a pilot test, revision of the guidelines, and then another pilot test with additional
revisions. The goal of guidelines development is to define a clear, unambiguous
task which can be decided by rapid application of human intuition. If annotation
agreement is lower than expected, it is much more likely the fault of the guidelines
or the task definition than the fault of the annotators.

3.4 Annotation infrastructure and tools
Because linguistic annotation is generally considered to be a ‘data’ project, anno-
tation infrastructure and tools, which involve programming support, are an
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often overlooked area. It is not uncommon for a linguistic annotation project to
have insufficient funds to hire programmers to provide necessary programming
support. This results in annotators having to make do with suboptimal annota-
tion tools. Poor tools have a negative impact on both the quality and the quantity
of the annotated data. This section will outline the infrastructure and tool needs
before, during, and after annotation. For any large-scale, production-level annota-
tion project, having the proper annotation infrastructure in place at the beginning,
as well as equipping the annotator with user-friendly annotation tools, is essential
for the success of the project.

3.4.1 Task assignment For the infrastructure of large-scale annotation projects,
before human annotation can take place, it is essential to think through two key
issues: annotator management and data flow. Large-scale annotation projects can-
not be done by one person and typically involve multiple annotators. Having a
clear idea of who can access what data is crucial. For sense tagging and Prop-
Banking, where the standard practice is to perform double-blind annotation where
two (and only two) annotators are asked to annotate the same data, it is vir-
tually impossible to ask the annotators themselves to keep track of which data
they should or should not annotate. Sense taggers and propbankers are typically
part-time annotators, and they tend to work on an annotation project for variable
lengths of time. It is often a luxury to have the same two annotators finish anno-
tating the same data during the lifetime of the project. As a result, it is necessary
to build into the annotation infrastructure a mechanism to distribute annotation
assignments to annotators so that the annotator can simply take the next avail-
able assignment and get on with it. Such a mechanism ensures that a given chunk
of data is always double annotated if that is the goal and that an annotator does
not accidentally re-annotate data that already has double annotations or skip data
that needs annotations; mistakes that inevitably happen if the annotators are left
to their own devices.

3.4.2 Data flow management In addition to annotator management, it is also
important to build into the infrastructure functionalities for data flow manage-
ment. Annotation is expensive and time-intensive, and it is frustrating to lose
annotated data. Annotators are usually linguistic experts who are familiar with
the linguistic phenomena they are asked to annotate, but are not necessarily savvy
computer users who could be expected to maintain data security. It is necessary
to think through how the annotated data should be saved periodically while the
annotator is annotating. It is also good practice to maintain version control of the
annotated data using a version control facility such as CVS or SVN. Automatic ver-
sion control systems allows multiple copies of data to be checked in, keeping track
of any differences in the most recently checked in versions and of who checked
them in and when.6

3.4.3 User-friendly annotation tools After an annotation task is set up and the
annotator starts tagging, the annotation tool becomes central to the annotation
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process. The quality of the annotation tool can have a great impact on annotation
efficiency and consistency. Although it seems counterintuitive, since mouse-based
annotation tools have a shorter learning curve and are often preferred by novel
annotators, veteran annotators generally prefer keyboard-based annotation inter-
faces, since they are faster and are less likely to result in issues such as tendonitis
and carpal tunnel syndrome. Long hours spent at annotation have emphasized
the ergonomic advantages and greater annotation efficiency of the keyboard. The
annotation interface used for the syntactic annotation of the Chinese Treebank is
an Emacs-based tool that makes heavy use of keyboard strokes and uses very
few mouse clicks. Quite a few mouse-based treebanking tools such as WordFreak
and Tred have subsequently been built, and LDC now uses one for English, but
the Emacs-based tool is still the preferred treebanking tool for many veteran
treebankers, including Chinese and Korean treebankers. It is important to give
annotators a choice of keyboard strokes versus mouse clicks.

Annotation tools also have a role in maintaining annotation consistency. If
designed properly, an annotation tool can prevent an annotator from entering a
label that is not in the tagset associated with the task, or from accidentally deleting
or changing the source data, which is usually forbidden. Maintainability, cus-
tomizability, and portability are also important considerations when designing
an annotation tool. An annotation tool is often still used long after its original
developers have moved on, so someone else needs to maintain it. It is thus advis-
able that the tool be well documented and written in a widely used programming
language. Multi-lingual annotation is increasingly gaining in popularity, so porta-
bility to other natural languages is also an important consideration when choosing
a programming language.

3.4.4 Postprocessing The annotation process does not stop when the human
annotator finishes manual annotation. The output of the annotation tool is often
not in the final format that the annotation data users expect for processing. Also,
for quality-control purposes, there is often a data validation process after the
human annotation is done. For syntactic parsing, this validation can check if the
parse is in a valid format, for example, if the left and right brackets match up
and if the syntactic labels in the annotated data are all legitimate labels. For sense
tagging, the validation process can check if the sense numbers correspond to the
sense inventory entry choices. Certain predictable annotation errors can also be
automatically detected and corrected. Just as there is user-friendly software, there
is also user-friendly data. Not all users of linguistically annotated data are well
versed in the linguistic concepts and their linguistic justifications as encoded in
the annotations, and some will lose interest if the representation is too complicated
for them to understand. Putting the annotations in an easily understood format
can maximize the usability of the data that has taken so much effort to produce.

3.5 Annotation evaluation
There are two main aspects to evaluating the annotation itself. One has to do with
extrinsic measures of the annotation validity and consistency. The other focuses on
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the agreement between the annotators (ITA), which, since common wisdom treats
human annotator agreement figures as an upper bound for system performance,
is of central importance (see Chapter 11, EVALUATION OF NLP SYSTEMS, for a more
detailed discussion).

The question then arises as to what to do with annotator disagreements. Are
they just mistakes on the part of one annotator that need to be corrected via
an adjudication mechanism? This is in fact often the case, but disagreements
can also indicate especially vague or ambiguous linguistic phenomena which
might need special handling. The OntoNotes sense-tagging project uses ITA as
a measure of the clarity of the sense inventory. If ITA is below 90 percent the
lexicographers are asked to re-examine the groupings of the WordNet senses for
that lemma. They cannot examine the actual tagged instances, but they can look
at a confusion matrix that shows which senses the annotators disagree on. The
confusion matrix sometimes reveals a striking mix-up between two particular
senses, pointing the lexicographer exactly to the senses that need clarification.
On the other hand, even after a new lexicographer has examined the confusion
matrix and the groupings carefully, it may not be at all clear what could or should
be changed. Even when all disagreements have been adjudicated to produce
the gold standard data, system builders often want information about which
lemmas, or senses, have been especially difficult to tag, and the original anno-
tator disagreements can be a useful source of this type of information. Evaluation
techniques can be weighted to penalize systems less for missing the more difficult
cases.

The most straightforward measurement of ITA is simple percentage agreement,
and this is also the figure that correlates the most highly with system performance
(Chen & Palmer 2009). However, it has often been pointed out that there is a large
discrepancy between 90 percent ITA when a lemma has a most frequent sense
baseline of 85 percent, and 90 percent ITA when the most frequent sense base-
line is 60 percent. Chance agreement, and therefore expected agreement, would
be much higher with the former than with the latter. The kappa, k, coefficient
of agreement can take this into account, and is generally considered as provid-
ing a more accurate assessment of how much value the annotation is actually
adding. The basic technique subtracts expected agreement, E, from observed
agreement, A, and then divides it by 1 minus the expected agreement, as given
below.

k = A − E
1 − E

There are several subtleties in how the expected agreement can be calculated,
depending on whether or not there are more than two annotators, what the
expected distribution of choices would be, and whether or not annotator bias
needs to be taken into account. Artstein and Poesio do an excellent job of sur-
veying the state of the art with respect to these various options (Artstein & Poesio
2008). In general a kappa score of 0.8 or higher is considered desirable.
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An equally important consideration in measuring ITA is to decide exactly what
is being taken into consideration. If treebankers are being evaluated, a simple
Parseval score (Black et al., 1991) which matches the sequences of words that
have been bracketed together is usually deemed sufficient. This technique pro-
duces precision (of the total number of bracketed constituents produced by an
annotator, what percentage are correct) and recall (what percentage of the cor-
rect possible bracketed constituents did the annotator produce) figures as well
as the number of crossing brackets. The F-score is a weighted harmonic mean
of precision and recall. These scores may or may not take the labels of those
bracketed phrases into account. For the Chinese Treebank, based on a randomly
selected 20 percent portion of the corpus, the F-score for the average ITA is 93.8
percent. After discrepancies between the annotators are reconciled and a gold
standard produced, annotator gold-standard comparisons, or accuracy compar-
isons, can be made. For the Chinese Treebank, the F-score for average accuracy was
96.7 percent.

However, many researchers feel the need for parsing evaluations that are more
stringent than Parseval (Carroll et al., 2002, 2003; Hajič et al., 2009), which would
translate into more detailed annotator comparisons as well.

With respect to sense tagging, the determination of ITA is from one perspective
more straightforward. Senseval (Palmer et al., 2001) and Semeval (Pradhan et al.,
2007b) evaluations typically provide pointers to the words to be tagged, so recall is
always 100 percent and there is no need to calculate an F-score. Precision is there-
fore equivalent to accuracy. However, as discussed in Chapter 11, EVALUATION
OF NLP SYSTEMS, if hierarchical sense entries are provided, the correctness of an
answer tag may be weighted depending on its closeness to the correct tag in the
hierarchy, making things more complex. In the same way, annotator agreements
and disagreements on sense tags can be weighted based on the relatedness of the
sense tags chosen.

Coreference annotation presents yet another set of challenges, since coreferences
typically consist of sets of mentions. The question is how to score two coreference
sets which are almost, but not quite, identical. Artstein and Poesio (2008) offer
useful insights on this issue.

3.6 Pre-processing
There are several questions to be addressed when considering pre-processing:

• What types of pre-processing might facilitate the annotation, and can this be
done automatically?

• Does the corpus need to be stripped of headers and extraneous markup? Will
they need to be replaced later?

• Is there a pre-existing automatic annotation tool that can be applied without
imposing undue bias?
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There is considerable evidence that the productivity of manual annotation can
be sped up by pre-processing the data with sufficiently accurate automatic taggers
(Chiou et al., 2001). This method has been particularly successful with treebank-
ing, where automatic parsers are first run and then the output is hand corrected.
Note that this is only useful if the automatic parsers already have high accuracy.
Poor parsers simply slow down the process, and the treebankers would pre-
fer to start from scratch.7 However, in spite of demonstrated productivity gains
from automatic pre-processing, current annotation practices frequently fail to take
advantage of this approach, possibly because of the difficulty of integrating these
systems into new annotation tasks.

Even more benefit could be derived from using sophisticated machine learning
techniques to aid in the selection of instances to be tagged, in order to maxi-
mize their utility and minimize the total annotation effort. For simple classification
tasks like word-sense disambiguation, there are accepted practices which utilize
automatic WSD systems, such as active learning techniques (Chen et al., 2006a).
However, for more complex annotations such as syntactic structure, pinpointing
novel or unfamiliar items in the data remains a more challenging problem (Hwa
2004). Fundamental research is needed to develop informed sampling techniques
for complex annotation that can be integrated into the annotation effort.

4 Conclusion

This chapter has briefly surveyed several specific annotation layers and reviewed
general principles for developing annotation projects. Annotation schemes are
likely to be as varied as natural languages, and there are a host of reasons for
choosing one annotation tool or evaluation technique over another. However, the
principles stated by Krippendorf (2004) for a content analysis annotation scheme
are equally applicable to linguistic annotation schemes for natural language
processing systems:

• it must employ an exhaustively formulated, clear, and usable coding scheme
together with step-by-step instructions on how to use it;

• it must use clearly specified criteria concerning the choice of coders (so that
others may use such criteria to reproduce the data);

• it must ensure that the coders that generate the data used to measure repro-
ducibility work independently of each other. (See Chapter 11, EVALUATION OF
NLP SYSTEMS)

We all long for the day when unsupervised and semi-supervised techniques
will automatically induce the grammars and sense clusters that drive our nat-
ural language processing systems. It may be the case that the more effectively
and coherently we annotate the linguistic layers that we currently understand, the
sooner that day will come.
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NOTES

1 The ACE guidelines include complex subtypes for each of these categories and multi-
tudinous examples.

2 Named entity (or nominal entity) tagging is very similar to part-of-speech tagging, in
that one set of tags is used for all entities.

3 Dan Flickinger provided these examples during an oral presentation at an invitation-
only treebank workshop held in conjunction with NAACL07, http://faculty.
washington.edu/fxia/treebank/workshop07/formalisms/hpsg.pdf

4 The OntoNotes group, at the insistent request of the BBN, IBM, and SRI teams, is
currently treebanking and PropBanking all of the evaluation data from the first three
years of the program.

5 This benefit has to be weighed against how many times the sentence will be read. If all
the content words are to be tagged, and if several of them are polysemous (not likely),
the sentence may be re-read several times.

6 See www.nongnu.org/cvs/ for CVS and http://en.wikipedia.org/wiki/Subversion_
(software) for SVN.

7 This is similar to the dismay with which human translators face the task of hand
correcting the output of machine translation systems.
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PHILIP RESNIK AND JIMMY LIN

1 Introduction

As the engineering branch of computational linguistics, natural language process-
ing is concerned with the creation of artifacts that accomplish tasks. The operative
question in evaluating an NLP algorithm or system is therefore the extent to which
it produces the results for which it was designed. Because NLP encompasses an
enormous range of different tasks, each with its own particular criteria for assess-
ing results, a single chapter on evaluation cannot hope to be comprehensive. In
this chapter, therefore, we have selected a number of basic issues, laying out some
fundamental principles of NLP evaluation, describing several of the most com-
mon evaluation paradigms, and illustrating how the principles and paradigms
apply in the context of two specific tasks, word-sense disambiguation and ques-
tion answering. For a comprehensive treatment, we refer the reader to Galliers and
Jones (1995).1

It must be noted that the design or application of an NLP system is some-
times connected with a broader scientific agenda; for example, cognitive modeling
of human language acquisition or processing. In those cases, the value of a
system resides partly in the attributes of the theory it instantiates, such as con-
ciseness, coverage of observed data, and the ability to make falsifiable predictions.
Although several chapters in this volume touch on scientific as well as practical
goals (e.g., the chapters on computational morphology, unsupervised grammar
acquisition, and computational semantics), such scientific criteria have fallen out
of mainstream computational linguistics almost entirely in recent years in favor of
a focus on practical applications, and we will not consider them further here.

In addition, like other types of computer software, NLP systems inherit a wide
range of evaluation concerns, criteria, and measures from the discipline of soft-
ware quality evaluation. When assessing any software product, for example, it is
typical to consider such issues as cost, support, efficiency, reliability, scalability,
interoperability, security, and so forth. Many relevant issues are covered by the
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ISO 9126 standard for software product evaluation (ISO 1991), and specific exten-
sions to that standard have been created specifically for the purpose of evaluating
language technology (EAGLES 1996).

To introduce some of the ideas we will be looking at in greater detail below,
consider evaluation in the context of a ‘semantic’ search engine that utilizes NLP
components.2 For purposes of illustration, suppose that the search engine matches
users’ questions with facts that appear in documents, and that the underlying
method involves a component that analyzes sentences to produce normalized
subject–relation–object dependency tuples. The use of normalized dependency
tuples has the potential to allow more specific concept-level matches; for example,
the question When was the light bulb patented by Edison?, can match Thomas Edison’s
patent of the electric light bulb via the tuple [Thomas Edison, patented, bulbs].3

How might the quality of dependency tuple analysis be evaluated? One time-
tested approach that deserves mention would be to skip formal evaluation of this
component altogether, and instead perform a demonstration of the search engine
for the project’s investors or other target audience. Well-designed demos are often
simple to execute, easy to understand, and surprisingly powerful in making a
compelling case for a system’s value. However, demos can also be quite mislead-
ing because they rarely exercise the full range of a system’s capabilities and can be
carefully orchestrated to hide known flaws.

Another approach would be to perform a standard intrinsic evaluation of the
dependency extraction component. In a case like this, one would typically cre-
ate a test set that contains a sample of test sentences for input, along with the
ground truth, i.e., an ‘answer key’ in the form of tuples that the system is expected
to create for each test sentence. The design of the evaluation would quantify the
system’s agreement with the ground truth, much as a teacher counts up the agree-
ments and disagreements between a student’s multiple-choice test answers and
the answer key. In this case, each test sentence has a set of tuples that together
comprise the correct answer, and the goal is to produce all and only the tuples
in that set. In settings like this, one would usually calculate recall, measuring the
extent to which all the tuples were produced, precision, capturing the extent to
which only correct tuples are included in the output, and F-measure, a score that
combines recall and precision into a single figure of merit (see Section 3.2). One
might compare the F-measure for the current tuples analyzer against an earlier
version (a formative evaluation, measuring progress and informing new develop-
ment) or against competing techniques (a summative evaluation, concerned with
the outcome of development).

The intrinsic evaluation helps to assess the quality of the tuples analyzer, but
how do we know that improvements in the analyzer actually make a difference
in the overall quality of the system (that is, better search results)? One answer is
to perform an extrinsic evaluation, which measures the quality of the analyzer by
looking at its impact on the effectiveness of the search engine. In this case, we
would create a test set not for the analyzer, but for the search engine as a whole. The
test items in this case would therefore be user questions, and the ground truth
for each question would be the answers that should be produced by the system.
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Precision, recall, and F-measure could be used again here, but this time they would
be used to quantify the extent to which the search engine produces all and only
the correct answers to the test questions. Crucially, the quality of the dependency
tuple analyzer is measured only indirectly, by evaluating the whole system with
and without it, or by swapping out this analyzer and substituting another. To
put this another way, the extrinsic evaluation treats the analyzer as an enabling
technology, whose value is not intrinsic but rather resides in its contribution to a
larger application (Resnik 2006).

Even an extrinsic evaluation may still be too far removed from quality in the
real world, however. One way to address this would be to conduct a laboratory
test involving real users employing the search engine to perform a standardized
task, e.g., finding the answers to a set of test questions. This is, in effect, a variation
on the extrinsic evaluation in which the ‘system as a whole’ actually includes not
only the search engine but the user as well, and the setup makes it possible not
only to measure the quality of the answers produced, but also to look at factors
such as time taken and user satisfaction.

Ultimately, however, laboratory experimentation cannot completely predict
how a technology will fare in a real-world environment with real users performing
real tasks. For this, a system must be deployed, and observations made in situ of
the system, the users, and their interaction. Learning how the technology does in
the real world comes at the cost of experimental controls and replicability, but for
many pieces of real-world technology, the final test is not the laboratory measures,
but the usefulness of the tools, the satisfaction of users, and their willingness to
come back and use that technology again.

2 Fundamental Concepts

2.1 Automatic and manual evaluations
Perhaps the most basic dichotomy in evaluation is that between automatic and
manual evaluation. Often, the most straightforward way to evaluate an NLP algo-
rithm or system is to recruit human subjects and ask them to assess system output
along some predetermined criteria. In many cases, this is the best approach for
finding out whether a system is actually useful and whether users are pleased
with the system – a criterion that goes beyond whether or not the system meets
predetermined requirements or specifications. Note that manual evaluations
are the norm in many fields, for example, user studies in human–computer
interaction.

Unfortunately, manual evaluations have two significant limitations: they often
generate inconsistent results and they are slow. Human beings are notoriously
inconsistent in their judgments about what is ‘good’ (both across multiple sub-
jects and sometimes with themselves), and even with the adoption of standard
best practices in study design (e.g., counterbalanced presentation of experimen-
tal conditions, calibration for learning effects and environmental settings, etc.),
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it is difficult to control for unanticipated factors. In addition, manual evaluations
are time-consuming and laborious. In addition to time for the actual experiment,
human subjects must be recruited, scheduled, and trained. To arrive at statis-
tically significant findings, dozens of subjects are often necessary. All of these
factors conspire to make well-designed manual evaluations a large investment of
resources.

Modern NLP has evolved into an empirical, evaluation-driven discipline, which
means that researchers have little patience for long turnaround between successive
experiments. Thus, automatic evaluation methods are favored today by most. The
development of evaluation algorithms that mimic the behavior of human asses-
sors is an important subfield in NLP, and such research can be readily found
in the pages of conference proceedings and journal articles in the field. How-
ever, recognizing that manual evaluations remain valuable, it is common practice
to periodically conduct studies that establish a correlation between results of
automatic and manual evaluations. If such a correlation is demonstrated, then
researchers have a degree of confidence that improvements according to automatic
evaluations will translate into meaningful improvements for users.

2.2 Formative and summative evaluations
The distinction between formative and summative evaluations is best summed up
with a quote: “When the cook tastes the soup, that’s formative; when the customer
tastes the soup, that’s summative.”4 Formative evaluations typically occur during
the development of NLP systems – their primary purpose is to inform the designer
as to whether progress is being made towards the intended goals. As such, forma-
tive evaluations tend to be lightweight (so as to support rapid evaluation) and
iterative (so that feedback can be subsequently incorporated to improve the sys-
tem). In contrast, summative evaluations are typically conducted once a system is
complete (or has reached a major milestone in its development): they are intended
to assess whether intended goals of the system have been achieved.

In NLP research, there is a tendency for formative evaluations to be automatic,
so that they can provide rapid feedback in the development process. In con-
trast, summative evaluations often involve human judges, in order to assess the
usefulness of the system as a whole for users.

2.3 Intrinsic and extrinsic evaluations
Intrinsic and extrinsic evaluations form another contrast that is often invoked in
discussions of evaluation methodologies. In an intrinsic evaluation, system out-
put is directly evaluated in terms of a set of norms or predefined criteria about the
desired functionality of the system itself. In an extrinsic evaluation, system output
is assessed in its impact on a task external to the system itself. Evaluation of doc-
ument summarization systems serves to illustrate this distinction. In an intrinsic
evaluation, we would ask questions such as the following about system-generated
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summaries: How fluently does the summary read? Does the summary contain
coverage of key ideas? On the other hand, extrinsic evaluations consider tasks in
which a document summarization system may be useful – for example, as a com-
ponent of a search engine that summarizes results and presents short snippets to
help users decide whether or not a document is relevant (i.e., worth reading). In
the context of this particular task, we might ask: How accurately can a user make
such relevance judgments, compared to having access to the entire document?
How much more quickly can such judgments be made with summaries?5

In NLP research, at least, there is an affinity between intrinsic, formative, and
automatic evaluations on the one hand, and extrinsic, summative, and manual
evaluations on the other. The characteristics of these different approaches nat-
urally explain these associations. Since extrinsic evaluations must be couched
within the context of a user task, it is difficult to avoid having human subjects.
It is usually easier to develop automatic techniques for intrinsic evaluations since
only the system output needs to be considered.

2.4 Component and end-to-end evaluations
Most NLP systems today are not monolithic entities, but rather consist of distinct
components, often arranged in a processing pipeline. For example, identification
of semantic role (e.g., agent, patient, theme) depends on syntactic parsing, which
in turn depends on part-of-speech tagging, which in turn depends on tokenization.
We could choose to evaluate each component individually, or instead consider
multiple components at once. For example, when evaluating the accuracy of a
syntactic parser that requires part-of-speech tags as input, one could assess the
quality of the parse-trees based on the output of a real tagger that may contain
errors (an end-to-end evaluation), or based on ‘gold standard’ part-of-speech tags
supplied by a human (a component evaluation).6

Both component and end-to-end evaluations are useful, but for different pur-
poses. Obviously, end-to-end evaluations provide a more meaningful quantifica-
tion of system effectiveness under real-world circumstances. However, measuring
system characteristics under ideal circumstances may also be useful, since it iso-
lates the system from errors in other components. With component evaluations, it
is possible to artificially manipulate input and observe the impact on system effec-
tiveness. For example, in evaluating a syntactic parser one could start with gold
standard part-of-speech tags and then artificially degrade tagging accuracy in a
controlled manner. Doing so would allow a researcher to understand the input–
output characteristics of the component, i.e., sensitivity of the parser to tagging
errors.

In most cases, it is desirable to conduct both component and end-to-end evalu-
ation of NLP systems since components often interact in non-obvious ways. For
some systems, the effects of errors are multiplicative: that is, since each compo-
nent depends on the previous, errors propagate down a processing pipeline, so
that the final output may be quite poor despite high effectiveness for each of the
components (consider the pipeline for identifying semantic roles described above).
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For other systems, the overall effectiveness is much higher than one would expect
given individual component-level effectiveness – these represent cases where the
components are able to compensate for poor quality. One example of this is in
cross-language information retrieval (CLIR), where the user issues a query in one
language to retrieve documents in another language. Abstractly, one can think
of CLIR systems as having a translation component and a search component. In
even the most sophisticated systems, the translation component is little better than
word-for-word translation – the quality of which is quite poor by human stan-
dards. Yet CLIR systems are about as effective as monolingual IR systems – since
the inherent redundancy in documents and queries (i.e., the presence of multiple
words referring to the same concepts) compensates for the poor translation quality.

2.5 Inter-annotator agreement and upper bounds
In many NLP evaluation settings – particularly intrinsic, component-level eval-
uations – the task being evaluated is to ‘annotate’ (tag, label) text. For example,
part-of-speech taggers assign grammatical category tags to words, named entity
extractors assign category labels (e.g., PERSON, ORGANIZATION) to phrases, and
parsers can be viewed as assigning constituent labels like NP or VP to spans of text
within a sentence. It is common practice in such cases to compare the performance
of multiple human annotators, for two reasons. First, if human beings cannot reach
substantial agreement about what annotations are correct, it is likely either that the
task is too difficult or that it is poorly defined. Second, it is generally agreed that
human inter-annotator agreement defines the upper limit on our ability to measure
automated performance; Gale et al. (1992: 249) observe that “our ability to measure
performance is largely limited by our ability [to] obtain reliable judgments from
human informants.” As a well-known case in point, the WordNet lexical database
includes sense tags that are notoriously fine-grained, e.g., distinguishing verb
sense chill (make cool or cooler) from chill (lose heat) because the former involves
causing a change and the latter undergoing a change in temperature (Palmer et al.,
2007). Could we really expect any word-sense disambiguation algorithm to achieve
95 percent agreement with human-selected WordNet sense tags, for example, if
the human taggers themselves can only agree 75 percent of the time when doing
the task (Snyder & Palmer 2004)? For this reason, human agreement is generally
viewed as the upper bound on automatic performance in annotation tasks.7

One way to measure agreement between two annotators is simply to mea-
sure their observed agreement on a sample of annotated items. This, however,
may not constitute an accurate reflection of the true difficulty or upper bound
on the task, because, for any given task, some agreements may occur according
to chance. Consider a simple example: if the annotation task were to sense-tag
instances of the word bank as either RIVERBANK or FINANCIALBANK, and two
annotators make their choices independently by flipping a coin, they could be
expected to agree 50 percent of the time. Therefore, in order to establish the valid-
ity of a coding scheme, as well as define upper bounds for the annotation task,
it is now common practice to compute a measure of chance corrected agreement
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(Artstein & Poesio 2008). Correction for chance is captured by measures that
generally take the form

(1)
A0 − Ae

1 − Ae

where A0 is the observed agreement (total agreements divided by total number of
items), and Ae is an estimate of chance agreement varying according to the spe-
cific measure. Cohen’s kappa is in widespread use for this purpose, but Artstein
and Poesio (2008) provide a thorough discussion of its limitations and of alterna-
tive measures, as well as in-depth consideration of detailed issues, including, e.g.,
measuring agreement among three or more annotators, weighting some disagree-
ments more heavily than others, and the interpretation of agreement coefficient
values.

2.6 Partitioning of data used in evaluations
Within most NLP settings, system development and evaluation involves partition-
ing the available data into the following disjoint subsets:

• Training data. This term most often refers to a data set where input items are
paired with the desired outputs, often as the result of manual annotation (cf.
Section 2.5). It usually refers to the input for supervised learning algorithms,
but it can refer more broadly to any data used in the process of developing the
system’s capabilities prior to its evaluation or use.8

• Development (dev) data. Some systems include parameters whose settings
influence their performance. For example, a tagger might choose its output
based on a weighted vote

∑
λipi(input), where each pi is a different method

of prediction and the λi are weights for the different methods. Rather than
choosing weights or parameters arbitrarily, it is common to hold out some sub-
set of the training data as a development set. A search for good values for λi is
conducted, either in an ad hoc manual fashion or using an optimization tech-
nique such as expectation-maximization. In either case, performance on the
development data measures the ‘goodness’ of the parameter choices.

• Development-test (devtest) data. Typically one or more data sets are also held
out for use in formative evaluation (Section 2.2) as the system is developed.
A devtest set is just a test set that is being used during the cycle of system
development and improvement.

• Test data. This term describes the data that will be used to evaluate the sys-
tem’s performance after development has taken place, i.e., at the point of a
summative evaluation.9

It is typical to reserve as much data as possible for training and development. For
example, one might split the available data into 70, 20, and 10 percent for training,
held-out (i.e., dev and devtest), and test data respectively.
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Disjointness of the subsets is crucial, because a fundamental principle in NLP
evaluation is that the technology being evaluated cannot be informed by the test data.
In its purest form, this means that test data should remain entirely untouched and
unseen by the researcher or developer until system development is frozen just
prior to evaluation. The reasoning behind this stricture is simply that evaluations
are intended to help predict a system’s performance on future unseen data, i.e., to
generalize. In machine learning, the error rate when testing on the training data is
referred to as the resubstitution error rate, and it is regarded as a severe underesti-
mate of the true error rate, as a result of overfitting. Performance on the training
data can be a useful reality check, of course, since something is probably wrong if
it is not quite good. But it cannot be relied upon to predict future performance.

Moreover, it should be noted that evaluations can be overly optimistic even
when test data are kept properly disjoint from data used in system development.
For example, it is typical to assume that systems will be evaluated (or run) on the
same kind of data that were used during system development, e.g., language that
is similar in genre and topic. It is widely recognized, however, that system per-
formance will suffer when this assumption is not met (e.g., Escudero et al., 2000;
Gildea, 2001).

It is also worth noting that there are, in fact, some uses of the test data that are
generally regarded as valid. The following are some examples:

• For research on machine translation systems, using the test set to automatically
filter the phrase table, so that it contains only entries that are relevant for the
given test set. This is a common way to reduce the size of the model so that it
fits in memory (Lopez 2008a). Note that this affects the efficiency of a system,
but does not fundamentally alter its behavior.

• Using the test set automatically for model adaptation (e.g., Kim & Khudanpur
2003).

• Performing error analysis prior to moving on to a fresh test set – i.e., the current
test set becomes devtest data.

• Looking just at performance numbers on test data, without examining the sys-
tem’s output. For example, parsing researchers test over and over again using
Section 23 of the Wall Street Journal in the Penn TreeBank, and MT researchers
test repeatedly on test sets from the NIST machine translation evaluation
exercises.

2.7 Cross validation
Employing a single partition of the available data is common, but it does present
two potential problems. First, regardless of whether the evaluation results are
good or bad, one has to wonder whether the results reflect a particularly fortu-
itous (or infortuitous) selection of test data. More precisely, a single split provides
only a point estimator for whatever measure or measures are used for evaluation,
as opposed to an interval estimate such as a 95 percent confidence interval. Sec-
ond, as a practical matter, even a 70 percent allocation may not produce a large
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enough training set for automatic learning methods if only a small quantity of
annotated data is available.

Within NLP, the most common solution to these problems is k-fold cross-
validation. Instead of creating a single split, the full set of available data is
partitioned into k pieces, or folds, {f1 . . . fk}.10 Then evaluation is conducted as
follows:

for i from 1 to k
Let TEST = fi be the test set
Let TRAIN = ∪j�=i{fj} be used as the training set
Compute mi, the evaluation measure, by training on TRAIN and testing on
TEST

Compute statistics, e.g., the mean and standard deviation, over the {mi}.
If held-out data is needed for parameter tuning, TRAIN is subdivided into training
and dev data.

K-fold cross-validation ensures that every item in the full data set gets used for
both training and testing, while at the same time also ensuring that no item is
used simultaneously for both purposes. Therefore it addresses the concern that
the evaluation results only reflect a particularly good or particularly bad choice
of test set. Indeed, addressing the second concern, the set {m1 . . . mk} can be used
to compute not only the mean, as a scalar figure of merit, but also the standard
deviation, enabling the computation of confidence intervals and tests of statis-
tical significance when alternative algorithms or systems are compared. Finally,
although values of k are typically between 4 and 10 – e.g., training uses from
75 percent to 90 percent of the available data – it is possible to use data even more
efficiently by employing a larger number of folds. At the extreme, one can set k equal
to the number of items N in the full data set, so that each fold involves N − 1 items
used for training and one item for testing. This form of cross-validation is known
as leave-one-out, and is similar to the jackknife estimate (Efron & Gong 1983).

2.8 Summarizing and comparing performance
All quantitative evaluation paradigms make use of at least one figure of merit,
sometimes referred to as an evaluation measure or evaluation metric, to summa-
rize performance on a relevant property of interest. Some of the most important
paradigms, and their associated evaluation measures, are discussed in Section 3.

Table 11.1 shows the typical structure for reporting results in NLP evaluations.
The first column of the table identifies the ‘conditions,’ i.e., variant approaches
taken to the task. A single evaluation measure might be reported (e.g., accuracy,
Section 3.1). Or there might be columns for multiple measures, often trading off
against each other, with some single metric representing their combination (e.g.,
recall, precision, and F-measure, Section 3.2).

Turning to the rows, a results table almost always includes at least one baseline
condition. The role of a baseline is similar to the control condition in an experiment
studying the effectiveness of a new drug: in order for the study to successfully
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Table 11.1 Structure of a typical summary of evaluation results

Condition Measure 1 Measure 2 Combined Measure

Baseline 1 MB1
1 MB1

2 MB1
c

Baseline 2 MB2
1 MB2

2 MB2
c

Variation 1 MV1
1 MV1

2 MV1
c

Variation 2 MV2
1 MV2

2 MV2
c

Upper Bound MU
1 MU

2 MU
c

demonstrate that a drug is effective, patients taking the drug must show bene-
fits over and above that experienced by patients taking a placebo. Similarly, the
baseline condition in an NLP experiment defines the performance that must be
improved upon in order for the study to deliver a positive result. One category of
baselines can be defined independently of prior work in the literature; for exam-
ple, choosing an answer at random, or always selecting an item’s most frequent
label in the training data, or applying something else that is equally obvious and
simple.11 Another kind of baseline is the effectiveness of some prior approach on
the same data set. Generally the first category can be viewed as a ‘reality check’:
if you cannot beat one of these baselines, most likely something is fundamentally
wrong in your approach, or the problem is poorly defined (see Section 2.5).

The ‘upper bound’ for a task defines the highest level of performance one could
expect to attain in this experiment. Typically, upper bounds are defined by human
inter-annotator agreement (as discussed in Section 2.5). Sometimes, alternative
upper bounds are defined by allowing the system to use knowledge that it would
not have access to in a fair evaluation setting. As an example, a machine transla-
tion system might be permitted to produce its 1000-best hypotheses for each input
sentence, and the oracle upper bound would be defined as the score of the hypothesis
that performs best when compared against the reference translations. In practice,
of course, an MT system cannot choose its single-best output by looking at correct
translations of the input. But the oracle upper bound helps to quantify how much
better the system could potentially get with better ranking of its hypotheses (Och
et al., 2004).

When comparing system results against baselines, upper bounds, or across vari-
ations, it is important to recognize that not all differences between scores matter.
One question to consider is whether or not an apparent difference is statistically
significant; that is, if the difference is unlikely to have occurred as a result of
chance variation. As a simple example, suppose we are selling a coin-flipping
machine that will (we claim) make a fair coin more likely to land heads up. If we
test the machine by performing an experiment with 10 flips, and the coin comes
up heads 6 times instead of 5, should a potential buyer be convinced that our
machine works as advertised, compared to typical, unassisted coin flips? Prob-
ably not: even with normal, ‘unimproved’ coin flipping, someone doing a large
number of 10-flip experiments could be expected to get the same result, exactly
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6 heads out of 10 flips, in fully 20 percent of those experiments, just by chance. So
getting that particular result in this experiment could easily have happened even
if the machine just flipped coins in the usual way. By convention, an experimental
outcome is not usually considered ‘statistically significant’ unless the likelihood of
its having occurred by chance is less than 5 percent, often written p < .05.12

Even if a difference in experimental conditions is statistically significant, how-
ever, it is essential to recognize that the result may not be large, important, or even
meaningful. The ‘significance’ of an experimental improvement (in the ordinary
sense of the word) is usually calibrated as a matter of folklore or common wisdom
within a particular experimental community. In information retrieval, for example,
a system might meet accepted criteria for a meaningful result by achieving a .05
absolute improvement in average ‘precision at 10’ (the precision computed using
the ten most highly ranked hits in response to a query), with an improvement
of .10 being considered substantial.13 In machine translation, researchers might
expect to see around a one-point improvement in BLEU score (Papineni et al., 2002)
on one of the recent NIST evaluation data sets, with a gain of two points or more
being considered substantial.14

However, the bottom line is that no hard-and-fast rule involving evaluation
numbers or statistical significance can tell the full story when comparing alterna-
tive approaches to a problem. Ultimately, the potential value of a new contribution
in NLP depends also on the relevance of the evaluation task, the representative-
ness of the data, the range of alternative approaches being compared, and a host
of other more tangible and less tangible factors.

Finally, it is worth noting that sometimes the relative difference in performance
metrics provides more insight than their absolute difference. On the combined
measure, the relative improvement of Variation 1 over Baseline 1 in Table 11.1 is

(2)
MV1

c − MB1
c

MB1
c

For example, improving accuracy from MB1
c = 35% to MV1

c = 40% is only a 5 per-
cent improvement in absolute terms, but the relative improvement defined in (2) is
more than 14 percent. To make the point more dramatically, if a system improves
accuracy from 98 percent to 99 percent, this may seem like only a small accom-
plishment, only one percentage point. But the picture changes a great deal if the
results are expressed in terms of error rate (100 percent − accuracy): the improved
system cuts the number of errors in half, which can make a huge difference if the
number of inputs is very large.

3 Evaluation Paradigms in Common Evaluation
Settings

At the most basic level, NLP systems are designed to accomplish some task, which
can be characterized by input–output characteristics. Thus, evaluation boils down
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to a conceptually simple question: for a set of inputs, to what extent does system
output correspond to outputs that are correct or desirable? This question helps orga-
nize common paradigms in evaluation, discussed in this section. In some cases,
there is a one-to-one correspondence between input and the correct output (e.g.,
part-of-speech tagging, word-sense disambiguation). In other cases, multiple out-
puts are desirable (e.g., information retrieval, parallel text alignment), the output
takes the form of text (e.g., machine translation, document summarization), or the
output contains complex structure (e.g., parsing). Finally, the output may involve
values on a scale (e.g., language modeling, semantic similarity).

3.1 One output per input
The most straightforward evaluation paradigm in NLP is one in which each input
produces a single output – a nominal value that can be considered a category
or label (Stevens 1946) – and that output is compared against a single correct
answer. This is analogous to multiple-choice tests, although for many NLP tasks
the number of possible answers for any input can be quite large.

Classic word-sense disambiguation tasks fall into this category: each word, in its
context, represents an input, and the possible outputs are defined by an enumera-
tion of sense labels. For example, suppose that the task involves deciding whether
instances of the word ash are being used in the sense ASH1, ‘a tree of the olive
family,’ or in the sense ASH2, ‘the solid residue left when combustible material is
burned’ (Lesk 1986).15

To evaluate disambiguation performance in settings like this, one would run
the system on inputs {a1, . . . , an} (where each ai is an instance of the word ash
in context), producing single-best output label decisions {l1, . . . , ln} (where each
li ∈ {ASH1, ASH2}), and then compare those decisions to ‘ground truth’ human-
annotated sense labels {t1, . . . , tn} (ti ∈ {ASH1, ASH2}). The primary figure of merit
would be the percentage of agreement with the true labels, i.e., the accuracy:

(3) A =
∑

i=1..n agri
n

= number correct
n

where agri is 1 if li = ti and 0 otherwise.16 Sometimes the inverse of accuracy, or
error rate, is reported instead: 1 − A.

Sometimes a system is not required to produce any answer at all for some
inputs; that is, li could remain undefined. In some tasks, it might be preferable
for the system to remain silent than to risk being wrong. In those cases, we can
define d to be the number of defined answers, and d replaces n in the denominator
when accuracy is calculated. We then define coverage as d/n, in order to measure
the extent to which answers were provided. By default, one can assume d = n, i.e.,
coverage is 100 percent, when accuracy is presented alone as the figure of merit.
When d < n, accuracy and coverage can be traded off against each other – for exam-
ple, a system can obtain high accuracy by providing an answer for an input only
when it is very confident, at the expense of coverage. This is quite similar to the
trade-off between precision and recall discussed below in Section 3.2. Indeed, the
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Table 11.2 Contingency table for a
document retrieval task

relevant ¬relevant

retrieved r n
¬retrieved R N

Precision = r/(r + n) = |relevant∩retrieved|
|retrieved|

Recall = r/(r + R) = |relevant∩retrieved|
|relevant|

terms ‘precision’ and ‘recall’ are sometimes used, in our view somewhat confus-
ingly, to refer to accuracy and coverage in task settings where each input has only
a single output.17

In a common variant of this paradigm, the desired output for each input is a
sequence y1 . . . yk. For example, in part-of-speech tagging, each input ai would be
a whole sentence, i.e., a sequence of tokens x1 . . . xk, and the output label would
be a sequence y1 . . . yk of grammatical category tags. When the output sequence
stands in one-to-one correspondence with the input sequence, as in this example, it
is most common simply to evaluate as if each input token comprises its own single-
token labeling problem, even if that’s not really how the output was produced.
This is equivalent to concatenating all the output sequences to produce one long
sequence of length n, and then computing A as defined above.

When the output sequence can differ in length from the input sequence, the situ-
ation becomes a bit more complicated; we treat that case as a variant of structured
output in Section 3.2.

3.2 Multiple outputs per input
For many NLP tasks, there is no single correct answer; multiple outputs are
sought. Information (document) retrieval is perhaps the best illustration of this
general evaluation paradigm. Given an information need expressed as a query
(e.g., ‘gardening in arid soil’), the task of the system is to return the set of
documents that are relevant and, in most cases, there are multiple satisfactory doc-
uments. Formalizing the task abstractly in terms of set membership – a document
is either retrieved by the system or it is not, and a document is either relevant to
the information need or it is not – is an imperfect approximation of the real-world
task, where documents may be relevant only to a greater or lesser extent, and
systems may estimate degrees of confidence. But this abstraction makes it possi-
ble to define the quality of a system’s set of retrieved documents in terms of two
extremely useful and intuitive concepts: precision and recall. The contingency table
in Table 11.2 illustrates how these are computed. Precision is the fraction of system
output that is relevant, or r/(r+n); recall is the fraction of relevant documents that
is retrieved, or r/(r + R).18



“9781405155816_4_011” — 2010/5/8 — 11:59 — page 284 — #14

284 Philip Resnik and Jimmy Lin

Notice that the numerator is the same in both cases: r counts the number of
documents that were both relevant and retrieved by the system. For precision, we
are interested in comparing that with the total number of documents retrieved by
the system, hence r + n in the denominator. If n = 0, i.e., no irrelevant documents
were retrieved, then precision is perfect. For recall, we are interested in comparing
r with the total number of documents that should have been retrieved, hence r + R
in the denominator. If R = 0, i.e., every relevant document was retrieved, then
recall is perfect.

High precision is easy to obtain, at the expense of recall: just return the single
document most likely to be relevant, or, more generally, do not return documents
unless the system’s confidence in their relevance is very high. This keeps n close
to 0, but of course it also increases R, so recall suffers. Similarly, perfect recall is
easy to achieve (just return all the documents in the collection, so R = 0), but at
the expense of precision, since n is then likely to be large.

To balance the need for both precision and recall, F-measure (or F-score) is often
reported:

(4) F(β) = (β2 + 1) × P × R

β2 × P + R

The F-measure computes a harmonic mean between precision and recall, where
the relative emphasis on the two components is controlled by the β parameter
(higher values of β place more emphasis on recall). The choice of β depends a
lot on the task. For example, a person searching the web for gardening infor-
mation does not want to slog through lots of irrelevant material, and does not
require every single gardening article that is out there, so precision is a high pri-
ority. In contrast, a complex legal argument can be undermined by even a single
court ruling overturning a previous precedent, so systems for legal research can
be expected to place a heavy emphasis on recall.

F-measure is frequently used to compare different systems. In addition to com-
bining two measures into a single figure of merit, F-measure has the attractive
property of incurring a penalty in performance when precision and recall are very
different from each other, thereby discouraging an emphasis on one at the expense
of the other. Other common metrics in information retrieval (e.g., mean average
precision, R-precision) derive from this set-based formalism, with the addition of
other concepts such as document ranking. It is worth noting that all these met-
rics are intrinsic in nature, in that they do not measure how useful the retrieved
documents are in a real-world task, e.g., writing a report, answering a complex
question, making a decision, etc.

3.3 Text output for each input
Frequently in NLP, the task of the system is to produce text in response to the
input. Machine translation is the most obvious example of the paradigm, since
an output text in the target language is produced for the source-language input.
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Text summarization is similar, producing an output text that condenses pertinent
information from a set containing one or more input documents.

Evaluating text output introduces a difficult challenge: how do we account for
the fact that the desired information can be expressed correctly in many differ-
ent ways? Testing for exact equality is necessary when computing agreement in
Section 3.1, or when computing the intersection |relevant∩retrieved| in Section 3.2,
but string equality hardly seems appropriate as a way of evaluating whether or
not two texts are saying the same thing. One solution to this problem is to rely on
human judges to compare system outputs with correct answers (see Section 3.5),
but that solution is extremely labor-intensive. It would generally be impracti-
cal, for example, to collect human judgments on a weekly basis in order to track
progress during system development.

Most ways of dealing with this challenge involve two elements. First, texts being
compared are broken down into units that can be compared via exact match-
ing, e.g., word n-grams. Then a bag of n-grams from the system output can be
compared with the n-grams present in the human ‘gold standard’ reference, quan-
tifying the relationship using measures derived from precision and/or recall. In
essence, the n-grams in gold standard references define the ‘relevant’ elements of
the desired response to the input, and n-grams in the system output constitute
what the system has ‘retrieved.’ This idea has been operationalized, for example,
in the BLEU metric for machine translation (Papineni et al., 2002) and the ROUGE
metric for text summarization (Lin & Hovy 2003), both of which are widely used
in their respective communities, albeit not without some controversy.

A second useful strategy is to define multiple correct references for each input.
For example, it is not uncommon in MT evaluations to provide anywhere from
two to ten correct translations for each test input. The evaluation measure is then
generalized to take into account correct or ‘relevant’ units from multiple valid out-
puts. For example, consider a system that produces the English sentence my dog is
always hungry, with reference translations

my dog is hungry all the time
my pup is always famished

Using the BLEU metric, which focuses on precision, the system would get credit
for having produced ‘relevant’ unigrams my, dog, is, always, and hungry; bigrams
my dog, dog is, and is always; and the trigram my dog is. Notice that it is getting
some credit for having conveyed both always and hungry, even though no single
reference translation conveys the combined meaning always hungry using both of
those words.

3.4 Structured outputs
The paradigm in Section 3.3 also provides a way of thinking about evaluation set-
tings in which structured outputs are expected, whether or not multiple references
are available. The basic idea is the same: to break the structured representations
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up into bags of smaller units and then compute precision and/or recall over those
smaller units. Metrics like BLEU and ROUGE apply this concept to sequences
(since sentences are sequences of tokens), which are broken up into bags of
n-grams. But the idea is significantly more general; for example, the PARSEVAL
measures (Abney et al., 1991) evaluate parsers by computing precision and recall
over constituents.19

Another way to compare structured outputs, particularly sequences, is edit dis-
tance or its variants. For example, speech recognition researchers compute the word
error rate between the system’s output and the reference transcription:

(5) WER = S + D + I
n

where S, D, and I are, respectively, the number of substitutions, deletions,
and insertions in a minimum-cost edit transforming the system output into the
reference. In machine translation, translation edit rate (TER) has gained currency.
TER “measures the amount of editing that a human would have to perform to
change a system output so it exactly matches a reference translation” (Snover et al.,
2006: 223).20

3.5 Output values on a scale
Some tasks involve producing a value on a measurement scale, e.g., the traditional
nominal, ordinal, interval, and ratio scales of Stevens (1946).21 Producing values
on nominal scales can be viewed simply as assigning a label or category to each
input (one can only meaningfully ask about equality, but not relative ordering or
magnitude). Comparisons of nominal outputs are addressed in Sections 3.1 and
chance-corrected agreement is discussed in Section 2.5.

Ordinal scales capture a common situation in which desired outputs represent
ratings, e.g., performing opinion analysis in order to assign a rating from one to
five stars given the text of a movie review. Output values are ordered with respect
to each other, but the intervals on the scale are not necessarily comparable. One
cannot assume that the ‘distance’ between a one-star and two-star review rep-
resents the same difference in quality as the distance between a four-star and a
five-star review – the number of stars merely tells you how the movies are ranked
relative to each other. In these situations, it is common to compare a system’s
output ratings against human ratings by computing the Spearman rank order cor-
relation coefficient, rs (sometimes ρ), over the set {(oi, ti)} of system outputs paired
with human ‘ground truth’ ratings.

Interval scales are similar to ordinal measurements, with the additional assump-
tion that differences between values constitute equivalent intervals. On the Celsius
scale, for example, the difference in temperature between 1◦C and 2◦C is the same
as the difference between 101◦C and 102◦C. Within NLP, comparisons of system
scores against human ratings often assume this interpretation of the ratings scale is
valid, and use the Pearson product–moment correlation (Pearson’s r) over {(oi, ti)}
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as a figure of merit. In machine translation, the validity of automatic evaluation
metrics like BLEU (Papineni et al., 2002), TER (Snover et al., 2006), and METEOR
(Banerjee & Lavie 2005) is sometimes supported by comparing automatic scores
with human ratings of accuracy and fluency, using Pearson’s r. Similarly, auto-
matic measures of semantic similarity are often evaluated via correlation with
human similarity ratings, using pairs of words (e.g., furnace, stove) as the items
for which similarity is being computed (Resnik 1999; Pedersen et al., 2007).

Ratio scales assume that there is meaning not only for sums and differences on
the scale but also for products and ratios. Within NLP, the most common quanti-
tative output on a ratio scale would be the assignment of probabilities to inputs,
often in the context of language modeling. For example, when evaluating a tri-
gram language model ptri, the test set consists of a text T = w1 . . . wN, and we
measure either the cross entropy

(6) H = − 1
N

N∑

i=1

log2 ptri(wi|wi−2wi−1)

or, more commonly, the perplexity, 2H. Notice that whenever the model makes an
accurate prediction in the test data, i.e., when the probability ptri(wi|wi−2wi−1) is
high for an observed instance of wi preceded by wi−2wi−1 in T, the contribution
to H is small. Intuitively, perplexity is measuring the extent to which the model
ptri correctly reduces ambiguity, on average, when predicting the next word in
T given its prior context. To put this another way, on average we are ‘k-ways
perplexed’ about what the next word will be, with k ranging from 1 to the vocab-
ulary size |V|.22 In the worst case, the model might be no better than rolling a fair

|V|-sided die, yielding perplexity k = 2− 1
N N×log 1

|V| = |V|, meaning that the model
provides no value at all in narrowing down the prediction of the next word. At
the other extreme, a model that always predicts the next word perfectly (giving it
a probability of 1 and therefore zero probability to all alternatives) would have a
perplexity of k = 20 = 1.

Sometimes evaluation involves comparing output in the form of a probability
distribution with ground truth that is also a distribution. In such cases, it is com-
mon to use Kullback–Leibler distance (also known as KL divergence or relative
entropy) to compare the two distributions:

(7) D(p||m) =
∑

x∈X
p(x) log

p(x)

m(x)

where p is the true probability distribution and m is the model being evaluated.
Kullback–Leibler distance is zero when m is identical to p, and otherwise it is
always positive. Its value can be interpreted as the cost, measured in bits of infor-
mation, of encoding events in X using the imperfect model m rather than the
truth p.23
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4 Case Study: Evaluation of Word-Sense
Disambiguation

Word-sense ambiguity is one of the earliest challenges singled out by researchers
interested in automatically processing natural language. Some well-known early
discussions of the problem include Weaver’s (1949) memorandum on automatic
translation, Bar-Hillel’s (1960) argument that automatic high-quality translation
requires comprehensive world knowledge in order to resolve lexical ambiguity,
and Wilks’s (1975) ‘preference semantics’ approach to semantic interpretation.
Word-sense disambiguation (WSD) is conventionally regarded as the task of iden-
tifying which of a word’s meanings (senses) is intended, given an observed use of
the word and an enumerated list of its possible senses. In this section, we briefly
review how approaches to WSD have been evaluated, with reference to the con-
cepts we introduced earlier in the chapter. For informative general treatments of
WSD, see Ide and Véronis (1998) and Agirre and Edmonds (2006), and for a more
comprehensive discussion of recent WSD evaluation, see Palmer et al. (2006).

4.1 Pre-Senseval WSD evaluation
From the earliest days, assessing the quality of WSD algorithms has been primarily
a matter of intrinsic evaluation, and “almost no attempts have been made to eval-
uate embedded WSD components” (Palmer et al., 2006: 76). Only very recently
have extrinsic evaluations begun to provide some evidence for the value of WSD
in end-user applications (Resnik 2006; Carpuat & Wu 2007). Until 1990 or so, dis-
cussions of the sense disambiguation task focused mainly on illustrative examples
rather than comprehensive evaluation. The early 1990s saw the beginnings of more
systematic and rigorous intrinsic evaluations, including more formal experimen-
tation on small sets of ambiguous words (Yarowsky 1992; Leacock et al., 1993;
Bruce & Wiebe 1994).24

Since word-sense disambiguation is typically defined as selecting one sense
among a number of possibilities, it is naturally regarded as a classification prob-
lem involving the labeling of words in context (Edmonds & Agirre 2008). Thus
evaluation has required answering six main questions.25

How do you define the ‘sense inventory,’ i.e., the set of possible sense labels for a word?
Early efforts involved a wide variety of answers to this question – for exam-
ple, Roget’s thesaurus, various paper dictionaries, and various machine readable
dictionaries. By the mid-1990s, WordNet (Fellbaum 1998) had emerged as a stan-
dard, easily available lexical database for English, and WordNet’s ‘synonym sets’
provided a widely used enumeration of senses for content words (nouns, verbs,
adjectives, and adverbs).

How do you select input items? Early experimentation focused on identifying a
small set of ‘interesting,’ highly ambiguous words, e.g., line and interest, and
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collecting a sample of those words within their sentential contexts. Cowie et al.
(1992) represent a notable exception, tackling the problem of disambiguating all
the content words in a sentence simultaneously.

How do you obtain labels (‘ground truth’) for items in the data set? In early studies it
was not uncommon for experimenters to label their own test sets, e.g., Yarowsky
(1992); Leacock et al. (1993); Bruce and Wiebe (1994). Miller et al. (1993) and Ng and
Lee (1996) introduced large-scale manual sense labeling of corpora using Word-
Net, laying the groundwork for WSD approaches involving supervised learning
techniques.

How do you compare system output against ground truth? In a setting where one
correct label is assumed per input, the most natural figure of merit is accuracy,
possibly accompanied by coverage if the system is permitted to abstain from label-
ing some inputs. Measures derived from cross-entropy (equation 6) can be used to
give partial credit to systems that assign a probability distribution over senses
(Resnik & Yarowsky 1999; Melamed & Resnik 2000).

What constitutes a lower bound on performance? An obvious but overly generous
lower bound is chance, selecting randomly among a word’s senses according to
a uniform distribution. A more sensible lower bound is defined by tagging each
instance of a word with its most frequent sense.26 It is also not uncommon to com-
pare WSD algorithms against easily implemented dictionary-based techniques,
e.g., Lesk (1986) or variants.

What constitutes an upper bound on performance? Word-sense disambiguation is a
classic example of a task where human inter-annotator agreement, and particu-
larly chance-corrected agreement, are used to define the limits on what can be
expected from automated algorithms (Artstein & Poesio 2008).

4.2 Senseval
In April 1997, a workshop entitled “Tagging Text with Lexical Semantics: Why,
What, and How?” was held in conjunction with the Conference on Applied
Natural Language Processing (Palmer & Light 1999). At the time, there was
a clear recognition that manually annotated corpora had revolutionized other
areas of NLP, such as part-of-speech tagging and parsing, and that corpus-driven
approaches had the potential to revolutionize automatic semantic analysis as well
(Ng 1997). Kilgarriff (1998: 582) recalls that there was “a high degree of consensus
that the field needed evaluation,” and several practical proposals by Resnik and
Yarowsky (1997) kicked off a discussion that led to the creation of the Senseval
evaluation exercises.

The Senseval-1 exercise involved ‘lexical sample’ tasks for English, French, and
Italian (Kilgarriff 1998), essentially a community-wide version of evaluations pre-
viously conducted by individual researchers for words like line (Leacock et al.,
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1993) and interest (Bruce & Wiebe 1994). As a community-wide figure of merit,
Resnik and Yarowsky (1997) had suggested using cross-entropy rather than accu-
racy in order to accommodate systems with probabilistic output, thereby allowing
a system A to obtain partial credit for word wi even if the correct sense csi was not
deemed most probable (cf. equation 6):

(8) H = − 1
N

N∑

i=1

log2 pA(csi|wi, contexti)

Senseval-1 adopted a variant of this suggestion proposed by Melamed and Resnik
(2000), which accounted for fine- to coarse-grained distinctions in a sense hier-
archy, and also permitted human annotators to specify a disjunction of correct
answers in ground truth sense labelings.27

Following Senseval-1, other Senseval exercises continued for some time as the
primary forum for evaluation of word-sense disambiguation. Senseval-2 dra-
matically expanded the scope of the exercise to include ten languages, using
WordNet-based sense inventories. It also introduced ‘all-words’ tasks, requir-
ing systems to assign a sense label to every content word within a document.
Senseval-3 (Mihalcea & Edmonds 2004) continued lexical sample and all-words
tasks, and added new semantic annotation tasks including semantic role labeling
(Gildea & Jurafsky 2002), creation of logical forms, and sense disambiguation of
the words in WordNet’s definitional glosses. More recently, Senseval has become
Semeval, a series of evaluation exercises for semantic annotation involving a much
larger and more diverse set of tasks (Agirre et al., 2009).

5 Case Study: Evaluation of Question Answering
Systems

In response to a short query representing an information need, a search engine
retrieves a list of ‘hits,’ or potentially relevant results. The user must then man-
ually examine these results to find the desired information. Given the amount of
information available today on the web and in other electronic formats, typical
queries retrieve thousands of hits. Question answering (QA) aims to improve on
this potentially frustrating interaction model by developing technologies that can
understand users’ needs expressed in natural language and return only the rele-
vant answers. From an algorithmic standpoint, question answering is interesting
in that it combines term-level processing techniques (from information retrieval)
with rich linguistic analysis. This section provides a case study on the evaluation
of question answering systems.

The earliest question answering systems focused on fact-based questions that
could be answered by named entities such as people, organizations, locations,
dates, etc. A few examples of these so-called ‘factoid’ questions are shown below:

• What position did Satchel Paige play in professional baseball?
• What modern country is home to the ancient city of Babylon?



“9781405155816_4_011” — 2010/5/8 — 11:59 — page 291 — #21

Evaluation of NLP Systems 291

• Who was responsible for the killing of Duncan in Macbeth?
• What Spanish explorer discovered the Mississippi River?

For several years, the locus of question answering evaluation has resided at the
Text Retrieval Conferences (TRECs).28 TREC is a yearly evaluation forum, orga-
nized by the US National Institute of Standards and Technology (NIST), which
brings together dozens of research groups from around the world to work on
shared information retrieval tasks. Different ‘tracks’ at TREC focus on different
problems, ranging from spam detection to biomedical text retrieval. Question
answering occupied one such track from 1999 to 2007. During this time, the
TREC QA tracks were recognized as the de facto benchmark for assessing ques-
tion answering systems. These annual forums provide the infrastructure and
support necessary to conduct large-scale evaluations on shared collections using
common test sets, thereby providing a meaningful comparison between different
systems. The TREC model has been duplicated and elaborated on by CLEF in
Europe and NTCIR in Asia, both of which have introduced cross-language ele-
ments. This case study focuses specially on the TREC evaluations, recognizing,
of course, that it merely represents one of many possible evaluation methodo-
logies.

The TREC QA tracks occurred on an annual cycle. Several months in advance
of the actual evaluation, the document collection to be used in the evaluation was
made available to all participants, as well as results from previous years (to serve
as training data). The actual evaluation occurred during the summer: participants
were required to ‘freeze’ their systems (i.e., to conclude system development)
before downloading the official test data. Results were due before a subsequent
deadline (typically, about a week). System results were evaluated manually by a
team of human assessors at NIST during the late summer or early fall. Each TREC
cycle concluded with a workshop in November where all participants were invited
to discuss their results and plan for next year.

One might think that evaluating answers to factoid questions would be straight-
forward, but even such a seemingly simple task has many hidden complexities.
First is the issue of granularity: although the goal of a question answering sys-
tem is to directly identify the answer, it might seem a bit odd if the system
returned only the exact answer (i.e., a short phrase). Consider the question ‘Who
was the first person to reach the South Pole?’ A response of ‘Roald Amundsen’
might not be very helpful, since it provides the user with little context (Who was
he? When was this feat accomplished? etc.). Giving the user a sentence such as
‘Norwegian explorer Roald Amundsen was the first person to reach the south
pole, on December 14, 1911’ would seem to be preferable – indeed, Lin et al.
(2003a) present results from a user study that confirms this intuition.29 In evaluat-
ing answers to factoid questions, what exactly should be assessed? Short phrases?
Sentences? A case can certainly be made for evaluating answers ‘in context,’ but
requiring exact answers makes the task more challenging and helps drive for-
ward the state of the art. TREC eventually chose the route of requiring short, exact
answers, accompanied by a document from which that answer was extracted.
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Another issue is the notion of support: the document from which an answer
derives should provide justification for the answer. Consider a sample question,
‘What Spanish explorer discovered the Mississippi River?’ An answer of ‘Her-
nando de Soto,’ extracted from a document that reads ‘the sixteenth-century
Spanish explorer Hernando de Soto, who discovered the Mississippi River . . .’
would be considered correct. However, the same answer extract from a document
that says ‘In 1542, Spanish explorer Hernando de Soto died while searching for
gold along the Mississippi River . . .’ would be considered unsupported, since the
passage does not actually answer the question. Of course, what counts as evidence
varies from assessor to assessor.

Finally, for a number of questions there are simply differences in interpretation.
A well-known example is the question ‘Where is the Taj Mahal?’ In addition to the
famous structure in Agra, India, there is the Taj Mahal casino in Atlantic City, New
Jersey. Whether or not the latter location was acceptable as an answer stirred quite
a debate among both TREC assessors and participants. Such questions are actually
not uncommon, especially since many noun phrases have ambiguous referents.
This was resolved, somewhat arbitrarily, by instructing assessors to interpret such
questions as always referring to the ‘most famous’ version of an entity.

Judging the correctness of system responses is the most difficult and time-
consuming aspect of TREC QA evaluations. Once the appropriate label has been
assigned (e.g., correct, inexact, unsupported, incorrect), computing scores for system
runs is relatively straightforward. The official metric varied from year to year, but
the most basic method to quantify system effectiveness is through accuracy – of
all the questions, how many were answered correctly.30

The summative nature of the TREC QA evaluations provides a fair, meaning-
ful comparison across a large number of systems. Official results from TREC are
viewed as authoritative, and the best systems are often used as yardsticks for
assessing the state of the field. There are, of course, downsides to the TREC ques-
tion answering tracks. Organizing and administering each evaluation consumes
a significant amount of resources and represents a significant investment from
both NIST and the participants (in choosing to participate). The other obvious
drawback of the TREC QA evaluations is the rigid yearly cycle.

To support formative evaluations for system development between each TREC
event, researchers have developed regular expressions for answers that mimic the
behavior of assessors, so that system output can be informally assessed without
the need for human intervention.31 The regular expressions were created by man-
ually examining actual system outputs and assessors’ judgments to capture correct
answers for each question. However, these answer patterns were simultaneously
too permissive and too restrictive. They were too restrictive in not being able to
capture all variants of correct answers – it was very difficult to predict a priori
all variant forms of correct answers, e.g., different ways of writing numbers and
dates. At the same time, the regular expressions were too permissive, in giving
credit to system responses that happened to coincidentally contain words in the
answer (without actually answering the question). Furthermore, the answer pat-
terns did not address the problem of support: although it was possible to use the
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list of relevant documents from the manual assessment as a guide, the space of
possible answer sources exceeded the number of documents that were assessed
manually, making the automatic assessment of support problematic.

Despite inadequacies with using regular expression answer patterns, they were
nevertheless useful for system development and for providing researchers with
rapid experimental feedback – which is exactly the purpose of formative eval-
uation tools. The combination of annual summative evaluations at TREC and
formative evaluations in between helped drive the state of the art in factoid
question answering.

6 Summary

Evaluation plays a crucial role in the development of language technology. In this
chapter, we have presented a set of fundamental evaluation concepts, descriptions
of the most widely used evaluation paradigms, and two case studies drawing
on the authors’ experiences with evaluation of word-sense disambiguation and
question answering systems.

NOTES

1 That book is a revised version of an earlier technical report (Galliers & Jones 1993). See
also Palmer et al. (1990).

2 This illustration is modeled on the NLP-enabled Wikipedia search engine introduced
by San Francisco-based Powerset in May 2008 (Auchard 2008). However, neither
author of this chapter has any connection with Powerset, and our examples should
not be relied on as an accurate depiction of its technology.

3 Notice that this example illustrates not only dependency tuple extraction but also one
way to do normalization of dependency tuples. In particular, observe how a defi-
nite generic noun phrase the . . . bulb has been represented by a plural generic bulbs; cf.
the semantic equivalence between The dodo is extinct and Dodos are extinct (McCawley
1993: 263ff). See Katz and Lin (2003) and references therein for additional discussion of
search using dependency tuples.

4 This quote is attributed to “evaluation theorist Bob Stake” in Westat (2002: 8).
5 See Dorr et al. (2005) and references therein for actual studies along these lines.
6 This distinction is similar in some ways to black-box versus glass-box evaluation. The

former is restricted to external measurements such as quality of output and speed,
while the latter can take into account internal characteristics such as the quality of
knowledge resources, as well as run-time internal workings of the system.

7 Note that it is conventionally assumed that the human annotators are working inde-
pendently. In a post hoc review of one annotator’s work, a second annotator is likely
to give the first annotator’s choice the benefit of the doubt if there is a gray area, even
though she might well have made a different choice when annotating independently.
Chapter 10 in this volume, LINGUISTIC ANNOTATION, discusses in detail a wide variety
of annotation projects, as well as general principles and processes for annotation.
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8 Supervised learning, a paradigm that currently dominates NLP systems develop-
ment, requires the availability of annotated training data. ‘Unsupervised’ systems do
not require annotated training data, but they are nonetheless evaluated using anno-
tated test data. Today NLP evaluation is rarely done in the absence of annotated test
material, though at times clever tricks have been used to automatically create ‘pseudo-
annotated’ test items without requiring an investment in actual annotation (e.g., Gale
et al., 1992a).

9 Recall from Section 2.2 that a summative evaluation can take place after a system has
been completely developed, or at some milestone in its development. In NLP research,
such milestones typically occur a few days (or a few hours, or a few minutes) before a
conference submission deadline.

10 Other forms of non-point estimation are also sometimes used, e.g., bootstrapping,
which involves sampling with replacement rather than creating a partition (Efron &
Gong 1983; Yeh 2000b; Krymolowski 2001).

11 Though see comments on the most frequent baseline in Section 4.
12 For a highly approachable introduction to statistical hypothesis testing, we recommend

Gonick and Smith (1994).
13 According to Doug Oard (personal communication), Karen Sparck Jones advocated

this threshold because it has a clear interpretation in terms of the user’s experience. He
comments: “.10 corresponds roughly to finding one more document near the top of the
list, and 0.05 corresponds roughly to finding one more document near the top of the
list about half the time. These are usually applied to MAP [mean average precision]
in practice, where the correspondence is quite approximate to those moves, but in
precision at 10 the correspondence is perfect.”

14 In contrast to the IR example, it must be noted that these absolute gains have no direct
interpretation in terms of improvements in the user experience.

15 See discussion of the Senseval ‘lexical sample’ paradigm in Section 4.
16 This notation, based on Artstein and Poesio (2008), makes it easy to generalize from

simple agreement to chance-correct agreement as discussed in Section 2.5. Our A is
equivalent to their observed inter-annotator agreement A0 between annotators, where
one annotator is the NLP system and the other is the ground truth.

17 For example, Palmer et al. (2006) define precision, recall, accuracy, and coverage in such a
way that accuracy and recall are synonymous. Other closely related concepts include
misses versus false alarms, sensitivity versus specificity, and Type I versus Type II
errors.

18 The list of relevant documents forms an essential component of a test collection, a
standard experimental tool in information retrieval research. Test collections are typ-
ically constructed through large-scale system evaluations, such as the Text Retrieval
Conferences (TRECs) (for more details, see Harman 2005).

19 The original version of the metrics considered constituents to match in the gold stan-
dard and system-output parse-trees as long as they bracketed the same span of tokens,
regardless of constituent label. Requiring the non-terminal symbols to also match is
a straightforward and rather stricter variant. The PARSEVAL metrics also included a
third measure, ‘crossing brackets,’ that penalizes irreconcilable differences between
the system parse and the gold standard; for example, (the (old men) and women) can be
reconciled with (the ((old men) and women)), since it is just missing one pair of brackets,
but there is no way to reconcile it with (the old (men and women)).

20 Every necessary edit constitutes an error, and so the acronym TER is also sometimes
expanded as ‘translation error rate.’ Snover et al. (2006) use ‘edit,’ but Mathew Snover
et al. (2005) used ‘error.’
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21 The use of these data types is not without controversy (see, e.g., Velleman & Wilkinson
1993).

22 This nice connection between the formal definition and the everyday idea of being
perplexed is suggested in the Wikipedia page for Perplexity, June 2009.

23 Notice that in contrast to Kullback–Leibler distance, the computation of perplexity did
not require knowing the ‘true’ distribution (for discussion, see Jurafsky & Martin 2009:
116ff.)

24 Yarowsky (1992: 458) observes that most previous authors had “reported their results
in qualitative terms.” He also cites a half dozen exceptions starting with Lesk (1986).

25 We have structured this discussion roughly following Palmer et al. (2006).
26 It must be noted that selecting the most frequent sense is best viewed as a supervised

approach, and therefore an unfairly rigorous lower bound for unsupervised tech-
niques, since accurately computing sense frequencies requires labeled training data.
McCarthy et al. (2004) introduced an unsupervised method for finding predominant
word senses in untagged text.

27 See Artstein and Poesio (2008) for an insightful analysis of this evaluation metric in the
context of measuring inter-coder agreement.

28 Details about TREC can be found at http://trec.nist.gov/
29 Note that this finding illustrates potential differences between intrinsic and extrinsic

evaluations.
30 See TREC QA tracks overview papers for details of different evaluation metrics that

have been adopted.
31 For many years, Ken Litkowski headed up this effort.
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12 Speech Recognition

STEVE RENALS AND THOMAS HAIN

1 Introduction

By automatic speech recognition we mean the process of speech-to-text transcription:
the transformation of an acoustic signal into a sequence of words, without nec-
essarily understanding the meaning or intent of what was spoken. Recognition
without understanding is not always possible since some semantic context may be
required, for instance, to disambiguate Will the new display recognize speech? from
Will the nudist play wreck a nice beach? Automatic speech recognition corresponds to
answering the question who spoke what when?;1 in the general case this may involve
transcribing the speech of two or more people taking part in a conversation, in
which the speakers frequently talk at the same time. The solution to this task is
often considered in two parts: speaker diarization (who spoke when?), and speech-to-
text transcription (what did they say?). Of course, the speech signal contains much
more information than just the words spoken and who said them. Speech acoustics
also carries information about timing, intonation, and voice quality. These paralin-
guistic aspects convey information about the speaker’s emotion and physiology,
as well as sometimes disambiguating between different possible meanings. In this
chapter, however, we shall focus on automatic speech-to-text transcription.

Speech-to-text transcription has a number of applications including the dicta-
tion of office documents, spoken dialogue systems for call centers, hands-free
interfaces to computers, and the development of speech-to-speech translation
systems. Each of these applications is typically more restricted than the general
problem which requires the automatic transcription of naturally spoken contin-
uous speech, by an unknown speaker in any environment. This is an extremely
challenging task. There are several sources of variability which we cluster into
four main areas: the task domain, speaker characteristics, speaking style, and the
recognition environment. In many practical situations, the variability is restricted.
For example, there may be a single, known speaker, or the speech to be recog-
nized may be carefully dictated text rather than a spontaneous conversation, or
the recording environment may be quiet and non-reverberant. In speech-to-text
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transcription a distinction is made between parts addressing acoustic variabil-
ity (acoustic modeling), and parts addressing linguistic uncertainty (language
modeling).

1.1.1 Task domain Aspects of the specific speech recognition task which affect
the difficulty of the speech transcription process include the language and the
size of the vocabulary to be recognized, and whether the speech comes from
a limited domain. Different languages present different challenges for a speech
recognizer. For example, agglutinative languages, such as Turkish and Finnish,
have larger vocabularies than non-agglutinative languages (such as English) due
to words formed from the concatenation of multiple morphemes. This has an
effect on the lexical and language model. For English, a speech recognition sys-
tem is considered to have a large vocabulary if it has the order of 104 word types
in its vocabulary; a comparable system for a language such as Finnish, however,
may have two orders of magnitude more word types. As another example, tonal
languages, such as Chinese, use pitch movements to distinguish small sets of
words, which has an effect on acoustic modeling.

The number of word types in the vocabulary of a speech recognizer gives an
indication of the ‘size’ of the problem that may be misleading, however; perplex-
ity2 of the language model gives an indication of effective size. A spoken dialogue
system concerned with stock prices, for instance, may have a relatively large
vocabulary (due to the number of distinct words occurring in company names)
but a small perplexity.

1.1.2 Speaker characteristics Different speakers have differences in their
speech production anatomy and physiology, speak at different rates, use differ-
ent language, and produce speech acoustics with different degrees of intrinsic
variability. Other differences in speaker characteristics arise from systematic vari-
ations such as those arising from speaker age and accent. One way to deal with
this variability is through the construction of speaker-dependent speech recogni-
tion systems, but this demands a new system to be constructed for each speaker.
Speaker-independent systems, on the other hand, are more flexible in that they are
designed to recognize any speaker. In practice, a speaker-dependent speech recog-
nition system will tend to make fewer errors than a speaker-independent system.
Although speaker adaptation algorithms (Section 2.5) have made great progress
over the past 15 years, it is still the case that the adaptability and robustness to
different speakers exhibited by automatic speech recognition systems is very
limited compared with human performance.

1.1.3 Style In the early days of automatic speech recognition, systems solved
the problem of where to locate word boundaries by requiring the speaker to leave
pauses between words: the pioneering dictation product Dragon Dictate (Baker
1989) is a good example of a large-vocabulary isolated word system. However,
this is an unnatural speaking style and most research in speech recognition is
focused on continuous speech recognition, in which word boundary information is
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not easily available. The problem of continuous speech recognition thus involves
segmentation into words, as well as labeling each word.

Until the mid-1990s most speech recognition research followed research in
acoustic phonetics, using recordings of planned speech recorded in laboratory or
quiet office conditions. However, it has become apparent that more natural styles
of speech, as observed in spontaneous conversation, result in considerably more
acoustic variability: this is reflected in the increased word error rates for conversa-
tional or spontaneous speech recognition compared with the recognition of dictation
or other planned speech. A modern speech recognition system for the transcription
of dictated newspaper text results in a typical word error rate of 5–10 percent;
a state-of-the-art conversational speech recognition system will result in a word
error rate of 10–30 percent when transcribing spontaneous conversations (Chen
et al., 2006b; Hain et al., 2007).

1.1.4 Environment Finally the acoustic environment in which the speech is
recorded, along with any transmission channel can have a significant impact on
the accuracy of a speech recognizer. Outside of quiet offices and laboratories, there
are usually multiple acoustic sources including other talkers, environmental noise
and electrical or mechanical devices. In many cases, it is a significant problem to
separate the different acoustic signals found in an environment. In addition, the
microphone on which the speech is recorded may be close to the talker (in the case
of a headset or telephone), attached to a lapel, or situated on a wall or tabletop.
Variations in transmission channel occur due to movements of the talker’s head
relative to the microphone and transmission across a telephone network or the
internet. Probably the largest disparity between the accuracy of automatic speech
recognition compared with human speech recognition occurs in situations with
high additive noise, multiple acoustic sources, or reverberant environments.

1.2 Learning from data
The standard framework for speech recognition is statistical, developed in the
1970s and 1980s by Baker (1975), a team at IBM (Jelinek 1976; Bahl et al., 1983),
and a team at AT&T (Levinson et al., 1983; Rabiner 1989). In this formulation
the most probable sequence of words W∗ must be identified given the recorded
acoustics X and the model θ :

W∗ = arg max
W

P(W | X, θ)(1)

= arg max
W

p(X | W, θ)P(W | θ)

p(X | θ)
(2)

= arg max
W

p(X | W, θ)P(W | θ)(3)

= arg max
W

log p(X | W, θ) + log P(W | θ)(4)
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Equation (1) specifies the most probable word sequence as the one with the highest
posterior probability given the acoustics and the model. Equation (2) follows from
(1) through the application of Bayes’s theorem; since p(X | θ) is independent of the
word sequence, we usually work with (3), or its log-domain version (4). P denotes
a probability and p denotes a probability density function (pdf). In what follows,
the dependence on the model θ (which is usually fixed) is suppressed to avoid
notational clutter.

Equations (3) or (4) may be regarded as splitting the problem into two compo-
nents: language modeling, which is concerned with estimating the prior probability
of a word sequence P(W), and acoustic modeling, in which the likelihood of the
acoustic data given the words, p(X | W), is estimated. The parameters of both of
these models are normally learned from large annotated corpora of data. Obtain-
ing the optimal word sequence W∗ is the search or decoding problem, discussed
further in section 3.

The language model P(W), which is discussed further in Chapter 3, STATISTICAL
LANGUAGE MODELING, models a word sequence by providing a predictive prob-
ability distribution for the next word based on a history of previously observed
words. Since this probability distribution does not depend on the acoustics,
language models may be estimated from large textual corpora. Of course, the
statistics of spoken word sequences are often rather different from the statistics
of written text. The conventional n-gram language model, which approximates
the history as the immediately preceding n − 1 words, has represented the state of
the art for large-vocabulary speech recognition for 25 years. It has proven difficult
to improve over this simple model (Jelinek 1991; Rosenfeld, 2000). Attempts to do
so have focused on improved models of word sequences (e.g., Bengio et al., 2003;
Blitzer et al., 2005; Teh 2006; Huang & Renals 2007) or the incorporation of richer
knowledge (e.g., Bilmes & Kirchhoff 2003; Emami & Jelinek 2005; Wallach 2006).

In this chapter we focus on acoustic modeling, and the development of systems
for the recognition of conversational speech. In particular we focus on the train-
able hidden Markov model/Gaussian mixture model (HMM/GMM) for acoustic
modeling, the choice of modeling unit, and issues including adaptation, robust-
ness, and discrimination. We also discuss the construction of a fielded system for
the automatic transcription of multiparty meetings.

1.3 Corpora and evaluation
The statistical framework for ASR is extremely powerful: it is scalable and effi-
cient algorithms to estimate the model parameters from a corpus of speech data
(transcribed at the word level) are available.

The availability of standard corpora, together with agreed evaluation protocols,
has been very important in the development of the field. The specification, col-
lection, and release of the TIMIT corpus (Fisher et al., 1986) marked a significant
point in the history of speech recognition research. This corpus, which has been
widely used by speech recognition researchers for over two decades, contains
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utterances from 630 North American speakers, and is phonetically transcribed and
time-aligned. The corpus defined training and test sets, together with a commonly
agreed evaluation metric (phone error rate – analogous to word error rate dis-
cussed below). This resulted in a training and evaluation protocol enabling the
exact comparison of results between researchers.

Since the release of TIMIT, many speech corpora with corresponding evalu-
ation protocols have been released. These include corpora of domain-specific
read speech (e.g., DARPA Resource Management), read aloud newspaper text
(e.g., Wall Street Journal), domain-specific human–computer dialogues (e.g., ATIS),
broadcast news recordings (e.g., Hub4), conversational telephone speech (e.g.,
Switchboard), and recordings of multiparty meetings (e.g., AMI). Many of these
corpora are available from the Linguistic Data Consortium (www.ldc.upenn.edu);
the AMI corpus is available from http://corpus.amiproject.org. The careful
recording, transcription, and release of speech corpora has been closely connected
to a series of benchmark evaluations of automatic speech recognition systems,
primarily led by the US National Institute of Standards and Technology (NIST).
This cycle of data collection and system evaluation has given speech recognition
research a solid objective grounding, and has resulted in consistent improvements
in the accuracy of speech recognition systems (Deng & Huang 2004) – although
Bourlard et al. (1996), among others, have argued that an overly strong focus on
evaluation can lead to a reduction in innovation.

If the speech recognition problem is posed as the transformation of an acoustic
signal to a single stream of words, then there is widespread agreement on word
error rate (WER) as the appropriate evaluation measure. The sequence of words
output by the speech recognizer is aligned to the reference transcription using
dynamic programming. The accuracy of the speech recognizer may then be esti-
mated as the string edit distance between the output and reference strings. If there
are N words in the reference transcript, and alignment with the speech recognition
output results in S substitutions, D deletions, and I insertions, the word error rate
is defined as:

WER = 100 · (S + D + I)
N

%(5)

Accuracy = (100 − WER)%(6)

In the case of a high number of insertions, it is possible for the WER to be above 100
percent. Computation of WER is dependent on the automatic alignment between
the reference and hypothesized sequence of words. As word timings are not used
in the process this may lead to underestimates of true error rate in situations of
considerable mismatch. In practice, the transition costs used in the dynamic pro-
gramming algorithm to compute the alignment are standardized and embedded in
standard software implementations such as the NIST sclite tool,3 or the HResults
tool in the HTK speech recognition toolkit.4

More generally, the desired output of a speech recognition system cannot always
be expressed as a single sequence of words. Multiparty meetings, for instance,
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are characterised by multiple overlapping speakers. A measure of transcription
quality for meetings might usefully include attributing each word to a meeting
participant, as well as including of timing information, to take account of overlaps.

2 Acoustic Modeling

The statistical formulation of the speech recognition problem outlined in Section
1.2 provides the basic framework for all state-of-the-art systems. The acoustic
model, which is used to estimate p(X | W), may be interpreted as a generative
model of a word sequence. Such a model must be decomposable into smaller
units, since it is infeasible to estimate a separate model for each word sequence.
Hidden Markov models (HMMs) (Baker 1975; Poritz 1988; Rabiner 1989; Jelinek
1998) have proven to be very well suited to this task.

HMMs are probabilistic finite state machines, which may be combined hier-
archically to construct word sequence models out of smaller units. In large-
vocabulary speech recognition systems, word sequence models are constructed
from word models, which in turn are constructed from subword models (typically
context-dependent phone models) using a pronunciation dictionary.

HMM acoustic models treat the speech signal as arising from a sequence of
discrete phonemes, or ‘beads-on-a-string’ (Ostendorf 1999). Such a modeling
approach does not (directly) take into account processes such as coarticulation, a
phenomenon in which the place of articulation for one speech sound depends
on a neighboring speech sound. For instance, consider the phoneme /n/ in the
words ‘ten’ and ‘tenth.’ In ‘ten,’ /n/ is dental, with the tongue coming into
contact (or close to) the upper front teeth; in ‘tenth,’ /n/ is alveolar, with the
tongue farther back in the mouth (coming into contact with the alveolar ridge).
Coarticulation gives rise to significant context-dependent variability. The use of
context-dependent phone modeling (Section 2.3) aims to mitigate these effects,
as does the development of richer acoustic models that take account of speech
production knowledge (King et al., 2007).

2.1 Acoustic features
Speech recognition systems do not model speech directly at the waveform level;
instead signal processing techniques are used to extract the acoustic features that
are to be modeled by an HMM.5 A good acoustic feature representation for speech
recognition will be compact, without losing much signal information. In prac-
tice the acoustic feature representations used in speech recognition do not retain
phase information, nor do they aim to retain information about the glottal source
which (for many languages) is relatively independent of the linguistic message.
Figure 12.1 shows a speech waveform and the corresponding spectrogram, a rep-
resentation that shows the energy of the speech signal at different frequencies.
Although a variety of representations are used in speech recognition, perhaps
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Figure 12.1 Waveform (top) and spectrogram (bottom) of conversational utterance
‘no right I didn’t mean to imply that.’

the most widely used are Mel frequency cepstral coefficients (MFCCs) (Davis &
Mermelstein 1980). MFCCs are based on the log spectral envelope of the speech
signal, transformed to a non-linear frequency scale that roughly corresponds to
that observed in the human auditory system. This representation is smoothed
and orthogonalized by applying a discrete cosine transform, resulting in a cep-
stral representation. These acoustic feature vectors are typically computed every
10 ms, using a 25 ms Hamming window within the speech signal. Perceptual linear
prediction (PLP) is a frequently used alternative acoustic feature analysis, which
includes an auditory-inspired cube-root compression and uses an all-pole model
to smooth the spectrum before the cepstral coefficients are computed (Hermansky
1990).

Speech recognition accuracy is substantially improved if the feature vectors are
augmented with the first and second temporal derivatives of the acoustic features
(sometimes referred to as the deltas and delta-deltas), thus adding some infor-
mation about the local temporal dynamics of the speech signal to the feature
representation (Furui 1986). Adding such temporal information to the acoustic
feature vector introduces a direct dependence between successive feature vec-
tors, which is not usually taken account of in acoustic modeling; a mathematically
correct treatment of these dependences has an impact on how the acoustic model is
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normalized – since fewer feature vector sequences will be consistent – and results
in an approach that may be viewed as modeling an entire trajectory of feature
vectors (Tokuda et al., 2003; Bridle 2004; Zhang & Renals 2006; Zen et al., 2007).

Many state-of-the-art ASR systems use a 39-dimensional feature vector, corre-
sponding to twelve MFCCs (or PLP cepstral coefficients), plus energy, along with
their first and second derivatives. These acoustic feature representations have co-
evolved with the basic acoustic models used in ASR: HMMs using multivariate
Gaussian or Gaussian mixture output probability density functions, discussed in
the next section. A particular advantage of cepstral representations compared with
spectral representations is the decorrelation of cepstral coefficients, compared with
the high correlations observed between neighboring spectral coefficients. Such
decorrelations are very well matched with the distributional assumptions that
underlie systems based on Gaussians with diagonal covariance matrices.6 Fur-
thermore, the compact smoothed representations obtained when using MFCC or
PLP coefficients results in component multivariate Gaussians of lower dimension
than would be obtained if spectral representations were used.

Hermansky et al. (2000) introduced a class of acoustic features that attempt to
represent discriminant phonetic information directly. These so-called tandem fea-
tures, derived from phonetic classification systems, estimate phone class posterior
probabilities and have proven to be successful when used in conjunction with
conventional acoustic features. This is discussed further in Section 5.2.

2.2 HMM/GMM framework
The statistical framework for ASR, introduced in Section 1.2, decomposes a speech
recognizer into acoustic modeling and language components (equations 3 and 4).
Conceptually, the process works by estimating the probability of a hypothesized
sequence of words W given an acoustic utterance X using a language model to esti-
mate P(W) (see Chapter 3, STATISTICAL LANGUAGE MODELING) and an acoustic
model to estimate p(X|W).

We can regard the machine that estimates p(X|W) as a generative model, in which
the observed acoustic sequence is regarded as being generated by a model of the
word sequence. Acoustic models in speech recognition are typically based on hid-
den Markov models. An HMM is a probabilistic finite state automaton, consisting
of a set of states connected by transitions, in which the state sequence is hidden.
Instead of observing the state sequence, a sequence of acoustic feature vectors is
observed, generated from a pdf attached to each state. A hierarchical approach is
used to construct HMMs of word sequences from simpler basic HMMs. The build-
ing blocks of an HMM-based speech recognition system are HMMs of ‘subword
units,’ typically phones. A dictionary of pronunciations is used to build word
models from subword models, and models of word sequences are constructed
by concatenating word models. This approach, illustrated in Figure 12.2, enables
information to be shared across word models: the number of distinct HMM states
in a system is determined by the size of the set of subword units. In the simplest
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Figure 12.2 HMM-based hierarchical modeling of speech. An utterance model is
constructed from a sequence of word models, which are each in turn constructed from
subword models.
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Figure 12.3 Representation of an HMM as a parameterized stochastic finite state
automaton (left) and in terms of probabilistic dependences between variables (right).

case, an English speech recognition system might be constructed from a set of
40–60 base phone models with three states each. However, there is a lot of acous-
tic variability between different observed examples of the same phone. Much of
this variability can be accounted for by the context in which a subword appears,
and more detailed acoustic models can be achieved using context-dependent sub-
words, as discussed in Section 2.3. Between-word silence can be represented by
special HMMs for silence and, since between-word silence is rare in continuous
speech, adding a so-called ‘skip’ transition to make their existence optional.

An HMM is parameterized by an initial or prior distribution over the states qi,
P(qi), a state transition distribution P(qj | qi), and an output pdf for each state
p(x | qi), where x is an acoustic feature vector. This is illustrated in Figure 12.3
(left) in terms of the model parameters, and in terms of the dependences between
the state and acoustic variables in Figure 12.3 (right).
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Each state has an output pdf defining the relation between the state and the
acoustic vectors. A simple form for the output pdf for state qi is a d-dimensional
Gaussian, parameterized by a mean vector μi and a covariance matrix Σ i:

(7) p(x|qi) = N (x; μi, Σ i) = 1
(2π)d/2|Σ i|1/2

exp
(

−1
2
(x − μi)

TΣ−1
i (x − μi)

)

For a typical acoustic vector comprising 12th-order MFCCs plus energy, with first
and second derivatives, d = 39.

Modeling speech using hidden Markov models makes two principal assump-
tions, illustrated in the graphical model shown in Figure 12.3 (left):

(1) Markov process. The state sequence in an HMM is assumed to be a first-order
Markov process, in which the probability of the next state transition depends
only on the current state: a history of previous states is not necessary.

(2) Observation independence. All the information about the previously
observed acoustic feature vectors is captured in the current state: the like-
lihood of generating an acoustic vector is conditionally independent of
previous acoustic vectors given the current state.

These assumptions mean that the resultant acoustic models are computation-
ally and mathematically tractable, with parameters that may be estimated from
extremely large corpora. It has been frequently argued that these assumptions
result in models that are unrealistic, and it is certainly true that a good deal
of acoustic modeling research over the past two decades has aimed to address
the limitations arising from these assumptions. However, the success of both
HMM-based speech synthesis (Yamagishi et al., 2009) and HMM-based speech
recognition is evidence that it is perhaps too facile to simply assert that HMMs are
an unrealistic model of speech.

Acoustic modeling using HMMs has become the dominant approach due to
the existence of recursive algorithms which enable some key computations to be
carried out efficiently. These algorithms arrive from the Markov and observation
independence assumptions. To determine the overall likelihood of an observation
sequence X = (x1, . . . , xt, . . . , xT) being generated by an HMM, it is necessary to
sum over all possible state sequences q1q2 . . . qT that could result in the observa-
tion sequence X. Rather than enumerating each sequence, it is possible to compute
the likelihood recursively, using the forward algorithm. The key to this algorithm is
the computation of the forward probability αt(qj) = p(x1, . . . , xt, qt = qj | λ), the
probability of observing the observation sequence x1 . . . xt and being in state qj
at time t. The Markov assumption allows this to be computed recursively using a
recursion of the form:

(8) αt(qj) =
N∑

i=1

αt−1(qi)aijbj(xt)

This recursion is illustrated in Figure 12.4.
The decoding problem for HMMs involves finding the state sequence that is

most likely to have generated an observation sequence. This may be solved using
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Figure 12.4 Forward recursion to estimate αt(qj) = p(x1, . . . , xt, qt = qj | λ).

a dynamic programming algorithm, often referred to as Viterbi decoding, which
has a very similar structure to the forward algorithm, with the exception that the
summation at each time step is replaced by a max operation, since just the most
probable state sequence is required. This is discussed further in Section 3.

By training we mean the estimation of the parameters of an HMM: the transition
probabilities and the parameters of the output pdf (mean vector and covariance
matrix in the case of a Gaussian). The most straightforward criterion to use for
parameter estimation is maximum likelihood, in which the parameters are set
so as to maximize the likelihood of the model generating the observed train-
ing data. Other training criteria may be used, such as maximum a posteriori
(MAP) or Bayesian estimation of the posterior distribution, and discriminative
training (Section 2.4). Maximum likelihood training can be approximated by con-
sidering the most probable state–time alignment, which may be obtained using
the Viterbi algorithm. Given such an alignment, maximum likelihood parame-
ter estimation is straightforward: the transition probabilities are estimated from
relative frequencies, and the mean and covariance parameters from the sample
estimates. However, this approach to parameter estimation considers only the
most probable path, whereas the probability mass is in fact factored across all
possible paths. Exact maximum likelihood estimation can be achieved using the
forward–backward or Baum–Welch algorithm (Baum 1972), a specialization of the
expectation-maximization (EM) algorithm (Dempster et al., 1977). Each step of
this iterative algorithm consists of two parts. In the first part (the E-step) a prob-
abilistic state–time alignment is computed, assigning a state occupation probability
to each state at each time, given the observed data. Then the M-step estimates the
parameters by an average weighted by the state occupation probabilities. The EM
algorithm can be shown to converge in a local maximum of the likelihood func-
tion. The key to the E-step lies in the estimation of the state occupation probability,
γt(qj) = P(qt = qj | X, λ), the probability of occupying state qj at time t given the
sequence of observations. The state occupation probabilities can also be computed
recursively:

(9) γt(qj) = 1
αT(qE)

αt(qj)βt(qj)
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where αt(qj) is the forward probability for state qj at time t, βt(qj) = p(xt+1, xt+2, xT |
qt = qj, λ) is called the backward probability, and αT(qE) is a normalization factor
(the forward probability for the end state qE at the end of the observation sequence,
time T). The backward probabilities are so called because they may be computed
by a recursion that goes backwards in time.

The output pdfs are the most important part of this model, and restricting them
to single Gaussians results in a significant limitation on modeling capability. In
practice, Gaussian mixture model (GMMs) are used as output pdfs. A GMM is a
weighted sum of Gaussians:

(10) p(x|qi) =
K∑

k

cikN (x; μik, Σ ik)

where we have a mixture of K Gaussian components, with mixture weights cik.
Training a GMM is analogous to HMM training: for HMMs the state is a hidden
variable, for GMMs the mixture component is a hidden variable. Again the EM
algorithm may be employed, with the E-step estimating the component occupation
probabilities, and the M-step updating the means and covariances using a weighted
average.

2.3 Subword modeling
As discussed in Section 2.2, and illustrated in Figure 12.2, there is no need to train
individual HMMs for each sentence. Instead, the sentence HMMs can be con-
structed by concatenating word HMMs, which in turn may be constructed from
subword HMMs. This is necessary as training of independent word models is not
feasible for most applications: the Oxford English Dictionary contains more than
250,000 entries; for morphologically rich languages, such as Finnish or Turkish,
there are many more possible words.7 If we assume that at least 50 samples per
word are necessary and take the usually observed average word duration of half
a second, the amount of transcribed speech data for English would be approxi-
mately 1,700 hours. This calculation is an underestimate, however, as it does not
take into account contextual effects, and assumes a uniform distribution over all
words. Only very recently have such amounts of annotated data been available,
and only for US English. Thus subword modeling seems an attractive alternative:
for example the words of British English can be described using a set of about 45
phonemes.

It is possible to write the pronunciation of words in a language with a finite set
of symbols, hence one can associate an HMM with each. In the TIMIT database a
set of 39 phones is often used: the ARPABET, a phoneme set defined for speech
recognition in US English, identifies 40 distinct symbols. By using HMMs for indi-
vidual phonemes, several important changes are made: a dictionary describing
the transitions from words to phonemes has become necessary; the number of
units has been drastically reduced; and the length of the units have become more
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/r/ /eh/ /d/

/iy/

Figure 12.5 Hidden Markov models for phonemes can be concatenated to form models
for words. Parallel paths indicate pronunciation variants.

similar. Although the TIMIT corpus was phonetically labeled, this is not a nec-
essary requirement for using models for phonemes, as the phoneme sequence
can be inferred from the word sequence using the dictionary and the sentence
HMM is constructed by phoneme model concatenation. One issue arises in that the
mapping from phonemes to words is not unique, e.g., the word ‘read,’ can be pro-
nounced in two ways, /r iy d/ and /r eh d/. However, different pronunciations
can be represented by using parallel paths in the sentence HMM (see Figure 12.5).
Even more so, different weights can be given to these variants. Pronunciation
modeling and/or lexical modeling (e.g., Strik & Cucchiarini 1999) usually focuses
on how to best encode pronunciation variability.

Having fewer than 100 small HMMs does not allow to capture the large vari-
ability of speech, caused by individual variation in articulation and speaker
differences (so called intra- and inter-speaker variability). In an attempt to deal
with problems arising from acoustic phonetic context, such as coarticulation,
many state-of-the-art systems are based on context-dependent phone models, often
called triphones.

Triphone modeling has at its heart the idea of basic sounds that differ depend-
ing on their context. In particular, the context here is the immediate neighboring
phonemes. Take for example the word ‘sound’ and its ARPABET representation
/s ow n d/. Instead of having a model for the phoneme /ow/ a model for /ow/
with left context /s/ and right context /n/ is constructed, typically written in the
form [s-ow+n]. Taking a typical phoneme inventory size of 45 the number of such
triphone models has now risen to 91,125 while retaining the trivial mapping from
words to models. In order to avoid the same issues as with word models however,
one, can start to declare some triphones as equivalent, e.g., /ow/ may sound very
similar to any fricative appearing beforehand.

Most state-of-the-art speech recognition systems make use of clustered tri-
phones or even phone models in a wider context (e.g., quin-/penta-phones,
Woodland et al., 1995). A natural grouping approach would be knowledge-based
(e.g., Hayamizu et al., 1988), but it has been repeatedly shown that automatic tech-
niques give superior performance. As in many machine learning approaches clus-
tering can operate bottom-up or top-down. The use of agglomerative clustering



“9781405155816_4_012” — 2010/5/14 — 17:19 — page 312 — #14

312 Steve Renals and Thomas Hain

(Hwang & Huang 1992) allows robust modeling but, if not all triphones have been
observed in the training data, it is unclear how to represent words containing those
triphones. Instead classification and regression trees (CARTs) were found to serve
well in both cases (Bahl et al., 1991; Young et al., 1994). Here a binary decision
tree is grown from a predefined set of questions about the neighboring phonemes
(e.g., if the left neighbor is a plosive). When growing the tree, at each point the one
question yielding the highest gain in likelihood is chosen. Tree growing is aban-
doned if the gain in likelihood falls below a predefined threshold. It is standard to
cluster HMM states rather than whole models in this way and normally one deci-
sion tree per phoneme and per state position is derived. On average decision trees
associated with vowels have greater depth than those associated with consonants.

Several weaknesses of the CART approach are known. For example, when
clustering it is assumed that states are well represented by a single Gaussian
density. Also, hard decisions are made on classes which are better represented
as hidden variables (Hain 2001), and the dependency on neighboring phonemes
is not the only property that influences sounds. Alternatives include articulatory
representations or factorization of graphical models (King et al., 2007).

In English the relationship between sounds and the written forms is looser than
in other languages, for example German or Turkish. For these languages it was
shown that using the graphemes directly for modeling can have good results
(Killer et al., 2003), thus limiting the need for a manually crafted pronunciation
lexicon. For tonal languages, questions on tonal context, including the current
phoneme, can significantly improve performance (Cao et al., 2000).

2.4 Discriminative training
Learning of HMM parameters can be approached in fundamentally different
ways. While generative learning tries to yield good estimates of the probabil-
ity density of training samples, discriminative learning drives directly at finding
those parameters that yield best classification performance. Within the generative
family, maximum likelihood (ML) training is the most widely used scheme. The
associated objective function is given by

FML (θ) = log p (X | θ)

which implies that the parameters θ are chosen to maximize the likelihood of the
training data. As discussed in Section 2.2, ML training can be efficiently carried
out for HMMs, because the Baum–Welch algorithm enables the efficient compu-
tation of the state/component occupation probabilities, supplies good asymptotic
guarantees, and is relatively easy to code. Although the result of the algorithm is
sensitive to the initialization of parameters, practical experience has shown that
this is usually of little impact on error rates obtained.

Discriminative training is based on the idea that, given finite training data and
a mismatch of the model being trained to the true model, it is better to focus
on learning the boundaries between the classes. Discriminative approaches have
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become increasingly popular and several techniques have been developed over
the past two decades. The most important criteria are maximum mutual informa-
tion (MMI), minimum classification error (MCE), and minimum Bayes risk (MBR).
All of these have in common that not only the correct, i.e., reference, sequence
is used in training but also all incorrect word sequences. Since summation over
all possible incorrect word sequences is not feasible for large-vocabulary speech
recognition, the set of competitors is usually constrained to those that have signif-
icant probability mass compared with the correct sequence. This implies that the
output of recognition of the complete training set must be generated, usually a
computationally expensive process.

MCE training (Juang & Katagiri 1992) is based on the idea that model param-
eters only need correction if misrecognition occurs. The objective function to be
maximized is based on the ratio between the likelihoods of the correct sequence
and of the incorrect ones. The discriminant function is defined as d (X|θ) =
g (X|θ) − g (X|θ) where g denotes the log-likelihood of the correct sentence and
g is the average likelihood of the competitors Wincorrect:

g (X|θ) = 1
η

log

⎛

⎝ 1
M − 1

∑

W∈Wincorrect

exp
(
η log p (X|W, θ)

)
⎞

⎠

Instead of using the above function directly the transition is smoothed with
a sigmoid function, which serves as an approximation to a zero/one loss func-
tion (i.e., if the value of the discriminant function is larger or smaller than zero).
The overall criterion function again is an average over all training samples of the
smoothed discriminants. MCE training is mostly used for smaller vocabularies.
Its main weakness is the inefficient use of training data since it only considers
misrecognized examples. By allowing the smoothed functions to become a step
function and the weight η to tend towards ∞ the criterion function can be shown
to converge to the misclassification rate and hence has a clear relationship to MBR
training (outlined below).

A recently more prominent alternative is MMI training. Although it was
introduced at a similar time (discrete densities, Nadas et al., 1988; continuous,
Normandin 1991) it was initially feasible only for small-vocabulary tasks or even
discrete word recognition, partially because of the substantial computational
cost incurred. The gains were substantial and the first large-vocabulary imple-
mentation was reported by Valtchev et al. (1997) but the gains were modest in
comparison. The MMI objective function is given by

(11) FMMI (θ) = E
{

p(X|W, θ)

p(X|θ)

}

= E
{

p(X|W, θ)
∑

W′∈Wincorrect
p(X|W′, θ)αP(W′|θ)β

}

where E {·} denotes the expectation. This is equivalent to the mutual informa-
tion between word sequence W and acoustic features X. Naturally the amount
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of information transferred is to be maximized. The criterion has an equivalent
interpretation as a variant of conditional maximum likelihood (Nadas 1983). Opti-
mization of the above criterion is mostly based on the extended Baum–Welch
algorithm (Gopalakrishnan et al., 1989). In contrast to the standard Baum–Welch
algorithm, a learning rate factor similar to gradient descent algorithms was intro-
duced. The selection of the optimal learning rate is difficult and was found to be
best set such that the variances of the updated model parameters remain suffi-
ciently positive. Nevertheless, usually after only a few iterations, the algorithms
tend to diverge.

Povey (2003) introduced two fundamental improvements that allowed not only
to stabilize the algorithm, but also to improve performance on large-vocabulary
tasks dramatically. Equation 11 shows two so far unexplained factors α and β.
These factors allow to scale the contribution of the acoustic and language model
components. Such scaling would be of no effect in ML training but equation
11 involves a sum. Scaling the language model scores is important in decoding
(see Section 3) with the rationale that acoustic models underestimate the true
likelihoods due to independence assumptions. The rationale in MMI training is
identical, with even the same scale factor values being used (or the inverse to
scale the acoustics down rather than the language model up). Secondly, smooth-
ing of the update equation proved to be important. The ML estimate serves as a
much more stable estimate and the addition of fixed amounts of the MMI param-
eter updates was shown to greatly enhance the stability of the algorithm and thus
improve performance. In Povey (2003), so-called I-smoothing adds a predefined
weight to the ML estimate in the update equations.

Both MCE and MMI training have interesting interpretations that are intuitive
and fit in well with ML training. However, in both cases one assumption is made
that is in conflict with the decoding scheme, namely the use of likelihood to assess
the correctness of a sentence. This correctness measure then drives the update of
parameters. Speech recognizer output, however, is normally assessed with the
word error metric which measures performance in the form of insertions, dele-
tions, and substitutions of words (aka minimum edit or Levenshtein distance). For
MCE and MMI the word error rate is of no concern, as long as the likelihood of
an incorrect sentence is close to the correct, little change is made on the associated
HMM parameters.

To alleviate this shortcoming, minimum Bayes risk training was introduced,
initially in the form of so-called minimum phone error (MPE) training (Povey
& Woodland 2002). Here explicit use is made of the Levenshtein string edit
distance between the competing and reference utterances, L(W, Wref ). The
criterion function is given by

FMBR (θ) =
∑

W∈W

L(W, Wref )P(W|X, θ)

The posterior probability of the competing utterances is weighted by the amount
of error in the target metric. Optimization of this criterion is more complicated
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because, as before, the above sum cannot be computed exactly. Whereas in the
case of MMI the HMM properties allow reformation at state level, this becomes
more complicated here. The error rate is associated with a whole sentence and the
error value of a single word is not well defined as the edit distance has no relation
to time, i.e., only the errors of the token string are measured. In order to alleviate
this problem two steps can be taken. First, a move to smaller units and, second,
the measurement of local error led to the MPE criterion function

FMPE (θ) =
∑

R P(X|R, θ)P(R)A(R, Rref )
∑

R P(X|R, θ)P(R)

where R is a sequence of phonemes and Rref is the sequence associated with the
reference words, and A (·) denotes the count of raw phoneme errors. It can be
shown that maximization of this function leads again to the extended Baum–Welch
equations and updates similar to those obtained for MMI if the phoneme distance
is replaced by a local estimate (Povey 2003) based on an approximation of frame
overlap. Gibson (2008) provided a formal proof of local convergence.

Discriminative training allows significant gains in word error rate. On most
large-vocabulary tasks, 10–20 percent relative improvement in word error rate
is typically found in comparison to ML trained models which in most cases
also serve as the starting point for training. The rate of improvement is rather
dependent on model set size, and both MMI and MPE training allow much more
compact models. Original work on large-scale MMI training postulated that gains
increased with an increase in the amount of data (Woodland & Povey 2000), which
is very different from the behavior observed for ML training. The computational
cost of discriminative training is high and the complex solutions for optimization
cause suboptimality in other areas such as speaker adaptation (see Section 2.5).
Naturally discriminative training is sensitive to the quality of the reference labels.

2.5 Speaker adaptation
Speech signals vary substantially without significant changes in human percep-
tion. A single person can vary the signal due to context, mood, or prosody. Despite
the range of intra-speaker variations, listeners are easily capable of discerning dif-
ferent speakers. The differences are manifold and include general speech behavior
but also the physical characteristics of a person. The vocal tract shape, lungs, and
vocal chords, etc., give a distinct characteristic to a person’s voice. These character-
istics are not as unique as fingerprints but sufficient to yield significant distinction
in forensic applications. For the reminder of this section we focus on acoustic
adaptation rather than adaptation to linguistic differences, as it is to date the far
more common form of adaptation. Nevertheless, lexical and even language mod-
els can be adapted to learn speaker-specific characteristics (Strik & Cucchiarini
1999; Bellegarda 2004).

The natural variability of speech sounds themselves (aside from distortions
introduced by the environment) is the main source of confusion and cause of
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errors. For the reasons outlined above it seems logical to separate physical varia-
tions from intentional ones. Hence the initial focus of speech recognition research
was in the development of systems capable of dealing with a single speaker in
order to achieve reasonable performance. In practice, these speaker-dependent
(SD) systems are disadvantageous as large amounts of training data have to be
collected and transcribed for each speaker, an approach only feasible for select
applications.

The HMM-based framework was shown to cope with variability as long as
it has been observed in the training data. This allowed the construction of so-
called speaker independent (SI) model sets where the HMMs are simply trained
on data from multiple speakers. Recognition of utterances from any speaker are
then produced with the same models. While this approach is much more practical,
the performance of an SI system is substantially inferior to that of an SD system
trained on identical amounts of training data. Hence alternatives are required to
bridge the gap. Human listeners are capable of adjusting to a new environment or
speaker within a few words or sentences. Similarly for ASR, a few sentences can
be used to adjust the models for recognition in order to yield better performance
either in a second pass of recognition or for further sentences spoken by the target
speaker.

Adaptation techniques can be classified in several ways: whether the acoustic
models are changed or the extracted features or both (model or feature-based
adaption); whether changes to the models are made prior to adaptation (adapta-
tion or normalization); whether the labels used in adaptation can be assumed to be
ground truth or with errors (supervised versus unsupervised adaptation). When
the features alone are changed, the changes to speech recognition systems are nor-
mally small and hence such methods are often preferred. However, it turns out
that in most cases changes to the features work best when changing the acoustic
models at the same time, referred to as normalization. For most practical applica-
tions the ground truth is not known, in which case the adaptation technique must
be able to cope with potentially high levels of word error rate. This has a par-
ticularly bad effect on discriminative adaptation techniques (Wang & Woodland
2002; Gibson & Hain 2007; Gibson 2008), however one effect usually alleviates that
shortcoming: recognition errors are often phonetically similar to the correct word.
The phoneme error rate is often lower than the word error rate (Mangu et al., 1999)
and hence the correct models may still be chosen.

Since SD performance is assumed to be the best that can be obtained, an ini-
tial strategy is to first cluster speaker-specific models into distinct groups. Then
the adaptation step would simply consist in finding the most likely group and
using the associated model for decoding. Albeit capable of producing SD per-
formance in the limit, it does not make good use of training data, as speaker
cluster models are only trained on data of a subgroup and disregarded for the rest.
A better approach is provided by the so-called eigenvoices method (Kuhn et al.,
1998), where principal component analysis of the parameters of speaker cluster
models (the means only are used in the original work) is carried out. Adapta-
tion then is performed by constructing models by weighted combination of these
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principal components. The weights are found by maximum likelihood optimiza-
tion on test data.

Another option to bridge the gap between SI and SD model performance is
based on the estimation of a prior distribution over the model parameters. The
speaker-independent models are used to provide the prior. Maximum a posteriori
(MAP) adaptation (Gauvain & Lee 1994) describes the updates of Gaussian (SI)
means by data observed in adaptation:

μ̂ = τμprior + ∑T
t=1 γtxt

τ + ∑T
t=1 γt

The new mean vector is changed from the old μprior with the average observa-
tion vector xt which is weighted by the posterior probability that the vector has
been produced by this Gaussian. The factor τ can be selected to reflect the speed
of adaptation and, in practice, iterative application of the above rules shows the
best performance (Hain et al., 2005a). While MAP adaptation can yield very good
improvements it requires relatively large amounts of adaptation data to ensure
that enough Gaussians have actually been observed and changed in the process.
Discriminative versions of MAP exist to work with prior models that are already
discriminatively trained (Povey et al., 2003).

A more knowledge-driven approach is to target the physical differences
between speakers, in particular the vocal tract shape and size, with the latter
being the most distinctive feature (e.g., male/female vocal tract sizes differ sub-
stantially due to the relative descent of the larynx in males during puberty – see
Harries et al., 1998). The standard model of speech production is the source filter
model (Fant 1960), with a vocal tract filter represented by linear prediction based
on autocorrelation. Here the vocal tract is represented as an ideal acoustic tube
with varying length. Change to the length of the tube can be interpreted as a sim-
ple shift of the magnitude spectrum with short lengths associated with a more
compact spectrum (Cohen et al., 1995; Hain et al., 1999). Vocal tract length normal-
ization (VTLN) implements the so-called warping of the frequency spectrum by
shifting the Mel filter banks in MFCC or PLP feature extraction, subject to ensur-
ing proper computation at boundaries (Hain et al., 1999). Furthermore, the optimal
warp factor can be found by a search for the one factor that yields the highest like-
lihood given an HMM set (Hain et al., 1999). However, an SI model set would have
been trained on speakers with different vocal tract lengths, increasing the variance
of the distributions, an issue that can be avoided by prior training on normal-
ized speaker data. Since the maximum likelihood estimation is used to find the
warp factors, models are trained iteratively, interleaving warp factor estimation
and model training.

As outlined above, VTLN targets the length of the vocal tract only, allowing the
estimation of a single parameter per speaker. This was shown to be equivalent to
multiplying the vectors with a matrix of specific structure (Claes et al., 1998). The
idea of multiplication with a matrix without constraints leads to one of the most
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important techniques in speaker adaptation: maximum likelihood linear regres-
sion (MLLR) (Leggetter & Woodland 1995). Here the means are adjusted using a
linear transform parameterised by a matrix A and a bias vector b.

μ̂j = Am(j)μj + bn(j)

The major difference with MAP adaptation is that the update of the mean
of the jth component can use a matrix which is shared across many Gaussian
distributions, selected by the index functions m(j)and n(j). These functions can
be manually set or automatically found, similar to techniques used in triphone
state clustering (see Section 2.3). The matrices can be found by maximizing the
likelihood of test data using the transformed models. MLLR adaptation is very
flexible as the structure of the matrices and vectors can be arbitrarily chosen (e.g.,
using diagonal transforms only). Variance adaptation is equally possible (Gales &
Woodland 1996) and joint optimization with a common transform leads to con-
strained MLLR, which can be implemented as a feature transform, thus again
showing a connection with VTLN. As for VTLN, training on the normalized mod-
els also improves: speaker adaptive training can be implemented with constrained
MLLR or normal MLLR (Anastasakos et al., 1996).

Speaker adaptation is a rich and extensive topic in automatic speech recognition
and the space here is too small to give a full and in-depth account. Many valuable
refinements have been made to the fundamental techniques above and some of the
newer schemes have not been mentioned. The interested reader will find a good
review by Woodland (2001).

3 Search

Given an observed sequence of acoustic feature vectors X, and a set of HMMs,
what is the most probable sequence of words Ŵ? This is referred to as the search or
decoding problem, and involves performing the maximization of equations (1–4).
Since words are composed of HMM state sequences, we may express this criterion
by summing over all state sequences Q = q1, q2, . . . , qn, noting that the acoustic
observation sequence is conditionally independent of the word sequence given the
HMM state sequence. If we wish to obtain only the most probable state sequence,
then we employ the Viterbi criterion, by maximizing over QW, the set of all state
sequences corresponding to word sequence W:

(12) Ŵ = arg max
W

P(W) max
Q∈QW

P(Q | W)P(X | Q)

Thus a decoding algorithm is required to determine Ŵ using the above equation
and the acoustic and language models.

Solving (12) by naïve exhaustive search of all possible state sequences is of
course not feasible. Viterbi decoding (forward dynamic programming) exploits the
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Figure 12.6 Connected word recognition with a bigram language model.

first-order Markov assumption to solve the problem efficiently. Given a state–time
lattice, Viterbi decoding carries out a left-to-right time-synchronous processing.
This is structurally similar to the forward recursion (Figure 12.4), except that the
sum of probabilities of paths entering a state is replaced by a max operation. The
Markov assumption is exploited by considering only the most probable path at
each point in the state–time lattice: because the history is completely encapsulated
by the current state, an extension to a lower probability path at a particular state–
time location cannot become more probable than the same extension applied to
the most probable path at that state–time location. Thus at each state–time point
the single most probable path is retained, and the rest are discarded. The most
probable path is the one at the end state at the final time.

To recognize a word sequence, a composite HMM for each word is built (includ-
ing multiple pronunciations, if necessary) and a global HMM is constructed
(Figure 12.6). A bigram language model is easily incorporated; longer span models
such as trigrams require a word history to be maintained. As mentioned in Section
2.4, the acoustic model log-likelihoods are often scaled by a factor 0 < α < 1,
which takes into account the underestimate of the likelihood of an observation
sequence arising from the conditional independence assumption.

Viterbi decoding is an efficient, exact approach. However, an exact search is
not usually possible for a large-vocabulary task since the absence of predefined
word boundaries means that any word in the vocabulary may start at each frame.
Cross-word context-dependent triphone models and trigram language models
add to the size of the search space and overall search complexity. Large-vocabulary
decoding must make the problem size more manageable by reducing the size of
the search space through pruning unlikely hypotheses, eliminating repeated com-
putations, or simplifying the acoustic or language models. A commonly employed
approach to shared computation, which does not include approximation, arises
from structuring the lexicon as a prefix pronunciation tree (Gupta et al., 1988;
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Bahl et al., 1993) in which common pronunciation prefixes are shared between
word models; some extra bookkeeping is required to take account of context-
dependent word models (Ravishankar 1996).

The most general approach to reducing the search space – and hence speeding
up the decoding – is beam search. In beam search (Lowerre & Reddy 1980; Ney &
Ortmanns 2000), unlikely search paths are pruned from the search, by removing
modes in the time–state trellis whose path probability is more than a factor δ less
probable then the best path, defining a beam of width δ. Both the acoustic and
language models contribute to pruning in this way. Naïvely, language models are
applied at the end of a word, but it is possible to tighten the beam by applying
a language model upper bound within the pronunciation tree. Applying beam
search means that the decoding process is no longer exact, and hence increases
in speed must be traded off against search errors – those errors that arise from
incorrectly pruning a hypothesis that would go on to be the most probable. Some
form of beam search is used in every large-vocabulary decoder.

Most modern large-vocabulary systems use a multi-pass search architecture
(Austin et al., 1991), in which progressively more detailed acoustic and language
models are employed – the AMI system, described in Section 4), is a good example
of such a system. In multi-pass systems the search space is constrained by con-
structing word graphs (Ney & Ortmanns 2000) with less detailed models, which
are then rescored by more detailed models. Such a system can also be used to
combine differently trained models.

In the 1990s most approaches to large-vocabulary decoding constructed the
search network dynamically. For a large-vocabulary system, with a trigram lan-
guage model, constructing the complete network in a static manner seemed
out of the question in terms of required memory resources. Several very effi-
cient dynamic search space decoders were designed and implemented (Odell
1995). Although such decoders can be very resource efficient, they result, for
instance, in complex software with a tight interaction between the pruning algo-
rithms and data structures. In contrast, searching a static network would offer
the ability to decouple search network construction from decoding, and to enable
algorithms to optimize the network to be deployed in advance. (Mohri et al.,
2000; 2002) have developed an approach to efficient static network construction
based on weighted finite state transducer (WFST) theory. In this approach the
components of the speech recognition system (acoustic models, pronunciations,
language model) may be composed into a single decoding network, which is
optimized using determinization and minimization procedures. This can result
in a static network of manageable size, although the construction process may
be memory-intensive. Such WFST approaches have now been used successfully in
several systems. A number of freely available toolkits for WFST manipulation now
exist.8

An alternative approach to large-vocabulary decoding is based on heuristic
search: stack decoding (Jelinek 1969; Gopalakrishnan et al., 1995; Renals & Hochberg
1999). In stack decoding (which is essentially an A*-search), a ‘stack’ (priority
queue) of partial hypotheses is constructed, with each hypothesis scored using
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on the probability of decoding to the current time point, plus an estimate of the
remaining score. In this time-asynchronous approach to decoding, a best-first
approach is adopted. Since it does not rely on construction of a finite-state network
it is well suited to long-span language models and acoustic models.

4 Case Study: The AMI System

Large-vocabulary speech recognition systems have been developed for a num-
ber of applications, using the basic acoustic modeling framework outlined in the
previous sections. In the research community the most notable examples include
read newspaper text, broadcast news, and conversational telephone speech. As
discussed in Section 1, read or planned speech has less variability than conversa-
tional or spontaneous speech, and this is reflected in the much lower word error
rates obtained by automatic speech recognition systems on planned speech tasks.
For both planned and spontaneous speech, it has been found consistently that
the accuracy of an HMM-based speech recognition system is heavily dependent
on the training data. This dependence has two main characteristics. First, accu-
racy increases as the amount of training data increases (experience has shown the
relationship to be logarithmic). Second, the availability of transcribed, in-domain
acoustic data for training of acoustic and language models leads to significantly
reduced errors. Word error rates can be halved compared with models that were
trained on data recorded under different conditions, or from a different task
domain.

In this section we consider the construction of a speech recognition system
for multiparty meetings. Multiparty meetings, characterized by spontaneous,
conversational speech, with speech from different talkers overlapping, form a
challenging task for speech recognition. Since much of the work in this area has
taken place in the context of the development of interactive environments, the data
has been collected using both individual head-mounted microphones and multi-
ple microphones placed on a meeting-room table (typically in some form of array
configuration). Here we give a basic description of a system developed for the
automatic transcription of meeting speech using head-mounted microphones; the
system we outline was developed for the NIST Rich Transcription evaluation in
2006, and some of the final system’s complexity has been omitted for clarity.

The meetings domain forms an excellent platform for speech recognition
research. Important research issues, necessary to the construction of an accu-
rate system for meeting recognition, include segmentation into utterances by
talker, robustness to noise and reverberation, algorithms to exploit multiple micro-
phone recordings, multi-pass decoding strategies to enable the incorporation of
more detailed acoustic and language models, and the use of system combination
and cross-adaptation strategies to exploit system complementarity. The exploita-
tion of system complementarity has proven to have a significant effect on word
error rates. Speech recognition architectures may differ in terms of training data,
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features, or model topology, and these differences can result in systematically
different errors. One can capitalize on such differences in two ways. First, unsu-
pervised cross-adaptation enables the output of one part of the system to adapt
another different part. This enables some of the adverse effects caused by unsu-
pervised adaptation to be alleviated. Second, system combination allows the
combination of the outputs of several stages of a system, for example by use of
majority voting (Fiscus 1997).

Work on meeting transcription has in part been dominated by the fact that
the amount of in-domain data is usually relatively small. As for any other
spontaneous speech source, the cost of manual transcription is high (manual tran-
scription of meeting data is about 25 times slower than real time). For the system
described here, about 100 hours of acoustic training data from meetings were
available, which is still modest. Hence most systems make use of adaptation of
models from other domains. Stolcke et al. (2004) used a recognition system for
conversational telephone speech as the starting point (others have reported that
starting from broadcast news systems also works well, e.g., Schultz et al., 2004)
and we have followed that strategy. Our experiments with language models for
meeting data (Hain et al., 2005b) indicated that the vocabulary is similar to that
used for broadcast news, with only a few additional out-of-vocabulary words.
Later work has shown that meeting-specific language models can give lower
perplexity and word error rate, but the effect is small. Our systems have used
a vocabulary of 50,000 words based on the contents of meeting transcriptions aug-
mented with the most frequent words from broadcast news. Pronunciations were
based on the UNISYN dictionary (Fitt 2000). The baseline language model for
these experiments was a trigram built using the meeting transcripts, a substan-
tial amount of broadcast news data, and most importantly data collected from the
internet obtained by queries constructed from n-grams in the meeting transcripts
(Bulyko et al., 2003; Wan & Hain 2006).

Figure 12.7 presents an overall schematic of the meeting transcription system.
The initial three steps pre-process the raw recordings into segmented utterances
suitable for processing by the recognizer. A least mean squares echo canceler
(Messerschmitt et al., 1989) is applied to alleviate cross-talk in overlapped speech,
followed by an automatic segmentation into speech utterances. The segmen-
tation was performed on a per-channel basis and, in addition to using the
standard speech recognition features (PLP features in this case), a number of
other acoustic features were used including cross-channel normalized energy, sig-
nal kurtosis, mean cross-correlation, and maximum normalized cross-correlation
(Wrigley et al., 2005; Dines et al., 2006). The segmentation is based on a multi-
layered perceptron trained on 90 hours of meeting data. This exceptionally large
amount of training data for a simple binary classification was necessary to yield
good performance. The raw segment output is then smoothed in order to mirror
the segmentation used in training of acoustic models.

The initial acoustic models were then trained using features obtained from
a 12th-order MF-PLP feature analysis, plus energy. First and second temporal
derivatives are estimated and appended to the feature vector, resulting in
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Figure 12.7 Block processing diagram showing the AMI 2006 system for meeting
transcription (Hain et al., 2006). Square boxes denote processing steps, ellipses
representations of the data. M1–M3 denote differently trained model sets.

39-dimensional feature vectors, which are then normalized on a per-channel basis
to zero mean and unit variance (cepstral mean and variance normalization).

After these audio preparation stages, 39-dimensional MF-PLP feature vec-
tors were extracted and cepstral mean and variance normalization (CMN/CVN)
was performed on a per-channel basis. Then first-pass transcripts are produced,
using models trained on 100 hours of meeting data (M1) and a trigram language
model. This initial transcript has several uses, including the provision of a rough
transcript for estimation of VTLN warp factors, and to allow the data to be reseg-
mented by realigning to the transcripts. This is possible because the acoustic
models for recognition are more refined than the models used for segmentation,
but naturally segments can only get shorter. This is important as cepstral mean
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and variance normalization have a significant impact on word error rate and rely
on the correct balance of silence in segments.

The next pass of decoding uses different features from those used previously.
The standard PLP feature vector is augmented with phone-state posterior prob-
abilities computed using multi-layered perceptrons (further details can be found
in Section 5), and both components are normalized using VTLN. Acoustic models
are now trained using the MPE criterion (Section 2.4) and further adapted using
a single CMLLR transform (Section 2.5). As the system has more passes to follow,
bigram lattices are produced at this stage in order to enable lattice rescoring using
new acoustic and language models. If a faster system was required, decoding with
a trigram as in the first pass could have been chosen here.

The second part of the system, Figure 12.7(b), follows the strategy of using a
constrained search space as represented in a lattice to quickly obtain improve-
ments and apply models that could otherwise not be used. First a 4-gram language
model (trained on the same data as used previously) is used to expand lattices and
produce a new first-best output. This is followed by decoding with two different
acoustic model sets for the purpose of cross-adaptation. The first acoustic model
set uses standard PLP features only but models are trained by MAP adaptation
from 300 hours of conversational data. After adaptation with MLLR, lattices are
again produced that are rescored using the same models and features as in the
second pass. Finally, lattices are compacted in the form of confusion networks
and minimum word error rate decoding is performed. Final alignment is only
performed to find correct times for words.

Figure 12.8 shows results for all passes. If the initial automatic segmentation into
utterances is replaced by a manual process, then the word error rate is decreased
by 2–3 percent absolute. Considerable reductions of word error rates are achieved
in each pass. Note that the first pass error rate is almost twice the error rate of the
final pass, but the processes of adaptation and normalization in the second pass
account for most of the gain. Even though the second pass uses the same acoustic
models as the final pass, cross-adaptation still brings an additional 2.4 percent
absolute improvement in word error rate.

5 Current Topics

5.1 Robustness
The early commercial successes of speech recognition, for example dictation soft-
ware, relied on the assumption that the speech to be recognized was spoken
in a quiet, non-reverberant environment. However, most speech communica-
tion occurs in less constrained environments characterized by multiple acoustic
sources, unknown room acoustics, overlapping talkers, and unknown micro-
phones.

A first approach to dealing with additive noise is by using multiple micro-
phones to capture the speech. Microphone array beamforming uses delay-sum
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Figure 12.8 Word error rates (%) results in the NIST RT’06 evaluations of the AMI 2006
system on the evaluation test set, for the four decoding passes.

or filter-sum techniques to offer a gain in specific directions, thus enabling com-
peting acoustic sources to be separated based on location (Elko & Meyer 2008).
These approaches have been used successfully in meeting transcription systems;
using beamformed output of a microphone array will increase the word error rate
by about 5 percent in the case of limited overlapping speech (Renals et al., 2008),
and by up to 10 percent in more general situations.

Most work in robust speech recognition has focused on the development of
models and algorithms for a single audio channel.9 Increased additive noise will
cause the word error rate of a speech recognizer trained in clean, noise-free con-
ditions to increase rapidly. For the Aurora-2 task of continuously spoken digits
with differing levels of artificially added noise, the case of clean test data will
result in word error rates of less than 0.5 percent using acoustic models trained on
clean speech. A very low level of added noise (20 dB SNR – signal-to-noise ratio)
results in 10 times more errors (5 percent word error rate) and equal amounts
of noise and speech (0 dB SNR) results in a word error rate of about 85 percent
(Droppo & Acero 2008). Thus the noise problem in speech recognition is significant
indeed.

The reason for the dramatic drop in accuracy is related to acoustic mismatch; the
noisy test data is no longer well matched to the models trained on clean speech.
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If we knew that the noise would be of a particular type (say car noise) and at a
particular level (say 10 dB SNR) then we could artificially create well-matched
training data and retrain a set of matched noisy models. However, it is rarely the
case that the test noise conditions are known in such detail. In such cases mul-
tistyle training can be employed, in which the training data is duplicated and
different types of noise added at different SNRs. This can be very effective: in the
previous Aurora task, multistyle training decreases the 20 dB SNR word error rate
from 5 percent to about 1 percent, and the 0 dB word error rate from 85 percent to
34 percent, while adding about 0.1 percent to the clean speech error rate (Droppo &
Acero 2008). Multistyle training is thus very effective, but it is rather computation-
ally expensive: it may be feasible for training a recognizer on digit strings (a task
with an 11-word vocabulary); it is much less feasible for conversational speech
recognition. Indeed, most of the techniques discussed in what follows have been
developed largely on relatively small-vocabulary tasks.

Beyond the brute force approach of multistyle training, there are two main
approaches to robustness: feature compensation and model compensation. The
aim of feature compensation is to transform the observed noisy speech into a sig-
nal that is more closely matched to the clean speech on which the models were
trained. It is usually of interest to develop techniques that work in the cepstral
feature domain, since speech recognition feature vectors are usually based on PLP
or Mel frequency cepstral coefficients. Cepstral mean and variance normalization
(CMN/CVN) is a commonly applied technique which involves normalizing the
feature vectors, on a component-by-component basis, to zero mean and unit vari-
ance. CMN can be interpreted in terms of making the features robust to linear
filtering such as that arising from varying type or position of microphones, or
characteristics of a telephone channel. For both the Aurora digits task and for
large-vocabulary conversational telephone speech recognition, CMN and CVN
can reduce word error rates by 2–3 percent absolute (Droppo & Acero 2008; Garau
& Renals 2008).

More elaborate forms of feature normalization attempt to directly transform
recorded noisy speech to speech that matches the trained models. One technique,
designed primarily for stationary noise, is spectral subtraction, in which an esti-
mate is made of the noise (in spectral domain), and subtracted from the noisy
speech, to (theoretically) leave just clean speech (Lockwood & Boudy 1992). The
subtraction process may be non-linear and dependent on the SNR estimate. This
technique requires good segmentation of speech from non-speech in order to esti-
mate the noise. If that is possible the technique works well in practice. The ETSI
Advanced Front End for noisy speech recognition over cellular phones is based
on CMN and spectral subtraction and can reduce errors from 9.9 percent to 6.8
percent on multistyle trained Aurora-2 systems (Macho et al., 2002).

Spectral subtraction may be regarded as a very simple noisy-to-clean map-
ping, that simply subtracts an estimate of the average noise. More sophisticated
approaches are available, for example SPLICE, which is based on the estima-
tion of a parameterized model of the joint density of the clean and noisy speech
(Deng et al., 2000). A Gaussian mixture model is typically used, and stereo data
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containing parallel clean and noisy recordings of the same signal is required for
training. Other approaches to feature compensation include missing feature mod-
els (Cooke et al., 2001) and uncertainty decoding (Droppo et al., 2002), in which
areas of time-frequency space are attributed to speech or noise, and probabilistic
enhancement approaches are used to reconstruct the clean speech.

It is also possible to use model-based compensation, in which the detailed
acoustic models in the recognizer are used as the basis of the compensation
scheme, as opposed to the previous approaches which construct specific feature
compensation models. In model-based compensation the clean speech models
are combined with a noise model, resulting in a model of noisy speech. This is
referred to as parallel model combination (Gales & Young 1996). There are two
main technical challenges with parallel model combination. First, noise models
that are more complex than a single state result in much greater complexity over-
all, due to the fact that the speech and noise models are combined as a product.
Second, it is assumed that speech and noise are additive in the spectral domain.
Since the models are constructed in the cepstral domain, it is necessary to trans-
form the model parameters (Gaussian means and covariances) from the cepstral
to the spectral domain. The noisy speech model statistics are then computed
in the spectral domain, before transforming the parameters back to the cepstral
domain.

5.2 Multiple knowledge sources
It is possible to obtain many different parameterizations of the speech signal and
to use different acoustic model formulations. Often different representations and
models result in different strengths and weaknesses, leading to systems which
make complementary errors. It is possible that word error rates could be reduced
if such systems are combined.

In feature combination approaches, multiple different feature vectors are com-
puted at each frame, then combined. Although the most commonly employed
acoustic parameterizations such as MFCCs and PLP cepstral coefficients result in
low error rates, on average, it has been found that combining them with other rep-
resentations of the speech signal can lower word error rates. For example, Garau
and Renals (2008) combined MFCC and PLP features with features derived from
the pitch-adaptive STRAIGHT spectral representation (Kawahara et al., 1999), and
Schlueter et al. (2007) combined MFCC and PLP features with gammatone features
derived from an auditory-inspired filterbank, each time demonstrating a reduction
in word error rate.

The simplest way to combine multiple feature vectors is simply to concatenate
them at each frame. This is far from optimal since it can increase the dimensional-
ity quite substantially, as well as result in feature vectors with strong dependences
between their elements. The latter effect can cause numerical problems when esti-
mating covariance matrices. To avoid these problems, the feature vectors may
be concatenated, then linearly transformed to both reduce dimensionality and



“9781405155816_4_012” — 2010/5/14 — 17:19 — page 328 — #30

328 Steve Renals and Thomas Hain

decorrelate the components. Although principal component analysis is one way
to accomplish this, it has been found that methods based on linear discriminant
analysis (LDA) are preferable, since a different transform may be derived for each
state. Hunt proposed the use of LDA to improve discrimination between sylla-
bles, and in later work used LDA to combine feature streams from an auditory
model front end (Hunt & Lefebvre 1988). In LDA a linear transform is found
that maximizes the between-class covariance, while minimizing the within-class
covariance. LDA makes two assumptions: first, all the classes follow a multivariate
Gaussian distribution; second, they share the same within-class covariance matrix.
Heteroscedatic LDA (Kumar & Andreou 1998) relaxes the second assumption and
may be considered as a generalization of LDA.

As discussed further in Section 5.3, other feature representations have been
explored, which have a less direct link to the acoustics. For example, consid-
erable success has been achieved using so-called ‘tandem’ representations in
which acoustic features such as MFCCs are combined with frame-wise esti-
mates of phone posterior probabilities, computed using multi-layered perceptrons
(MLPs). An advantage of this approach is that the MLP-based phone probability
estimation can be obtained using a large amount of temporal context.

Other levels of combination are possible. Acoustic models may be combined
using the combining probability estimates at the frame or at the segment level.
Approaches such as ROVER (Fiscus 1997) enable system-level combination in
which multiple transcriptions, each produced by a different system, may be
combined using a dynamic programming search based on majority voting or
on confidence scores. Such approaches have been used to great effect in recent
large-scale research systems and are discussed further in Section 5.4.

5.3 Richer sequence models
One of the main weaknesses of HMM-based speech recognition is the assumption
of conditional independence of speech samples, i.e.,

p(xt|x1 . . . xt−1, qt) ≡ p(xt|qt)

where qt denotes the current state and xt denotes the acoustic vector at time t.
The conditional independence assumption is incorrect, since it fails to reflect the
strong constraints in the speed of movement of articulators, that adjacent frames
have high correlation and changes in the spectrum are slow for most sound classes.
Some interdependence is of course encoded in the state succession but transition
probabilities only exist from one state to the next and are usually found to have a
modest influence on performance. This leads to considerable underestimation of
true frame likelihoods and two approaches are commonly used to counteract that:
the use of differentials (so-called delta features) in the feature vector to account for
slope information; and scaling of the language model probabilities in decoding
and also training to adjust for dynamic range differences. However, these changes
are engineering solutions without a solid theoretical base and also account for part
of the shortcoming.
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There have been many attempts to address the issue and we cannot present
all of those attempted over the years. However, recent interest in better tempo-
ral modeling of parameters has increased and considerable improvements have
been obtained with some techniques. Sometimes results are difficult to interpret
because they include multiple changes to the systems and hence multiple inter-
pretations of the realization are possible. In general all of the techniques are much
more computationally elaborate and some are so complex that only rough approx-
imations to the formulae make it possible to realize such structures. Even with
modern large-scale computing resources proper implementations are not possible.

Segment models were introduced by Ostendorf and Roukos (1989) and inter-
preted as an extension to HMM-based modeling (Ostendorf et al., 1996). Instead
of modeling single frames, multiple frames can be represented at the same time,
for example by describing a moving mean of a Gaussian distribution. Similar
to HMMs, one can represent states associated with segments that have variable
length. The question on length of the segments and their proper representation
is functional; form was (and still is) the topic of investigation, however the tech-
niques have not found entry into large-scale systems, partially due to complexity
reasons.

One of the issues pointed out by Tokuda et al. (2000) in the context of HMM-
based speech synthesis is the incorrect use of Gaussians for differentials of the
static features, noting that an implicit continuity constraint is missing. A formu-
lation that adds this constraint to a standard HMM for recognition is given in
Zen et al. (2007). In experiments, significant improvements in word error rates
have been observed in some simple tasks, but these improvements have not been
observed in more complex tasks (Zhang & Renals 2006).

A much simpler and very effective method has been introduced in the form of
the so-called TRAPS features (Sharma et al., 2000), which have been implemented
in several large-scale systems in many different applications and modified forms
(e.g., the AMI system as presented in Section 4 uses so called LC/RC features as
described in Schwarz et al., 2004). The basic idea is to convert long-term informa-
tion into a single feature vector that is capable of extracting relevant information
at the given time. Long-term information can cover up to half a second but most
techniques make use of information compression by use of, e.g., a KLT transform
on a frequency band basis. The compressed information is then filtered through
a multi-layered perceptron that is trained to map features to phoneme state level
posterior probabilities. This step is vital as it allows to construct a feature vector
that is relevant to the current time without causing information diffusion. Such
features can be combined with standard features but recent results seem to sug-
gest that the potential loss in performance is small when they are used on their
own. Substantial improvements are obtained on small- and large-scale tasks and
gains are often complementary with other techniques.

This technique bears a strong relationship with another technique aimed at aug-
menting feature vectors. fMPE (Povey et al., 2005), or feature-based MPE training,
tries to find a matrix M such that a new feature vector yt is more informative:

yt = xt + Mht
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This is achieved by providing additional information on neighboring frames
to the current time in the form of a vector ht but, instead of using the features
directly, their projection into the model space is performed by using their like-
lihood for each Gaussian in the acoustic model set, thus providing a link to the
models. The matrix is then trained using the MPE type criterion function. Substan-
tial improvements are obtained but training of models and matrices is complex
and the application of the matrix in decoding is costly. Hifny and Renals (2009)
introduced a related discriminative method: augmented conditional random
fields.

Much more advanced approaches try to model long-term dynamics in a more
principled form using for example switching linear dynamical systems (Digalakis
et al., 1993; Rosti & Gales 2003). Here the fundamental assumption necessary for
Viterbi approximation, the assumption that the preceding model does not have an
influence on the current model, is normally not correct and hence search paths can
not be merged. At this point, for many situations, only small-scale experiments
are possible and even then substantial constraints have to be included.

5.4 Large scale
Since the 1990s there has been an intense interest in developing approaches to
speech recognition that work well in natural situations. In particular there has
been a significant focus on conversational telephone speech, broadcast news, and,
more recently, multiparty meetings. Challenges for the recognition of conversa-
tional telephone speech include conversational style and the telephone channel.
For broadcast news, the speech signals come from a variety of sources and are
mixed with other sounds such as music or street noise. The meeting domain adds
the challenge of far-field recording and reverberation to conversational speech
recognition. Much of this work has been performed in US English, since resources
in other languages are usually much more sparse. Lately increased interest in
Mandarin and Arabic, as well as ‘international English,’ has led to extensive
resource generation in those languages. Work in different languages brings to
the fore important aspects, such as larger vocabularies (over 500,000 words) due
to different morphologies, different error metrics, such as character error rate,
ambiguity in orthographic and spoken word, or additional sound classes such as
Mandarin tones. Remarkably the basic structure in most systems remains identical
and changes are mostly made to dictionaries or feature extraction.

The increasing amounts of data as well as the additional acoustic and speech
complexity have substantial implications for system building. Segmentation and
speaker clustering, optimal for speaker recognition or for playback, is normally
not optimal for automatic speech recognition (Stolcke et al., 2004). Multiple micro-
phone sources can affect the best strategies for acoustic modeling and adaptation.
Automatic switching between microphones potentially causes substantial errors
(Hain et al., 2008). Adapting models to the speaker and to the environment has
proven to be extremely important, but the interaction between different model
adaptations is complex. In particular, the order of application of techniques is
important and may need changing depending on domain or data type.
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Dependence on a domain and lack of generalizability are a major challenge.
Techniques known to work on one domain do not necessarily work on another
domain: this has been observed for VTLN (Kim et al., 2004), for instance. If the
in-domain data is sparse, then improved accuracy can be obtained by adaptation
from large corpora in related domains. This may require compensation techniques
for mismatch between domains; an example of this is the approach of Karafiat
et al. (2007) to compensate for different audio bandwidths. Finally, the appropriate
evaluation metric may be domain-specific. Word error rate is not the only metric,
and optimizing systems for specific applications, such as machine translation
(Gales et al., 2007), can lead to significant improvements.

The above illustrates that an almost limitless range of options for system build-
ing exists which can serve two fundamentally different purposes: to enhance
system performance in one application by finding combinations of components
that can enhance performance in another; or to find the components that will yield
the perfect result for a particular element of data. Only limited work has been
carried out on the latter, but investigations on the AMI RT’07 system (Hain et al.,
2007) show that the oracle combination of outputs of various stages of a system
can yield 20 percent relative reduction in word error rate.

With the more widespread use of high-level system combination (Fiscus 1997;
Evermann & Woodland 2000), recognition systems have become more complex.
While attempts were made to describe generic all-purpose system architectures
(Evermann & Woodland 2003), experience showed that the search for complemen-
tary systems may allow for much simpler structures (Schwartz et al., 2004) where
in essence the output of one system is simply used to adapt another one and then
the respective outputs are combined. Nevertheless systems that differ by such a
margin are difficult to construct. Hence more elaborate schemes, such as in the
SRI-ICSI or AMI RT’07 systems (Stolcke et al., 2007; Hain et al., 2007), are devel-
oped. In these cases acoustic modeling, segmentation, and data representation is
varied to yield complementarity.

The challenges for system development in the future are defined in the list of
requirements above. Since the complexity of systems is set to increase rather than
decrease, a manual construction of system designs will always be suboptimal. In
Hain et al. (2008) initial attempts are reported for automation of system design.
However, at this point even the right form to describe the potential combinations
efficiently is unknown, let alone a multi-objective dynamic optimization scheme.
To find optimal systems, not only does an optimal combination and processing
order have to be derived, but ideally the models and techniques are complemen-
tary and yield mutually additive gains. Approaches have been made to automate
this process (e.g., Breslin & Gales 2006), but much more work is required, in
particular in the context of different target metrics.

6 Conclusions

Automatic speech recognition was one of the first areas in which the data-driven,
machine learning, statistical modeling approach became standard. Since the 1990s,
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the basic approach has been developed in several important ways. Detailed mod-
els of speech may be constructed from training data, with the level of modeling
detail specified by the data. Algorithms to adapt these detailed models to a
specific speaker have been developed, even when only a small amount of speaker-
specific data is available. Discriminative training methods, which optimize the
word error rate directly, have been developed and used successfully. Because of
these successful strategies speech recognition is available in commercial prod-
ucts in many forms. Public perception of speech recognition technology, however,
ranges widely, from ‘solved’ to ‘hopeless.’ The reasons for the mixed acceptance
lie in a number of major challenges for speech recognition that are still open today.
First, speech recognition systems can only operate in a much more limited set
of conditions, compared with people: additive noise, reverberation, and overlap-
ping talkers pose major problems to current systems. Second, the integration of
higher-level information is weak and often non-existent, although of obvious use
to humans. Third, current models of speech recognition have a rather weak tem-
poral model. The use of richer temporal models has had an inconsistent impact on
the word error rate. Finally, systems lack generalizability: they are very dependent
on matched training data. Moving a system from one domain to another, without
training data resources for the new domain, will result in a greatly increased word
error rate.

NOTES

1 This is sometimes referred to as speaker-attributed speech-to-text transcription.
2 An information theoretic measure of the expected number of words which may be

expected to continue any word sequence; see Chapter 3, STATISTICAL LANGUAGE

MODELING.
3 www.nist.gov/speech/tools
4 http://htk.eng.cam.ac.uk/
5 The autoregressive hidden filter model (Poritz 1982) is an intriguing alternative that per-

forms modeling at the waveform level, and may be viewed as jointly optimizing signal
processing and acoustic modeling. However, this approach relies on a linear prediction
framework which is less powerful than the approaches employed in current systems.

6 Do not be misled, however; a mixture of diagonal covariance Gaussians is able to model
correlations between feature dimensions. But it is a relatively weak way of modeling
such correlations.

7 Note that derived forms are counted here as separate words whereas dictionaries such
as the Oxford English Dictionary only list the base forms as independent entries.

8 WFST software: www.openfst.org/; http://people.csail.mit.edu/ilh/fst/; www.research.
att.com/∼fsmtools/fsm/

9 This is a general case, since microphone array beamforming will result in a single audio
channel.
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STEPHEN CLARK

1 Introduction

Natural language parsing, in its most general form, is the process of assigning
some structure to a natural language input. In this chapter we focus on the more
specific problem of taking a sentence as input and, using a predefined grammar,
assigning a syntactic structure to it. We will not be too specific about the form
of the syntactic structure, only that it need be some hierarchical representation of
how the words in a sentence are related; this could be a phrase-structure tree or
dependency graph, for example. We will use the general term parse to refer to such
a representation.

This initial description of the problem raises a number of questions:

(1) What is the grammar which defines the set of legal syntactic structures for a
sentence? How is that grammar obtained?

(2) What is the algorithm for determining the set of legal parses for a sentence?
What data structure is used to represent those parses?

(3) What is the model for determining the plausibility of different parses for a
sentence?

(4) What is the algorithm, given the model and a set of possible parses, which
finds the best parse (or the n-best parses)?

The first three questions correspond roughly to the characterization of parsing
in Steedman (2000) (although Steedman uses the term oracle for model). The addi-
tional fourth component is the decoder. If the possible parses can be efficiently
enumerated, then there is a trivial decoding algorithm: simply loop through each
parse calculating its score, and return the highest-scoring one. However, as we
shall see, the grammars used by statistical parsers are often wide-coverage, pro-
ducing many parses for some sentences, far too many to enumerate. In this case, a
more sophisticated representation of the possible parses, and decoding algorithm,
is required.
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The examples in this chapter show that parsers do not always divide neatly
into these four modules, and there can be considerable overlap between them. For
example, many of the approaches to parsing the Penn Treebank (PTB), a standard
parsing task, treat statistical parsing as essentially pattern recognition combined
with search. Collins (1999), in a seminal work on parsing the PTB, characterizes
the problem as follows:

Tbest = arg max
T

P(T, S)(1)

where T is a parse and S is a sentence. Here P is a joint probability distribution,
often referred to as the generative model, over all possible (T, S) pairs.

The one aspect of this characterization that is clearly separated from the rest is
the generative model: P(T, S). However, there is considerable freedom in how to
interpret the arg maxT, both in terms of the set of parses over which the arg max is
performed (not explicitly specified), and in how the search is carried out. Section 3
describes the Collins parser in more detail.

The motivation for statistical parsing arises mainly from question (3) in our
original characterization. One of the surprising conclusions from early language
processing research was that syntactic ambiguity is a serious problem for parsing
(Church & Patil 1982). It is very difficult to manually define a grammar whose
rules determine a single parse for an arbitrary sentence, and statistical models
provide a well-founded method for selecting between the alternative parses.

The ambiguity problem is especially severe for wide-coverage grammars, that
is, grammars which cover a large proportion of the constructions found in natu-
rally occurring text. Articles on parsing often give examples of ordinary-looking
sentences which receive many hundreds or thousands of possible parses accord-
ing to some grammar; however, with automatically extracted grammars, such
as the CCG grammar described in Section 6, the problem is much more severe,
with some newspaper sentences receiving many orders of magnitude more parses.
The standard textbook examples of syntactic ambiguity, such as see a man with a
telescope, are potentially misleading since the ambiguity in these examples is eas-
ily perceived; however, the majority of the ambiguity inherent in wide-coverage
grammars is much more subtle, and it is the subtle ambiguities which lead to
very large numbers of parses. In fact, we could not expect a statistical parsing
model to resolve truly ambiguous cases such as the telescope example, since this
would require a detailed representation of the context and sophisticated reasoning
capabilities. Abney (1996) provides an illuminating discussion of this issue.

Further motivation for taking a statistical approach to parsing arises from the
remaining questions in our original characterization. Even the grammar itself can
be partly determined by the statistical parsing model. For example, Model 1 from
Collins (1999) uses Markov processes to generate left and right sequences of verbal
modifiers, where the Markov process is used to assign probabilities to particular
sequences of non-terminals. The parser considers all possible combinations of non-
terminals to be a legal sequence, and relies on the statistical model to rule out the
unlikely ones.
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Of course the grammar does not have to be so closely tied to the statistical
model. In the parsers of Riezler et al. (2002) and Briscoe and Carroll (2006), the
grammar is manually constructed and the statistical model is used for parse selec-
tion. But even with a manually constructed grammar, there is still a need for a
statistical selection component if the grammar is to have wide enough coverage to
be useful in language processing applications.

Finally, there are various ways in which the statistical model can interact with
the parsing algorithm. Most statistical parsers use some form of heuristic search
to manage the large search space, a standard example being probabilistic beam
search. But there are also parsers in which the model and parsing algorithm inter-
act more closely, in that the parsing model is used to guide the actions of the parser.
This approach to statistical parsing is described in Section 5.

The focus in this chapter will be on supervised learning, in which we assume
that training data for the parsing model, either in the form of gold standard parses
or parser actions, is available in sufficient quantities to make supervised train-
ing feasible. Chapter 8 of this book, UNSUPERVISED LEARNING AND GRAMMAR
INDUCTION, deals with the unsupervised case.

The majority of this chapter focuses on the various probability models for pars-
ing, and how the parameters of the models are estimated. Note that probability
model is being used here in a broad sense to include approaches such as the per-
ceptron and support vector machines, even though these are often described as
‘non-probabilistic.’ There will also be some discussion of the parsing and decoding
algorithms used (questions (2) and (4) in our original characterization).

The final section describes work carried out with the grammar formalism com-
binatory categorial grammar (CCG). Here there has been much recent work on
automatic grammar acquisition from the Penn Treebank and probability models
for CCG, and this work provides a good example of robust, formalism-based sta-
tistical parsing.1 This work also provides an example of statistical parsing with
lexicalized grammars, which appear well suited to providing efficient, robust,
and wide-coverage parsers. In particular, the technique of supertagging (Bangalore
& Joshi 1999) applied to CCG leads to a surprisingly efficient formalism-based
parser, and allows the estimation of large, complex parsing models.

There are many ways in which to describe the literature on statistical parsing:
in terms of the representation used (e.g., phrase-structure vs. dependencies); in
terms of the grammar formalism (e.g., LFG, HPSG, TAG, CCG); in terms of the
parsing algorithm (e.g., bottom-up vs. top-down); or in terms of the parsing model
(e.g., generative vs. discriminative). I have chosen the final option for the majority
of the chapter, since the literature has tended to focus on the statistical model-
ing problem, and the evolution of statistical parsers can be seen in terms of the
move to more complex models (especially the shift from generative to discrimina-
tive models). I have also chosen to separate approaches which model the actions
of the parser from models of the parses themselves. The large body of recent
work on dependency parsing could also form a separate section by itself, but I
have chosen to include examples of work on dependency parsing in the relevant
sections.
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2 History

Perhaps the first attempt at statistical parsing was by Sampson (1986). Sampson’s
approach involved the use of manually parsed training material to obtain scores
for local tree configurations, which were combined to obtain a score for a com-
plete parse-tree. The search to find the highest-scoring parse was performed using
a form of simulated annealing. Although the technical details of Sampson’s work
are perhaps less relevant now, given the advances in statistical modeling for pars-
ing (and statistical NLP more generally), the idea of treating parsing as a machine
learning problem, and recognizing the need for a method to combat the large
search space, was farsighted and radical at the time.

The years following Sampson’s attempt yielded some new approaches, for
example Briscoe and Carroll’s use of the Susanne treebank to model the moves
made by a shift-reduce parser (Briscoe & Carroll 1993), and some theoretical
papers on how to define stochastic versions of various grammar formalisms, for
example stochastic tree adjoining grammar (Resnik 1992b). However, the event
which led to the large interest in statistical parsing among the NLP community
was the release of the Penn Treebank (Marcus et al., 1993). Magerman (1995)
was among the first to release parsing accuracies on the new treebank, and so
began the parsing ‘competition’ which still continues today – the quest to obtain
the highest scores on matching brackets using the Parseval metrics (Black et al.,
1991). Magerman also introduced the idea of standard splits of the Wall Street
Journal (WSJ) part of the PTB for training, development, and testing; sections 2–21
have typically been used for training, section 22 for development, and section 23
for testing.

The Magerman parser (named SPATTER) uses a history-based model, in which a
parse is modeled as the sequence of decisions used to build it, with the probability
of each decision conditioned on some limited aspect of the previous decisions (the
history). SPATTER works in a bottom-up fashion, using decision trees to define
a distribution over the possible moves available to the parser at each point in
the parsing process. Examples of parser moves include assigning a POS tag to
a word, or extending a node in a partially built tree by creating a parent–child arc.
Magerman’s approach extended work by the automatic speech recognition (ASR)
group at IBM (Jelinek et al., 1994), and many of the techniques used by SPATTER,
for example decision tree modeling, stack decoding for the search for the highest-
scoring parse, and EM estimation for some of the model parameters, relate closely
to the statistical techniques used to build ASR systems.

The accuracy scores achieved by SPATTER were 84.3 percent labeled precision
and 84.0 percent labeled recall on the Parseval metrics, which compare the labeled
nodes in the parse-tree returned by the parser with the labeled nodes in the gold
standard PTB parse. These metrics have become the standard measure for eval-
uating PTB parsers, although there has been considerable debate regarding the
suitability of these metrics in general for parser evaluation (Carroll et al., 1998).
A year later Collins (1996) improved on Magerman’s results, to 85.7 percent and
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85.3 percent labeled precision and recall. At least as significant as the improved
results was the simple nature of the Collins (1996) model, compared with SPAT-
TER, showing that it is possible to obtain competitive results on the PTB parsing
task with a simple model and parsing algorithm. Collins (1997) improved on
these results further, with a theoretically more motivated approach based on a
generative model. This approach to parsing is described in Section 3.

The impact of the PTB on statistical parsing has been immense, and has
undoubtedly led to improvements in robust parsing technology. The downside
of the PTB’s domination is that there has been a focus on text from one particular
genre, namely English newspaper text. In addition, PTB parsing is sometimes seen
as ‘standard parsing,’ whereas the building of PTB style trees, although an inter-
esting and useful task in itself, is a somewhat narrow view of natural language
parsing. This situation is changing with the creation of treebanks based on partic-
ular grammatical frameworks, such as LFG, HPSG, TAG, and CCG, and with the
creation of treebanks for domains other than newspaper text (Tateisi et al., 2005),
and for languages other than English.

3 Generative Parsing Models

The years immediately following the introduction of the Penn Treebank saw a
plethora of new parsing models; however, the most influential of these was the
generative model of Collins (1997; 1999), and related work such as Eisner (1996),
Goodman (1997), and Charniak (2000). This section describes the models of Collins
(1997), although some of the innovations described may also be attributed to this
related work. The work on generative parsing was particularly influential for the
following reasons: it focused on the modeling of the parses themselves, rather than
assigning scores to the moves made by the parser; it demonstrated the importance
of sound probabilistic modeling; it produced impressive empirical results, at the
time the best on the PTB; and it exploited a number of important ideas such as
lexicalization.

Probabilistic parsing can be defined as finding the tree, T, with the highest
conditional probability given the sentence, S:

(2) Tbest = arg max
T

P(T|S)

The move to generative models comes from recognizing that the maximization
over the conditional probability can be written as a maximization over the joint,
since P(S) is constant for a given sentence:

Tbest = arg max
T

P(T|S)(3)

= arg max
T

P(T, S)

P(S)
(4)

= arg max
T

P(T, S)(5)
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The reason for using a joint model is that it is possible to define a generative
process which generates the parse and sentence, and probabilities can be attached
to the various parts of this process. Given certain independence assumptions, the
probability of the complete parse and sentence can be defined as the product of the
probabilities of the parts. In addition, there exist simple and well-motivated meth-
ods for estimating the various probabilities. A probabilistic context-free grammar
(PCFG) is the simplest example of this approach.2

The disadvantage of PCFGs is that they are essentially structural models of syn-
tax, only incorporating lexical information in the form of emission probabilities at
the leaves, where the words are generated from the pre-terminal nodes. One of
the innovations of Collins (1997) and related work was the incorporation of lexi-
calization. Earlier work on PP-attachment ambiguities (Collins & Brooks 1995) had
demonstrated the importance of lexical information for resolving some forms of
syntactic ambiguity, and Collins (1997) extended this idea to complete parse-trees.

3.1 Collins – Models 1, 2, and 3
Collins (1997) introduced three generative parsing models, the second and third
models building on the previous one by adding a level of linguistic sophistication.
Model 1 is essentially a lexicalized PCFG, augmenting non-terminal nodes with
lexical items, except that it uses Markov processes to generate the non-terminal
nodes on the right-hand side of a rule. Model 2 extends Model 1 by making
the complement/adjunct distinction and generating complements separately from
modifiers. And Model 3 includes a probabilistic treatment of Wh-movement, based
on the gap propagation analysis from GPSG (Gazdar et al., 1985). The following
description of the Collins parser mirrors closely that given in Collins (1997).

For a PCFG, and a tree derived by n applications of context-free rewrite rules,
LHSi ⇒ RHSi, 1 ≤ i ≤ n, the joint probability of the tree, T, and sentence, S, is
defined as follows:

(6) P(T, S) =
n∏

i=1

P(RHSi|LHSi)

The probability can be written in this way because of the following independence
assumption: the probability of a non-terminal on the LHS of a rule expanding to a
particular sequence of non-terminals on the right, is only dependent on the non-
terminal on the left, and independent of any part of the tree outside of this rule
application.

Model 1 extends the PCFG by making it lexicalized – associating with each
non-terminal node a word and its POS tag. The word associated with a partic-
ular non-terminal is the linguistic head of the constituent corresponding to the
non-terminal. Heads are found using a set of head-finding rules which, given
a particular rule, deterministically return a head based on the sequence of non-
terminals in the rule. Figure 13.1 gives an example lexicalized parse-tree from
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S(bought)

TOP

NP(week) NP(IBM) VP(bought)

NNP

IBM

VBD NP(Lotus)

NNPbought

Lotus

JJ NN

Last week

TOP -> S(bought)
S(bought) -> NP(week) NP(IBM) VP(bought)

NP(week) -> JJ(Last) NN(week)
NP(IBM) -> NNP(IBM)

VP(bought) -> VBD(bought) NP(Lotus)

NP(Lotus) -> NNP(Lotus)

Figure 13.1 Example lexicalized parse-tree.

Collins (1997) (with POS tags of headwords omitted on the non-terminal nodes),
together with the rules it contains.

The use of lexicalization makes accurate estimation of the rule probabilities
much harder. For a PCFG, the standard estimate for a conditional rule probability
is simply the count of the number of times the LHS is seen expanded as the RHS,
divided by the total number of times the LHS is seen in the training data. As well
as being simple and intuitive, this estimate is theoretically well motivated: for a
PCFG the relative frequency estimate is also the maximum likelihood estimate.
However, lexicalization greatly expands the set of non-terminals, introducing a
severe sparse data problem. For any given rule from a lexicalized PCFG, there are
two possible problems: one, the LHS of a rule may not appear in the data – for
example, if the head word associated with the LHS is unseen – leading to an unde-
fined relative frequency estimate; and two, the LHS may appear in the data but
never expand to the RHS, leading to a zero relative frequency estimate. Zeroes are
especially problematic because they propogate through the product in (6) making
the total probability of the parse equal to zero.

Collins’s solution is to break up the generation of the rule into parts, and esti-
mate the probability of each part separately. The RHS is generated from the head
outwards, with first-order Markov processes separately generating the modifiers
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S (bought)

TOP

NP (week) VP (bought)

NNP

IBM

VBD

NNPbought

Lotus

JJ NN

Last week

NP−C (IBM)

NP−C (Lotus)

Figure 13.2 Example tree with complements distinguished from adjuncts.

to the left and right of the head. For reasons of space we omit the details here and
refer readers to Collins (1999).

Model 2 incorporates an additional level of linguistic sophistication by making
the complement/adjunct distinction and including the notion of subcategorization
frame. In the tree in Figure 13.1, the only difference between IBM and Last week is
that IBM occurs closer to the verb, even though IBM is a subject and Last week
is a modifier. Clearly Model 1 is missing an important linguistic generalization.
Collins solves this problem by adding a -C suffix to non-terminals which represent
complements of verbs, including subjects (see Figure 13.2), and modifying the
generative process to generate subcategorization frames as a separate step. Collins
(1999: 173) contains some examples motivating the use of this distinction in the
generative model.

The incorporation of subcategorization information in the generative model
relies on the ability to distinguish between complements and adjuncts in the Penn
Treebank. In fact this distinction is not made explicitly in the PTB, but comple-
ments can be identified fairly reliably using a set of heuristic rules based on some
aspects of the annotation. For example, the PTB contains tags identifying some
modifying expressions such as LOC for locative and TMP for temporal. Any con-
stituent marked with TMP or LOC cannot serve as part of a subcategorization frame.
Collins (1999: 174) describes the rules used to identify complements.

The final model, Model 3, adds a further level of linguistic sophistication by
accounting for wh-movement. The PTB contains a significant amount of infor-
mation relating to ‘movement,’ such as extraction from a relative clause, in the
form of traces in the tree. Figure 13.3 contains an example from Collins (1999),
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NP (store)

NP (store)

The store

SBAR (that)(+gap)

WHNP (that)

WDT

that

SBAR (bought)(+gap)

NP−C(IBM) VP (bought)(+gap)

IBM

VBD NP (week)

bought last week

TRACE

Figure 13.3 Example tree containing a trace and the gap feature.

together with the modified rules which encode the extraction. These modified
rules effectively encode the gap-propagation analysis from GPSG (Gazdar et al.,
1985), whereby a gap feature is added to the non-terminal nodes in the tree which
dominate the trace. The gap is ‘discharged’ at the NP node which represents the
extracted constituent.

Model 3 was found to offer little, if any, improvement over Model 2. However,
the attempt to directly model traces in the PTB was an important contribution,
since this information, which is crucial for obtaining predicate–argument struc-
ture, is largely ignored by most PTB parsers. There has been some work on
inserting traces into the output of a PTB parser, as a postprocessing phase (Johnson
2002; Levy & Manning 2004). Section 6 describes a CCG parser which incorporates
the trace information directly into the grammar and parsing process, without the
need for postprocessing.

3.2 Parameter estimation
The remaining issue with regard to the model is parameter estimation. Collins uses
a standard method to deal with sparse data, in which successively less specific
contexts are used for maximum likelihood estimation, and the various estimates
combined in a weighted linear sum. For example, obtaining an accurate esti-
mate of P(VP|S,VBD,bought) – i.e., the probability of generating a VP node
given that the parent is S headed by bought with POS tag VBD – is difficult if
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bought occurs infrequently in the data. However, a relative frequency estimate
of P(VP|S,VBD) can also be used, and, since this conditioning event is a superset
of the more specific one, the estimate is likely to be more accurate. The various
‘backed-off’ estimates are then combined in the following way, where P̂ denotes a
relative frequency estimate of P:

P̂(VP|S,VBD,bought) = λ1P̂(VP|S,bought,VBD)

+ (1 − λ1)(λ2P̂(VP|S,VBD)

+ (1 − λ2)P̂(VP|S))

λ1, λ2, λ3 are smoothing parameters with values between 0 and 1, and the esti-
mates are combined as above in order to produce a proper probability distribution.
A similar technique is used for the other parameter types. A simple, but effective,
method is used to set the values of the λ parameters, based on the frequency with
which the context has been seen, and also the number of different outcomes that
have been seen with a particular context. Again, readers are referred to Collins
(1999) for the details.

3.3 Parsing algorithm and search
The parsing algorithm Collins uses is a bottom-up chart parsing algorithm. Note
that the parsing algorithm is only indirectly related to the process used to define
the generative model; this can be seen clearly in the fact that the generative model
process is top-down, in that a PCFG starts with the root node and assigns probabil-
ities to top-down applications of the rewrite rules, whereas the parsing algorithm
is bottom-up. The model and parsing algorithm do interact, via the search process
described below; however, the generative process was defined primarily to facili-
tate the definition of an accurate probability model for phrase-structure trees, with
the interaction between parsing model and algorithm a secondary consideration.

The chart is a set of edges, where an edge is essentially a non-terminal label (aug-
mented with head information) together with its span, i.e., the part of the sentence
which the non-terminal dominates.3 In the parser implementation an edge also
contains additional information, such as pointers to the children which were com-
bined to produce the edge, and the log-probability of the edge according to the
model. The algorithm works by taking two existing edges and combining them to
form a new edge. This combination is carried out in two ways: one in which the
headword comes from the left edge, and one where it comes from the right. All
possible combinations of contiguous edges in the chart are considered.

There are two strategies for making the parsing practical. First, dynamic pro-
gramming is used to create a packed chart. The basic idea is that if two edges have
the same label, the same headword (and POS), and the same span, then they are
equivalent for the purposes of further parsing. The Viterbi algorithm exploits this
equivalence by only considering the edge in an equivalence class with the high-
est probability, since any equivalent edge with a lower probability cannot be part
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of the highest-scoring parse. The complexity of this parsing algorithm is O(n5),
where n is the length of the sentence.4 This is too high for practical parsing, and so
some form of heuristic search is required.

Collins uses a beam search in which low probability constituents are pruned
from the chart. The obvious score to use for pruning is the inside score of a con-
stituent, i.e., the conditional probability of the constituent’s subtree, given its
non-terminal label and headword. The problem with this measure is that it does
not take into account the prior probability of seeing a constituent with a particu-
lar label and headword. A constituent can score highly according to this measure,
and yet be unlikely in the larger context of a complete parse. Hence Collins also
includes a prior probability factor in the score. Readers are referred to Collins
(1999) for the details.

The beam simply discards all constituents in a chart cell (i.e., all constituents
spanning the same part of the sentence) whose beam score is less than α times
the maximum score for that cell, where α is a parameter which determines how
agressive the pruning is. A typical value for α is 0.0001. Collins shows this beam
search strategy to be highly effective, obtaining practical parsing speeds (roughly
one sentence per second) but with little loss of accuracy due to the heuristic search.

The accuracies for Model 2 set the standard for the PTB parsing task: 87.5 per-
cent labeled recall and 88.1 percent labeled precision on section 23, using the
Parseval measures. Since then, parsing accuracies have increased to over 90 per-
cent, but largely through incremental improvements due to improved modeling
techniques and methods such as re-ranking (Charniak & Johnson 2005), rather
than any significant conceptual leap in how to solve the PTB parsing problem.

4 Discriminative Parsing Models

One downside of the generative modeling approach is that the sentence is mod-
eled, even though this is given and does not need to be inferred. Another
disadvantage is the need for various independence assumptions to enable effi-
cient estimation and decoding. This section describes conditional, or discriminative,
models which do not model the sentence and do not make explicit independence
assumptions in the way that generative models do; hence these models can be
thought of as more direct solutions to the statistical parsing problem. Discrimina-
tive parsing models define the conditional probability of a parse, P(T|S), directly,
rather than indirectly via the joint distribution. The discriminative models we con-
sider here are able to model complex dependencies between features; however,
this flexibility comes at a price, in that discriminative models typically require
more complex training procedures for estimation.

The term discriminative derives from the idea that, during estimation, we would
like the parsing model to directly compare the correct parse for each training
sentence with the corresponding incorrect parses, and set the feature weights
to ‘discriminate against’ the incorrect parses. There are many recent papers
describing discriminative parsing models; examples include approaches based
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on support vector machines (Yamada & Matsumoto 2003), the linear perceptron
(Collins & Roark 2004), and log-linear models (Riezler et al., 2002).

4.1 Conditional log-linear models
The approach we describe here is based on log-linear models (Riezler et al., 2002),
also known as maximum entropy models (Ratnaparkhi 1998) and conditional ran-
dom fields (Lafferty et al., 2001) in the NLP literature. We chose these models as
an example because they possess the advantages of discriminative approaches –
such as optimization of a discriminative criterion during estimation and some flex-
ibility in defining features – but also some of the disadvantages, such as complex
training procedures (at least compared to generative models). The presentation in
this section is quite general; Section 6 has a concrete example of a log-linear model
applied to wide-coverage CCG parsing.

The form of the probability model is as follows, where T is a parse and S is a
sentence:

(7) P(T|S) = e
∑

i λi fi(T,S)

Z(S)

Z(S) is a normalization factor ensuring a proper probability distribution: Z(S) =
∑

Tj∈ρ(S) e
∑

i λi fi(Tj,S) where ρ(S) is the set of possible parses for S. The features,
fi, are real-valued functions of (T, S) which identify particular aspects of a parse
which might be useful for discriminating between good and bad parses. In early
work on maximum entropy modeling, such as Ratnaparkhi (1998), features are
indicator functions, taking the value 1 or 0, indicating whether a particular fea-
ture is present or absent in some context. For modeling complete parses, this
idea is generalized to integer-valued functions which count the number of times
some feature is present in a parse. In principle the features could be real-valued,
although there has been little work on using real-valued features in log-linear
parsing models (see Johnson & Riezler 2000 for one example).

The parse, T, can be any parse representation. Log-linear models have been
applied in particular to constraint-based grammar formalisms, such as HPSG and
LFG (Riezler et al., 2002; Malouf & van Noord 2004). The application of log-linear
techniques to these grammars was argued for by Abney (1997), who showed that
the complex dependencies encoded in feature structures in these grammars are
difficult to capture using generative models, and that previous attempts to do so
had resulted in ill-motivated estimation techniques.

The form in (7) can be motivated in a number of ways. The presentation in
Della Pietra et al. (1997) begins by choosing from a set of models which satisfy
certain constraints – namely that the expected value of each feature according to
the model is equal to the empirical expected value – and then selecting the sin-
gle model from that set which is the most uniform, or has the maximum entropy.
Johnson et al. (1999) start with the model form in (7), and set the values of the



“9781405155816_4_013” — 2010/5/8 — 12:03 — page 345 — #13

Statistical Parsing 345

weights by maximizing the conditional likelihood function. In fact, the two formu-
lations result in identical models. See Chapter 5 of this book, MAXIMUM ENTROPY
MODELS, for more details.

Note that the probability in (7) applies to the whole parse, T, and not to indi-
vidual parts, and that we have made no independence assumptions regarding the
features. In principle this allows great flexibility in terms of the features that can be
defined. In practice the parser developer is limited by two factors. First, there has
to be enough training data to obtain reliable estimates for the weights; features
which incorporate detailed or large parts of a parse-tree – for example features
encoding more than one lexical item – may appear infrequently, if at all, in the
training data. Second, the ‘locality’ of the features has a direct effect on the effi-
ciency of the model estimation and decoding. Section 6 has more discussion of
this issue.

From the perspective of maximum likelihood estimation, the maximum likeli-
hood model, Λ̃, for a conditional parsing model is as follows:

(8) Λ̃ = arg max
Λ

m∏

i=1

PΛ(Ti|Si)

where (T1, S1) . . . (Tm, Sm) is the training data consisting of gold standard parses
Ti for each sentence Si. Note that the likelihood function is a conditional likelihood
function, consisting of the product of the conditional probabilities of the gold stan-
dard parses. Johnson et al. (1999) motivate the use of the conditional likelihood
(and use the term pseudo-likelihood).

In terms of maximizing the likelihood function in (8), a useful intuition is given
by Riezler et al. (2002): choosing weights to maximize the likelihood involves
putting as much mass as possible on the correct parse, relative to the incorrect
parses, for each sentence, whilst maintaining a conditional distribution for each
sentence in the training data. This intuition also fits well with the idea of choosing
weights which discriminate between the good and bad parses for each sentence.
Section 6 describes how the maximization can be performed in practice.

4.2 Discriminative dependency parsing
There is a large literature on data-driven dependency parsing, exemplified by the
CoNLL shared tasks on this topic (Nivre et al., 2007), and this work provides some
notable examples of discriminative parsing models. This subsection begins with a
brief introduction to dependency parsing, and then focuses on the discriminative
models from McDonald et al. (2005b).

The advantages of dependency representations are that efficient decoding algo-
rithms exist, e.g., the O(n3) algorithm of Eisner (1996), and the representation
goes some way towards capturing the predicate–argument structure of a sentence,
making it useful for a variety of tasks such as question answering and syntax-
based statistical machine translation. Dependency representations are based on
linking words together in a dependency graph, where a link indicates that a
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<root> John hit the ball with the bat

Figure 13.4 Example unlabeled dependency tree.

syntactic relation exists between the two words. The links can either be labeled –
with syntactic relations such as subject and object and so on – or unlabeled.
Figure 13.4 gives an example of an unlabeled dependency tree (taken from
McDonald et al., 2005b). The direction of the link is away from the syntactic head.

Dependency formalisms have an established history in linguistics (Hudson
1984), and have been argued to be a more flexible multi-lingual representation
than phrase structure, applying to a wide variety of languages, as the CoNNL
shared tasks demonstrate. Data-driven dependency parsers have also been shown
to be accurate, with unlabeled dependency scores of over 90 percent on English
newspaper text. However, whether dependency parsers for English could ever
compete with their phrase-structure counterparts, which have access to a richer
structure to perform disambiguation, is an open question. McDonald et al. (2005b)
extracted dependencies from the phrase-structure output of the Collins parser,
using head-finding rules, and found the Collins parser to be slightly more accu-
rate (0.5 percent) at correctly assigning dependency links, even though the Collins
parser was not trained for this particular task.

There have been two major approaches to data-driven dependency parsing:
graph-based and transition-based. The transition-based approach uses a model of
the parser moves made within a particular parsing architecture, e.g., shift-reduce,
typically in conjunction with a greedy algorithm which makes a local decision at
each point in the parsing process; this approach will be described in Section 5. The
graph-based approach uses a model of the dependency structure itself, typically
in conjuction with an exact inference algorithm.

A seminal paper in the graph-based approach is McDonald et al. (2005b), which
uses a discriminative model to score dependency trees, together with an online,
large margin-based algorithm for learning. Here we describe the perceptron learn-
ing algorithm, which is simpler conceptually, and which McDonald et al. (2005b)
show to perform almost as well as the margin-based algorithm. The dependency
model is a linear model which uses an edge-based factorization of the dependency
graph. Let x = x1 . . . xn be a sentence and y be a dependency tree for x, then
(i, j) denotes a dependency in y from word xi to word xj. The score for an edge
is defined as follows, where f is a feature representation of the edge and w is a
corresponding weight vector:5

(9) s(i, j) = w · f(i, j)

The score for a complete tree is simply the sum of the scores over the edges:

(10) s(x, y) =
∑

(i,j)∈y

s(i, j) =
∑

(i,j)∈y

w · f(i, j)
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Training data: T = {(xt, yt)}T
t=1

1. w0 = 0; v = 0; i = 0
2. for n : 1..N
3. for t : 1..T
4. w(i+1) = update w(i) according to instance (xt, yt)

5. v = v + w(i+1)

6. i = i + 1
7. w = v/(N ∗ T)

Figure 13.5 Generic algorithm for online learning taken from McDonald et al. (2005b).

McDonald et al. (2005b) use the Eisner (1996) algorithm for decoding. This
algorithm is based on the CKY chart parsing algorithm, creating a packed chart
(or forest) and using the Viterbi algorithm to find the highest scoring depen-
dency tree, in a similar way to that described for the Collins parser in Section 3.
The standard application of a packed chart and Viterbi to dependency pars-
ing results in an O(n5) algorithm, where n is the sentence length, as for the
Collins parser. However, Eisner (1996) noticed that if the left and right depen-
dents of a word are parsed independently, and the definition of equivalence for
the packed chart is modified, then an O(n3) algorithm results. Appendix B of
McDonald et al. (2005c) gives a detailed description and the intuition behind the
new algorithm.

The O(n3) algorithm is especially useful for online learning, since this involves
repeatedly parsing the training examples and updating the weight vector after
each example (as opposed to batch learning in which the weights are updated all
at once on each iteration). In fact, the repeated parsing of training examples is a
bottleneck for discriminative approaches in general. The training algorithms for
the log-linear models described in Section 4.1 calculate feature expectations on
each iteration, which requires the alternative parses for each training sentence,
as well as the correct parse, and so requires repeated parsing.6 Thus it is only
recently that discriminative models have been applied to the full PTB constituent
parsing task (Carreras et al., 2008), following earlier attempts in which only short
sentences were used for training and testing (Taskar et al., 2004); and even recent
approaches to this task (Finkel et al., 2008) have restricted parser development to
short sentences because of the expense of repeatedly parsing the training data with
a constituency-based parser.

Online learning is conceptually very simple. Figure 13.5, taken from McDonald
et al. (2005b), gives a generic algorithm for the online setting. w(i) is the weight
vector after the ith update, where an update occurs for every training instance,
and N is the total number of passes through the data. In this description of the
algorithm there is also an accumulated weight vector, v, which is used to obtain
the final weight vector, w, which is simply the average weight vector across all the
updates. The reason for using averaging in this way is that it has been shown to
be effective against overfitting (Collins 2002).
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calculate zi = arg maxy∈GEN(xt(i)) f(xt(i), y) · w(i)

if zi �= yt(i)
w(i+1) = w(i) + f(xt(i), yt(i)) − f(xt(i), zi)

else
w(i+1) = w(i)

Figure 13.6 The perceptron update; t(i) is the index of the training example
corresponding to the ith update.

There are a number of ways of updating the weights after each training example.
One simple, but effective, method is provided by the perceptron. Figure 13.6 gives
the procedure for the ith update; f(x, y), extending the notation introduced earlier,
is the feature representation for the training example (x, y), that is, the sum of the
feature vectors for each edge in y: f(x, y)= ∑

(i,j)∈y f(i, j); and GEN(x), borrowing
notation from Collins (2002), is the set of alternative analyses of x, in our case
dependency trees.

If the dependency tree returned by the parser, zi, is the same as the gold stan-
dard tree, yt(i), then no update is performed; if the tree is different, then the weight
vector is updated as shown: each feature which appears in the parser output, but
not in the correct tree, has its weight reduced by one, and each feature which
appears in the correct tree, but not in the parser output, has its weight increased
by one. In this way the parser is effectively being encouraged to return the correct
dependency tree for each training example, which also explains why the percep-
tron is prone to overfitting, and the need for averaging parameters. Of course
what we would like is for the resulting model to perform well on unseen data, not
just the training data. Collins (2002) gives proofs showing that reducing errors on
the training data, by using this update procedure, will lead to better parsing on
unseen data.7

The remaining aspect of the model is the feature representation f(i, j) for
each dependency. Note that dependency-parsing models are at a disadvantage
compared to their phrase-structure counterparts, since the latter have access to
phrase-structure as well as dependency structure when defining the feature set. In
fact, dependency graphs, if simply taken as unlabelled edges between words, are
a highly impoverished representation for a statistical parsing model. McDonald
et al. (2005b) solve this problem by making extensive use of POS tags, including
the POS tags of words between dependents, and either side of dependents, as well
as the POS of the dependents themselves; see McDonald et al. (2005b) for a detailed
description of the feature set. The final set contains almost 7 million features.

The standard split of the Penn Treebank was used by McDonald et al. (2005b) for
the experiments: 2–21 for training, 22 for development, and 23 for testing; and a
set of head-finding rules was used to extract the dependency structures. Since each
word in the sentence has exactly one parent (assuming the existence of a root node
at the root of the dependency tree), parsing performance can be measured in terms
of accuracy: the percentage of words whose parent is correctly identified. No labels
are assigned to the links by the parser, so this is unlabeled dependency accuracy.
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The averaged perceptron model scored 90.6 percent on this evaluation, with the
large margin-based method, MIRA, scoring 90.9 percent. Extracting dependen-
cies from the output of the Collins phrase-structure parser gives an accuracy of
91.4 percent. However, the dependency parser is much faster, taking only five
minutes to parse the test set compared to 98 minutes for the Collins parser.8

Finally, the discussion so far has assumed that the dependency graph is pro-
jective, which, informally, means that the graph can be drawn so that no links
in the graph cross. A dependency tree where each word has exactly one parent
can be drawn in this way and so is projective. McDonald et al. (2005d) argue
that projective trees are sufficient to analyze the majority of sentence types for
English. However, for languages with more flexible word order, non-projective
dependencies are more frequent.

McDonald et al. (2005d) introduce a method for building non-projective depen-
dency graphs, by formalizing the problem as finding the maximum spanning tree
(MST) in a directed graph. The same edge-based factorization is used as described
above for the projective case, and the same training algorithm. A standard algo-
rithm for finding the MST exists (the Chu–Liu–Edmonds algorithm) for which
there is an O(n2) implementation (so non-projective dependency parsing, per-
haps surprisingly, can be performed more efficiently than projective parsing). For
reasons of space we do not go into the details of non-projective parsing here.
McDonald et al. (2005d) give results for Czech and English, showing that, for
Czech, there is a significant advantage in using the non-projective, rather than
projective, parsing algorithm, resulting in an absolute increase of over 1 percent
unlabeled parsing accuracy.

This section has focused on English, but there has been a large amount of work
on dependency parsing for other languages. The CoNLL 2007 shared task (Nivre
et al., 2007) performed an extensive evaluation, using a number of submitted sys-
tems, on Arabic, Basque, Catalan, Chinese, Czech, English, Greek, Hungarian,
Italian, and Turkish. The accuracies were invariably higher for English than the
other languages, but whether this is due to the dependency-parsing problem being
harder for other languages; or due to smaller treebanks being available; or due to
the multi-lingual application of inappropriate models which have been developed
for English, is an open question.

5 Transition-Based Approaches

The approaches we have seen so far use models of parses to drive the statisti-
cal parsing process: probabilities are defined over parses (or parts of parses) and
these probabilities are used to guide the search for the most probable parse. Hence
the probability model is somewhat divorced from the parsing algorithm: the algo-
rithm builds subparses and the probability model is used to decide which parts
are retained as hypotheses during the parsing process.

The strategy described above is a natural one considering that our aim is to find
the best parse, and that we usually do not care how the statistical parser finds



“9781405155816_4_013” — 2010/5/8 — 12:03 — page 350 — #18

350 Stephen Clark

that parse (as long as it does so efficiently). However, there is an alternative strat-
egy, which is to use a probability model to guide the moves made by the parsing
algorithm. This is the approach taken by, among others, Briscoe and Carroll (2006),
Ratnaparkhi (1999), and a number of recent papers in the dependency-parsing
literature (Yamada & Matsumoto 2003; Nivre & Scholz 2004).

A strength of these approaches is that, since probabilities are being used to
guide the parsing algorithm, extremely efficient parsers can be built by follow-
ing a greedy strategy of selecting the highest-scoring move at each decision point
(or by selecting only a small number of high-scoring moves at each point). The
disadvantage is that it is not always clear whether optimizing for parser moves
leads to the selection of the most optimal parse (see Section 4 of Collins 1999 for a
discussion of this issue).

We will use transition-based dependency parsing as an example, since the
transition-based approach has been particularly successful for the dependency-
parsing problem. However, there are a number of examples of constituent-based
parsing which use this approach. Briscoe and Carroll (1993) were one of the earli-
est, using an LR-parser in conjunction with a manually defined unification-based
grammar and associating probabilities with the actions in the LR parse table.
Briscoe and Carroll (2006) have recently extended the grammar and parser to han-
dle WSJ text, arguing that the unlexicalized nature of the model makes it relatively
easy to adapt the parser to new domains.

Magerman (1995) and Ratnaparkhi (1999) apply transition-based approaches
to the PTB parsing task. Ratnaparkhi (1999) builds a parse-tree in three stages.
Stage 1 uses a maximum entropy POS tagger to assign a POS tag to each word
(Ratnaparkhi 1996). Stage 2 uses a maximum entropy tagger to assign chunk
labels to each word, essentially grouping the words together into a flat constituent
structure. And finally the third stage uses maximum entropy models to link the
chunks into a hierarchical parse-tree structure. The key point is that local proba-
bility models are used to assign a score to each action – whether it be assigning
a POS tag to a word, for example, or linking two chunks – and the probability
of a complete parse is defined as the product of the probabilities of the actions
used to build the parse. A beam search is used to search the space of possible
actions, keeping some fixed number of best-scoring hypotheses at each point in
the parsing process, and extending the highest-scoring hypothesis at each point.
This search procedure results in a parser that runs in linear time with respect to the
sentence length.

The accuracies on the PTB for the Ratnaparkhi parser were competitive at the
time, but not as high as those reported by Collins (1997). Lafferty et al. (2001)
suggest that the model used by Ratnaparkhi – in which conditional probabilities
for each action are multiplied to give a score for the complete parse – may suffer
from the label bias problem. Put very simply, the use of local conditional probability
distributions to make decisions at each point in the parsing process may lead to a
choice which is not globally optimal; readers are referred to Lafferty et al. (2001)
for the details.



“9781405155816_4_013” — 2010/5/8 — 12:03 — page 351 — #19

Statistical Parsing 351

5.1 Transition-based dependency parsing
Yamada and Matsumoto (2003) is a seminal paper on data-driven dependency
parsing. Head-finding rules are used to convert phrase-structure trees from the
Penn Treebank into dependency trees, giving trees where each word in the sen-
tence (except the root) has exactly one parent. See Yamada and Matsumoto (2003)
for an example phrase-structure tree and the corresponding dependency tree.

Dependency trees are built using a simple bottom-up shift-reduce parsing algo-
rithm, operating from left to right along the sentence. There are three actions
available to the parser: shift, left, and right. The state of the parser always
has a pair of words acting as the ‘focus’ (using Yamada and Matsumoto’s terminol-
ogy). The shift action simply moves the focus one word to the right. The right
action constructs a dependency relation between the two words in focus, where
the word to the left becomes a child of the word to the right, and the child is taken
out of focus. The left action works in the same way, but the word to the right
becomes the child and moves out of focus. Again see Yamada and Matsumoto
(2003) for an example of each action.

The parser uses a classifier to decide which of the three actions to take at any
point in the parsing process, and uses a greedy method by selecting only the
highest-scoring action at each point. Multiple passes over the input sentence are
used to build a dependency tree. Yamada and Matsumoto apply a support vector
machine to the classification problem, but in principle any classifier could be used.
The feature set consists of a rich set of features describing the contexts of the words
in focus, in terms of the subtrees already built, utilizing both words and POS tags.

Nivre and Scholz (2004) describe a similar approach, but use a shift-reduce
parsing algorithm which is guaranteed to build a dependency tree in a single
pass from left to right over the sentence. They also extend the dependency pars-
ing problem by building trees with labeled edges, indicating the syntactic type
of the dependency relation. Another difference is that Nivre and Scholz use a
memory-based classifier rather than support vector machine. Nivre (2007) extends
the transition-based approach to non-projective dependency parsing.

McDonald and Nivre (2007) show that the transition-based approach and
graph-based approach result in remarkably similar performance across a range of
languages, despite using different parsing algorithms and feature sets. They also
show that the two approaches result in different errors, a fact exploited by Sagae
and Lavie (2006), who use a parser recombination scheme to increase the accuracy
over the individual parsers.

Finally, Zhang and Clark (2008) show that the transition-based approach does
not have to be based on local greedy search, nor does the graph-based approach
have to be based on exact global inference. They build a dependency parser based
on beam search, utilizing both graph-based and transition-based features, and use
a linear model trained with the generalized perceptron of Collins (2002). The inno-
vation in this approach is to train a single model which utilizes features from both
approaches, demonstrating accuracy gains over using each approach in isolation.
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6 Statistical Parsing with CCG

The evolution of parsing models since the early Penn Treebank work has moved
in two directions: towards more flexible, discriminative parsing models; and
towards more sophisticated grammar formalisms. The work described in this
section represents both of these dimensions.

The attraction of using linguistic formalisms for parsing, such as lexical func-
tional grammar (LFG), head driven phrase structure grammar (HPSG), tree adjoin-
ing grammar (TAG), and combinatory categorial grammar (CCG), is that these
formalisms allow direct access to the underlying predicate–argument structure of
a sentence (roughly who did what to whom), including long-range dependen-
cies such as those inherent in coordination and extraction phenomena. Recovering
such structure is arguably necessary for high performance on tasks such as ques-
tion answering (QA), information extraction (IE), and machine translation (MT).
I use ‘arguably’ here because, despite decades of research on automatic parsing, it
is still the case that convincing evidence of the benefits of parsing for NLP applica-
tions is lacking, especially for MT where phrase-based models currently provide
the state of the art (although one of the most active areas of research in MT is
currently syntax-based statistical MT).

Perhaps the best example of an application where parsing has been benefi-
cial is QA, where the use of a wide-coverage parser has now become standard
(Harabagiu et al., 2001b). The recent development of formalism-based parsers
which are also efficient and robust, of which the CCG parser described in this
chapter is a notable example, may lead to the increased adoption of parsers in
NLP applications over the next few years, but this remains to be seen.

The CCG parser described here is representative of recent work in the area of
robust, formalism-based parsing in a number of respects: it uses a formalism-
specific treebank derived from the Penn Treebank, both as a source for the
grammar and as training data for the statistical models; it uses a discriminative
parsing model defined over complete parses, which is estimated using general
numerical optimization techniques; it uses dynamic programming to allow both
efficient estimation and decoding; it uses a supertagging phase as a precursor to the
parsing; and it uses gold standard resources annotated with grammatical relations
for evaluation, including long-range dependencies. Other work which has some
or all of these features includes Riezler et al. (2002), Sarkar and Joshi (2003), Cahill
et al. (2004), and Miyao and Tsujii (2005).

The following description is taken largely from Clark and Curran (2007b). The
section begins with a description of the grammar formalism and the resource
used to build the parser, followed by a description of the parser model, and fin-
ishes with an explanation of how the modeling techniques are applied in practice.
Note that there is nothing particularly ‘CCG-specific’ about the application of log-
linear models here, or the use of feature forests for estimation, but for expository
purposes it is useful to have the modeling techniques grounded in a particular
grammar formalism and parser.
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Investors are appealing to the Exchange Commission

NP (S[dcl]\NP)/(S[ng]\NP) (S[ng]\NP)/PP PP/NP NP/N N/N N
>

N
>

NP
>

PP
>

S[ng]\NP
>

S[dcl]\NP
<

S[dcl]

Figure 13.7 Example derivation using forward and backward application.

6.1 Combinatory categorial grammar
Combinatory categorial grammar (CCG) (Steedman 1996; 2000) is a type-driven
lexicalized theory of grammar based on categorial grammar (Wood 1993). CCG
lexical entries consist of a syntactic category, which defines valency and direc-
tionality, and a semantic interpretation (not shown in the examples given here).
Categories can be either basic or complex. Examples of basic categories are S
(sentence), N (noun), NP (noun phrase), and PP (prepositional phrase). Complex
categories are built recursively from basic categories, and indicate the type and
directionality of arguments (using slashes), and the type of the result. For exam-
ple, the following category for the transitive verb bought specifies its first argument
as a noun phrase to its right, its second argument as a noun phrase to its left, and
its result as a sentence:

(11) bought := (S\NP)/NP

Categories are combined in a derivation using combinatory rules. In the original
categorial grammar (Bar-Hillel 1953), which is context-free, there are two rules of
functional application:

X/Y Y ⇒ X (>)(12)

Y X\Y ⇒ X (<)(13)

where X and Y denote categories (either basic or complex). The first rule is forward
application (>) and the second rule is backward application (<). Figure 13.7 gives an
example derivation using these rules.9

CCG extends the original categorial grammar by introducing a number of addi-
tional combinatory rules. The first is forward composition, which Steedman denotes
by > B (since B is the symbol used by Curry to denote function composition in
combinatory logic; Curry & Feys 1958):

(14) X/Y Y/Z ⇒B X/Z (> B)
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the agreement which the fund reached

NP/N N (NP\NP)/(S[dcl]/NP) NP/N N (S[dcl]\NP)/NP
> >

NP NP
>T

S/(S\NP)
>B

S[dcl]/NP
>

NP\NP
<

NP

Figure 13.8 Example derivation using type-raising and forward composition.

Forward composition is often used in conjunction with type-raising (T), defined
according to the following two rule schemata:

X ⇒T T/(T\X)(15)

X ⇒T T\(T/X)(16)

T is a variable over categories, ranging over the result types of functional
categories over X.

Figure 13.8 gives an example showing the combination of type-raising and
composition. In this case type-raising takes a subject noun phrase (the fund) and
turns it into a functor looking to the right for a verb phrase; the fund is then able to
combine with reached using forward composition, giving the fund reached the cate-
gory S[dcl]/NP (a declarative sentence missing an object). It is exactly this type of
constituent which the object relative pronoun category is looking for to its right:
(NP\NP)/(S[dcl]/NP).

Further combinatory rules in the theory of CCG, and in the parser, include back-
ward composition and backward crossed composition. There is also a coordination
rule which conjoins categories of the same type, producing a further category of
that type. Steedman (2000) motivates the need for the additional rules, and Clark
and Curran (2007b) describe which rules are implemented in the parser.

The treebank used to develop the parser is CCGbank (Hockenmaier &
Steedman 2002a; Hockenmaier 2003), a CCG version of the Penn Treebank
(Marcus et al., 1993). The treebank performs two roles: it provides the lexical cat-
egory set which makes up the grammar (plus some unary type-changing rules
and punctuation rules used by the parser – see Clark and Curran (2007b) for
the details), and it is used as training data for the statistical models. CCGbank
was created by converting the phrase-structure trees in the Penn Treebank into
CCG derivations. Hockenmaier (2003) gives a detailed description of the proce-
dure used to create CCGbank. Figure 13.9 shows an example derivation for an
(abbreviated) CCGbank sentence. The derivation has been inverted, so that it is
represented as a binary tree.
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Figure 13.9 Example CCG derivation for the sentence Under new features, participants can
transfer money from the new funds.

6.2 Log-linear parsing model for CCG
The log-linear modeling approach can be applied directly to CCG derivations, in
the same way that it can be applied to any kind of linguistic structure. Thus there
is nothing particularly CCG-specific about the model, except that the features are
defined over CCG derivations. Clark and Curran (2003) give some motivation
for applying log-linear models to CCG in particular, by arguing for the inclu-
sion of long-range dependencies in the model; the seminal article of Abney (1997)
contained a similar argument for constraint-based grammar formalisms.

According to the log-linear model, the probability of a derivation d, given a
sentence, S, is defined as follows:

(17) P(d|S) = 1
ZS

eλ.f (d)

where λ.f (d) = ∑
i λifi(d). The function fi is the integer-valued frequency func-

tion of the ith feature; λi is the weight of the ith feature; and ZS is a normalizing
constant which ensures that P(d|S) is a probability distribution:

(18) ZS =
∑

d′∈ρ(S)

eλ.f (d′)

where ρ(S) is the set of possible derivations for S. This is the same formalization
as given in equation (7), but with a slightly different notation. The features used
in the parser will be described later.
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The training data consists of gold standard derivations from CCGbank. The dis-
criminative estimation method follows Riezler et al. (2002) by maximizing the
conditional log-likelihood of the model given the data, minus a Gaussian prior
term to prevent overfitting (Chen & Rosenfeld 1999; Johnson et al., 1999). Thus,
given training sentences S1, . . . , Sm, and gold standard derivations, d1, . . . , dm, the
objective function for a model Λ is:

L′(Λ) = L(Λ) − G(Λ)(19)

= log
m∏

j=1

PΛ(dj|Sj) −
n∑

i=1

λ2
i

2σ 2

The Gaussian prior simply implements the intuition that we do not expect
the weights to get too high in absolute value, and prevents them doing so by
penalizing any model whose second term in (19) becomes excessively large. The
parameter σ is set empirically using held-out development data (by choosing the
value which leads to the highest parsing accuracy on the held-out data).

Maximizing L′(Λ) is a numerical optimization problem, for which there are a
number of standard techniques available (Nocedal & Wright 1999). Early work in
estimating log-linear models for NLP applications used iterative scaling methods
(Della Pietra et al., 1997), although these were shown to be too slow for complex
parsing and tagging models (Sha & Pereira 2003; Clark & Curran 2004). Malouf
(2002) introduced general numerical optimization techniques to the NLP com-
munity and showed them to be significantly more efficient than iterative scaling
methods.

A useful function for optimizing L′(Λ) is the gradient, i.e., the partial derivative
with respect to each weight:

∂L′(Λ)

∂λi
=

m∑

j=1

fi(dj) −
m∑

j=1

∑

d∈θ(Sj)

eλ.f (d)fi(d)
∑

d∈θ(Sj)
eλ.f (d)

− λi

σ 2(20)

where dj is the gold standard derivation for sentence Sj and θ(Sj) is the set of
possible derivations for Sj. A useful intuition for understanding the optimization
process is to think of the likelihood function as a surface (but in many dimensions),
and the role of the optimization algorithm is to find the ‘top’ of the surface, given
some random starting point. Chapter 5, MAXIMUM ENTROPY MODELS, describes in
detail how this optimization problem can be solved. The key point for this chapter
is that any method for optimizing (19), including the iterative scaling algorithms,
requires calculation of the gradient in (20).

Note that (20) is a difference in feature expectations (ignoring the third term
resulting from the Gaussian prior). The first term is simply the (unnormalized)
empirical expectation for feature fi, that is, the number of times the feature
appears in the training data, and the second term is the model expectation for
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fi. Hence the estimation process can also be thought of in terms of the maximum
entropy framework of Della Pietra et al. (1997), since setting the gradient in (20)
to zero (required for maximizing L′(Λ)) yields the usual maximum entropy con-
straints, namely that the expected value of each feature is equal to its empirical
value.

Crucially, calculation of the model expectations for each feature requires a sum
over all derivations for each sentence in the training data; however, the number
of derivations grows exponentially with the sentence length, and the number of
derivations for a sentence, according to the automatically extracted CCG grammar,
can be very large. The next section briefly explains how this calculation can be
performed in practice.

6.3 Efficient estimation
Clark and Curran (2007b) adapt the feature forest method of Miyao and Tsujii (2002)
to perform a sum over a potentially exponential number of CCG derivations,
required for calculation of the feature expectations in (20). A key data structure
for this approach is the packed chart, which can be seen as an instance of a feature
forest and hence used to calculate the feature expectations.

A chart is an array which stores the constituents for each substring (or span) in
the sentence, as was described for the Collins parser. A packed chart is based on
the idea that, if there is more than one way of deriving a constituent of the same
type with the same span, then only one of these chart entries needs to be consid-
ered for further parsing. Equivalent entries are grouped into equivalence classes,
and, for an individual entry in a class, back pointers to the daughters indicate how
that entry was created, so that any derivation can be recovered from the chart.
The use of equivalence classes in this way allows a large set of derivations to be
represented compactly.

Entries are equivalent when they have the same span, form the same structures
in any subsequent parsing, and generate the same features in any subsequent
parsing. For a CCG parse chart, any constituents with the same CCG category, the
same span, and the same linguistic head are equivalent for the purposes of fur-
ther parsing and the log-linear parsing model. Note that equivalence with regard
to the parsing model is only guaranteed if the features in the model are suffi-
ciently local, in this case confined to a single rule application.10 In the models of
Clark and Curran (2007b), features are defined in terms of local rule instantiations,
where a rule instantiation is the local tree arising from the application of a rule in
the grammar.

A CCG packed chart is an instance of a feature forest (Miyao & Tsujii 2002)
which can be used for efficient calculation of the feature expectations. Represent-
ing a CCG packed chart as a feature forest is straightforward, but we refer readers
to Clark and Curran (2007b) and Miyao and Tsujii (2002) for the technical details.
Essentially, the packed chart representation enables the use of a dynamic program-
ming algorithm to sum over all derivations containing a particular feature, which
is required to calculate the feature’s expectation.
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Estimating the parsing model in practice consists of generating packed charts
for each sentence in the training data, and then repeatedly calculating the values
required by the estimation algorithm until convergence. Even though the packed
charts are an efficient representation of the derivation space, the charts for the
complete training data (sections 2–21 of CCGbank) take up a considerable amount
of memory. One solution is to only keep a small number of charts in memory at
any one time, and to keep reading in the charts on each iteration. However, given
that the estimation algorithms for log-linear models typically require hundreds of
iterations to converge, this approach would be infeasibly slow.

The solution in Clark and Curran (2007b) is to keep all charts in memory by
developing a parallel version of the L-BFGS training algorithm and running it on
an 18-node Beowulf cluster. As well as solving the memory problem, another sig-
nificant advantage of parallelization is the reduction in estimation time: using 18
nodes allows the best-performing model to be estimated in less than three hours.

The log-linear modeling framework allows considerable flexibility for repre-
senting the parse space in terms of features. However, in order to use packed
charts as feature forests for the estimation, the features are limited to those defined
over local rule instantiations. The features used in the parser constitute a fairly
standard set for a statistical parsing model. There are features encoding local
trees (two combining categories and the result category); features encoding word-
lexical category pairs at the leaves of the derivation; features encoding the category
at the root of the derivation; and features encoding word–word dependencies,
some of these also with information regarding the distance between the depen-
dents. Each feature type has variants with and without head information, with
separate features encoding heads as lexical items and POS tags. Clark and Curran
(2007b) describe the feature set in detail.

The best-performing model from Clark and Curran (2007b) had 475,537 features;
converged in 610 iterations of the L-BFGS algorithm; required 22.5 GB of RAM,
which was provided by the 18-node Beowulf cluster; and was trained in just over
two hours.

6.4 Parsing in practice
Parsing with lexicalized grammar formalisms such as CCG is a two-stage pro-
cess: first, elementary syntactic structures – in CCG’s case lexical categories – are
assigned to each word in the sentence, and then the parser combines the structures
together. Clark and Curran (2007b) use a supertagger (Bangalore & Joshi 1999) to
perform step one. The supertagger uses log-linear models to define a distribution
over the lexical category set for each local five-word context containing the target
word (Ratnaparkhi 1996). The features used in the models are the words and POS
tags in the five-word window, plus the two previously assigned lexical categories
to the left. The conditional probability of a sequence of lexical categories, given
a sentence, is then defined as the product of the individual probabilities for each
category. In order that the supertagger be accurate enough to serve as a front end
to the parser, Clark and Curran (2007b) define a multi-tagger, in a fairly standard
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way, using the distribution over lexical categories for each word in the sentence to
potentially assign more than one category to each word. The lexical category dis-
tributions for each word can be calculated efficiently using the forward–backward
algorithm.

The algorithm used to build the packed charts is the CKY chart parsing algo-
rithm (Kasami 1965; Younger 1967) described in Steedman (2000). The CKY
algorithm applies naturally to CCG since the grammar is binary. It builds the
chart bottom-up, starting with constituents spanning a single word, incrementally
increasing the span until the whole sentence is covered. The Viterbi algorithm is
used to find the most probable derivation from a packed chart.

There are a number of possible ways of evaluating the CCG parser.
Hockenmaier and Steedman (2002b) argue against the use of the Parseval met-
rics applied to CCG derivations, since the binary-branching nature of CCG means
that it is penalized more heavily according to these metrics than the flatter PTB
structures. Also, a primary motivation for CCG parsing is the recovery of long-
range, as well as local, dependencies, making a dependency-based evaluation the
natural choice.

Clark and Curran (2007b) perform two dependency-based evaluations. The first
uses the gold standard predicate–argument structures from CCGbank, including
long-range dependencies, which are defined in terms of the argument slots in
CCG lexical categories. According to this evaluation, the best-performing model
achieves an F-score of 85.5 percent on section 23, which rises to 87.6 percent if
gold standard POS tags are fed to the supertagger and parser. There are two dis-
advantages to this evaluation: one, it is CCG-specific, so the accuracies cannot
be compared with the scores reported for parsers not based on CCGbank; and
two, the accuracy figures are arguably inflated in that the CCG parser is being
rewarded for reproducing any systematic biases or errors in the treebank, for
example incorrect bracketing in complex noun phrases.11

Clark and Curran (2007b) attempt a formalism-independent evaluation by map-
ping the CCG dependencies to Briscoe and Carroll-style grammatical relations
(GRs), and evaluating on DepBank, a 700-sentence subset of section 23 of the
PTB which has been manually annotated with GRs. The mapping turned out to
be surprisingly difficult to perform, and evaluating the gold standard CCG depen-
dencies from CCGbank against the GRs in DepBank (after applying the mapping)
resulted in an F-score of only 84.8 percent. Thus the best that the CCG parser can
be expected to achieve is 84.8 percent. Despite this relatively low upper bound, the
CCG parser scored 81.1 percent on DepBank, almost five percentage points higher
than the RASP parser which it was compared against.

Finally, Clark and Curran (2007b) give parse times for the CCG parser, compar-
ing against those reported for other parsers in the literature. The CCG parser is an
order of magnitude faster than the Collins and Charniak parsers. The relatively
low parse times are due primarily to the use of the supertagger, which is very
effective in accurately limiting the search space. Parser efficiency was the original
motivation for supertagging when applied to LTAG parsing (Bangalore & Joshi
1999).
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6.5 Summary
The CCG parsing work described here was perhaps the first to develop a dis-
criminative parsing model based on the Penn Treebank (or derivative of the PTB)
using an automatically extracted grammar. The huge parse space resulting from
the automatically extracted grammar was handled in two ways: one, through the
use of a cluster and a parallelized estimation algorithm; and two, through the
use of a supertagger as a parsing pre-processor. Similar techniques have recently
been applied to the PTB parsing task. Finkel et al. (2008) use cluster recources to
estimate a log-linear model, and Carreras et al. (2008) use a TAG-like grammar,
together with a simpler pre-processing stage, to limit the parse space for discrim-
inative estimation (although the pre-processing is a simpler parsing model, rather
than a supertagger).

The CCG parser was perhaps also the first to successfully use a supertagger in
conjunction with an automatically extracted grammar. The supertagger not only
makes discriminative estimation possible, but also results in a surprisingly fast
formalism-based parser.

One of the motivations for using CCG is the ability to recover long-range depen-
dencies. There has been little evaluation of parsers’ ability in this regard; some
examples include Clark et al. (2004) for the CCG parser, and Johnson (2002) for
a postprocessor applied to PTB parsers. Steedman (2008) argues that the ability
to handle long-range dependencies will become increasingly important, both as
a way of improving basic language technology, and also to satisfy the increasing
expectations of users of the technology.

7 Other Work

It is inevitable in a chapter such as this that many relevant pieces of work
have been omitted. For the history section, Brill’s work on transformation-based
parsing was an early, influential attempt at the PTB parsing task (Brill 1993).

For the generative parsing section, there is a large body of work on data-oriented
parsing (DOP) (Bod 2003). DOP uses a highly flexible representation in which any
subtree appearing in the data can be used to compose trees for unseen sentences,
motivated by the idea that important dependencies exist which cannot be captured
by the usual head-based decomposition of a parse-tree. Much of the DOP pars-
ing work is concerned with developing estimation and parsing algorithms to deal
with the enormous search space which results from this representation. Collins
and Duffy (2002) use a similarly flexible representation, but within a kernel frame-
work, showing how parsing models which use all subtrees of a parse-tree can be
efficiently estimated, even though the number of subtrees grows exponentially
with the size of the tree.

Titov and Henderson (2007c) describe a PTB parsing model in which neural net-
works are used to estimate the parameters of a generative model. The innovation
in this approach lies in their flexible notion of history, in that the estimation process
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itself decides how much conditioning context is appropriate for each parame-
ter. This work is described in more detail in Chapter 9 of this book, ARTIFICIAL
NEURAL NETWORKS.

For the CCG parsing section, and formalism-based parsing more generally,
Chiang (2000) developed a wide-coverage parser using an automatically extracted
TAG grammar. Hockenmaier and Steedman (2002b) describe a generative CCG
parsing model, applying the techniques from the PTB generative models to
CCGbank. Miyao and Tsujii (2005), in tandem with the development of the CCG
parser, have done similar work for automatically extracted HPSG grammars, in
particular developing the theoretical framework for the discriminative estimation
method used by the CCG parser (Miyao & Tsujii 2002), which also draws heav-
ily on Riezler et al. (2002). Cahill et al. (2004) obtain competitive results on a GR
evaluation by automatically extracting LFG representations from PTB parse-trees.

There has been some recent work on statistical parsing motivated by psycholin-
guistic considerations, for example Dubey and Keller (2003), with the parsing
model and algorithm typically exhibiting some amount of incrementality. Roark
(2001a) describes an incremental, top-down parser with the aim of defining
syntax-based language models for speech recognition, where incrementality is a
useful feature as it allows the speech signal to be processed in real time.

Finally, this chapter has focused on the parsing of English. Whilst the majority
of work on statistical parsing has been for English, of course there has been work
for other languages, for example German (Dubey & Keller 2003), French (Arun
& Keller 2005), Spanish (Cowan & Collins 2005), Czech (Collins et al., 1999), and
Chinese (Wang et al., 2006). Section 4.2 referred to the CoNNL shared task in which
a number of languages were investigated in the context of dependency parsing.

8 Conclusion

This chapter has discussed the significant advances that have taken place in wide-
coverage parsing, through the adoption of statistical and data-driven methods.
However, the publication of accuracy results of over 90 percent can give a mis-
leading impression that parsing is close to being a solved problem. There are many
areas in which there is large room for improvement in statistical parsing.

First, an overall accuracy figure hides that fact that there are many semantically
important dependencies that are being recovered at accuracies much lower than
90 percent. In addition, an overall score is inflated by the fact that some frequent
dependencies, such as determiner–noun and auxiliary–verb, can be recovered
with very high accuracies. Dependency-based evaluation schemes are useful in
this regard, since they allow accuracies to be presented for particular depen-
dency types. For example, the Collins parser has an accuracy on PP modification
dependencies of roughly 82 percent, and on coordination structures of roughly
62 percent (Collins 1999d: 193–4). PP-attachment and coordination have always
been classic syntactic ambiguity problems, and remain so despite decades of work
on the problem.
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Second, the majority of work, or at least the most influential work, in statis-
tical parsing has been performed on the WSJ section of the Penn Treebank. It is
well known that parsers trained on newspaper text can perform much worse in
other domains (Gildea 2001). Given the demand for NLP tools in domains such
as biomedical text, a key area for development in statistical parsing, and one in
which there is a growing literature, is domain adaptation.

Third, the majority of the work in statistical parsing has been for English. It is an
open question whether models developed for English can be applied to languages
which have very different characteristics, such as complex morphology or free
word order, or whether significantly different modeling techniques are required
for these languages.

Fourth, the lack of data in domains other than newspaper text and languages
other than English (and a handful of other languages which have treebanks) is a
barrier to developing accurate parsing models outside of the WSJ. Currently there
are two suggestions for how to solve this problem: one, through the use of clever
ways of obtaining manually annotated data, such as active learning; and two,
through the use of semi-supervised or unsupervised approaches. Self-training is a
recent example of the latter approach (McClosky et al., 2006).

Finally, evaluation, which has gained importance across the whole of NLP, has
taken an increasingly prominent role in parsing, because of the desire to compare
parsers across linguistic frameworks. However, the development of an evaluation
scheme which can be applied fairly to a number of parsers has proven surprisingly
difficult (Clark & Curran 2007a).

Despite the fact that parsing has been a central problem in NLP since its incep-
tion, and that many researchers believe that parsing is important for applications
such as question answering and machine translation, it is still surprisingly diffi-
cult to find compelling examples of language technology in which parsing plays
a central role. The development of robust, wide-coverage, and efficient parsers
may change this state of affairs – a recent prominent example of parser-driven
language technology is the search engine of Powerset, which uses an LFG parser
(Riezler et al., 2002) – but whether parsers will become a standard component in
future language technology remains to be seen.

NOTES

1 The term formalism-based is used in this chapter to denote parsing research based on
specific linguistic formalisms, such as TAG, LFG, HPSG, and CCG.

2 See Manning and Schütze (1999) for a textbook treatment of PCFGs.
3 Chapter 4 of this book, THEORY OF PARSING, contains a more detailed description of

parsing algorithms.
4 Collins (1999) gives a more detailed analysis, considering the various constant factors

related to the grammar and training data.
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5 The rest of this chapter uses λ for the weight vector; here we use w to be consistent
with McDonald et al. (2005b).

6 An alternative to repeated parsing, which is described in Section 6, is to create packed
charts for each sentence only once, and either keep them in memory, if enough RAM is
available, or store them on disk and read each one in individually.

7 This is a rough paraphrase of the theoretical result; readers should consult Collins
(2002) for the details.

8 Fairly comparing parser speeds is difficult, because of differences in implementation
and so on; however, it is reasonable to assume in this case that some of the speedup is
due to the more efficient dependency-parsing decoder.

9 Figures 13.7, 13.8, and 13.9 originally appeared in Clark and Curran (2007b), and are
used with the permission of the Association for Computational Linguistics.

10 Features could also incorporate any part of the sentence, since this is a conditional
parsing model and the sentence is not being generated.

11 The flat structure of noun phrases in the PTB means that complex noun phrase struc-
tures in CCGbank are always right-branching, sometimes incorrectly so. See Vadas and
Curran (2008) for work describing manual correction of complex noun phrases in the
PTB and CCGbank, and the impact this has on the accuracy of the CCG parser.
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14 Segmentation
and Morphology

JOHN A. GOLDSMITH

1 Introduction

1.1 General remarks
The field of morphology has as its domain the study of what a word is in natural
languages. In practice, this has meant the study of four relatively autonomous
aspects of natural language: (1) the identification of the lexicon of a language,
(2) morphophonology, (3) morphosyntax, and (4) morphological decomposition,
or the study of word-internal structure.

At first blush, identifying the lexicon of a language – what the words are – may
seem simple, especially in languages which are conventionally written with spaces
between words, but, as we shall see below, the task is more complicated at more
points than one would expect, and in some scientific contexts we may be inter-
ested in knowing under what conditions the spaces that mark separation between
words can be predicted. To explain what points (2) through (4) above cover, we
introduce the notion of morph – a natural, but not entirely uncontroversial notion.
If we consider the written English words jump, jumps, jumped, and jumping, we
note that they all begin with the string jump, and three of them are formed by fol-
lowing jump by s, ed, or ing. When words can be decomposed directly into such
pieces, and when the pieces recur in a functionally regular way, we call those
pieces morphs. With the concept of morph in hand, we may consider the following
definitions:

• Morphophonology. It is often the case that two or more morphs are similar
in form, play a nearly identical role in the language, and can each be analyt-
ically understood as the realization of a single abstract element – ‘abstract’ in
the sense that it characterizes a particular grammatical function, and abstracts
away from one or more changes in spelling or pronunciation. For example,
the regular way in which nouns form a plural in English is with a suffixal
-s, but words ending in s, sh, and ch form their plurals with a suffixal -es.
Both -s and -es are thus morphs in English, and we may consider them as
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forming a class which we call a morpheme: the pair of morphs {s, -es},
whose grammatical function is to mark plural nouns. The principles that
are involved in determining which morph is used as the correct realization
of a morpheme in any given case is the responsibility of morphophonology.
Morphophonology is the shared responsibility of the disciplines of phonology
and morphology.

• Morphosyntax. Syntax is the domain of language analysis responsible for the
analysis of sentence formation, given an account of the words of a language.1

In the very simplest cases, the syntactic structure of well-formed sentences in
a language can be described in terms of atomic and unanalyzed words, but
grammar is never really that simple. In reality, the morphs that appear inside
one word may also specify information about other words in the sentence –
for example, the verbal suffix -s in Sincerity frightens John specifies that the
subject of the verb is grammatically singular. Thus statements about syn-
tax inevitably include some that peer into the internal structure of at least
some words in a language, and in many languages this is the rule rather
than the exception. Morphosyntax deals with the relationship between the
morphemes found inside one word and the other words that surround it in the
larger sentence; it is the shared responsibility of the disciplines of syntax and
morphology.

• Morphological decomposition. While English has many words which contain
only a single morpheme (e.g., while, class, change), it also has many words that
are decomposable into morphs, with one or more suffixes (help-ful, thought-less-
ness), one or more prefixes (out-last), or combinations (un-help-ful). But English
is rather on the tame side as natural languages go; many languages regularly
have several affixes in their nouns, adjectives, and, even more often, their verbs
(e.g., Spanish bon-it-a-s, which consists of a root meaning ‘good,’ a diminutive
suffix -it, a feminine suffix -a, and a plural suffix -s).

In the remainder of this introductory section, we will give a brief overview
of the kinds of questions that have traditionally been the focus of the study of
morphology in general linguistics. This will serve as background to the dis-
cussion of the following three questions which are specifically computational in
character.

(1) Can we develop – and if so, how – a language-independent algorithm that
takes as input a large sequence of symbols representing letters or phonemes
and provides as output that same sequence with an indication of how the
sequence is divided into words? This question puts into algorithmic form the
question of how we divide a string of symbols into words.

(2) How can we develop a language-independent algorithm that takes as input
a list of words and provides as output a segmentation of the words into
morphemes, appropriately labeled as prefix, stem, or suffix – in sum, a basic
morphology of the language that produced the word list?

(3) How can we implement our knowledge of morphology in computational
systems in order to improve performance in natural language processing?
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1.2 Morphology
Users of natural languages (which is to say, all of us) need no persuasion that
words are naturally occurring units. We may quibble as to whether expressions
like of course should be treated as one word or two, but there is no disagreement
about the notion that sentences can be analytically broken down into component
words. Linguists and others who think deeply about such questions as ‘what is
a word?’ generally focus on the idea that there is evidence in each language from
phonology, morphology, syntax, and semantics which points in the direction of a
natural chunk corresponding to the traditional notion of word. From a phonologi-
cal point of view, phenomena that occur inside a word are often quite distinct from
phenomena that occur at word boundary – the conditions under which a t is a flap
in American English differ considerably in this way, for example. In a similar way,
we find that at the point in an utterance between two words, we can expand the
utterance by adding material. For example, we can convince ourselves that their is
a separate word, and not a prefix to the word dream, because we can say: John and
his wife will follow their – or at least his – dream next year.

There are some difficult intermediate cases which linguists call clitics –
morphemes whose status as a full-fledged word is dubious; the possessive suf-
fix ’s in English is such a case, because although in many respects it seems like a
suffix to the word that precedes it, it may nonetheless be syntactically and seman-
tically associated with a preceding phrase, as in an example like a friend of mine’s
first husband (contrast this with a friend of my first husband).

In all languages, or virtually all, it is appropriate to analytically break words
down into component pieces, called morphs, and then to bundle morphs back into
the functional units we call morphemes; such an analysis is part of the functional-
ity of a morphology, and is the central subject of this chapter (when a morpheme
corresponds to only a single morph, as is often the case, we generally ignore
the difference between a morph and a morpheme). In addition, we expect of a
complete morphology that it will associate the appropriate set of morphosyntactic
features with a word, to the extent that the word’s morphological decomposition
can serve as a basis of specifying those features. Thus books should be analyzed as
book plus a suffix -s, and the suffix -s should be marked as indicating plurality for
nouns in English.

Morphologies are motivated by four considerations: (1) the discovery of reg-
ularities and redundancies in the lexicon of a language (such as the pattern in
walk:walks:walking :: jump:jumps:jumping); (2) the need to make explicit the relation-
ship between grammatical features (such as nominal NUMBER or verbal TENSE)
and the affixes whose function it is to express these features; (3) the need to predict
the occurrences of words not found in a training corpus; and (4) the usefulness of
breaking words into parts in order to achieve better models for statistical trans-
lation, information retrieval, and other tasks that are sensitive to the meaning
of a text.

Thus morphological models offer a level of segmentation that is typically larger
than the individual letter,2 and smaller than the word. For example, the English
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word unhelpful can be analyzed as a single word, as a sequence of nine letters, or
from a morphological point of view as a sequence of the prefix un-, the stem help,
and the suffix -ful.

The distinction between inflectional morphology and derivational morphology is
one drawn by most accounts of morphology, but it remains a controversial ques-
tion for some as to whether a clear line can be drawn between the two. The
intuition that lies behind the distinction is reasonable enough; to illustrate this,
let us consider an example from English. We may wish to say that jump, jumps,
and jumped are three words, but they are all different versions (in some sense)
of a single verb stem. The verb stem (jump) is coherent in three ways: it has a
recognizable phonological form (jump), it shares a coherent semantic content, and
it is inflected in ways that it shares with many other stems: in particular, it takes a
suffixal -s in the third person singular present tense, and an -ed in the past tense. In
addition to the characteristics just mentioned, inflectional affixes also are usually
peripheral – if they are suffixes, the inflectional suffixes are at the very end of the
word, and if prefixes, at the very beginning, and while they contribute grammat-
ical information to the word they contain, they do not shift the part of speech of
their word. The suffixes -s and -ed are taken to be inflectional suffixes, and they
differ from derivational suffixes such as -ity (as in sanity) or -ness (as in goodness,
truthiness)3 or -ize (as in radicalize, winterize). Derivational affixes more often than
not play the role of indicating a change of part of speech, in the sense that sane is an
adjective, and san-ity is a noun, just as radicalize and winterize are verbs, but contain
within them stems of a different category (adjective and noun, respectively). In
addition, the semantic relationship between pairs of words related by derivational
affixes is often far less regular than that found between pairs of words related by
inflectional affixes. Thus, while the relationship between jump and jumped, walk
and walked, and so on, is semantically regular, the same cannot be said of the rela-
tionship between words such as woman and womanize, author and authorize, and
winter and winterize.4

For all of these reasons, most accounts of morphology distinguish between the
analysis of a word’s inflectional morphology, which isolates a stem (an inflectional
stem) from its inflectional affixes, and the word’s derivational morphology, which
further breaks the (inflectional) stem into component pieces. Thus winterized is
analyzed into a stem winterize plus an inflectional suffix -ed, and the stem win-
terize is divided into a stem winter plus a derivational suffix -ize. The term root
is often used to refer to a stem that cannot be morphologically decomposed. An
inflectional stem is associated with a single lexical category, such as noun, verb,
adjective, etc. Just as importantly, the inflectional stem is the item in a lexicon
which can be (and usually is) associated with a particular meaning, one that is
generally not strictly predictable from the meanings of its components.

It is not unusual to find situations in which (by what I have just said) we find two
stems that are spelled and pronounced identically: walk is both a noun and a verb,
for example. The term conversion is often used to refer to this situation, in which
a stem is (so to speak) converted from one part of speech to another without any
overt affixation, though such analysis generally assumes that one can determine
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which of the two (noun or verb, in this case) is the more fundamental category of
the two, on a stem-by-stem basis.

Inflectional stems can also be created by a process of compounding, as in watch-
dog or eyepatch. Such compound stems may include inflectional affixes, though
many languages impose rather severe restrictions on the inflectional morphology
permitted inside a compound (this is distinct from the case in which inflec-
tional affixes ‘attach’ to compounds, as in watchdog-s, and exceptions exist, such
as months-long, which is quite different in meaning from month-long). In some
languages, a compound is formed by concatenating two stems; in others, a short
linking element appears between them. The linking element of Greek compounds,
-o-, appears in many compounds borrowed into English, such as in hipp-o-potamus.

All of the broad generalizations that I have suggested to this point, like most
such broad generalizations, only go so far, and there are always phenomena in a
natural language which demand a more complex view. I will sketch here some of
the ways in which complexities arise most often.

First of all, in inflectional systems, there are typically a set of anywhere from two
to a dozen relatively independent grammatical features which may be relevant to
a particular word class, such as noun or verb. For example, a verb may be speci-
fied for the PERSON and NUMBER of its subject, of its object, and for its TENSE, and
for other characteristics as well. Only rarely – indeed, vanishingly rarely – is each
such feature realized separately as its own morph. In most cases, it is a small tuple
of features that is linked to a particular affix, as in the case of the English verbal
suffix -s, which marks third person & singular & present tense. On
the other hand, it is often the case that a single affix is used to mark more than
one tuple of features; in written French, the suffix -is marks the present-tense
singular subject agreement marker for a certain class of verbs; for exam-
ple, finis is either ‘(I) finish’ or ‘(you (sg.)) finish,’ in either the first or second
person, but not in the third person (which is spelled finit).

For this reason, linguists often think of inflectional systems as being hyper-
rectangles in a large space, where each dimension corresponds to a grammatical
feature, and where the edge of a hyperrectangle is divided into intervals corre-
sponding to the feature values that the feature may take on (that is, person is a
feature, and it may take on the values first, second, or third; NUMBER
is a feature, and it may take on the values singular and plural, in some
languages). Each affix will be associated with one or, quite often, several small
sub-hyper-rectangles in such a system.

The complexities do not stop there. It is often the case that there are two or more
forms of the stem used, depending on which subpart of the inflectional hyper-
rectangle we are interested in. An extreme case is that of the stem went in English,
used as the stem in the past, when go is used otherwise. This case is a bit special,
since the form of go and went is so different (when the stems are this different,
linguists refer to this as suppletion), but it is often found that several related (but
distinct) stems will be used for different parts of the system. In French, for exam-
ple, the present tense stem for ‘write’ is spelled ‘écri-’ in the singular, but ‘écriv-’ in
the plural. This is often referred to as stem alternation.
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In addition, a language may employ a whole arsenal of different inflectional
hyper-rectangles, even within a single lexical category. The Romance languages
are perfectly typical in having between three and six so-called ‘verb classes,’ which
employ quite different sets of suffixal patterns for marking precisely the same set
of grammatical features. It is the verb stem that decides which inflectional set will
be used for its morphology (see Goldsmith & O’Brien 2006).

Finally, we must acknowledge that not all morphology is properly thought of
as the concatenation of morphs. In English, and many of the other Indo-European
languages, we find inflectional patterns on verbs which consist of sets of stems
(these are called strong verbs) that differ primarily with regard to the vowel: the
past of stand is stood, the past of sing is sang, and the past of catch is caught. We
will focus on those aspects of morphology which are strictly concatenative – in
which words can be analyzed as sequences of morphs – but we will return to the
treatment of the more general case below as well.

1.3 Static and dynamic metaphors
Inflectional morphology is complex in most natural languages. It is common for
nouns to be marked morphologically for NUMBER and CASE, and for verbs to be
marked morphologically for TENSE, PERSON, NUMBER, MOOD (whether the verb
is in the indicative or the subjunctive), and syntactic position (whether the verb
is in a subordinate clause of the sentence or not), for example. In fact, the hall-
mark of inflectional morphology – how we recognize it when we see it – is the
appearance of several features that are logically orthogonal to one another, all of
which are relevant for the realization of all, or most, of the words in a given part
of speech (noun, verb, adjective). To put that a bit more concretely: to know Latin
morphology is to know that a given verb is specified for the features of person,
number, tense, and mood. The verb cantō is in the first-person, singular,
present-tense indicative form, and the same is true of a very large, and
potentially unbounded, set of verbs ending in -ō.

Lying behind that very specific knowledge is the understanding that first
person is a value of the feature PERSON, that singular is a value of the feature
NUMBER, that present is a value of the feature TENSE, and that indicative
is a value of the feature MOOD. There are some dependencies among these fea-
tures: there are more tenses when the mood is indicative and fewer when it is
subjunctive, but these dependencies are the exception rather than the rule among
inflectional features. There is no logical ordering of the features, for the most part:
there is no logical or grammatical reason for PERSON to precede NUMBER, or to
follow it (there may well be linear ordering of the morphemes that realize these
morphemes, though). For all of these reasons, inflectional systems can encode
many different combinations of feature specifications – quite unlike what we find
with derivational morphology.

Some regularities in the morphology of a language are best expressed in terms
that refer only to these inflectional features: for example, while the feature TENSE
in Spanish may take on four values in the indicative mood (present, future,
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aorist, and imperfective), it takes on only two values in the subjunctive
mood (present and past); in German, the forms of the nominative and
accusative are the same for all neuter nouns. On the other hand, other general-
izations address characteristics of the phonological realization of these features as
morphs: in Finnish nouns, plural NUMBER is marked (temporally, graphically)
before CASE.

Much of contemporary linguistic theory is dominated in a curious way by the
belief that there is a correct order in which various aspects of the representation of
a word or sentence are constructed; derivational theories are the clearest exam-
ple of this. Reflecting on this, Stump (2001) distinguishes between incremental
approaches, in which the process of adding an affix also adds morphosyntactic
features, and realizational approaches, in which the process of adding an affix has
access to a representation in which morphosyntactic features are present (or already
present, as a derivationalist would have it). However, it is frequently the case that
the distinction between these two approaches vanishes in a computational imple-
mentation, either because the analysis is conceptually static rather than dynamic
(that is, it places well-formedness conditions on representations rather than offer-
ing a step-by-step method of producing representations), or because the dynamic
that the computational implementation embodies is a different one (for a detailed
discussion of this point in the context of finite state transducers, see Roark & Sproat
2006, chapter 3).

All of the material presented in this section is the result of the work of genera-
tions of linguists reflecting on many languages. In the next two sections, we will
consider how the problem of learning about words and morphological structure
can be reconstructed as a computational question of learning.

2 Unsupervised Learning of Words

In this section, we will discuss the computational problem of discovering words
from a large sequence of symbols that bear no explicit indication of where one
word ends and the next begins. We will start by distinguishing two formulations
of this problem: one relatively easy, and the other quite difficult.

2.1 The two problems of word segmentation
Let us consider strings of symbols chosen from an alphabet Σ , which the reader
may think of as the letters of a written language or the sounds of a spoken lan-
guage. There are two broad families of ways in which we analyze the structure of
strings of symbols. One uses probabilistic models, which tell us about the probabil-
ities of selection of elements from Σ in the future, given the past, typically the very
local, recent past. In such models, the structure that we impose lies in the depar-
ture of the system from a uniform distribution, and the probability of a symbol is
typically conditioned by a small number of immediately preceding symbols. The
other uses segmentation models, whose purpose is to allow for the restructuring
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of a string of elements from a fine-grained alphabet (such as Σ) to a coarser set L
which we call a lexicon, and which should be thought of intuitively as a set of sub-
strings generated from Σ , that is, as a subset of Σ∗. For now, we may simply think
of the members of L as our words. We will focus primarily on the second family of
models, those employing chunking, but I do not wish to even suggest that there is
any sort of incompatibility between the two approaches, because there is not.

Each word w ∈ L is associated with an element of Σ∗, its spell-out – I write ‘asso-
ciated with’ rather than ‘is,’ because w may be decorated with other information,
including meaning, syntactic category, and so on; but for simplicity of exposition,
we may assume that no two elements in a lexicon are associated with the same
spell-out. L∗ is any concatenation of words, and any member s of L∗ has a natural
way of being thought of as a member of Σ∗: any sequence of words is naturally
thought of as a sequence of letters, too. So far, no delimiters, like space or other
punctuation, have come into the picture.

We will always assume that each member of Σ is also a member of L (roughly
speaking, each member of the alphabet is a word), and so we can be sure that any
string in Σ∗ corresponds to at least one member of L∗, but in most cases that we
care about, a string in Σ∗ will correspond to more than one string in L∗, which is
just a way of saying that breaking a string into words is not trivial. Each member
of L∗ which corresponds to a given string of letters we call a parse of that string.
The string atone has three natural non-trivial parses: atone, at one, and a tone, but it
has others as well.

The first problem of word segmentation, then, is to find a method to take a string
that in fact consists of strings of words, but which is presented as a string of letters
with no indication of where one word ends and the next begins, and then from this
string to reconstruct where the word breaks are. It is easy to go from such a corpus
C1 in which words are separated by spaces to a corpus C2 in which all spaces have
been removed, but can we reconstruct C1 from C2 with no information beyond
word frequency? Given a corpus C1 which indicates word boundaries separating
words, we can easily construct a lexicon L, and a new corpus C2 in which the word
boundaries have been eliminated. Can we find a language-independent algorithm
S1(L, C2) that can reconstruct C1? Put another way, can we define a method (either
foolproof or just very good) that is able to put spaces back into a text with no
more than a knowledge of the lexicon of the language from which the text was
drawn?

There is no guarantee that such an algorithm exists for a specific language or
for languages in general, nor is there a guarantee that, if it exists (for a language,
or for languages), we can find it. Two families of natural approaches exist: the
greedy and the probabilistic. The greedy approach scans through the string S: at
position i, it looks for the longest substring s∗ in S beginning at point i that appears
in the lexicon; it then decides that s∗ appears there in S, and it then skips to position
i+|s∗| and repeats the operation. The probabilistic model assumes a Markov prob-
abilistic model over L∗ (typically a zero-order or first-order Markov model), and
finds the string in L∗ with the highest probability among all such strings whose
spell-out is S.
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Device 1

Stripped corpus

Lexicon

Original corpus

Stripped corpus Device 2 Lexicon

Figure 14.1 The two problems of word segmentation.

In general, we may wish to develop an algorithm that assigns a probability dis-
tribution over possible analyses, allowing for ranking of analyses: given a string
anicecream, we may develop an algorithm that prefers an ice cream to a nice cream by
assigning a higher probability to an ice cream. Linguists working on Chinese and
Japanese have contributed significantly to improvements in our understanding of
this problem (see, e.g., Sproat et al., 1996; Ando & Lee 2003; Teahan et al., 2000, and
the series of Chinese word segmentation bakeoffs easily found on the internet).

The second problem of word segmentation is one large step harder than the first:
given a long string of symbols with no breaks indicated, can we infer what the
words are? See Figure 14.1. This problem asks whether it is possible to find a
general algorithm S2 which takes as input a corpus C2, which was created by strip-
ping boundaries from a corpus C1, and which gives as output a lexicon L which
will satisfy the conditions for the lexicon L needed for S1, the solution to the first
problem.

Since, for any large corpus which has been stripped of its word boundaries,
there are an astronomical number of different lexicons that are logically consis-
tent with that stripped corpus, it should go without saying that if we can solve
the second problem for naturally occurring corpora in real languages, we do not
expect it to be extendable to just any randomly generable corpus: to put it another
way, to the extent that we can solve this problem, it will be by inferring some-
thing about the nature of the device that generated the data in the first place –
something about the nature of human language, if it is natural language that we
are exploring.

The problem of word segmentation may seem artificial from the point of view
of someone familiar with reading Western languages: it is the problem of locating
the breaks between words in a corpus. In written English, as in many other written
languages, the problem is trivial, since we effortlessly mark those breaks with
white space. But the problem is not at all trivial in the case of a number of Asian
languages, including Chinese and Japanese, where the white space convention
is not followed, and the problem is not at all trivial from the point of view of
continuous speech recognition, or that of the scientific problem of understanding
how infants, still incapable of reading, are able to infer the existence of words in
the speech they hear around them.
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Another computational perspective from which the problem of word breaking
is interesting is this: to what extent do methods of analysis that have worked well
in non-linguistic domains work well to solve this particular problem? This ques-
tion is of general interest to the computer scientist, who is interested in a general
way of regarding the range of problems for which an approach is suitable, and
of considerable interest to the linguist, for the following reason. The most impor-
tant contribution to linguistics of the work of Noam Chomsky since the mid-1950s
has been his insistence that some aspects of the structure of natural language are
unlearnable, or at the very least unlearned, and that therefore the specification
of a human’s knowledge of language prior to any exposure to linguistic data is
a valid and an important task for linguistics. But knowledge of the lexicon of a
given language, or the analysis of the words of the lexicon into morphemes, is a
most unlikely candidate for any kind of innate knowledge. Few would seriously
entertain the idea that our knowledge of the words of this book are matters of
innate knowledge or linguistic theory; at best – and this is plausible – the linguist
must attempt to shed light on the process by which the language learner infers
the lexicon, given sufficient data. To say that the ability to derive the lexicon from
the data is innate is something with which few would disagree, and to the extent
that a careful study of what it takes to infer a lexicon or a morphology from data
provides evidence of an effective statistically based method of language learning,
such work sheds important light on quite general questions of linguistic theory.

The idea of segmenting a long string S ∈ Σ∗ into words is based on a simple
intuition: that between two extreme analyses, there must be a happy medium that
is optimal. The two extremes I refer to are the two ‘trivial’ ways to slice S into
pieces: the first is to not slice it at all, and to treat it as composed of exactly one
piece, identical to the original S, while the second is to slice it into many, many
pieces, each of which is one symbol in length. The first is too coarse, and the second
is too fine, for any long string that comes from natural languages (in fact, for most
systems generating strings that are symbolic in any sense). The first explains too
much, in a sense, and overfits the data; the second explains too little. The chal-
lenge is to find an intermediate level of chunking at which interesting structure
emerges, and at which the average length of the chunks is greater than one, but
not enormously greater than one. The goal is to find the right intermediate level –
and to understand what ‘right’ means in such a context. We will have succeeded
when we can show that the string S is the concatenation of a sequence of members
of a lexicon.

2.2 Trawling for chunks
There is a considerable literature on the task of discovering the words of an unla-
beled stream of symbols, and we shall look at the basic ideas behind four major
approaches.

2.2.1 Olivier The first explicit computational model of word learning is found
in Olivier (1968) (my description of this unpublished work is based primarily on
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Kit (2000)). The algorithm begins with a division of the corpus, in some arbitrary
fashion, into successive chapters which will be analyzed, one at a time and succes-
sively. Letting i be 1, we establish a ‘provisional’ lexicon from chapter i; it could
be simply the lexicon consisting of all the individual letters of the alphabet that
is used, and in some provisional fashion a probability distribution is established
over the lexicon. Given that lexicon at pass i, we can relatively easily find the divi-
sion of the chapter into words that maximizes the probability of the string, on the
assumption that the probability of a string is simply the product of the (unigram)
probabilities of its words. This maximum likelihood parse provides us with a new
set of counts of the items in the lexicon and, normalizing, we take these as form-
ing a new probability distribution over the lexicon. We now modify the lexicon by
adding and removing some of its members. If we find that there is a sequence of
two lexicon members that occurs more frequently than we would expect (by virtue
of its frequency being greater than the product of the frequencies of its individual
members), then we add that word to the lexicon. On the other hand, if a lexicon
member occurs only once, we remove it from the lexicon. Having done this, we
increment i, and reapply this process to the next chapter in the corpus.

This algorithm contains several elements that would be retained in later
approaches to the problem but, in retrospect, we can see that its primary weak-
ness is that it does not offer a principled answer to the question as to how large
(i.e., how long) the words should be. It avoids the question in a sense by not reap-
plying recursively on a single text (chapter), but does not address the question
head-on.

2.2.2 MK10 Another early lexicon-building approach was MK10, proposed by
Wolff (1975; 1977). The initial state of the device is a lexicon consisting of all of the
letters of the corpus. The iterative step is a continuous scanning through the text,
parsing the text C at point i (as i goes from 1 to |C|) by finding the longest string
s in the lexicon which matches the text from point i to point i + |s − 1|, and then
proceeding from the next point, point i + |s|; when i reaches the end of the corpus,
we begin the scan again. The algorithm keeps track of each pair of adjacent ‘lexical
items’ that occur, and when the count of a particular pair exceeds a threshold (such
as 10), the pair is added to the lexicon, all counts are reset to zero, and the process
begins again. In sum, this is a greedy system that infers that any sequence which
occurs at least 10 times is a single lexical item, or a part of a larger one.

Wolff’s paper includes a brief discussion in which the relevance of his analy-
sis is explicitly made to a number of important elements, including associationist
psychology, the elimination of redundancy, natural selection, economy in stor-
age and retrieval, induction, analysis by synthesis, probability matching, and the
possibility of extending the algorithm to the discovery of lexical classes based on
neighborhood-based distribution.

2.2.3 Sequitur Craig Nevill-Manning, along with Ian Witten (see Nevill-
Manning 1996; Nevill-Manning & Witten 1997) developed an intriguing non-
probabilistic approach to the discovery of hierarchical structure, dubbed Sequitur.
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They propose a style of analysis for a string S, employing context-free phrase-
structure rules {Ri} that are subject to two restrictions demanding a strong form of
non-redundancy: (1) no pair of symbols S, T, in a given order, may appear twice in
the set of rules, and (2) every rule must be used more than once. Violation of either
principle gives rise immediately either to the creation of a new rule (if the first is
violated) or to the elimination of a rule (if the second is violated). Such sets of rules
can be viewed as compressions of the original data which reveal redundancies in
the data. An example will make clear how this is done.

Suppose the data is thecatinthehatisnocat. The algorithm will begin with a single
rule expanding the root symbol S as the first symbol, here t: S → t. As we scan
the next letter, we extend the rule to S → th, and then to S → the, and so on,
eventually to S → thecatinth. Now a violation of the first principle has occurred,
because th occurs twice, and the repair strategy invoked is the creating of a non-
terminal symbol (we choose to label it ‘A’) which expands to the twice-used string:
A → th, which allows us to rewrite our top rule as S → AecatinA, which no longer
violates the principles. We continue scanning and extend the top rule now to: S →
AecatinAe, still maintaining the second rule, A → th. Since Ae appears twice, we
create a new rule, B → Ae, and our top rule becomes: S → BcatinB. But now rule A
only appears once, in the rule expanding B, so we must dispense with it, and bulk
up B so that it becomes: B → the. We now see successful word recognition for the
first time. We continue three more iterations, till we have S → BcatinBhat. Since at
is repeated, we create a rule for it C → at, and the top rule becomes S → BcCinBhC.
Scanning six more times, we arrive at S → BcCinBhCisnocC, after the final at is
replaced by C. We then create a new rule D → cC, leading to the top rule S →
BDinBhCisnoD. Here we stop, and we have the top-level parse corresponding to
the−cat−in−the−h−at−isno−cat, with groups corresponding to the and to c−at. As
this example illustrates, the very strict conditions set on the relationship between
the rule set and the compression representation of the data lead to a powerful
method of extracting local string regularities in the data.

Sequitur is an instance of what has come to be known as grammar-based
compression (Kieffer & hui Yang 2000), whose goal is to develop a formal gram-
mar that generates exactly one string: the text being compressed, and the grammar
itself serves as a lossless compression of the text. That there should be a logical
connection between an optimal compression of a string of symbols and the struc-
ture that inheres in the system that generated the string lies at the heart of the next
perspective we discuss, minimum description length analysis.

2.2.4 MDL approaches Some of the most interesting of the probabilistic
approaches to word segmentation employ probabilistic models that are influenced
by Kolmogorov’s notions of complexity, such as Rissanen’s notion of minimum
description length analysis.5 These approaches provide explicit formulations of
the idea mentioned above that word segmentation is a problem of finding a happy
medium, somewhere between the two extremal analyses of a text string: one
extreme in which the string is treated as a single, unanalyzed chunk, and the other
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in which it is treated as a concatenation of single symbols, each a ‘chunk’ separate
from the previous one and the next one.

In a sense, the problem of discovering what the words of a text are means giving
up any interest in what the specific message is that is encoded there, at least for
the time being. If that sounds paradoxical, just think about it: in asking what the
words are in an utterance and nothing else, we care about the building blocks of
the message, not the message itself. So a hypothesis about the correct segmenta-
tion of a text is, in part, a hypothesis about what information is in the message
being encoded, and what information is part of the larger system being used to
perform the encoding – which is to say, the language; it is a hypothesis about the
factorization of linear information into system and message. If we say that the
entire text (A Tale of Two Cities, by Charles Dickens, for example) is a single lexical
item, then we have truly missed the generalization that the work actually shares
a lexicon with any other text in English! If we say that the lexicon of the text is
simply the 26 or so letters needed to write it out, then we have also missed the
generalization that there are many often repeated strings of symbols, like it, times,
and Paris.

The heart of the MDL approach is the realization that each of those two extremes
results in an overloading of one of two encodings. The first approach mentioned
above, treating the text as a single lexical item, leads to the overloading of the
lexicon; although it contains only one item, that single item is very, very long.
The second approach leads to a single lexicon, with no more than a few dozen
symbols in it, but specifying what makes A Tale of Two Cities different from any
text which is not A Tale of Two Cities requires specifying every single successive
letter in the text. That is simply too many specifications: there are far better ways
to encode the content of the text than by specifying each successive letter. The better
ways are ones in which there is a lexicon with the real words of the language,
and then a spelling out of the text by means of that lexicon. Because the average
length of the words in the lexicon is much greater than one, the description of the
text by specifying each word, one after the other, will take up much less space (or
technically, far fewer bits of information) than specifying each letter, one after the
other. The happy medium, then, is the analysis which minimizes the sum of these
two complexities: the length of the lexicon and the length of the description of the
text on the basis of that lexicon.

It turns out (though this is by no means obvious) that, if we make our lexi-
con probabilistic, it is easy to measure the number of bits it takes to describe a
specific text S, given a particular lexicon; that number is the negative base two
logarithm of the probability of the text, as assigned by the lexicon (rounded up
to the nearest integer); we write this �−log2 pr(S)�. Probability plays a role here
that is based entirely on encoding, and not on randomness (i.e., the presumption of
the lack of structure) in the everyday sense. Making the lexicon probabilistic here
means imposing the requirement that it assign a probability distribution over the
words that comprise it, and that the probability of a word string S be the product
of the probability of its component words (times a probability that the string is of
the length that it actually happens to be). �−log2 pr(S)� specifies exactly how many
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bits it would take to encode that particular message, using the lexicon in question.
This is not obvious, but it is true.

How do we measure the number of bits in the description of the lexicon? A
reasonable first approximation would be to calculate how much information it
takes to specify a list of words, written in the usual way from an alphabet of a
particular size. Ignoring a number of niceties, the length of a list of N words, each
of length |wi|, written in an alphabet consisting of m letters, is log2N + ∑N

i=1 |wi|
log2 m, which is very close to the length of the lexicon (times a small constant),
that is to say, the sum of the lengths of the words that make up the lexicon. This
quantity, cL, is naturally referred to as the complexity, or information content, of
the lexicon. We will come back to this, and consider some alternatives which make
the description shorter; what I have just mentioned is a simple baseline for length,
a length that we know we can easily calculate. In a manner entirely parallel to
what I alluded to in the preceding paragraph, there is a natural way to assign a
well-formed probability to a lexicon as well, based on its complexity cL: it is 2−cL .6

Minimum description length analysis proposes that, if we choose to analyze
a string S into words (chunks that do not overlap, but cover the entire string),
then the optimal analysis of S is by means of the lexicon L for which the sum of
the two quantities we have just discussed forms a minimum: the first quantity is
−log2 pr(S) computed using given L, and the second quantity is cL, which is the
number of bits in the description of lexicon L.

We can now turn all of this discussion of description length into an algorithm
for the discovery of the words of a corpus if we can find a method for actually
finding the lexicon that minimizes the combined description length.7 A number
of methods have been explored exploiting the observation that, as we build up a
lexicon from small pieces (starting with the individual letters [Line 1]) to larger
pieces, the only candidates we ever need to consider are pairs of items that occur
next to each other somewhere in the string (and, most likely, a number of times in
the string). In short, we batch process the text: we analyze the whole text several
times [Line 2]. We begin with the ‘trivial’ lexicon consisting of just the letters of
the alphabet, but we build the lexicon up rapidly by iteration. On each iteration,
we find the parse which maximizes the probability of the data, given the current
hypothesized lexicon [Lines 3,4]. We consider as a tentative new candidate for the
lexicon any pair of ‘words’ that occur next to each other in the string [Line 5]. We
compute the description length of the entire string with and without the addition
of the new lexical item, and we retain the candidate, and the new lexicon that it
creates, if its retention leads to a reduction in the total description length [Line 8].
We set a reasonable stopping condition, such as having considered all adjacent
pairs of words and finding none that satisfy the condition in Line 8.

MDL-based approaches work quite well in practice and, as a selling point,
they have the advantage that they offer a principled answer to the question of
how and why natural language should be broken up into chunks. Many variants
on the approach sketched here can be explored. For example, we could explore
the advantages of a lexicon that has some internal structure, allowing words to
be specified in the lexicon as concatenation of two or more other lexical entries;
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1: Start condition: L ⇐ Σ

2: repeat
3: π∗ ⇐ arg maxπ∈{parses of D} pr(π), given L
4: Assign a probability distribution over L based on the counts of words in π∗
5: Choose at random two adjacent words, wik wik+1
6: w∗ ⇐ w�

ik
wik+1

7: L∗ ⇐ L ∪ w∗
8: If DL(C,L∗) < DL(C,L), then L ⇐ L∗
9: until Stopping Condition is satisfied

10: return arg maxπ∈{parses of D} pr(π), given L

Figure 14.2 Word discovery from an MDL point of view.

de Marcken’s model permits this, thus encouraging the discovery of a lexicon
whose entries are composed of something like morphs. We return to the general
question shortly, in connection with the discovery of true linguistic morphology.

2.2.5 Hierarchical Bayesian models In a series of recent papers, Goldwater,
Johnson, and Griffiths (henceforth, GJG) have explored a different approach
involving hierarchical Bayesian models, and they have applied this to the prob-
lem of inducing words, among other things (see Goldwater 2006; Goldwater et al.,
2006; Johnson et al., 2006; Teh et al., 2006; Johnson 2008). Like MDL models, these
grammars are non-parametric models, which is to say, in the study of different sets
of data of the same kind, they consider models with different numbers of param-
eters – or to put it more crudely, the model complexity increases as we give the
system more data. GJG describe the models by means of the process that generates
them – where each model is a distribution, or a set of distributions over different
bases – and what distinguishes this approach is that the history of choices made is
cached, that is, made available to the process in a fashion that influences its behav-
ior at a given moment. The process leans towards reproducing decisions that it has
often made in the past, based upon a scalar concentration parameter α > 0. After
having already generated n words, the probability that we generate a novel word
from an internal base word-generating distribution is α

α+n , a value that diminishes
rapidly as the process continues. Conversely, the probability of generating word
wk which has already occurred [wk] times is [wk]

α+[wk] .
Such processes share with MDL models (though for quite different reasons)

what sociologists call a Matthew effect (also called a rich get richer effect), whereby
choices that have been selected over the past of the process are more likely to be
selected in the future.

GJG use this process to model the generation of a lexicon, and Gibbs sampling to
find the appropriate lexicon parameters.8 We describe the simplest of their models,
the unigram model, here. As we have noted, the process has three parameters: a
concentration parameter α; a finite lexicon, i.e., a finite set of elements of Σ∗, each
of which is associated with a parameter corresponding to how often that word
has been seen in the data at this point; and a base distribution Φ over Σ∗ used
eventually to create new words for the lexicon.
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We thus have two abstract objects to consider in connection with any long
unbroken string S: one is a string b of 1s (yes) and 0s (no), as to whether a word
break occurs after the nth symbol of S; and the other is the finite lexicon (which is
what we are trying to figure out, after all). Given S and a particular b, a specific
lexicon follows directly. The Gibbs sampling that is used provides a path from any
initial set of assumptions about what b is (that is, any initial set of assumptions
as to where the word breaks are) to essentially the same steady-state analysis of
S into words. Here is how it does it, and it does not matter whether we begin
with the assumption that there is a break between every symbol, between no
symbols, or that breaks are initially assigned at random. We will iterate the
following procedure until we reach equilibrium: we select an integer between 1
and |S|−1, and calculate anew whether there should be a break there, i.e., we make
a new decision as to whether b has a 0 or a 1 at position n, conditioned on the loca-
tions of the other breaks specified in b, which implicitly determines the words in
the lexicon and their frequency. We do this by looking just at the righmost chunk
to the left of position n and the leftmost chunk to the right of position n. For exam-
ple, if the string is . . . isawa − ca − t − inth − ewind . . . (where the hyphen indicates
a break, and no hyphen indicates no break), and we choose to sample the position
between ca and t, then we calculate the probability of two different strings cum
breaks: the one just indicated, and this one: . . . isawa − cat − inth − ewind . . .. If
we assume words are generated independently of their neighbors (the unigram
assumption), then we need simply compare the probability of ca − t and that of
cat, and that decision will be made on the basis of the probability assigned by
the process we have described. That probability, in turn, will not weigh heav-
ily in favor of cat over ca and t early on, but if the corpus is in fact drawn from
English, the counts of cat will begin to build up over those of ca and t, and the
local decision made at position n will reflect the counts for all of the words that
occur, given the analysis so far, in the string. GJG show that if we drop the unigram
assumption about words, and assume essentially that the probability of each word
is conditioned by the preceding word (more accurately, that the parameters of the
Dirichlet process selecting a word are conditioned by the preceding word) and if
we let the distribution Φ that proposes new words itself adapt to the language’s
phonotactics (which can be learned from the lexicon), then results are considerably
improved.

2.3 Word boundary detectors
The very first work on explicit development of boundary detectors was due to
Zellig Harris, but his primary application of the notion was to morpheme detec-
tion, which we will return to shortly. Nonetheless, his ideas have inspired many
subsequent workers, who have looked to see if there were local characteristics,
detectable within a small window of five or six letters, which would give a
strong indication of where a word boundary falls in a text. We will look at one
recent example, that of Cohen et al. (2002), which makes an effort to detect word
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boundaries both by finding likely boundary points and by finding likely word
sequences. Cohen et al. (see also Cohen et al., 2007) let their hybrid model vote
on the best spot to hypothesize a break to be, and so they call this a voting
expert model. Their expert uses the log-frequency of a conjectured word chunk
w as its measure of goodness as a word, and their measure of whether a point
i is a good break point is what they call the boundary entropy, defined roughly
(but only roughly) as the entropy of the frequency distribution of individual let-
ters that follow the hypothesized word that ends at point i. Thus, if a string
thusifastringisanalyzedat . . . is analyzed at point 13 as containing the word string
stretching from point 7 to point 13, then we compute the frequency of all of the let-
ters that in fact follow the string string somewhere in the corpus. The greater the
entropy of that multiset is, the likelier it is that the ending point of string is a word
boundary (on the grounds that words are relatively poor as regards their ability
to impose a decision on what letter should come next). This is the entropic ver-
sion, employed by Hafer and Weiss (1974), of Harris’s successor frequency notion,
to which we return in the next section. Cohen et al. take into account phonologi-
cal frequency effects by not using observed frequencies, but rather corresponding
z-scores. For any sequence s of letters of length |s| and frequency f (s), they know
both the average frequency μ(|s|) of distinct observed strings of length |s| in the
text, and the standard deviation from this mean of all of the strings of length |s|,
so everywhere where one would expect to put a probability, they use a z-score
instead (i.e., freq(s)−μ(|s|)

σ
): the measure of goodness of a chunk is the logarithm of

that value, and the familiar notion of conditional entropy is modified to use this
sort of z-score instead of a frequency.

The algorithm makes one pass over the string, shifting a window of limited
size (the authors give an example of width 3, but in actual applications they
use a window of 6, or more); at each stop of the window, the two measures
(goodness of chunk, goodness of break point) each independently select the point
within the window which maximizes their own measure, but looking only at the
small substring within the window (and not, for example, what had been decided
earlier on in the pass to segments ‘to the left,’ so to speak, except insofar as that
information is implicit in the accrued voting). When the string has been scanned,
a (non-linear) counting process decides how the votes which have been assigned
to each point between the letters by the two measures should be transformed into
hypotheses regarding word breaks.

2.4 Successes and failures in word segmentation
The largest part of the failures of all approaches to word segmentation are failures
of level rather than failures of displacement: that is, failures are typically either
of finding chunks that are too large, consisting of common pairs of words (ofthe,
NewYork) or of not-so-common words composed of common pieces (commit ment,
artificial ly), rather than errors like c hunks, though those certainly do appear as
well. The most interesting result of all of the work in this area is this: there is no
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way to solve the word segmentation problem without also making major progress
with the problem of automatic learning of morphology and syntax. Knowledge of
the statistical properties of strings can be used to infer words only to the extent that
the device that generated the strings in the first place used knowledge of words,
and only knowledge of words, to generate the string in the first place; and, in
actual fact, the systems that generate our natural language strings employ systems
at several levels: it is not words, but morphemes that consist of relatively arbitrary
sequences of letters, and words are the result of a system responsible for the linear
placement of morphemes. In addition, there is a system responsible for the sequen-
tial placement of words – we call it syntax – and it too has a great impact on the
statistics of letter placement. A system that tries to learn the structure of language
on the basis of a model that is far poorer than the real structure of language will
necessarily fail – we may be impressed by how well it does at first, but failure is
inevitable, unless and until we endow the learning algorithm with the freedom of
thought to consider models that take into consideration the structure that indeed
lies behind and within language. In the next section, we turn to the task of learning
morphological structure.

3 Unsupervised Learning of Morphology

In this section, we will discuss the automatic learning of morphology. Most of the
attention in this part of the literature has gone to the problem of segmentation,
which is to say, the identification of the morphs and morphemes of a language,
based entirely on naturalistic corpora. The identification and treatment of mor-
phosyntactic features is an additional problem, which we shall touch on only in
passing (though it is a real and important challenge). When we look at a sample
of English, we certainly want to discover that jumps and jumping consist of a stem
jump followed by the two suffixes s and ing, and a solution to the problem of iden-
tifying morphs gives us that information; but at the same time, we would like to
know that -s marks the third-person singular present form of the verb.
Such information goes well beyond the problem of segmentation, and brings us to
the domain of morphosyntactic information, an area in which relatively little has
been done in the domain of unsupervised learning of morphology.

3.1 Zellig Harris
All discussions of the problem of automatic segmentation aiming at discovering
linguistically relevant units start with the work of Zellig Harris. In the mid 1950s,
he noticed that one could define a function that, informally speaking, specifies
how many alternative symbols may appear at any point in the string, given what
has preceded. In light of both the method and the date, it is impossible not to
sense an inspiration from Shannon’s work, which had just appeared (Shannon
& Weaver 1949). Harris himself published two papers addressing this approach
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(1955; 1967), and returned to it briefly in other works till the end of his life (Harris
1991). At least as interesting for our purposes was the computational implemen-
tation of Harris’s idea in Hafer and Weiss (1974). The presentation in this chapter
relies primarily on Harris (1967) and Hafer and Weiss. We consider a family of
Harrisian algorithms for segmenting words into morphemes, given a sample of
words W = {wi} from a language, where each wi ∈ Σ∗, for some alphabet Σ . We
wish to associate a real value with the position that lies between each symbol in
each word and, while we can imagine several slightly different ways to do this, the
ways all attempt to capture the idea of measuring how many different ways the
string to the left can be continued, in view of what we know about the entire set of
words W . The core notion of successorfrequency is defined as follows: The successor
frequency SF(p,W) of a string p in a set of words W is 0 if no words in W begin
with p (i.e., there is no w in W which can be expressed as p�α where α ∈ Σ∗), and,
more interestingly, it is equal to the number of distinct symbols {l1, . . . , lk} all of
which can follow the prefix p in W : that is, our successor frequency is the size of
the set {l1, . . . , lk} such that pli is a prefix of a word in W . A similar definition can be
constructed to define the predecessor frequency in a mirror-image fashion, spec-
ifying how many different letters can immediately precede any given word-final
substring.

Harris’s intuition was that the successor frequency was high, or relatively high,
at points in a string corresponding to morpheme boundaries, and the same is
true for the predecessor frequency. But if the method works well in many cases,
it fails in many others as well, due either to data sparsity or to other effects.
One such effect arises when the set of suffixes to a given stem all sharing a
common letter (for example, the words construction and constructive have a peak
of successor frequency after constructi, and a peak of predecessor frequency after
construct).

Hafer and Weiss (1974) tested 15 different interpretations of Harris’s algorithm,
and found a wide variety in precision and recall of the interpretations, ranging
from ‘completely unacceptable’ when cuts were made at thresholds of successor
frequency, to as high as 91 percent precision and recall of 61 percent; this was
the result of making a morpheme cut when either of two conditions was met: (a)
the word up to that point was also a free-standing word, and the predecessor
frequency there was 5 or greater; or (b) the successor frequency at the point was
greater than 1, and the predecessor frequency was greater than 16. One can see
that some effort was expended to tune the parameters to suit the data.

3.2 Using description length
Anybody’s list of words in a language, no matter how it is obtained, contains a
great deal of redundancy, for all of the reasons that we discussed in the first section
of this paper: morphological roots appear with a variety of prefixes and suffixes,
but that variety is limited to a relatively small number of patterns. The discovery
of the morphological structure of a language is essentially the discovery of this
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A B C

walk

jump

∅

s

ed

ing

Figure 14.3 A signature for two verbs in English.

1: Start condition: M ⇐ M0(C)

2: Some approaches: bootstrap operation B: M ⇐ B(M0(C))

3: repeat
4: M′ = F(M,M0)

5: If condition C(M,M′) is satisfied, M ⇐ M′
6: until Stopping Condition

Figure 14.4 Morphology discovery as local descent.

kind of redundancy in the lexicon; removing the redundancy will both shorten
the description of the lexicon and take us closer to an accurate characterization of
the morphology. For example, if a language (in this case, English) contains a set of
words walk, walks, walked, walking, jump, jumps, jumped, jumping, then rather than
expressing all eight of the words separately, we can achieve greater simplicity by
extracting the redundancy inherent in the data by identifying two stems, walk and
jump, and four suffixes, ∅, s, ed, ing. See Figure 14.3.

But how do we turn that intuition into a computationally implemented
approach? We employ a hill-climbing strategy, and focus on deciding what deter-
mines the shape of the landscape that we explore, and how to avoid discovering
local maxima that are not global maxima.

We specify first what the formal nature is of our morphology – typically, a
finite state automaton (for a definition of an FSA, see Section 4.3 of Chapter 1,
FORMAL LANGUAGE THEORY, and Section 4.1 below). Given the nature of a mor-
phology, it is always possible to treat a word as an unanalyzed morpheme, and an
algorithm will generally begin by assuming that, in the initial state, the morphol-
ogy treats all words of the corpus C as unanalyzable single morphemes (Step 1)
(see Figure 14.4). We will call that state of a morphology M0(C). Some approaches
take a one-time initial step of analysis (Step 2), with the aim of avoiding local
optima that are not global optima. A loop is entered (Steps 3–5) during which
hypotheses about morphological structure are entertained; any such hypothe-
sis may either be dependent on what the current hypothesized morphology M
is, or simply be based on information that is independent of the current M by
using information that was already available in M0, such as how often a string
occurs in the corpus C (Step 4). A simplicity-based approach defines some notion
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of simplicity – the function C(M,M′) in line 5 – to decide whether the modified
morphology is preferable to the current hypothesis.

A method that employs minimum description length analysis,9 such as
Goldsmith (2001) and Goldsmith (2006), will use description length of the data
as the condition in Step 5: a new morphology is preferred to the current one if
the description length of the data is decreased with the new morphology, where
the description length of the data is the sum of two quantities: (1) the inverse log
probability of the data, and (2) the length of the morphology as measured in bits.
How are these quantities calculated?

In order to calculate the probability of a word that the FST generates, we must
associate a probability distribution with each set of edges that leaves a given state.
Because a word, considered as a string of letters, typically is associated with only
one path through the FST, it is easy to assign probabilities based on observed
frequencies; we count the number of times each edge (ni, nj) is traversed when all
of the data is traversed, and then assign the probability of going to node nj, given

that we are at node ni, as
Count(ni,nj)∑
k Count(ni,nk)

, and the probability of any path through
the FST (hence, of any word that it generates) is the product of the probabilities
associated with each edge on the path. The number of bits required to encode such
a word is, then, the negative log probability of the word, as just calculated.

How should we compute the length of a morphology in bits? In the discussion of
MDL above concerning word segmentation, we saw one natural way to compute
the length of a list of strings, and nothing would be simpler than to count the
number of bits that were required in order to spell out the list of labels on each
of the edges. The result would be log2N + ∑N

i=1 |wi| log2 m, where N is the total
number of morphemes, m the number of symbols in the alphabet, and the set of
labels is the set {wi}.

In our discussion of MDL in connection with word discovery, we suggested
that discovering the right lexicon is a matter of finding the right balance between
a lexicon that was not overburdened and an encoding of the data that was not too
intricate. Now we are saying something more: we are recognizing that we were not
ambitious enough when we took it for granted that a lexicon was a list of words,
because any lexicon that simply lists all its members is highly redundant in much
the same way that a text in a particular language that is not analyzed into words is
highly redundant. We therefore turn to the discovery of morphology as the means
to reduce the redundancy in the lexicon.

This suggests a broader understanding of the cost of designing a particular
morphology for a set of data: use information theory in order to make explicit
what the cost of every single piece of the morphology is – which is to say, the
morphology is a labeled, probabilistic FSA. It consists of a set of states {N} (includ-
ing a start state, and a set of final, or accepting, states), a set of edges E ⊂ N × N, a
list of morphemes, and a label on each edge consisting of a pointer to an item
on the morpheme list. The cost of the list of morphemes is calculated just as
we discussed in Section 2.2.4, in the context of a lexicon of words. More inter-
esting is the complexity, or cost, in bits associated with the FSA itself, which
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is the sum of the cost of each edge (ni, nj) and its associated label lm. The cost
of the edge is −(log prn(ni) + log prn(nj)), where prn() is a probability distribu-
tion over nodes, or states, based on how often each node is traversed in parsing
the data, as discussed four paragraphs above. The cost in bits of the pointer to
an item on the morpheme list is equal to −log prμ(m), where prμ() is a prob-
ability distribution over the items in the morpheme list, based on how many
words in the corpus are generated by a path which includes an edge pointing to
morpheme m.10

3.3 Work in the field
There has been considerable work in the area of automatic learning of mor-
phology since the 1950s, and quite a bit of it since the mid-1990s. Subsequent
to Zellig Harris’s work mentioned earlier, there was work by Nikolaj Andreev
(Andreev 1965; 1967, described in Cromm 1997) in the 1960s, and later by de Kock
and Bossaert (1969; 1974). An interesting paper by Radhakrishnan (1978) in the
text compression literature foreshadows some of the work that was yet to come.
Several years later there was a series of papers by Klenk and others (Klenk &
Langer 1989; Wothke & Schmidt 1992; Flenner 1995) which focused on discovery
of local segment-based sequences which would be telltale indicators of morpheme
boundaries. More recently, there has been a series of papers by Medina Urrea
(2000; 2006) and Medina Urrea and Hlaváčová (2005). Approaches employing
MDL have been discussed in van den Bosch et al. (1996), Kit and Wilks (1999),
Goldsmith (2001; 2006), Baroni (2003), and Argamon et al. (2004). Important con-
tributions have been made by Yarowsky and Wicentowski (2000), by Schone and
Jurafsky (2001), and Creutz and colleagues (see Creutz & Lagus 2002; Creutz 2003;
Creutz & Lagus 2004; 2005a; 2005b).

Clark (2001b; 2001c; 2002) explored the use of stochastic finite state automata
in learning the concatenative suffixal morphology of English and Arabic, but
also the more challenging case of strong verbs in English and broken plurals in
Arabic, using expectation-maximization (Dempster et al., 1977c) to find an opti-
mal account, given the training data.11 It is interesting to note that this work takes
advantage of the active work in bioinformatics based on extensions of hidden
Markov models, which itself came largely from the speech recognition commu-
nity. Memory-based approaches such as van den Bosch and Daelemans (1999) (on
Dutch) employ rich training data to infer morphological generalizations extending
well past the training data.

Algorithms that learn morphology in a strictly unsupervised way are never
certain about what pairs of words really are morphologically related; they can
only make educated guesses, based in part on generalizations that they observe in
the data. Some researchers have explored what morphological learners might be
able to do if they were told what pairs of words were morphologically related,
and the systems would have to induce the structure or principles by which
they were related. This work is not strictly speaking unsupervised learning; the
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learner is helped along considerably by knowledge that pairs of words are indeed
morphologically related.

Let us suppose, for purposes of discussion, that we have determined in some
fashion that the pairs of words that we are given are largely distinguished by mate-
rial on the right-hand side of the word: that is, that the system is largely suffixal.
Then, given any pair of related words w1 and w2, where w1 is not longer than
w2, then there are at most |w1 + 1| ways to account for the pairing, based solely
on treating the relationship as based on morphs. Given the pair jump/jumped,
there are five generalizations we might consider, each specifying a pair of suffixes
in that pair of words: ∅/ed, p/ped, mp/mped, ump/umped, and jump/jumped. As we
consider a large set of pairs of words, it is not hard to see that the correct gener-
alization will generally be the one which occurs most frequently among a large
number of word pairs. This approach has the advantage that it can say some-
thing useful even about generalizations that involve a very small number of pairs
(e.g., say/said, pay/paid); this is more difficult for a purely unsupervised approach,
because it is difficult for a purely unsupervised approach to become aware that
those pairs of words should be related, so to speak. An early effort along these
lines was Zhang and Kim (1990). Research employing inductive logic program-
ming to deal with this problem by automatically creating decisions lists or trees
has included Mooney and Califf (1996) (on English strong verbs), Manandhar
et al. (1998), Kazakov and Manandhar (1998) (an approach that also employs
an algorithmic preference for simpler morphological analyses), Kazakov (2000) –
which presents a very useful survey of work done in the 1990s on computational
morphology – Erjavec and Džeroski (2004), which discusses the case of Slovene
in some detail, and Shalonova and Flach (2007) (English and Russian). Baroni
et al. (2002) took an interesting step of using mutual information between pairs
of nearby words in a corpus as a crude measure of semantic relatedness. It had
been noticed (Brown et al., 1992) that words that are semantically related have a
higher probability than chance to occur within a window of 3 to 500 words of each
other in a running text, and they explored the consequences for analyzing pairs of
words (looking at English, and at German) that are both formally similar and with
relatively large point-wise mutual information. This work therefore looks a lot like
the work described in the preceding paragraph, but it resembles it in a rigorously
unsupervised way.

4 Implementing Computational Morphologies

Sophisticated computational accounts of natural language morphology go back
more than 40 years in the literature; we can still profitably read early articles such
as that by P. H. Matthews (1966).

There have been several excellent book-length studies of computational
morphology in recent years, with considerable concern for actual, real-world
implementation, notably by Beesley and Karttunen (2003) and Roark and Sproat
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(2006), as well as Ritchie et al. (1992) and Sproat (1992). Current work in this
area focuses to a very large extent on the use of finite state transducers as a
means to carry out the functions of morphology. This work was stimulated by the
work of Douglas Johnson (1972), Ronald Kaplan and Martin Kay (1981), Kimmo
Koskenniemi (1983), and developed in a number of places by Lauri Karttunen and
colleagues (1993). Beesley and Karttunen’s recent book is especially detailed and
lucid, and contains Xerox software that can be used by the reader.

A well-functioning computational morphology for a language can be vital for
many practical applications. Spell-checking is a humble but honest function of
many products appreciated by a wide range of end users, and in a language with
a rich inflectional morphology, as we find in languages such as Finnish, Hungar-
ian, Turkish, the Bantu languages, and many others, the total number of possible
forms that a user might reasonably generate is far greater than the capacity of a
computer to hold in its memory, unless the entire family of forms is compressed
to a manageable size by virtue of the redundancies inherent in a computational
morphology. It is typically the inflectional morphology which gives rise to the
very large number of possible forms for nouns and verbs, and it is typically inflec-
tional morphology which can most usefully be stripped off when one wishes
to build a document-retrieval system based not on actual words, but on the
most useful part of the words. Syntactic parsing in most languages requires
a knowledge of the morphosyntactic features carried by each word, and that
knowledge is generally understood as being wrapped up in the morphology (pri-
marily the inflectional morphology) of the language.12 A number of researchers
have explored the effect on the quality of information and document retrieval
that is produced by incorporating knowledge of inflectional and derivational
morphology, including Harman (1991), Krovetz (2000), Hull (1996), Kraaij and
Pohlmann (1996), Xu and Croft (1998), Goldsmith et al. (2001), Larkey (2002), and
Savoy (2006).

Let us consider briefly how a practical system can be overwhelmed by the size
of natural language word sets if morphology is not addressed in a systematic
way. In Swahili, a typical Bantu language in this regard, a verb is composed of a
sequence of morphemes. Without pretending to be exhaustive, we would include
an optional prefix marking negation, a subject marker, a tense marker, an optional
object marker, a verb root, a choice of zero or more derivational suffixes mark-
ing such functions as causative, benefactive, and reflexive, and ended by a vowel
marking mood. Subject and object markers are chosen from a set of approximately
20 options, and tenses from a set of about 12. Thus each verb root is a part of
perhaps 100,000 verbs. Similar considerations hold in many languages – in fact,
almost certainly in the great majority of the world’s languages.

4.1 Finite state transducers
A large part of the work on computational morphology has involved the use
of finite state devices, including the development of computational tools and
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infrastructure. Finite state methods have been used to handle both the strictly
morphological and morphotactic, on the one hand, and the morphophonology
and graphotactics on the other. We have already encountered the way in which
strictly morphological information can be implemented with a finite state automa-
ton, as in Figure 14.3. By extending the notion of finite state automaton to that of
finite state transducer, we can use much the same notions in order to not only
generate the correct surface morphemes but also create a device that can map
surface sequences of letters (or phones) to abstract morphosyntactic features such
as NUMBER and TENSE.

Computational morphology has also applied the notion of finite state transducer
(the precise details of which we return to shortly) to deal with the problem of
accounting for regularities of various sorts concerning alternative ways of realiz-
ing morphemes. For example, both the English nominal suffix marking PLURAL
and the English verbal suffix marking third person singular is normally
realized as -s, but both are regularly realized as -es after a range of stems which
end in -s, -sh, -ch, and -z.

We refer to these two aspects of the problem as morphotactics and phonology
respectively. Two methods have been developed in considerable detail for the
implementation of these two aspects within the context of finite state devices.
One, often called ‘two-level morphology,’ is based on an architecture in which
a set of constraints is expressed as finite state transducers that apply in parallel to
an underlying and a surface representation. Informally speaking, each such trans-
ducer acts like a constraint on possible differences that are permitted between the
underlying and the surface labels, and, as such, any paired underlying/surface
string must satisfy all transducers. The other approach involves not a parallel set of
finite state transducers, but rather a cascaded set of finite state transducers, which
can be compiled into a single transducer. A lucid history of this work, with an
account of the relationship between these approaches, can be found in Karttunen
and Beesley (2005); a more technical, but accessible, account is given by Karttunen
(1993).

The term ‘two-level morphology,’ due to Koskenniemi (1983), deserves some
explanation: by its very name, it suggests that it is possible to deal with the
complexities of natural language morphology (including morphophonology)
without recourse to derivations or intermediate levels. That is, formal accounts
which are influenced by generative linguistics have tended uniformly to analyze
language by breaking up phenomena into pieces that could be thought of as apply-
ing successively to generate an output from an input with several intermediate
stages. It would take us too far afield to go through an example in detail, but one
could well imagine that the formation of the plural form of shelf could be broken
up into successive stages: shelf → shelf + s → shelv + s → shelves. Here,
we see the suffixation of the plural ‘s’ happening (in some sense!) first, followed
by the change of f to v, followed in turn by the insertion of e. In contrast, finite
state automata offer a way of dealing with the central phenomena of morphol-
ogy without recourse to such a step-by-step derivation: hence the term ‘two-level
morphology,’ which employs only two levels: one in which morphosyntactic
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features and lexical roots are specified, and one which matches the spelled (or
pronounced) form of the word. We return to this in Section 4.2.

The notion of finite state automaton (often abbreviated as FSA) was first pre-
sented in Kleene (1956), itself inspired by the work of McCulloch and Pitts (1943)
some ten years earlier. An FSA is a kind of directed graph: a directed graph is by
definition a finite set of nodes N , along with a set of edges E, where an edge is an
ordered pair of nodes. Nodes in an FSA are often called states. For a directed graph
to be an FSA, it must be endowed with three additional properties: it must have
a distinguished node identified as its start state; it must have a set of one or more
stopping (or accepting) states; and it must have a set of labels, L, with each edge
associated with exactly one label in L. While L cannot in general be null, it may
contain the null string as one of its members. In purely mathematical contexts, it
is convenient to assume that each label is an atomic element, indivisible, but in the
context of computational linguistics, we rather think of L as a subset of Σ∗, for
some appropriately chosen Σ . In that way, the morphs of a given language (e.g.,
jump, dog, ing) will be members of L, as will be descriptions of grammatical feature
specifications, such as first person or past tense.

When we explore an FSA, we are typically interested in the set of paths through
the graph, and the strings associated with each such path – we say that a path
generates the string. A path in a given FSA is defined as a sequence of nodes
selected from N , in which the first node in the sequence is the starting state of
the FSA, the last node in the sequence is one of the stopping states of the FSA, and
each pair of successive nodes (ni, ni+1) in the sequence corresponds to an edge ej
of the FSA. We associate a string S with a path p simply by concatenating all of the
labels of the edges corresponding to the successive pairs of nodes comprising p. If
we take a grammar of a language to be a formal device which identifies a set of
grammatical strings of symbols, then an FSA is a grammar, because it can be used
to identify the set of strings that correspond to all paths through it. Given a string
S in L∗, we can identify all paths through the FSA that generate S.

Finite state morphologies employ a generalization of the finite-state automaton
called a finite state transducer, or FST, following work by Johnson (1972). An FST
differs from an FSA in that an FST has two sets of labels (or in principle even
more, though we restrict the discussion here to the more common case), one called
underlying labels, LU , and one called surface labels, LS , and each edge is associated
with a pair of labels (lU, lS), the first chosen from the underlying labels, and the
second from the surface labels – it is traditional, however, to mark the pair not
with parentheses, but with a simple colon between the two: lU : lS. The FSA thus
serves as a sort of translation system between L∗

U and L∗
S . In fact, an FST can be

thought of as two (or even more) FSAs which share the same nodes, edges, starting
states, and stopping states, but which differ with regard to the labels associated
with each edge, and we only care about looking at pairs of identical paths through
these two FSAs. The beauty of the notion of FST lies in the fact that it allows us to
think about pairs of parallel paths through otherwise identical FSAs as if they were
just a single path through a single directed graph. For this reason, we can say that
FSAs are bidirectional, in the sense that they have no preference for the underlying
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A B C

walk

jump

∅

s

ed

ing

A B C

WALK

JUMP

PRES

PRES 3RD SG.

PAST
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A B C

walk:WALK

jump:JUMP
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s:PRES 3RD SG.

ed:PAST

ing:CONTINUOUS

Figure 14.5 Building an FST from two FSAs.

labels or the surface labels: the same FST can translate a string from L∗
S to L∗

U ,
and also from L∗

U to L∗
S . If we construct an FST whose second set of labels is not

underlying forms but rather category lables, then the same formalism gives us a
parser: tracing the path of a string through the FST associates the string with a
sequence of categories. Finite state automata are relatively simple to implement,
and very rapid in their functioning once implemented. See Figure 14.5.

4.2 Morphophonology
Rare is the language which does not contain rules of its spelling system whose
effect is to vary the spelling of a morpheme depending on the characteristics of
the neighboring morphemes. English has many such cases: as we noted, some
English words, like wife and knife, change their f to v in the plural; the plural suffix
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itself is sometimes -s and sometimes -es, depending on what precedes it. Since
these patterns tend to recur within a given language, it is traditional to analyze
this by saying that there is a single underlying label for the morpheme, but two or
more surface labels that the transducer relates to the single underlying label.

Koskenniemi (1983) developed a system of notation widely used in finite state
morphophonology to deal with this. The challenge of the task is to make explicit
when any departure from simple identity is required, or permitted, between the
underlying label u and the surface label s. Koskenniemi’s idea was that for any
given pairing like f : v, we can define a context that either permits or requires that
correspondence, where by a context we mean a specification of the symbols that
appear to the left and to the right, on both the underlying labels and the surface
labels. For example, if every occurrence of underlying t corresponds to a surface s
when and only when an i follows on both the underlying and surface labels, then
we can specify this thus: t : s ⇔ __ i : i. If we wanted to express the generaliza-
tion that when two vowels were adjacent on the string of underlying labels, only
the second of them appears among the surface labels, then we would represent
it this way: V : ∅ ⇐ __V :, where V is a cover symbol standing for any vowel.
The ⇐ is taken to mean that in the context described to the right of the arrow, any
occurrence of the underlying label in the pair on the left must be realized as the
surface label of the pair on the left (in this case, as the null symbol). If the arrow
pointed to the right, as in V : ∅ ⇒ __V :, the rule would be saying that the corre-
spondence of underlying V to surface ∅ can only occur when an underlying vowel
follows.

In the case of wife/wives, we must account for the pair (f : v). Since this same
pairing is found in a good number of English words, an appealing way to formal-
ize this is to specify that the morpheme underlying wife contains a special symbol,
which we indicate with a capital F: wiFe. An underlying F corresponds to a surface
v, when the plural suffix follows, or in all other cases to a surface f. If the underly-
ing form of the plural form of wife is wiFe+NounPlural, then we can express this
as: F : v ⇐ e + NounPlural :, and the associated surface label will be wives.

5 Conclusions

The computational study of morphology is of interest because of its importance in
practical applications, both present and future, and because of its theoretical inter-
est. We have seen that the words of a language are not simply a fixed set of strings
chosen from a language’s inventory of letters, or phonemes; the vocabulary is in
fact built out of a set of morphemes in ways that are potentially quite complex, and
in ways that may give rise to complex modifications of one or more morphemes in
a word, each modification of each morpheme potentially sensitive to the choices
of each of the other morphemes in the word.

While the number of distinct words in a language does not grow as rapidly with
length as the number of sentences in a language does, it is nonetheless true that
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the size of the total lexicon of a language is vastly larger than the size of the set of
morphemes used to generate those words. In order to ensure that a system handles
the entire lexicon, it is both practically and theoretically necessary to generate the
lexicon computationally in a way that reflects the true structure of the morphol-
ogy of the language. In addition, the meaning and function of a word is in many
respects decomposable into the meaning and function of its inflectional stem and
inflectional affixes, and so morphological analysis is an important step in statis-
tical and data-driven methods of machine translation, at least in languages with
rich morphologies.

At the same time, the formal structure of the morphological grammar of a
language may be quite a bit simpler than the syntactic grammar, and allow for
greater success at this point in the task of automatically inferring the morphology
from data with relatively little hand tagging of the data or contribution on the part
of a human linguist. At present, the work on unsupervised learning in this area
has focused on the problem of segmentation, but work is certain to procede in
the direction of choosing the correct structure among alternative candidate FSAs,
given a training corpus. Advances in this area will shed light on the more gen-
eral problem of induction of regular languages, which in turn may be helpful in
the goal of induction of more comprehensive grammars from natural language
corpora.
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NOTES

1 See Chapter 4, THEORY OF PARSING, Chapter 8, UNSUPERVISED LEARNING AND

GRAMMAR INDUCTION, and Chapter 13, STATISTICAL PARSING.
2 Since computational linguists have traditionally interested themselves more with writ-

ten language than spoken language, I write here of letters rather than phonemes, but the
reader who is interested in spoken language should substitute phoneme for letter in the
text.

3 http://en.wikipedia.org/wiki/Truthiness
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4 There are two suffixes -ing in English; the one that appears in sentences in the progres-
sive ( John is running) is inflectional; the one that creates nominals is derivational (No
singing of songs will be tolerated).

5 For general discussion of this approach, see Rissanen (2007), Li and Vitányi (1993).
The first general exploration of these ideas with application to linguistic questions was
undertaken in Ellison (1994), and several developments along similar lines appeared
in the early to mid-1990s, notably Rissanen and Ristad (1994), Cartwright and Brent
(1994), Brent et al. (1995), Brent and Cartwright (1996), de Marcken (1996), Cairns et al.
(1997), Brent (1999), and Kit and Wilks (1999), as well as Kit (2000). My discussion here
presents a simplified version of the approach that is common to those accounts.

6 The reason for this is that the quantity cL essentially counts the number of 0s and 1s that
would be required to efficiently express the lexicon in a purely binary format. If we also
place the so-called prefix property condition on the encoding we use, which means that
no such binary encoding may be identical to the beginning of another such encoding,
then it is relatively straightforward to show that each such binary expression can be
associated with a subinterval of [0,1], and that these subintervals do not overlap. The
final step of deriving a well-formed probability involves determining whether there are
any subintervals of [0,1] which have not been put into correspondence with a lexicon,
and dealing with the total length of such subintervals.

7 See pseudo-code in Figure 14.2.
8 On Gibbs sampling, see Mackay (2002), for example.
9 An open source project that implements such an approach can be found at

http://linguistica.uchicago.edu
10 That is, if there are a total of V words in the corpus, and the number of occurrences of all

of the morphemes in the corpus is M (and M, unlike V, depends on the morphology we
assume), and if K(m) is the number of words that contain the morpheme m (we make
the realistic assumption that no word contains two instances of the same morpheme),
then the cost of a pointer to m is equal to prμ(m) = log2

M
K(m)

.
11 A number of studies have dealt with Arabic, such as Klenk (1994); see also van den

Bosch et al. (2007a) and other chapters in that book.
12 Even for a language like English, in which the morphology is relatively simple, and

one could in principle not do too badly in an effort to list all of the inflected forms
of the known words of English, the fact remains that it is rarely feasible in practice to
construct a list of all such words simply by data-scraping – that is, by finding the words
in nature. To be sure that one had obtained all of the inflected forms of each stem, one
would have to build a morphology to generate the forms, thereby bringing us back to
the problem of building a morphology for the language.
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CHRIS FOX

1 Introduction

In this chapter we will generally use ‘semantics’ to refer to a formal analysis of
meaning, and ‘computational’ to refer to approaches that in principle support
effective implementation, following Blackburn and Bos (2005).

There are many difficulties in interpreting natural language. These difficulties
can be classified into specific phenomena – such as scope ambiguity, anaphora,
ellipsis and presuppositions. Historically, different phenomena have been
explored within different frameworks, based upon different philosophical and
methodological foundations. The nature of these frameworks, and how they are
formulated, has an impact on whether a given analysis is computationally feasible.
Thus the topic of computational semantics can be seen to be concerned with the
analysis of semantic phenomena within computationally feasible frameworks.

Unfortunately, the range of phenomena and the number of frameworks that are
of relevance to computational semantics are too vast and this chapter too short to
be able to do the subject full justice in the space available. Instead, this contribution
should be seen as offering merely a taste of some issues in computational seman-
tics, focusing primarily on logic-based approaches. There are differing views on
what counts as the canon of computational semantics, what aspects of seman-
tics are deemed to be ‘solved,’ and which research questions are considered open
and worthy of pursuit. For these reasons, the focus of the chapter will necessar-
ily appear biased and unbalanced, reflecting the interests and prejudices of the
author.

One factor that computational semantics requires over and above formal seman-
tics is that we take seriously the notion of a semantic representation whose
behavior can be expressed independently of any model-theoretic interpretation.
This is because an effective implementation needs to be able to use and reason
directly with this representation: an implementation cannot make a direct appeal
to some abstract, external model in order to determine which inferences are
valid.
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In a formal theory of semantics, the appropriate inferential behavior of the rep-
resentation should be clearly and precisely formulated. Ideally, to ensure that
the behavior corresponds with our intuitions, the relevant behaviors should be
captured as transparently as possible.

For computational semantics, the entailments of the representation language
should also be computationally feasible. The notions of decidability are relevant
here (see Chapter 2 of this book, COMPUTATIONAL COMPLEXITY IN NATURAL
LANGUAGE, Section 1.2). In a decidable system, we can determine what does and
does not follow from an expression. In a semi-decidable system, we can only guar-
antee to compute things that follow from an expression. This is also called recursive
enumerability. If something does not follow, then the decision procedure may never
halt. In an undecidable system, we cannot even guarantee to be able to compute
what follows from a statement.

If there is a choice, then typically a decidable formulation should be preferred to
a semi-decidable one, which in turn should be preferred to an undecidable formu-
lation. Even a logic that is not decidable in general might be decidable for those
inferences that are of interest – as would be the case if the domain of discourse was
finite, for example – but it might be better to adopt a formalism that captures this
requirement by design or nature rather than contingently.

In addition to techniques based upon formal semantics, the remit of com-
putational semantics may be taken to include corpus-based machine learning
techniques applied to aspects of interpretation, such as word-sense disambigua-
tion, and identification of entailments and semantic roles. Some such methods are
touched upon (Section 5), although they are not the primary focus of this chapter.

1.1 Outline
This chapter is aimed at readers with some knowledge of syntactic theory (e.g.,
see Chapter 1 of this book, FORMAL LANGUAGE THEORY) and predicate logic. The
primary focus here is on the formal and logical aspects of computational seman-
tics, rather than on linguistic data, or statistical or corpus-based techniques. It is
organized as follows. In Section 2 there is a basic introduction to formal semantics,
including a discussion of compositionality, elementary types, model theory, and
proof theory. In Section 3, the ‘state of the art’ treatment of the formal analysis
of discourse and underspecified representations of quantifier scoping are out-
lined. In Section 4, some relatively open formal topics are sketched, covering type
theory, intensionality, and the analysis of non-indicatives. This section also
includes some discussion of the issue of power versus expressiveness of formal
representation languages. This covers the idea of treating ‘computability’ as a
constraint on formal semantic theories.

Due to limitations of space, it is unavoidable that many important semantic
issues will not even be mentioned, including the full range of modalities, hypo-
theticals, the meaning of names, mass terms and plurals, and the formal analysis
of topic and focus, and tense. It is also not possible to do full justice to the many
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relevant corpus-based techniques, but some of the latter are briefly summarized in
Section 5, and are also discussed in Chapter 18, INFORMATION EXTRACTION, and
Chapter 22, QUESTION ANSWERING.

2 Background

Given that our core characterization of computational semantics is founded on
computationally tractable accounts of meaning that are rooted in formal seman-
tics, it is appropriate to give an introductory account of what is usually meant by
formal semantics.

Language is used to convey information. This can be directly, in terms of the
literal ‘content’ of an expression, or indirectly, either through accommodating the
presuppositions of an expression (van der Sandt 1992), or through some other
forms of implicature (Grice 1975; 1981).1

We can use the following examples to illustrate the different kinds of informa-
tion that can be conveyed.

(1) a) ‘The sun is rising.’
b) ‘Pick the other one!’
c) ‘Can you pass the salt?’

The literal content of the first sentence is the claim that the sun is rising. In the case
of the second example, information is conveyed indirectly that there is more than
one thing to pick, in addition to the more direct interpretation that something has
to be picked. In the final case, we normally conclude that this is a request to pass
the salt, not a mere inquiry about an ability.

Some of the more pragmatic notions of meaning may appeal to abilities outside
the linguistic realm. In some contexts, the statement ‘Wool is horrible when it
is wet.’ might actually be a request not to wear a particular garment. Such non-
literal meaning may be described as being part of pragmatics (Kadmon 2001). The
boundary between pragmatics and semantics is somewhat difficult to define (see
Kamp 1979 for example). As a first approximation, one could claim that seman-
tics is the meaning that can be deduced directly from an expression, with no
extra-linguistic information, but ideally in a way that can accommodate any such
information.

If we were to include in semantics that which has to be assumed in order to
make any sense of what has been uttered, then that would include certain kinds
of presuppositions. Indeed, there are claims that all semantic meaning may be
characterized as some variety of accommodation (Kamp 2007). In this chapter we
will explore the more ‘traditional’ view of semantics.

In the case of computational semantics, we are interested not just in abstract
accounts of meaning, but also in their concrete formalization in ways that, at least
in principle, are able to support implementation.
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2.1 A standard approach
In general it is difficult to reason directly in terms of sentences of natural language.
There have been attempts to produce proof-theoretic accounts of sentential reason-
ing (for example, Zamansky et al., 2006; Francez & Dyckhoff 2007), but it is more
usual to adopt a formal language, either a logic or some form of set theory, and
then translate natural language expressions into that formal language. In the con-
text of computational semantics, that means a precise description of an algorithmic
translation rather than some intuitive reformulation of natural language.

Such translations usually appeal to a local principle of compositionality. This can
be characterized by saying that the meaning of an expression is a function of the
meaning of its parts. This idea is often attributed to Frege (although see Janssen
2001 for a different view).

In computational semantics there are two common approaches to specifying
compositional functions. Essentially all that is required in most cases is some
mechanism for combining the meaning of constituent expressions. This is typi-
cally achieved by substituting the meaning of one constituent into a place-holder
contained in the meaning of the constituent with which it is being combined. Both
unification (Moore 1989) and λ-calculus (Montague 1974; Blackburn & Bos 2005)
can achieve this end. In the case of unification-based formalisms, syntactic expres-
sions are typically in the form of feature-value structures, and the grammar gives
rules of composition indicating how the features are to be unified (combined) and
whether any additional constraints are to be imposed. Semantic interpretations
can just be viewed as another feature, with variables that are also constrained by
feature value constraints in the grammar and within the constituents.

When using the λ-calculus, the composition of semantic forms is expressed
in a language that supports substitutions of arguments for variables in a term.
Subject to some side conditions on variable names, an expression of the form λx.t
when given an argument t′ will be identical to t, but with all occurrences of x in t
replaced by t′. To a first approximation, (λy . . . man′(y) . . .)(John′) will be identical
to . . . man′(John′) . . ..2

The choice of λ-calculus versus unification need not be exclusive, for example
the instantiations of the arguments in a λ-calculus approach might itself be accom-
plished by way of unification. Also, unification-based formalisms might appeal
to λ-calculus abstractions for certain phenomena. Indeed, the λ-calculus itself can
be implemented within a unification-based framework (Pereira & Shieber 1987;
Covington 1994; Blackburn & Bos 2005). Some have argued that λ-calculus expres-
sions are complex in comparison with unification-based constraint formalisms
(Moore 1989). This might be more a matter of taste: the unification approaches
generally speaking adopt the machinery of constraint-based grammar formalisms,
such as HPSG (Pollard & Sag 1994), whereas λ-calculus approaches adopt the
machinery of higher-order logic (or similar formalisms) and categorial grammar
(for example, Steedman 1993).

To be sure that we can translate every sentence covered by a grammar into
a formal representation language, we need to associate each word with some
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semantic representation, and each rule with a piece of information that can be
used to derive a representation for each possible category. Adopting the compo-
sitional approach entails that the meaning of a sentence then depends upon the
meaning of its parts, as analyzed by the grammar.

In the case of the treatment proposed by Montague (1974), a categorial grammar
(supplemented by transformational operations) was combined with higher-order
intensional logic (see Sections 4.2 and 4.4) to produce the semantic analysis. Here
we follow Blackburn and Bos (2005) and others in using a context-free grammar for
the syntax, and a first-order representation language combined with the λ-calculus
for the semantic representations.3

With the grammar

(2) s −→ np vp
np −→ det noun
vp −→ v
det −→ ‘a’

det −→ ‘every’
n −→ ‘man’
n −→ ‘woman’
v −→ ‘laughed’

we can parse the following sentences.

(3) a) ‘A man laughed.’
b) ‘Every woman laughed.’

In first-order predicate calculus, we want to give these sentences translations of
the form:

(4) a) ∃x(man′(x) ∧ laughed′(x))

b) ∀x(woman′(x) → laughed′(x))

To this end, we can associate the words ‘man,’ ‘woman,’ and ‘laughed’ with the
predicates man′, woman′, and laughed′ respectively. The determiners will have to
contribute the following quantified expressions:

(5) a) ∃x(〈noun〉(x) ∧ 〈verb〉(x))

b) ∀x(〈noun〉(x) → 〈verb〉(x))

To perform compositional semantics we need some general way of composing
the meanings of constituent categories (for example, the noun and the verb in this
case) so that they ‘fill’ the correct ‘slots’ in the quantified expression. When we
combine the determiner with the noun, we want the meaning of the noun to be
substituted for 〈noun〉 to give the meanings of the noun phrases:

(6) a) ∃x(man′(x) ∧ 〈verb〉(x)

b) ∀x(woman′(x) → 〈verb〉(x))

When we subsequently combine a noun phrase with a verb phrase we want
to substitute the meaning of the verb phrase (laughed′ in this case) for 〈verb〉 in
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the meaning of the noun phrase. As mentioned above, this substitution could
be performed if we could use some mechanism like unification, which is read-
ily available in logic programming languages such as Prolog. Here we will use
the λ-calculus. Typically, semantic annotations on the grammar will tell us which
λ-calculus expressions to use at each stage, and the rules of the calculus will tell us
how to produce the final representation.

To perform compositional semantics with a context-free grammar, then for each
rule in the grammar (and each word in the lexicon), we need to state how to
compose the semantics of the category that is being defined. This will be defined
in terms of the semantics of the constituent categories (those categories to the right
of the arrow). We can use the notation: [[〈category〉]] to indicate that we are referring
to the semantics of 〈category〉.

(7) An example of a grammar with semantic annotations

sentence −→ np vp [[np]]([[vp]])
np −→ det noun [[det]]([[noun]])
vp −→ verb [[verb]]
det −→ ‘a’ λP.λQ∃x(P(x) ∧ Q(x))

det −→ ‘every’ λP.λQ∀x(P(x) → Q(x))

noun −→ ‘man’ man′
noun −→ ‘woman’ woman′
verb −→ ‘laughed’ laughed′

In an attribute value grammar, we can represent such semantic annotations as
one of the attributes of the categories (Johnson 1988).

The annotated grammar (7) is sufficient for the simple sentences of (3). The
semantic annotations becomes more complicated if we consider more syntactic
constructions such as transitive verbs, auxiliary verbs, adjectives, and adverbs.
We would also need a richer semantic representation language if we were to take
account of other aspects of meaning, such as tense, context-dependent meaning,
knowledge, and belief.

To account for transitive verbs, we would need to add a rule of the form:

(8) vp −→ verb-trans np [[verb-trans]]([[np]])
together with transitive verbs in the lexicon, such as the following:

(9) verb-trans −→ ‘loves’ λR(λy(R(λxloves′(x, y))))

We can then derive the semantics of some sentences with transitive verbs.

(10) a) ‘A man loves a woman.’
b) ∃x(man′(x) ∧ ∃y(woman′(y) ∧ loves′(x, y)))

As it turns out, this is not always an appropriate representation for transitive verbs
(Section 4.2).
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There are cases of ambiguity in the semantic analysis that cannot be accounted
for at other levels of analysis. A prime example is that of quantifier scope ambiguity.
The sentence

(11) ‘Every man loves a woman’

could have either of the following representations:

(12) a) ∀x(man′(x) → ∃y(woman′(y) ∧ loves′(x, y)))

b) ∃y(woman′(y) ∧ ∀x(man′(x) → loves′(x, y)))

The analysis given so far just produces the first reading.
To a first approximation, there can be as many interpretations as there are

permutations of the orders of the quantifiers, or other scope-taking elements.
A strictly compositional analysis will only find one quantifier scoping. Extra
machinery is required to obtain the additional readings, and to use the context to
rule out inappropriate interpretations. There are other scoping ambiguities, some,
such as prepositional attachment, have a syntactic characterization. We will look
at solutions to the problem of quantifier scoping ambiguity in Section 3.2. Some
proposals treat all of these ambiguities by way of underspecification (van Deemter
1996).

Another issue concerns the representation of anaphora and ellipsis. Additional
work is required to resolve anaphora such as pronouns (Section 3.1). Indeed there
are general questions about the most appropriate representation language and its
features (Section 4). In the next section, we will say a few things about types in
representational languages.

2.2 Basic types
When considering the representations of nouns, verbs, and sentences as prop-
erties, relations, and propositions respectively, we may have to pay attention to
the nature of the permitted arguments. For example, we may have: properties of
individuals; relationships between individuals; relationships between individuals
and propositions (such as statements of belief and knowledge); and, in the case
of certain modifiers, relations that take properties as arguments to give a new
property of individuals. Depending upon the choice of permitted arguments,
and how they are characterized, there can be an impact on the formal power
of the underlying theory. This is of particular concern for a computational theory
of meaning: if the theory is more powerful than first-order logic, then some valid
conclusions will not be derivable by computational means; such a logic is said
to be incomplete,4 which corresponds with the notion of decidability (Section 1,
and Section 1.2 of Chapter 2, COMPUTATIONAL COMPLEXITY IN NATURAL
LANGUAGE).

A critical reason for considering this issue arises if the λ-expressions used in the
compositional interpretation of meaning are part of the representation language
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itself. There are good reasons for assuming that this is appropriate (see Section 4.2).
Unfortunately, if we impose no constraints on how expressions may be combined,
it is then possible to construct a logical paradox. Consider the property R of not
being self-applicable. R can be defined by (13).

(13) R(p) =def ¬p(p)

If R(p) is a proposition for a property p, then applying R to itself leads to a
paradox.

(14) R(R) ↔ ¬R(R)

The conventional way of avoiding this problem is to ban self-application. The
usual approach for expressing such constraints is to adopt a typed representation
language. This allows us to implement well-formedness criteria for the language
of representation by way of typing constraints that govern the well-formedness of
expressions in the logic. Typically, the types are expressed as e for entity, t for
a proposition, and 〈a, b〉 for an expression that takes an argument of type a and
returns one of type b. The idea is that every well-formed expression has exacly
one type. When interpreting this theory, it is usual to assume a set-theoretic model,
where expressions of type 〈e, t〉, for example, are viewed as sets of elements e (the
values for functions from entities to truth values). This gives rise to simple type
theory (STT) (Church 1940). In such a system, it is in felicitous to use (13) to define
a term R, as it is not possible to assign R exactly one type. Such terms are thus not
permitted in the representation language, and the paradox of (14) does not arise.

Conventional higher-order logic (HOL) adopts simple type theory and allows
quantifiers to range over expressions of any given type. The propositions of
higher-order logic are expressions that have the type t. In effect, Montague’s inten-
sional logic (Montague 1974) is based on a variant of this type theory, except an
additional (pseudo) type is added to account for intensionality (Section 4.2).

There is some further discussion of types in Section 4.1.

2.3 Model theory and proof theory
There are two ways in which traditional formal semantic accounts of indicatives
have been characterized. First, we may be interested in evaluating the truth of
indicatives (or at least their semantic representation) by evaluating their truth
conditions with respect to the world (or, more precisely, some formal represen-
tation or model of a world). This can be described as model-theoretic semantics.
Model-theoretic accounts are typically formulated in set theory. Set theory is a very
powerful formalism that does not lend itself to computational implementation. In
practice, the full power of set theory may not be exploited. Indeed, if the prob-
lem domain itself is finite in character, then an effective implementation should be
possible regardless of the general computational properties of the formal frame-
work (see Klein 2006 for example).5
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On the second characterization of formal semantic accounts, the goal is to
formalize some notion of inference or entailment for natural language. If one
expression in natural language entails another, then we would like that relation to
be captured by any formalization that purports to capture the meaning of natural
language. This can be described as proof-theoretic semantics.6 Such rules may lend
themselves to fairly direct implementation (see for example van Eijck and Unger
(2004); Ramsay (1995); Bos and Oka (2002), the last of which supplements theorem
proving with model building).

Although a proof-theoretic approach may seem more appropriate for compu-
tational semantics, the practical feasibility of general theorem proving is open to
question. Depending on the nature of the theory, the formalization may be unde-
cidable. Even with a decidable or semi-decidable theory, there may be problems
of computational complexity, especially given the levels of ambiguity that may be
present (Monz and de Rijke 2001).7

These two different approaches may be considered, broadly speaking, to follow
those of Tarski (interpretation) and Gentzen (proof) respectively (Tarski 1983;
Gentzen 1969). With both the model-theoretic and the proof-theoretic approach,
radically different assumptions may be made about the nature of the semantic
framework, its ontology, the appropriate way of encoding information in the
theory, and the underlying philosophical principles that are adopted. In practice,
such choices may depend upon methodology, taste, and precedent rather than
general, universal principles.

At an abstract level, the model-theoretic and proof-theoretic views of indica-
tives might not appear radically different from each other. Assuming our models
of the world have some coherent notion of the relationships between the truth and
falsity of various expressions that exactly mimics our understanding of language,
then any entailment patterns in language can be captured by considering the
patterns of truth for the interpretations of the sentences in all models. An indica-
tive expression A entails B exactly when all those models in which A is interpreted
as being true also interpret B as being true.

A key issue for computational semantics is the computational tractability of
the semantic representation. We could have a representation of a set-theoretic
model theory, although we might question whether in general that is compu-
tationally tractable. If possible, we would like to avoid representations that are
so powerful that we cannot enumerate their theorems (let alone those for which
we cannot even write down all the rules that govern their behavior). In general,
set-theoretic interpretations are among those that are problematic when it comes
to computational feasibility. An easier starting point is a relatively weak proof-
theoretic representation, but with appropriate expressiveness for the phenomena
in question.

2.4 Lexical semantics
The meaning of language is more than the ability to compose representations
based on the form of sentences, and construct formal proofs. Other issues include
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the pragmatics of how language is used, and of course the meanings of words
themselves (Pustejovsky 1995).

A lexicon may include lexical features that indicate salient information about
the syntactic and semantic arguments of lexical items which are needed to obtain
a formal semantic representation. But in general we may also be interested in the
concept that is represented by a given word.

For natural language processing this may be difficult to capture. But there may
be some aspects of meaning that can be captured and represented. These include
ontological classifications of words, such cause-of, agent, and relationships between
words. Such relationships might be semantic in character (such as hyponym and
meronym relationships, etc.), or founded on co-location information, where a
word is assumed to be related in meaning to other words that are used in a
similar context, which might be described as ‘distributional’ lexical semantics.
Many corpus-based techniques (Section 5) assume that at least some aspects of
meaning are implicitly embodied in co-location data and, furthermore, that word
classifications can be learned (Chiu et al., 2007).

3 State of the Art

There are a range of analyses of natural language phenomena that may be said
to constitute the state of the art of computational semantics. Here we pick two
issues that have received a significant amount of attention over the years, namely
the treatments of anaphora and of quantifier scoping. These are discussed in the
sections on discourse (Section 3.1) and underspecification (Section 3.2). This is not
to say that the analyses proposed are beyond question, or that all the relevant
issues have been resolved, but there is certainly a relatively stable core of ideas
and analyses that can be considered state of the art.

3.1 Discourse
Here ‘discourse’ is taken to refer to a sequence of sentences where each sentence is
interpreted in the context of the preceding sentences. This context provides poten-
tial antecedents for anaphoric expressions such as inter-sentential pronouns, as in
the very simple example given in (15), where the antecedent to which ‘She’ refers
is intended to be ‘Mary.’

(15) ‘Mary is a woman. She loves John.’

The antecedent might be inferred but is not overtly mentioned in the text. The
issue is how the discourse can be represented in a way that allows anaphoric
relations to be represented in a manner that is sympathetic to concerns with quan-
tification and scoping, and also captures intuitions about felicitous and infelicitous
anaphoric reference.8
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Montague’s treatment of scope (Section 3.2) makes use of anaphora, but it
cannot be generalized easily to other cases. One obvious solution would be to
consider pronouns as variables, and define some mechanism for these variables to
be bound appropriately by the quantifiers (nouns) to which they refer.

Given the sentence

(16) ‘Mary is a woman. She loves John’

we can try to represent the pronoun ‘She’ using a variable.

(17) woman′(mary′) ∧ loves′(x, john′)

Here, ‘She’ is an anaphoric pronoun that needs to be resolved so that it is associ-
ated somehow with an appropriate antecedent. In this case, it would be legitimate
to consider replacing the variable by mary′. Unfortunately, this solution does not
generalize.

If we consider the sentences

(18) a) ‘A man drank. He fell asleep’
b) ∃x(man′(x) ∧ drank′(x)) ∧ fell_asleep′(y)

the pronoun, represented by y, cannot be resolved by just replacing it with a
constant. Renaming y to be x also does not work, because it lies outside the
syntactic scope of the existential quantifier, and so is not bound by it.9

Some particularly problematic examples are given by Geach (1972), including
the following so-called ‘donkey’ examples:

(19) a) ‘If a farmer owns a donkey, he beats it.’
b) ‘Every farmer who owns a donkey beats it.’

The issue of concern here is that it is not clear that we have the correct analysis
of quantifiers or conditionals. If pronouns are to be represented by variables, we
need to ensure not only that they are bound correctly, but also that indefinites have
universal force in the second example, which a naïve analysis would interpret
incorrectly as something like

(20) ∃x(farmer′(x) ∧ ∃y(donkey′(y) ∧ own′(x, y)) → beat′(x, y))

where both x and y in the consequent of (20) are outside the scope of the relevant
quantifiers, and the sense of universality is not captured. These issues, among
others, have led people to consider alternative ways of representing meaning,
including discourse representation theory (DRT) (Kamp 1981; Kamp & Reyle 1993;
and Section 3.1.1 below). In addition to putting emphasis on the representation
itself, rather than focusing on the model theory, DRT also provided an algorith-
mic account of how to generate these representations from natural language input
sentences. Both features are characteristic of computational semantics.
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3.1.1 Discourse representation theory Discourse representation theory (DRT)
and related paradigms intend to capture the notions of discourse that are rel-
evant for resolving anaphoric pronouns by reconsidering the representation of
quantifiers and some of the other logical connectives (Kamp 1981; Kamp & Reyle
1993). The idea is to have a representation of the individuals that are introduced
into a discourse, and allow them to be referred to in subsequent discourse where
appropriate.

Using a construction algorithm, DRT systematically builds a representation of the
individuals described in a discourse, and the properties and relationships that
hold between them. The basic notion in DRT is that of a discourse representation
structure (DRS), which has the following form:

(21)
〈referents〉
〈conditions〉

The top part of the box contains individuals described in the discourse. The bottom
part contains conditions on those individuals. The conditions may include other
DRSs.

Essentially, existentially quantified noun phrases introduce a new individual
into the current DRS with appropriate conditions.

(22) a) ‘A woman cried.’

b)

x

woman′x
cried′x

Universally quantified noun phrases introduce a conditional DRS as a condition
of the DRS representing the current discourse.

(23) a) ‘Every man laughed.’

b)

. . .

y

man′y →
laughed′y

There are rules that govern from where a discourse referent may be referred to,
and the construction algorithm indicates where analysis of subsequent discourse
should appear in the DRS. Resolution of anaphora can be expressed as equations
over discourse referents.

(24) a) ‘Mary is a woman.’
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b)

m

m = mary′
woman′(m)

c) ‘Mary is a woman. She loves John.’

d)

m, j, x

m = mary′
woman′(m)

j = john′
loves′( j, x)

x = m

Here, the pronoun ‘She’ is represented by x, and resolved by the condition x = m.
A typical ‘donkey sentence’ where the conditional is interpreted with universal

force is exemplified next.

(25) a) ‘If a farmer owns a donkey, he beats it.’

b)

f , d

farmer′( f )
donkey′(d)

owns′( f , d)

→

x, y

beats′(x, y)

x = f
y = d

Accessibility of referents is defined in such a way that the farmer and donkey
( f , d) are not accessible from any subsequent discourse (at least, not as singular
antecedents).

If DRT is combined with a notion of abstraction and application, then it is possi-
ble to produce a more conventional compositional presentation of the construction
process (Blackburn & Bos 1999).

DRT has been exploited for more things than just pronominal anaphora. Exam-
ples include underspecification (for example, Asher 1993; Reyle 1993), presup-
positions (van der Sandt 1988; 1992; Krahmer & Piwek 1999; Beaver 2002), and
discourse relations (Asher & Lascarides 2003).

There are many issues that require a more sophisticated analysis, such as plural
anaphora, as in

(26) ‘Johni and Maryj went to Paris. Theyi+j met at the Eiffel tower.’

conditional examples where universal quantification is not the most natural
interpretation (Pelletier & Schubert 1989), as in

(27) ‘If you have a penny, put it in the box.’
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and examples where it is difficult to see how the appropriate representation might
be obtained (Heim 1990; Kadmon 1990), such as

(28) ‘Most farmers who own a donkey beat it.’

where the most natural reading is that most donkey-owning farmers beat donkeys
that they own, rather than the unnatural quantification over farmer–donkey pairs
that would be obtained by an unmodified DRT-style analysis.

3.1.2 Dynamic accounts There are many other approaches to dealing with
pronominal anaphora. The accounts using dynamic logic effectively redefine the
meaning of quantification and conditionality (Groenendijk & Stokhof 1990a; 1991).
The aim is to allow variables to be bound outside the syntactic scope of existential
quantifiers and to give existentials a universal interpretation when appearing as
the antecedent of a conditional. This is an example of where the need to deal with
a particular phenomena leads to a re-appraisal of the formalism and techniques of
conventional classical logic.

Syntactically, the net result is a logic that has the appearance of a classically
quantified logic, but where examples such as (20) have the appropriate semantics
by way of a modified interpretation of the logical operators and quantifiers.

DRT and logic are equivalent in their ability to analyze simple discourse with
singular pronouns.

3.1.3 Type theoretic approaches We finish this section on discourse by briefly
mentioning some type-theoretic approaches. As Sundholm (1989) observed, there
are certain aspects of constructive type theory that appear to capture the appropri-
ate behavior for interpreting discourse involving singular anaphora. In particular,
the dependent types that feature in constructive type theory can be used to
capture contextual effects. This idea was developed by Ranta (1994) and Ahn and
Kolb (1990).

There are alternative approaches that use types for dealing with discourse prob-
lems. For example, it is possible to exploit dependent types within a classical
framework (Smith 1984; Turner 1992; Fox 2000). Perhaps a more radical approach
is due to Lappin and Francez (1994) and Lappin (1989). Rather than characteriz-
ing the problem of resolving anaphora as one of finding an element with which to
equate a pronoun, these proposals suggest that the problem can be construed as
one of finding the appropriate type for the variable representing the pronoun. This
idea is developed in Fox and Lappin (2005) in the context of property theory with
Curry typing (PTCT).

Additional relevant information may also be found in Chapter 21, DIS-
COURSE PROCESSING, and Chapter 16, COMPUTATIONAL MODELS OF DIALOGUE.
We briefly mention constructive type theory and dependent types again in
Section 4.1.4.
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3.2 Underspecification
One problem for a compositional analysis is semantic ambiguity. This is typically
exemplified by the issue of quantifier scoping, but also arises with other scope-
taking elements, such as modifier expressions, prepositional phrases, negation,
and other logical operators, as well as anaphoric reference (Poesio & Reyle 2001).
In the case of scoping, the issue is that a sentence with more than one scope-taking
element is ambiguous in a way that is not usually evident in any syntactic analysis.
For example, in an ambiguous sentence such as

(29) ‘Every student took a course’

it is unclear whether there was one particular course taken by every student, or
whether every student took at least one course, but not necessarily the same one
in each case.

Montague (1974) offered an approach to the quantifier scoping problem that
used additional rules which effectively reordered the quantifiers in the syntactic
analysis, and hence changed the scope in the semantic representation. The current
consensus is that it is better to have a systematic account that does not require
changes to the syntactic analysis, and which provides an intermediate represen-
tation that is unspecified, or underspecified with respect to scope orderings, but
which permits all appropriate scope orderings to be generated when required.

3.2.1 Cooper storage The prime example of a system intended to allow the
generation of scoped readings is Cooper storage (Cooper 1983). Although there
are other proposals, they can be construed as variations and refinements of this
proposal. Cooper storage builds semantic representations using a data struc-
ture known as a store. This can be thought of as providing an underspecified
representation of the meaning of a sentence.

The store contains a ‘core’ representation (typically representing the main verb)
together with the representations of the generalized quantifiers (typically repre-
senting the noun phrases). The argument positions in the core representation are
associated with indices identifying which generalized quantifier (noun phrase)
binds that position.

The approach can be illustrated by analyzing the following sentence using
Cooper storage.

(30) ‘Every man loves a woman.’

The stored representation will be something like10

(31) 〈love′(z6, z7),
(λp(∀x(man′(x) → p(x))), 6),
(λp(∃y(woman′(y) ∧ p(y))), 7)〉
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‘Every man loves a woman’ (S)
〈〈love′(z6, z7),
(λp(∀x(man′(x) → p(x))), 6),
(λp(∃y(woman′(y) ∧ p(y))), 7)〉〉

‘Every man’ (NP)
〈λq(qz6),
(λp(∀x(man′(x) → p(x))), 6)〉

‘loves a woman’ (VP)
〈λu(love′(u, z7),
(λp(∃y(woman′(y) ∧ p(y))), 7)〉

‘loves’ (Vt)
〈λqλu(q(λv(loves′(u, v))))〉

‘a woman’ (NP)
〈λq(qz7),
(λp(∃y(woman′(y) ∧ p(y))), 7)〉

Figure 15.1 Derivation of semantic representation with storage.

The derivation of this is sketched in Figure 15.1.
Given an unscoped representation in the store, retrieval operations can be used to

generate fully scoped representations. The generalized quantifiers can be applied
to the core representation in any order, thus giving rise to the different quantifier
scopings. The index is used to ensure that each generalized quantifier binds the
correct argument position, so that the meaning of the sentence is not corrupted
by the reordering of the quantifiers. Blackburn and Bos (2005: 108) give a worked
example of this.

With our example, if we retrieve 6 (‘Every man’) first, then the store is

(32) 〈λp(∀x(man′(x) → p(x)))(λz6(love′(z6, z7)),
(λp(∃y(woman′(y) ∧ p(y))), 7)〉

Applying β-reduction gives us

(33) 〈∀x(man′(x) → loves′(x, z7)),
(λp(∃y(woman′(y) ∧ p(y))), 7)〉

The second, and final, retrieval operation gives us

(34) 〈(λp(∃y(woman′(y) ∧ p(y)))(λz7∀x(man′(x) → loves′(x, z7)))〉
which after β-reduction is

(35) 〈∃y(woman′(y) ∧ ∀x(man′(x) → loves′(x, y)))〉
Retrieving the items in the opposite order would give us the alternative scope
reading for this example.11
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In the account as given, there are some problems in handling relative clauses
and complex noun phrases with prepositions. Such phrases can give rise to nested,
or hierarchical, noun phrases. If the storage and retrieval operations are not
sensitive to such structures, then ill-formed representations may be generated.
Consider the following sentence:

(36) ‘Mary knows every owner of a pub.’

We should not be able to retrieve the representation of ‘a pub’ until we have
retrieved the core part of the noun phrase ‘every owner.’ The need for constraints
on retrieval is addressed by nested or Keller storage, where nested stores are used
to ‘lock up’ constituent parts of a noun phrase which can only be accessed once
we have retrieved the core noun phrase that contains those parts (Keller 1988).

A comprehensive account of underspecification needs to handle scoping of
negation, conjunction, modification, modalities, and propositional attitudes.
Futhermore, we might consider approaches that allow partially specified repre-
sentations that can accommodate incremental constraints on acceptable scopings,
as in the following example (taken from Fox & Lappin, forthcoming):

(37) a) Speaker 1: ‘Every student wrote a program for some professor.’
b) Speaker 2: ‘Yes, I know the professor. She taught the Haskell course.’
c) Speaker 3: ‘I saw the programs, and they were all list-sorting procedures.’

We can assume the following:

(38) a) ‘some professor’ in the first sentence (37a) is the antecedent for both ‘the
professor’ and ‘She’ in the second sentence (37b).

b) ‘a program’ in the first sentence (37a) is the antecedent for both ‘the pro-
grams’ and ‘they’ in the third sentence (37c).

The first assumption (38a) gives ‘some professor’ scope over ‘every student’ in the first
sentence (37a). The second assumption (38a) leads to ‘a program’ taking narrow
scope with respect to ‘every student’ in the first sentence (37a). From this it can be
seen that, as the discourse proceeds, (37b) and (37c) force on the first sentence (37a)
a fully resolved scope order, namely

(39) ‘some professor,’ ‘every student,’ ‘a program’

Most treatments of quantifier scoping based on storage do not by themselves
provide an efficient analysis of such incremental constraints, nor do they neces-
sarily support direct reasoning with such partially specified scopings.

3.2.2 Other treatments of scope ambiguity Bos (1995), and Blackburn and
Bos (1999) develop a constraint-based system for underspecified representation
for first-order logic that they refer to as predicate logic unplugged (PLU). This
system is a generalization of the hole semantics approach to underspecification
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which Reyle (1993) first developed within the framework of underspecified discourse
representation theory (UDRT).

Minimal recursion semantics (Copestake et al., 2006) is an application of hole
semantics within a typed feature structure grammar (HPSG). Normal dominance
conditions (Koller et al., 2003) can be seen as a refinement and development of the
central ideas of hole semantics.

Dalrymple et al. (1999) and Crouch and van Genabith (1999) suggest a theory in
which representations of generalized quantifiers and core relations are expressed
as premises in an underspecified semantic glue language. The premises are com-
bined using the natural deduction rules of linear logic (Girard 1987) to yield a
formula that represents the scope reading of a sentence.

Packed representations (Crouch 2005) ‘compress’ the scoped interpretations
derived using glue language. Components of meaning shared by several readings
are expressed as a single common clause. This uses an approach that is applied in
chart parsing to construct a graph for non-redundant representation of the full set
of possible syntactic structures for a parsed phrase.

Ebert (2005) gives a detailed discussion of the formal relationships between the
various theories of underspecification with respect to their expressive power.

Van Eijck and Unger (2004) develop an approach to underspecified representa-
tions, in the functional programming language Haskell, which uses relation reduc-
tion and arbitrary arity relations. This is based on a proposal due to Keenan (1992).
This work inspired a proposal by Fox and Lappin (2005) which represents under-
specified representations in a data structure that can be formalized within the
representation language PTCT itself. On this account, there is no appeal to meta-
semantic machinery as such, and the full power of the representation language is
used to express constraints governing the legitimate readings, including incremen-
tal constraints. This addresses the concerns of Ebert (2005) with regard to expres-
sive completeness, although it still leaves outstanding the problem of dealing with
the significant combinatorial complexity of computing the desired readings.

4 Research Issues

There are many open research questions in computational semantics. Some are
concerned with how to analyze particular aspects of meaning, including phenom-
ena that are not easily analyzed by way of a direct truth-conditional interpretation.
Others are concerned with representations that provide the most appropriate
machinery to express and reason with the meaning of natural language in a
computationally tractable manner. Here there is only space to consider a small
selection of such issues.

4.1 Type theory
Typically, the types used for natural language semantics are based on simple type
theory (Section 2.2). But there are other kinds of types, and other ways of imposing
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typing constraints. Indeed, it is not entirely clear that simple type theory is the
most appropriate type system for natural language semantics. Here we consider
some other options.

4.1.1 Polymorphism The simply typed higher order logic (Section 2.2) might
be considered somewhat restrictive. One area in which it appears excessively
rigid and inexpressive concerns certain type-general phenomena that are appar-
ent in natural language, such as the apparent polymorphism of conjunction.
The following examples illustrate that ‘and’ can combine expressions of different
categories.

(40) a) ‘John and Mary saw Peter.’
b) ‘John saw and heard Peter.’
c) ‘The book was red and white.’

However, the typing is not unconstrained: in each of these examples, the con-
juncts and the conjunctive phrase itself are all of the same category. Partee and
Rooth (1983) deal with this phenomena by introducing generalized quantifica-
tion that ‘raises’ the type of the basic conjunction and disjunction operators to
t-ending types. An alternative is to adopt a more flexible type system that permits
polymorphic types of the form

(41) ∀′X.T

where ∀′ is a type quantifier that allows X in type T to range over all types.12 As
an example, an expression of the type ∀′X.〈X, t〉 will form a proposition (type t)
given an argument of any type. The type of a coordinating expression can then be
given as

(42) ∀′X.〈X, 〈X, t〉〉

This can also be used to capture other type-general phenomena – such as verbs like
‘fun’ that can take nominal expressions, infinitives, and gerunds as arguments –
without resorting to a universal type for example (Chierchia 1982).13

In addition to looking at ways in which the type system could be made more
expressive to match the needs of natural language, as with polymorphic types,
there may also be some merit in considering what constraints there are on the type
system required for natural language.

4.1.2 First-order sorts Rather than adopting a typed higher-order logic, an
alternative approach to constraining the way in which entities of the theory may
felicitously be combined is to have sortal predicates that classify terms as repre-
senting individuals, relations, and properties. Logical rules can then be given that
express analogues of type inference rules.
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For example, we might have predicates entity′, property′, proposition′, and a rule
that says

(43) (entitity′(i) ∧ property′(p)) → proposition′(p(i))

Here the notion of proposition′ and property′ must be seen as distinct from those
notions in the language in which these statements are being expressed.

Characterizing properties and propositions by way of sortal predicates means that
properties and propositions are being treated as first-order terms of the theory. We
then need to find some way of asserting that p(i) is true. One option would be to
introduce a predicate holds′ (Kowalski & Sergot 1986; Miller & Shanahan 1999) that
relates a proposition′ to an event (holds′(p(i), e)), or situation (giving rise to a form
of event calculus), or else introduce a truth predicate true′, as in property theory
(see Turner 1992, for example). Care needs to be taken about what terms count as
propositions in order to avoid paradoxes of the kind illustrated by (14).

Sortal constraints can mimic expressive types such as dependent types (Smith
1984; Turner 1992), which can provide a treatment for analyzing discourse
anaphora (Sundholm 1989; Ranta 1994) (Section 3.1.3). There are alternative ways
of mimicking higher-order type theory within a first-order logic using Curry
typing with polymorphic types without expressing types (Fox & Lappin 2005),
as we shall see below.

4.1.3 Property theory with Curry typing It is possible to avoid some of the
strictures of Church typing, by separating out the typing system from the
λ-calculus presentation. That is, we can adopt the untyped λ-calculus, and then
have typing rules that allow us to infer the types of the λ-expressions (Curry
& Feys 1958). This is the approach adopted by property theory with Curry typ-
ing (PTCT) (Fox & Lappin 2005). This approach allows additional flexibility in
developing a type system that is focused on the specific requirements of nat-
ural language semantics, including separation types (a form of subtype) and
polymorphic types. This is formulated in an essentially first-order language.

4.1.4 Constructive theories and dependent types Constructive type theory
was mentioned before in relation to analyzing anaphora (Section 3.1.3). The
constructive approach offers an alternative to classical logic. In constructive
systems, propositions are only considered to be true if there is an appropriate
proof or witness. Using the Curry–Howard isomorphism, propositions can then be
viewed as types whose members are their proofs. Such logical systems are slightly
weaker than corresponding classical formulations in that they do not support
proof by contradiction.

As already noted, the intrinsically dynamic nature of the dependent types can
be exploited in the analysis anaphoric phenomena, although such types are not
exclusive to constructive theories.

There are other kinds of dependent types, including record types, which gener-
alize the notion of dependency over a collection of type expressions. The use of
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such types has been proposed both for the analysis of discourse and as a language
in which attribute value grammars can be formulated (Cooper & Ginzburg 2002;
Cooper 2005).

4.2 Intensionality
We need to be able to represent sentences where the verb expresses a relation-
ship involving not just individuals but also propositions and predicates, as in the
following examples:

(44) a) ‘John believes that every cat is furry.’
b) ‘Mary likes red.’

We also need to be able to distinguish between de re and de dicto interpretations of
the arguments of some verbs. For example, in the sentences

(45) a) ‘John seeks a football’
b) ‘John seeks a unicorn’

it is clear that in the first example, John may be seeking a real entity that exists and
is a football. This is a de re interpretation. In the latter case, he is seeking something
that does not exist, but he can still be said to be intending to find a unicorn. This is
a de dicto interpretation. In the former case, with a de re interpretation we cannot
be certain that John knows that he is seeking a football; he might know it by some
other description, such as ‘the object lying in the yard.’

The conventional view is that this requires predicates that can take things other
than individuals as their arguments.

A semantic interpretation along the following lines might seem appropriate:

(46) a) ‘John believes that every cat is furry.’
believe′( John′, ∃x(cat′(x) ∧ furry′(x)))

b) ‘Mary likes red.’
likes′(Mary′, red′)

c) ‘John seeks a football.’
(i) ∃x( football′(x) ∧ seeks′( John′, x)) (de re)

(ii) seeks′( John′, λP∃x( football′(x) ∧ P(x))) (de dicto)
d) ‘John seeks a unicorn.’

seeks′( John′, λP∃x(unicorn′(x) ∧ P(x)))

The felicity of this approach depends in part upon the nature of propositions
and predicates. If propositions are identified with truth values, then there are only
two propositions. Further, any truth-conditionally equivalent propositions may
be substituted for each other. This is a particular problem for mathematical truths
which are necessarily true together but not identical. This gives some incorrect
predictions about equivalence in the meaning of distinct sentences. Similarly, if
predicates are just sets, then distinct predicates may be accidentally equated.
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4.2.1 The Montagovian analysis The classical approach to intensionality is
attributed to Montague (1974), although it has its roots in earlier work (for exam-
ple, Carnap 1947; Kripke 1963). In the representation, a function, or operator ∩ is
introduced that takes a single proposition or predicate as its argument. The result
is an intensional expression that can appear as an argument to predicates that have
an appropriate type. A second function/operator ∪ can undo the operation of ∩, so
that ∪∩p = p.

For the so-called transparent verbs, such as ‘find,’ meaning postulates can be
introduced that allow the de re interpretation to be derived from the de dicto one.

Following Montague (1974) we can interpret this intensional theory using
possible worlds semantics. Possible worlds are commonly used to model modal-
ity, such as possibility, and necessity, permission, and obligation for example (Carnap
1947; Kripke 1963; von Wright 1967). Propositions can be treated as sets of possible
worlds, or (equivalently) functions from possible worlds to truth values. Prop-
erties can be modeled as functions from individuals to sets of possible worlds
(propositions). Propositions that are true together in the current world may be
distinguished from each other provided there are worlds in which their truth
values differ.

If p is of type A, then ∩p will be of type 〈s, A〉. Following Gallin (1975), the type
s can be thought of as corresponding to a possible world index. Types of the form
〈s, A〉 are then functions from world indices to expressions of type A.

4.2.2 Other approaches Montague’s possible-worlds approach is a dominant
paradigm for analyzing the formal semantics of natural language, but it does have
problems. The type system is inflexible and the notions of modality and inten-
sionality are conflated. As a result, the analysis is not sufficiently fine-grained
in its treatment of intensionality: for example, propositions that are necessar-
ily true together cannot be distinguished from each other. Such propositions are
exemplified by mathematical truths.

An alternative is to take what Montague writes as ∩p to be some kind of represen-
tation or encoding of p that does not conflate propositions merely because they are
necessarily true (or false) together. We could take ∩p to be an individual (a term).
The identity criteria for propositions would then be syntactic in nature, rather
than truth conditional. Such prefixes ∩ and ∪ then serve as functions from proposi-
tions (and predicates) to terms, and terms to propositions (predicates). In practice,
we may prefer that the default interpretation of p be a term rather than a truth-
conditional proposition. This avoids conceptual problems in having a function ∩
that increases the intensionality of its argument. Of course, some interpretation of
these expressions is then required in order to find an appropriate model theory.
This requires a relatively expressive language of terms.

There are potential risks with this strategy. If we are not careful about what can
be represented as an individual (and hence appear as an argument to a predicate),
then we may introduce paradoxes. Theories that take this approach (or variations
of it) include property theory (Bealer 1982; Cocchiarella 1985; Turner 1992), property
theory with Curry typing (PTCT) (Fox & Lappin 2005), and situation theory
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(Barwise & Perry 1983; Barwise & Etchemendy 1990), the latter of which comes
with a particular philosophical perspective on the nature of ‘situated’ meaning.
Another alternative is to find suitably intensional models for theories that are
syntactically not far removed from Montague’s IL (Thomason 1980; Gilmore 2001;
Fox et al., 2002; Pollard, forthcoming), or use theory that combines different
notions of intensionality (Tichý 1988; Materna et al., forthcoming). An alterna-
tive is to interpret our representation language using some form of intensional set
theory (Jubien 1989).

4.3 Non-indicatives
So far we have only considered indicative sentences. Indeed this is the focus of
perhaps the majority of work in computational semantics. But if we are interested
in computing the meaning of language in general, then it is vital to consider non-
indicatives.

As before, what follows is not intended to be a comprehensive survey of the
work in the respective fields. We merely present a taste of some of the general
methodological and practical issues that can arise in computational semantics. To
this end, we briefly sample some proposals for the analysis of two significant
non-indicative categories, namely questions and imperatives. The fundamental
issue that lies behind all of these examples results from the fact that there are
‘entailment’ patterns which we might like to capture, but which are not overtly
truth-conditional in nature: we do not usually think of questions or imperatives
being ‘true’ or ‘false.’

In the case of imperatives there is some debate about the appropriate nature of
any entailment patterns, and even whether a logical approach is possible. In the
case of questions, and their answers, it is generally accepted now that an appro-
priate notion which should be captured by ‘entailments’ between questions can
be viewed in terms of answerhood criteria, although there is debate about how
these are best expressed. The point of particular interest here lies in the difficulty
of specifying what constitutes an answer in a computationally tractable fashion.

This is taken to illustrate the point that, in general, many of the core aspects of
semantics, such as the truth of a proposition, answerhood for a question, etc., may
not themselves be characterized completely within a computationally tractable
theory. That is not to say this is a critical flaw for the computational semantics pro-
gramme, merely that some aspects of a computational theory in effect will include
properties of implementations, rather than implementable properties.

4.3.1 Questions and answers For questions and answers, we might consider
the notion of answerhood conditions in place of truth conditions. Such an idea was
proposed by Belnap (1982) among others. This requires consideration of what
might constitute a legitimate answer to a question, and when an answer to one
question is also an answer to another.

One influential and comprehensive account of the semantics of questions is
due to Groenendijk and Stokhof (1984; 1990b; 1997). In their model, a question
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partitions the set of all possible worlds, where each partition corresponds to a
different possible answer. A yes/no question would give rise to two partitions, one
corresponding to the underlying proposition being true, the other to it being false.
A wh-question would give rise to a more complex set of partitions correspond-
ing to the underlying property being applicable to different individuals. A true
answer is then considered to be anything that provides the information needed
for the questioner to determine in which partition the actual world lies. A partial,
true answer would indicate a collection of partitions in which the actual world
may lie. In general an answer (whether correct or not) will provide a means of
‘eliminating’ certain worlds, and hence certain possibilities, from consideration.

Due to the model-theoretic approach, Groenendijk and Stokhof’s theory is not
presented directly in terms of inference rules concerning the nature of answers
and answerhood conditions; although it might provide a useful model, it does not
necessarily lend itself to direct implementation. There is also the issue of combina-
torial explosion when it comes to the evaluation of wh-questions. If the size of the
domain is n, then checking the consistency of every field of a wh-question requires
2n inferences (Bos & Gabsdil 2000).

One key question concerns the nature of the answerhood relationship itself, and
in what way the rules governing answerhood may be implemented. We could
try to build on the view advocated by Groenendijk and Stokhof and others, that
yes/no questions are really questions of ‘whether’ something is true or false, and
an answer to such a question allows you to determine that the proposition in ques-
tion is true, or that it is false. We could seek to model this explicitly in terms of
knowledge.

(47)
‘Know whether p′ p True

‘Know that p′
‘Know whether p′ ¬p True

‘Know that ¬p′

Alternatively, we might seek to express this internally as some state of ‘knowl-
edge’ Γ .

(48) A proposition p answers a question q? in a context Γ if Γ and p together
allow us to either infer q or infer ¬q (and Γ by itself allows us to infer
neither).14

However they are expressed, these are essentially constraints over reasoning
systems involving answerhood, but in general they may not be directly express-
ible within the representation language itself, or any implementation of such a
theory.

This issue is apparent even in other attempts to capture the notion of answer-
hood within a first-order framework. Bos and Gabsdil (2000) adopt answerhood
conditions for wh-questions that are expressed in a first-order language. Essen-
tially they translate wh-questions into a formula with domain D and body B.
Putting to one side the DRT aspects of their notation, essentially wh-questions
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can then be given in the form D?B. An answer A is defined as proper for the ques-
tion if at least one of the following propositions is consistent, and at least one is
inconsistent:

(49) a) ∀x(Dx → Bx) ∧ A
b) ∃x(Dx ∧ Bx) ∧ A
c) ∃x(Dx ∧ ¬Bx) ∧ A
d) ¬∃x(Dx ∧ Bx) ∧ A

So if we had the question

(50) ‘Who loves John?’

this might be represented as something like

(51) person′(x)?loves′(j′, x)

A proper answer is one that is consistent with at least one, but not all, of the
following possibilities:

(52) a) ‘Everybody loves John’
b) ‘Somebody loves John’
c) ‘Somebody does not love John’
d) ‘Nobody loves John’

This characterization loses some of the fine-grained distinctions that
Groenendijk and Stokhof (1984; 1990b) make concerning answers and exhaustive
answers, but reduces the number of permutations that have to be considered when
determining whether A is a proper answer. Unfortunately it cannot avoid the
fundamental problem that the property of answerhood for a given question is not
necessarily tractable for arbitrary domains, and that it cannot be internalized into
the representation language.

The extensional, model-theoretic interpretation of questions of Groenendijk and
Stokhof (1984; 1990b; 1997) is not universally accepted. Ginzburg and Sag (2000)
argue that it is incorrect to interpret questions by their exhaustive answerhood
criteria. There may be contextual effects that change what constitutes an exhaus-
tive answer, and different questions may have the same exhaustive answers.
These arguments echo those concerned with propositions and truth conditions
(Section 4.2); just as it can be argued that propositions are more than their truth
conditions, perhaps questions are more than their answerhood conditions.

An alternative is to treat questions as something more basic, perhaps repre-
sented by propositions with abstracted variables. To do it justice, such an account
needs to be formulated in a theory that does not automatically conflate any such
propositional abstracts with ‘mere’ properties and relations. Ginzburg and Sag
(2000) develop such an approach to questions and answers in the context of



“9781405155816_4_015” — 2010/5/8 — 12:07 — page 419 — #26

Computational Semantics 419

situation-theoretic semantics (Barwise & Perry 1983; Barwise & Etchemendy 1990).
It should be possible to adapt the key aspects of this approach to other semantic
frameworks.

4.3.2 Imperatives It seems appropriate to consider some kind of theory of
entailment for imperatives that can determine when one imperative ‘implies’
another. As with propositional connectives, we may wish to consider notions of
entailment between simple and complex imperatives, including conjoined imper-
atives, disjoined imperatives, and imperatives containing negation. Certainly it
seems appealing to assume that there is a form of entailment relationship that can
say something about the following pairs of examples.

(53) a) ‘Go to work!’
b) ‘Go to work and write a paper!’

(54) a) ‘Go to the beach or watch a film!’
b) ‘Go to the beach!’

(55) a) ‘Eat the apple!’
b) ‘Don’t eat the apple!’

The intuitions behind even these cases are not always straightforward. For exam-
ple, in the case of disjunction there are two potential readings, the so-called
free choice and weak readings (Kamp 1973). Imperatives may also combine with
propositions.

(56) ‘If you see John, say hello!’

In such a case, we might want to ‘infer’ that there is an imperative to say hello in
the event that John is seen (or possibly that the subject might want to avoid seeing
John).

There are also the so-called pseudo-imperative constructions (Franke 2006)
whose formal analysis appears non-trivial, as with the following examples.

(57) a) ‘Have another drink and you will die!’
b) ‘Have another drink and you will be happy!’
c) ‘Have another drink or you will die!’15

A fundamental question is what counts as a relevant notion of entailment
for imperatives. There are similarities with questions, in that it does not seem
appropriate to assign imperatives a direct truth-conditional interpretation. Unlike
interrogatives, imperatives are not so easily embedded inside other expressions.
Nor is there an overtly linguistic counterpart to an ‘answer.’ The question about
what kinds of behavior should be modeled by a semantic analysis of imperatives
revolves around notions of what are sometimes referred to as satisfaction and valid-
ity (Ross 1945). In the case of the former, there is a notion of an imperative being
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satisfied by some response, or behavior. Entailments may then be expressed in
terms that describe which other imperatives are satisfied by such a response.

As elsewhere, different frameworks have been adopted and adapted to
capture appropriate patterns of behavior associated with imperatives. Many
accounts assume a possible-worlds perspective, with actions (or possible actions)
that update the state of the world so that it satisfies some propositional analogue
of the imperative. The question arises as to whether an imperative is satisfied by a
propositional description of the desired state, or by a particular agent engaging in
an appropriate action. Given the following imperative

(58) ‘Shut the window!’

any natural utterance of this will typically be directed at an individual (or group
of individuals), with the expectation that it is that individual who will cause
the particular desired outcome, or that the particular individual engaging in the
associated activity is the desired outcome, so that

(59) ‘John shuts the window’

is a propositional description of the satisfaction criteria of (58). A more elaborate
view might additionally contemplate a counter-factual element to satisfaction, so
that John’s shutting of the window only genuinely satisfies the imperative if John
would not otherwise have shut the window.

Many accounts of imperatives (including those of Segerberg (1990), Lascarides
and Asher (2004) and many others) have sought to avoid what has come to be
known as Ross’s paradox. This is the view expressed by Ross (1945) that it is not
possible to formulate a logic of imperatives as it appears impossible to discern a
coherent collection of inferences that encapsulate the notions of satisfaction and
validity. That is, inferences cannot allow us to conclude both (a) which other
imperatives are satisfied given that the imperative in the premise has been satisfied
(satisfaction) and (b) that the requirement to comply with a particular command
in the premise entails that we should comply with a command in the conclu-
sion (validity). The example often cited in favor of this view concerns disjunction
introduction. Consider the following two imperatives.

(60) a) ‘Post the letter!’
b) ‘Post the letter or burn the letter!’

To many, the most natural inference is from (60b) to (60a) (Kamp 1973). This cor-
responds to an inference concerning validity. However, if a logic of imperatives
follows the usual rule of disjunction introduction, the inference should go the
other way around. This can only correspond to an inference concerning satisfac-
tion: if we have satisfied the requirement to post the letter, we would also have
satisfied a requirement to post or burn the letter.

Even if both notions (satisfaction and validity) cannot be encapsulated by a
single rule, that does not mean there can be no meaningful logics of satisfaction
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and validity. We might instead consider a logic of satisfaction independently of a
logic of validity. The former might in many cases parallel inferences of indica-
tive reasoning, whereas the latter may be more akin to a notion of refinement
from computer science (Wirth 1971). This latter view may also correspond to a
more pragmatic analysis of imperatives which characterizes the problem of ‘what
should be done’ in terms of lists of obligations that need to be fulfilled (Piwek
2000; Portner 2005).

4.4 Expressiveness, formal power, and computability
In computational semantics there is a tension. We want a theory that is computa-
tionally tractable but also sufficiently expressive to handle the natural language
phenomena of interest. In many cases the most convenient way of obtaining
expressiveness is by adopting a more powerful representation language. Yet
more formal power is typically accompanied by computational intractability. In
some cases, however, it is possible to find a virtuous combination of appropriate
expressiveness without an undesirable increase in formal power beyond what is
computationally tractable.

The issue of computability arises in many guises. For example, theoremhood is,
in general, intractable in higher-order formalisms. This is because such formalisms
do not have a decidable proof theory: the theorems of higher-order theories are
not recursively enumerable. This suggests that systems with the power of first-
order logic should be preferred to higher-order systems. There are other cases
where a sacrifice in expressiveness may be appropriate. For example, in the case
of arithmetic and quantifiers of number, we may prefer weaker, more tractable
theories such as Presburger arithmetic (Presburger 1929) over the more usual
Peano arithmetic. In general, these trade-offs in power may mean that certain per-
tinent notions are not expressible (such as the quantifier ‘infinitely many’ in the
case of a genuinely first-order theory, and the notion of multiplication in the case
of Presburger arithmetic).

Related to this is the specific problem of impredicativity. This can arise with type
quantification – as used in (41) of Section 4.1.1. If we allow such type quantifi-
cation to range over all types, including polymorphic types, then the evaluation
of polymorphic types can be deeply problematic in a computational system (the
evaluation of such a type requires us to quantify over the very type that we
are attempting to evaluate). Fortunately it appears that natural language does
not require such a powerful typing system; we can compromise by having the
expressivity of polymorphic types, but restricted so that there is no problem-
atic quantification over polymorphic types themselves. This is a case where it is
possible to have a more expressive theory without increasing the power of the
system beyond what is computationally tractable.

There are other notions that cannot be formalized within any computable theory
besides impredicative types, such as the notion of truth, and answerhood condi-
tions (Section 4.3.1). We may define constraints on how truth and answerhood
should behave, but that does not mean the notions themselves are intrinsically
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amenable to definition within a tractable theory. Here we might begin to see how
notions relevant to computational semantics might not be directly expressed by an
implementation, but they may be properties of such an implementation.

This suggests an alternative characterization of computational semantics, where
the idea of computability itself is considered as a constraint on appropriate formal-
izations and models (Turner 2007). As a methodological constraint, this may be
relevant even in the event that the behaviors being described by a formal theory
are not directly relevant to any conceivable practical implementation. Rather, the
claim might be made that a computable theory potentially has more explanatory
power than a theory expressed in an intrinsically intractable framework.

Indeed, we can contemplate using the constraint of computability not just in
the context of the formal representations of meaning, but also in the process of
translating natural language into those representations. It is conventional only
to require that the translation be compositional (Section 2.1). Unfortunately, it
turns out that if there are no restrictions on the nature of the functions used to
combine the meaning of the parts, then compositionality does not impose any
effective restriction on the nature of the interpretation (Zadrozny 1994). In effect,
compositionality is a constraint only on the form of the translation rules, and
their coverage, not their function. That is, as usually defined, compositionality
is a restriction only on the general form of the semantic annotations, rather than
necessarily being a restriction on the end result of that translation.

If we ignore the evaluation of the functions that are applied in a compositional
translation, then the constraint of compositionality ensures that the transla-
tion process is recursive on the structure of the expression. For every syntactic
constituency rule there should be a corresponding rule for determining the seman-
tic representation to be associated with the head of the expression as a function of
the semantic representation of its constituent parts. This guarantees that every
syntactic analysis has a corresponding semantic interpretation.

Of course, the evaluation of the functions used in a compositional interpretation
is important. If the functions themselves are meta-theoretic, and not part of the
semantic theory as such, then they need to be applied to produce a well-formed
representation. Even if they are part of the semantic theory, we may need to apply
the functions in order to derive a representation in some ‘normal form.’ In either
case, it would be appropriate to consider constraints on the nature of the functions
themselves. At the very least, we would expect them to be computable.

5 Corpus-Based and Machine Learning Methods

Although the focus of this chapter, and indeed much work in computational
semantics, has largely been on the application of techniques for computationally
tractable semantic analysis based upon representations in formal logic, there are
other computational approaches that involve less traditional forms of semantic
analysis which do not rely upon strictly logical theories of meaning. These include
approaches that exploit corpus-based techniques and machine learning. We will
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briefly survey a small sample of these techniques and their applications, and
speculate on the role that a more formal analysis may play in their application,
particularly in the case of textual entailment.

5.1 Latent semantic analysis
Latent semantic analysis (LSA) (Landauer et al., 1998; 2007) is a technique that
aims to determine a ‘conceptual’ or ‘semantic’ space for words and the documents
in which they occur. The number of ‘concepts’ used is invariably smaller than the
number of different words in the documents. The idea is that words denoting
similar concepts will be mapped on to similar vectors in this reduced space.
The technique is able to determine when word meanings – and documents – are
related, even when the words never occur in the same context and the documents
have few words in common. Two words may be deemed to be conceptually related
because the words that they appear with occur together in other documents. This
allows us to compare and process words and documents in concept space.

The technique takes as input a word document matrix where each entry indi-
cates the number of times a given word appears in a given document. It then uses
singular value decomposition (SVD) (Golub & van Loan 1989) effectively to ‘rotate’
the word document space to a different set of dimensions. These dimensions (the
‘latent space’) are such that they give the axes of greatest variation for the origi-
nal word document matrix. Dimension reduction can then be applied by pruning
those dimensions with the smallest contribution. The dimensions that are left are
considered to correspond to some notion of a ‘concept.’ In the matrix of reduced
dimensionality, words which make a similar contribution are effectively merged
together. The intuitive explanation is that different words will have similar vector
representations in this reduced space if they denote a similar concept.

This technique has a number of applications (Landauer et al., 1998; 2007) includ-
ing document indexing and search (latent semantic indexing, LSI) (Deerwester et al.,
1990) and automatic essay marking (Landauer et al., 1998). It can also be used
to cluster documents according to their conceptual similarity. In the case of LSI,
the terms occurring in a query expression can also be mapped to the correspond-
ing concepts, which are then used to retrieve the documents in which those
concepts occur. This allows documents to be retrieved that do not necessarily
contain the terms in question, but which do include terms that correspond to the
same ‘concepts.’

Terms that are combined by the dimension reduction into a single concept may
be indicative of an underlying synonym, although the notion of a ‘concept’ here is
a mathematical abstraction that need not correspond to any natural category.

It has been argued that the dimension reduction employed by LSA has
certain problems including the fact that the reduced matrix can contain negative
values, which is counterintuitive if the values are interpreted as counts of concept
occurrences (Hofmann 2001; Quesada 2003). An alternative approach is probabilis-
tic latent semantic analysis (PLSA), which employs a dimension reduction strategy
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that is claimed to have a more solid statistical foundation. In this technique, the
number of concepts is decided, and words are fitted to those concepts using
expectation-maximization (Hofmann 1999; 2001).

5.2 Extraction of semantic roles
Identification of semantic roles is useful for a range of problems, such as ques-
tion answering (Narayanan & Harabagiu 2004; Sun et al., 2005; Kaisser 2006;
Shen & Lapata 2007), dialogue systems (Liu 1995), and information extraction
(Riloff 1993).

The notion of semantic role is connected with the notions of subcategoriza-
tion and selection preferences, which may determine the syntactic function and
‘thematic role’ of an entity. (In some cases, coercion by way of metaphor or some
other semantic relation may be needed to obtain a natural interpretation.) The
syntactic role of a verb’s complement can give an indication of the semantic role of
nominal expressions, such as agent, patient, theme, etc. (Fillmore 1968; Dowty 1991).
More specific roles may also be defined, as in Frame semantics (Fillmore 1976),
and FrameNet languages (Baker et al., 1998). Resources such as PropBank (Palmer
et al., 2005), provide a hand corrected body of predicate–argument annotations of
the Penn Treebank.

There are machine learning methods (both supervised and unsupervised) for
automatically determining semantic roles. Such methods can be used to learn to
label constituents of a sentence with the semantic roles of a target frame (Gildea
& Jurafsky 2002). One problem is that the correspondence between syntactic cate-
gories and semantic roles is not always direct or easy to predict. Machine learning
techniques that have been applied to this problem include maximum entropy,
rule-based, memory-based, and kernel methods.

For more on semantic role identification and tagging, see Chapter 9, ARTIFI-
CIAL NEURAL NETWORKS, Chapter 10, LINGUISTIC ANNOTATION, and Chapter 18,
INFORMATION EXTRACTION. More discussion on machine learning techniques is
provided in Chapter 5, MAXIMUM ENTROPY MODELS, Chapter 6, MEMORY-BASED
LEARNING, Chapter 7, DECISION TREES, Chapter 8, UNSUPERVISED LEARNING
AND GRAMMAR INDUCTION, and Chapter 9, ARTIFICIAL NEURAL NETWORKS.

5.3 Word-sense disambiguation
Word-sense disambiguation (Ide & Véronis 1998) is a useful step when dealing
with various essentially semantic issues, such as question answering and intelli-
gent document retrieval. The objective is to be able to distinguish between various
senses of a word. Machine learning techniques can be used in a variety of ways
to achieve this. One common feature is to identify word senses from the differ-
ent contexts in which a given word is used. For many tasks, a fine discrimination
between senses might not be required (Ide & Wilks 2006).
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Knowledge-based approaches may use dictionaries and thesauri to provide
examples of different word senses, and the other words associated with a given
sense (Lesk 1986), as well as ontological relationships (Roberto Navigli 2005).
In general such approaches may be limited by the quality and relevance of the
information sources used.

Data-driven approaches seek to determine different senses of a word by iden-
tifying patterns, or clusters, of co-occurrences and contexts, both local and
global (McCarthy et al., 2004). They may involve supervised or unsupervised
learning. In the former case, sense-tagged corpora may be used to train a sense-
disambiguation algorithm. In the latter case, clustering techniques may be used
to identify different collocation contexts, which are assumed to correspond to
different word senses. Various assumptions may be made to aid training. One
such assumption is that, generally speaking, a word appearing more than once in
a given document is likely to share the same word sense (Gale et al., 1992b).

Bilingual corpora may also be used to help identify the different senses of a
word by identifying systematic differences in translation (Gale et al., 1992c; Kaji &
Morimoto 2005).

Chapter 10, LINGUISTIC ANNOTATION, discusses word-sense disambiguation,
and Chapter 11, EVALUATION OF NLP SYSTEMS, uses word-sense disambiguation
as a case study.

5.4 Textual entailment
One of the purposes of a computationally feasible formal semantic analysis of
language is to determine what is entailed by a given text. This is called textual
entailment. It can be thought of as capturing relationships of the form t ⇒ h, where
t is some natural language text, and h is some hypothesis, also expressed in natu-
ral language. Intuitively, the relevant notion of entailment is one where h would
not follow without t; that is, h cannot be obtained from any of the background
information that is being used to capture entailment relations. Textual entailment
can be applied to the problems of information extraction, question answering (see
Chapter 22, QUESTION ANSWERING), translation, summarization, and other NLP
tasks (Glickman et al., 2005). In some cases, it is possible to capture a notion of
textual entailment using statistical and probabilistic techniques, rather than a
purely logic-based analysis of meaning. Indeed, the term ‘textual entailment’ is
often used in a context that does not presuppose a rigorous, logic-based analysis of
meaning.

The mechanisms for obtaining appropriate entailment patterns include hand
coded rules, acquired knowledge, and machine learning (see Chapter 5, MAXIMUM
ENTROPY MODELS, Chapter 6, MEMORY-BASED LEARNING, Chapter 7, DECISION
TREES, Chapter 8, UNSUPERVISED LEARNING AND GRAMMAR INDUCTION, and
Chapter 9, ARTIFICIAL NEURAL NETWORKS). For example, a range of machine
learning techniques can be applied to find approximations to human judgments
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concerning entailment patterns, or rules. Another possibility is to exploit pat-
terns of words that indicate some intended inference or relation. For example,
hyponyms and meronyms may be identified by discovering ontological relation-
ships from corpora that are indicated by particular patterns (Hearst 1992; Berland
& Charniak 1999). Various other semantic relationships may also be discovered,
including causal relations (Girju 2003; Cole et al., 2006) and temporal ordering
and other relationships between verb meanings (Chklovski & Pantel 2004). This
may not be entirely robust. There may be problems to overcome with patterns
that are overgeneral, negative polarity contexts, and anaphoric expressions (see
Sanchez-Graillet et al., 2006; Sanchez-Graillet & Poesio 2007 for example).

The method may be made more robust if there is a notion of the semantic class
of a word (Girju et al., 2006), although this requires additional work in identify-
ing the relevant semantic classes (see Chapter 10, LINGUISTIC ANNOTATION and
Chapter 18, INFORMATION EXTRACTION).

Such methods may help to identify particular kinds of entailments. There are,
however, other more general corpus-based approaches to inference, some of which
rely upon a traditional formal semantic analysis, where a semantic analysis of
the documents in question is produced, along with the hypothesis that is to be
checked. In general this requires a broad-coverage deep syntactic analysis, com-
prehensive semantic analysis, and a robust theorem prover. For some problem
domains, such as question answering, it is possible that techniques based on
pattern-matching of the semantic representations may be adequate (Ahn et al.,
2005). Additional sources of information may have to be analyzed to determine
relevant relationships between information in a given document (or document
collection) and a hypothesis that is being tested, or a question that is being asked.
In addition to finding evidence of such relationships from supplementary sources
of information, there have been proposals to improve the robustness of theorem
proving by allowing costed abductive assumptions (Raina et al., 2005) which allow
some degree of flexibility in unifying the terms that appear in a proof. Cost func-
tions can be used to minimize the contribution of abductive reasoning that is
permitted within a proof to avoid perverse results.

It is sometimes argued that contemporary formal techniques (which have been
the focus of this chapter) are too fragile and incomplete to be used for such
applications. Alternative approaches seek to represent knowledge, and cap-
ture textual entailments, using shallower, less abstract representations of the
text. Such methods include hierarchical representations based upon description
logics (de Salvo Braz et al., 2005). These seek to capture structural, relational,
and other semantic properties. Other approaches use representations that are
closer to the surface form of language, including lexically based parse-tree rep-
resentations (Dagan et al., 2008a), perhaps augmented with annotations (for
negation and modality, for example). A relevant work on this topic is Dagan
et al. (2009). A comprehensive analysis of textual entailment almost certainly
needs to address questions of resolving anaphora. But corpus-based methods
have also been applied to this problem (Ge et al., 1998; Paul et al., 1999; Poesio
& Alexandrov-Kabadjov 2004).
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5.5 Relationship to formal semantics
We may wonder about the nature of the relationship between corpus-based
methods and formal, logic-based approaches. The relevance of this issue is
perhaps most obvious in the case of textual entailment, which aims to address
one of the objectives of formal methods – that of capturing legitimate entailment
relationships.

One question is whether it is realistic to assume that formal approaches will
ever be able to model the full range of textual entailments, or whether entailments
captured by corpus-based methods will ever be as trustworthy as logic-based
inference. We offer no view on this matter here, but observe that some aspects
of textual entailment may need to be informed by something resembling a
formal analysis for us to know what counts as a legitimate or illegitimate entail-
ment, and why – even if only to ensure an element of consistency, and confidence,
in the conclusions drawn. Regardless of the underlying mechanism used for
capturing textual entailment relationships, it seems appropriate to formalize nor-
mative rules concerning how a coherent notion of textual entailment should
behave; that is, we should consider formulating a logic of textual entailment to
characterize the properties that the relationship t ⇒ h should support.

Another topic that may merit further exploration is a better understanding of
the relationships, if any, between a logic-based conception of semantics, and the
notion of semantics as used in work that builds on word and phrase co-occurrence
data and its generalizations, such as LSA. At the time of writing, it appears there
have been few if any attempts to reconcile these different views on the nature of
natural language semantics.

6 Concluding Remarks

This chapter has presented some of the basic ideas behind computational seman-
tics, with some sample topics and research questions. Some corpus-based tech-
niques that embody a notion of semantics have been sketched, but the primary
focus has been on logic-based approaches. One idea that arises in the presentation
is not merely to think of computational semantics as describing theories of seman-
tics that lend themselves to implementation, but to consider computability itself as
a constraint on theories of meaning and semantic analysis. We can also distinguish
between those aspects of a theory of meaning that lend themselves to direct imple-
mentation, and those that describe the properties of an implementation, without
themselves necessarily being implementable.

NOTES

1 For criticisms of Grice, see for example Davis (1998).
2 This assumes that the y does not occur within the scope of another ‘λy.’



“9781405155816_4_015” — 2010/5/8 — 12:07 — page 428 — #35

428 Chris Fox

3 In general there may be issues to resolve when combining a logic with a λ-calculus,
which we put to one side at this point (see Section 2.2).

4 It is worth noting, however, that a first-order theory (a theory defined in a first-
order logic) may be incomplete, as Gödel demonstrated for first-order arithmetic, for
example.

5 See Section 4.4 for a little more discussion on the issue of power versus expressiveness.
6 Aristotelean syllogisms can be viewed as a form of proof-theoretic semantics, although

one where the entailment patterns are captured directly in terms of natural language
sentences.

7 Section 4 of Chapter 2, COMPUTATIONAL COMPLEXITY IN NATURAL LANGUAGE, con-
siders the computational complexity of determining relationships between sentences.

8 We do not consider other issues concerning the analysis of discourse, such as topic and
focus (Rooth 1993; Hajičová et al., 1998), or discourse segmentation. Note that there are
non-logical, quantitative methods that have been applied to the latter problem (Hearst
1997).

9 In this case, we would want x to be evaluated in the same way as the other ‘x’s in the
representation. This cannot happen if it is not bound by the same quantifier.

10 The precise values of the subscripts (in this case 6 and 7) and place-holder variable
names (z6, z7) may vary.

11 Blackburn and Bos (2005: 108) provide more details of this approach.
12 We might restrict the quantification so that it only ranges over non-polymorphic types.

See Section 4.4 and Fox and Lappin (2005).
13 An alternative approach would be to use schematic polymorphism (Pollard 2004).
14 This mirrors Groenendijk and Stokhof (1997, fact 4.3).
15 To be contrasted with ‘Have another drink or you will be happy!’
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16 Computational Models
of Dialogue

JONATHAN GINZBURG
AND RAQUEL FERNÁNDEZ

1 Introduction

Computational study of dialogue, the topic of this article, provides underpin-
nings for the design of dialogue systems and for models of human performance in
conversational settings. Hence, among the central issues are ones pertaining to
the information states of the agents participating in a conversation. Some of this
information is public – available in principle to be grasped and manipulated by the
conversational participants, while some of this information is, at the very least,
not explicitly made public. The structure and makeup of participant information
states – and the extent to which information in them is shared – are issues on which
much of the account of dialogue we will present here rides. Linguistic phenomena
will provide guidance towards the resolution of these issues: at this point in the
state of the art, the challenge is to process ‘real language’ with all its fragments,
disfluencies, and the like. Such utterances are highly context-dependent – to a far
higher degree than is the situation with text processing. The participant informa-
tion states will serve as context; being able to perform this role will, consequently,
impose significant constraints on the information states.

One basic task for any theory of dialogue is to account for the coherence of
a conversation – a given dialogue move can be coherently followed up by a
wide variety of responses, but not by just any response. Coming up with such a
theory of coherence presupposes a classification of the space of available moves.
This raises a variety of interesting issues, a central one of which is: can this be
done domain-independently? It is by now clear that domain dependence cannot
be evaded – conversational coherence varies widely across domains. Nonetheless,
as we will see, it also seems reasonably clear that there are aspects of coherence
which can be explicated in a more or less domain-independent way. How to find
the proper balance is an important theme we will address at a number of points.
After discussing a number of influential taxonomies of dialogue moves, we will
concentrate on characterizing in a theory-neutral way the fundamental properties
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of two of the commonest move types – queries and assertions. From this will
emerge a series of benchmarks that theories of dialogue need to satisfy.

Meta-communicative interaction – interaction concerning the ongoing com-
municative process (e.g., acknowledgments of understanding and clarification
requests) – is a fundamental area for dialogue. It was long neglected in formal
and computational linguistics, but has now become a much studied area, not
least because utterances whose main function is meta-communicative are very
frequent and play a crucial role in applications. As with queries and assertions,
we will proceed initially in a theory-neutral way, gathering benchmarks along
the way. Ultimately, one is after a theory which will explicate the coherence of
meta-communicative utterances and allow them to be interpreted. This ties in
with the final phenomena we will characterize – the non-sentential fragments
typical of conversation, many of which occur in meta-communicative utterances.
We will address two types: the first are sentential fragments – utterances like ‘Bo.,’
‘Bo?,’ ‘Why?,’ ‘Yes,’ whose external syntax is non-sentential, but which express
a complete message in context. The second are disfluencies – self-corrections,
hesitations, and the like.

As we mentioned above, the computational study of dialogue provides formal
underpinnings for the design of dialogue systems. The second part of this chap-
ter is devoted to a survey of the most influential paradigms in this area, which
we informally evaluate in terms of the benchmarks that will have emerged in the
first part of the chapter. Dialogue systems are important because they constitute a
highly promising technology. We will emphasize also the fact that they serve as a
very useful testing ground for dialogue theories.

The third part of the chapter is devoted to sketching a theory of dialogue,
known as KoS, in which meaning and interaction can be modeled. We will show
how the lion’s share of the benchmarks from the first part of the article can be
explicated in a uniform fashion within KoS. We formulate KoS in the framework
of type theory with records (Cooper 2006). This is a framework that simultane-
ously allows sophisticated semantic modeling using λ-calculus style techniques,
while also enabling rich structure to be encoded in a way that resembles typed
feature structures. In contrast to typed feature structures, however, type theory
with records provides as first-class entities both types and tokens. This feature
of the framework is of considerable importance for semantics, in particular with
respect to modeling meta-communicative interaction.

The final part of the article is devoted to offering pointers to other recent sig-
nificant directions in research on dialogue, including work on machine learning,
multiparty conversation, and multi-modal interaction.

2 The Challenges of Dialogue

A computational theory of dialogue needs to aspire to explicate how conversations
start, proceed, and conclude. It should be able to underpin the participation of
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either a human or an artificial agent in conversations like the following:

(1) John: (1) Okay which one do you think it is?
(2) Try F1 F1 again and we’ll get

Sarah: (3) Shift and F1?
Sue: (4) It’s, (5) no.
John: (6) No, (7) just F1 F1.
Sue: (8) It isn’t that.
John: (9) F1. (10) Right, (11) and that tells us
Sue: (12) It’s shift F7.

(1) is, in fact, a rather humdrum conversation from the British National Corpus
(BNC) (Burnard 2000a) involving three people attempting to print a file some time
around 1990. Nonetheless, it exhibits features that radically distinguish it from a
text and even in several respects from the sort of artificial travel agent or airline
booking system/user dialogue routinely described in AI/NLP papers on dialogue
in the 1980s and 1990s (e.g., Allen & Perrault 1980; Aust et al., 1995):

(1) Self-answering: utterance (2) is a case of self-answering, unexpected on anal-
ysis of queries as requests for information (following, e.g., Allen & Perrault
1980).

(2) Multilogue: the conversation involves more than two participants, the case
handled by the vast majority of all analyses.

(3) Disagreement: even in this essentially cooperative setting disagreement is
rife.

(4) Partial comprehension: Sarah’s (3) is a clarification request, indicating
distinct states of semantic processing among participants.

(5) Incomplete utterances: three of the utterances ((2), (4), (11)) are incomplete.
(6) Sentential fragments: five of the utterances ((3), (5), (6), (7), (9)) are not

syntactically sentential, yet convey complete illocutionary messages.

As with all tasks in NLP, one can perform dialogue processing at a variety
of levels, ranging from the very deep, designing agents that can participate in
real conversations, through medium, which could involve trying to perform
intentional analysis on a conversational participant’s contribution, to shallow,
which could amount to producing a reasonable paraphrase of (1), for ‘secretarial
purposes,’ as in office assistants like CALO (Tur et al., 2010). Notice though that,
given the fact that form radically underspecifies content in dialogue, even pro-
ducing such a periphrasis of (1), e.g., something along the lines of (2), involves
sophisticated resources – including techniques to resolve (a) the move type (or illo-
cutionary force) of an utterance, which is rarely signaled explicitly, (b) the content of
sentential fragments (on which more below), and (c) the referents of anaphors:

(2) John asked Sue which button did she think one needed to press. He sug-
gested to try F1 F1 once again. Sarah wondered if he meant she should type
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Shift and F1. Sue was a bit unsure but demurred and John indicated that
he meant for her to type F1 F1. Sue disagreed with John that that was what
needed doing. John suggested to try F1, which he thought might indicate
something, and then Sue suggested it was shift F7.

Move type resolution: Which one do you think it is? �→ John asked Sarah
and/or Sue which button did she think one needed to press.

Sentential fragment resolution + Move type resolution: Shift and F1? �→
Sarah wondered if he meant she should type Shift and F1.

Anaphora resolution + Move type resolution: It isn’t that. �→ Sue
disagreed with John that that was what needed doing.

2.1 Classifying and characterizing dialogue moves

2.1.1 Move classification One important task for a theory of dialogue is to
explicate the moves or acts that participants can make in a conversation. In so
doing there is an inevitable tension between the domain-specific and the domain-
independent conversational possibilities. Some, following Wittgenstein (1953),
would come close to denying the existence of domain-independent conversational
possibilities (e.g., Allwood 1995; Rudnicky 2004), a position which is under-
standable for designers of dialogue systems. It is undeniable that knowing how
to interact in an unfamiliar setting (shop, court, religious institution, academic
lecture, informal meeting with people of different class/ethnic background) often
requires considerable guidance. Nonetheless, an emotionally stable adult in an
unfamiliar setting might initially miss a trick or even seven, but in many cases at
least she is not completely floored and can navigate her way around, albeit with
a certain number of stumbles. Moreover, she can acquire the necessary domain
knowledge relatively easily, in contrast, for instance, to learning a new language.
It thus seems a defensible strategy to try and isolate some domain-independent
conversational possibilities (e.g., with respect to how questions are asked and
responded to or how positive/negative feedback is provided), while acknowledg-
ing the possibility that any given domain might involve moves that are specialized
in some way. Of course in addition to certain idiosyncrasies about moves, which
by analogy with lexical idiosyncrasy need to be stipulated (e.g., the need to end
each turn addressed to a judge in a British court with the word ‘m’lud’), one also
aspires to find parameters by means of which one can characterize domain-specific
conversational possibilities (see Section 4.6).

Speech act theory (Searle 1969; Searle & Vanderveken 1985) emphasizes that
there are hundreds of things one could do with words, not fewer than the
number of illocutionary verbs that can be used performatively (e.g., ‘I declare,’
‘I name this ship,’ etc.). Without dismissing the significance of performatives, the
strategy in most recent taxonomies of the range of moves is far more empiricist,
based on the classification of moves observed in corpora. One important empiri-
cal basis for such an explication are corpus studies of the range of moves found
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in conversation. The number of possible moves, based on grammatical cues such
as sentence type or discourse particles, is reduced to between a dozen (as in the
Map Task taxonomy (Carletta et al., 1996)1 and about 20 in the DAMSL taxonomy
(Core & Allen 1997). The main classes in these taxonomies are given, respectively,
in (3a, 3b):2,3

(3) a. Initiating moves: instruct, explain, check, align, query-yn, query-w
Response moves: acknowledge, reply-y, reply-n, reply-w, clarify (from
Carletta et al., 1996)

b. Forward looking moves: statement, influencing-addressee-future-
actions info-request, committing-speaker-future-action, conventional
opening closing, explicit-performative, exclamation
Backward looking moves: agreement (including accept, reject) under-
standing (including signal understanding, signal non-understanding),
answer

In line with our earlier remarks, such taxonomies can have no pretenses to the
completeness aspired to by, e.g., POS taxonomies. Moreover, these taxonomies
(and others proposed) have their own biases and different levels of grain, reflect-
ing to some extent researcher biases. Nonetheless, these taxonomies enable coding
of corpora at more or less reliable levels of inter-annotator agreement (Carletta
1996; Core & Allen 1997). We can draw certain conclusions from this:

• Initiating vs. response: one significant dimension distinguishing moves is
whether they are initiating or responsive. Initiating moves require more
domain-sensitive/agent-particular information for their characterization.

• Meta-communicative interaction: one of the features that distinguishes dia-
logue from text is the pervasive presence in dialogue of moves that directly
concern communication management, primarily acknowledgments of under-
standing, clarification requests (CRs), and self-corrections. In recent years
much more detailed taxonomies of such moves have been provided, including
Novick and Sutton (1994) and Muller and Prévot (2003) for acknowledgments,
and Purver et al. (2001) and Rodriguez and Schlangen (2004) for CRs.

2.1.2 Move characterization: queries and assertions In general terms, a dia-
logue theory should be able to offer answers to the questions in (4) about initiating
moves, responsive moves, as well as taking a generation perspective:

(4) a. Initiating move/Response space conditions: what contextual condi-
tions characterize initiating (responsive) moves? For a given such
context, what are the possible moves?

b. Generation perspective: given an agent A with a goal g in a context C,
what can A say in C to fulfill g?

We now elaborate on these general tasks. The two main move types (or more
precisely supertypes) are queries and assertions – they are also the commonest
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means for interactions with dialogue systems. Hence, the move-related bench-
marks we specify primarily concern their characterization. Many of these are
modeled on benchmarks formulated in Bohlin et al. (1999). The benchmarks are
loosely and atheoretically formulated, typically of the form ‘Accommodate . . . ,’
this allows ‘accommodate’ to be understood in various ways, including from both
a generation and an interpretive perspective.

The minimal requirement for processing queries is the ability to recognize simple
answers:

(5) a. p is a simple answer to q iff p is an instantiation of q or a negation of
such an instantiation.

b. For a polar question: {r | SimpleAns(r, p?} = {p, ¬p}
c. For a unary wh-question: {r | SimpleAns(r, λb.p(b))} =

{p(a1), . . . , p(an), ¬p(a1), . . . , ¬p(an)}

(Q1) Query benchmark1: accommodate simple answers.

Simple answerhood covers a fair amount of ground. But it clearly underde-
termines the range of answers coherently concerning a given question that any
speaker of a given language can recognize, independently of domain knowl-
edge and of the goals underlying an interaction, a notion dubbed ‘aboutness’ by
Ginzburg (1995). On the polar front, it leaves out the whole gamut of answers to
polar questions that are weaker than p or ¬p such as conditional answers ‘If r, then
p’ (e.g., 6a) or weakly modalized answers ‘probably/possibly/maybe/possibly
not p’ (e.g., 6b). As far as wh-questions go, it leaves out quantificational answers
(6c–g), as well as disjunctive answers. These missing classes of propositions are
pervasive in actual linguistic use. In some cases they constitute goal fulfilling
responses (e.g., (6a), (6c), (6d), (6e), (6g) below); the answer provided could very
well trigger a follow-up query (e.g., (7) below):

(6) a. Christopher: Can I have some ice-cream then?
Dorothy: You can do if there is any. (BNC, KBW)

b. Anon: Are you voting for Tory?
Denise: I might. (BNC, KB?, slightly modified)

c. Dorothy: What did grandma have to catch?
Christopher: A bus. (BNC, KBW, slightly modified)

d. Rhiannon: How much tape have you used up?
Chris: About half of one side. (BNC, KB?)

e. Dorothy: What do you want on this?
Andrew: I would like some yogurt please. (BNC, KBW, slightly modi-
fied)

f. Elinor: Where are you going to hide it?
Tim: Somewhere you can’t have it. (BNC, KBW)

g. Christopher: Where is the box?
Dorothy: Near the window. (BNC, KBW)
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(7) a. Anon: Are you voting for Tory? Denise: I might.
Anon: Well are you or aren’t you?

b. Dorothy: What did grandma have to catch? Christopher: A bus.
Dorothy: Which bus?

c. Elinor: Where are you going to hide it? Tim: Somewhere you can’t
have it.
Elinor: But where?

This data leads to:

(Q2a) Query benchmark2a: accommodate non-resolving answers.
(Q2b) Query benchmark2b: accommodate follow-up queries to non-resolving

answers.

Responses to queries can also contain more information than literally asked for,
as exemplified in (8):

(8) A: When is the train leaving? B2: 5:04, platform 12. (Based on an example
due to Allen & Perrault 1980).

This ‘excess information’ should be utilized, leading to:

(Q3) Query benchmark3: accommodate ‘overinformative’ answers.

Answering a query with a query represents another significant class of possi-
bilities. The commonest such cases are clarification responses but, since these are
triggered by essentially any move type, we discuss these below as part of a more
general discussion of meta-communicative interaction (MCI). One class of query
responses are queries that, intuitively, introduce an issue whose resolution is prior
to the question asked:

(9) a. A: Who murdered Smith? B: Who was in town?
b. A: Who is going to win the race? B: Who is going to participate?
c. Carol: Right, what do you want for your dinner?

Chris: What do you (pause) suggest? (BNC, KbJ)
d. Chris: Where’s mummy?

Emma: What do you want her for? (BNC, KbJ)

(Q4) Query benchmark4: accommodate subquestions.

One final class of responses, which are of some importance in applications, are
‘irrelevant responses,’ whose effect is to indicate lack of interest in the original
query:

(10) a. A: Who is the homeowner? B: Who is the supervisor here?
b. Rumpole: Do you think Prof Clayton killed your husband? Mercy

Charles: Do you think you’ll get him off? (Mortimer 1990: 100)
c. A: Horrible talk by Rozzo. B: It’s very hot here.

(Q5) Query benchmark5: accommodate topic changing, ‘irrelevant’ responses.
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Moving on to assertions, the most obvious initial task concerns the potential
effect their potential acceptance has on context.

(A1) Assertion benchmark1: if accepted, integrate propositional content with
existing knowledge base.

One important feature of dialogue, a medium which involves distinct agents, is
the possibility for disagreement:

(11) a. A: I’m right, you’re wrong. B: No, I’m right, you’re wrong.
b. John: No, just F1 F1. Sue: It isn’t that.

(A2) Assertion benchmark2: accommodate disagreement.

The final two benchmarks are, in a sense, methodological. First, the same
basic mechanism seems to regulate queries/assertions, across varying sizes of
participant sets:

(12) a. Monologue: self-answering (A: Who should we invite? Perhaps Noam.)
b. Dialogue: querier/responder (A: Who should we invite? B: Perhaps

Noam.)
c. Multilogue: multiple discussants (A: Who should we invite? B: Perhaps

Noam. C: Martinu. D: Bedrich . . . )

(SC) Scalability benchmark: ensure approach scales down to monologue and up
to multilogue.

Second, as we mentioned at the outset, in moving from domain to domain, there
are some aspects that are specific to interacting in that domain and this cannot
be avoided. However, we have claimed that human agents adapt well and with
relatively little effort can reuse the interactional skills they bring with them from
past experience. Hence:

(DA) Domain Adaptability benchmark: reuse interactional procedures from other
domains, insofar as possible.

2.1.3 Move characterization: meta-communication As we saw earlier, a
class of moves whose presence makes itself evident in taxonomies are meta-
communicative moves. Such phenomena have been studied extensively by
psycholinguists and conversational analysts in terms of notions such as grounding,
feedback (in the sense of Clark 1996 and Allwood 1995 respectively) and repair
(in the sense of Schegloff 1987). The main claim that originates with Clark and
Schaefer (1989) is that any dialogue move m1 made by A must be grounded (namely
acknowledged as understood) by the other conversational participant B before
it enters the common ground; failing this, clarification interaction (henceforth
CRification) must ensue. While this assumption about grounding is somewhat too
strong, as Allwood argues, it provides a starting point, indicating the need to
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interleave the potential for grounding/CRification incrementally, the size of the
increments being an important empirical issue. From a semantic theory, we might
expect the ability to generate concrete predictions about forms/meanings of MCI
utterances in context. More concretely, the adequacy of such a theory requires:

(GCR) Grounding/CRification conditions benchmark: the ability to characterize
for any utterance type the update that emerges in the aftermath of
successful grounding and the full range of possible CRs otherwise.

Let us make this benchmark more concrete, initially with respect to the content/
context of grounding/CRification moves, later with respect to the realization of
such moves. There are two main types of MC interactions – acknowledgments of
understanding and clarification requests (CRs).4 A rough idea of the frequency
of acknowledgments can be gleaned from the word counts for ‘yeah’ and ‘mmh’
in the demographic part of the BNC: ‘yeah’ occurs 58,810 times (rank: 10; 10–15
percent of turns), whereas ‘mmh’ occurs 21,907 times (rank: 30; 5 percent of turns).
Clarification requests (CRs) constitute approximately 4–5 percent of all utterances
(see, e.g., Purver et al., 2001; Rodriguez & Schlangen 2004). Both acknowledg-
ments and CRs, then, constitute central phenomena of interaction, even judged
merely in terms of frequency.

An addressee can acknowledge a speaker’s utterance, either once the utterance
is completed, as in (13a, 13b), or concurrently with the utterance as in (13c). For
conversations where the participants are visible to each other, gesture (head nod-
ding, eye contact, etc.) also provides an option by means of which affirmative
moves can be made (see Nakano et al., 2003).

(13) a. Tommy: So Dalmally I should safely say was my first schooling. Even
though I was about eight and a half. Anon 1: Mmh. Now your father
was the the stocker at Tormore is that right? (BNC, K7D)

b. Wizard: Then you want to go north on Speer Boulevard for one and
one half miles to Alcott Street.
User: Okay. I want to go right on Speer? (VNS Corpus, Novick &
Sutton 1994)

c. A: Move the train . . .
B: Aha
A: . . . from Avon . . .
B: Right
A: . . . to Danville (adapted from the Trains corpus)

From this we derive three benchmarks:

(Ack1) Completed Acknowledgments benchmark: accommodate completed
acknowledgments.

(Ack2) Incremental Acknowledgments benchmark: accommodate continuation
acknowledgments.

(Ack3) Multi-modal Acknowledgments benchmark: accommodate gestural
acknowledgments.
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Although, in principle, one can request clarification concerning just about any-
thing in a previous utterance, corpus studies of CRs in a general corpus (Purver
et al., 2001), as well as task-oriented ones (Rodriguez & Schlangen 2004; Rieser &
Moore 2005) indicate that there are four main categories of CRs:

• Repetition: CRs that request the previous utterance to be repeated:
(14) a. Tim (1): Could I have one of those (unclear)?

Dorothy (2): Can you have what? (BNC, KW1)
b. s bust: Great memorial I think really isn’t it?

e bust: Beg pardon?
s bust: Be a good appropriate memorial if we can afford it. (BNC,
KM8)

• Confirmation: CRs that seek to confirm understanding of a prior utterance:
(15) a. Marsha: yeah that’s it, this, she’s got three rottweilers now and

Sarah: three? (=Are you saying she’s got THREE rottweilers now?)
Marsha: yeah, one died so only got three now (BNC)

b. A: Is Georges here?
B: You’re asking if Georges Sand is here.

• Intended content: CRs that query the intended content of a prior utterance:
(16) a. Tim (5): Those pink things that af after we had our lunch.

Dorothy (6): Pink things?
Tim (7): Yeah. Er those things in that bottle.
Dorothy (8): Oh I know what you mean. For your throat? (BNC)

b. A: Have a laugh and joke with Dick.
B: Dick?
A: Have a laugh and joke with Dick.
B: Who’s Dick?

• Intention recognition: CRs that query the goal underlying a prior utterance:
(17) a. X: You know what, the conference might be downtown Seattle. So I

may have to call you back on that.
PT: OK. Did you want me to wait for the hotel then? (Communicator
corpus)

b. Norrine: When is the barbecue, the twentieth? (pause) Something of
June.
Chris: Thirtieth.
Norrine: A Sunday.
Chris: Sunday.
Norrine: Mmh.
Chris: Why? (= Why do you ask when the barbecue is)
Norrine: Becau Because I forgot (pause) That was the day I was
thinking of having a proper lunch party but I won’t do it if you’re
going out. (BNC)

The ability to generate and understand such CRs requires correspondingly
increasing complexity: from repetition (which can be done by very simple
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systems) to intention recognition, which requires a significantly complex processing
architecture. Accordingly, we distinguish:

(CR1) Repetition CR benchmark: accommodate repetition CRs.
(CR2) Confirmation CR benchmark: accommodate confirmation CRs.
(CR3) Intended content CR benchmark: accommodate intended content CRs.
(CR4) Intention recognition CR benchmark: accommodate intention recognition

CRs.

To conclude our discussion of MCI, let us note some higher-level benchmarks.
The first is a semantic non-determinism, given the fact that an utterance can give
rise to distinct updates across participants (grounding in one, CRification in the
other):

(SND) Semantic non-determinism benchmark: interpretation can lead to distinct
updates across conversational participants.

MCI dictates the need for fine-grained utterance representations, given: the
emergence of utterance-related presuppositions in the aftermath of grounding
(18a, 18b); the hyperintensional nature of CRification conditions (18c, 18d) –
‘lawyer’ and ‘attorney’ are synonymous terms but give rise to distinct CRification
conditions; and the existence of syntactic and phonological parallelism conditions
on certain CR interpretations (18e, 18f):

(18) a. A: Banach was born in Łodz. B: It’s interesting that the last word you
uttered has a letter not on my keyboard.

b. And even rain won’t save you this time, Bruce, because you need to
win one of the remaining matches. Sorry guys I mentioned ‘win’ there,
you Poms might need to look that word up. (The Guardian, test match
over by over coverage, August 25, 2005).

c. Ariadne: Jo is a lawyer. Bora: A lawyer?/What do you mean a
lawyer?/#What do you mean an advocate?/#What do you mean an
attorney?

d. Ariadne: Jo is an advocate. Bora: #What do you mean a lawyer?/An
advocate?/What do you mean an advocate?/#What do you mean an
attorney?

e. A: Did Bo leave? B: Max? (cannot mean: intended content reading:
Who are you referring to? or Who do you mean?)

f. A: Did he adore the book? B: adore? / #adored?

Hence,

(FG) Fine-grained utterance representation benchmark: provide fine-grained
utterance representation to accommodate syntactic and phonological
parallelism conditions.
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2.2 Fragment understanding
We distinguish between two classes of non-sentential utterances: sentential frag-
ments and disfluencies.

2.2.1 Sentential fragments Sentential fragments (SFs) are intuitively complete
utterances that lack a verbal (more generally predicative) constituent. SFs
include ‘short answers,’ and reprise utterances used to acknowledge or request
clarification of prior utterances. Examples of these are provided in boldface
in (19):

(19) A: Wasn’t he refused the chair in Oxford?
B: Who?
A: Skeat. Wasn’t he refused
B: That’s Meak.
A: Oh Meak, yes. (London-Lund S.1.9, p. 245)

Estimates of the frequency of SFs are somewhat variable, depending on the
classificational criteria applied. De Weijer (2001) provides figures of 40 percent,
31 percent, and 30 percent, respectively, for the percentage of one-word utterances
in the speech exchanged between adults and infant, adult and toddler, and among
adults in a single Dutch speaking family consisting of two adults, one toddler and
one baby across two months. Fernández (2006) cites a figure of 9 percent for the
percentage of utterances lacking a verbal predicate, based on random sampling
from (by and large) adult speech in the BNC, a figure that is replicated in other
corpus studies she surveys.

There exist a number of recent corpus studies whose taxonomies achieve high
coverage. These include Fernández and Ginzburg (2002) and Schlangen (2003).
The taxonomy of Fernández and Ginzburg (2002) and the distribution it uncovers
for the BNC is illustrated in Table 1.

The task of identifying the right SF class can be successfully learned using
supervised machine learning techniques (Schlangen 2005; Fernández et al., 2007).
Resolving SF content in context is a more challenging task. Of course the most
general benchmark is to achieve comprehensive coverage, relative to a taxonomy
such as the above. We can offer some partial benchmarks (as in (SF2) and (SF3)),
motivated primarily by frequency: basic answers are crucial in interaction, as
reflected in their majoritarian status, similarly with acknowledgments. The reprise
fragment benchmark is more challenging: such fragments constitute a very high
proportion of CRs, but are frequently ambiguous between uses that have a con-
firmation content and ones that have an intended content (see, e.g., (15a) and (16b)
above):

(SF1) Sentential fragment benchmark1: achieve SF wide coverage.
(SF2) Basic answer resolution benchmark: accommodate short answers, affirma-

tive answers, and rejection.
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Table 16.1 NSUs in a subcorpus of the BNC

Sentential fragment classes Example Total

Plain acknowledgment A: . . . B: mmh 599
Short answer A: Who left? B: Bo 188
Affirmative answer A: Did Bo leave? B: Yes 105
Repeated acknowledgment A: Did Bo leave? B: Bo, hmm. 86
Reprise fragment A: Did Bo leave? B: Bo? 79
Rejection A: Did Bo leave? B: No. 49
Factive modifier A: Bo left. B: Great! 27
Repeated affirmative answer A: Did Bo leave? B: Bo, yes. 26
Helpful rejection A: Did Bo leave? B: No, Max. 24
Sluice A: Someone left. B: Who? 24
Check question A: Bo isn’t here. Okay? 22
Filler A: Did Bo . . . B: leave? 18
Bare modifier phrase A: Max left. B: Yesterday. 15
Propositional modifier A: Did Bo leave? B: Maybe. 11
Conjunction + fragment A: Bo left. B: And Max. 10
Total data set 1,283

(SF3) Reprise fragment resolution benchmark: accommodate reprise fragments,
and recognize the potential for ambiguity they exhibit.

SFs are often adjacent to their source. But not always, as illustrated starkly by
our initial motivating example (1), repeated here as (10), in which short answers
(7) and (9) refer back to the query (1). Data from the BNC (Ginzburg & Fernández
2005) suggests that this is primarily a feature of short answers in multilogue,
though not uncommon in two-person dialogue:

(20) John: (1) Okay which one do you think it is?
(2) Try F1 F1 again and we’ll get

Sarah: (3) Shift and F1?
Sue: (4) It’s, (5) no.
John: (6) No, (7) just F1 F1.
Sue: (8) It isn’t that.
John: (9) F1. (10) Right, (11) and that tells us
Sue: (12) It’s shift F7.

(SF4) Distance benchmark: accommodate long-distance short answers.

The final benchmark for SFs concerns their appearance as initiating moves (i.e.,
without a prior linguistic antecedent or segment initially). These seem to require a
rather stereotypical interactional setting (buying tickets at a train station, querying
for directions in a taxi, etc.). Although such uses do not seem to have been



“9781405155816_4_016” — 2010/5/8 — 12:08 — page 442 — #14

442 Jonathan Ginzburg and Raquel Fernández

recorded in recent corpus studies, they are clearly not marginal and should be
accommodated:

(21) Buying a train ticket:
a. Client: A return to Newcastle please. (=I want a return . . . , please give

me a return . . . , . . . )
b. Driver to passenger in a taxi: Where to?

(SF5) Initiating genre-sensitive SF benchmark: accommodate genre-sensitive
initiating SFs.

2.2.2 Disfluencies Disfluencies are common in conversation: in the Trains
corpus, for instance, 23 percent of speaker turns contain at least one repair, and
54 percent of turns with at least 10 words contain a repair (Heeman and Allen
1999). In this area there has been important early work by psycholinguists, most
notably Levelt (see e.g., Levelt 1983), much recent work by speech researchers
(e.g., Shriberg 1994) and corpus-based taxonomies (e.g., Besser & Alexandersson
2007).

In terms of bare functionality, it is clear that a fundamental benchmark is the
ability to be unfazed by disfluencies. In other words, to be able to recognize a dis-
fluency and to effect the appropriate ‘repair,’ resulting in a ‘cleaned up’ utterance,
as exemplified in (22):

(22) I was one of the, I was responsible for all the planning and engineering. �→
I was responsible for all the planning and engineering

(D1) Disfluency benchmark1: Recognize and repair disfluencies.

Such an approach using machine learning techniques is demonstrated by
Heeman and Allen (1999: 534), who suggest: “We propose that these tasks [includ-
ing detecting and correcting speech repairs] can be done using local context and
early in the processing stream.”

Recently, evidence from psycholinguistics has begun emerging that self-
corrected material has a long-term processing effect (Brennan & Schober 2001;
Lau & Ferreira 2005), hence is not being ‘edited away.’ It can also bring about
linguistic effects in whose interpretation it plays a significant role, for instance
anaphora, as in (23a) from Heeman and Allen (1999). In fact, disfluencies yield
information: (23a) entails (23b) and defeasibly (23c), which in certain settings (e.g.,
legal), given sufficient data, can be useful. Moreover, incorporating them in sys-
tems’ output can improve naturalness (e.g., when speech processing is slow) and
improve the user’s empathy with the system. Given this, we formulate our second
disfluency benchmark:

(23) a. Andy: Peter was, well he was fired.
b. Andy was unsure about what he should say, after uttering ‘was.’
c. Andy was unsure about how to describe what happened to Peter.
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(D2) Disfluency benchmark2: explicate disfluency meaning without eliminating
disfluencies from context.

3 Approaches to Dialogue System Design

Before presenting a formal framework that is able to account for the various
dialogue phenomena described earlier, in this section we briefly describe several
important approaches to the design of dialogue systems and evaluate them infor-
mally with respect to the benchmarks we have introduced in the previous section.
We end with a short description of the information state approach to dialogue
management, closest in spirit to the theory of interaction that we will present in
Section 4.

3.1 Basic architecture of dialogue systems
Besides their commercial potential, dialogue systems are also an asset for the
dialogue theorist since designing a conversational agent that can communicate
naturally with a human can help in the evaluation of theories of dialogue. Of
course, for practical reasons researchers do not usually create systems that can
talk just about anything. Instead they design systems that are competent only
in particular domains and can handle particular tasks – they are task-oriented,
domain-dependent conversational systems. This is especially true of commercial
systems, which tend to be simpler and less advanced than research prototypes.
Applications that involve information retrieval tasks are very common, especially
those related to travel planning and management. Other common applications are
educational tutoring systems, device management (of in-car or in-home devices),
and collaborative problem solving.

To a large extent, the complexity of a system will depend on its application.
Most spoken dialogue systems, however, contain the following components: an
automatic speech recognizer (ASR) that captures the user’s input and converts it
to a sequence of words; a natural language understanding (NLU) component that
produces a meaningful representation of the input utterance; a dialogue manager
(DM) that controls the dialogue flow by integrating the user contributions and
deciding what to say next; a source of domain and task knowledge (KB); a natu-
ral language generation (NLG) component that chooses the words to express the
response together with their prosody; and a text-to-speech (TTS) synthesis engine
that outputs a spoken form of the response. Figure 16.1 shows the basic archi-
tecture of a spoken dialogue system. Similar diagrams and much more detailed
explanations of the different components can be found in, e.g., McTear (2004);
Delgado and Araki (2005); Jurafsky and Martin (2009).

The DM component is often considered the core of a dialogue system. It receives
a representation of the input utterance from the NLU module, keeps track of some
sort of dialogue state, interfaces with the external knowledge sources, and decides
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Figure 16.1 Basic components of a spoken dialogue system.

what should be passed to the NLG module. In the remainder of this section,
we discuss three main types of dialogue management architectures: finite state
DMs, frame-based DMs, and inference-based DMs. We finish with a sketch of the
information state update approach to dialogue management.

3.2 Paradigmatic approaches to dialogue management

3.2.1 Finite state dialogue management The simplest dialogue managers rep-
resent the structure of the dialogue as a finite state transition network. Figure 16.2
shows a basic finite state DM for a ticket booking application. We can see that the
states in the network are atomic and correspond to system contributions, while
the transitions between states correspond to system actions dependent on the user
responses. The set of possible paths along the graph represents the set of legal
dialogues.

Finite state DM architectures give rise to conversational agents that fully
control the dialogue. The system has the initiative at all times: it utters a series of
prompts in a predetermined order, interpreting anything the user says as a direct
response to the latest prompt. Any (part of a) user utterance that cannot be inter-
preted as directly addressing the latest prompt is either ignored or misrecognized.
Restricting what the user can say to the latest prompt is often seen as an advan-
tage of finite state architectures by the dialogue system’s engineer, as this allows
one to simplify the ASR and NLU components of the system. Indeed, finite state
systems tend to use extremely simple understanding components, often limited to
language models associated with particular dialogue states and tuned to recognize
typical responses to a given prompt (such as city names or dates).

There are a few toolkits that allow fast development of finite state systems, such
as the Nuance Dialog Builder or the CSLU toolkit (McTear 1998). For a general
overview of FSM-based systems see McTear (2004).
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1 where are you traveling from?

where do you want to go?

which date?

do you need a return ticket?

which date?

2

3

4

5

<TO>

<DATE>
yes

book train ticket

<R_DATE>

no

7

6
yes

yes

no

no

so do you want to travel from
<FROM> to <TO> on <DATE>
returning on <R_DATE>?

<FROM>

so do you want to travel from
<FROM> to <TO> on <DATE>?

Figure 16.2 Finite state machine for a simple ticket booking application.

slot value prompt
ORIGIN unknown From which city are you leaving?
DESTINATION unknown Where are you traveling to?
DATE unknown When do you want to travel?

Figure 16.3 A simple frame.

3.2.2 Frame-based dialogue management Frame-based DM offers some adv-
antages over finite state systems. Although the system’s prompts and the
range of user contributions that can be handled still need to be determined
at design time, frame-based DM allows for more flexibility at the level of the
dialogue flow. In frame-based DM, the dialogue states that the system keeps track
of – so-called frames – have a richer internal structure than the atomic nodes of
finite state transition networks. A frame typically consists of a series of slots,
values and prompts, as exemplified in Figure 16.3, where each slot corresponds
to some bit of information the system needs to get from the user. Again, frame-
based systems are especially well-suited for information tasks, where the system
needs to find out some information from the user in order to execute some task
(such as booking a ticket or retrieving some information from a database).

In finite state DM the system’s contributions are determined by the transition
function of the FS network. In contrast, a frame-based dialogue manager includes
a control algorithm that determines what to say next given the contents of the
frame. The control algorithm keeps track of the slots filled so far and makes sure
that filled slots are not revisited. The slots in the frame can be filled in any order
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BOOK(S, U, T)
Constraints: System(S) ∧ User(U) ∧ Ticket(T)

Goal: Booked(S, U, T)

Preconditions: Knows(S, Origin(T)) ∧ Knows(S, Dest(T)) ∧ . . .

Effects: Booked(S, U, T)

INFO_REQUEST(A, B, P)
Constraints: Speaker(A) ∧ Addressee(B) ∧ Prop(P)

Goal: Know(A, P)

Preconditions: ¬Know(A, P) ∧ Desire(A, Know(A, P) ∧ Believe(A, Know(B, P)) ∧ . . .

Effects: Believe(B, Desires(A, Know(A, P)))

Figure 16.4 Goal-oriented action schema.

and a single user’s response can fill in more than one slot. The control algorithm
specifies which frame configurations need to be true for a particular prompt to be
relevant. This specification can be as general as selecting the first prompt in the
frame which has an unknown value, or more specific in the form of conditions
such as ‘If ORIGIN is filled and DESTINATION is unknown, utter
DESTINATION prompt, else utter ORIGIN prompt.’

Thus, although the range of possible contributions is fixed in advance, in
contrast to FS systems, the dialogue flow is not completely predetermined at
design time but driven by interaction. This increased flexibility in turn requires
more complex language models that can deal with multi-slot filling responses.

For a description of some systems that use a frame-based architecture see Aust
et al. (1995), Constantinides et al. (1998), or Seneff and Polifroni (2000).

3.2.3 Inference-based dialogue management Inference-based DM differs
substantially from DM based on frames or finite state networks. In this approach,
which combines planning techniques used in AI with ideas from speech act the-
ory (Austin 1962; Searle 1969), dialogue management is considered a planning
task driven forward by a rational agent (the dialogue system), whose behavior is
determined by inference mechanisms. The approach, developed at the Univer-
sity of Toronto by Perrault and his collaborators (Cohen & Perrault 1979; Allen &
Perrault 1980), models rational agents in terms of beliefs, desires, and intentions
(BDI). The latter are formalized as predicates or modal operators in some ver-
sion of first-order (modal) logic. Agents are also equipped with a set of general
rationality axioms and a set of plans and goals, plus a component for automatic
plan-based reasoning such as a theorem prover.

Dialogue moves are seen as instances of goal-oriented rational actions, all of
which are formalized as plans for goal achievement. A common way of formal-
izing plans is by means of action schemata. These can take different forms, but
minimally distinguish between the preconditions required for an action to take
place and its effects. Figure 16.4 shows a couple of examples of possible plans to
book a flight and to request some information.

Dialogue managers based on the BDI model of rational agents typically keep
track of a repository of shared beliefs or common ground, the goal motivating the
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current dialogue contribution, and information on the status of problem solving
(e.g., on whether the preconditions of the current plan are met and its goal has
been achieved). Deciding what the system should say next consists in advancing
a step in the current plan. For instance, a system that is following a plan to book
a flight for the user may decide to utter an INFO_REQUEST move with the goal of
satisfying some preconditions of the booking plan, such as knowing the origin and
the destination of the trip.

As mentioned earlier, plans are complemented by a set of general rationality
axioms. These typically include cooperative axioms stating that agents adopt the
intentions of their interlocutors (as long as they do not contradict their own). Also
note that, as exemplified by the Effects of the INFO_REQUEST action scheme
in Figure 16.4, interpreting an utterance amounts to infering the plan-based
intentions of the speaker.

Inference-based systems are intended for advanced tasks such as collaborative
problem solving. This requires NLU components that are fairly sophisticated since
the range of possible user utterances is much less constrained than in purely infor-
mational tasks. The TRAINS/TRIPS integrated dialogue system (Allen et al., 1995;
Ferguson & Allen 1998) is one of the most influential systems implementing this
approach, but see also Sadek and de Mori (1998). The last chapter of Allen (1995)
provides a good overview of inference-based DM.

3.3 Comparison of dialogue management approaches
In this section we look at how well standard versions of finite state-based, frame-
based, and inference-based approaches to dialogue management can deal with the
benchmarks introduced in Section 2. A summary is shown in Table 16.2.

3.3.1 Query and assertion benchmarks As we mentioned earlier, queries and
assertions are the commonest move types in interaction with dialogue systems.
All DM approaches we have seen can accommodate direct simple answers to
queries and hence meet benchmark Q1. However, accounting for the other query
benchmarks is more problematic. The ability to satisfy benchmarks Q2a and Q2b
(accommodation of non-resolving answers and follow-up queries to them) in part
depends on the sophistication of the NLU and KB components: to interpret a
contribution as a non-resolving answer, the system needs to be able to reason over
some sort of ontology with subtyping (in order to figure out, e.g., that ‘Germany’
may count as an answer to a destination prompt but is probably not specific
enough). This capability is standard in inference-based systems, while it is very
unlikely to be present in a pure finite-state system, since the main advantage of this
approach is the simplification of components by restricting possible user input.
Assuming the capability to recognizing non-resolving answers was available, in
a finite-state DM sub-queries to such answers could in principle be integrated as
additional states. In a frame-based DM, non-resolving answers could be integrated
by including a non-resolving value type that would trigger follow-up queries
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relative to each kind of slot. Within the plan-based approach of inference-based
DM, an answer is considered ‘resolving’ if it fullfills the relevant goals in the plan
that motivated the question. Goals that are not fully satisfied motivate follow-up
queries (U: I need to travel some time in August. S: And what day in August did you
want to travel?).

Accommodating overinformative answers (benchmark Q3) poses practical
problems for finite state systems. They could in principle be integrated as addi-
tional states (e.g., an extra state for answers that include information about both
the destination and the origin, another one for those that include destination and
date, and so forth), but only as long as they can be predicted at design time. Note,
however, that even if they could be predicted, including them into the finite state
network would easily lead to an explosion of the number of states, which would
produce a rather cumbersome structure. Frame-based DMs are better equipped
to deal with overinformative answers since multiple slots can be filled in by a
single user response. Thus, if the overinformative answer contains information
that directly addresses existing slots, this can be utilized to drive the task for-
ward. In inference-based systems, overinformative answers are seen as a product
of domain plan recognition: they are treated as cooperative responses that help
achieve the recognized plan of the interlocutor by providing information that is
required to achieve the current goal (e.g., the exchange U: When is the train leaving?
S: At 5:04, platform 12 can be explained by the ability of the system to recognize the
user’s plan to take the train).

Benchmarks Q4 and Q5 (accommodation of subqueries and accommodation of
topic-changing responses) are highly problematic for finite state and frame-based
DMs. Subqueries can be handled only to the extent that they can be predicted
in advance and, as with Q3, this could lead to tractability problems. There are
no means for these structured approaches to interpret an irrelevant response as
a change of topic. An inference-based system would do slightly better. Regarding
subqueries, it would only be able to accommodate those that are goal related (such
as U: How much is a ticket to Hamburg? S: When do you want to travel?). A response
that does not match any step in the current plan could potentially be interpreted
as topic changing. However, the system would not be able to distinguish this kind
of ‘irrelevance’ from situations where the mismatch requires clarification.

We move now to the assertion benchmarks A1 and A2 (integration of proposi-
tional content and accommodation of disagreement respectively). None of them is
satisfied by finite state systems. Benchmark A1 is not satisfied because in a finite
state architecture states do not have any internal structure and therefore there is
no propositional or contextual update beyond the information that emanates from
the current position in the graph. This also rules out the possibility of account-
ing for disagreement since there is no propositional content which the agent can
disagree about. Frame-based DMs make use of some limited form of contextual
update since the control algorithm keeps track of the slots filled so far, but their
simple architecture cannot accommodate disagreements. Certainly, inference-
based systems satisfy A1 (one of the effects of asserting a propostion P is
that P becomes common knowledge or common belief). As for A2, they can
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accommodate conflicting beliefs and hence some form of diagreement. However,
accounting for disagreement in the sense of non-cooperativity is more problem-
atic since the BDI model is basically designed for cooperative tasks without
conflicting goals.

The final two benchmarks within this section deal with scalability to monologue
and multilogue (SC) and domain adaptability (DA). None of the approaches we
have discussed satisfies SC – they are all designed for two-agent dialogue. Finite
state and frame-based DMs are strongly domain-dependent (except perhaps in
their meta-communicative behavior, which we discuss below). In contrast, the
BDI model underlying inference-based DMs aims to be a domain-independent
theory of rational action. Although it is unclear to what extent procedures
employed in actual inference-based systems can effectively be reused, in principle
general rationality axioms should be valid across domains.

3.3.2 Meta-communication benchmarks Given the high number of recognition
problems that dialogue systems face due to the poor performance of ASRs, meta-
communicative interaction plays an important role in such implemented systems.
Finite state and frame-based architectures usually take a generative perspective,
where meta-communicative behavior comes from the system. This is not surpris-
ing since these approaches are highly system-initiating in design. Inference-based
systems, on the other hand, have also addressed the problem of interpreting
meta-communicative utterances.

The meta-communicative potential of finite state and frame-based systems in
rather similar. What in finite state systems can be achieved by multiplying the
number of states and transitions, in frame-based systems can be implemented by
adding extra types of slot values and increasing the complexity of the control algo-
rithm. Finite state systems usually include states to handle situations when there is
no input or no recognition, as well as when there is a need to confirm information
provided by the user (as in states 7 and 8 of the transition network in Figure 16.2).
Acknowledgments of completed contributions (benchmark A1) can similarly be
integrated as additional states. In a frame-based architecture, slot values (such as
no-match) and/or confidence scores associated with filled values can be used to
decide whether a contribution can be acknowledged or whether there is need to
ask for repetition or confirmation. Thus, at least from a generation perspective,
finite state and frame-based DMs meet benchmarks A1, CR1 (repetition CRs), and
CR2 (confirmation CRs). However, more complex types of CRs such as those that
query the intended content or the intention of a prior utterance (benchmarks CR3
and CR4) cannot be accommodated by these systems.

Satisfying benchmark A2 (accommodation of continuation acknowledgments)
would require an incremental architecture not present in any of the systems we
have discussed, where transitions to a different state are triggered by full utter-
ances or moves. Gestural acknowledgments (benchmark A3) could in principle be
integrated provided that the system is able to process multi-modal input and that
the gestural acknowledgments acknowledge complete contributions.
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Traditionally, inference-based DM has not been too concerned with meta-
communication, focusing instead on plan recognition and cooperativity at the task
domain. Simple grounding and clarification behavior such as acknowledgments
and repetition/confirmation CRs can in principle be accommodated in a way akin
to the strategies we have already discussed (e.g., by using confidence scores or
evaluating the output of the NLU component, which is more sophisticated in these
systems). To account for other kinds of clarification subdialogues, a hierarchical
plan structure that incorporates discourse plans – or metaplans in the terminology
of Litman and Allen (1984) – has been proposed. The idea is that metaplans are
performed to obtain knowledge necessary to perform task plans and are inferred
when an utterance cannot be interpreted as a step in the current domain plan. For
instance, in the dialogue S: At 5:04, platform 12. U: Where is it?, the system would
interpret the user’s question as a metaplan to find additional information to per-
form the task plan (presumably taking a train). Thus, in this approach CRs that go
beyond asking for repetition or confirmation are only possible inasmuch as they
are ultimately related to task plans.

The last two benchmarks related to meta-communication are SND (possibility
of different updates across participants, or semantic non-determinism) and FG (fine-
grained representations). The latter is not satisfied by any of the DM approaches
we have considered: dialogue managers across the board get as input some sort of
semantic representation. Operating on syntactic and phonological representations
would be extremely complicated, if at all possible, in finite state or frame-based
architectures. Inference-based systems could in principle include rich utterance
representations (by using a parser that generates the desired output), but it is
unclear how a plan-based approach would deal with them. SND is not satisfied
either, at least explicitly. To some extent, any state that leads to a repetition CR
implicitly assumes that there is an asymmetry between the user-intended utter-
ance and the system’s interpretation of it (or lack thereof). But this is not explicitly
modeled.

3.3.3 Fragment understanding benchmarks We now turn to the last set of
benchmarks, which are related to fragment understanding. Since these bench-
marks are directly concerned with how meaning is assigned to fragmentary
utterances, they are more tightly linked to the NL modules than the move-related
benchmarks (although, as we shall see in Section 4, their resolution requires a fair
amount of interaction between the linguistic modules and the dialogue manager,
which is the module that represents context).

While dialogue systems do not achieve comprehensive coverage of the corpus-
based taxonomies of sentential fragments we mentioned in Section 2.2 (as required
by benchmark SF1), they are typically able to accommodate basic fragmentary
answers (benchmark SF2). For instance, a state-dependent language model can
process short answers, affirmative answers and rejections, which, as long as they
are direct simple answers, could be correctly interpreted by a finite state DM.
We have seen examples of this in Figure 16.2. Similar techniques can be used in
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frame-based systems where, as mentioned earlier, language models tend to be
more complex given the possibility of multi-slot filling.

Genre-sensitive initiating SFs (benchmark SF5) cannot be accommodated by a
finite-state DM since the system has the initiative at all times. They can, how-
ever, be processed by frame-based systems, where the frame can be seen as
encoding the relevant genre. For instance, if a user starts a dialogue with the utter-
ance To Hamburg, on Tuesday, a frame-based DM for the travel domain with an
appropriate language model could fill in the destination and date slots. However,
long-distance short answers (benchmark SF4) cannot easily be accommodated by
finite state or frame-based DMs.

In inference-based systems the interpretation of basic types of fragments (both
responsive and initiating) is achieved by inferring the domain-dependent goals
of the speaker (see e.g., Carberry 1990). However, it is not at all clear how long-
distance short answers could be accommodated in this approach.

Given our discussion of the meta-communication benchmarks above, reprise
fragments (benchmark SF3) cannot be successfully accommodated by any of the
considered DM approaches.

Finally, we come to the disfluency benchmarks. The ability to recognize and
repair disfluencies (benchmark D1) depends on the ASR/NLU components of a
system. For instance, statistical language models tend to be rather robust for dis-
fluencies. A robust parser can then be applied to their output to extract the relevant
information (relative to the latest system prompt, to any slot in a frame, or to the
current domain plan). This sort of setting is more common in frame- and inference-
based systems than in finite state ones, but in theory these processing components
could be combined with any kind of dialogue manager. In contrast, D2 (accommo-
dation of disfluency meaning without elimination of disfluencies from context) is
a much more challenging benchmark that is not met by current systems.

Table 16.2 summarizes the comparison of the three approaches to dialogue
management we have reviewed with respect to the benchmarks introduced in
Section 2. For each dialogue management approach (finite state, frames, and
inference-based), the symbol � indicates that the approach safisfies the bench-
mark in the corresponding row; ∼ that the benchmark could be met with some
caveats, as explained in the text above; and — that the benchmark is not met by a
standard version of the approach.

3.4 The information state update framework
To conclude this section, we shall briefly introduce the main ideas of the infor-
mation state update (ISU) framework. The approach was developed during the
European TRINDI project (TRINDI Consortium 2000) as a general framework to
implement different kinds of dialogue management models. According to Traum
and Larsson (2003), the components of an ISU model are the following:

• a formal representation of the information state (IS) and its components;
• a set of dialogue moves that trigger IS updates;
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Table 16.2 Comparison of dialogue management approaches

Benchmarks FSMs Frames Inference

Query and assertion
Q1 simple answers � � �
Q2a non-resolving answers ∼ � �
Q2b follow-up queries ∼ � �
Q3 overinformative answers ∼ � �
Q4 subquestions — — ∼
Q5 topic changing — — —
A1 propositional content update — ∼ �
A2 disagreement — — ∼
SC scalability — — —
DA domain adaptability — — ∼
Meta-communication
Ack1 completed acknowledgments � � �
Ack2 continuation acknowledgments — — —
Ack3 gestural acknowledgments ∼ ∼ ∼
CR1 repetition CRs � � �
CR2 confirmation CRs � � �
CR3 intended content CRs — — —
CR4 intention recognition CRs — — ∼
SND distinct updates — — —
FG fine-grained representations — — —
Fragments
SF1 wide coverage of SFs — — —
SF2 basic answer resolution � � �
SF3 reprise fragment resolution — — —
SF4 long-distance short answers — — —
SF5 genre-sensitive initiating SFs — � �
D1 recognize and repair disfluencies � � �
D2 keep disfluencies in context — — —

• a set of update and selection rules that govern how moves change the IS and
how changes license future moves;

• an update strategy for deciding which rules to apply when.

Regardless of the particular model implemented within the framework, what
makes the ISU approach attractive is the declarative way in which dialogue states
and transitions between states are formulated. In fact, the approach can be seen as
an extension of the frame-based architecture, where states can have a much more
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complex structure than slot-value frames and the procedural rules of the control
algorithm are formulated as more general and declarative update and selection
rules.

There are some toolkits to implement ISU-based dialogue managers and system
architectures, most notably the TrindiKit (Larsson & Traum 2000) and DIPPER
(Bos et al., 2003).5 GODIS (Larsson et al., 2000) and EDIS (Matheson et al., 2000)
are some of the systems implemented using this framework. In the next section
we present a theory of dialogue interaction which is ISU-based in spirit.

4 Interaction and Meaning

In this section we sketch a comprehensive theory of interaction and meaning, indi-
cating how it can be used to fulfill the various benchmarks we specified in earlier
sections. This theory is based on the framework KoS (Ginzburg 1994; 1996; Larsson
2002; Ginzburg & Cooper 2004; Fernández 2006; Purver 2006; Ginzburg 2010). The
latter reference contains a detailed exposition of the theory sketched below. Other
comprehensive accounts of a theory of dialogue include work in the PTT frame-
work6 (e.g., Poesio & Traum 1997; 1998; Matheson et al., 2000; Poesio & Rieser
2009) and work within segmented discourse representation theory (SDRT) (e.g.,
Asher & Lascarides 2003; 2008).

In abstract terms, the model we present here revolves around the information
states dialogue participants possess and how these get modified as a consequence
of utterances and related interactions. Our exposition proceeds in a number of
stages. First, we explicate the proposed structure of information states. We then
illustrate how illocutionary interaction can be analyzed – the updates on the
information states will be triggered entirely by dialogue moves. We then consider
domain specificity and how it can be incorporated into this picture – this will
involve a minor refinement of the information states. Our final refinement will
involve the integration of illocutionary and meta-communicative interaction: this
will have two main consequences. Updates will be triggered by utterances – data
structures involving parallel representation of phonological, syntactic, semantic,
and contextual information – and the information states will be refined slightly to
take into account the potential for partial understanding.

Before we enter into all this, however, we introduce briefly the logical formalism
in which KoS is formulated, type theory with records.

4.1 Type theory with records: the basics
As the underlying logical framework, we use type theory with records (TTR)
(Cooper 2006), a model-theoretic descendant of Martin–Löf type theory (Ranta
1994). This provides a formalism with which to build a semantic ontology, and
to write conversational and grammar rules. After introducing TTR, we will
explain why we use TTR rather than typed feature structure-based formalisms
(see Chapter 15, COMPUTATIONAL SEMANTICS, and, e.g., Carpenter 1992; Penn
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2000), whose notation is quite similar and which have been used in much work in
computational linguistics.

The most fundamental notion of TTR is the typing judgment a : T classifying an
object a as being of type T. A record is a partially ordered set of fields of the form
(24) – each assignment to a field constituting a component of the tuple. Crucially,
each successive field can depend on the values of the preceding fields:

(24) a.
⎡

⎢
⎣

li = ki

li+1 = ki+1 . . .
li+j = ki+j

⎤

⎥
⎦

b.
⎡

⎢
⎣

x = a
y = b
prf = p

⎤

⎥
⎦

A record type is simply a partially ordered set of the form (25), where again each
successive type can depend on its predecessor types within the record:

(25)
⎡

⎢
⎣

li : Ti

li+1 : Ti+1 . . .
li+j : Ti+j

⎤

⎥
⎦

Cooper (2006) proposes that situations and events be modeled as records. Situ-
ation and event types are then directly accommodated as record types. The type
of a situation with a woman riding a bicycle would then be the one in (26a). A
record of this type (a witness for this type) would be as in (26b), where the required
corresponding typing judgments are given in (26c):

(26) a.
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x: IND
c1: woman(x)
y: IND
c2: bicycle(y)
time : TIME
loc:LOC
c3: ride(x,y,time,loc)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b.
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

. . .
x = a
c1 = p1
y = b
c2 = p2
time = t0
loc = l0
c3 = p3
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

c. a : IND; p1 : woman(a); b : IND; p2 : bicycle(b); t0 : TIME; l0 : LOC;
p3 : ride(a,b,t0,l0)

TTR offers a straightforward way for us to model propositions and questions
using records, record types, and functions. A proposition is a record of the form in
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(27a). The type of propositions is the record type (27b) and truth can be defined as
in (27c):

(27) a.
[

sit = r0

sit-type = T0

]

b.
[

sit : Record
sit-type : RecType

]

c. A proposition
[

sit = r0

sit-type = T0

]
is true iff r0 : T0

A question can be identified as a propositional abstract, which in TTR amounts
to being a function from records into propositions:

(28) a. who ran
b. TTR representation – (r :

[
x : Ind
rest : person(x)

]
)

⎡

⎣
sit = r1

sit-type =
[
c : run(r.x)

]

⎤

⎦

That is, a function that maps records r : Twho =
[

x : Ind
rest : person(x)

]
into

propositions of the form
⎡

⎣
sit = r1

sit-type =
[
c : run(r.x)

]

⎤

⎦

To explain the motivation for adopting TTR over a typed feature structure-based
approach, we illustrate the difference in the respective treatment of utterance rep-
resentation. In TTR, utterance events, like other events, are a kind of record,
whereas lexical entries and phrasal rules are explicated as record types. One could,
for instance, posit the sound/syntax/meaning constraint in (29a) as a rule of
English. For a speech event se0, (29b), to be classified as being of this type, the
requirements in (29c) will need to be met:7

(29) a.
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

PHON : who did jo leave
CAT = V[+fin] : syncat

C-PARAMS :

⎡

⎢
⎢
⎢
⎣

s0: SIT
t0: TIME
j: IND
c3: Named(j,jo)

⎤

⎥
⎥
⎥
⎦

cont = (r :

[
x : Ind
rest : person(x)

]

)

[
sit = s0
sit-type = Leave(j,r.x,t0)

]

: Questn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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b.
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

PHON = hu di jow live
CAT = V[+fin]

C-PARAMS =

⎡

⎢
⎢
⎢
⎣

s0 = sit0
t0 = time0
j = j0
c3 = c30

⎤

⎥
⎥
⎥
⎦

cont = (r :

[
x : Ind
rest : person(x)

]

)

[
sit = s0
sit-type = Leave(j,r.x,t0)

]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

c. hu di jow liv : who did jo leave;
sit0 : SIT, time0 : TIME, j0 : IND, c30 : Named(j0,jo)
cont0 =

(r :

[
x : Ind
rest : person(x)

]

)

[
sit = sit0
sit-type = Leave(j0,time0)

]
: Questn

Specifically: a witness for the type (29a) includes a phonetic token, contextual
parameters – a situation, a time, an individual named Jo – and the question entity

(r :

[
x : Ind
rest : person(x)

]

)

[
sit = sit0
sit-type = Leave(j0,r.x,time0)

]
, a function from records into

propositions. Thus, the fact that C-PARAMS represents the type of entities needed
to instantiate a meaning is a direct consequence of what it means to be a witness of
this type. In addition, the values of the CONT field are already the semantic entities.
Hence, to take one example, the function in (30a) is of the type in (30b), which is
a supertype of the type in (30c). This latter is the type of a question such as (30d).
These type assignments enable us to explain the fact that (30c) is intuitively a sub-
question of (30a) and to define various notions of answerhood (see, e.g., Ginzburg
2005):

(30) a. r : Twho �→
[

sit = r1
sit-type = c: leave(r.x,t)

]

b. (Twho ( =
[

x : Ind
rest : person(x)

]

) → Prop)

c. r : T0 =
[ ]

�→
[

sit = r1
sit-type = c: leave(j,t)

]

d. (T0 → Prop)

This explanatory state of affairs contrasts with an account of such examples in a
typed feature structure-based approach (e.g., Ginzburg & Sag 2000), given in (31).
This AVM looks very much like the type (29a), but the appearance in this case is
deceiving.
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(31)
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

PHON who did jo leave
CAT S

C-PARAMS

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎣
INDEX j

RESTR
{

named(Jo)(j)
}

⎤

⎦,

⎡

⎣
INDEX t

RESTR
{

precedes(t,k)
}

⎤

⎦,

[
INDEX s
RESTR {}

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

CONT

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

question

PARAMS

⎧
⎨

⎩

[
IND k
RESTR {person(k)}

]⎫
⎬

⎭

PROP

[
SIT s
SOA leave(j,k,t)

]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

In (31) CONT is intended as representation of the abstract in (32):

(32) λxperson(x)leave(j, x, t)

But, as Penn (2000: 63) puts it (in discussing a related set of issues):

At this point, feature structures are not being used as a formal device to represent
knowledge, but as a formal device to represent data structures that encode formal
devices to represent knowledge.

Similarly, C-PARAMS is intended as a representation of the contextual parameters
that need to be instantiated, but there is no explicit way of modeling this.

This latter point can be amplified. As we discussed in Section 2.1, the interaction
over grounding of a speaker A’s utterance u addressed to B typically leads to two
outcomes: either B acknowledges u (directly, gesturally, or implicitly) and then
responds to the content of u, or, alternatively, B utters a clarification question about
some unclear aspect of u. As we will see in Section 4.7, this interaction can be expli-
cated as an attempt to find a type Tu that uniquely classifies u. This involves inter
alia recognizing the words used and instantiating the contextual parameters speci-
fied in Tu. CRification involves utilizing a partially instantiated content and posing
a question constructed from u and Tu. TTR enables a theory of such interaction to
be developed:

• Simultaneous availability of utterance types and tokens: in TTR both utter-
ance tokens (records) and signs (record types) become available simultane-
ously in a natural way.
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• Partially instantiated contents: a partial witness for C-PARAMS field Tu.c-
params is a record r0 that is extendible to r1 such that r1 : Tu.c-params. This
is exemplified in (33b), where r0 lacks fields for j, c3 from (33a):

(33) a. Tu.c-params = ⎡

⎢
⎢
⎢
⎣

s0: SIT
t0: TIME
j: IND
c3: Named(j,jo)

⎤

⎥
⎥
⎥
⎦

b. r0 = ⎡

⎢
⎢
⎢
⎢
⎣

PHON = di jo liv
CAT = V[+fin]

C-PARAMS =
[

s0 = sit0
t0 = time0

]

⎤

⎥
⎥
⎥
⎥
⎦

c. r0 =
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

PHON = di jo liv
CAT = V[+fin]

C-PARAMS =

⎡

⎢
⎢
⎢
⎣

s0 = sit0
t0 = time0
j = j0
c3 = c30

⎤

⎥
⎥
⎥
⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

• Constructing clarification questions on the fly: a crucial ingredient in this
modeling is the ability to build functions from utterance tokens and utterance
types into types of contexts, characterized in terms of various semantic objects
such as propositions and questions. This is straightforward in TTR given the
fact that it enables direct use of λ-calculus tools.

In contrast to these tools, all of which are intrinsic to TTR, typed feature
structure-based formalisms can only simulate functions, abstraction, and assign-
ments. Nor do they have types and tokens simultaneously as first-class citizens.

4.2 Information states
We analyze conversations as collections of dynamically changing, coupled infor-
mation states, one per conversational participant. The type of such information
states is given in (34a). We leave the structure of the private part unanalyzed
here (for details on this, see Larsson 2002). The dialogue gameboard (DGB) repre-
sents information that arises from publicized interactions. Its structure (or rather
a preliminary version suitable for analyzing illocutionary interaction) is given
in (34b):

(34) a. TotalInformationState TIS =[
dialoguegameboard : DGB
private : Private

]
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b. DGB (initial definition)⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

spkr : Ind
addr : Ind
c-utt : addressing(spkr,addr)
Facts : Set(Prop)
Moves : list(IllocProp)
QUD : poset(Question)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

• The spkr/hearer roles serve to keep track of turn ownership.
• FACTS represents the shared knowledge conversational participants utilize

during a conversation. More operationally, this amounts to information
that a conversational participant can use embedded under presuppositional
operators.

• Moves: from within FACTS it is useful to single out LatestMove, a distin-
guished fact that characterizes the content of the most recent move made. The
main motivation is to segregate from the entire repository of presuppositions
information on the basis of which coherent reactions could be computed. As we
see below (e.g., when discussing greeting interaction), keeping track of more
than just the latest move can be useful.

• QUD: questions that constitute a ‘live issue.’ That is, questions that have
been introduced for discussion at a given point in the conversation and whose
discussion has not yet been concluded. There are additional, indirect ways
for questions to get added into QUD, the most prominent of which is dur-
ing meta-communicative interaction (see Section 4.7). Being maximal in QUD
(MaxQUD) corresponds to being the current ‘discourse topic,’ and this is a key
component of our account.

4.3 Illocutionary interaction
To get started, we abstract away from the communicative process, assuming per-
fect communication. The basic units of change are mappings between dialogue
gameboards that specify how one gameboard configuration can be modified into
another on the basis of dialogue moves. We call a mapping between DGB types a
conversational rule. The types specifying its domain and its range we dub, respec-
tively, the preconditions and the effects, both of which are supertypes of DGB.
Notationally a conversational rule will be specified as in (35):

(35)
[

pre(conds) : RType
effects : RType

]

4.4 Move coherence
To illustrate how illocutionary interaction can be specified, we consider the exam-
ple of greetings and partings. An initiating greeting typically occurs dialogue
initially. The primary contextual effect of such a greeting is simply to provide the
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addressee with the possibility of reciprocating with a counter-greeting, though of
course it has other expressive effects (indication of non-hostility, etc.). The conver-
sational rule associated with greeting is given in (36a). The preconditions state that
both Moves and QUD need to be empty, though obviously this does not apply to
FACTS. The sole DGB effect a greeting has – remember we are abstracting away
from utterance processing for the moment – is to update MOVES with its content.
In the sequel we adopt a more economical notation: the preconditions can be writ-
ten as DGB ∧ PreCondSpec, where PreCondSpec is a type that includes information
specific to the preconditions of this interaction type. The effects can be written as
DGB ∧ PreCondSpec′ ∧ ChangePreconSpec, where ChangePreconSpec represents those
aspects of the preconditions that have changed. We notate conversational rules
simply as (36b), and the rule for greeting as (36c):

(36) a.
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

pre :

⎡

⎢
⎢
⎢
⎢
⎢
⎣

spkr: Ind
addr: Ind
moves = elist : list(IllocProp)
qud = eset : poset(Question)
facts = commonground1 : Prop

⎤

⎥
⎥
⎥
⎥
⎥
⎦

effects :

⎡

⎢
⎢
⎢
⎢
⎢
⎣

spkr = pre.spkr : Ind
addr = pre.addr : Ind
LatestMove = Greet(spkr,addr) : IllocProp
qud = pre.qud : list(Question)
facts = pre.facts : Prop

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b.
[

pre : PreCondSpec
effects : ChangePreconSpec

]

c.
⎡

⎢
⎢
⎢
⎣

pre :

[
moves = elist : list(IllocProp)
qud = elist : list(Question)

]

effects :
[
LatestMove = Greet(spkr,addr) : IllocProp

]

⎤

⎥
⎥
⎥
⎦

A counter-greeting involves turn change and grounds the original greeting; we
capture this potential by the rule in (37):

(37)
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

pre :

[
LatestMove = Greet(spkr,addr) : IllocProp
qud = elist : list(Question)

]

effects :

⎡

⎢
⎣

spkr = pre.addr : Ind
addr = pre.spkr : Ind
LatestMove = CtrGreet(spkr,addr) : IllocProp

⎤

⎥
⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Parting can be specified in almost analogous terms, with the difference that only
QUD needs to be empty – all raised issues have been resolved for current pur-
poses – and that there exists a presupposition that a certain amount of interaction
has taken place (see Ginzburg 2010 for details).

4.5 Querying and assertion
The basic protocol for two-person querying and assertion that we assume is
in (38):

(38)

querying assertion
LatestMove = Ask(A,q) LatestMove = Assert(A,p)
A: push q onto QUD; A: push p? onto QUD;

release turn release turn
B: push q onto QUD; B: push p? onto QUD;

take turn take turn
make q-specific Option 1: Discuss p?

utterance;
take turn Option 2: Accept p

LatestMove = Accept(B,p)
B: increment FACTS with p;

pop p? from QUD
A: increment FACTS with p;

pop p? from QUD

q-specific utterance: an utterance whose content is either a proposition p about
MaxQUD (partial answer) or a question q1 on which MaxQUD depends (subques-
tion).8

Two aspects of this protocol are not query-specific:

(1) The protocol is like the one we have seen for greeting – a two-person turn
exchange protocol (2-PTEP).

(2) The specification make q-specific utterance is an instance of a general
constraint that characterizes the contextual background of reactive queries
and assertions.

This latter specification can be formulated as in (39): the rule states that if q is
QUD-maximal, then either participant may make a q-specific move. Whereas the
preconditions simply state that q is QUD-maximal, the preconditions underspecify
who has the turn and require that the latest move – the first element on the MOVES
list – stand in the Qspecific relation to q:
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(39) QSpec:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

preconds :
[

qud =
〈
q, Q

〉
: poset(Question)

]

effects :

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

spkr : Ind
c1 : spkr = preconds.spkr ∨ preconds.addr
addr : Ind

c2: member(addr,
{

preconds.spkr,preconds.addr
}
)

∧ addr �= spkr
r : AbSemObj
R : IllocRel

Moves =
〈
R(spkr,addr,r)

〉 ⊕
m : list(IllocProp)

c1 : Qspecific(r,preconds.qud.q)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The only query-specific aspect of the query protocol in (38) is the need to
increment QUD with q as a consequence of q being posed:

(40) Ask QUD-incrementation:⎡

⎢
⎢
⎢
⎣

pre :

[
q : Question
LatestMove = Ask(spkr,addr,q) : IllocProp

]

effects :
[
qud = [q,pre.qud] : list(Question)

]

⎤

⎥
⎥
⎥
⎦

What are the components of the assertion protocol? Not specific to assertion is
the fact that it is a 2-PTEP; similarly, the discussion option is simply an instance
of QSpec. This leaves two novel components: QUD incrementation with p?, which
can be specified like (40) mutatis mutandis, and acceptance. Acceptance is a some-
what more involved matter because a lot of the action is not directly perceptible.
The labor can be divided here in two: first, we have the action brought about by
an acceptance utterance (e.g., ‘mmh,’ ‘I see’). The background for an acceptance
by B is an assertion by A and the effect is to modify LatestMove:

(41) Accept move:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

pre =
⎡

⎢
⎣

p : Prop
LatestMove = Assert(spkr,addr,p) : IllocProp
qud = [p?, . . . ] : list(Question)

⎤

⎥
⎦

effects =
⎡

⎢
⎣

spkr = pre.addr : Ind
addr = pre.spkr : Ind
LatestMove = Accept(pre.addr,spkr,p) : IllocProp

⎤

⎥
⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The second component of acceptance is the incrementation of FACTS by p. This
is not quite as straightforward as it might seem: when FACTS gets incremented,
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we also need to ensure that p? gets downdated from QUD – only non-resolved
questions can be in QUD (resolved questions have a use as ‘rhetorical questions,’
see Ginzburg 2010). In order to ensure that this is the case, we need to check, for
each element of QUD, that it is not resolved by the new value of FACTS. Hence,
accepting p involves both an update of FACTS and a downdate of QUD enforced
via the function NonResolve – minimally just removing p?, but possibly removing
other questions as well:

(42) Fact update/QUD downdate:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

preconds :

⎡

⎢
⎣

p : Prop
LatestMove = Accept(spkr,addr,p)
qud = [p?,preconds.qud] : poset(Question)

⎤

⎥
⎦

effects :

⎡

⎣
facts = preconds.facts ∪

{
p
}

: Set(Prop)

qud = NonResolve(preconds.qud,facts) : poset(Question)

⎤

⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

With this in hand, we can exemplify the framework sketched so far with the
example in (43):9

(43) A(1): Hi
B(2): Hi
A(3): Who’s coming tomorrow?
B(4): Several colleagues of mine (are coming).
A(5): I see.
B(6): Mike (is coming) too.

Utt. DGB update Rule
(conditions)

initial MOVES = 〈〉
QUD = 〈〉

FACTS = cg1
1 LatestMove : = Greet(A,B) greeting
2 LatestMove : = CounterGreet(B,A) counter-greeting
3 LatestMove : = Ask(A,B,q0) Free speech

QUD : = 〈q0〉 Ask QUD-incrementation
4 LatestMove : = Assert(B,A,p1) QSpec

(About(p1,q0))
QUD : = 〈p1?, q0〉 Assert QUD-incrementation

5 LatestMove : = Accept(A,B,p1) Accept
QUD : = 〈q0〉 Fact update/QUD downdate

FACTS : = cg1 ∧ p1
6 LatestMove : = Assert(B,A,p2) QSpec

(About(p2,q0))
QUD : = 〈p2?, q0〉 Assert QUD-incrementation
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We are also now in a position to explain how many of the earlier bench-
marks can be met: accommodating non-resolving answers, follow-up queries to
non-resolving answers, sub-questions, and disagreement are all fairly immediate
consequences of QSpec: the first three follow given that the QUD-maximality
of q allows a q-specific utterance to be made, disagreement is accommo-
dated since asserting p makes p? QUD-maximal, and p?-specific utterances
include disagreements. Two other benchmarks can be met due to the mech-
anism of fact update above: Assertion benchmark1: if accepted,
integrate propositional content with existing knowledge base
is a direct consequence. Accommodating ‘overinformative’ answers also follows,
to a first approximation, given that semantic information does not get ‘wasted.’
Full attention to ‘overinformativity’ is a long story involving implicature and
private parts of information states (on which more below).

We can also say something about the Scaling Up benchmark. Self-answering is
directly accommodated by QSpec given that it licenses MaxQUD-specific utter-
ances regardless of who the speaker of LatestMove is. Another consequence of
QSpec is the possibility of posing two successive questions by a single speaker,
where the second question influences the first; the second query becomes QUD
maximal.

(44) a. Ann: What are your shifts next week? Can you remember offhand?
James: Yes. I’m early Monday and Tuesday (pause) and Wednesday
(pause) a day off Thursday (pause) Friday (pause) late (BNC, KC2
4968-4971)

b. Ann: Anyway, talking of over the road, where is she? Is she home?
Betty: No. She’s in the Cottage. (BNC, KC2 5121-5124)

QSpec also allows for successive assertions p1, p2, where p2 is about p1?. When
the later assertion p2 is accepted, the issue associated with the earlier assertion
p1 will be downdated iff FACTS (including p2) resolves p1?; this is an implicit
mechanism for accepting p1.

Not all successive queries and successive assertions can be dealt with in this
way, and some require postulation of additional conversational rules in order
to accommodate further rhetorical relations (for more discussion on this see in
particular Asher & Lascarides 2003; Prévot 2003).

4.6 Domain specificity
(DA) Reuse interactional procedures across domains, insofar as possible.

So far we have discussed queries and assertions that arise reactively. Con-
ventions regulating the initiating of such moves, conversation initially and peri-
odically during extended interactions, are less domain-independent, far more
dependent on the activity conversationalists are enagaged in, and on politeness,
prior acquaintance between conversationalists, etc. The basic intuition one can
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pursue is that a move can be made if it relates to the current activity.10 In some cases
the activity is very clearly defined and tightly constrains what can be said. In other
cases the activity is far less restrictive on what can be said:

(45) a. Buying a train ticket: c wants a train ticket: c needs to indicate where
to, when leaving, if return, when returning, which class; s needs to
indicate how much needs to be paid

b. Buying in a boulangerie: c needs to indicate what baked goods are
desired; b needs to indicate how much needs to be paid

c. Buying goods in a minimarket stationed in a petrol station: c needs
to show what she bought; s needs to check if c bought petrol and to
tell c how much needs to be paid.

d. Chatting among friends: first: how are conversational participants
and their near ones?

e. Buying in a boulangerie from a long-standing acquaintance: combi-
nation of (b) and (d).

Trying to operationalize activity relevance presupposes that we can classify
conversations into various genres, a term we use following Bakhtin (1986) to
denote a particular type of interactional domain. There are at present remark-
ably few such taxonomies (though see Allwood 1999 for an informal one) and
we will not attempt to offer one here. However, we can indicate how to clas-
sify a conversation into a genre. One way is by providing a description of an
information state of a conversational participant who has successfully completed
such a conversation. Final states of a conversation will then be records of type T
for T a subtype of DGBfin; here questions no (longer) under discussion (QNUD)
denotes a list of issues characteristic of the genre which will have been resolved in
interaction:

(46) DGBfin = ⎡

⎢
⎣

Facts : Prop
QNUD = list : list(question)
Moves : list(IllocProp)

⎤

⎥
⎦

In (47) we exemplify two genres, informally specified in (54):

(47) a. CasualChat:⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A : Ind
B : Ind
t: TimeInterval
c1 : Speak(A,t) ∨ Speak(B,t)
facts : Set(Prop)
qnud : list(question)

c2:
{
λP.P(A), λP.P(B)

}
⊂ qnud

moves : list(IllocProp)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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b. BakeryChat:⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A : Ind
B : Ind
t: TimeInterval
c1 : Speak(A,t) ∨ Speak(B,t)
facts : Set(Prop)
qnud : list(question)

c2 :

{
λP.P(A), λP.P(B), λx.InShopBuy(A,x),
λx.Pay(A,x)

}

⊂ qnud

moves : list(IllocProp)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We can then offer the following definition of activity relevance: one can make
an initiating move m0 if one believes that the current conversation updated with
m0 is of a certain genre G0. Making move m0 given what has happened so far
(represented in dgb0) can be anticipated to conclude as final state dgb1 which is a
conversation of type G0:

(48) m0 is relevant to G0 in dgb0 for A iff there exists dgb1 such that dgb0 �
dgb1, and such that dgb1 : G0

4.7 Meta-communicative interaction
A theory of MCI needs to meet the high-level benchmarks we formu-
lated earlier, specifically those concerning Semantic non-determinism and
Fine-grained utterance representation. KoS is already equipped to
address the first challenge due to the fact that each conversational participant is
associated with a distinct DGB – concrete exemplification of this is offered towards
the end of this section. Therefore there is no single context in conversation but
rather coupled and potentially mismatched dialogue gameboards. Only one modifi-
cation is required to the structure of the DGB, the postulation of a field Pending,
whose members are ungrounded utterances. For reasons we discuss shortly the
type of Pending (and concomitantly that of Moves) is a list of locutionary propo-
sitions, propositions consisting of an utterance record and a (grammatical) type
which classifies it. This leads to a new definition of DGB type:

(49) DGB = ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

spkr : Ind
addr : Ind
c-utt : addressing(spkr,addr)
Facts : Set(Prop)
Pending : list(LocProp)
Moves : list(LocProp)
QUD : poset(Question)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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In the immediate aftermath of a speech event u, Pending gets updated with
a record of the form

[
sit = u
sit-type = Tu

]
(of type locutionary proposition (LocProp)).

Here Tu is a grammatical type for classifying u that emerges during the process
of parsing u. In the most general case it should be thought of as a chart (Cooper,
forthcoming), but in the cases we consider here it can be identified with a sign
in the sense of head driven phrase structure grammar (HPSG). The relationship
between u and Tu – describable in terms of the proposition pu =

[
sit = u
sit-type = Tu

]
–

can be utilized in providing an analysis of grounding/CRification conditions:11

(50) a. Grounding: pu is true: the utterance type fully classifies the utterance
token.

b. CRification: Tu is weak (e.g., incomplete word recognition); u is
incompletely specified (e.g., incomplete contextual resolution).

Postulating that Pending be of type LocProp allows us to meet the
Fine-grained utterance representation benchmark: Tu provides the
fine grain and the information needed to capture syntactic/phonological paral-
lelism; u is necessary to instantiate the contextual parameters of Tu, as well as to
provide the sub-utterance tokens that figure in CRs (on the latter see the discus-
sion concerning example (68)).12 We can also formulate the following utterance
processing protocol, which interleaves illocutionary and meta-communicative
interaction:

(51) Utterance processing protocol
For an agent A with IS I: if a locutionary proposition pu =

[
sit = u
sit-type = Tu

]

is maximal in Pending:
(a) if pu is true, try to integrate pu in A.DGB using a Moves update rule;
(b) otherwise: try to accommodate pu as a CR to LatestMove;
(c) if (a) and (b) fail, seek a witness for Tu by asking a CR: introduce a
clarification issue derivable from pu as the maximal element of QUD; use
this context to formulate a clarification request.

A full theory of MCI involves a compositional analysis of (a somewhat more
sophisticated version of) this protocol using update rules entirely akin to those
used for illocutionary interaction in Section 4.3. We concentrate here on elucidating
how a CR gets asked and which are the available CRs. Given that any subutter-
ance of a given utterance is potentially clarifiable, one prerequisite at the level
of utterance representation is the accessibility of all subutterances. We achieve
this by positing that the field C-PARAMS of a given utterance type is a record
type specifying two kinds of witnesses: (a) subutterance tokens, characterized in
terms of their morpho-syntactic properties, and (b) referents, specified in terms
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of their semantic contribution. Repetition and meaning-oriented CRs are speci-
fied by means of a particular class of conversational rules – clarification context
update rules (CCURs). Each CCUR specifies an accommodated MaxQUD built up
from a subutterance u1 of the target utterance MaxPending. Common to all CCURs
is a license to follow up MaxPending with an utterance which is co-propositional
with MaxQUD.13 In the current context co-propositionality amounts to: either a
CR which differs from MaxQUD at most in terms of its domain, or a correction –
a proposition that instantiates MaxQUD.

To make this concrete, we consider one specific CCUR Parameter
identification, used to specify intended content CRs. (52) indicates that given
u0, a subutterance token of MaxPending, one may accommodate as MaxQUD
the issue ‘What did spkr mean by u0.’ Concomitantly, the next move must be
co-propositional with this issue:

(52) Parameter identification:⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

preconds :

⎡

⎢
⎣

Spkr : Ind
MaxPending : LocProp
u0 ∈ MaxPending.sit.constits

⎤

⎥
⎦

effects :

⎡

⎢
⎣

MaxQUD = What did spkr mean by u0? : Question
LatestMove : LocProp
c1: CoProp(LatestMove.cont,MaxQUD)

⎤

⎥
⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(52) underpins CRs such as (53b, 53c) as follow-ups to (53a):

(53) a. A: Is Bo here?
b. B: Who do you mean ‘Bo’?
c. B: Bo? (= Who is ‘Bo’?)

We can also deal with corrections, as in (54). B’s corrective utterance is
co-propositional with λxMean(A,u0,x), and hence allowed by the specification:

(54) B: You mean Jo.

In Figure 16.5 we provide an illustration of our account of the semantic
non-determinism benchmark: the same input leads to distinct outputs on the
‘public level’ of information states. In this case this arises due to differential ability
to anchor the contextual parameters. The utterance u0 has three subutterances, u1,
u2, u3, given in Figure 16.5 with their approximate pronunciations. A can ground
her own utterance since she knows the values of the contextual parameters, which
we assume here for simplicity include the speaker and the referent of the subut-
terance ‘Bo.’ This means that the locutionary proposition associated with u0 – the
proposition whose situational value is a record that arises by unioning u0 with the
witnesses for the contextual parameters and whose type is given in Figure 16.5 – is
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A B

A

Figure 16.5 A single utterance gives rise to distinct updates of the DGB for distinct
participants.

true. This enables the ‘canonical’ illocutionary update to be performed: the issue
‘whether b left’ becomes the maximal element of QUD. In contrast, let us assume
that B lacks a witness for the referent of ‘Bo.’ As a result, the locutionary propo-
sition associated with u0 which B can construct is not true. Given this, B uses
the CCUR parameter identification to build a context appropriate for a
clarification request: B increments QUD with the issue λxMean(A,u2,x), and the
locutionary proposition associated with u0 which B has constructed remains in
Pending.

To conclude our discussion of the basics of MCI, we consider briefly relevance
CRs and topic changing, ‘irrelevant responses’ (the latter our benchmark Q5). The
basic trigger for both is the condition in (55), where the content of an utterance
stands in the ‘Irrelevant’ relation to a DGB:

(55) Irrelevant(u.cont,dgb)

Irrelevant(p,dgb0) here relates an illocutionary proposition p, the content of the
‘irrelevant’ move, to a DGB dgb0 just in case there is no update rule U such that
U(dgb0).LatestMove.cont = p. For instance, given what we have said here, an irrel-
evant follow-up to an utterance u which expresses a query q is an utterance which
is neither q-specific nor a clarification request triggered by u:

(56) a. LatestMove = u; u.content = Ask(A,q),
b. p is not q-specific
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c. p is not co-propositional with any question q0 that satisfies q0 =
CCUR1.qud(u) for some CCUR CCUR1

The potential for CRs concerning the relevance of an utterance is already,
with one potentially significant caveat, accommodated by the rule parameter
identification we saw above. The one significant difference of relevance CRs
is that the trigger is typically the irrelevance of a fully instantiated utterance. The
answer to such a CR will not in general be represented in the DGB, in contrast to
other CRs, where it could be found in C-PARAMS or PHON of the responder.

This means that we need to offer an alternative definition for the Mean predicate
to the one appropriate for semantically oriented CRs. What we would need would
be a definition along the following lines – identifying the speaker meaning with
the maximal element of the agenda of the utterance’s speaker:

(57) Given u.sit.cont : IllocProp, Mean(A,u,c) iff u.c-param.spkr = A and
A.private.maxagenda = c

As for irrelevance implicatures, we can offer a ‘short-circuited’ version of the
Gricean account – irrelevance is a means of non-grounding the previous utter-
ance, itself an instance of a more general process of ignoring commonly perceived
events. The short-circuited version takes the form of the update rule in (58) – given
that MaxPending is irrelevant to the DGB, one can make MaxPending into Latest-
Move while updating Facts with the fact that the speaker of MaxPending does not
wish to discuss MaxQUD:

(58)
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

preconds :

[
dgb : DGB
c: IrRelevant(maxpendingcontent,dgb)

]

effects :

⎡

⎢
⎢
⎣

LatestMove = pre.pending : LocProp
Facts = pre.Facts ∪
{
¬ WishDiscuss(pre.spkr,pre.maxqud)

}

⎤

⎥
⎥
⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Note that this does not make the unwillingness to discuss be the content
of the offending utterance; it is merely an inference. Still this inference will
allow MAXQUD to be downdated, via a slightly refined version of fact
update/question downdate – if information is accepted indicating negative
resolution of ?WishDiscuss(q), then q may be downdated from QUD.

4.8 Disfluencies
The setup for meta-communicative interaction described in the previous section
extends straightforwardly to yield an account of self-correction, and other disflu-
encies. The sole, but significantly consequential, modification such an account
presupposes is to the structure of Pending. This now needs to incorporate also
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utterances that are in progress and, hence, incompletely specified semantically and
phonologically. This, in turn, requires the use of types that characterize utterances
word by word (or minimally constituent by constituent), as, e.g., in combina-
tory categorial grammar (Steedman 2000), type logical grammar (Morrill 2000),
dynamic syntax (Kempson et al., 2000), PTT (Poesio & Traum 1997), or by abstrac-
tion from a ‘standard’ grammar (as one could implement in HPSGTTR, that version
of HPSG whose logical underpinning is TTR). A variety of issues arise, in conse-
quence, issues that are still very much open, including monotonicity in processing,
and the nature of incremental denotations. Fortunately the account of disfluencies
can be formulated without making commitments on these issues.

Incrementalizing Pending has the independent consequence of enabling us
to account for the Incremental Acknowledgments benchmark (inspired by
examples such as 13c) (Ack2). We can formulate a lexical entry for ‘mmh,’
which enables a speaker to acknowledge the current addressee’s most recently
ungrounded utterance, regardless of whether it is complete (in which case its
content would be an IllocProp) or not:

(59)
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

PHON : 〈 mmh 〉
CAT = interjection : syncat

c-params :

⎡

⎢
⎢
⎢
⎣

spkr : IND
addr : IND
MaxPending : LocProp
c2 : address(addr,spkr,MaxPending)

⎤

⎥
⎥
⎥
⎦

CONT = Understand(spkr,addr,MaxPending) : IllocProp

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The basic intuition behind this account of disfluencies is an analogy to CRifi-
cation: in the latter a CR provides the potential for an answer, which allows the
original poser of the CR to fix his utterance. For self-corrections, editing phrases
(EditPs) (long silences, discourse particles like ‘No . . .,’ ‘um,’ etc.) correspond to
CRs, whereas the alternation, that subutterance with the correcting material, corre-
sponds to an answer to a CR. There are two remaining steps: first provide for the
coherence of the EditP. This is simple to do: all we need to say is that an EditP can
be interpolated at any point where Pending is non-empty. Finally, take as input a
state where the LatestMove is an EditP and specify as output a new state in which
the MaxQUD is What did spkr mean to utter at u0? and where the new utterance has
to be an instantiation of MaxQUD (propositional or polar question):14

(60) Utterance identification:
Input:

⎡

⎢
⎢
⎢
⎣

Spkr : Ind
MaxPending : LocProp
LatestMove = EditP(Spkr,MaxPending) : IllocProp
u0 ∈ MaxPending.sit.constits

⎤

⎥
⎥
⎥
⎦
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Output:
⎡

⎢
⎣

MaxQUD = What did spkr mean to say at u0? : Question
LatestMove : LocProp
c2 : InstPropQ(LatestMove.cont,MaxQUD)

⎤

⎥
⎦

The same mechanism that updates the DGB after a CR and effects an update
of information concerning a given utterance applies here. It ensures that the alter-
ation of the original sub-utterance replaces or reinforces the repaired subutterance
in PENDING. At the same time, the presupposition concerning the latter’s taking
place will remain in FACTS. We thereby meet

(61) D2: Explicate disfluency meaning without eliminating disfluencies from
context.

4.9 Sentential fragments
The approach we pursue here to sentential fragments is constructional, i.e., from
a grammatical point of view we treat such constructions as sui generis, not as
underlyingly canonical sentences, as is common in generative linguistics. The
fundamental argument for this strategy is the existence of a wide array of mis-
matches between the syntactic and semantic properties of sentential fragments
and putative sentential correlates (for extensive argumentation, see Ginzburg &
Sag 2000; Schlangen 2003; Fernández 2006; Ginzburg 2010). (62) exemplifies this
claim – (62a) shows the distinct distribution of a direct sluice and of its putative
canonical correlate; (62b) shows a similar datum for a short answer and its puta-
tive canonical correlate; finally (62c) illustrates that elliptical exclamatives cannot
be embedded, in contrast to sentential exclamatives:

(62) a. A: Somebody stood outside the room. B: Who? / #Who the hell? /
Who the hell stood outside the room?

b. Who stood outside the room? Not Bo. / #Not Bo stood outside the
room.

c. A: What a shot! / *It’s amazing what a shot. / It’s amazing what a shot
she made.

The existence of parallelism between source and NSU on various dimensions
necessitates positing one additional contextual parameter, namely an antecedent
subutterance (of the utterance which is MaxQUD). Intuitively, this parameter pro-
vides a partial specification of the focal (sub)utterance, and hence it is dubbed
the focus establishing constituent (FEC). Varying roles are played by the FEC: in
some cases it is crucial for semantic composition, while in others it plays a
disambiguating role via morpho-syntactic or phonological parallelism.

Given that their lifetimes are as a rule identical, we can pair QUDs and FECs
as part of contextual specification. Concretely this amounts to changing the type
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of QUD from list(Questn) to list(Info-struc), where Info-Struc is the following
type:

(63) Info-struc =
[

q : Questn
fec : set(LocProp)

]

It also means that FECs get introduced by (minor modifications of) rules we
have seen above for incrementing and downdating QUD, namely Ask-QUD
incrementation and the CCURs.

With this in hand, we turn to illustrating KoS’s approach to sentential fragment
grammar and meaning.15 Sentential fragments are essentially akin to indexicals
(‘I’: speaker, ‘you’: addr, ‘here’: speech loc., . . .) but, whereas the latter resolve to
concrete elements of the utterance context, sentential fragment resolution is based
on reference to DGB elements:16

4.9.1 Yes Its informal meaning is simply – MaxQUD’s proposition. (64)
includes a rudimentary lexical entry for this word which formalizes this
intuition:

(64)
⎡

⎢
⎢
⎢
⎣

phon : yes
cat = adv : syncat
max-qud : PolarQuestn
cont = max-qud([]): Prop

⎤

⎥
⎥
⎥
⎦

4.9.2 Short answers This construction can be described in the following terms:
the content arises by function application of MaxQUD to the fragment’s content;
syntactically the fragment must bear an identical syntactic category to the FEC.
(65) represents this construction in HPSGTTR:

(65) decl-frag-cl = ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cat = V[+fin] : syncat

hd-dtr :
[
cat = max-qud.fec.cat : Syncat

]

∧ sign
max-qud : WhQuestn
cont = max-qud(hd-dtr.cont) : Prop

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Given that the meaning of short answers is directly tied to MaxQUD,
we can fulfill the distance benchmark: accommodate long-distance
short answers: such answers are predicted to be possible insofar as the cor-
responding issue is still in QUD. Since QUD consists of elements of type info-struc,
we can also capture the long-distance syntactic parallelism short answers exhibit.

We turn finally to two sentential fragments used in MCI, the confirmation and
intended content readings of reprise fragments (RF).
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4.9.3 Reprise fragments: confirmation reading Assume the utterance to be
clarified is (66a). B uses the CCUR parameter identification to build a
context as in (66b):

(66) a. A: Did Bo leave?
b. MaxQUD = λxMean(A,u2,x); FEC = A’s utterance ‘Bo’

Given this, the analysis of the construction is illustrated in (67): the construc-
tion decl-frag-cl builds the proposition Mean(A,u2,b); the construction polarization
builds a polar question from this:

(67) S
polarization

cont = ?hd-dtr.cont = ?Mean(A,u2,b) : Questn

S

maxqud = fec = p2 : LocProp : InfoStruc

hd-dtr :
cat = fec.cat : syncat

cont = maxqud.q(hd-dtr.cont.x)

NP
BO

cont : x : Ind

decl-frag-cl
q = lx Mean(A,u2,x) : Questn

4.9.4 Reprise fragments: intended content reading Intended content readings
of RFs involve a complex mix of a prima facie non-transparent semantics and
phonological parallelism. Independently of intended content readings, we need
to capture the utterance anaphoricity of ‘quotative’ utterances such as (68):

(68) a. A: Bo is coming. B: Who do you mean ‘Bo’?
b. D: I have a Geordie accident. J: ‘accident’ that’s funny.

We assume the existence of a grammatical constraint allowing reference to a
subutterance under phonological parallelism. (69) exemplifies one way of formu-
lating such a constraint: the PHON value is type identical with the PHON value of
an utterance identified with the focus establishing constituent, whereas the con-
tent is stipulated to be the utterance event associated with the focus establishing
constituent:17
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(69) utt-anaph-ph
⎡

⎢
⎢
⎢
⎢
⎢
⎣

tune = max-qud.fec.sit-type.phon : Type
phon : tune
cat : syncat
max-qud : info-struc
cont = max-qud.fec.sit : Rec

⎤

⎥
⎥
⎥
⎥
⎥
⎦

With this in hand, we turn back to consider the issue of how intended content RFs
arise grammatically. It is worth emphasizing that there is no way to bring about
the desired content using decl-frag-cl, the short-answer/reprise sluice phrasal type
we have been appealing to above, regardless of whether we analyze the NP frag-
ment as denoting its standard conventional content or alternatively as denoting
an anaphoric element to the phonologically identical to-be-clarified subutterance.
This is a prototypical instance of appeal to constructional meaning – a complex
content that cannot be plausibly constructed using ‘standard combinatorial oper-
ations’ (function application, unification etc.) from its constituents. Thus, one way
of accommodating intended content RF is to posit a new phrasal type, qud-anaph-int-
cl. This will encapsulate the two idiosyncratic facets of such utterances, namely the
MaxQUD/content identity and the HD-DTR being an utt-anaph-ph:

(70) qud-anaph-int-cl = ⎡

⎢
⎣

max-qud : InfoStruc
cont = max-qud.q : Questn
hd-dtr : utt-anaph-ph

⎤

⎥
⎦

Given this, we can offer the following analysis of (71):

(71) a. A: Is Georges here? B: Georges?
b. B lacks referent for ‘Georges’; uses parameter identification to

update MaxQUD accordingly:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

spkr = B
addr = A

pending =
〈[

sit = w0’
sit-type = IGH

]〉

maxqud =
[

q = λx Mean(A,p2,x) : Question
fec = p2 : LocProp

]

: InfoStruc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Using qud-anaph-int-cl yields:

(72) S

qud-anaph-int-cl

maxqud =

S
utt-anaph-ph

BO

bu = max-qud.fec.sit-type.phon : Type
phon : bu

cont = maxqud.q
fec = p2 : LocProp
q = lx Mean(A,p2,x) : Question

: InfoStruc

5 Extensions

In this chapter we have surveyed some core phenomena that theories of dialogue
need to tackle. We also sketched a unified treatment of these phenomena. For rea-
sons of space we could not enter into discussion of various other highly significant
aspects of dialogue. Here we point to some recent work that has tackled these
aspects.

5.1 Automatic learning of dialogue management
Recent advances have been made in the application of machine learning (ML) tech-
niques to dialogue management. One of the most common methods used in this
line of research is reinforcement learning (Sutton & Barto 1998). In this approach,
the conversational skills of a spoken dialogue system are modeled as a Markov
decision process (MDP) (Levin & Pieraccini, 1997; Levin et al., 1998). The model
consists of a finite set of states S, a finite set of actions A, a transition function
T(s′, a, s) that specifies the probability of transitioning to state s′ from state s after
performing action a, and a reward function R(s′, a, s) that assigns a reward value
to each transition. Given this model, the dialogue manager can be seen as a learn-
ing agent that learns an optimal policy π : S �→ A, that is, a mapping from states to
actions that maximizes the overall reward (which is a function, usually a weighted
sum, of all reward values obtained).

The use of ML techniques is attractive because it offers the possibility to develop
data-driven approaches to dialogue management that bypass the need to hand
craft the rules governing the behavior of a system. Instead of following hand
crafted dialogue strategies (in the form of update or inference rules, or as states
and transitions in a manually designed finite state graph), in a reinforcement learn-
ing (RL) framework the system learns interactively from the rewards it receives.
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However, appealing as this may be, there are several drawbacks associated with
this approach (see, e.g., Paek & Chickering 2005; Paek & Pieraccini 2008). One of
them is that, like most ML methods, dialogue managers based on reinforcement
techniques require large amounts of data for training. Collecting and annotating
the dialogue corpora required to train the algorithms requires large amounts of
time and effort. A related issue, crucial in RL approaches, concerns the modeling
of the state space S. Again, like all ML approaches, RL faces the problem of select-
ing the appropriate features for training, i.e., deciding what state variables should
be included in the model. This task is for the most part performed manually.
Once an initial set of variables has been chosen, the set can be refined with auto-
matic feature selection methods, but the initial candidate variables are selected by
hand. Finally, another important parameter that needs to be set and adjusted is the
reward function, which directly affects the adopted policy and hence the behavior
of the system. Although there is some research that explores methods to try to infer
R from data (e.g., Ng & Russell 2000; Walker & Shannon 2000), the typical practice
is to specify R manually, sometimes taking into account parameters linked to the
task at hand or to user satisfaction (Singh et al., 1999; 2002).

In principle, dialogue management policies learned with RL methods can make
use of complex sets of variables encoding rich information (such as the dialogue
history, filled and confirmed slots, or information about the interlocutor). How-
ever, this can easily lead to an explosion of the state space that may be intractable
for learning (Sutton & Barto 1998). Thus, in practice, researchers developing dia-
logue systems have concentrated on learning limited policies, such as for example
confirmation strategies (Singh et al., 2002). Recent work attempts to address the
problem of large state spaces to provide more general policies (see e.g., Rieser &
Lemon, 2008; Henderson et al., 2008a).

Models can also take into account uncertain information such as the user’s
intentions and beliefs. This information is not directly observable by the system
but in principle can be inferred from observable variables such as the user’s utter-
ance. This can be modeled as a partially observable MDP (POMDP) (Zhang et al.,
2001; Young 2006; Williams & Young 2007). In a POMDP the uncertainty about the
current state is represented as a probability distribution over S or a belief state.
The reward function thus computes the expected reward over belief states, while
a dialogue policy becomes a mapping from n-dimensional belief states to actions
(see Kaelbling et al., 1995; 1996 for further details).

5.2 Multiparty dialogue
Our discussion has focused almost exclusively on two-person conversations, as
has the lion’s share of dialogue systems developed so far. However, the general
case is multiparty dialogue (also known as multilogue). A number of multiparty
dialogue systems have been developed at the Institute for Creative Technology,
including the Mission Rehearsal Exercise project (Swartout et al., 2006), a virtual
reality-based training system. Traum (2004) considers some of the basic issues
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relating multiparty and two-person dialogue; based on NSU data, Ginzburg and
Fernández (2005) propose some benchmarks that two-person dialogue theories
aspiring to scale up to multiparty need to fulfill and offer general scaling-
up transformations applicable to two-person protocols. Kronlid (2008) refines
these transformations, while offering a detailed implementation of a turn-taking
algorithm.

5.3 Multi-modal dialogue
Although spoken language is the basis for communication, other modalities such
as gesture often play central roles in dialogue. There is an increasing amount
of research dedicated to multi-modal communication and to the implementation
of systems that can handle some form of multi-modal interaction. The simplest
multi-modal systems combine speech with other multi-modal input and output
such as the display of graphics or the recognition of pointing gestures such as
mouse clicks. As discussed in the seminal paper by Nigay and Coutaz (1993), the
key questions faced by these systems are how information coming from different
modalities can be integrated into a single message (e.g., to disambiguate a refer-
ring expression by means of a gesture) and how different modalities can be fused
in generating multi-modal output. Delgado and Araki (2005) offer a good survey
of multi-modal interfaces.

A parallel line of research focuses on developing animated characters or embod-
ied conversational agents (Cassell et al., 2000). These are virtual characters that aim
at communicating with humans using speech as well as natural facial expressions,
hand gestures, and body posture.

6 Conclusions

Dialogue is one of the central disciplines of language sciences – languages are
first encountered, learned, and used in interaction and this has been the case for
millenia. And yet the lion’s share of both formal grammar and psycholinguistic
work does not presuppose an interactive setting. Dialogue is a flourishing area in
NLP and CL, though primarily in the context of developing dialogue systems.

In this chapter we have sought to develop an approach to dialogue that
combines theoretical and systems perspectives. To do so, we grounded our
discussion empirically in two dozen benchmarks, benchmarks concerning the
treatment of querying and assertion, domain adaptability and scalability, meta-
communication, and the treatment of fragments. We have used these benchmarks
to informally evaluate several influential current approaches to the development
of dialogue managers for dialogue systems. We then sketched the theory KoS, for-
mulated in the framework of type theory with records, which, with one or two
exceptions, fulfills all the benchmarks. KoS involves formulating a rich theory of
information states and showing how these get modified in interaction. One of the
important features of this theory is that it allows for an interleaving of locutionary
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(e.g., grounding, clarification, and self-correction) and illocutionary (e.g., querying
and assertion) interaction.

KoS provides an existence proof of a theory of dialogue that can satisfy various
benchmarks concerning dialogue coherence, while underpinning fairly sophisti-
cated linguistic analysis. As we note in the text, this combination also characterizes
a number of other recently developed dialogue frameworks such as PTT and
SDRT. It is important to emphasize, nonetheless, that formal/computational work
in dialogue is still at a fairly early stage. As we noted in Section 5, a comprehensive
theory of dialogue needs to accommodate the multi-modal nature of interac-
tion and the fact that two-person dialogue is a particular instance of multiparty
dialogue, with the attendant complexity of turn allocation and split attention.

We believe, furthermore, that one of the important areas of development for
work in dialogue is embracing both ontogenetic and phylogenetic perspectives. A
phylogenetic or evolutionary perspective on language is gaining significant inter-
est among language scientists and is, moreover, rooted in interaction among a
community of agents. Nonetheless, such work has, to date, not made much con-
tact with computational work on dialogue. But this is clearly only a matter of
time. As discussed in Section 5, there is already a flourishing body of work on
learning in dialogue, using various machine learning techniques. Such work is
significant for practical reasons, not least because it has the promise of allowing
domain specificity to be incorporated in a systematic and large-scale way. It is sig-
nificant also because it should provide us with a theory of language learning that
captures the fact that interaction between child and caregiver is a vital component
in the emergence of linguistic competence. Indeed, taking interaction seriously, as
pointed out in Chapter 8, UNSUPERVISED LEARNING AND GRAMMAR INDUCTION,
could plausibly simplify the task of language learning significantly. An important
challenge for future work is fusing machine language techniques with symbolic
ones to achieve the robustness of the former with the linguistic sophistication of
the latter.

A dialogical perspective is also, as yet, generally lacking from work on com-
plexity and formal language theory (though see Fernández and Endriss (2007) for
an example of how the latter can inform work on dialogue). But for all the reasons
we have discussed above, there is nothing intrinsic in these lacunae, and one can
confidently expect these to be filled in the coming decade.
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NOTES

1 This taxonomy, inspired in part by earlier work by Sinclair and Coulthard (1975), in
fact involves classification at a number of levels: the move level, the game level, and
the transaction level.

2 Annotation in DAMSL involves multiple levels, including levels that concern intel-
ligibility/completion, semantic content, forward looking function – how the current
utterance affects the discourse and its participants, and backward looking function – how
the current utterance relates to the previous discourse.

3 Some of the move types in DAMSL are actually supertypes, whose subtypes we have
listed in parentheses in (3).

4 By far the commonest type of what one might call meta-communicative intraactions are
self-corrections, often referred to under the rubric of disfluencies, on which more below.

5 See www.ling.gu.se/projekt/trindi/trindikit/ and www.ltg.ed.ac.uk/dipper/ for up-
to-date information on the toolkits.

6 PTT is not an acronym, but has some relation to the initials of its progenitors.
7 A convention we employ here to distinguish phonological tokens and types is to refer

to the latter with English words and the former with a mock representation of their
pronunciation.

8 For answerhood and dependence plug your favorite semantics of questions (e.g.,
Groenendijk and Stokhof 1997; Ginzburg & Sag 2000).

9 Utterance (43(3)) is an initiating query. Any theory requires some means, typically one
that makes reference to the domain in which the interaction takes place of licensing
such queries. Here we appeal to the rule Free speech. This rule, from Ginzburg
(2010), is a domain-independent principle that licenses the choice of any query or asser-
tion assuming QUD is empty. We discuss how to refine this with a principle that is
domain-specific in Section 4.6.

10 The approach sketched here is inspired by work in Larsson (2002), work implemented
in the GODIS system.

11 A particularly detailed theory of grounding has been developed in the PTT framework,
e.g., Poesio and Traum (1997); Poesio and Rieser (2009).

12 This argumentation carries over to identifying the type of LatestMove as LocProp – this
information is required to enable A to integrate a CR posed by B concerning A’s latest
utterance. Data pointing towards the preservation of non-semantic structure in the
longer term comes from alignment phenomena (Garrod & Pickering 2004). However,
the extent to which this is the case or only content is preserved in context long term is
very much an open question.

13 Two utterances u0 and u1 are co-propositional iff the questions q0 and q1 they contribute
to QUD are co-propositional.
(1) qud-contrib(m0.cont) is m0.cont if m0.cont : Question
(2) qud-contrib(m0.cont) is ?m0.cont if m0.cont : Prop
q0 and q1 are co-propositional if there exists a record r such that q0(r) = q1(r). This
means that, modulo their domain, the questions involve similar answers. For instance
‘Whether Bo left,’ ‘Who left,’ and ‘Which student left’ (assuming Bo is a student) are
all co-propositional.

14 Some evidence towards the reality of the MaxQUD postulated in this CCUR is pro-
vided by examples such as the following attested example: “Hmm. Lots of people are
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texting in and getting involved on 606, and, er, what’s the word? Backtracking, that’s
it” (from a BBC webcast of a football match, November 12, 2008).

15 See Schlangen (2003) for an alternative approach to NSUs within SDRT.
16 We have space here only to discuss a small number of cases. In particular, direct sluic-

ing, the most complex non-MCI sentential fragment, would require discussion of our
treatment of quantification. For detailed treatments see Fernández (2006) and Ginzburg
(2010).

17 (69) makes one simplifying assumption: identifying the PHON value of the focus estab-
lishing constituent with that of the utterance anaphoric phrase. In practice this should
only be the segmental phonological value.
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17 Computational
Psycholinguistics

MATTHEW W. CROCKER

1 Introduction

Computational psycholinguistics is concerned with the development of
computational models of the cognitive mechanisms and representations that
underlie language processing in the mind/brain. As a consequence, computa-
tional psycholinguistics shares many of the goals of natural language processing
research, including the development of algorithms that can recover the intended
meaning of a sentence or utterance on the basis of its spoken or textual realiza-
tion. Additionally, however, computational psycholinguistics seeks to do this in a
manner that reflects how people process language.

Natural language is fundamentally a product of those cognitive processes that
are co-ordinated to support human linguistic communication and interaction. The
study of language therefore involves a range of disciplines, including linguis-
tics, philosophy, cognitive psychology, anthropology, and artificial intelligence.
Computational psycholinguistics, perhaps more than any other area, epitomizes
interdisciplinary linguistic inquiry: the ultimate goal of the enterprise is to imple-
ment models which reflect the means by which linguistic information is stored in,
and utilized by, the mind and brain. But beyond modeling of the representations,
architectures, and mechanisms that underlie linguistic communication, compu-
tational psycholinguistics is increasingly concerned with developing explanatory
accounts, which shed light on why the human language faculty is the way it is.
As such, models of human language processing must ultimately seek to be
connected with accounts of language evolution and language acquisition.

This chapter presents some of the historically enduring findings from research in
computational psycholinguistics, as well as a state-of-the-art overview of current
models and their underlying differences and similarities. While computational
models of human language processing have been developed to account for var-
ious levels of language processing – from spoken word recognition and lexical
access through to sentence production and interpretation – this chapter will place
primary emphasis on models of syntactic processing. It will not be surprising that
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many accounts of human syntactic processing are heavily informed by compu-
tational linguistics, specifically natural language parsing. A traditional approach
has been to try to identify parsing algorithms which exhibit the range of observed
human language processing behaviors, including incremental processing, local
and global ambiguity resolution, and parsing complexity (both time and space;
see Chapter 2, COMPUTATIONAL COMPLEXITY IN NATURAL LANGUAGE, and
Chapter 4, THEORY OF PARSING). Such symbolic approaches have the advantage of
being well understood computationally, transparent with respect to their linguis-
tic basis, and scalable. An alternative approach has been to develop models using
neurally inspired connectionist networks (see Chapter 9, ARTIFICIAL NEURAL NET-
WORKS), which are able to learn from sufficient exposure to language, are robust,
and degrade gracefully (Elman 1990; Plunkett & Marchman 1996). Purely connec-
tionist approaches often use distributed, rather than symbolic, representations,
making it difficult to understand precisely what kinds of representations such
networks develop. Furthermore, they are typically relatively small-scale mod-
els, and it has proven difficult to scale their coverage. Some cognitive models
of language are in fact best viewed as hybrids, exploiting a mixture of symbolic
representations, and connectionist-like computational mechanisms. Most recently,
probabilistic approaches have dominated, providing a transparent linguistic basis
on the one hand, with an experience-based mechanism on the other.

Before considering the range of approaches, it is important to understand pre-
cisely the goals of computational psycholinguistics, and the kinds of data that
inform the development of models. Furthermore, while many ideas and algo-
rithms have their roots in computational linguistics, we begin by identifying
where these two endeavors diverge, and why.

2 Computational Models of Human Language
Processing

While psycholinguistic theories have traditionally been stated only informally,
the development of computational models is increasingly recognized as essen-
tial. Specifically, computational models entail the explicit formalization of theories,
and also enable prediction of behavior. Implemented models are especially impor-
tant, not only because human language processing is highly complex, involving
interaction of diverse linguistic and non-linguistic constraints, but also because it
is inherently a dynamic process: people are known to understand, and produce,
language incrementally as they read or hear a sentence unfold. This entails that the
recovery of meaning happens in real time, with the interpretation being influenced
by a range of linguistic, non-linguistic, and contextual sources of information, on
the one hand, and also shaping our expectations of what will come next, on the
other.

How is computational psycholinguistics different from computational lin-
guistics? In fact, early conceptions of natural language processing explicitly
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approached language as a cognitive process (Winograd 1983). Ultimately, how-
ever, research is shaped by the specific goals of a particular research community.
To understand this more clearly, it can be helpful to distinguish accounts of linguis-
tic competence and performance. Broadly speaking, a theory of linguistic competence
is concerned with characterizing what it means to ‘know’ language, including the
kinds of syntactic and semantic rules and representations provided by a linguistic
theory. A theory of performance, in contrast, characterizes the means by which
such knowledge is used on-line to recover the meaning for a given sentence, as
exemplified by a psychologically plausible parsing algorithm.

Consider, for example, one of the classic examples from psycholinguistics,
known as the main verb/reduced-relative clause ambiguity (Bever 1970):

(1) The horse raced past the barn fell.

For many readers, this sentence seems ungrammatical. The confusion arises
because the verb raced is initially interpreted as the main verb, leading the parser
‘up the garden path’ (Frazier 1979). Only when the true main verb fell is reached
can the reader potentially determine that raced past the barn should actually have
been interpreted as a reduced-relative clause (as in The horse which was raced past
the barn fell). In this relatively extreme example of a garden-path sentence, many
readers are unable to recover the correct meaning at all, despite the sentence
being perfectly grammatical (cf. The patient sent the flowers was pleased which is
rather easier, but has the same structure). Thus our linguistic competence offers
no explanation for this phenomena, rather it seems necessary to appeal to how
people recover the meaning, resolving ambiguity as they encounter the sentence
incrementally.

Computational linguistics and psycholinguistics have traditionally shared
assumptions regarding linguistic competence; both are concerned with develop-
ing algorithms which recover a linguistically adequate representation of a sentence
as defined by current syntactic and semantic theories. At the level of perfor-
mance, however, computational linguistics is rarely concerned with issues such
as incremental sentence processing and the resolution of local ambiguities which
are resolved by the end of the sentence. There is rather a greater interest in opti-
mizing the computational properties of parsing algorithms, such as their time and
space complexity. Computational psycholinguistics, in contrast, places particular
emphasis on the incremental processing behavior of the parser.

As computational linguistics has increasingly shifted its focus towards appli-
cation domains, the demands of these applications has further divided the
computational linguistics and computational psycholinguistics communities. The
acknowledged difficulty of computationally solving the natural language under-
standing problem, which in turn relies on a solution to the artificial intelligence
problem,1 has led to an increased focus in computational linguistics on devel-
oping less linguistically ambitious technologies which are scalable and able to
provide useful technologies for particular subproblems. Robust methods for part-
of-speech tagging, named entity recognition, and shallow parsing (see Chapter 5,
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MAXIMUM ENTROPY MODELS), for example, can contribute to applications rang-
ing from spam-filtering and document classification to information extraction,
question answering, and machine translation (see Chapter 18, INFORMATION
EXTRACTION, Chapter 22, QUESTION ANSWERING, and Chapter 19, MACHINE
TRANSLATION). For the most part, however, the methods used to perform these
tasks have no cognitive basis.

While the research goals of computational linguistics and computational psy-
cholinguistics have diverged since the 1970s, there continues to exist a significant
overlap in some of the methods that are exploited. An interesting result of the shift
towards wide coverage and robust language processing has been a tremendous
emphasis on statistical language processing, and machine learning. As we will
see, many of the same underlying methods play a central role in cognitive mod-
els as well, with particular overlap coming from research on statistical language
modeling (see Chapter 3, STATISTICAL LANGUAGE MODELING).

2.1 Theories and models
In developing accounts of human language processing, as with any other cog-
nitive process, it is valuable to distinguish the expression of the theory from a
given model which implements the theory. Theories typically relate to a particular
aspect of language processing – such as lexical access, parsing, or production –
and as such provide incomplete characterizations of language processing in gen-
eral. Furthermore, theories often provide a relatively high-level characterization
of a process, leaving open details about what specific algorithms might be used
to realize the theory. Marr (1982), in fact, identifies three levels at which cognitive
processes may be described: (1) the computational level, which defines what is com-
puted, (2) the algorithmic level, which specifies how computation takes place, and
(3) the implementation level, which states how the algorithms are actually realized
in the neural assemblies and substrates of the brain. In the case of language pro-
cessing, which is a relatively high-level cognitive function, there have been very
few accounts at the third level: we simply have insufficient understanding about
how language is processed and represented at the neural level.

There are several reasons for why a distinction of these levels is important. One
reason for wishing to state theories at a relatively high level is to emphasize the
general properties of the system being described, and ideally some justification of
why it is the way it is. Additionally, it is often the case that the relevant empirical
data available may not permit a more detailed characterization. That is to say, in
building a specific model (at the algorithmic level) of a given theory (stated at
the computational level), we are often required to specify details of processing
which are underdetermined by the empirical data. While resolving those details
is essential to building computational models that function, we may not wish to
ascribe any psychological reality to all aspects of the model. In the event that there
is some new piece of empirical evidence which the model incorrectly accounts for,
such a distinction is critical: it may be a consequence of the original theory, either
falsifying it or entailing some revision to it, or it may simply be a result of some
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(possibly purely pragmatically based) decision made in implementing the model,
such that only a change at the algorithmic or implementation level, and not the
computational level, is needed.

Theories of human language processing can be broadly characterized by the
extent to which they assume that the mechanisms underlying language pro-
cessing are restricted or unrestricted (Pickering et al., 2000a). Restricted accounts
begin with the assumption that cognitive processes are resource bound, and that
observed processing difficulties in human language processing are a consequence
of utilizing or exceeding these resource bounds. In order to explain a number of
experimentally observed behaviors, a range of restrictions have been identified
which may play a role in characterizing the architecture and mechanisms of the
human language processor.

Working Memory: the language processor has limited capacity for storing lin-
guistic representations, and these may be exceeded during the processing of
certain grammatical structures, such as center-embeddings: ‘The mouse [that
the cat [that the dog chased] bit] died,’ in which three noun phrases must be
maintained in memory before they can be integrated with their respective
verbs (Miller & Isard 1964; Bever 1970; Gibson 1991).

Serial Processing: while there may be many structures that can be associated
with a sentence during incremental processing, the human parser only pur-
sues one structure, rather than several or all of them, so as to minimize space
complexity. This predicts that, if the sentence is disambiguated as having
an alternative structure, some form of reanalysis will be necessary and cause
processing difficulty (Frazier 1979).

Modularity: Cognitive processes underlying sentence processing are simpli-
fied by restricting their representational and informational domains. This
enables on-line syntactic processes to operate independently of more general,
complex, and time-consuming cognitive processes such as pragmatics, world
knowledge and inference (Fodor 1983).

Unrestricted accounts, in contrast, typically assume that the processing is not
fundamentally constrained, and that people are able to bring diverse informa-
tional constraints (i.e., interactive rather than modular) to bear on deciding among
possible structures and interpretations (i.e., parallel rather than serial). Such
accounts do not deny that cognitive resources are ultimately limited, but do tac-
itly assume that the architectures and mechanisms for language processing are
not fundamentally shaped by the goal of conserving such resources. Most current
models are best viewed as lying somewhere between the two extremes.

2.2 Experimental data
As noted above, models of human language processing seek to model not only lin-
guistic competence – the ability to relate a sentence or utterance with its intended
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meaning – but also human linguistic performance. Language processing is best
viewed as a dynamic process, in which both the linguistic input and associated
processing mechanisms unfold over time. Evidence concerning how people pro-
cess language can be obtained using a variety of methods. An important aspect
of all controlled psycholinguistic experiments, however, is a clear experimental
design. Experiments are designed to test a specific hypothesis about language pro-
cessing, usually as predicted by a particular theoretical proposal or model. As an
example, let’s consider the matter of serial, incremental processing: the claim that
each word is attached into a single connected partial syntactic representation as
the sentence is read. This claim makes the prediction that any local ambiguity will
be resolved immediately and if that decision later turns out to be wrong, then
some processing difficulty will ensue. Consider the following sentences:

(2) a. The athlete [VP realized [NP her potential]]
b. The athlete [VP realized [S [NP her potential] [VP might make her famous]]]
c. The athlete [VP realized [S [NP her exercises] [VP might make her famous]]]

In sentences (2a) and (2b), a local ambiguity occurs when we encounter the
word ‘her,’ following the verb ‘realized.’ While the word ‘her’ certainly begins a
noun phrase (NP), that NP can be either the direct object of the verb, as in the
sentence (2a), or the subject of an embedded sentence, as in (2b). To investigate
whether or not people immediately consider the direct object reading, Pickering
et al. (2000b) compared processing of this ambiguity, manipulating only whether
the NP following the verb was a plausible direct object. They argued that if people
favor building the direct object reading, this will influence processing complex-
ity in two ways. First, in (2b), they will attach the NP ‘her potential’ as the direct
object, and then be surprised when they encounter the following VP, which forces
them to reanalyze the object NP as the subject of the embedded clause. For (2c),
they should also attempt the direct object attachment, but be surprised because it
is implausible, and then assume it begins an embedded clause. In an eye-tracking
study, they found evidence supporting exactly this prediction. Namely, in (2c)
people spent longer reading the NP (‘her exercises’) following the verb, than they
did reading the NP (‘her potential’) in (2b), suggesting they built a direct object
structure only to realize it is implausible. In (2b), however, people spent longer
reading the disambiguating region (the embedded VP) than in (2c), suggesting they
had committed to the (plausible) direct object reading, and then needed to revise
that analysis.

Since many different factors are known to influence reading times, most psy-
cholinguistic experiments use a design like the one just described above, in which
the difference in reading times for similar sentences (or regions of the sentence)
are compared, and where only the factor which is of interest is varied between
the sentences. One simple method which has been used effectively to investigate
incremental reading processes is the self-paced reading (SPR) paradigm. Using this
method, the sentence is presented one word at a time, and the participant must
press a key to see the next word. The latency between key presses can then be



“9781405155816_4_017” — 2010/5/8 — 12:10 — page 488 — #7

488 Matthew W. Crocker

averaged across both participants and a range of linguistic stimuli to obtain aver-
age reading times, which can then be analyzed to determine if there are statistically
significant differences in reading times resulting from the experimental manipu-
lation. Another more sophisticated method, eye tracking, provides an especially
rich, real-time window into language processing, with the added advantage of
not requiring any additional (possibly unnatural) task. Current eye-tracking tech-
nology enables the precise spatial and temporal recording of eye movements
(saccades) and fixations as people read a sentence which is displayed in its entirety
on a display. Since people often look back to earlier points in the sentence while
reading, several reading-time measures can be computed, such as first pass (the
amount of time spent in a region before the eye moves out of the region), or total
time (all the time spent reading a region, including looking back at it, etc.) (Rayner
1998).

When relating a theory or model of language processing to empirical data, it
is important to be clear about the exact nature of the relationship that is being
assumed, via a linking hypothesis. In the example described above, we implicitly
assumed that it was the surprise – of either an implausible interpretation, or a
subsequent cue that reparsing would be required – that would lead to increased
reading time. But there are many characteristics of a computational model that one
might argue would be reflected in empirically observable processing complexity.
As we will see below, everything from the frequency of the word which is being
processed, to the memory load associated with processing completely unambigu-
ous sentences, can be observed in reading times. This is one reason why carefully
controlled experiments are so essential, as are clear linking hypotheses that can be
used to relate a processing model to some empirical measure.

Reading times offer a robust and well-understood behavioral method for
establishing processing difficulty during sentence comprehension. More recently,
however, neuroscientific methods have become increasingly important for inform-
ing the development of psycholinguistic theories. This is particularly true of
event-related potentials (ERPs), which can be observed using electroencephalog-
raphy (EEG) methods. ERPs reflect brain activity, as measured by electrodes
positioned on the scalp, in response to a specific stimulus. Numerous ERP
studies have demonstrated the incrementality of language comprehension as
revealed by the on-line detection of semantic (e.g., Kutas & Hillyard 1980; 1983;
van Petten & Kutas 1990) and syntactic (e.g., Osterhout & Holcomb 1992; 1993;
Matzke et al., 2002) violations, indexed broadly by so-called N400 and P600 deflec-
tions in scalp activation respectively. However, while there are several theoretical
processing accounts which are derived from such data (Friederici 2002; Bornkessel
& Schlesewsky 2006), relatively few have led to the development of computational
models (but see Crocker et al., 2010). For this reason, we will focus here primarily
on models based on behavioral findings.

Finally, the visual world paradigm, in which participants’ eye movements to
visually displayed objects are monitored as participants listen to an unfolding
utterance, has revealed that people automatically map the unfolding linguistic
input onto the objects in their visual environment in real time (Tanenhaus et al.,
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1995). Using this method, Allopenna et al. (1998) demonstrated not only that
increased inspections of visually present objects often occur within 200 ms of their
mention, but also that such utterance-mediated fixations even reveal sublexical
processing of the unfolding speech stream. Perhaps of even greater theoretical
interest are the findings of Tanenhaus et al. (1995), revealing on-line interaction of
visual and linguistic information for sentences such as ‘Put the apple on the towel
in the box.’ Not only did listeners rapidly fixate the mentioned objects, but their
gaze also suggested the influence of the visual referential context in resolving the
structural ambiguity in this sentence (namely, whether towel is a modifier of, or
the destination for, the apple). In fact, this paradigm has also shown that compre-
hension is not just incremental, but often highly predictive: Altmann and Kamide
(1999) demonstrated that listeners exploit the selectional restrictions of verbs like
eat, as revealed by anticipatory looks to edible objects in the scene (before those
objects have been referred to) (see also Federmeier (2007) for related findings from
event-related potential studies).

3 Symbolic Models

Evidence that people understand language incrementally is perhaps one of the
most ubiquitous findings in experimental research on human sentence process-
ing. The importance of this finding for computational models is that it places a
strong constraint on candidate parsing mechanisms. Not all early computational
accounts adhered to the incrementality constraint, however. The Parsifal model
(Marcus 1980), for example, proposed a deterministic model of human parsing to
account for the observation that people are generally able to understand language
in real time. Parsifal was essentially a bottom-up LR parser, which exploited up
to three look-ahead symbols (which could be complex phrases, not just words) to
decide upon the next parsing action with certainty. This look-ahead mechanism
enabled the parser to avoid making incorrect decisions for most sentences, and
Marcus argued that those sentences where the parser failed were precisely those
cases where people also had substantial difficulty.

There are, however, several criticisms that can be leveled at Parsifal. Not only is
the parser highly non-incremental, with the capacity to leave large amounts of the
input on the stack, it also offers only a binary account of processing difficulty: easy
versus impossible. Experimental research has shown, however, that some kinds of
erroneous parsing decisions are much easier to recover from than others (for a
direct comparison of two such cases, see Sturt et al., 1999). The licensing-structure
parser (Abney 1989) responded to these criticisms by adapting a shift-reduce
parsing architecture of Pereira (1985) to operate more incrementally. Since look-
ahead must be excluded in order to maintain incrementality, the parser often faces
non-determinism during processing. For these cases, Abney proposes several pref-
erence strategies which are intended to reflect parsing principles motivated by
human behavior such as right association (Kimball 1973) (attach incoming material
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low on the right frontier of the current parse) and theta attachment (Pritchett 1992)
(attach constituents so as to maximize thematic role assignment, see Section 3.1).
Abney additionally addressed the issue of backtracking, in case parsing fails and
an alternative parse needs to be found. The licensing-structure parser, however,
is still not strictly incremental, with some parse operations delaying the attach-
ment of words and constituents. A further criticism, which applies to the accounts
proposed by Marcus, Abney, and Pritchett, is their strong reliance on verb infor-
mation to determine the parser’s actions. While this approach works reasonably
for languages like English, it is problematic for explaining parsing of verb-final
languages like Japanese, Turkish, and many others.

Resnik (1992a) reconsiders the role of space, or memory, utilization as a crite-
ria for selecting psychologically plausible parsing algorithms. As noted above,
embedding structures reveal an interesting property of human sentence pro-
cessing, illustrated by Resnik’s following examples (brackets indicate emdedded
constituents):

(3) a. [[[John’s] brother’s] cat] despises rats EASY
b. This is [the dog that chased [the cat that bit [the rat that ate the cheese]]]

EASY
c. [The rat [that the cat [that the dog chased] bit] ate the cheese] HARD

While people typically find left-embeddings (3a) and right-embeddings (3b) rel-
atively unproblematic, center-embeddings (3c) are often judged as difficult, if not
completely ungrammatical (though one can quite clearly demonstrate that they
violate no rules of grammar). Building on previous work by Abney and John-
son (1991) and Johnson-Laird (1983), Resnik (1992a) demonstrates that neither
strictly top-down (LL) nor bottom-up (LR) parsers can explain this observation.
Top-down parsing predicts only right-embeddings to be easy, while bottom-up
predicts only left-embeddings to be easy. Further, Resnik demonstrates that the
standard version of a left-corner (LC) parser, which combines top-down and
bottom-up parsing, is no different than the bottom-up parser with regard to
stack complexity. However, an arc-eager variant of the LC parser – in which
nodes that are predicted bottom-up can be immediately composed with nodes that
are predicted top-down – models the human performance correctly: left- and
right-embeddings have constant complexity, while center-embedding complexity
increases linearly with the number of embeddings. A further advantage of the arc-
eager LC parser is that it is incremental for all but a few sentence structures (for
more detailed discussion of parsing mechanisms, see Crocker 1999).

3.1 Ambiguity resolution
A central element of any model of sentence processing concerns how it deals
with lexical and syntactic ambiguity: how do we decide which representation
to assign to the current input? The assumption of incremental processing fur-
ther entails that decisions regarding which structure to pursue must be made as
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each word is processed. One simple solution to this issue is to propose a parallel
model of processing, in which all possible syntactic analyses are pursued simulta-
neously during processing. Such a solution has traditionally been discarded for
two reasons. First, for a large-scale grammar and lexicon, hundreds of analy-
ses may be possible at any point during parsing – indeed, for grammars with
left-recursion, there may in fact be an unbounded number of parses possible –
and would arguably exceed cognitively plausible memory limitations. One solu-
tion to this is to assume bounded parallelism, in which only a limited subset of
parses is considered. Second, even if one assumes parsing is (possibly bounded)
parallel, there is strong evidence that only one interpretation is consciously con-
sidered, otherwise we would never expect to observe the kind of garden-path
sentence discussed in Section 2. Thus, regardless of whether incremental process-
ing is serial or parallel, any model requires an account of which parse is to be
preferred.

There have been many proposals to explain such ambiguity preferences in the
psycholinguistic literature. Frazier (1979), building on previous work by Kimball
(1973), proposed the following two general principles:

Minimal attachment (MA): Attach incoming material into the phrase marker
being constructed using the fewest nodes consistent with the well-
formedness rules of the language.

Late closure (LC): When possible, attach incoming material into the clause or
phrase currently being parsed.

Recall example (2) above. When the noun phrase ‘her potential’ is encountered, it
can be attached directly either as the object of ‘realized’ (2a), or as the subject of the
embedded clause (2b). The latter structure, however, requires an additional node
in the parse-tree, namely an S node intervening between the verb and the noun
phrase. Thus MA correctly predicts the human preference to interpret the noun
phrase as a direct object, until syntactic or semantic information disambiguates to
the contrary.

While these parsing principles dominated sentence processing for some time,
they have been criticized on several grounds. First, as noted by Abney (1989) and
Pritchett (1992), MA is highly sensitive to the precise syntactic analysis assigned
by the grammar. The adoption of binary branching structures in many modern
syntactic theories means that MA fails to differentiate between a number of ambi-
guities (including the one in Figure 17.2, discussed below). In response to this,
several theories proposed a shift away from MA towards what Pritchett (1992)
dubbed theta attachment (see also Abney 1989; Crocker 1996 for related proposals).
Theta attachment states that the parser should attempt to maximally satisfy verb
argument relations whenever possible, and thus prioritize the parsing of phrases
into such argument positions, where they will receive a semantic, or thematic,
role from the verb (Fillmore 1968). Returning to sentence (2a), theta attachment
asserts that attaching the noun phrase ‘her potential . . .’ as a direct object is pre-
ferred because not only is the verb able to assign a thematic role (THEME) to the
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noun phrase, but the noun phrase also receives a thematic role at that point in
processing. If the noun phrase were attached as the embedded subject, as in (2b),
it would temporarily have no role assigned to it (until the embedded predicate
‘might make . . .’ is processed). Thus the latter option is dispreferred.

The above approaches are typically associated with modular processing
accounts (Fodor 1983), since they emphasize the role of purely syntactic decision
strategies for parsing and disambiguation. Serial parsing is also assumed, namely
that the human language processor only constructs one parse – backtracking or
reanalyzing the sentence if that parse turns out to be incorrect. For these reasons,
such models of processing are typically viewed as restricted accounts, since they
fundamentally assume a processing architecture which is limited by the kinds of
information it has access to (i.e., syntactic), and the memory resources available
for parsing.

While there is a considerable body of experimental evidence supporting the
importance of such syntactic strategies, there is also evidence suggesting that peo-
ple are nonetheless able to draw upon a large repertoire of relevant constraints
in resolving ambiguity, such as specific lexical biases, and semantic plausibility
(Gibson & Pearlmutter 1998). The general claim of such interactive constraint-based
approaches is that parsing is not a serial process influenced solely by syntac-
tic strategies, but rather that ‘multiple alternatives are at least partially available,
and that ambiguity resolution is accomplished by the use of correlated constraints from
other domains’ (Trueswell & Tanenhaus 1994). While one might envisage such
a model in symbolic terms, they typically rely on the use of probabilistic con-
straints, and are better viewed as hybrid models, which we will we discuss in
Section 6.

3.2 Working memory
The above discussion of the left-corner parser might lead one to believe that
center-embeddings are the only unambiguous syntactic structures which cause
processing difficulty. Gibson (1991), however, argues that processing complex-
ity arising from working memory demands can also explain ambiguity resolu-
tion preferences. Building on Pritchett’s theta attachment strategy (1992), Gibson
attributes a cost to the parser’s need to maintain thematic role assignments and
role fillers in memory. He argues that such a working-memory metric can be
used not only to explain increased processing complexity for structures with
locally high memory demands, but also to rank candidate parsers in the face of
local ambiguity. That is, the parser will generally prefer interpretations which
have lower cost with respect to unfulfilled role relations, thus predicting dis-
ambiguation behavior in a manner similar to Pritchett (1992). Gibson’s depen-
dency locality theory (1998) refines this approach further, by taking into account
the distance between role assigners and role recipients (see also Gibson 2003
for an overview). Lewis et al. (2006) propose an account of parsing which
draws on a number of general observations concerning the dynamics of memory
retrieval that have been established across cognitive domains. These principles
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have also been implemented within the general cognitive architecture ACT-R
(Anderson et al., 2004), enabling Lewis and colleagues to provide an indepen-
dently motivated proposal regarding the role of working memory in sentence
processing.

4 Probabilistic Models

The symbolic accounts outlined above offer insight into both how hierarchical sen-
tence structure and meaning are recovered incrementally, and when processing of
such sentences may be difficult as a consequence of either working memory lim-
itations or the need to reanalyze the sentence if the parser has followed a garden
path. A variety of empirical results, however, suggest that such symbolic, mod-
ular, and serial processing mechanisms may not scale sufficiently to account for
human linguistic performance in general (Crocker 2005). First, serial backtrack-
ing parsers are known to be extremely inefficient as grammars are scaled up to
provide realistic linguistic coverage. In addition, such models accord no role to
linguistic experience despite a wealth of experimental findings indicating that
frequency information plays a central role in determining the preferred part of
speech, meaning, and subcategorization frame for a given word. Finally, while
cognitive resources like working memory undoubtedly constrain language pro-
cessing, and provide an index of certain kinds of processing complexity, it has
been argued that people are in general able to understand most language effec-
tively and without conscious effort. Indeed, one of the most challenging tasks
facing computational psycholinguistics is to explain how people are able to deal
with the complexity and pervasive ambiguity of natural language so accurately
and in real time: what Crocker (2005) dubs the performance paradox.

Probabilistic approaches offer a natural means to address the above issues. Not
only do they provide a means to develop experience-based models, which can
exploit the kinds of frequency information that people have been shown to use,
but probabilistic methods have also proven extremely successful for developing
wide-coverage models of language processing (see Chapter 3, STATISTICAL LAN-
GUAGE MODELING, Chapter 4, THEORY OF PARSING, and Chapter 13, STATISTICAL
PARSING). Perhaps more fundamentally, probabilistic methods invite us to view
language processing less in terms of the difficulties people exhibit on some kinds
of constructions, and instead emphasize the remarkable performance that peo-
ple exhibit in understanding language in general. Chater et al. (1998) explicitly
argue that human language processing may be fruitfully viewed as a rational pro-
cess, in Anderson’s sense of the term (1990). If one views language understanding
as a rational cognitive process one can begin by first identifying the goal of that
process – e.g., to find the correct interpretation of a sentence – and then reason
about the function that best achieves that goal and accounts for observed behav-
ior. One obvious rational analysis of parsing is to assume that the parser chooses
operations so as to maximize the likelihood of finding the intended global inter-
pretation of the sentence, taking into account known cognitive and environmental
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limitations. Given the overwhelming evidence that people process language incre-
mentally, we can plausibly define the function that is implemented by the human
language processor as follows:

(4) t̂i = argmax
ti

Pi(ti|w1...i, K), ∀ti ∈ Ti

This states that, as each word wi is processed, the preferred analysis of the
sentence-initial substring w1 . . . wi, t̂i, corresponds to the analysis ti – in the set
of possible analyses Ti that span the sentence up to and including wi – that has the
highest likelihood given the words of the sentence, and our general knowledge K.2

Crucially, this equation provides only a high-level characterization of how people
process language, namely at Marr’s computational level, which we will refer to as
the likelihood hypothesis. It leaves aside many crucial issues concerning how the anal-
yses are constructed and their probabilities estimated. In principle, the likelihood
of a particular analysis of a sentence might reflect not only our accumulated lin-
guistic experience as it relates to the current input, but also the current context and
our general knowledge K. But just as statistical language processing techniques
have vastly simplified the kind of information used to condition the probabilities,
it may be reasonable to assume that people similarly approximate probabilities,
at least during initial processing of the input. In the following sections we review
several proposals that can be viewed as instances of the likelihood hypothesis.

4.1 Lexical processing
Much of the ambiguity that occurs in syntactic processing in fact derives from
ambiguity at the lexical level (MacDonald et al., 1994). Furthermore, it is pre-
cisely at the lexical level that frequency effects have been most robustly observed:
high-frequency words are processed more quickly than low-frequency ones
(Grosjean 1980); words are preferentially understood as having their most likely
part of speech (Trueswell 1996; Crocker & Corley 2002); verb subcategorization
preferences rapidly influence parsing decisions (Ford et al., 1982; Garnsey et al.,
1997; Trueswell et al., 1993); and semantically ambiguous words are preferably
associated with their more frequent sense (Duffy et al., 1988). These findings all
suggest that a likelihood-based resolution of lexical ambiguity will substantially
reduce parsing ambiguity, and assist in guiding the parser towards the most likely
parse in a manner that reflects human behavior.

Based on this rationale, Corley and Crocker (2000) propose a broad-coverage
model of lexical category disambiguation as a means for substantially constraining
the preferred syntactic analysis. Their approach uses a bigram model to incremen-
tally determine the most probable assignment of part-of-speech tags, t̂0 . . . t̂i, for
the (sub)string of input words w0 . . . wi, as follows:

(5) t̂0 . . . t̂i = argmax
t0...ti

P(t0 . . . ti, w0 . . . wi) ≈
i∏

j=1

P(wj|tj)P(tj|tj−1)
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The bigram model results in the use of both the unigram likelihood of word wj
given a possible part of speech tj, P(wj|tj), as well as the context as captured by the
immediately preceding part-of-speech tag P(tj|tj−1). The likelihood for a particular
sequence of parts of speech, ranging from w0 to wi, is the product of this value as
computed for each word in the string. In order to efficiently determine the most
likely part-of-speech sequence as the sentence is processed, the Viterbi algorithm
is used (Viterbi 1967).

(6) a. The warehouse prices are cheaper than the rest.
b. The warehouse makes are cheaper than the rest.

This model capitalizes on the insight that many syntactic ambiguities have a
lexical basis, as in (6). These sentences are ambiguous between a reading in which
‘prices’ (6a) or ‘makes’ (6b) serves as either the main verb or part of a compound
noun. Once trained on a large corpus, the model predicts the most likely part
of speech for ‘prices,’ correctly accounting for the fact that people preferentially
interpret ‘prices’ as a noun, but ‘makes’ as verb (Frazier & Rayner 1987; MacDonald
1993). In the latter case, a difficultly in processing is observed once the sentence
disambiguates ‘makes’ as a noun (Crocker & Corley 2002). The model similarly
accounts for the finding that categorially ambiguous words like ‘that’ are resolved
by their preceding context: in sentence-initial position, ‘that’ is more likely to be a
determiner, while post-verbally, it is more likely to be a complementizer (Juliano
& Tanenhaus 1993).

Interestingly, the use of the Viterbi algorithm to determine the most likely
sequence incrementally predicts that reanalysis may occur when the most prob-
able part-of-speech sequence at a given point requires revising a preceding part
of speech assigment. This behavior in the model finds support from a study by
MacDonald (1994) showing that reduced-relative clause constructions, like those
illustrated in (7) were rendered easier to process when the word following the
ambiguous verb (simple past vs. participle) made the participle reading more
likely.

(7) a. The sleek greyhound admired at the track won four trophies.
b. The sleek greyhound raced at the track won four trophies.

Since ‘admired’ (7a) is transitive, the fact that is it not followed by a noun phrase
is a clear cue that its part of speech should be past participle, and parse inside the
relative clause. For ‘raced’ (7b), however, which is preferentially intransitive, the
preposition ‘at’ provides no such cue for rapid reanalysis, resulting in a garden
path when the main verb ‘won’ is reached.

Importantly, however, the model not only accounts for a range of disambigua-
tion preferences rooted in lexical category ambiguity, it also offers an explanation
for why, in general, people are highly accurate in resolving such ambiguities. It is
also worthwhile to distinguish between various aspects of this account in terms of
Marr’s three levels. Equation (5) provides the computational theory, the likelihood
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Figure 17.1 Relative clause attachment ambiguity.

function defining the goal of the process, and its algorithmic instantiation in terms
of the bigram model and the Viterbi algorithm. This highlights the point that one
might change the algorithmic level – e.g., by using a trigram model, should there
be empirical evidence to support this – without in any way changing the compu-
tational theory. The implementation level is not provided, since this would entail
a characterization of how the bigram model is processed in the brain and how
probabilities are estimated over the course of our linguistic experience (which we
simply approximate using corpus frequencies).

4.2 Syntactic processing
While lexical disambiguation is an important part of sentence processing, and goes
a considerable way towards resolving many structural ambiguities, Corley and
Crocker’s model (2000) is clearly not a full model of syntactic processing. Indeed,
Mitchell et al. (1995) have taken the stronger view that the human parser not only
makes use of lexical frequencies, but also keeps track of structural frequencies. Evi-
dence from relative clause attachment ambiguity (see Figure 17.1) has been taken
to support an experience-based treatment of structural disambiguation. Such con-
structions are interesting because they do not hinge on lexical preferences. When
reading sentences containing the ambiguity in Figure 17.1, English comprehen-
ders appear to follow Frazier’s late closure strategy, demonstrating a preference
for low attachment (where ‘the actress’ is modified by the RC ‘who. . .’). Spanish
readers, in contrast, when presented with equivalent Spanish sentences, prefer
high attachment (where the RC concerns ‘the servant’) (Cuetos & Mitchell 1988).
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This finding provided evidence against the universality of Frazier’s late closure
strategy (Section 3.1), leading Mitchell et al. (1995) to propose the tuning hypothe-
sis, which asserts that the human parser deals with ambiguity by initially selecting
the syntactic analysis that has worked most frequently in the past (Brysbaert &
Mitchell 1996). Later experiments further tested the hypothesis, examining school
children’s preferences before and after a period of two weeks in which exposure to
high or low examples was increased. The findings confirmed that even this brief
period of variation in experience influenced the attachment preferences as predicted
(Cuetos et al., 1996).

Models of human syntactic processing have increasingly exploited probabilis-
tic grammar formalisms, such as probabilistic context-free grammars (PCFGs) to
provide a uniform probabilistic treatment of lexical and syntactic processing and
disambiguation (for PCFGs, see Manning & Schütze 1999, as well as Chapter 4,
THEORY OF PARSING, and Chapter 13, STATISTICAL PARSING). PCFGs augment
standard context-free grammars by annotating grammar rules with rule probabil-
ities. A rule probability expresses the likelihood of the left-hand side of the rule
expanding to its right-hand side. As an example, consider the rule VP → V NP in
Figure 17.2(a). This rule says that a verb phrase expands to a verb followed by a
noun phrase with a probability of 0.7. In a PCFG, the probabilities of all rules with
the same left-hand side must sum to one:

(8) ∀i
∑

j

P(Ni → ζ j) = 1

where P(Ni → ζ j) is the probability of a rule with the left-hand side Ni and the
right-hand side ζ j. For example, in Figure 17.2(a) the two rules VP → V NP and
VP → VP PP share the same left-hand side (VP), so their probabilities sum to one.
The probability of a parse-tree generated by a PCFG is computed as the product
of the rule probabilities:

(9) P(t) =
∏

(N→ζ ) ∈ R

P(N → ζ )

where R is the set of all rules applied in generating the parse-tree t. While rule
probabilities are in theory derived during the course of a person’s linguistic expe-
rience, most models rely on standard techniques for estimating probabilities such
as maximum likelihood estimation – a supervised learning algorithm which calculates
the probability of a rule based on the number of times it occurs in a parsed train-
ing corpus. An alternate, unsupervised method is the expectation-maximization
(EM) algorithm (Baum 1972; see also Chapter 12, SPEECH RECOGNITION), which
uses an unparsed training corpus to estimate a set of rule probabilities that makes
the sentences in the corpus maximally likely (see also Chapter 8, UNSUPERVISED
LEARNING AND GRAMMAR INDUCTION).

Just as lexical frequency may determine the ease with which words are retrieved
from the lexicon, and the preferred morphological, syntactic, and semantic inter-
pretations we associate with them, Jurafsky (1996) argues that the probability of a
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(a) S → NP VP 1.0
PP → P NP 1.0
VP → V NP 0.7
VP → VP PP 0.3

NP → Det NP 0.6
NP → NP PP 0.2
NP → John 0.2
P → with 1.0

V → hit 1.0
N → man 0.5
N → book 0.5
Det → the 1.0

(b) t1; (c) t2;

S 1.0
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NP 0.6Det 1.0
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P(t1) = 1.0 × 0.2 × 0.7 × 1.0 × 0.2

× 0.6 × 1.0 × 1.0 × 0.5 × 1.0

× 0.6 × 1.0 × 0.5 = 0.00252

P(t2) = 1.0 × 0.2 × 0.3 × 0.7 × 1.0

× 1.0 × 0.6 × 1.0 × 0.6 × 1.0

× 0.5 × 1.0 × 0.5 = 0.00378

Figure 17.2 An example for the parse-trees generated by a probabilistic-context free
grammar (PCFG) (adapted from Crocker & Keller 2006). (a) The rules of a simple PCFG
with associated rule application probabilities. The two parse-trees, (b) and (c), generated
by the PCFG in (a) for the sentence ‘John hit the man with the book,’ with the respective parse
probabilities, P(t1) and P(t2), calculated below.

grammar rule corresponds to how easily that rule can be accessed by the human
sentence processor during parsing. The consequence of this claim is that struc-
tures with greater overall probability should be easier to construct, and therefore
preferred in cases of ambiguity. The PCFG in Figure 17.2(a) generates two parses
for the the sentence ‘John hit the man with the book.’ The first parse t1 attaches the
prepositional phrase ‘with the book’ to the noun phrase (low attachment) with a
total probability of 0.00252 (see Figure 17.2(b)). The alternative parse t2, with the
prepositional phrase attached to the verb phrase (high attachment) is assigned a
probability of 0.00378 (see Figure 17.2(c)). Under the assumption that the proba-
bility of a parse determines processing ease, the grammar will predict that t2 (high
attachment) will be generally preferred to t1, as it has a higher probability.

In applying PCFGs to the problem of human sentence processing, Jurafsky
(1996) makes two important observations. First he assumes that parsing, and the
computation of parse probabilities, takes place incrementally. The consequence is
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Table 17.1 Conditional probability of a
verb frame given a particular verb, as
estimated using the Penn Treebank

Verb Frame P(Frame|Verb)

discuss <NP PP> 0.24
<NP> 0.76

keep <NP PP> 0.81
<NP> 0.19

that the parse faces a local ambiguity as soon as it hears the fragment ‘John hit
the man with . . .’ and must decide which of the two possible structures is to be
preferred. This entails that the parser is able to compute prefix probabilities for
sentence-initial substrings, as the basis for comparing alternative (partial) parses
(Stolcke 1995). For the example in Figure 17.2, it should be clear that the prefer-
ence for t2 would be predicted even before the final NP is processed, since the
probability of that NP is the same for both structures.

The second major contribution of Jurafsky’s approach (1996) is the proposal to
combine structural probabilities generated by a probabilistic context-free gram-
mar with probabilistic preferences of individual lexical items, using Bayes’s rule.
The model therefore integrates lexical and syntactic probabilities within a single
mathematically founded probabilistic framework. As an example consider the
sentences in (10), which have a similar syntactic ambiguity to that outlined in
Figure 17.2.

(10) a. ‘The women discuss the dogs on the beach.’
b. ‘The women keep the dogs on the beach.’

The intuition when one reads these sentences is that low attachment of the PP
‘on the beach’ to the NP ‘the dogs’ is preferred for (10a), while high attachment to the
verb is preferred for (10b). A standard PCFG model, however, will always prefer
one of these (in our example PCFG, high attachment). Following Ford et al. (1982),
Jurafsky argues that we must also take into account the specific subcategorization
preferences of the verb (Table 17.1), in addition to the structural probabilities of
the PCFG.

Jurafsky’s model computes the probabilities of these two readings based
on two sources of information: the overall structural probability of the high-
attachment reading and the low-attachment reading, and the lexical probability of
the verb occurring with a <NP PP> or a <NP> frame. The structural probability
of a reading is independent of the particular verb involved; the frame probability,
however, varies with the verb. This predicts that in some cases lexical probabili-
ties can override the general structural probabilities derived from the PCFG. If we
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combine the frame probabilities from Table 17.1 with the parse probabilities deter-
mined with the PCFG in Figure 17.2, we can see that high-attachment preference
is maintained for ‘keep,’ but low attachment becomes more likely for ‘discuss.’

Strictly speaking, Jurafsky’s model does not aim to recover the single most
likely parse during processing, as suggested in equation (4). Rather he argues for
a bounded parallel model, which pursues the most probable parses and prunes
those parses whose probability is less than 1

5 the probability of the most likely
parse. Strong garden paths are predicted if the ultimately correct syntactic analysis
is one which has been pruned during parsing.

4.3 Wide-coverage models
Jurafsky (1996) outlines how his framework can be used to explain a variety of
ambiguity phenomena, including cases like (6) and (7) discussed above. How-
ever, it might be criticized for its limited coverage, i.e., for the fact that it uses
only a small lexicon and grammar, manually designed to account for a handful of
example sentences. Given that broad-coverage parsers are available that compute
a syntactic structure for arbitrary corpus sentences, it is important that we demand
more substantial coverage from our psycholinguistic models to ensure they are not
overfitting to a small number of garden-path phenomena.

Crocker and Brants (2000) present the first attempt at developing a truly wide-
coverage model, based on the incremental probabilistic parsing proposals of
Jurafsky (1996). Their approach combines the wide-coverage psycholinguistic
bigram model of Corley and Crocker (2000) with the efficient statistical parsing
methods of Brants (1999). The resulting incremental cascaded Markov model has
broad coverage, relatively good parse accuracy in general, while also account-
ing for a range of experimental findings concerning lexical category and syntactic
ambiguities. For practical reasons, Crocker and Brants (2000) do not include
detailed subcategorization preferences for verbs, but rather limit this to transi-
tivity, which is encoded as part of a each verb’s part of speech. Adopting a parallel
parsing approach not unlike that of Jurafsky, Crocker and Brants (2000) also argue
that re-ranking of parses, not just pruning of the correct parse, is a predictor of
human parsing complexity.

This research demonstrates that, when such models are trained on large cor-
pora, they are indeed able to account for human disambiguation behavior such
as that discussed by Jurafsky (1996). In related work, Brants and Crocker (2000)
also demonstrate that broad-coverage probabilistic models maintain high overall
accuracy even under strict memory and incremental processing restrictions. This is
important to support the claim that rational models maintain their near optimality
even when subject to such cognitively motivated constraints.

4.4 Information-theoretic models
The probabilistic parsing proposals of Jurafsky (1996) and Crocker and Brants
(2000) provide relatively coarse-grained predictions concerning human process-
ing difficulty, based on whether or not the ultimately correct parse was assigned a
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relatively low probability (or pruned entirely), and must be re-ranked (or even
reparsed). Drawing on concepts developed in the statistical language model-
ing literature (see Chapter 3, STATISTICAL LANGUAGE MODELING), Hale (2001)
proposes a more general linking hypothesis between incremental probabilistic
processing and processing complexity. Specifically, Hale suggests that the cog-
nitive effort associated with processing the next word, wi, of a sentence will be
proportional to its surprisal. Surprisal is measured as the negative log-probability
of a word, such that surprising (unlikely) words contribute greater informa-
tion than words that are likely, or expected, given the prefix of the sentence,
w1 . . . wi−1.

(11) Effort ∝ − log P(wi|w1 . . . wi−1, Context) ≈ − log
P(Ti)

P(Ti−1)

The notion of information, here, derives from information theory (Shannon 1948),
where highly likely or predictable words are viewed as providing little infor-
mation, while unexpected words provide more. While, in principle, all our
knowledge about the words w1 . . . wi−1, linguistics constraints, and non-linguistic
context will determine the probability of wi, Hale assumes the probability can be
reasonably approximated by a PCFG. Specifically, he proposes that the probability
of a given (sub)string w1 . . . wi is Ti, which is the sum of all possible parses ti for
the prefix string (equation 11). Thought of in this way, surprisal at word wi will be
proportional to the summed probability of all parses which are disconfirmed by the
transition from word wi−1 to word wi.

Hale’s theory (2001) thus assumes full parallelism, and can be thought of as
associating cognitive processing effort with the sum of all disambiguation that is
done during parsing. This contrasts with standard accounts in which it is only
disconfirmation of the preferred interpretation which is assumed to cause pro-
cessing difficulty. While the assumption of full parallelism raises some concerns
regarding cognitive plausibility, Hale’s model is able to account for a range of
garden-path phenomena as well as processing complexity in unambiguous con-
structions, such as the dispreferred status of object versus subject relative clauses.
In recent work, Levy (2008) refines and extends Hale’s approach (2001) in sev-
eral respects, improving the mathematical properties of the surprisal theory while
also extending the empirical coverage of the general approach. Hale (2003) pro-
poses another variant on this approach, the entropy reduction hypothesis, in which
cognitive effort is linked to a slightly different measure, namely the reduction in
uncertainty about the rest of the sentence.

4.5 Probabilistic semantics
One major limitation of cognitive models of sentence processing is their empha-
sis on syntactic aspects of processing. This was arguably justified to some extent
during the 1980s, when modular theories of language, and cognition in gen-
eral, prevailed. Since then, however, a wealth of empirical results have shown
that semantics and plausibility do not only influence our final interpretation of



“9781405155816_4_017” — 2010/5/8 — 12:10 — page 502 — #21

502 Matthew W. Crocker

a sentence, but that such information rapidly informs on-line incremental com-
prehension. In the case of the probabilistic parsing models discussed above,
probabilities are conditioned purely on syntactic and limited lexical frequencies.
For primarily practical reasons, a range of independence assumptions are made.
Our PCFG above, for example, will assign exactly the same probability to the sen-
tences ‘John hit the man with the book’ and ‘John hit the book with the man,’ since
exactly the same rules of grammar are used in deriving the possible parse-trees.
Yet clearly the latter is semantically implausible, regardless of how it is parsed,
and therefore should be assigned a lower probability.

In experimental psycholinguistics, the on-line influence of semantic plausibility
has been investigated by varying the argument of a particular verb–argument–
relation triple, often called thematic fit. McRae et al. (1998) investigated the
influence of thematic fit information on the processing of the main clause/reduced-
relative clause(MC/RR) ambiguity as illustrated in the sentences below.

(12) a. ‘The pirate terrorized by his captors was freed quickly.’
b. ‘The victim terrorized by his captors was freed quickly.’

During incremental processing of sentences like (12a), the prefix ‘The pirate ter-
rorized . . .’ is ambiguous between the more frequent main clause continuation (e.g.,
as in ‘The pirate terrorized the Seven Seas’) and a less frequent reduced-relative con-
tinuation as shown in (12a), where ‘terrorized’ heads a relative clause that modifies
‘pirate.’ The subsequent by-phrase provides strong evidence for the reduced-
relative reading, signaling the absence of a direct object which would otherwise
be required if ‘terrorized’ were in simple past tense, and suggests it is more likely a
past participle. Finally the main verb region ‘was freed’ completely disambiguates
the sentence.

Evidence from reading-time experiments has shown that readers initially have
a strong preference for the main clause interpretation over the reduced relative,
but that this preference can be modulated by other factors (e.g., Rayner et al.,
1983; Crain & Steedman 1985; Trueswell 1996). McRae et al. (1998), in particu-
lar, showed that good thematic fit of the first NP as an object of the verb in the case
of victim in (12b) allowed readers to partially overcome the main clause prefer-
ence and more easily adopt the dispreferred reduced-relative interpretation, which
makes the first NP the object of the verb (as opposed to the main clause reading,
where it is a subject). Reading-time effects, both on the ambiguous verb and in
the disambiguating region, suggest that the thematic fit of the first NP and the
verb rapidly influences the human sentence processor’s preference for the two
candidate structures.

Narayanan and Jurafsky (1998) outline how Bayesian belief networks can be
used to combine a variety of lexical, syntactic, and semantic constraints. The
central idea is that we can construct a belief network which integrates multiple
probabilistic sources of evidence, including: structural probabilities determined
by the PCFG; subcategorization preferences as motivated by Jurafsky (1996); verb
tense probabilities; thematic fit preferences; and so on. The central problem with
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this framework is that, while extremely powerful and flexible, there is at present
no general method for parsing and constructing such Bayesian belief networks
automatically. Rather, the networks must be constructed by hand for each pos-
sible structure to be modeled. We therefore leave aside a detailed discussion of
this approach, while emphasizing that it may provide a valuable framework for
modeling specific kinds of probabilistic constraints (for a detailed discussion, see
Jurafsky 2003).

In recent work, Pado et al. (2009) extend standard probabilistic grammar-based
accounts of syntactic processing with a model of human thematic plausibility. The
model is able to account for syntactic and semantic effects in human sentence
processing, while retaining the main advantages of probabilistic grammar-based
models, namely their ability naturally to account for frequency effects and their
wide coverage of syntactic phenomena and unseen input.

The probabilistic formulation of the semantic model equates the plausibility of a
verb–argument–role triple with the probability of that thematic role co-occurring
with the verb–argument pair – e.g., terrorized-victim-AGENT. The semantic model
(equation 13) estimates the plausibility of a verb–role–argument triple as the joint
probability of five variables. These are, apart from the identity of the verb v, argu-
ment a and thematic role r, the verb’s sense s, and the grammatical function gf of
the argument. The verb’s sense is relevant because it determines the set of appli-
cable thematic roles, while the grammatical function linking verb and argument
(e.g., syntactic subject or syntactic object) carries information about the thematic role
intended by the speaker.

(13) Plausibilityv,r,a = P(v, s, gf , r, a)

This type of generative model can predict the most likely instantiation for missing
input or output values, allowing it to naturally solve its dual task of identifying
the correct role that links a given verb and argument, and making a plausibility
prediction for the triple. It predicts the preferred thematic role for a verb–argument
pair, r̂v,a, by generating the most probable instantiation for the role, as shown in
equation (14).

(14) r̂v,a = argmax
r

P(v, s, gf , r, a)

The semantic model is to a large extent derived automatically from training data:
clusters of semantically similar noun and verbs are used to reduce the number
of unseen triples in the semantically annotated FrameNet corpus (Fillmore et al.,
2003). The advantage of this approach is that it eliminates the need to obtain
plausibility estimates experimentally (McRae et al., 1998).

In addition to demonstrating that the semantic model reliably predicts a range
of plausibility judgment data, Pado et al. (2009) integrate the model into a broad-
coverage sentence processing architecture. The so-called SynSem-Integration
model, shown in Figure 17.3, combines a probabilistic parser, in the tradition of
Jurafsky (1996) and Crocker and Brants (2000), with the semantic model described
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Figure 17.3 The architecture of the SynSem-Integration model, from Pado et al. (2009).

above. The syntax model, based on Roark’s top-down probabilistic parser (2001b),
incrementally computes all possible analyses of the input and their probabilities.
The semantic model evaluates the resulting structures with respect to the plausi-
bility of the verb–argument pairs they contain. Both models simultaneously rank
the candidate structures: the syntax model ranks them by parse probability, and
the semantic model by the plausibility of the verb–argument relations contained
in the structures. The two rankings are interpolated into a global ranking to predict
the structure preferred by people. Difficulty is predicted with respect to the global
ranking and the two local rankings, via two cost functions: conflict cost quantifies
the processing difficulty incurred in situations where the input yields conflicting
evidence for which analysis to prefer, while revision cost accounts for the process-
ing difficulty caused by abandoning a preferred interpretation of the input and
replacing it with another.

The integration of plausibility into a probabilistic sentence processing archi-
tecture enables Pado et al. (2009) to model the findings of eight reading-time
studies, covering four ambiguity phenomena, including the NP/S ambiguity
(2), PP attachment (10), and reduced-relative clauses (12), discussed earlier.
Crucially, each of the modeled studies revealed the on-line influence of plausi-
bility on disambiguation during human parsing. While previous models have
accounted for some of these findings with hand crafted models for specific
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ambiguities (McRae et al., 1998; Narayanan & Jurafsky 1998; Tanenhaus et al.,
2000), the SynSem-Integration model offers a wide-coverage model, trained on
syntactically and semantically annotated corpora, avoiding the need to spec-
ify the set of relevant constraints and their probabilities by hand for each new
phenomenon to be modeled.

5 Connectionist Models of Sentence Processing

Connectionist networks, also called artificial neural networks (see Chapter 9, ARTI-
FICIAL NEURAL NETWORKS), offer an alternative computational paradigm with
which to model cognitive development and processing. While there is a tremen-
dous variety of network architectures, most derive their inspiration from an
abstraction of how the brain works: massively interconnected simple process-
ing units (often called neurons) that operate in parallel. These units are usually
grouped into layers, that themselves are an abstraction of the functional orga-
nization of the brain. Connectionist models of human sentence processing are
attractive in that they inherit the experience-based behavior of probabilistic mod-
els, as a direct consequence of their ability to learn. Connectionist systems are
typically trained through the adjustment of connection strengths in response
to repeated exposure to relevant examples, thereby providing an integrated
account of how both acquisition and subsequent processing are determined by
the linguistic environment.

Connectionist models have been successfully applied to various aspects of
human lexical processing, and crucially emphasize the importance of experi-
ence, specifically word frequency, for both learning and subsequent processing
(Plunkett & Marchman 1996; Christiansen & Chater 1999a; 2001). Recent research,
however, has also seen the emergence of sentence-level connectionist models
which place similar emphasis on distributional information.

5.1 Simple recurrent networks
Simple recurrent networks (SRNs) provide an elegant architecture for learning dis-
tributional regularities that occur in sequential inputs (Elman 1990). SRNs process
patterns (vectors) rather than symbolic representations. SRNs process sentences
one word at a time, with each new input word represented in the input layer and
interpreted in the context of the sentence processed so far – represented by the
context layer, which is simply a copy of the hidden layer from the previous time-step
(see Figure 17.4). The input layer and context layer are integrated and compressed
into the hidden layer, enabling the network to incrementally develop a distributed
representation of an unfolding sentence. Layers, in turn, may be partitioned into
assemblies that are dedicated to specific functional tasks. The output layer contains
patterns that the SRN has been trained to compute by providing targets for each
output assembly. The target output may be some desired syntactic or semantic
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Figure 17.4 A simple recurrent network.

representation, but often SRNs are simply trained to predict the next word of the
input, much like a probabilistic language model (see Chapter 3, STATISTICAL LAN-
GUAGE MODELING). Each unit in the network receives a weighted sum of the input
units feeding into it, and outputs a value according to an activation function that
generally is non-linear in order to bound the output value in an interval such as
[0,1], such as the logistic function, σ(x) = (1 + e−x)−1.

SRNs are trained by providing an input sequence and a set of targets into
which the network should transform the input sequence. The standard training
algorithm is backpropagation, an optimization technique that uses error signals
derived from the difference between the network’s output and target to update
the network weights to more closely approximate the targets on the next round
of updates (Rumelhart et al., 1986). The weights between units could themselves
grow without bound during training, but an input vector x transformed by the
matrix of weights W to produce an output vector y that has been passed through
the activation function σ ensures y remains bounded. In sum, for each pair of lay-
ers connected by a weight matrix, the output vector can be calculated simply as
y = σ(Wx).

One of the strengths of SRNs is that they can be trained on unannotated linguis-
tic data, using the so-called prediction task: the network is presented with sentences,
one word at a time, and is trained to output the next word in the sentence. To do
this successfully, the network must learn those probabilistic and structural prop-
erties of the input language that constrain what the next word can be. The key
insight of SRNs is the use of the context layer, which provides an exact copy of
the hidden unit layer from the previous time-step. This allows the network to
combine information about its state at the previous time-step with the current
input word when predicting what words can follow. SRNs have been successfully
trained on simplified, English-like languages based on grammars which enforce
a range of linguistic constraints such as verb frame, agreement, and embedding
(Elman 1991). To learn these languages, the network must not only learn simple
adjacencies, like the fact that ‘the’ can be followed by ‘boy,’ but not ‘ate,’ but also
long-distance dependencies. Consider the following sentence-initial fragment:

(15) ‘The boy that the dog chased ___.’
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In predicting what word will follow chased, the network has to learn that,
although chased is a transitive verb, it cannot be followed by a noun phrase in this
context, because of the relative clause construction. Rather it must be followed by
the main verb of the sentence, which must further be singular since the boy is a
singular subject. Interestingly, however, SRNs do exhibit limitations which appear
to correspond well with those exhibited by people, namely in the processing of
center-embedding constructions, as discussed in Section 3 (Christiansen & Chater
1999b; MacDonald & Christiansen 2002).

As noted, SRNs provide a model of incremental sentence processing, in which
the network is presented with a sentence, word by word, and at each point
attempts to predict which words will follow. Not only are SRNs able to learn
complex distributional constraints with considerable success, they do so in a man-
ner which reflects the relative frequencies of the training corpus. When the SRN
is presented with the initial words of some sentence, w1 . . . wi, it activates out-
puts corresponding exactly to those words which could come next. Furthermore,
the degree of activation of the next word wi+1 corresponds closely to the condi-
tional probability, as would be computed by a statistical language model as shown
in equation (16) (see Section 4 above, and Chapter 3, STATISTICAL LANGUAGE
MODELING).

(16) P(wi+1|w1 . . . wi) = f (w1 . . . wi+1)

f (w1 . . . wi)

Here, f (w1 . . . wi+1) and f (w1 . . . wi) are the training corpus frequencies for the
word sequences w1 . . . wi+1 and w1 . . . wi respectively. The SRN thus predicts not
only which words can follow, but also the likelihood of each of those words, based
on the conditional probabilities of those words in the training corpus.

One fundamental criticism of SRNs, however, is that there is only indirect evi-
dence that syntactic structure is truly being acquired, at least in the conventional
sense. Indeed, it has been argued that, although the language used to train the SRN
was generated by a context-free grammar, the network may only be learning a
weaker, probabilistic finite state approximation in (16), rather than the true hierar-
chical structure of the language (Steedman 1999). The lack of any explicit symbolic
syntactic representation in SRNs also makes it difficult to model empirical evi-
dence concerning the processing of syntactic ambiguity, since such ambiguity is
predicated on the notion that two or more distinct hypotheses about the struc-
ture of the sentence must be distinguished during processing. The visitation set
gravitation model of Tabor et al. (1997), however, shows how reading times can
be derived from a post hoc analysis of a trained SRN. This analysis yields a land-
scape of attractors – points in multi-dimensional space that are derived from the
hidden unit activations, and which correspond to particular sentence structures.
By observing how long it takes a particular hidden unit state (representing a
word along with its left-context) to gravitate into an attractor (possibly represent-
ing a kind of semantic integration), Tabor et al. obtain a measure of the work a
comprehender does integrating a word into a developing analysis.
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Recursive neural networks (RNNs; Costa et al., 2003) can be seen as addressing
Steedman’s criticism (1999) by developing an explicit model of structure disam-
biguation processes. RNNs are trained on a complete hierarchical representation
of a syntactic tree, which is encoded in a multi-layer feed-forward network in
which the inputs represent the daughters and the output is the mother of a branch
in the tree. The network is trained by exposing it recursively, from the leaves of
the tree, to each branch of the tree until the root node is reached. The encoding of
the root node thus represents an encoding of the entire tree. This enables training
of the network using a parsed corpus (the Penn Treebank; Marcus et al., 1993), in
which the network learns to make incremental parsing decisions, as in the relative
clause attachment ambiguity shown in Figure 17.1. Just as the SRN estimates the
conditional probability of the next word given the words seen so far, the RNN esti-
mates the conditional probability of each possible attachment for the current word,
given the tree that has been built up to that point. The model therefore resembles a
probabilistic parser, with the exception that RNNs are crucially able to learn global
structural preferences (Sturt et al., 2003), which standard PCFG models are not.
RNNs can be seen as an implementation of the tuning hypothesis of Mitchell et al.
(1995) (Section 4.2), in that they are trained solely on syntactic structure, and not
specific lexical items. One clear limitation of this approach, however, is that it does
not account for lexical preferences or other kinds of non-structural biases (but see
Costa et al., 2005 for discussion of some enhancements to this approach).

One recent SRN-based model has also sought to model aspects of visually sit-
uated language understanding, as revealed by the visual worlds experiments (see
end of Section 2.2). Mayberry et al. (2009) build on the theoretical proposal of
Knoeferle and Crocker (2007), claiming that utterance-mediated attention in the
visual context is not only driven by incremental and anticipatory linguistic pro-
cessing, but crucially that it is this modulation of visual attention that underpins
the rapid influence of the relevant visual context on comprehension – which they
dub the coordinated interplay account (CIA). Mayberry et al’s CIANet (2009) is based
on a simple recurrent network (SRN; Elman 1990) that produces a case-role inter-
pretation of the input utterance. To allow visual input, CIANet incorporates an
additional input representation of a scene as (optional) visual context for the
input utterance. Scenes contain two events, only one of which is relevant to the
input utterance, where each of the two scene events has three constituents (agent,
action, and patient) that are propagated to the SRN’s hidden layer through shared
weights (representing a common post-visual-processing pathway).

In line with the language-mediated visual attention mechanisms of the CIA,
the unfolding linguistic input to CIANet modulates the activation of the relevant
scene event based on the unfolding interpretation that is represented in the hid-
den layer. A gating vector implements the attentional mechanism in CIANet, and
is multiplied element-wise with the corresponding units in each of the three lexical
representations (agent, action, and patient) of one event (see Figure 17.5). Each unit
of the gate is subtracted from 1.0 to derive a vector-complement that then modu-
lates the second event. This means that more attention to one event in the model
entails less attention to another. In this way, as the sentence is processed – possi-
bly referring to the characters or actions in one of the scene events – the relevant
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Figure 17.5 CIANet: a network featuring scene–language interaction with a basic
attentional gating mechanism to select relevant events in a scene with respect to
an unfolding utterance.

event is activated by the gating vector, causing it to have a greater influence on the
unfolding interpretation. The resulting network was shown to model the on-line
influence of scene events on comprehension (Knoeferle et al., 2005, Experiment 1),
and the relative priority of depicted events versus stereotypical knowledge
(Knoeferle & Crocker 2006, Experiment 2), with the gating vector providing a
qualitative model of experimentally observed visual attention behavior. While the
linguistic coverage of this model is currently limited to simple sentence structures,
it is currently the only cognitive model of visually situated comprehension, and
associated gaze behavior (but see Roy & Mukherjee 2005 for a psycholinguistically
inspired account of how visual processing can influence speech understanding).

6 Hybrid Models

Within computational psycholinguistics, hybrid models can broadly be seen as
identifying that class of architectures that combine explicit symbolic representa-
tions of linguistic structure and constraints with the use of connectionist inspired
constraint satisfaction and competitive activation techniques. Typically the goal
of such approaches is to combine the transparent use of symbolic linguistic rep-
resentations, which are absent in pure connectionist architectures, with the kinds
of distributed, competitive, and graded processing mechanisms that are absent in
purely symbolic approaches. One early example is Stevenson’s CAPERS model
(1994), in which each word projects its phrasal structure as it is encountered, and
initially all possible connections with the left-context are considered. Each possi-
ble attachment is assigned an activation, based on the extent to which it satisfies
or violates lexical and syntactic constraints. Each node in the structure also has
a limited amount of activation it can assign to its connections, such that as some
connections gain in strength, activation is taken away from others. The parser
iterates until it stabilizes on a single, well-formed syntactic parse as each word is
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Figure 17.6 The competitive integration model (Spivey-Knowlton & Sedivy 1995).

input. Vosse and Kempen (2000) propose a related model of parsing, based on a
lexicalized grammar, in which possible unification links between words are graded
and compete via lateral inhibition (see also Tabor & Hutchins’s SOPARSE (2004)
for a related model, and more general discussion of this approach). The resulting
model accounts for not only a range of standard parsing phenomena, but also the
behavior found in some aphasic speakers.

As mentioned at the end of Section 3.1, constraint-based models of sentence
disambiguation (MacDonald et al., 1994; Tanenhaus et al., 2000) deny that syn-
tactic processes have any distinct modular status with the human language
processor, rather assuming that all relevant constraints are integrated during pro-
cessing. Such constraint-based accounts exploit the symbolic representations of
linguistic constraints in combination with the use of competition-based constraint-
satisfaction techniques (MacDonald et al., 1994). The competitive integration model
(Spivey-Knowlton & Sedivy 1995; Spivey & Tanenhaus 1998), for example, empha-
sizes the interaction of various heterogeneous linguistic constraints in resolving
syntactic ambiguity, each with its own bias (see Figure 17.6), to be combined in
deciding between several structural interpretations. For example, one might iden-
tify a general structural bias (as proposed by the tuning hypothesis, Section 4.2),
a lexical verb frame bias, and perhaps a thematic bias (e.g., the plausibility of
either structure). McRae et al. (1998) proposed that the bias be established using
experience-based measures: either corpus frequencies (e.g., for the structural and
lexical constraint), or completions norms (e.g., for the thematic constraint). Once
the relevant linguistic constraints are stipulated, the model allows two kinds of
parameters to be set (Tanenhaus et al., 2000): (1) the weight of each constraint, e.g.,
structural, lexical, and thematic, must be determined, and (2) for each constraint,
its bias towards Structure A versus Structure B must be established.

Once the parameters for the model have been determined, reading times are
modeled by observing the time it takes the model to settle on a preferred struc-
ture as the different constraints compete. Informally, activation is propagated from
each constraint to a particular structural candidate in accordance with the con-
straints bias. The activation of a given structure is then computed as the weighted
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sum of the activations from each constraint. This activation is then propagated
back to the constraints, and another iteration is performed. Once the activation
for a particular structure exceeds a specific threshold value, the system begins
processing the next word. The number of iterations required for processing each
word is then directly linked to the reading times observed during self-paced read-
ing. McRae et al. (1998) demonstrate how the model can be used successfully to
predict reading times for reduced-relative clauses, as a function of their semantic
plausibility, as in example (12), above.

One shortcoming of this approach, however, is that the model separates the
mechanism which builds interpretations from the mechanism which chooses the
interpretation. While independent modeling of the constraint reconciliation mech-
anisms might simply be viewed as abstracting away from the underlying structure
building processes, the approach implies that structure building itself does not
contribute to processing complexity, since the constraint integration mechanisms
alone determine reading times. Furthermore, it has been standard practice to
construct a separate model for each syntactic disambiguation phenomenon, each
with different (possibly overlapping) constraints, and different constraint weights
(Tanenhaus et al., 2000). This, combined with the already substantial number of
degrees of freedom, clearly reduces the predictive capacity and falsifiability of
such models. Further empirical challenges to such constraint satisfaction mod-
els have also been made (Frazier 1995; Binder et al., 2001; but see also Green &
Mitchell 2006).

7 Concluding Remarks

The challenges of natural language understanding are daunting. Language is
inherently complex – drawing on different levels of linguistic competence, as well
as world and contextual knowledge – while also being highly ambiguous. That
people are nonetheless able to comprehend language accurately and in real time is
a remarkable feat that is unmatched by any artificial system. Computational psy-
cholinguistics is concerned with modeling how people achieve such performance,
and seeks to develop implemented models of the architectures, mechanisms, and
representations involved. The approaches are diverse, ranging from purely sym-
bolic accounts to neurally inspired connectionist approaches, with hybrid and
probabilistic models occupying the landscape in between. For reasons of space,
we have focused our attention here on models of sentence processing, leaving
aside models of lexical access (McClelland & Elman 1986; Norris 1999; Norris
et al., 2000). Equally, we have not addressed the topic of language acquisition,
which is concerned with how our linguistic knowledge emerges as a consequence
of linguistic experience. While the goals of acquisition and processing models dif-
fer with respect to the kinds of empirical data they attempt to explain, ultimately
it is essential that models of adult sentence comprehension be the plausible end
result of the acquisition process. The increasing dominance of experience-based
models of language processing, whether connectionist or probabilistic, holds
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promise for a uniform and possibly even integrated account of language acquisi-
tion and adult performance (Chater & Manning 2006). Indeed, language learning
drove the early development of connectionist models of lexical and syntactic
acquisition (Rumelhart & McClelland 1987; Elman 1990) which now figure promi-
nently in computational psycholinguistics (Tabor et al., 1997; Christiansen &
Chater 1999b; 2001; Mayberry et al., 2009). Probabilistic, especially Bayesian,
approaches have also been applied to problems of learning argument structure
(Alishahi & Stevenson 2008), syntax (Clark 2001a), and semantics (Niyogi 2002).
Not surprisingly, however, many models of acquisition emphasize the role of
visual scene information (see also Siskind 1996). Knoeferle and Crocker (2006)
argue that this may explain the priority of visual context in adult sentence pro-
cessing – as modeled by the CIANet architecture (Mayberry et al., 2009) – further
demonstrating the kind of synergy that may be possible between acquisition and
processing theories in future.

Virtually all modern accounts of sentence understanding share the assumption
that language processing is highly incremental, with each encountered word being
immediately integrated into an interpretation of what has been read or heard so
far. Even this assumption, however, has been recently challenged by experimen-
tal findings suggesting that comprehension processes may build interpretations
which make sense locally, even when they are ungrammatical with respect to the
entire preceding context (Tabor & Hutchins 2004). Nonetheless, incrementality is
almost certainly the rule, even if there are occasional exceptions. Indeed, there is
an increasing emphasis on the role of predictive mechanisms in parsing, to explain
the wealth of experimental findings that people not only process language incre-
mentally, but in fact actively generate hypotheses about the words they expect to
follow. Much in the way that statistical language models assign probabilities to
the words that may come next, both probabilistic (Hale 2001; 2003; Levy 2008) and
connectionist (Elman 1990; 1991; Mayberry et al., 2009; Crocker et al., 2010) psy-
cholinguistic models potentially offer natural explanations of predictive behavior
in people.

There remain some issues which truly distinguish competing theories. For
example whether or not people actively consider multiple interpretations in
the face of ambiguity, or adopt a single one, backtracking to some alterna-
tive when necessary. Similarly, the degree of modularity is often viewed as a
defining characteristic. While it has proven challenging to decide definitively
among these positions empirically, there is increasing consensus that language
comprehension mechanisms must support the rapid and adaptive integration
of virtually all relevant information – linguistic and world knowledge, as well
as discourse and visual context – as reflected by incremental and predictive
comprehension behavior (for an overview of relevant empirical findings, see
Crocker et al., 2010).

Finally, some models that appear quite different superficially may simply be
offering accounts of processing at different levels of abstraction. Connectionist and
probabilistic approaches most often share the idea that language understanding is
an optimized process which yields, for example, the most likely interpretation
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for some input based on prior experience. Thus SRNs make very similar behav-
ioral predictions to probabilistic language models based on n-grams or PCFGs.
Typically, however, connectionist models intend to provide and account for the
algorithmic or even implementation level in Marr’s terms (recall Section 2.1),
while probabilistic approaches may be construed as theories at the higher, compu-
tational, level. That is, while connectionist learning and distributed representations
are postulated to have some degree of biological plausibility, the parsing and train-
ing mechanisms of probabilistic models typically are not. Hybrid architectures
occupy a middle ground, combining explicitly stipulated symbolic representations
with connectionist-inspired processing mechanisms.

The emergence of experience-based approaches represents a major milestone for
computational psycholinguistics, resulting in models that offer broader coverage
(Crocker & Brants 2000) and rational behavior (Chater et al., 1998; Crocker 2005),
while also explaining a wide range of experimentally observed frequency effects
(Jurafsky 2003). As can be seen from the models discussed in this article, however,
there is a tendency to isolate language processing from other cognitive processes
such as perception and action. As such, computational models are lagging behind
emerging theories of situated and embodied language processing, which empha-
size the interplay and overlap of language, perception and action (Barsalou 1999;
Fischer & Zwaan 2008; Spivey & Richardson 2009). The CIANet model (May-
berry et al. 2009) is one attempt to model visually situated comprehension, thereby
also connecting with situated language learning models, but computational psy-
cholinguistics still lags behind current experimental results and theoretical claims
concerning the integration of language with other cognitive systems. Future devel-
opments in this direction will likely connect with models of language acquisition,
and ultimately contribute to a better understanding of the origins of the human
capacity for language.

NOTES

1 The essence of this argument is that understanding language ultimately requires full
intelligence – requiring both extensive world knowledge and reasoning abilities – which
remain out of reach in the general case (Shapiro 1992).

2 I deliberately use the term analyses to abstract away from what particular linguistic
representation – lexical, syntactic, semantic, etc. – we might be interested in.
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18 Information Extraction

RALPH GRISHMAN

1 Introduction

Information extraction (IE) is the process of identifying and classifying instances
of some sort in text, based on some semantic criterion. This definition covers a
wide range of tasks, including:

• name extraction: identifying the names in a text and classifying them as
people, organizations, locations, etc.;

• entity extraction: identifying all phrases which refer to objects of specific
semantic classes, and linking phrases which refer to the same object;

• relation extraction: identifying pairs of entities in a specific semantic relation;
• event extraction: identifying instances of events of a particular type, and the

arguments of each event.

In this chapter we shall consider each of these types of extraction tasks and
methods for addressing them.

Information extraction systems began as large collections of handwritten rules,
which required considerable skill and time to develop. Since the mid-1990s, there
has been a gradual transition to corpus-trained methods – initially supervised
methods, more recently minimally supervised or even unsupervised methods. We
shall trace this development for each of the types of extraction.

In contrast to semantic analysis (see Chapter 15, COMPUTATIONAL SEMANTICS),
where the goal is to capture and formalize as much of the meaning as possible,
the goal here is to only capture selected types of relations, types of events, and
other semantic distinctions which are specified in advance. By limiting the task,
we intend to make the task tractable: to identify information which we know how
to extract (to some degree of accuracy).

We will concentrate on methods which apply to ‘free text,’ which appears
with minimal markup, such as news reports, business reports, and scientific
and technical articles. Procedures have been developed for extraction from text
with much more markup (‘semi-structured text’), as is typical for web pages;
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these procedures, generally called ‘wrappers,’ rely heavily on the markup and the
regularity of web page layout (that pages on the same site will mark up similar
items in similar ways).

Information extraction systems are developed for a particular domain and incor-
porate the semantic structures of that domain. Much of the work on IE has been in
the general news domain, and we shall draw our examples from that domain.
However, there has been substantial work in other domains which have large
quantities of text, repeated entities and events of the same type, and where there
is a need to distill the information to a structured database form. Medical records
and the biomedical literature, in particular, have received considerable attention.

2 Historical Background

The ideas of information extraction can be traced back to the proposals of Zellig
Harris in the 1950s to identify the main semantic structures of scientific sublan-
guages and then to automatically extract these structures from text (Harris 1958).
This led to the work of Naomi Sager on extraction from scientific papers and later
from medical records (Sager et al., 1987). By the 1980s a number of groups were
developing small systems for extracting different types of events from news and
military texts.

To introduce some systematic evaluation to the field of information extraction,
the US Navy organized the Message Understanding Conferences (MUCs), with
the first one in 1987. Eventually seven MUCs were held, with the last in 1998.1

Because IE covers such a broad range of possible tasks, the course of research and
development in IE was heavily influenced by these conferences, and the tasks they
defined. The first MUCs essentially involved event extraction. MUC-6 (Grishman
& Sundheim 1996) recognized that name and entity extraction were essential pre-
requisites for event extraction, and so introduced them as separate evaluations
termed ‘named entity’ and ‘template element’; MUC-7 added a relation extraction
task called ‘template relation.’

The ACE (Automatic Content Extraction) workshops followed MUC, starting in
2000, as evaluation forums for IE.2 The ACE tasks have grown over the years to
include entity, relation, and event extraction. Other innovations included multi-
lingual extraction (MUC was primarily monolingual, though MUC-5 included
Japanese) and multiple genres (including broadcast transcripts and weblogs).

This chapter will generally follow the ACE task organization, though we shall
start with name extraction, which has been the most intensively studied and
applied IE task.

3 Name Extraction

Most types of text are replete with names. Consequently, being able to identify
these names, and determine whether they are the names of people, organizations,
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locations, or other entities is an essential first step in extracting information from
a text.

When extracted, this information is typically represented in XML markup:

Mr <name type="person">Harry Hoople</name> was named CEO of
<name type="organization">Harry’s Hogs</name> of
<name type="location">San Francisco</name>.

This task and notation were introduced as part of the MUC-6 evaluation.3

For news stories, these three types are fairly standard, but there are much richer
type inventories, including type hierarchies with up to 200 name types (Sekine &
Nobata 2004). Other domains will of course involve other name types; genomics
texts, for example, involve gene and protein names. For a recent survey of the task
and approaches, see Nadeau and Sekine (2007).

3.1 Hand coded rules
The first systems for performing named entity extraction were based on hand
constructed rules. These rules consisted of regular expressions which, when they
matched the text, caused a portion of the matched text to be tagged as a named
entity. For example,

(capitalized-token)+ "Inc." → organization

(where the ‘+’ indicates one or more instances) or

"Mr" [capitalized-token? initial? capitalized-token] → person

(where the ‘?’ indicates optionality). In the latter case, the tokens in square brack-
ets (excluding ‘Mr’) are taken as the person’s name. Some person names can be
recognized from common first names:

common-first-name initial? capitalized-token → person

Such common first names can be obtained from census data. These patterns can be
complemented by lists of well-known people, companies, and locations, available
from Wikipedia4 and lists of major corporations.

The accuracy of recognition can typically be improved by several percent
through the use of a cache: a list of names in the document which have already
been identified and classified. Many names will appear more than once in a doc-
ument. One instance may be in a context which allows the name to be classified,
while another instance is in an uninformative context; by making two passes and
identifying instances of the same name, we can classify both instances correctly.
For example, in

Prescott Adams announced the appointment of a new vice president for sales. Mr Adams
explained . . .
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the tagger may initially be uncertain whether ‘Prescott Adams’ is the name of a firm
or person. However, once it encounters ‘Mr Adams’ it can tag ‘Prescott Adams’ as
a person with considerable confidence. Such a cache can even be extended to an
entire collection of documents (Borthwick 1999).

Such hand coded rules are hard to beat if developed with a large test collection
for assessing each rule revision, but require considerable skill and effort.

3.2 Supervised learning
Hand tagging a corpus with NE (named entity) information, using a small set
of name classes, is a relatively straightforward and intuitive task. Consequently,
there has been considerable work on training NE taggers from an NE-annotated
corpus.

NE tagging involves identifying the extent and type of each name in the text.
This can be reformulated as a task of assigning a tag to each token by using BIO
tags. The first token of a person name is tagged B-PERSON; subsequent tokens
are tagged I-PERSON. Similarly, organization names are tagged with B-ORG and
I-ORG; location names are tagged with B-LOCATION and I-LOCATION. Tokens
which are not part of a name are assigned the tag O. For example,

Mr O
Harry B-PERSON
Hoople I-PERSON
was O
named O
CEO O
of O
Harry’s B-ORG
Hogs I-ORG
of O
San B-LOCATION
Francisco I-LOCATION
. O

Assigning a tag to each token in a sequence is termed a sequence tagging task.
Several other natural language processing tasks can be formulated as sequence
tagging tasks, including part-of-speech tagging and chunking. A number of dif-
ferent types of models have been developed and applied to these tasks; some of
these are discussed in Chapter 5, MAXIMUM ENTROPY MODELS.

One of the earliest corpus-trained NE tagging systems was Nymble (Bikel et al.,
1997), an HMM (hidden Markov model). Nymble used a simple state space, with
a single state for each name type plus an ‘other’ (no name) state; context infor-
mation (for example, that ‘Mr’ precedes a person name) was captured by using
bigram- and unigram-conditioned probabilities and several levels of smoothing.
Alternatively, context information can be captured by using multiple states for
each name type.
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HMMs were followed by maximum entropy models (including MEMMs –
maximum entropy Markov models), which provided greater flexibility in incorpo-
rating specialized features (such as particular lists of names or patterns of tokens)
into the model (Borthwick et al., 1998).

Since then a wide range of other sequence models have been applied to NE
tagging, including conditional random fields and models based on support vector
machines (Tjong Kim Sang & de Meulder 2003).

3.3 Weakly supervised learners
If one instance of a token sequence is a name of a given type, other instances of
the same sequence are likely to represent a name of the same type. We can take
advantage of this property to create a ‘bootstrapping’ name tagger which is given
only a small ‘seed’ set of names (or name contexts).

Suppose we start with a few indicative name contexts; for example, that ‘Mr’ or
‘Mrs’ is followed by a person name, and that a name ending in ‘Inc.’ or ‘Corp.,’ for
example, is an organization name. We take a large, untagged corpus and tag all
instances of names matching one of these patterns. Next, we tag all other instances
of the same names. Then we examine the set of newly tagged names to see whether
there are any contexts (besides those in the seed) which are consistently associated
with names of a particular type. If so, we add them to the seed contexts and repeat
the process.

An early description of this process was given in Strzalkowski and Wang (1996).
Collins and Singer (1999) characterized this as an example of co-training and
described several co-training procedures. Such bootstrapping is most effective if
the name classes come close to exhaustively covering the set of names; if nec-
essary, additional classes can be introduced to improve performance (Lin et al.,
2003b).

These basic methods have been extended to the acquisition of hundreds or thou-
sands of classes using web-scale corpora (Etzioni et al., 2005). To avoid the need
for creating seed sets for each class, one can use patterns of the type introduced
by Hearst (1992): looking for ‘X such as Y’ will find class names ‘X’ and their
instances ‘Y’. For example, it would find ‘British publishers’ paired with ‘Blackwell,’
‘Macmillan,’ etc. These instances Y can then be used as a seed for finding addi-
tional patterns and names. This enables the completely unsupervised creation of
large labeled name classes, just by starting from the name of the class (Paşca &
van Durme 2008).

3.4 Evaluation
NE performance is measured in terms of recall, precision, and F-measure, by
comparison with a hand tagged key (see Chapter 11, EVALUATION OF NLP
SYSTEMS).
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recall = number of correct tags
number of tags in key

precision = number of correct tags
number of tags in system response

F = 2
1/recall + 1/precision

The MUC scorer gave partial credit to names which were properly identified but
incorrectly classified. This produced somewhat higher scores than the CoNLL
scorer, which only credited names which were correctly classified.

While percentage recall, precision, and F-scores for the best systems on news
data are typically in the high 80s or low 90s, scores of corpus-trained systems
are very dependent on the nature and similarity of the training and test corpora.
Differences in genre, topic, or even time period between training and test (Mota &
Grishman 2008) can lead to significant fall-off in performance. This must be kept
in mind when acquiring a tagger trained on one type of corpus and applying it to
quite different text.

The examples shown here are for mixed-case English text. Statistical taggers
have also been applied to monocase text, as might be produced by speech-to-text
systems, with performance degradations of a few percent on perfect transcripts.
NE taggers have by now been applied to dozens of languages. The general strate-
gies described above are broadly applicable, although special measures or features
may be required for a particular language. In particular, for languages where
names are inflected, it may be necessary to do morphological analysis prior to
or as part of name tagging, so that inflected names will be recognized even if the
inflected form does not appear in the training data.

4 Entity Extraction

Names are referring expressions – they refer to ‘entities,’ mostly things in the real
world. A natural extension of name tagging is finding all referring expressions –
names, nominal phrases (those headed by common nouns), and pronouns – and
identifying those which refer to the same entity.

Such an ‘entity extraction’ task was introduced as part of the ACE evaluations,
extending the ‘template element’ task in MUC-6 and 7. It involves:

• identifying and classifying all phrases which refer to entities of specified
semantic types; this includes names, noun phrases, and pronouns. These are
referred to as entity mentions;

• linking together all entity mentions which refer to the same entity.

Identifying the noun phrases is a standard task of syntactic analysis. For each
noun phrase, we determine its extent and its syntactic head. For example, in the
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sentence ‘The famous linguist from Limerick loved linguini,’ the first noun phrase has
extent ‘The famous linguist from Limerick’ and head ‘linguist.’ Extents may be nested;
thus this first noun phrase contains a second noun phrase with extent and head
‘Limerick.’

For noun phrases headed by a name, the semantic type of the phrase is the
type of the name, as determined by name extraction. For noun phrases headed
by a noun, the semantic type of the phrase is determined primarily by the sense
(meaning) of the head of the phrase. For monosemous nouns (those with a single
sense), a system need only look up a table mapping the noun sense to a semantic
type. For polysemous nouns (those with multiple senses), context must be used
to differentiate a ‘power plant’ from a ‘potted plant’ or a ‘range of mountains’ from a
‘range of options.’ There is an extensive literature on this task of word-sense disam-
biguation: using the words in the immediate context to identify the probable sense
(and hence semantic type).

Linking together the entity mentions to form an entity is a problem of anaphora
resolution, which is discussed in detail in Chapter 21, DISCOURSE PROCESSING.

5 Relation Extraction

In the context of information extraction, a relation represents some relationship
between two entities; a relation mention is an expression of this relationship, and
involves two entity mentions. Examples of relationships include

• location (permanent or temporary):
Omaha-based Berkshire Hathaway
Fred Smith, now living in Paris

• citizenship or origin (between a person and a country):
New Zeland-born Rachel Hunter
the famous Greek philosophers

• affiliation (between a person and an organization):
the president of Ford

• and family relationships:
Fred’s brother

Both relations and events are predications involving multiple entities; relations,
being binary, are somewhat simpler to recognize.

Note that in some cases the same word (such as ‘president’ or ‘brother’) expresses
the relationship and serves as one of the arguments of the relationship. Thus, in the
last example, both ‘Fred’ and ‘brother’ are classified (by entity extraction) as entity
mentions of type person.5 Relation extraction then, based on the word ‘brother,’
recognizes an instance of a relation mention.

Our final goal, in extracting information from the document, is to identify rela-
tions between entities. This is achieved by combining the relation mentions with
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coreference information from entity extraction. For example, if we had the phrase
‘Fred’s brother, Harry,’ coreference analysis would establish ‘brother’ and ‘Harry’ as
coreferential (i.e., as mentions of the same entity), so we could establish a famil-
ial relation between the entities with names ‘Fred’ and ‘Harry.’ Taking this a step
further, in the sentence

Fred introduced us to his brother, Harry

we would identify a relation mention between ‘his’ and ‘brother,’ coreference
between ‘Fred’ and ‘his’ (assuming there are no other plausible antecedents), and
coreference between ‘brother’ and ‘Harry,’ and combine these to establish the
relation between ‘Fred’ and ‘Harry.’

Relations were introduced in MUC-7 as ‘template relations’ and were limited
to three relationships: employee_of, product_of, and location_of. A larger set of
relations was introduced as one of the ACE tasks in 2002.

5.1 Hand coded rules and supervised methods
As is evident from the above examples, most (though not all) relations are
expressed at a relatively short range, within a single noun phrase or clause. This
makes it feasible to create patterns by hand to capture many of these relations.

It also suggests an approach to creating a relation tagger; namely, train a classi-
fier on all pairs of ‘nearby’ entity mentions, with the outcome being either a type
of relation or ‘no relation.’ The trained classifier can then be applied to all pairs of
nearby entity mentions in the document to be tagged.

The connection between the two entities can be characterized by the sequence of
words between the two mentions, the sequence of chunks, or as a path in a tree –
either a full parse-tree or a shallow parse. Finding the best characterization has
been the topic of research on relation extraction over the past few years.

As we have noted, most relations occur at relatively short range within a sin-
gle sentence. Accordingly, most examples can be classified based on the heads
of the two mentions, their semantic class (person, organization, . . . ) and the
intervening words. However, because the intervening words may include irrel-
evant modifiers (‘president of the rapidly growing fast-food company’) or arguments
(‘Fred operated a hot-dog stand in Chicago’ → located-in(Fred, Chicago)), a clas-
sifier based on word sequences alone is not adequate. Such examples can be
handled by using the path in the dependency tree between the entity mentions
(Culotta & Sorensen 2004). For the last example, the dependency tree would be
as in Figure 18.1, so the path in the tree connecting the nodes ‘Fred’ and ‘Chicago’
would be ‘operated–in’ (i.e., would consist of the two nodes ‘operated’ and ‘in’ in
sequence).

Less frequently, a wider context than the words (or the path in the dependency
tree) between the mentions is required. For example, in ‘Fred and Mary were married
for 20 years,’ the only intervening word is ‘and,’ but the predicate (‘were married’) is
needed to identify the relation (Zhou et al., 2007).
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operated

in

Chicago

stand

hot-doga

Fred

Figure 18.1 Example dependency tree.

Improved performance has been obtained by systems which combine evi-
dence from several levels – words, chunks, and parses (Kambhatla 2004; Zhao &
Grishman 2005). Using multiple levels of representation also reduces the impact of
errors in syntactic analysis, a general problem for information extraction. In gen-
eral, a ‘deeper’ representation (words → chunks → parses → regularized parses)
is better at capturing the semantic relations of information extraction. However,
deeper analyses are more likely to be incorrect analyses; chunking is more accu-
rate than parsing. By combining evidence from multiple levels, we are able to gain
some of the benefits of each level.

When paths in parse or dependency trees are used for relation detection, they
can be treated as atomic properties (only examples with identical paths are con-
sidered) or reduced to sets of features, such as the individual steps in the path,
for feature-based classifiers such as maximum-entropy classifiers. However, find-
ing an appropriate set of features to capture the notion of ‘similar paths’ may be
difficult. This similarity may be more directly captured in kernel-based classifiers
such as support vector machines, by defining a kernel over paths or trees (Zelenko
et al., 2003; Culotta & Sorensen 2004) and combining multiple kernels (Zhao &
Grishman 2005).

5.2 Weakly supervised and unsupervised methods
As for name extraction, the cost of manual annotation and the availability of large
amounts of raw text data led to an interest in bootstrapping methods for relation
extraction. The bootstrapping begins with a set of pairs of names which are exam-
ples of the relation of interest. For example, we might have a set of author–book
pairs ([Herman Melville, Moby Dick], [J. R. R. Tolkien, The Hobbit], . . . ). We look
for all instances of these pairs in close proximity in a large corpus, and collect the
sequences of intervening words (the patterns). We then look for other instances of
these patterns. New pairs which appear in several of these patterns are added to
the original set of pairs and the process repeats. This approach was introduced by
Brin (1998) and extended by Agichtein and Gravano (2000).

As with supervised methods, these approaches vary in how the patterns are
characterized, although the goal has been in general to use fast methods so that
large amounts of text can be analyzed. Brin (1998) used fixed word sequences;
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Agichtein and Gravano (2000) used a weighted bag of words. More recently,
Bunescu and Mooney (2007) used a subsequence kernel on the word sequences.

One crucial issue in such bootstrapping is filtering or ranking the patterns, since
the patterns which are found may be very general and ambiguous. For example,
one common pattern linking book and author is likely to be a comma (‘,’), but
a comma may of course have other significance. Agichtein and Gravano (2000)
extracted company–headquarters location pairs, and relied on the fact that a com-
pany would (generally) have only one headquarters location; a pattern which
extracted a company along with a location different from that previously extracted
for the same company would be treated as a less reliable pattern. Bunescu and
Mooney (2007) used a single bootstrapping step and provided explicit negative as
well as positive examples.

Instead of a bootstrapping method which grows the set of linguistic patterns
expressing a single relation, we can use a similar approach to group the patterns
into clusters of like-meaning expressions, thereby identifying the dominant rela-
tion types in a corpus in a completely unsupervised fashion (Hasegawa et al.,
2004). We define a similarity metric between patterns based on the number of
overlapping argument pairs, and then use a clustering procedure based on this
similarity to group the patterns.

Finally, we should note that these bootstrapping methods only apply to exam-
ples involving pairs of names. Applying them to cover relations involving nom-
inals or pronouns would require some systematic extensions; these have not yet
been explored.

6 Event Extraction

Event extraction was the first information extraction task to be studied. Given a
specification of a type of event (‘terrorist attack,’ ‘plane crash,’ ‘hiring of a corporate
executive’), it involves identifying instances of this event and, for each instance,
identifying its arguments and modifiers. In MUC terminology, the characteriza-
tion of the event type was called a scenario, and the set of slots to be filled (which
sometimes included the effects of the central event) was called a scenario template.

One special case of event extraction arises when we know in advance that each
document contains exactly one instance of an event, and the task is to find the
arguments and modifiers. Examples include lecture announcements (where the
objective is to extract the speaker, title, date, time, location of a talk), CVs (curric-
ula vitae, where the goal is to extract specified biographical information), classified
advertisements, etc. This task is often referred to as ‘implicit relation extraction’
(IRE). IRE is essentially a sequential modeling task (like name tagging), but with
the constraint (in most cases) that there is only one instance of each field in a doc-
ument. There is a considerable literature on IRE, as well as several standard test
corpora. This section will focus, however, on the more general event task, where
the number of events of a given type in a document is not known.
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6.1 Hand coded rules
As in the case of other types of extraction, the earliest systems consisted of hand
constructed ‘patterns’. For events, the arguments to be identified may be names,
but may also be general noun phrases. The constructs evoking events will typi-
cally be clauses and may include a variety of modifiers in addition to the central
arguments, so some degree of syntactic analysis is required, at least sufficient to
pull out the subject and object of relevant verbs; the patterns will be stated in terms
of these syntactic relations. For example, the extraction patterns for executive suc-
cession (the hiring and firing of executives) might include a subject–verb–object
structure such as:

NP(org) fire NP(person)

where NP(org) matches a noun phrase of semantic class organization (i.e., either
the name of an organization or a pronoun or nominal referring to an organiza-
tion), NP(person) matches a noun phrase of class person, and fire is an active
verb group with head verb ‘fire.’ Imposing semantic constraints on the subject and
object allows us to distinguish this sense of ‘fire’ from other usages, such as ‘the
policeman fired his gun.’

An extraction task specifies a ‘template’ to be filled with the arguments of an
event. For example, for executive succession it would include the organization,
the person, the position, and the action (starting or ending the given position).
The complete extraction rule would combine the pattern with a specification of
how the template was to be filled:

NP(org)1 fire NP(person)2 →
event(org: 1, person: 2, position: -, action: end)

Similar rules would be included for noun phrases with their modifiers:

the retirement of NP(person)1 as NP(position)2 →
event(org: -, person: 1, position: 2, action: end)

A simple extraction system may fill the templates with the NP strings. In ACE
terminology, it would generate event mentions containing references to entity men-
tions (and possibly other types of arguments, such as the position in the example
above). This is not generally satisfactory, however, since it may yield template
slots filled with uninformative strings such as ‘she’ or ‘the executive,’ even if these
people have been named elsewhere in the document. As we did for relations, we
need to couple entity and event extraction, that is, identify the NP as a mention
of a particular entity, and put a reference to the entity in the template slot. In that
way, if the entity was explicitly named elsewhere in the article, this information
can be retrieved. It does mean, however, that coreference accuracy will be a critical
factor in event extraction accuracy.
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Since these patterns are based on syntactic relations (subject, object, noun
modifier) it is natural to apply them to a parse generated by a full-sentence parser.
As corpus-trained parsers (Chapter 13, STATISTICAL PARSING) have improved in
accuracy this approach has been more widely adopted. However, extraction sys-
tems based on regular expressions, such as the FASTUS system (Appelt et al.,
1993), have also proven to be effective. Such regular expressions must be able not
only to match the required arguments but to skip over modifiers not relevant to
the template, as in:

the unexpected retirement on Friday of John Smith, the well-known linguist, as executive vice
president

The regular expression patterns will be stated not in terms of general noun phrases
but in terms of phrases of particular semantic types; this greatly reduces the
attachment ambiguities compared to general syntactic pattern matching.

6.2 Supervised systems
A variety of approaches have been used to train event extractors from tagged
data. Some of these build patterns similar in structure to those used in hand coded
systems. For example, WHISK (Soderland 1999) develops a rule from each train-
ing instance, starting with a most general pattern and incrementally making the
pattern more specific. Each step is taken to optimize some balance of number
of examples matched in the training set and number of incorrect matches. The
pattern serves both to identify the event and to capture the event arguments.

An alternative approach uses standard classifiers, such as k-nearest neighbors
or maximum entropy, which can incorporate a wide variety of features. Separate
classifiers are built to identify the presence of an event and to determine whether
a particular entity mention is an argument of that event (Ahn 2006b).

6.3 Weakly supervised systems
As with the other extraction tasks, there has been strong interest in moving
towards minimally supervised methods in order to reduce the labor required to
port a system to a new event type. The need is particularly great in the case of
event extraction because of the large variety of possible tasks: while a handful of
name types can account for the large majority of names in the news, these entities
may be involved in dozens or hundreds of different types of events.

One approach was based on the distinction between relevant documents (docu-
ments which contained at least one instance of an event of interest) and irrelevant
documents. Predicate–argument patterns which occurred much more often in rele-
vant documents than in irrelevant documents are good candidates to be extraction
patterns for the event. Riloff (1996) showed that the formula
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score = freq in relevant documents
freq in all documents

× log(freq in relevant documents)

could be used to rank the patterns, producing a pattern set (at some score
threshold) whose performance was fairly close to that of hand produced patterns.

This approach still requires manual judgments of document relevance for a sub-
stantial text collection. Yangarber et al. (2000) extended this to a bootstrapping
approach in which the seed is a small set of extraction patterns. These patterns
are used to retrieve some relevant documents and then the best new patterns are
extracted using a variant of the Riloff metric (modified to capture the degree of
confidence in the relevance). As in the case of bootstrapping for name extrac-
tion, performance can be improved by concurrent bootstrapping of multiple event
types (Yangarber 2003). Sudo et al. (2003) used keywords as seeds, retrieving rel-
evant documents with an information retrieval system. They showed the benefit
of allowing arbitrary dependency subtrees to be used as patterns; while these are
more difficult to count efficiently, they yield better extraction performance than
more constrained patterns. Sekine and Oda (2007) demonstrated that this proce-
dure, given a topic described by some keywords, could, within a minute, create
an information extraction system for topic-related events and apply this system to
construct tables of extracted information about such events.

One fundamental obstacle to the practical use of such ‘on demand information
extraction’ is the ability to capture paraphrase relations between events. The Riloff
metric can pick out predicates which are ‘on topic,’ but within that set cannot eas-
ily identify those with the same meaning. For example, in the executive succession
scenario, it might find ‘hired,’ ‘selected,’ and ‘fired,’ but not know that the first two
convey the same information. There has been some success, described above, in
identifying paraphrases of relations involving named entities, based on common
arguments. A similar approach can in principle be applied to find event para-
phrases, but the task is much more challenging because the argument structures
for events can be much more variable (arguments can be pronominalized or omit-
ted and appear only in the wider context). Paraphrase acquisition from corpora
has become a major research topic of its own.

Event extraction, like relation extraction, can in principle be extended to unsu-
pervised acquisition: to identify the most common types of events in a body of text,
capture their argument structure, and group synonymous or near-synonymous
events. This combines a number of challenges which are starting to be addressed in
an integrated fashion (Shinyama & Sekine 2006). But much more will be required
to meet the goal set forth by Z. Harris a half century ago . . . to systematically learn
the information structures of a sublanguage (Harris 1958).

7 Concluding Remarks

Most of the research and, in particular, nearly all of the evaluation of informa-
tion extraction until now has involved single-document extraction. This simplifies
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evaluation; in addition, evaluation corpora are likely to be quite small and so will
most likely have only one or a few documents mentioning a given entity or event.

In practice, however, what we often want from a system is a set of facts, which
may have come from a single document or been gleaned from the combined evi-
dence of multiple documents. In situations where a fact cannot be definitively
extracted from a single document (for example, because the predicted probability
of an event is low but non-zero), it may be possible to retrieve related documents
from which more definitive information can be extracted (Ji & Grishman 2008).
This will be increasingly important for web-based extraction, since information is
typically encoded several times, with different forms of expression.

In this chapter we have presented a general progression from hand coded to
supervised to weakly supervised systems for information extraction. Here too the
redundancy of information provided by the web will be critical to improving the
results of weakly supervised and unsupervised learning.

The web provides us with a very rich source of information – information
which is, however, not easy to process because it is locked up in many linguistic
forms. Information extraction, by structuring and standardizing the information
representation, can be the key to unlocking this information for many applications.

NOTES

1 Proceedings of MUC-3 through 7 are available through the ACL Anthology web site,
http://aclweb.org/anthology-new/

2 www.nist.gov/speech/tests/ace/
3 MUC-6 introduced the term ‘named entities’ (NE) for the task, and this name has per-

sisted, but it should not be confused with the term ‘entities’ used in ACE for the task
involving coreference.

4 www.wikipedia.org
5 Strictly speaking, the full extent of the second mention is ‘Fred’s brother.’ For clarity, we

shall refer to entity mentions by their head, in this case ‘brother.’
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ANDY WAY

This chapter has two main aims: (1) to present the state of the art in machine
translation (MT), namely phrase-based statistical MT, together with the major
competing paradigms used in MT research and development today; and (2) to
provide an overview of the MT research carried out by my team at Dublin City
University (DCU), characterized here in terms of ‘hybrid MT.’ In addition, we pro-
vide our views on the directions that MT research might take in the near future,
and conclude the chapter with lists of further reading for the interested reader.

1 Introduction

There are many other overviews of machine translation (MT) available (e.g.,
Somers 2000; Hutchins 2003; Somers 2003a; Jurafsky & Martin 2009). In this
chapter, we plan to inform the reader as to the state of the art in MT now, rather
than giving a detailed history of the field, much of which has been written before.

It is clear to all who are active in the area of MT today that the leading paradigm,
especially in the research field, is phrase-based statistical machine translation (PB-
SMT) (Marcu & Wong 2002; Koehn et al., 2003). Until such papers appeared, SMT
models of translation were based on the simple word alignment models of Brown
et al. (1990; 1993). Now that SMT systems learn phrasal as well as lexical align-
ments, this has led to an unsurprising increase in translation quality compared
to the IBM word-based models. In addition, it has become harder to describe
the differences between statistical models of translation and example-based MT
(EBMT), though the latter still accesses the corpus of source-to-target examples at
run-time.1

When it comes to which commercial systems are available, however, the
balance is tipped in completely the opposite direction, for the vast majority of such
models are rule-based MT (RBMT) systems. Research systems such as Apertium
(Armentano-Oller et al., 2006) are also prominent, and we give some attention to
such models later in the chapter.
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The remainder of the chapter is organized as follows. In Section 2, we present a
thorough overview of the leading paradigm in MT today, namely PB-SMT. We give
an end-to-end description of all tasks involved, from pre-processing, to decoding,
and thence to postprocessing and evaluation. In Section 3, we describe alternative
approaches to this mainstream model, each of which has attracted a strong follow-
ing. These include hierarchical and tree-based models of MT, EBMT, RBMT, and
hybrid combinations of these approaches. In Section 4, we describe a number of
MT applications, including online MT, undoubtedly the biggest growth area for
MT in the last few years. In addition, we describe translation memories, spoken
language translation, and MT for non-spoken languages. Section 5 then focuses on
our own MT research and development at DCU, presented in the form of hybrid
systems. In Section 6 we summarize the state of affairs in MT today, and provide
our view on the directions that MT research might take in the next few years.
Finally, we provide a list of further reading for the interested reader to follow up
on any of the core sections.

2 The State of the Art: Phrase-Based Statistical MT

Phrase-based statistical machine translation (PB-SMT) (Marcu & Wong 2002;
Koehn et al., 2003) is clearly the dominant paradigm in MT today. In this section,
we take the reader through all the steps involved in developing a PB-SMT system,
from gathering training resources, through pre-processing, run-time application,
and postprocessing.

2.1 Pre-processing
Notwithstanding the particulars of the approach taken, the developer of any
corpus-based system will be confronted with the following stages of development
prior to running the system: corpus collection and clean-up, and system train-
ing (i.e., word and phrase alignment, and parameter tuning). We describe each of
these steps in the following sections.

2.1.1 Data A prerequisite for the training of a data-driven MT system is a
parallel corpus of sentences and their translations aligned at sentence level. In
the simplest case, the ‘source’ side of the bitext consists of the original sentences,
and the ‘target’ side consists of the translations of those sentences. However, it is
quite often the case that either some texts may have been translated from language
A to language B and others the other way round, or more than two languages are
involved and both parts were translated from one or several other languages (cf.
Ozdowska and Way (2009) for an interesting investigation of the effect on trans-
lation quality of training SMT systems with such more or less appropriate sets of
training data).
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E1: Often, in the textile industry, businesses close their plant in Montreal to move to the Eastern
townships.

F1: Dans le domaine du textile souvent, dans Montréal, on ferme et on va s’installer dans les Cantons
de l’Est.

E2: There is no legislation to prevent them from doing so, for it is a matter of internal economy.
F2: Il n’y a aucune loi pour empêcher cela, c’est de la régie interne.

E3: That is serious.
F3: C’est grave.

Figure 19.1 A sentence-aligned corpus.

E1: Hon. members opposite scoff at the freeze suggested by this party; to them it is laughable.
F1: Les deputés d’en face se moquent du gel qu’a proposé notre parti.
F2: Pour eux, c’est une mesure risible.

Figure 19.2 A non-exact alignment.

Of course, even in the simplest scenario above, the bitext can be used just as eas-
ily for translation from ‘target’ into the ‘source’ language; the system itself does not
care. Given a text in language A, its translated counterpart version B and an SMT
system translating from A to B, SMT training assumes A to be the source language
and B to be the target language irrespective of the original translation direction
or languages involved. Moreover, given that the parallel corpus is assumed to be
aligned at sentence level, sentence alignment is usually performed automatically
prior to training. Examples of 1:1 and 1:2 alignments from the Canadian Hansards2

are given in Figures 19.1 and 19.2 (adapted from Arnold et al., 1994: 203).
Creating and promoting resources (corpora and tools) is now a well-established

tradition in the area of NLP in general, and in SMT in particular. This is done
through linguistic data centers such as the Linguistic Data Consortium (LDC)3

or the Evaluations and Language resources Distribution Agency (ELDA),4 which
allow broad access to resources of various kinds (parallel and monolingual
corpora, tokenizers, segmentation tools, aligners, etc.) for a wide range of lan-
guages, in some cases in return for a license. For example, the LDC provides
data for two of the major MT evaluation shared tasks (cf. Section 2.5): NIST5

and IWSLT.6 On the other hand, some resources are also made freely available
within MT-related projects such as EuroMatrix,7 or certain MT shared tasks such
as WMT.8 WMT makes available to all participants a complete set of resources for
the state of the art as well as advanced experiments in MT allowing for comparable
results within a common framework.

SMT quality is strongly conditioned by the size of the training corpora, and
further by the type and amount of resources used (linguistic tools, dictionaries,
etc.). Systems are usually trained on several million words of data in order to
achieve good translation quality. In this respect, the availability of corpora suitable
for SMT mainly depends on two criteria: language pair, and domain (or genre) of
texts. Large parallel corpora exist only for a limited number of language pairs.
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The richest languages in terms of corpora are those in which international insti-
tutions or governments are required to produce translations. Texts coming from
such organizations are amongst the largest and most widely used corpora in MT,
especially for European languages; this is the case for the Europarl corpus (Koehn
2005),9 the JRC-Acquis,10 and Canadian Hansards as far as number of covered lan-
guages and size are concerned. Parallel and monolingual corpora of variable yet
sufficient size for MT also exist for languages of a particular political/economic
interest such as Chinese, Arabic, or Indian languages in combination with English,
mostly consisting of news agency material.

Although the number and/or size of available parallel corpora is increasing,
the scope remains somewhat limited in terms of languages and domains cov-
ered. Apart from the languages mentioned above, recent MT-related shared tasks
featured language pairs with less abundant resources such as Japanese-to-
English,11 English-to-Inuktitut,12 or Romanian-to-English.13 As these corpora
mainly come from governments, international institutions, or news agencies, they
are rather open/general in terms of domain, even for Europarl, which is often con-
sidered to be a ‘sublanguage,’ but is in fact extremely heterogeneous. By contrast,
large specialized corpora suitable for MT remain rare.

2.1.2 Corpus clean-up, segmentation, and tokenization Corpora are usually
not created with MT in mind, and so a number of issues need to be borne in mind
before using them ‘as is’ for MT training.

The first thing to check is whether a special character encoding (e.g., UTF-8,
the Unicode (Unicode Consortium 2006) attempt to encode characters from all
languages, as opposed to those supported only in ASCII (American National
Standards Institute 1986) is required for the translator output or by the linguis-
tic tools used. In this case, if the encoding does not match that used in a particular
corpus, an encoding conversion solves the problem (assuming the corpus is cor-
rectly encoded). Some characters reserved by the tools used must be protected. For
example, the Moses decoder (Koehn et al., 2007) stumbles over vertical bars (‘|’) in
the input. Filtering multiple and initial or ending white spaces makes the corpus
cleaner and avoids processing errors at later stages.

The main issue of corpus pre-processing – tokenization – is the division of the
sentences into tokens separated by a white space. In some languages (Latin script
languages, Arabic, etc.) this division exists naturally in the form of words. In oth-
ers, like Chinese or Japanese, word boundaries are not orthographically marked
and the tokenization problem is distinct and more difficult (it is often called
‘segmentation’). When word boundaries are orthographically marked, the prob-
lem is reduced to determining when special signs such as punctuation marks
should be considered as part of the word or not. This is the case, for example,
in abbreviations or acronyms, but not when acting as a punctuation mark
(‘Mr. Obama was elected President of the U.S.A.’). Most tokenizers are based on
machine learning approaches, or use dictionaries of abbreviations and acronyms,
for example.
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Because the execution time of the training algorithms used in MT grows very
fast as the input increases, very long sentences are often removed from the corpora.
Sentence pairs having a very different number of source and target tokens usually
correspond to an incorrect source-to-target mapping and may also be filtered.

Finally, for some languages, special pre-processing is appropriate. Examples
include the separation of clitics in Spanish, and prefixes and suffixes in Arabic,
which allows for a reduction in data sparseness. Grouping compound words (such
as the head verb and its particle with German compound verbs) can help to make
source- and target-language word order more similar, which facilitates subsequent
processing.

2.1.3 Word alignment Word alignment, which determines the translational
correspondences at word level given a bilingual corpus such as those just
described, is a fundamental component in all SMT variants. A set of high-quality
word alignments is essential for phrase-based SMT systems since the phrase
extraction normally relies on word alignment.

The most common approach to word alignment is generative models, which view
the translation (or alignment) process as the generation of a sentence (or word) in
one language from another. Here we assume the generation of a target-language
sentence tI

1 from a source sentence s J
1.14 The transformation from source to tar-

get language in the generative model may include word insertion or deletion,
word reordering (‘distortion’), 1-to-n alignments (‘fertility’), and so on (cf. the ‘IBM
models’ of Brown et al., 1993). Depending on whether fertility is explicitly mod-
eled or not, these generative models can be broadly classified into fertility-based
versus non-fertility models.

The most widely used non-fertility models are HMM-based models. IBM model
1 and 2 are zero-order HMM models where a source position is first selected for
each position in the target sentence, and a target word is produced as the transla-
tion of the selected source word. In IBM model 1, the source position is selected
uniformly, while in IBM model 2 the selection depends on the target position in
question. The first-order HMM model of Vogel et al. (1996) refines the genera-
tive story by further assuming that the selection of a source position depends on
the previously selected source position. In the context of SMT, the search for the
best target translation tI

1 given a source sentence s J
1 is achieved in the noisy chan-

nel model by maximizing the conditional probability P
(
tI
1

∣
∣s J

1

)
. Using a Bayesian

transformation, this maximization criterion can be reformulated as in (1):

(1) P
(

s J
1

∣
∣
∣tI

1

)
P

(
tI
1

)

where P
(
s J

1

∣
∣tI

1

)
is the translation model and P

(
tI
1

)
is the language model.

The alignment a J
1, which describes the mapping from a source-word position j to

a target position aj, is introduced as a hidden variable in modeling the translation
probability, as in (2):
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where the alignment model P
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∣
∣tI

1

)
can be decomposed in different ways to

model the transformation from the source to the target language. However, non-
fertility models are generally considered to be relatively weak models, mainly
because of the simplicity of the generation process.

Fertility-based alignment models, most notably IBM models 3 and 4, are much
more complicated, as they introduce fertility into the alignment model. These
models first determine the source-word fertility, i.e., how many target words each
source-word should generate, e.g., not −→ ne . . . pas would mean that not has a
fertility of 2 (French words). For each source word, that many target words will
be preferred as the translation of the source word. The model then arranges the
hypothesized target words to produce a target string according to the distortion
models. IBM model 3 utilizes a zero-order distortion model, i.e., each target posi-
tion is chosen independently for the target words generated by each source word,
whereas IBM model 4 utilizes a simplified first-order dependence (i.e., a context of
the neighboring previous word) in positioning the target words. However, both
distortion models assign some probability to invalid target strings in order to
achieve a more simplified approximation, resulting in the problem of ‘deficiency,’
which is resolved in IBM model 5.

The generative models described above consist of a large number of parameters
which are normally estimated in an unsupervised manner (given that annotated
data is difficult to obtain) using the expectation-maximization (EM) algorithm
(Dempster et al., 1977; cf. also Manning & Schütze 1999: 518f.) on a large bilingual
corpus. There exist efficient training and searching algorithms for HMM models;
however, we are unaware of any efficient algorithm for fertility-based IBM mod-
els. Consequently, such an approach can only be implemented by approximate
hill-climbing methods, and parameter estimation can be very slow, memory-
intensive and difficult to parallelize. Given this, Deng and Byrne (2005) proposed
an HMM-based word-to-phrase alignment model which explores the desirable
features in IBM fertility-based models while keeping the parameter estimation
step tractable. Furthermore, previous generative models have also faced the crit-
icism that they make unreasonable assumptions about word alignment structure,
i.e., the 1-to-n assumption, meaning that each target word can be aligned to
zero or more source words, but not vice versa. Such an asymmetric alignment
structure cannot capture the pervasive m-to-n alignments in real-world alignment
tasks. Consequently, heuristics are needed to derive alignments from bidirectional
word alignments in order to produce high-quality phrase pairs for phrase-based
SMT (cf. Section 2.1.4) or translation rules for syntax-based SMT (cf. Section 3.1).
Fraser and Marcu (2007a) attempted to address such a problem by proposing a
new generative model capturing m-to-n alignment structures. In general, gener-
ative models have been shown to have powerful modeling capabilities and can
produce high-quality alignments with successful application to various types of
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statistical (and other data-driven) MT systems. The most often used implementa-
tion of HMM models and IBM models 3, 4, and 5 is GIZA++15 (Och 2003), and
the MTTK16 (Deng & Byrne 2006) implementation models HMM word-to-phrase
alignments.

Discriminative word alignment models were developed with the specific intention
of overcoming the shortcomings faced by generative models. First, such models
can incorporate various features encoded in the input data. Second, these mod-
els require only a relatively small amount of annotated word alignment data for
training. Formally, an estimate â of the optimal (‘arg max’ in (3), i.e., the highest
score) alignment a is searched for by maximizing a log-linear combination of a set
of i features hi, as in (3):

(3) â = arg max
a

∑

i

λihi(s, a, t)

The parameters (or ‘weights’) λi can be learned in a supervised manner using
various machine learning techniques, including perceptron (Moore 2005), max-
imum entropy (Ittycheriah & Roukos 2005; Liu et al., 2005), support vector
machines (Taskar et al., 2005; Cherry & Lin 2006), and conditional random fields
(Blunsom & Cohn 2006). Despite having the flexibility to incorporate various fea-
tures, the need for a certain amount of annotated word alignment data is often
put forward as a criticism of such approaches, given that the annotation of word
alignments is a highly subjective task. Moreover, parameters optimized on man-
ually annotated data are not necessarily optimal for MT tasks. Fraser and Marcu
(2007b) showed that alignment error rate (AER) (Och & Ney 2000), the widely
used metric to measure word alignment quality against manually annotated data,
has a weak correlation with MT quality in terms of BLEU (Papineni et al., 2002)
in a PB-SMT system. Therefore, some approaches have been proposed to opti-
mize the parameters according to the MT task rather than on annotated data
(Lambert et al., 2007). Some semi-supervised approaches have also been used to
take advantage of both generative and discriminative approaches (Fraser & Marcu
2006; Wu et al., 2006). However, we have not yet seen a consistent discrimina-
tive word alignment model that can outperform generative models when used
for SMT.

Another class of approaches to word alignment are heuristics-based methods,
which obtain word alignment using similarity functions (Smadja et al., 1996; Ker
& Chang 1997; Melamed 2000). Such approaches are extremely simple compared
to both generative and discriminative models. However, the use of similarity func-
tions can be somewhat arbitrary and the performance of such methods is inferior
compared to the above-mentioned statistical approaches (Och & Ney 2003).

2.1.4 Phrase alignment and translation models
2.1.4.1 Motivation for phrase-based models Word-based SMT systems (e.g.,
Germann 2003) learn lexical translation models describing one-to-one mappings
between a given language pair. However, words are not the best atomic units of
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la

the witch green

verde la bruja verde

green witchthe

bruja

Figure 19.3 In the word-based translation on the left we see that the noun–adjective
reordering into English is missed. On the right, the noun and adjective are translated as a
single phrase and the correct ordering is modeled in the phrase-based translation.

translation because we can have one-to-many mappings between languages. Fur-
thermore, by translating word for word, no contextual information is made use
of during the translation process. To attempt to overcome some of these issues,
sequences of words can be translated together. By using these sequences of words,
so-called ‘phrases’ (but not in the linguistic, ‘constituent’ sense of the word; a
‘phrase’ in SMT is any sequence of length n of contiguous words, hence ‘n-grams’),
it is possible to avoid many cases of translational ambiguity and better capture
instances of local reordering. An example of this is illustrated in Figure 19.3.

The set of phrase pairs extracted from the bilingual parallel corpus constitutes
the core translation model (phrase table, or t(ranslation)-table) of the phrase-based
SMT system.

2.1.4.2 Learning phrase-based translation models There are a number of ways to
extract a phrase table from a parallel corpus. We will describe the most com-
mon method here and refer the reader to Section 7 for alternative approaches. To
learn the phrase translation model we first induce a word alignment between the
sentence pairs in the parallel corpus, as described in Section 2.1.3. Then for each
word-aligned sentence pair we extract the set of phrase pairs consistent with the
word alignment.

A more formal definition of consistency is as follows: a phrase pair (s̃|t̃) is consis-
tent with an alignment A, if all words s1, . . . , sn in s̃ that have alignment points in
A have these with words t1, . . . , tn in t̃ and vice versa (Koehn 2010).

We then estimate a probability distribution over the set of phrase pairs where
the probability of a phrase pair P(s̃|t̃) is its relative frequency in the entire set of
phrase pairs:

(4) P(s̃|t̃) = count(t̃, s̃)
∑

s̃i
count(t̃, s̃i)

This model is then included as a core factor in the log-linear model (cf. (3)
and (10)).

2.1.4.3 Refined word alignments for phrase extraction Both the quality and the
quantity of the word alignments have a significant effect on the extracted phrase
translation model. One might think that the better the word alignments the better
the subsequently extracted phrases should be, but many studies have shown that
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an expected correlation between an intrinsic improvement in word and phrase
alignment quality (as measured by AER, or precision, recall, and F-score) and an
increase in performance on the extrinsic MT task (as calculated by BLEU, say) is
by no means guaranteed (Liang et al., 2006b; Ma et al., 2008). Vilar et al. (2006)
show similar findings by optimizing word alignment on BLEU, and reporting MT
scores using F-score (i.e., the other way round, compared to Liang et al., 2006b; Ma
et al., 2008). Zhang et al. (2008) and Ma et al. (2009) also show that the correlation
is weak when the intrinsic quality is measured with F-score.

As mentioned in Section 2.1.3, word alignment is a directional task, so when we
align a source sentence to a target sentence, each target word can be aligned to one
source word at most. This is undesirable as it may be correct in many instances
to have a target word map to multiple source words. In order to overcome this
problem we carry out symmetrization of the word alignments.

This process involves running the word alignment in both directions: source
to target and target to source. We can then merge the two sets of alignments by
taking their union or the intersection. This process is illustrated in Figure 19.4.
These alignments can be further refined by ‘growing’ additional alignment points
(Och & Ney 2003). For SMT a higher-recall word alignment is preferred as it leads
to fewer spurious additions to the phrase translation model. For this reason, the
union of the two sets of alignments along with additional refinements is generally
preferred. For other precision-based tasks, however, this may not be the case, and
the union of word alignments will be chosen instead.

2.2 Reordering models
Another important feature of phrase-based systems that we only mention briefly
here is the reordering model. The problems posed by differences in the word order of
languages naturally depends on the language pair at hand. For instance, between
English and French, modeling short local movements (adjective–noun reordering,
say) may suffice. However, for English and German, where long-range movement
of verbs is common, such a model would be inadequate.

Many state-of-the-art systems (e.g., Tillmann 2004; Koehn et al., 2007) employ
lexicalized reordering models in which the reorderings are conditioned directly
on the phrases (or ‘blocks’). These models are learned synchronously with the
phrase translation model. Each phrase pair in the lexicalized reordering model is
assigned one of three orientations: monotone (m), swap (s), or discontinuous (d).
The orientation is assigned based on the position of the phrase relative to other
word alignments for the sentence pair. For example, in Figure 19.4, the phrase pair
〈he,er〉 has an alignment pointing to the top left, i.e., to the phrase pair 〈that,dass〉.
Accordingly, this means that the orientation type of the phrase pair 〈he,er〉 is
monotone, as the preceding English word aligns to the preceding German word.
For an English-to-French phrase pair 〈wine,vin〉 in a translation white wine −→ vin
blanc, there would be an alignment pointing to the top right, i.e., to the phrase pair
〈white,blanc〉. This indicates that there is evidence for a swap with the previous
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Figure 19.4 Merging source-to-target and target-to-source alignments (from Koehn 2010).

pair, indicating that by and large English adjective–noun sequences like white wine
are mapped to noun–adjective sequences like vin blanc in French.

When a phrase pair is extracted for the translation model, its orientation for the
reordering model is also extracted. A probability distribution po for the reordering
model is then estimated based on the counts of how often specific phrase pairs
occur with each of the three orientation types using the maximum likelihood (ML)
principle (Manning & Schütze 1999: 197), as in (5):

(5) po(orientation| f̃ , ẽ) = count(orientation|ẽ, f̃ )
∑

o count(o, ẽ, f̃ )

where an orientation ∈ {m, s, d} is predicted for each source-to-target phrase pair for
all possible orientations o.
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2.2.1 Language models In the noisy channel model of SMT (cf. (1)), P(t) refers
to the language model (LM), which is a probability distribution over target strings
t that attempts to reflect the frequency with which each string t occurs as a sentence
in text or speech. Especially in SMT, it can smooth and adjust the word orders to
some extent by providing contextual information. In this section, we mainly focus
on the n-gram LM which is used in most state-of-the-art SMT systems, as well as
other data-driven models.

2.2.1.1 n-gram language model In an n-gram LM, the probability P(t) of a string
t is expressed as the product of the probabilities of the words or tokens in t, with
each word probability conditioned on a number of previous words. That is, if
t = {w1, w2, . . . , wl} we have (6):

(6) P(t) = P(w1)P(w2 | w1)P(w3 | w1, w2) · · · P(wl | w1, . . . , wl−1)

In typical usage, given the string t, the LM estimation using the above chain rule
and an order-3 (i.e., trigram) or higher-order Markov assumption leads to (7):

(7) P(t) =
l∏

i=1

P
(

wi | wi−1
1

)
≈

l∏

i=1

P
(

wi | wi−1
i−n+1

)

where w j
i denotes the words wi, . . . , wj.

Consider the case n = 3. To estimate the probabilities P(wi | wi−2, wi−1) in (7),
a simple ML algorithm, as in (9), can estimate the approximate probabilities from
the training data:

P(wi | wi−2, wi−1) = P(wi−2, wi−1, wi)

P(wi−2, wi−1)
(8)

= count(wi−2, wi−1, wi)

(wi−2, wi−1)
(9)

2.2.1.2 Language model smoothing Given the training data, it is easy to build
an n-gram LM, because all we need to do is count the occurrences of the word
n-gram events from the training data. However, the ML estimate does not per-
form well when the amount of training data is small or sparse compared to the
size of the model being built. From the statistical point of view, if the training data
cannot cover the test data (i.e., if a string α does not occur in the training data,
but α occurs in the test data), then a problem arises that a zero probability is gen-
erated, which is clearly inaccurate as this probability should be larger than zero.
Accordingly, we need to estimate or predict the probability of events which were
not seen in the training data.

ML estimates are based on the observations from the training data so, according
to (9), unseen word n-grams will obtain a zero probability. Furthermore, according
to (7), the sentence t will also receive a zero probability because of the products,
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which indicates that the sentence is not possible at all. Therefore, every sentence
which contains n-grams which do not occur in the training data will be deemed
impossible. As we pointed out in Section 2.1.1, in practice, the amount of training
data available is limited, so data sparseness is often a real issue. Thus if we are
unable to estimate the unseen n-gram sequences and give them an appropriate
probability, it will have a fatal influence on many practical applications. Improv-
ing the model in (9) so that no word sequence receives zero probability is called
smoothing (Jelinek 1977). This process involves techniques for adjusting the ML
estimate to hopefully produce more accurate probabilities.

The basic idea of smoothing techniques is to reserve some small probability
mass from the relative frequency estimates (cf. (9)) of the probabilities of seen
events, and to redistribute this probability to unseen events. There are several
smoothing techniques which work fairly well for SMT and other applications.
The main differences relate to how much probability mass is subtracted out
(‘discounting’) and how it is redistributed (‘back-off’). The most popular method
is Kneser–Ney smoothing (Kneser & Ney 1995).

2.3 Log-linear representation
As described in the previous sections, PB-SMT consists of three probabilistic
components: a phrase translation model (TM), a reordering (distortion) model,
and the language model (LM). Och and Ney (2002) represent these probabilistic
components as a log-linear model interpolating a set of feature functions as in (10):

(10) t∗ = arg max
t

∏

f∈F

Hf (s, t)λf

The set F is a finite set of features and λf are the interpolation weights over
feature functions Hf of the aligned source-to-target sentence pairs s and t. The set
of different features consists of the following:

(1) an n-gram LM over target sequences;
(2) a source-to-target t-table;
(3) a target-to-source t-table (the reverse of the previous table);
(4) lexical translation probabilities in both directions;
(5) a phrase reordering model;
(6) the standard word/phrase penalty which allows for control over the length

of the target sentence.

2.3.1 Minimum error rate training The parameters of each component of
the log-linear model components are estimated independently. For example, the
phrase translation probabilities are estimated from a bilingual corpus while the
language model probabilities are estimated usually from a much larger monolin-
gual corpus. The various components are interpolated in the log-linear framework
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by a set of parameters following the maximum entropy (MaxEnt) approach as
shown in (10).

In the MaxEnt framework, each feature is associated with a weight. These
weights can be estimated using iterative search methods to find a single optimal
solution under the MaxEnt principle, but this is a computationally expensive pro-
cess. Therefore, Och (2003) proposed an approximation technique called minimum
error rate training (MERT) to estimate the model parameters for a small number of
features, discussed in Section 2.4. An error function that corresponds to the trans-
lation accuracy (Section 2.5) is defined and MERT estimates the log-linear model
parameters such that this error function is minimized using the n-best output of
the MT system. MERT proceeds as follows:

(1) Initialize all parameters with random values.
(2) Produce the n-best translations using the current parameter set.
(3) Compute the error function using the reference translations.
(4) Optimize each parameter to minimize the error function while fixing all other

parameters.
(5) Iterate over all parameters.

MERT provides a simple and efficient method to estimate the model parameters;
however, it can only handle a small number of parameters, and when the number
of parameters increases there is no guarantee that MERT will find the most suitable
combination (Chiang et al., 2008).

2.4 Decoding
At present, the state-of-the-art implementation of decoding for PB-SMT is a beam
search decoder (Koehn et al., 2003). The decoder uses a log-linear model which is
a MaxEnt ( Jelinek 1977) direct translation model. The decoding process includes
(1) the selection of translation options, (2) future cost estimation, (3) beam search,
and (4) n-best list generation, all of which are explained in the following sections.

2.4.1 Translation options selection Given an input string of words and a
phrase table, only a certain number of phrases in the table are related to the input
string, so we just need to collect these related phrases before decoding. This not
only lowers the amount of memory required, but also increases decoding speed.
During the selection, typically the following information is stored:

(1) first and last source word covered;
(2) corresponding target-phrase translation;
(3) phrase translation probability.

Given an input string of source words, all possible phrases with a limited span
are found which are in accordance with the maximum length of the extracted
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no daba una bofetada a la bruja verdeMaria

Mary give a slap to the witch greennot
did not

no slap to the
to

the
slap the witch

did not give

a slap by green witch

Figure 19.5 All possible source segmentations with all possible target translations (from
Koehn 2004; reproduced with permission from Springer).

phrase table. Then, for each source phrase, the phrase table is searched and the
matching target phrases stored.

2.4.2 Future cost estimation In the decoding process, the target output
sentence is generated left to right in the form of hypotheses which store the tar-
get phrase, translation cost and other related information. Each hypothesis is
then stored in a stack which has the same source words covered. As shown in
Figure 19.5, many possible segmentations for the source sentence along with many
possible translations are available from the phrase table.

In order to reduce the search space (cf. Section 2.4.3 below), a breadth-first beam
search is used in decoding so that pruning is applied in a stack. In the pruning
phase, not only the current translation cost but also the future cost is consid-
ered. The future cost is tied to the source words that have not yet been translated.
Thus, we are looking for the cheapest cost (or the maximum probability) for the
source words that are not yet covered. This future cost estimation should favor
hypotheses that have already covered difficult parts of the sentence and have only
easy parts left, while discounting hypotheses that have covered the easy parts
first.17

For the translation options in Section 2.4.1, each source phrase s̃ j
i has one or

more target-phrase candidates t̃, so the maximum probability for a source phrase
s̃ j

i consisting of words i to j can be obtained by (11):

(11) P
(

t̂ | s̃ j
i

)
= arg max

∑

m

λm log(pm(t̃, s̃))

where pm(t̃, s̃) is a product of the bidirectional phrase probabilities, bidirectional
lexicalized probabilities, phrase length penalty, and LM probability. Since we do
not know the preceding target words for a translation operation, we approxi-
mate the LM cost by computing the LM score for the generated target words
alone.
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The future cost score for a source phrase can be efficiently estimated a priori by
dynamic programming (Koehn 2010), and simply looking up the score for this
hypothesis in the cache. The lowest cost for any particular phrase will be the
cheapest cost of a particular translation option, or the cheapest sum of costs from
two smaller phrases that completely cover the phrase.

2.4.3 Beam search Typical phrase-based decoders like Moses (Koehn et al.,
2007) employ a beam search algorithm. Starting from the initial hypothesis where
no source input words have yet been translated, source words are then expanded
in a monotone or non-monotone manner, i.e., following the source-word/phrase
order or not. New hypotheses can be generated from the expanded hypotheses
with a phrasal translation that covers some of the source input words which have
not yet been translated.

Each hypothesis is added into a beam stack as a new node, which is repre-
sented by:

(1) a link back to the best previous state (needed for tracing the best translation
of the sentence by backtracking through the search states);

(2) the source words covered so far;
(3) the last n-1 target words generated (if an n-gram-based LM is used);
(4) the end of the last source phrase covered (needed for computing future

distortion costs);
(5) the most recently added target phrase;
(6) the cost so far;
(7) an estimate of the future cost;
(8) feature functions (cf. Section 2.3);
(9) additional arcs (needed for generating the n-best list).

The final states in the search are hypotheses that cover all source words. Among
these hypotheses, the one with the lowest cost (highest probability) is selected
as the best translation. If we want to output an n-best list, we can generate the
translations with a ranked cost during the backtracking process. The hypothesis
expansion process in a beam search decoder is illustrated in Figure 19.6.

In Figure 19.6, each stack is marked by the covered source words during expan-
sion. A newly created hypothesis will be placed in a new stack further down, e.g.,
the top phrase in stack 2 (comprising two words, the man, say) is linked to various
hypotheses in stacks 3 ( goes, i.e., three words are now covered), 4 (does go, four
words), and 5 (might be going, five words).

In order to improve decoding speed and to reduce the search space, pruning
techniques (such as recombining hypotheses, or histogram pruning; Koehn 2010)
are employed to optimize the search by discarding hypotheses that cannot be part
of the path to the best translation (i.e., they have a low score).

2.4.4 n-best list generation After the expansion process, the final translation
can be generated by backtracking. Generally, we just need one translation with
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1 2 3 4 5 6

Figure 19.6 Hypothesis expansion via stack decoding (from Koehn 2004; reproduced
with permission from Springer).

the maximum highest probability as the final output, but in some cases such as
MERT (Och 2003; cf. Section 2.3.1) or re-ranking (cf. Section 2.6), the n-best list will
be needed. In typical approaches to phrase-based decoding, the A* algorithm is
used to generate n-best lists (Koehn 2010).

2.5 MT evaluation
The constant development of MT systems using test sets of hundreds or thou-
sands of sentences has meant that automatic MT evaluation metrics have become
indispensable for quickly and cost-effectively rating candidate translations, and
by extension the MT engines themselves. Some of the more widely used metrics
include:

• BLEU (Papineni et al., 2002): a precision-based metric that compares a sys-
tem’s translation output against reference translations by summing over the
4-grams, trigrams, bigrams, and unigram matches found, divided by the sum
of those found in the reference translation set. It produces a score for the out-
put translation of between 0 and 1. A higher score indicates a more accurate
translation.

• Sentence error rate (SER): computes the percentage of incorrect full sentence
matches by comparing the system’s candidate translations against the refer-
ence translations. With all error rates, a lower percentage score indicates better
candidate translations.

• Word error rate (WER) (Levenshtein 1966): computes the distance between
the reference and candidate translations based on the number of insertions,
substitutions, and deletions in the words of the candidate translations divided
by the number of correct reference words.

• Position-independent word error rate (PER) (Tillmann et al., 1997): computes
the same distance as the WER but without taking word order into account.
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• METEOR (Banerjee & Lavie 2005): performs two stages of comparative match-
ing for candidate and reference translations: (1) exact matching of unigrams,
and (2) stemmed matching, where remaining unmatched words are decom-
posed into stems using the Porter stemmer and subsequently form matches.
Stem matching and synonym matching are based on WordNet models (Miller
et al., 1990). Scores are obtained by calculating the sum of n-gram matches.

• General text matcher (GTM) (Turian et al., 2003): bases its evaluations on
accuracy measures such as recall, precision, and F-score.

• Dependency-based evaluation (Owczarzak et al., 2007b): employs lexical
functional grammar (LFG) (Kaplan & Bresnan 1982; Bresnan 2001) dependency
triples using paraphrases derived from the test set through word/phrase align-
ment with BLEU and NIST (Doddington 2002). It evaluates translations on a
structural rather than string level and allows for lexical variance.

Automatic evaluation metrics are designed to assess linear text output, requir-
ing the provision of at least one ‘gold standard’ version of the testing data as a
reference for comparison. The majority, including BLEU, are string-based matching
algorithms that do not take syntactic or lexical variation into account and penalize
any divergence from the reference sentence(s). This can mean that candidate sen-
tences which translate the source sentence both fluently and accurately, but have
different lexical or syntactic choices to the reference sentence(s), may be given a
low score. More recent developments, such as dependency-based evaluation, do
allow for variance in lexical items (such as paraphrasing or synonyms), increasing
the likelihood of a candidate sentence getting a good score.

While automatic evaluation best facilitates MT in terms of speed, human eval-
uation is often used as well. A panel of human evaluators with native knowledge
of the target language can be asked to assess the output translations based on a
prescribed set of criteria noting scales of fidelity and intelligibility, such as those
outlined by Pierce et al. (1966).

In summary, both methodologies have their advantages, depending on whether
the aim is speed of evaluation or a broader assessment of intelligibility and fidelity.

2.6 Re-ranking
SMT decoders may not find the best translation from the large number of candi-
date translation hypotheses. Re-ranking MT output is performed by obtaining the
n-best translation candidates for each sentence using a baseline translation system.
The candidates are re-ranked using features extracted from these n-best candidates
to obtain a better translation than the one proposed by the decoder.

Generally, SMT re-rankers train a discriminative model that can use fea-
tures from the proposed n-best candidates to discriminate between the different
translation candidates.

Och et al. (2004) used a large number of POS tags and syntactic features for
re-ranking the n-best output of the baseline system using the log-linear model.
Shen and Joshi (2005) used the best features from Och et al. (2004) to train a
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perceptron classifier for re-ranking the n-best list of candidate translations. Unlike
these last two approaches, Yamada and Muslea (2006) trained the re-ranker on the
entire corpus, not only on the test set.

In general, the improvements provided by re-ranking the SMT output are
modest due to the fact that the number of translation candidate variations, even
with a very large n-best list, is not enough to guarantee that a better translation
will be obtained.

3 Other Approaches to MT

3.1 Hierarchical models
In contrast to Koehn et al. (2003), who demonstrated that using syntax to constrain
their phrase-based system actually harmed its quality, a number of researchers
have, to different degrees, reported improvements when grammatical information
is incorporated into their models of translation. We focus in the next few sections
on perhaps the most popular alternative to the pure phrase-based approach,
namely the hierarchical phrase-based model proposed by Chiang (2005).

3.1.1 Model In general, given a source sentence s, a synchronous CFG18 will
have many source-side derivations that yield (i.e., produce the sentence) s, and
therefore many possible translations t on the target side. In hierarchical phrase-
based MT, the model over derivations D (of the form X → 〈γ , α〉, with X a
non-terminal, γ strings of terminals, and α strings of non-terminals) is also defined
as a log-linear model, as in (12):

(12) P(D) ∝
∏

i

φi(D)λi

where φi are features defined on derivations and λi are feature weights. In Chiang
(2005), typical features used are P(γ | α), P(α | γ ), lexical weights Pw(γ | α)

and Pw(α | γ ) (derived via word alignments), and a phrase penalty exp(1), where
the system can learn preferences for longer or shorter derivations (cf. the phrase
penalty in PB-SMT of Koehn et al. (2003) in Section 2.3).

For hierarchical phrase-based decoding, the integration of the LM is quite differ-
ent compared to phrase-based decoding (cf. Section 3.1.3), so the LM is regarded
as a special feature PLM(t) in the log-linear model, while the remainder of the
features are defined as products of functions on the rules used in the derivation, as
in (13):

(13) φi(D) =
∏

(X→〈γ ,α〉)∈D

φi(X → 〈γ , α〉)
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By merging (12) and (13), we end up with (14) as the model:

(14) P(D) ∝ PLM(t)λLM ×
∏

i	=LM

∏

(X→〈γ ,α〉)∈D

φi(X → 〈γ , α〉)

That is, the weight of D is the product of the weights of the rules used in trans-
lation (X → 〈γ , α〉) ∈ D), the language model PLM(t)λLM , and any other functions
φi such as the phrase penalty.

As Chiang (2005) notes, it is perhaps more convenient from a notational point
of view to factor out the LM and word penalty probability models, although
it is cleaner (and ensures polynomial-time complexity in decoding) to integrate
them into the rule weights, in order to maintain the whole model as a weighted
synchronous CFG.

3.1.2 Features The basic features used in a hierarchical phrase-based system are
analogous to the default feature set of Pharaoh (Koehn 2004; cf. Section 2.3). The
rules extracted from the training bitext have the following features:

(1) P(γ | α) and P(α | γ ), the bidirectional phrase/rule probabilities which are
estimated by counting the frequency of rules;

(2) the lexical weights Pw(γ | α) and Pw(α | γ ), which estimate how well the
words in α translate the words in γ (Koehn et al., 2003);

(3) a penalty exp−1 for hierarchical rules, similar to the phrase penalty of Koehn
(2003), which allows the model to learn a preference for longer or shorter
derivations;

(4) exp−1 for the ‘glue rule,’ so that the model can learn a preference for
hierarchical phrases over serial combination of phrases;

(5) exp−1 for each of the four types of rules (numbers, dates, names, bylines);
(6) a word penalty exp−count(T(α)), where count(T) is a count of terminals in the

target sentence t.

3.1.3 Decoding The decoder is a CKY parser (Younger 1967) with beam search
together with a postprocessor for mapping source derivations to target deriva-
tions. The parsing process starts with the axioms, and proceeds by applying
inference rules to prove more items until a goal is proven. We refer the interested
reader to Chiang (2007) for more details.

3.1.3.1 Incorporating the language model For hierarchical phrase-based MT, incor-
porating the LM is a challenging problem. Chiang proposed three solutions: first,
using the above-mentioned parser to obtain an n-best list of translations and
rescoring it with the LM; second, incorporating the LM directly into the grammar
in a construction reminiscent of intersection of a CFG with a finite-state automa-
ton; third, a hybrid method called cube pruning. In his experiments, the third
method proved to be the most practical one which is a compromise and balances
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speed and accuracy. Again, we invite the reader to consult the primary sources for
more on these possible solutions.

3.2 Tree-based models
Recently in the MT community many researchers have come to the realization
that, in order to build good quality MT systems, new translation models need
to be developed that are capable of handling complex source language syntac-
tic and semantic representations, as well as their correspondences in the target
language. This has led to the emergence of several models that employ syntac-
tically parsed data to varying extents. In this section we will outline the most
prominent developments.

3.2.1 Tree-to-string models Yamada and Knight (2001) present a tree-to-string
model that adheres largely to the standard noisy channel model of MT; the
target-language sentence is produced after applying certain operations to the
source-language sentence. Its main difference to the standard PB-SMT models
is that it uses parsed data on the source-language side. The operations that this
model encodes are the following:

• reorder: where the children of a node in the source-side parse-tree may be
reordered arbitrarily;

• insert: where a target-language word may be inserted at any position in the
source-side tree; and

• translate: where the surface string of the source-side tree is translated word for
word to obtain the target-language sentence. The tree structure is discarded
after the translate operation.

The parameters of this model are the channel operations that can be performed
and their probabilities for all available contexts. The values for these parameters
are estimated automatically using the EM algorithm (Dempster et al., 1977). Due to
the vast number of possible contexts, the computation of all possible combinations
of parameters is very expensive. Nevertheless, Yamada and Knight (2001) present
an efficient algorithm that estimates the probabilities in polynomial time. Evalua-
tion results are presented on automatic word alignments in which improvements
in alignment average score are seen over a baseline IBM model 5 system.

3.2.2 Unsupervised tree-to-tree models Nesson et al. (2006) strive to develop
an expressive and flexible formalism for MT that at the same time allows for
efficient parsing. Thus they introduce probabilistic synchronous tree-insertion
grammar, which is an unsupervised tree-to-tree translation model.

The basis for their formalism lies with tree insertion grammars (TIGs) (Schabes
& Waters 1995). TIGs are a computationally attractive alternative to tree adjoining
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grammars (TAGs) (Joshi 1985) while continuing to use the same operations of sub-
stitution and adjunction. The main difference lies in additional restrictions on the
form of elementary trees that TIG imposes. The restrictions limit the formalism
to context-free expressivity and O(n3) parsability (Chapter 2, COMPUTATIONAL
COMPLEXITY IN NATURAL LANGUAGE).

Synchronous TIG (STIG) extends the TIG formalism by using elementary struc-
tures consisting of pairs of TIG trees with links between particular nodes in those
trees. Derivation for STIG proceeds as for TIG with the requirement that all opera-
tions have to be paired. A STIG can express lexically based dependencies and can
generally be parsed in O(n6) time (Chapter 2, COMPUTATIONAL COMPLEXITY IN
NATURAL LANGUAGE).

Translation is performed using slightly modified inference rules that account
for not having the target sentence during parsing. Having produced the possible
derivation trees in this way it is trivial to generate the target-language sentences.

The full model presented in Nesson et al. (2006) learns a probability for every
combination of tree pairs in the training corpus. Thus, in a corpus with high
word co-occurrence the number of free parameters will be of the order of O(n)4,
where n is the size of the largest monolingual vocabulary (Chapter 2, COMPUTA-
TIONAL COMPLEXITY IN NATURAL LANGUAGE). This slows the model and may
lead to overfitting of the training data. Therefore the authors propose to pre-
process the word co-occurence data to eliminate word pairs that are unlikely to
encode true relationships. This introduces another possible problem, however,
where too many word pairs could be pruned, thus rendering the model unable
to parse some training sentence pairs.

By evaluating the model on a translation task, Nesson et al. (2006) show
an improvement in BLEU and fluency scores over Pharaoh (Koehn 2004) and
GIZA++ (Och 2003) systems trained on the same data, while achieving compa-
rable adequacy scores.

3.2.3 Supervised tree-to-tree models Data-oriented translation (DOT) is a
hybrid model of translation which combines examples, linguistic information and
a statistical translation model. The DOT model is specified in terms of (1) the
type of representation expected in the example base; (2) how fragments are to be
extracted from these representations; (3) how extracted fragments are to be recom-
bined when analyzing and translating input sentences; and (4) how the resulting
translations are to be ranked.

Tree-DOT (Hearne 2005; Hearne & Way 2006; cf. also Section 5.2.4) was
designed to utilize parallel treebanks, i.e., bilingual corpora annotated with syn-
tactic structures for both the source and the target side and with links between
corresponding constituents in corresponding sentence pairs. From such a paral-
lel treebank, linked subtree pairs can be extracted with associated probabilities.
These subtree pairs can be used to analyze source-side sentences and construct
compositionally corresponding target-side translations. An example is given in
Figure 19.7.
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NP VP NP VP

he V NP il AUX V NP

chose D NPzero a choisi D NPpp

the N N la N PP

ink cartridge cartouche P N

de encre

Figure 19.7 An aligned tree pair in DOT for the sentence pair: he chose the ink cartridge,
il a choisi la cartouche d’encre.

Tree-DOT standardly uses phrase-structure trees as training data. Links
between the constituents of two trees represent semantic/translational equiva-
lence between these constituents. The translational equivalence relation is reflex-
ive, symmetric, and transitive. For training, from all tree pairs in a parallel
treebank a bag of all possible linked subtree pairs is created, where linked
subtree pairs occur exactly as often as they can be identified in the parallel
treebank. These subtree pairs can be composed together to produce analyses of
complete sentence pairs.

For translation, the source-language sentence is analyzed, whereby all possible
derivations for the sentence are generated using linked subtree pairs. The corre-
spondences in the subtree pair fragments can be used to generate target-language
translations.

3.2.4 Supervised tree-to-tree and tree-to-string model Hanneman et al. (2008)
present a general framework for the development of search-based syntax-driven
machine translation systems: Stat-XFER. This framework uses a declarative for-
malism for symbolic transfer grammars which consist of syncronous context-free
rules that can additionally be augmented by unification-style feature constraints.
These transfer rules specify the correspondences between phrase structures in the
source and target languages.

The transfer formalism was designed considering the fact that the rules have to
be simple enough so that they can be learned automatically, but also expressive
enough to allow for manually crafted rule additions and changes. The rules incor-
porate the following components (Hanneman et al. (2008) use ‘x-side’ to refer to
the source language, and ‘y-side’ for the target language):

• Type information: identifies the type of transfer rule and generally corre-
sponds to a syntactic constituent type. The formalism allows for the x- and
y-side type information to be different.
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• POS/constituent information: represents a linear sequence of components that
constitute an instance of the rule type. These correspond logically to the right-
hand sides of CFG rules for the x- and y-sides.

• Alignments: explicitly describe how the set of source-language components
in a rule align and transfer to the set of target-language components. The
formalism allows for both no and many-to-many alignments.

• x-side constraints: apply to the source language and determine at run-time
whether a transfer rule applies to a given sentence.

• y-side constraints: apply to the target language and guide the generation of
the target-language sentence.

• xy-constraints: provide information about the feature values that transfer from
the source to the target language.

The transfer engine uses lexical transfer rules from a bilingual lexicon, while
the higher-level structural rules can be either manually developed or automati-
cally acquired. This engine fully integrates parsing, transfer, and generation in
a bottom-up ‘parse-and-transfer’ algorithm that is essentially an extended chart
parser (Kaplan 1973; Kay 1973). Parsing is performed using the source grammar,
where x-side constraints are applied. Then the transfer rules are used to gener-
ate the target language side, constrained by the target grammar (where y-side
and xy constraints are enforced). See Chapter 4, THEORY OF PARSING, for more
information on parsing.

3.3 Example-based machine translation
Especially since the introduction of PB-SMT (Marcu & Wong 2002; Koehn et al.,
2003), there has been a strong convergence between the leading corpus-based
approaches to MT. As we stated in Way and Gough (2005a), before PB-SMT was
introduced, describing the differences used to be easy, as since its inception (Nagao
1984) EBMT has sought to translate new texts by means of a range of subsenten-
tial data – both phrasal and lexical – stored in the system’s memory. Until quite
recently, by contrast, SMT models of translation were based on the simple word
alignment models of Brown et al. (1993). Now that SMT systems learn phrasal as
well as lexical alignments, this has led to an unsurprising increase in translation
quality compared to the IBM word-based models (Brown et al., 1993; cf. Section
2.1.3 above).

A very wide array of techniques are used in EBMT today (cf. Carl & Way 2003).
Nonetheless, it is widely accepted that there are three main stages in translating
with an example-based model, namely:

• matching: searching for fragments of the source text in the reference corpus;
• alignment: identifying the corresponding translation fragments;
• recombination: composing these translation fragments into the appropriate

target text.
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Just like PB-SMT, EBMT is a dynamic, fully automatic translation process. All
three of the above stages depend very heavily on the nature of the training exam-
ples in the system’s database. The initial matching process uses a distance-based
metric to compare the input string against examples from the source side of the
reference corpus. In EBMT, the ‘classical’ similarity measure is the use of a the-
saurus to compute word similarity on the basis of meaning or usage (Nagao 1984;
Sato & Nagao 1990; Sumita et al., 1990; Furuse & Iida 1992; Nomiyama 1992;
Matsumoto & Kitamura 2005). Other approaches calculate similarity based on the
relative length and content of strings (Way & Gough 2003). ‘Similar’ examples
are searched for, and a cost is calculated taking into account deletions, insertions,
and substitutions, e.g., a missing comma would be penalized less than a missing
adjective.19

Probably the biggest divergence in approach among different types of EBMT
systems can be seen in the second alignment (or adaptation) phase, which again
depends largely on the nature of the examples used in the EBMT system. A rich
diversity of models can be seen, for example:

(1) pure string-pairs with no additional information (e.g., Nagao 1984; Somers
et al., 1994; Lepage & Denoual 2005);

(2) annotated constituency tree (from context-free phrase-structure grammars;
Chomsky 1957) pairs (e.g., Hearne 2005; Hearne & Way 2006, cf. Sections
3.2.3 and 5.2.4);

(3) dependency tree pairs (e.g., Watanabe 1992; Menezes & Richardson 2003);
(4) LFG f-structure pairs (e.g., Way 2003);
(5) tree-to-string systems (e.g., Langlais & Gotti 2006; Liu et al., 2006);
(6) generalized examples (e.g., Brown 1999; Cicekli & Güvenir 2003; Way &

Gough 2003).

Particularly in relation to generalized examples, EBMT has successfully inte-
grated translation templates into its models, in a similar manner to rule-based
approaches. It is fair to state that the use of generalized templates has not caught
on anywhere near as much in PB-SMT as it has in EBMT, despite the well-received
‘alignment template’ approach in PB-SMT (Och & Ney 2004), which mirrors quite
closely the method of generalization most widely used in EBMT.

While the third recombination stage also differs according to the nature of the
examples used in the appropriate EBMT model, it is broadly similar to the decod-
ing stage in SMT (cf. Germann 2003 for word-based models, and Koehn 2004;
Koehn et al., 2007 for phrase-based approaches, cf. Section 2.4). Indeed, many sys-
tems which are called ‘example-based’ currently use Moses as their decoder, and
more and more the term ‘recombination’ is being replaced by the PB-SMT term
‘decoding.’

3.4 Rule-based machine translation
As mentioned in the introduction, the leading paradigm in published MT research
is PB-SMT; however, most available commercial systems are rule-based MT
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(RBMT) systems. The main reason why RBMT systems are still being developed is
that the vast bilingual and monolingual training corpora needed to build PB-SMT
systems are not available for all language pairs. Furthermore, the translation errors
produced by RBMT systems tend to have a more repetitive nature than those of a
PB-SMT system,20 which may render RBMT systems more predictable and easier
for human translators to post-edit.

It may be useful to offer a contrast between RBMT and corpus-based systems
such as PB-SMT and EBMT. RBMT systems are deductive: they use rules, dic-
tionaries, etc., explicitly coded in a computer-readable form by experts using
knowledge deduced or derived from their linguistic knowledge. This process may
involve elicitation, that is, making explicit the implicit knowledge of translators
and linguists. In contrast, PB-SMT and EBMT systems are inductive; they use
information inferred from sentence-aligned parallel texts.

However, this deductive RBMT knowledge is somewhat hidden in commer-
cial products. As we said earlier, commercial MT is overwhelmingly dominated
by the rule-based paradigm. Most commercial MT companies tend to withhold
information about the inner workings of their products, to avoid compromising
their competitiveness in a license-based closed-software business model; there-
fore, papers describing real RBMT systems are somewhat scarce (cf. Section 7 for
some examples). However, a moderate effort of reverse engineering (Forcada 2001)
using carefully prepared test sets may be easily used to reveal the strategies and
rules used by these systems, with ‘incorrect’ translations playing an important role
in the extraction of this information.

While it may take some effort to see what ‘rules’ might be underpinning existing
commercial systems, it is important to note that not all RBMT systems are closed.
For example, the Logos system has been released as free/open source software
as ‘OpenLogos,’21 and there is also very active development around a free/open
source MT platform called Apertium (Armentano-Oller et al., 2006),22 mainly by
private companies.

Despite such shifts, it remains the case that these open source systems use tech-
nologies that have been around for decades: Apertium uses a classical partial
syntactic-transfer architecture (also known as a ‘transformer’ architecture; Arnold
et al., 1994, chapter 4). The indirect strategy used by Logos is harder to characterize
in terms of a standard architecture (Scott 2003).

With respect to closed source systems, one of the leaders is the Barcelona-based
Translendium,23 which may be seen as a modern version of Siemens-Nixdorf’s
full syntactic-transfer METAL system (White 1985). Systems such as Softissimo’s
Reverso24 use a partial syntactic-transfer strategy, able to translate correctly The
senior expert’s large desk or The computer expert’s desk but failing to translate a slightly
more complex phrase such as The senior computer expert’s large desk because of lack
of a suitable pattern to detect and translate it, revealing the application of shorter
patterns.

RBMT systems (of the transformer and transfer kind) were designed in the 1970s
and 1980s to run on mainframe computers. They were then ported to become
slow desktop applications for personal computers in the 1990s, and subsequently
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they have been run on high-performance web-based systems without changes
in their basic design. The commercial nature of these products and the appar-
ent lack of innovation may explain why it is hard to find papers describing new
developments in RBMT, as compared to those in corpus-based MT.

3.5 Hybrid methods
While we feel it is appropriate here to feature systems which espouse to exhibit
some degree of hybridity, we should perhaps begin with a word of caution:

Much current research in MT is neither based purely on linguistic knowledge nor on
statistics, but includes some degree of hybridization. At AMTA 2004 and MT Summit
2005 just about all commercial MT developers also claimed to have hybrid systems.
But is this mostly a good way to allow painting oneself into whatever paradigm that
current ‘fashion’ suggests one should be? (Cavalli-Sforza & Lavie 2006)

Accordingly, we make a distinction in what follows between serial system
combination (or ‘multi-engine MT’) and truly integrated systems. In what fol-
lows, we assume that only the latter qualify for the label ‘hybrid.’ Nonetheless,
ROVER-like system combinations (Fiscus 1997) are increasingly to be seen, espe-
cially in large-scale open MT evaluations, and we feature some examples below. In
Section 5, we discuss the contributions of our own work in the context of hybridity
in translation, so the interested reader should also look there for comparisons with
the work cited in the current section.

3.5.1 Multi-engine MT The term ‘multi-engine machine translation’ (MEMT)
was first introduced by Frederking and Nirenburg (1994) in their Pangloss system.
Broadly speaking, MEMT systems try to select the best output from a number
of MT hypotheses generated by different systems, while leaving the individual
hypotheses intact.

Alegria et al. (2008) report a hierarchical strategy to select the best output from
three MT engines for Spanish-to-Basque translation. First they apply EBMT (if it
covers the input), then SMT (if the confidence score is higher than a given thresh-
old), and then RBMT. The best results were obtained by the combination of EBMT
and SMT.

Mellebeek et al. (2006) report a technique in which they recursively decom-
pose the input sentence into smaller chunks and produce a consensus translation
by combining the best chunk translations, selected through majority voting, a
trigram LM score, and a confidence score assigned to each MT engine. This is a
quite different approach to all the other methods presented here, which operate
on the MT outputs for complete sentences.

Van Zaanen and Somers (2005) report a language-independent ‘plug-and-play’
MEMT system that constructs a consensus translation from the outputs of off-the-
shelf MT systems, relying solely on a simple edit-distance-based alignment of the
translation hypotheses, with no training required.

The work of Paul et al. (2005a; 2005b) presents a multi-engine hybrid approach
to MT, making use of statistical models to generate the best possible output from
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various MT systems. When using an SMT model to select the best output from
multiple initial hypotheses produced by a number of SMT and EBMT systems,
Paul et al. (2005a) found that a PB-SMT system modeled on HMMs provided the
best results.

3.5.2 Integrated systems Rosti et al. (2007) look at sentence-, phrase-, and
word-level system combinations exploiting information from n-best lists, system
scores, and target-to-source phrase alignments. Accordingly, it could be described
as either MEMT or integrated, but we choose to discuss it here rather than in the
previous section.

Chen et al. (2007) describe an architecture that allows combining SMT with one
or more RBMT systems in a multi-engine setup. It uses a variant of standard
SMT technology to align translations from RBMT systems with the source text
and incorporates phrases extracted from these alignments into the phrase table
of the SMT system. In related work, Eisele et al. (2008) report on two hybrid
architectures combining RBMT with SMT. In the first architecture, several exist-
ing RBMT engines are used in a multi-engine setup to enrich the lexical resources
(phrase table) available to the SMT decoder, which combines the best expressions
proposed by different engines. The modified phrase table combines statisti-
cally extracted phrase pairs with phrase pairs generated by linguistic rules. The
second architecture uses lexical entries found using a combination of SMT technol-
ogy together with shallow linguistic processing and manual validation, to extend
the lexicon of the RBMT engine.

Seneff et al. (2006) exploit techniques to combine an interlingual MT system with
phrase-based statistical methods, for translation from Chinese into English.

Bangalore et al. (2001) also use insights from post-editing to compute a consen-
sus translation via majority voting from several translation hypotheses encoded
in a confusion network. However, since edit-distance only focuses on insertions,
deletions, and substitutions, the model is unable to handle translation hypothe-
ses with significantly different word orders. Jayaraman and Lavie (2005) try to
overcome this problem by allowing non-monotone alignments of words in differ-
ent translation hypotheses for the same sentence. They use a basic edit-distance
(Levenshtein 1966) that ignores case and which uses a stemmer to increase the
number of matches.

Matusov et al. (2006) compute the consensus translation by voting on a confu-
sion network (Mangu et al., 2000; Hakkani-Tür & Riccardi 2003) constructed from
pair-wise word alignments of the multiple hypotheses to explicitly capture word
reordering.

4 MT Applications

Advances in MT have meant that translation quality is now good enough to
facilitate the needs of the general public with online MT systems (Section 4.1),
assist human translators through the development of translation memory systems
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(Section 4.2), and help address specific problems such as intercultural commu-
nication (Section 4.4). It can also be combined with other NLP technologies
(Section 4.3).

4.1 Online MT systems
Consistent development of MT technology and the increasing need for translation
at great speed with little cost has fueled the proliferation of online MT systems
such as Systran,25 Google Translate,26 Babelfish,27 and Windows Live Transla-
tor.28 These systems predominantly offer their services free of charge as part of a
web-based platform. They provide real-time translation to the general public
through web-based platforms that allow users to type sentences, paragraphs of
text, or URLs for almost instantaneous translation into their chosen language.
Although online MT systems may not be the best choice for highly accurate,
large-scale, domain-specific translation, they adequately serve the small-scale,
open-domain translation needs of the general public – as can be seen by the mil-
lions of hits per day that such sites receive – where the need for gisting (i.e.,
access to the basic information contained in the document) is greater than a perfect
translation.

4.2 Translation memory tools
Translation memories (Garcia 2007; Biçici & Dymetman 2008) comprise bilin-
gual corpora of previously translated phrases usually within a particular domain.
Translation memory tools are used to assist human translators and, as well as
the memories themselves, they contain glossary and terminology management
components, alignment technology, pre-translate functions, etc. Input phrases, or
phrases selected using a computer-assisted translation tool, are compared against
the corpus, and a set of relevant target-language sentences are produced for the
translator to select appropriate parts from each to combine together to produce
the output translation (cf. Section 3.3 for a comparison with EBMT).

4.3 Spoken language translation
As MT technology has developed, the range of use scenarios has increased par-
ticularly with respect to combining approaches with other NLP technologies.
Coupling MT and speech technology, for example, particularly facilitates commu-
nication when text input is not convenient or where literacy skills impede such
usage. For instance, the ‘Phraselator’29 used by the US military is a handheld
speech-to-speech translation system that aids communication where one party
does not speak English, without the need for an interpreter or literacy skills.
Such technology also bypasses the need for both parties to be able to operate the
device, which may speed up the language exchange in time-critical situations. A
further example of this is the role of MT in healthcare for patients with limited
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English (Somers 2007). MT combined with speech recognition and synthesis can
play an important role in safety-critical situations such as doctor–patient commu-
nication where patients are vulnerable, and may have little English or few literacy
skills.

4.4 Sign languages
MT can also be a valuable tool to bridge the cross-modal communication gap
between spoken and signed languages. Although research in this area is still rela-
tively novel compared to mainstream spoken language MT, it has gained ground
over the decade of its development with work in both rule-based (e.g., Veale et al.,
1998) and more recently data-driven approaches (Morrissey et al., 2007). Where
language barriers exist, person-to-person communication usually requires one or
the other party to break from using their native language, something which may
not be possible for either party in the context of deaf–hearing communication. In
this context MT can act as a useful substitute, and help maintain confidentiality in
situations such as doctor–patient scenarios which are currently compromised by
the use of teletype phones and human interpreters.

5 Machine Translation at DCU

The MT group30 at DCU initially carried out research on EBMT (Carl & Way 2003),
and especially marker-based approaches (Way & Gough 2003; Gough & Way 2004;
Gough 2005; Way & Gough 2005a). However, in the intervening period, we have
worked on a very wide range of other areas of MT research and development,
including:

(1) syntax-driven statistical machine translation (Hassan et al., 2006; 2007b; 2008;
van den Bosch et al., 2007b; Stroppa et al., 2007; Haque et al., 2009);

(2) hybrid statistical and example-based machine translation (Way & Gough
2005a; Groves & Way 2005a; 2005b; Groves 2007);

(3) tree-based machine translation (Hearne & Way 2003; Hearne 2005; Hearne &
Way 2006);

(4) word alignment (Ma et al., 2007a; 2007b; 2008; 2009);
(5) subsentential alignment for machine translation (Tinsley et al., 2007a; 2007b;

Hearne et al., 2008; Zhechev & Way 2008);
(6) improvement of rule-based machine translation (Mellebeek et al., 2006);
(7) evaluation in machine translation (Owczarzak et al., 2007a; 2007b; He & Way

2009);
(8) controlled language and machine translation (Way & Gough 2004; 2005b);
(9) human factors in machine translation (Morrissey et al., 2007).

We will outline some of this work in the following sections.
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5.1 Hybridity on the source side

5.1.1 Adding source-language context into PB-SMT The DCU MATREX sys-
tem (Stroppa & Way 2006; Hassan et al., 2007a; Tinsley et al., 2008) uses Moses
(Koehn et al., 2007) as a backbone. In a different strand of work, a novel (albeit
uncompetitive) decoder based on a memory-based classifier smoothed with a
trigram LM is presented in van den Bosch et al. (2007b). Contrast this with the
work of Carpuat and Wu (2007), who use a pre-existing word-sense disambigua-
tion tool to demonstrate improvements over an SMT baseline. Later work (Stroppa
et al., 2007) improves on the method of van den Bosch et al. (2007b) by inte-
grating a memory-based classifier as a kind of ‘pre-decoder.’ It is demonstrated
that a PB-SMT system using Moses improves significantly when context-informed
features from the source language are used. We are able to (1) introduce context-
informed features directly in the original log-linear framework (cf. (10) above), and
(2) still benefit from the existing training and optimization procedures of standard
PB-SMT.

Essentially, we use two sets of context-informed features: word-based features
and class-based features. As far as the former are concerned, we can use a fea-
ture that includes the direct left- (sbk−1) and right-context (sjk+1) words of a given
source phrase s̃k = sbk . . . sjk derived from a particular sentence pair sK

1 (consisting
of words 1 . . . K), as in (15):

(15) hm

(
s J

1, tI
1, sK

1

)
=

K∑

k=1

h̃m(s̃k, sbk−1, sjk+1, t̃k, sk)

Here, the context is a window of size 3 (focus phrase + left-context word + right-
context word), centered on the source phrase s̃k. As in (10), h̃m are the weights of
the various features. Larger contexts may also be considered, so more generally,
we have (16):

(16) hm

(
s J

1, tI
1, sK

1

)
=

K∑

k=1

h̃m(s̃k, CI(s̃k), t̃k, sk)

where CI(s̃k) denotes some contextual information (neighboring words, phrases,
part-of-speech (POS) tags, etc.) about s̃k.

In addition to the context words themselves, it is possible to exploit several
knowledge sources characterizing the context. For example, we can consider the
POS of the focus phrase and of the context words. In our model, the POS of a multi-
word focus phrase is the concatenation of the POS tags of the words composing
that phrase. Here, the context for a window of size 3 looks as in (17):

(17) CI(s̃k) = 〈POS(s̃k), POS(sbk−1), POS(sjk+1)〉
We can, of course, combine the class-based and the word-based information

together if it leads to further improvements.
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Essentially, the source context (words and/or POS tag sequences) suggest
target-language sequences for incorporation into the log-linear PB-SMT model.
When testing on the Italian-to-English and Chinese-to-English IWSLT 06 data
(Stroppa et al., 2007), we found a consistent improvement for all metrics, for each
type of contextual information: words only, POS only, and (for one of the language
pairs) words+POS. Compared to the baseline PB-SMT system, the significance
of the improvements depended on the metric. Interestingly, the words+POS
combination leads to a slight improvement for Italian-to-English, but not for
Chinese-to-English (due to the poor quality of the Chinese POS tagging).

This work is extended in Haque et al. (2009) to include supertags (cf. Section
5.3.1 below) as an additional, beneficial source-language contextual feature.

5.2 Hybridity in the translation phase

5.2.1 Comparing EBMT and word-based SMT Rather surprisingly, until our
work in Way and Gough (2005a), there had been no published comparative
research between the respective merits of SMT and EBMT, largely due to (1) the
relative unavailability of EBMT systems; (2) the lack of participation of EBMT
researchers in competitive evaluations; and (3) the clear dominance of SMT.

In Way and Gough (2005a), on a 203,000 sentence pair translation memory from
Sun Microsystems, and on a 4,000 test set (average sentence length 13.1 words
for English, 15.2 words for French) taken from the same collection, our EBMT
system in Gough and Way (2004) outperformed a baseline word-based SMT
system (Giza++ (Och 2003), CMU-Cambridge statistical toolkit (Clarkson &
Rosenfeld 1997), ISI ReWrite Decoder (Germann et al., 2001; Germann 2003) for
French to English and especially English to French, according to BLEU (Papineni
et al., 2002).

5.2.2 Combining EBMT and PB-SMT chunks However, as PB-SMT had
already been developed in Marcu and Wong (2002), it was clear that, despite being
of interest, the research in Way and Gough (2005a) was not an entirely fair com-
parison. Accordingly, in a range of papers, we conducted a variety of experiments
to compare EBMT and PB-SMT, including:

(1) comparing EBMT and PB-SMT on Sun Microsystems translation memory data
(Groves & Way 2005a; 2005b);

(2) combining EBMT and PB-SMT chunks (Groves & Way 2005a; 2005b);
(3) changing domain to Europarl (322,000 sentences) (Groves & Way 2005a;

2005b);
(4) different language pairs (Spanish to English) and more data (958,000 sen-

tences) (Armstrong et al., 2006);
(5) quite different language pairs (Basque to English, 273,000 sentences) (Stroppa

et al., 2006).

On the Sun Microsystems translation memory, our EBMT system outperformed
the PB-SMT system. However, one interesting finding was that the PB-SMT
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system, seeded in the usual way with Giza data (cf. Section 2.1.4), outperforms
a PB-SMT system built with EBMT data. We also built a ‘semi-hybrid’ system con-
sisting of EBMT phrases and Giza++ words, as well as a ‘fully hybrid’ system
comprising Giza++ words and phrases and EBMT words and phrases.

Using the Sun Microsystems translation memory, we observed that the ‘semi-
hybrid’ system (with a total of 430,000 entries in the t-table) performed signifi-
cantly better than the same system seeded with EBMT data (403,000 entries) alone.
This showed us that the Giza++ word lexicon was much better than the EBMT
system’s, and henceforth we abandoned our EBMT word-level lexicon. Using
all (i.e., Giza++ words and phrases and EBMT words and phrases) data (2.05
million entries) improves the PB-SMT system, i.e., EBMT data improves the PB-
SMT system, and for French to English, the fully hybrid ‘example-based PB-SMT’
system improves over the EBMT system, i.e., combining chunks from both systems
improves over both the SMT and EBMT baselines.

On the Europarl data (Koehn 2005), we observed, unsurprisingly, that doubling
training data (78,000, 156,000, 322,000) improves both EBMT and PB-SMT systems.
This time, however, the PB-SMT system significantly outperforms our EBMT sys-
tem. We put this down to the relative homogeneity (i.e., consistency of domain)
of the Sun Microsystems translation memory compared to the heterogeneity of
Europarl. Adding the Giza++ word lexicon improves the EBMT system a little,
and the hybrid ‘statistical EBMT’ system seeded with all PB-SMT and EBMT data
improves over the EBMT baseline. Adding the EBMT data to the hybrid ‘example-
based PB-SMT’ system beats the baseline PB-SMT system, even when trained
using only half the amount of data (156,000 vs. 322,000) for French to English.
For English to French, the hybrid PB-SMT system using 78,000 sentences of train-
ing data has almost the same performance as the baseline PB-SMT system trained
on four times as much data (322,000).

On other language pairs and corpora, we found that adding EBMT chunks to
a baseline Pharaoh system (Koehn 2004) adds four BLEU points for Spanish to
English (Armstrong et al., 2006) trained on nearly 1 million sentences of Europarl
data. Furthermore, we showed that adding EBMT chunks to a baseline Pharaoh
system adds five BLEU points for Basque to English (Stroppa et al., 2006).

5.2.3 Adding statistical language models to EBMT Groves and Way (2005a;
2005b) showed that adding a statistical LM to their EBMT helps improve trans-
lation performance. However, unlike in PB-SMT, we did not integrate the target
LM (cf. Section 2.2.1) directly into the EBMT system, but rather used it only for
EBMT re-ranking (cf. Section 2.6). Adding the target LM improves both the base-
line and the hybrid ‘statistical EBMT’ systems (10 percent and 6–7 percent relative
improvement in BLEU respectively).

5.2.4 Tree-based translation We have already described in Section 3.2.3 the
basic system architecture of our DOT tree-to-tree MT system. One might be able
to claim with some conviction that tree-to-tree translation (e.g., Hearne 2005;
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Figure 19.8 Composition in tree-DOT.

Hearne & Way 2006) is hybrid MT, seeing as the DOT model includes examples
(trees, in tree-DOT), source and target syntax (in the trees), rules (how the trees
relate), and statistics (in the probability model) (see Figure 19.7).

There are two fragmentation operations in DOT which allow smaller, more
general aligned tree pairs to be extracted from larger aligned tree pairs. The root
operation selects a linked node pair to be root nodes and deletes all except these
nodes, the subtrees they dominate, and the links between them. The frontier oper-
ation selects a set of linked node pairs to be frontier nodes and deletes the subtrees
they dominate.

The tree-DOT composition operation (◦) requires that tree fragments be com-
posed at the leftmost site on the fragment’s source side, and at the target site linked
to the leftmost source site. This ensures that each derivation is unique, and that
translational equivalences encoded in the example base are respected (Way 2003).
An example derivation is given in Figure 19.8.

The probability model in DOT is a sum-of-products model, consisting of the
probability of a fragment < sx, tx > (comprising a source fragment sx and its trans-
lation tx), the probability of a derivation Dx, the probability of a parse < Sx, Tx >,
and the probability of a source-to-target sentence pair s, t. Combined together, we
derive the probability model in (18):

(18)
∑

<Sx,Tx> yields s,t

∑

Dx yields <Sx,Tx>

∏

<sx,tx> ∈ Dx

| < sx, tx > |
∑

root(s)=root(sx)∧root(t)=root(tx)
| < s, t > |

As for disambiguation strategies, in Hearne and Way (2006) we compared a
range of different techniques, including:

• most probable translation (MPT): the most probable sequence of target terminals
given the input string;

• most probable parse (MPP): the sequence of target terminals read from the
most probable bilingual representation for the input string;

• most probable derivation (MPD): the sequence of target terminals read from
the most probable derivation of a bilingual representation for the input string;

• shortest derivation (SDER): the sequence of target terminals read from the
shortest derivation of a bilingual representation for the input string.
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Table 19.1 Number of fragments for English-to-French and French-to-
English HomeCentre experiments

link depth=1 depth≤2 depth≤3 depth≤4

English to French: 6,140 29,081 148,165 1,956,786
French to English: 6,197 29,355 150,460 2,012,632

The first two of these were computed using Monte Carlo Sampling (Bod 1998),
while the latter two were calculated using the Viterbi algorithm (Viterbi 1967).

Using the English-to-French section of the HomeCentre corpus, we split 810
parsed, subsententially aligned translation pairs into 12 training/test sets, six for
English to French, and six for French to English. The splits were randomly pro-
duced such that all test words occurred in the training set, i.e., there were no OOV
items.

One problematic issue with DOT models is grammar size. For our experiments,
the grammar sizes are given in Table 19.1 (using the notion of ‘link depth’ from
Hearne & Way 2003).

The full results for English to French and French to English in terms of exact
match, BLEU, and F-score, averaged over the splits, are given in Hearne and Way
(2006). In sum, the DOP hypothesis (Bod 1998) is confirmed for both language
directions, i.e., as fragment depth increases, accuracy increases. For English to
French, for all metrics and depths bar MPP at link depth 2, either MPD or SDER
is preferred. Interestingly, MPT does not achieve highest accuracy at any depth
for any metric and, overall, the highest performance is at link depth 4 using MPD
or SDER. For French to English, except for the BLEU score at link depth 3, the
MPT scores best for both BLEU and F-score, whereas for exact match there are no
significant trends to report.

As might be expected, execution time increases as link depth increases. How-
ever, the extra time required is spent building the translation space rather than
disambiguating, and we note that translating from French takes longer because the
average sentence length is longer. For English to French, we see that SDER = MPD
< MPP < MPT, while for French to English, MPT < SDER = MPD < MPP. Inter-
estingly, ranking with Monte Carlo sampling does not take longer than ranking
with the Viterbi algorithm for this data set.

One of the major remaining issues for us is scaling DOT to training sizes of at
least two orders of magnitude larger than those used to date. Data acquisition
has been a problem, which resulted in our building an automatic subtree aligner,
described in Tinsley et al. (2007b). See also Galron et al. (2009) for a novel method
of rescoring the DOT fragments with the evaluation metrics (see Section 2.5 above)
used to measure the performance with the MT end task in mind.

5.2.5 Augmenting PB-SMT with subtree pairs Once we had developed
our automatic subtree aligner (Tinsley et al., 2007b), we incorporated subtree
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alignments into PB-SMT systems (Tinsley et al., 2007a; Hearne et al., 2008). The
motivation for this work was the observation that most state-of-the-art MT sys-
tems (1) are not syntax-aware, (2) use models which are based on n-grams, and (3)
incorporate only a limited amount of linguistic information.

Parallel treebanks are not widely used in MT, if at all. However, we believe that
the data encoded within parallel treebanks could be useful in MT.31 In order to
confirm this view, we built large parallel treebanks automatically, using off-the-
shelf parsers and our subtree aligner, and then used these parallel treebanks to
train a range of PB-SMT systems.

In Tinsley et al. (2007a), we used two data sets for two different language pairs.
For English to German we used a small subset of Europarl data (Koehn 2005),
with a 9,000:1,000 sentence split for training and testing. The monolingual parsers
used were Bikel (2002) for English, and BitPar (Schmid 2004) for German (trained
on the Tiger treebank). For English to Spanish we used a 4,500:500 sentence split
of Europarl data for training and testing. The parser of Bikel (2002) was again
used for English, with a version of the same parser adapted by Chrupała and van
Genabith (2006) (trained on the Cast3LB treebank; Civit & Martí 2004) used for
Spanish.

There were three main findings: (1) the parallel treebank word and phrase pairs
improve translation quality when combined with traditional corpus-based extrac-
tion; (2) the parallel treebank word pairs are better for translation than those given
by traditional word alignment; but also (3) that the parallel treebank phrase pairs
are too few in number to be used alone for translation.

Nonetheless, just like the work of Groves and Way (2005a; 2005b), this strand
of work clearly demonstrates that restricting word and phrase extraction to one
particular method will lead to suboptimal performance.

In Hearne et al. (2008), the authors demonstrate that the subtree aligner of
Tinsley et al. (2007b) can also be used to extract word and phrase pairs from depen-
dency parses. In brief, the authors demonstrate that while both constituency- and
dependency-based sets of alignments improved a baseline PB-SMT system, the
combination caused system performance to deteriorate. Working out precisely
why this is the case is the subject of ongoing work.

5.3 Hybridity on the target side

5.3.1 Incorporating supertags into PB-SMT In Hassan et al. (2006; 2007b;
2008), we have shown that supertags (both CCG and LTAG) improve the perfor-
mance of a state-of-the-art PB-SMT system on large data sets: for Arabic to English,
on the NIST’05 data,32 and for German to English, on the ACL 2007 MT Workshop
shared task (WMT 2007) (Callison-Burch et al., 2007).

Our approach can be described with respect to the noisy channel model (cf.
(1)) as well as the log-linear model (cf. (3)). The noisy channel formulation would
extend equation (1) as in (19):
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arg max
t

∑

ST

P(s | t, ST)PST(t, ST) ≈

arg max
t,ST

P(s | t, ST)PST(t, ST) ≈
(19) arg max

σ,t,ST
P(φs | φt,ST)P(Os | Ot)

λo PST(t, ST)

where P(φs | φt,ST) is the translation model containing supertags on the target side,
P(Os | Ot)

λo is the distortion model, and PST(t, ST) is the target-language model
containing supertags. ST is the supertag sequence for the target string t. We use
σ to indicate a segmentation into supertagged phrase pairs, just as in the baseline
model.

We can also formalize our approach in terms of the log-linear model, as in (20):

(20) t∗ = arg max
t,σ,ST

∏

f∈F′
Hf (s, t, σ, ST)λf

Our model interpolates (log-linearly) a novel set of supertagged features f with
the features of the baseline model F

′
. These include Hlm.st(s, t, σ, ST) = P(ST),

a Markov supertagging language model (hence lm) over sequences of supertags
(hence st), as in (21):

(21) P(ST) =
n∏

i=1

p
(

sti

∣
∣
∣sti−1

i−4

)

We also use two weight functions Hφ.st(s, t, σ, ST) = P(φs | φt,ST) and its reverse
Hrφ .st(s, t, σ, ST) = P(φt,ST | φs). The supertagged phrase translation probability is
approximated in the usual (i.e., bidirectional) way:

P(φs | φt,ST) ≈
∏

〈si,tiSTi〉∈(φs×φt,ST)

p(si | ti, STi)(22)

P(φt,ST | φs) ≈
∏

〈si,tiSTi〉∈(φs×φt,ST)

p(ti, STi | si)(23)

In both (22) and (23), 〈si, ti, STi〉 is a supertagged phrase pair consisting of the
phrases 〈si, ti〉 where ti is supertagged with STi. As usual, the parameters p(s | t, ST)

and p(t, ST | s) are estimated with the relative frequency in the multiset of all
supertagged phrase pairs extracted from the parallel corpus, as in (24):

P(s | t, ST) = count(s, t, ST)
∑

s count(s, t, ST)

P(t, ST | s) = count(s, t, ST)
∑

t,ST count(s, t, ST)
(24)

Finally, we employ two more feature functions (x.φ.st and x.rφ.st) capturing the
statistics p(si | STi) and P(STi | si), which in effect smooth the feature functions φ.st
and rφ.st.
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In sum, incorporating supertags into PB-SMT demonstrates clearly that lexical
syntax helps, for a number of reasons: (1) supertags fit seamlessly with PB-SMT as
they are lexical, linguistically rich and can be used in efficient HMMs; (2) supertags
do not admit (much) redundant ambiguity into the phrase translation tables; (3)
the huge amount of baseline PB-SMT phrases are constrained using bona fide syn-
tactic constraints; (4) more informed decisions regarding the best candidate can be
taken; and (5) there is no need for full parsing or treebanking.

If the reader needs any further persuasion that adding lexical syntax really
helps, our Arabic-to-English system (Hassan et al., 2007a) was ranked first at
IWSLT-07 (Fordyce 2007) according to human judges.

5.4 What works?
Given all the above, it might be useful to summarize what we have found to work
well in practice.

As far as incorporating hybridity into EBMT is concerned, adding Giza++ lex-
ical and phrasal chunks, and using target LMs for re-ranking have proven very
effective.

Regarding the incorporation of hybridity into PB-SMT, adding EBMT lexical and
phrasal chunks improves translation quality, and reduces the t-table size for the
hybrid system while continuing to compare favorably with much larger baseline
PB-SMT systems. This may be important for language pairs with scarce resources,
as well as situations where systems with a much smaller footprint are required.
In addition, factoring in parallel treebank word and phrase pairs improves trans-
lation quality, as does incorporating supertags into the target LMs and the target
side of the TM. Finally, adding source-language features directly into the log-linear
model improves translation quality quite considerably.

5.5 Future research directions
Much of the above research is work in progress, and the intention is to continue to
improve on the steps taken so far. Some of the issues to be tackled include:

(1) combining the content-word generalized templates (CMU, in (25)) of Brown
(1999) with our own marker-based generalized templates (DCU, in (26)):

(25) CMU : Flights from <PLACE> to <PLACE>

(26) DCU : Flights <PREP> New York <PREP> Denver

(2) incorporating a target LM directly into our EBMT system;
(3) combining all source, target, and translational improvements in one system.

In the context of the Centre for Next Generation Localisation (CNGL),33 there
are a number of open research avenues, including many of the issues raised here.



“9781405155816_4_019” — 2010/5/8 — 12:12 — page 568 — #38

568 Andy Way

However, other work packages address the development of probabilistic transfer
engines, the tuning of MT systems to text type and genre, the development of gen-
eral alignment models capable of inducing subsentential alignments for any type
of annotated data, the incorporation of controlled language guidelines into the
range of MT systems being developed in our team, and the development of intel-
ligent engines for speech-to-speech translation. We continue to extend the range
of language pairs that our systems can cope with (cf. English to Hindi; Srivastava
et al., 2008), as well as participate in large-scale MT evaluation competitions.

6 Concluding Remarks and Future Directions

For a number of reasons, it can be said with some conviction that the field of MT
currently finds itself in a quite good state of health:

(1) there is evidence of increased levels of funding (especially in the US, Europe,
and Asia);

(2) MT is being used more widely than ever before;
(3) more free and open source tools are available to MT developers;
(4) large-scale MT evaluation competitions are attracting more and more sys-

tems, for an ever widening array of language pairs.

There exists, therefore, a real opportunity for our community to drive forward
MT research and development to demonstrate clearly that good quality output can
be achieved, which is useful to a wide array of potential users, both in industry
and in the wider public.

Failure to do so may result in a return to the post-ALPAC report34 (Pierce et al.,
1966) state of affairs where funding is cut – especially given the current economic
environment – in favor of more fundamental requirements. Despite the wide vari-
ety of tools and techniques featured in this chapter, it remains the case that most
MT research and development today is rather monolithic in the approaches taken,
largely due to the availability of tools for PB-SMT. When it comes to purchasing
MT systems, customers do not know what to buy. While MT evaluation metrics
such as BLEU are well understood by the research community, they do not provide
any insight to potential users as to the effectiveness of such solutions, and bear
little relation to the translation memory notion of ‘fuzzy match score’ widely used
in industry. When BLEU appeared in 2002, it was clear that it was more than capa-
ble of informing developers whether their systems had improved incrementally.
Now, however, research systems have overtaken the ability of the available MT
evaluation metrics to discern the quality of the output translations. Accordingly,
better MT evaluation metrics are needed, not just for MT developers, but also for
potential users of our systems.

As well as improvements in MT evaluation, it is widely agreed that more
linguistic knowledge can indeed play a role in improving today’s statistical sys-
tems, in all phases of the process. Syntax is of use in PB-SMT in the source,
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translation, and target phases, as has been acknowledged for some time in RBMT
and EBMT. Furthermore, it is recognized in the tree-to-string and string-to-tree
models that having structure on one side helps, and in the near future we can
expect to see large-scale, robust systems with trees on both sides.

While there has clearly been a movement away from RBMT to statistical meth-
ods, now the pendulum is swinging back (slowly) in the opposite direction. We
predict that, just like in the old rule-based times, the community will move further
up the ‘Vauquois Pyramid’ (Vauquois 1968) and avail itself of more diverse sources
of linguistic information; while syntax is useful, a new ceiling will be approached
where further improvements will only be brought about by the use of semantic
knowledge. As a final remark, note that this is not at all contrary to the original
IBM models (Brown et al., 1993), a fact that most of the MT community seems to
have overlooked, if not forgotten entirely.

7 Further Reading

For sentential alignment (cf. Section 2.1.1), consult Brown et al. (1991); Gale and
Church (1993) for length-based algorithms (words and characters, respectively)
and Kay and Röscheisen (1993) for a dictionary-based solution using ‘anchors.’

The primary sources on word alignment (cf. Section 2.1.3) are Brown et al. (1993)
and Och (2003). For improvements to IBM model 1, consult Moore (2004), and
Toutanova et al. (2002); Lopez and Resnik (2005); Liang et al. (2006b) for extensions
to the first-order HMM models. Other approaches include inversion transduction
grammar (Wu 1997), which performs synchronous parsing on bilingual sentence
pairs to establish translational correspondences, and the tree-to-string alignment
model of Yamada and Knight (2001), which aligns a source tree to a target string.
For an approach which bootstraps word alignments via optimizing word segmen-
tations, consult Ma et al. (2007b). With respect to investigations into the effect of
balancing precision and recall on MT performance, Mariño et al. (2006) observed
that an alignment with higher recall improved the performance of an n-gram-
based SMT system, while Ayan and Dorr (2006) observed that higher precision
alignments are more useful in phrase-based SMT systems, although this finding is
not confirmed by Fraser and Marcu (2007b).

Regarding other methods of phrase extraction (cf. Section 2.1.4), Marcu and
Wong (2002) describe a joint phrase model by which phrase pairs are estimated
directly from the parallel corpus using the expectation-maximization (EM) algo-
rithm (Dempster et al., 1977). Other proposed methods can be found in Tillmann
and Xia (2003), Ortiz-Martínez et al. (2005), and Zhang and Vogel (2005), amongst
others.

As for reordering (cf. Section 2.2), the method of Galley and Manning (2008)
differs from those of Tillmann (2004) and Koehn et al. (2007) by estimating
sequences of orientations directly from data, and by dynamically updating the
segmentation of the source and target sentences with hierarchical phrases.
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With respect to language modeling (cf. Section 2.2.1), the main sources are Jelinek
(1977) and Kneser and Ney (1995), with more details to be found in Chen and
Goodman (1998), especially for ‘modified’ Kneser–Ney smoothing, and Kim et al.
(2001), on lowering the perplexity of the structured language model of Chelba and
Jelinek (2000).

As far as minimum error rate training (MERT) is concerned (cf. Section 2.3.1), two
novel papers which will benefit the reader are those of Moore and Quirk (2008),
where trade-offs in terms of decoding and MERT time are considered, and Chiang
et al. (2008), where alternative models are given in which a much larger number
of features can be integrated.

For decoding (cf. Section 2.4), the reader is directed towards the primary sources,
namely Koehn (2004) and Koehn et al. (2007).

With respect to re-ranking (cf. Section 2.6), useful sources include Och et al.
(2004), Shen and Joshi (2005) (who use the best subset of features tested by Och
et al. (2004)), and Yamada and Muslea (2006), who train their re-ranker on the
whole training corpus, as opposed to just re-ranking on the test set.

If interested in MT evaluation (cf. Section 2.5), consult the primary sources given
in Section 2.5. A nice recent paper which we recommend is that of Hwa and
Albrecht (2008).

For two quite different overview papers on statistical MT (SMT), we recommend
Way (2009a) for a critique of the paradigm, and Hearne and Way (2009), which
explains phrase-based SMT (PB-SMT) for the non-expert.

The primary sources on hierarchical phrase-based models (cf. Section 3.1) are
Chiang (2005; 2007). Huang and Chiang (2005) provides a valuable explanation
of cube pruning (cf. Section 3.1.3).

For good summaries of example-based MT (EBMT) (cf. Section 3.3), we encour-
age the reader to consult Somers (1999; 2003b) and Way (2009b). The monograph
by Carl and Way (2003) provides a representative sample of the myriad array of
techniques used in EBMT.

Some examples of current research in rule-based MT (RBMT) (cf. Section 3.4)
include Probst et al. (2002) and Lavie et al. (2004) on knowledge elicitation for
under-resourced languages. Font-Llitjós et al. (2007) address the issue of rule
refinement, while Zhu and Wang (2005) investigate the relationship between the
number of rules and the performance of RBMT systems. Menezes and Richardson
(2003); Caseli et al. (2006); Sánchez-Martínez and Forcada (2007) all focus on
automatically obtaining some of the resources required for RBMT.

Good papers on hybrid models (cf. Section 3.5) include those of Tidhar and
Küssner (2000); Callison-Burch and Flournoy (2001); Akiba et al. (2002). For a
novel view on hybridity in MT, we encourage the reader to consult Wu (2005),
where a 3-D space of hybrid models of translation is presented. Systems are cat-
egorized according to the extent to which they may be described as statistical vs.
logical, example-based vs. schema-based, and compositional vs. lexical. Another
novel paper is that of Simard et al. (2007), who present a combination of MT
systems based on a post-editing strategy, in which the PB-SMT system Portage
corrects the output of the Systran RBMT system.
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Two good papers on translation memory (cf. Section 4.2) are those of Planas
and Furuse (2003) and Garcia (2007), while the papers of Vogel and Ney (2000)
and Marcu (2001) demonstrate how translation memories can be automatically
extracted. Carl and Hansen (1999) show how translation memories can be inte-
grated with EBMT. A nice recent paper that shows how PB-SMT can upgrade
translation memory fuzzy matches to classes that require less post-editing is that
of Biçici and Dymetman (2008).

A recent paper on spoken language translation (cf. Section 4.3) emanating from
the TC-STAR project is that of Fügen et al. (2007). One notable finding in TC-STAR
was that today’s leading PB-SMT systems are robust in the face of errors coming
from the automatic speech recognition phase.

As regards our own work described in Section 5, the primary sources listed will
provide the reader with further information on any of the topics of interest.
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NOTES

1 Note, however, that Lopez (2008b) describes an SMT system which uses pattern match-
ing to avoid the problem of computing infeasibly large statistical models. His approach
directly accesses the training corpus at run-time, but his model is by any measure an
EBMT system, despite the steps taken to avoid the term.

2 www.isi.edu/natural-language/download/hansard/index.html
3 www.ldc.upenn.edu/
4 www.elda.org/
5 National Institute of Standards and Technology: www.nist.gov/speech/tests/mt/
6 International Workshop on Spoken Language Translation. For the 2008 edition see

http://mastarpj.nict.go.jp/IWSLT2008/
7 www.euromatrix.net/
8 Workshop on Statistical Machine Translation. For the 2009 edition see www.statmt.org/

wmt09/
9 www.iccs.inf.ed.ac.uk/∼pkoehn/publications/europarl/

10 http://langtech.jrc.it/JRC-Acquis.html
11 http://iwslt07.itc.it/
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12 www.cse.unt.edu/∼rada/wpt05/
13 www.cse.unt.edu/∼rada/wpt/
14 Newcomers to the field may be somewhat confused at differences between the notation

used in this chapter and some of the primary sources noted here and in Section 7. It is
much more common to use f J

1 (to be read as ‘foreign’) to indicate the source sentence,
and e I

1 (‘English’) to represent the target sentence, At first sight, the use of such terms
might be upsetting for non-English speakers, and betray to an extent the Anglocentric
nature of our field, given that most translation in MT is into English. Instead, it might
be more fruitful perhaps to think of them as simple mnemonics for the terms in the
various equations used to describe (especially) statistical MT systems; cf. (1) and (3)
below. In any case, here and in the rest of this chapter, we will stick to the less widely
used (yet less emotive) terms s and t to indicate source and target respectively.

15 www.fjoch.com/GIZA++.html
16 http://mi.eng.cam.ac.uk/∼wjb31/distrib/mttkv1/
17 The ‘ease’ or ‘difficulty’ associated with translating certain parts of a sentence is usu-

ally expressed in terms of weighted log-probabilities which take into account (at least)
language model, translation model, and reordering costs. As you might expect, com-
mon words are ‘easier’ to translate in this model than less frequent words, despite
these being among the ‘hardest’ words to get right for humans.

18 Originally known as ‘syntax-directed transduction grammars’ (Lewis & Stearns 1968)
or ‘syntax-directed translation schemata (Aho & Ullman 1969), ‘inversion transduction
grammars’ (Wu 1997) are a special case of synchronous CFGs, while a more recent
terminological introduction is ‘2-multitext grammars’ (Melamed 2003).

19 Although it is not described until Section 4.2, a quick comparison between EBMT
and translation memory is apposite here. Although the latter is a translation tool as
opposed to an MT system per se, the initial matching process is extremely similar in
nature in both approaches. Where the examples in the EBMT system consist of (unan-
notated) text pairs, the matching process is identical. In translation memory systems
such as Trados (www.trados.com), ‘fuzzy’ (i.e., non-exact) matches have an associated
measure of similarity which can be put to good use by the translator in honing the
search for higher precision (imposing a high threshold of fuzziness) or recall (lowering
the threshold). Note that the second and third EBMT phases do not form part of any
translation memory system; rather, the end user (usually a qualified translator) selects
the appropriate parts of each fuzzy match for manual combination into the appropriate
target-language sentence.

20 This can be easily demonstrated by trying some simple examples through Google
Translate. For instance, the December 4, 2008 Spanish-to-English version gave the
translation of the sentence Me los regaló tu hermanastro (lit. ‘To-me them gave-as-a-
present your half-brother,’ i.e., ‘Your half-brother gave them to me as a present’) as I
gave you the half-brother, while Me los regaló tu madre is translated as Your mother gave me,
and Me los regaló tu hermano is translated as I am your brother the gift; note that the three
Spanish sentences only differ with respect to the noun acting as subject (hermanastro,
madre, hermano).

21 http://logos-os.dfki.de/
22 www.apertium.org
23 www.translendium.com
24 www.reverso.net
25 www.systran.co.uk
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26 http://translate.google.com
27 http://babelfish.yahoo.com
28 www.windowslivetranslator.com
29 www.voxtec.com/phraselator
30 www.nclt.dcu.ie/mt/
31 Consult Zhechev and Way (2008) for how our subtree aligner can be used to auto-

matically generate parallel treebanks, for any language for which constituency- or
dependency-based parsers exist.

32 www.nist.gov/speech/tests/mt/
33 www.cngl.ie. The CNGL is a large five-year project funded by the Irish Government

involving four academic and nine industrial partners.
34 www.nap.edu/books/ARC000005/html
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EHUD REITER

Natural language generation (NLG) systems generate texts in English and other
human languages. Although they are based on many of the same linguistic and
algorithmic insights that underlie other kinds of natural language processing
systems, they are not simply natural language understanding systems run ‘in
reverse.’

In this chapter, I will briefly review NLG. In Sections 1–4, I summarize the basic
concepts of NLG, and try to highlight issues which are important to building NLG
systems and also potentially interesting to linguists and psycholinguists. Then, in
Section 5, I discuss some contemporary research in NLG, in areas which are of per-
sonal interest to me and which I believe should be of interest to other researchers
in the language community. The research topics discussed are by no means
exhaustive – they are just a sample of what the NLG research community is
working on. I conclude (Section 6) with a brief summary of resources (software,
corpora, information) for researchers who wish to work in NLG.

1 High-Level Perspective: Making Choices
about Language

From a high-level perspective, perhaps the biggest difference between NLG and
other types of NLP is the central role of choice making. NLG systems have to make
numerous choices about their output texts, ranging from high-level choices about
appropriate content to low-level choices about the use of pronouns. Although
choice making of course also occurs in other NLP tasks (for example machine
translation systems have to decide which target-language word to use when trans-
lating a source-language word), choice making is arguably more central to NLG
than to most other areas of NLP.

Sometimes NLG choices can be made on the basis of linguistic correctness, as in
the following example of a pronominalization choice:
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(1) a) * ‘Mary read about Mary.’
b) ‘Mary read about herself.’

In this case the NLG system can use binding theory (Büring 2005) to determine that
a reflexive pronoun must be used in this context, and hence decide to generate (1b).

However, in other cases, such as the example below, both choices lead to
linguistically correct texts:

(2) a) ‘I bought an apple. I ate it.’
b) ‘I bought an apple. I ate the apple.’

Since both choices lead to valid texts, the NLG system must decide between them
using other criteria. Often such decisions are made based on readability factors,
which in turn are based on psycholinguistic models of language comprehension;
in the above example such models might suggest that (2a) will be read faster, and
hence should be generated. Decisions may also be influenced by genre constraints;
for example, pronoun usage may be discouraged in safety-critical texts such as
operation manuals for nuclear power plants, so in such genres (2b) should be
generated. Genre models are typically based on corpus analysis or explicit genre
writing guides. In some cases decisions are also influenced by the linguistic abil-
ities and preferences of the reader of the text; for example an NLG system may
choose (2b) if its reader is not fluent in English.

NLG is thus largely the study of choice making, including analyses of individ-
ual choices; architectures and systems that can be used to make sets of choices; and
methodologies for creating and evaluating new choice making rules and systems.
Analyses of individual choices are often based on linguistic and/or psycholinguis-
tic research; analyses of choice making architectures and systems often build on
artificial intelligence techniques; and methodologies for creating and evaluating
rules draw on both AI and (psycho)linguistics.

2 Two NLG Systems: SumTime and SkillSum

In order to illustrate choice making and other aspects of NLG, it is useful to exam-
ine some real NLG systems. In this section we look at SumTime, which generates
weather forecasts, and SkillSum, which generates feedback reports on educational
assessments.

2.1 SumTime: Weather Forecasts
One popular application of NLG is generating textual weather forecasts from
numerical weather prediction data. NLG systems such as FOG (Goldberg et al.,
1994), MultiMeteo (Coch 1998), SumTime (Reiter et al., 2005), and RoadSafe
(Turner et al., 2008) take as their input a large set of numbers which predict tem-
perature, precipitation, wind speed, and so forth at various points and times.
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Table 20.1 Numerical wind forecast
for September 19, 2000

Time Wind Dir. Wind Speed

06:00 SE 11
09:00 SSE 13
12:00 SSE 14
15:00 SSE 15
18:00 SE 18
21:00 SE 23
00:00 SE 28

Corpus (human) text:
SSE 10–15 INCREASING 15–20 BY EVENING AND 25–30
LATER.

SumTime text:
SE 9–14 veering SSE 13–18 by mid-afternoon, then increasing
SE 26–31 by midnight.

Figure 20.1 Human and corpus wind descriptions for September 19, 2000.

These numbers are produced by a supercomputer running a numerical weather
simulation, and modified by human forecasters based on their knowledge of local
meteorological conditions. From this input data, the systems produce weather
forecast texts (sometimes in multiple languages) which are sent to forecast users
(usually after being checked and post-edited by the human forecasters) (Sripada
et al., 2004). Table 20.1 shows a simple extract from one of SumTime’s data sets,
showing 24 hours of predicted wind speed and direction for an offshore oil rig in
the North Sea. Figure 20.1 shows the text produced by SumTime from this data,
and also the corpus text for this data (that is, a text written by a human forecaster,
which was actually sent to users on the oil rig).

In order to generate the output text shown in Figure 20.1 from the input data
shown in Table 20.1, SumTime needs to make many kinds of choices.

• Choices about document content and structure: SumTime must decide what
information to communicate in the text, and also how the document is struc-
tured around this information. This is called document planning. In this exam-
ple, SumTime has decided to communicate information about the wind at the
beginning and end of the period, and also at one point in the middle, 15:00
(‘by mid-afternoon’). The human forecaster has similarly chosen to describe the
wind at the beginning and end, and at one intermediate point but has chosen
a different intermediate point – 18:00 instead of 15:00.
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One of these sentences has a word which is wrong.
Click on it.

• He was walking to the canteen when he slipped on a wet floor.
• I was walking to the canteen when I slipped on a wet floor.
• They was walking to the canteen when they slipped on a wet floor.

Figure 20.2 An example literacy screener question (SkillSum input).

Thank you for doing this.
You got 19 questions right. Click here for more information.
Your skills seem to be OK for your Health and Social Care course.
You got all except 3 of the reading questions right. But you made 5

mistakes on the questions about writing.
Perhaps you would like to take a course to help you with your English.
A course might help you to practise your reading skills, because you

said you do not read much.
Click here for Key Skills at XXX College.

Figure 20.3 Example text produced by SkillSum.

• Choices about linguistic structures: SumTime must decide which linguis-
tic structures (words, syntax, sentences) should be used to communicate the
desired information. This is called microplanning. An example of word choice
is communicating the time 00:00; in the above example the human forecaster
has referred to this time using the phrase ‘later,’ while SumTime has used the
phrase ‘by midnight.’

• Choices about word order and forms: SumTime must decide which forms of
words to use, and which order words will appear in, based on the above deci-
sions. This is called realization. An example of word-form choice is that both
the human forecaster and SumTime use the present participle (‘+ing’) form of
verbs; this is based on the genre conventions of this type of weather forecast.

2.2 Example NLG system: SkillSum
SumTime generates short summaries of numerical data for specialist users (work-
ers in the offshore oil industry). Our second example system, SkillSum (Williams
& Reiter 2008), generates summaries of performance on an educational assessment
(of basic numeracy and literacy skills). Its users are students at further education
(community) colleges who are enrolled in a course which requires certain levels of
basic skills. The input to SkillSum is some background information about the user,
plus his or her responses to a set of multiple-choice questions which test basic lit-
eracy or numeracy; an example is shown in Figure 20.2. The output of SkillSum is
a short text summarizing the user’s performance on the test; an example is shown
in Figure 20.3.
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Although SkillSum’s input data and output text are very different from
SumTime’s, it must make the same kind of choices. SkillSum’s document planner
must decide what information to give; for example, how much detail to go into
about the user’s mistakes. SkillSum’s microplanner must decide how to linguisti-
cally express this information; for example, whether to say ‘You got 19 questions
right’ or ‘You got 19 questions correct.’ SkillSum’s realizer must make low-level
word-form and ordering choices, such as using ‘questions’ instead of ‘question’ in
the above sentence.

2.3 Other NLG applications
Many other applications of NLG have been explored, including:

• Summarizing other kinds of data, including medical data (Portet et al., 2007),
engineering data (Yu et al., 2007), financial data (Kukich 1983), and sports data
(Robin & McKeown 1996). The input to these systems, like SumTime, is usually
a combination of numeric data and event records (Reiter 2007).

• Generating initial drafts of documents, such as instruction manuals (Paris et al.,
1995), legal documents (Sheremetyeva et al., 1996), clinical documents (Hüske-
Kraus 2003), and business letters (Coch 1996). The input to these systems is
usually a knowledge base which describes the content of the document; some-
times the NLG system is integrated with the knowledge-base authoring tool
(Power et al., 1998).

• Generating explanations of reasoning in AI systems, including expert systems
(Lacave & Diez 2004), Bayesian reasoners (Lacave & Diez 2002), and theorem
provers (Fiedler 2005). The input to these systems is usually a trace of the
reasoning used by the AI reasoning system.

• Generating texts that are intended to persuade or motivate users (Reiter et al.,
2003a), make users less anxious (Cawsey et al., 2000), or entertain users
(Binstead & Ritchie 1997). The input to these systems is quite varied, but
usually includes a user model of the reader.

• Supporting users with disabilities; for example letting blind users examine
graphs (Ferres et al., 2006), and helping non-speaking users create stories about
what they have done (Reiter et al., 2009).

Despite these efforts, NLG has not been widely used in real-world applications.
A number of NLG systems have been used in a limited way; for example Sum-
Time was used for a few years by the Aberdeen office of a weather forecasting
company to generate draft forecasts which human forecasters post-edited (Sripada
et al., 2004), and indeed an evaluation showed that forecast users preferred some
of SumTime’s (unedited) forecasts to forecasts written by human meteorologists
(Reiter et al., 2005). However, to the best of my knowledge, no NLG system has
entered long-term widespread use, in the sense of being used by many organiza-
tions for many years. In this regard NLG has been less successful than other areas
of NLP such as speech recognition, dialogue systems, machine translation, and
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(no message)
Structure : paragraph

Temporal sequence

Wind change
Speed : 15
Direction : SSE
Time : 15:00

Wind initial
Speed : 11
Direction : SE
Time : 06:00

Wind change
Speed : 28
Direction : SE
Time : 00:00

Figure 20.4 Example SumTime document plan.

grammar checking; and also less successful than simple text-generation systems
based on fill-in-the-blank templates or mail-merge. My personal belief is that one
of the keys to making NLG technology more practically useful on real applications
is a better understanding of the research issues which I discuss at the end of this
chapter; for example SumTime would probably have been used much more if it
had been embedded into an interactive multi-modal meteorological information
system (Section 5.3).

3 NLG Choices and Tasks

NLG is often divided into the three stages of document planning, microplanning,
and realization. In this section we discuss each of these stages, and briefly sum-
marize the types of choices each stage must make. For more information about the
stages, including algorithms and representations, see Reiter and Dale (2000).

3.1 Document planner
The document planner decides what information to communicate in the text
(content determination), and how this information should be organized (document
structuring).

From a software perspective, the input to the document planner is the input
to the entire NLG system; for example numerical weather prediction data in
SumTime, and responses to the test questions in SkillSum. The output of the doc-
ument planner is typically a tree of messages. Messages are chunks of information
(extracted from the input data), which can be linguistically expressed as a clause
or phrase; they are sometimes represented as instances in an AI knowledge-base
system such as Protégé.1 The edges of the tree are often used to represent rhetorical
relations between messages. Nodes of the tree can also be annotated to represent
document structures (Power et al., 2003) such as paragraphs.

An example of a simple SumTime document plan is shown in Figure 20.4; this is
for the SumTime text shown in Figure 20.1. The tree consists of a root node which
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does not contain a message, but does establish that this text is a ‘paragraph’ doc-
ument structure. This node has three children, which are in a temporal sequence
relation. Each child communicates a single message about the wind. The first child
is a wind initial message, which communicates the initial state of the wind; the
remaining children are wind change messages, which communicate a change in
the wind. Each of these messages has the parameters speed, direction, and time.
Although SumTime does not use Protégé, these messages could easily be repre-
sented in a Protégé ontology (and we would use this representation if we were
reimplementing SumTime today).

As this example suggests, the heart of document planning in SumTime is select-
ing a small number of wind changes to mention, from the input data (Table 20.1).
In this case SumTime has chosen to mention the wind changes at 15:00 and 00:00,
it assumes the user can interpolate between these points if necessary. This pro-
cess is guided by a limit to interpolation error, which is based on expert advice
from meteorologists as to how much interpolation error is acceptable to end users,
considering the tasks that they typically perform using the weather forecasts. Doc-
ument structure is very simple in SumTime: the messages are always linked by a
temporal sequence relation as in the example of Figure 20.4.

As can be seen in this example, document planning typically involves reasoning
about the data and how it will be used. Explicit linguistic reasoning may play a
role in deciding on document structure (how messages are organized into a tree),
but often has a fairly minor role in deciding on document content (which messages
are in the tree).

The reasoning performed by document planning can be more complex than
SumTime’s use of maximum allowable interpolation error. For example, the STOP
system (Reiter et al., 2003a), which generated smoking-cessation letters based
on the responses to a smoking questionnaire, largely based its document plan-
ning on a psychological model of what information should be given to smokers,
based on their attitudes towards and beliefs about smoking cessation (Prochaska
& diClemente 1992).

Unfortunately, it is difficult to generalize about document planning; for exam-
ple, the algorithms used by SumTime to decide what information is most appro-
priate for a weather forecast reader on an offshore oil rig are completely different
from the algorithms used by STOP to decide what smoking-cessation informa-
tion would be most effective for a particular user. In very general terms, the goal
of document planning is to identify the information that is useful to the user, and
structure it into a coherent document, and it has proven difficult to create a general
model of how this should be done.

In the early 1990s Hovy (1993) and other researchers tried to formalize docu-
ment planning as an AI planning problem based on formal models of rhetorical
relations, such as rhetorical structure theory (RST) (Mann & Thompson 1988).
However, this approach did not work well in practice. One major problem was
that RST-like models of the semantics of relations are too vague to be used in
document planners, and also (because they attempt to be general) do not cap-
ture important genre-specific aspects of document structure. For example, weather
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forecasts for offshore oil rigs describe each aspect of the weather (wind, temper-
ature, precipitation, etc.) separately, and describe events about the same aspect
(e.g., wind) in strict temporal order. This structure cannot be derived from theo-
ries of optimal rhetorical presentation; it is a convention which has arisen in this
genre and (for better or for worse) must be adhered to.

An alternative approach to document planning is to try to imitate what human
writers do, without explicitly modeling or reasoning about what content would be
best for the user. This is typically done by analyzing corpora of human-authored
texts and/or explicitly conducting knowledge acquisition sessions with human
writers (Reiter et al., 2003b); this approach was used in developing the Skill-
Sum document planner (Williams & Reiter 2005), for example. Recently there has
been interest in trying to automate this process using machine learning techniques
(Barzilay & Lapata 2005a).

Perhaps the biggest problem with this approach is data sparsity and incomplete-
ness. This kind of analysis usually requires a data-text corpus, which contains the
input data (e.g., the data shown in Table 20.1) as well as the human-written texts
(e.g., the texts shown in Figure 20.1). Unfortunately, most existing data-text cor-
pora are either too small to provide good coverage of the different cases, and/or do
not include all of the data used by the human writers. For example, the SkillSum
corpus contained just 16 texts, and Barzilay and Lapata only had corresponding
input data for one third of the sentences in their corpus.

Because of these problems, document planners cannot (at the time of writing)
be based purely on corpus analysis. Human developers must extrapolate rules to
cover gaps in the corpus, based on their domain knowledge and feedback from
domain experts and pilot experiments (Williams & Reiter 2005). There is undoubt-
edly considerable scope for improving the process of creating document planners
in this fashion, by improving corpus-analysis and gap-filling methodologies.

3.2 Microplanning
The microplanner decides how information is linguistically expressed in the
generated text. This process requires many choices to be made, including the
following:

• lexical choice: choosing which content words should be used to express
domain concepts and data;

• reference: choosing referring expressions to identify domain entities;
• syntactic choice: choosing syntactic structures in generated sentences;
• aggregation: choosing how many messages should be expressed in each

sentence.

The input to the microplanner is the document plan, which is created by the
document planner. The output of the microplanner is a text specification; essen-
tially this is a tree whose internal nodes specify document structure (for example,
paragraphs), and whose leaf nodes specify deep syntactic structures of sentences.
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Coordinated sentence
coordinator: < none >

first

subject

WindNP
Direction: SE
Speed: 9–14
Time: < elided >

WindNP
Direction: SSE
Speed: 13–18
Time: by mid-afternoon

WindNP
Direction: SE
Speed: 26–31
Time: by midnight

object
subject

elided

object

Sentence
Verb: veer
Form: gerund

Sentence
Verb: increase
Form: gerund
Cue Phrase: then

second

Figure 20.5 Example SumTime deep syntactic structure.

The latter specify content words, coreference, syntactic relationships, and sentence
boundaries. The exact form of the deep syntactic structure varies considerably
depending on the system’s realizer and the grammatical theory (if any) that the
realizer is based on.

An example of a deep syntactic structure is shown in Figure 20.5; this is for the
document plan shown in Figure 20.4. We do not show the text specification for
this example, it would simply contain a root node indicating document structure
(very similar to the root node of the document plan shown in Figure 20.4), and a
leaf node containing the abstract syntactic structure shown in Figure 20.5.

The deep syntactic structure shown in Figure 20.5 is based on intuitive ideas
such as subject and noun phrase, but is customized for the specific genre used
in weather forecasts. Thus for example the SumTime realizer accepts a ‘syntactic’
structure called WindNP which communicates wind speed, direction, and time;
this seemed more sensible than trying to force the realizer to use standard noun
phrase structures which do not really fit the sublanguage (genre) used in weather
forecasts.

In any case, Figure 20.5 illustrates many of the choices that the SumTime
microplanner must make. An example of lexical choice is choosing the verb ‘veer’
to communicate the change between the wind at 06:00 and the wind at 15:00;
this involves deciding which aspect of the change to focus on (in this case the
focus is on the change in wind direction), and then choosing the verb based on
what occurred in this aspect (in this case ‘veer’ as the wind direction changed
clockwise). Other lexical choice examples include choosing ‘by mid-afternoon’ to
communicate the time 15:00, and ‘13–18’ to communicate the speed 15. The lat-
ter choice could be regarded as a content (document planner) choice instead of
a lexical (microplanner) choice, the distinction between the two is not always
clear cut.
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No referring decisions are needed to generate SumTime texts, including the
one shown in Figure 20.5. An example of a referential choice in the SkillSum
text shown in Figure 20.3 is ‘your Health and Social Care course.’ Other potential
ways of referring to this entity include ‘your course’ and ‘your Health and Social
Care course at Aberdeen College’; the referential choice is choosing which of these
referring expressions to use in the generated text.

An example of a syntactic choice in the Figure 20.5 SumTime text is using
the gerund form of the verbs (for example, ‘veering’ instead of ‘veers’). Another
example is the decision to elide (omit) the time phrase from the first WindNP.

An example of an aggregation choice is the decision to express the content in a
single sentence. An alternative would have been to use two sentences, for example
‘SE 9–14 veering SSE 13–18 by mid-afternoon. Increasing SE 26–31 by midnight.’

Microplanning choices in SumTime, as in many NLG systems, are made with
different levels of sophistication. Some choices are forced by the sublanguage
(Grishman & Kittredge 1986); for example SumTime always uses the gerund forms
of verbs in wind descriptions, because this is how such texts are convention-
ally written. Some choices require little computation but are based on substantial
linguistic analyses and/or psycholinguistic data. For example lexical choice in
SumTime is done using fixed concept-to-word mappings (a trivial computational
mechanism), but these mappings are based on an extensive linguistic analysis of
word usage in corpus texts and also feedback from users about their word choice
preferences. And some choices require non-trivial algorithms (whose design is
informed by (psycho)linguistic data); this is the case for aggregation and ellipsis
decisions in SumTime.

Perhaps the best studied microplanning choices are referential ones; see Reiter
and Dale (2000) for more details on these and other microplanning decisions. In
particular a considerable amount of work has been done on the generation of def-
inite noun phrases to identify visible or otherwise salient physical objects (such
as ‘the red book’); indeed there has even been a shared task evaluation in this area
(Belz & Gatt 2007).

One interesting observation from the work on reference, which has since been
observed in other areas of NLG, is that the language produced by human speakers
and writers is not necessarily ideal for human listeners and readers (Oberlander
1998). This means that algorithms that generate high-quality referring expressions
cannot just be based on corpus analysis and other studies of human language
production – they must also be based on studies (often psycholinguistic ones) of
human language comprehension.

This raises the more general question of what the goals of microplanning choices
are. Is the goal to produce texts that are similar to those produced by human writ-
ers (under what metric?); texts that are appropriate for human readers (under what
criteria?); or texts that satisfy some other criteria (for example, minimizing legal
liability)? Of course, such questions could be asked about all aspects of NLG, but
they seem especially prominent in microplanning.

Lexical choice (choosing content words which communicate the information
in messages) is extremely important for producing high-quality texts, but is less
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well understood than referential choices. In principle, it would be nice to base
lexical choice algorithms on linguistic theories of lexical semantics (Cruse 1986),
but in fact such theories have not proven very useful in NLG. This is because
they focus on the relationship between semantic primitives (usually in first-order
logic) and words, but very few NLG systems have semantic primitives as their
input. The NLG community needs a better understanding of how to map the
input data that NLG systems actually get (sensor readings, databases, etc.) on to
words (Roy & Reiter 2005), and how this mapping is affected by contextual factors.
Such contextual factors include alignment (Brennan & Clark 1996) and other dia-
logue issues, individual differences between readers’ language (idiolect) (Reiter
& Sripada 2002), and the desirability or otherwise of varying word choice. These
issues are further discussed in Section 5.2. In some cases we also need to consider
affective issues (Section 5.4) such as the emotional impact on users of particular
word choices; for example, SkillSum needs to use words which not only are under-
standable and convey the correct meaning, but also are not perceived by the reader
as patronizing or disheartening.

A similar situation applies to aggregation choices, that is deciding when and
how to combine multiple messages into one sentence. Again aggregation is very
important for achieving high-quality texts, but it is not well understood. While
many papers have been published on aggregation, there is still considerable uncer-
tainty about when and how to aggregate messages in specific contexts. This is
partially because the amount and type of aggregation performed is very depen-
dent on the domain and genre. There are also major differences in the amount of
aggregation preferred by different readers, and in the aggregation choices made
by different writers.

The final microplanning task we discuss here is high-level syntactic choices,
such as whether a sentence should be active or passive, and which tense should
be used. In principle many such choices could be based on linguistic theories. For
example, centering theory could be used to guide information structure choices
such as passivization, and a Reichenbach model could be used to make choices
about tenses. In practice such theories often need considerable further elaboration
before they are precise enough to be useful in NLG systems (Poesio et al., 2004).

In summary, microplanning requires an NLG system to make decisions about
the best way to linguistically express information. With the partial exception of
referring expressions, there is little in the way of general theories for guiding NLG
microplanners today, instead systems tend to rely on empirical analysis of how
language is used in a particular domain and genre. If linguists can help develop
a better theoretical underpinning for microplanning tasks, this would be very
helpful to the NLG community.

3.3 Realization
The realizer generates an actual text (surface form), based on the information
selected by the document planning module and the linguistic choices made by
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the microplanner. For example, the SumTime realizer generates the text shown in
Figure 20.1 from a syntactic structure such as the one shown in Figure 20.5.

Realization is perhaps the best understood aspect of NLG, and indeed many
software packages have been developed to carry out this task (which is not true of
document planning or microplanning). Most of these packages combine an engine
based on a particular grammatical formalism, and one or more grammars based on
this engine. These systems include KPML, which is based on systemic functional
grammar (Bateman 1997); FUF/SURGE, which is based on functional unification
grammar (Elhadad & Robin 1997); RealPro, which is based on meaning-text theory
(Lavoie & Rambow 1997); and OpenCCG, which is based on categorial grammar
(White et al., 2007). There are also some atheoretical packages which provide less
linguistic functionality but allow linguistic constructs to be integrated with tem-
plates, such as TG2 (Busemann & Horacek 1998) and Simplenlg (Reiter 2007); van
Deemter et al. (2005) discuss in general terms how templates of different levels of
sophistication can be used by an NLG system. Morphological generators have also
been created, such as Morphg (Minnen et al., 2001).

Some realizers support overgeneration and selection. In this mode, the realizer
generates several possible surface forms, and uses a separate mechanism to select
one of these. The most common selection mechanism is n-gram language models
which are derived from corpora (these are described in Chapter 3, STATISTICAL
LANGUAGE MODELING). OpenCCG, for example, supports this architecture. In
principle, an overgenerate-and-select architecture should allow the grammar writ-
ing task to be simplified, because subtle constraints such as adjective ordering can
be implicit in the language model – they do not need to be explicitly programmed.
Also this architecture should make it easier to adapt systems to different genres,
because genre linguistic preferences can be implicit in the language model, and do
not need to be explicitly coded.

On the other hand, from a practical engineering perspective, it is not clear how
to perform testing, quality assurance, and maintenance on systems which are
based on language models which are automatically built from corpus texts. For
example, if we look at adjective ordering, explicitly encoding adjective ordering
rules is a lot of work, but once this is done the rules can be tested and checked,
and also modified if users want a different ordering. Implicitly deriving adjective
ordering rules from a language model is much less work, but it is harder to test
such systems to ensure that they do not produce inappropriate texts in some cases,
and more difficult to modify such systems if users request a different ordering.

One pragmatic solution to this problem, which in fact is supported by systems
such as OpenCCG, is to combine a symbolic grammar which handles important
linguistic decisions which must be correct and which users may wish changed,
with a language model which takes care of less important decisions. If it subse-
quently turns out that a decision made by the language model is more important
than initially expected and/or is the subject of user change requests, the symbolic
grammar can be expanded to incorporate this decision.

As can be seen from the above discussion, the state of the art in realization is
sufficiently advanced (compared to other aspects of NLG) that we can seriously
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consider software engineering issues such as quality assurance, maintenance, ease
of software integration, and documentation quality. Indeed these factors often
play a larger role than theoretical factors (such as underlying linguistic theories)
when system builders are deciding which realizer to use in their software.

3.4 Other comments
As many people have pointed out (for instance, Mellish et al., 2006), the boundaries
between the above stages are not precise. For example, in the above architecture
I have said that paragraph boundaries are decided upon in document planning,
while sentence boundaries are decided upon in microplanning; but one could
also argue that these decisions should be made together, not in different modules.
Similarly I have said that the microplanner makes linguistic choices and the realizer
implements them; but of course the realizer probably needs to make some choices
(especially low-level ones) as well. So the above architecture should be thought
of as a starting point; real systems could and should modify it to suit their needs.

The above discussion should also make clear that there are considerable dif-
ferences in how well different NLG tasks are understood. Our understanding of
realization is relatively good, and indeed a number of software packages are avail-
able for this task. Our understanding of microplanning is patchy: reasonable in
some places (for example, generating definite noun phrases to refer to objects),
limited in some places (such as aggregation), and poor in others (such as affec-
tive issues in lexical choice). Our understanding of document planning is perhaps
weakest of all; current document planners are mostly based on empirical work in
a domain with very limited contribution from theoretical models.

4 NLG Evaluation

An important issue in NLG, as in other aspects of NLP, is how to evaluate sys-
tems. See Chapter 11, EVALUATION OF NLP SYSTEMS, for a general introduction
to the evaluation of natural language processing systems, including terminology,
underlying concepts, and common techniques.

In very general terms, one can evaluate how well individual choices are made
in NLG; how well NLG modules work; and/or how well complete NLG sys-
tems work. Evaluations can also try to determine how effective generated texts
are for human readers (reader-based evaluation), or how successfully generated
texts match texts produced by human writers (writer-based evaluation). The type
of evaluation depends of course on its purpose. For example, if the purpose is
to enable a user to decide whether to use an NLG system, then a reader-based
system evaluation is most appropriate. On the hand, if the purpose of the evalua-
tion is to test the cognitive plausibility of a model of reference generation, then a
writer-based module evaluation would be most appropriate.

Probably the most prominent kinds of evaluation in NLG are reader-based
system evaluations, so I will focus on these in the rest of this section. In very
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general terms, there are three ways of trying to determine how effective an NLG
system is at achieving its communicative goal. The most direct approach is an
extrinsic evaluation which directly measures whether the system achieves its goal.
Such evaluations almost always involve human subjects, and generally tend to
be relatively expensive and time-consuming. A cheaper alternative is a non-task-
based human evaluation, where human subjects are asked to read generated texts,
and rate, post-edit, or comment on them. A final (and more controversial) alter-
native is a metric-based corpus evaluation; this involves using metrics such as BLEU
and ROUGE (these are discussed in Chapter 11, EVALUATION OF NLP SYSTEMS) to
measure how similar generated texts are to corpus texts (in other words, we per-
form a writer-based evaluation in the hope that its results are good predictors of
reader-based evaluation).

4.1 Extrinsic evaluations
The most trusted system evaluations are extrinsic ones that directly measure the
system’s effectiveness at achieving its communicative goal; this is especially true
of evaluations which are intended to convince people outside the NLP community,
such as doctors, teachers, and mariners. For example, the STOP system was eval-
uated in a clinical trial with 2,000 smokers (Reiter et al., 2003a). All of the smokers
filled out our smoking questionnaire. One third of them received STOP letters, one
third received a control non-tailored letter, and one third just received a thank you
letter. We contacted them six months after the letters had been sent, and found out
how many in each group had managed to stop smoking.

SkillSum was also evaluated extrinsically (Williams & Reiter 2008). We recruited
230 people who were about to start a course at a UK further education college,
and asked them to complete the SkillSum literacy and numeracy assessment. The
students were again divided into three groups of roughly equal size; two of the
groups received variants of SkillSum texts, while the third received a control
text (essentially the text produced by the existing software). We asked students
to judge whether their skills were sufficient for the course they were signed up
for, both before and after they took the assessment and read the texts, and com-
puted how many students in each of the groups increased the accuracy of their
self-assessment of their skills.

Both of these evaluations were expensive and time-consuming. The STOP eval-
uation took 20 months (including planning and data analysis) and cost UK£75,000.
The SkillSum evaluation was not separately costed, but required roughly 8 months
to carry out (including planning and data analysis) and cost on the order of
UK£25,000.

4.2 Non-task-based human evaluations
Extrinsic evaluations may be appropriate as final evaluations of systems with siz-
able development budgets and timescales, but they may not be realistic for smaller
projects and indeed for pilot studies (intended to detect problems and improve
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systems) in large projects. In such contexts we need evaluation techniques which
are quicker and cheaper.

In NLG, such evaluations are usually done using experiments with human
subjects, most commonly asking subjects to rate texts on ordinal scales (often
Likert scales) or to compare texts; subjects are also usually asked to comment on
problems in texts and how to improve them.

For example, the SumTime system was evaluated (Reiter et al., 2005) by gen-
erating three alternative texts from data sources: one produced by SUMTIME,
one written by humans (professional meteorologists), and one produced by a
modified version of SumTime which essentially extracted document plans from
the human texts but microplanned and realized these using SumTime. Subjects
were shown the texts (without knowing their origin), and asked comprehension
questions about the texts; they were also shown different variants of the texts
and asked which variant they thought was most accurate, which was easiest to
read, and which was overall the best. In another exercise, several systems with
SumTime-like functionality were evaluated by having the systems generate alter-
native forecasts from the same data set, and then asking human subjects to rate
the generated texts (Reiter & Belz 2009).

There are a number of other activities we can ask subjects to perform, in addition
to rating texts. One is to ask them to edit generated texts and see what changes they
make; such an exercise was in fact carried out with SumTime texts (Sripada et al.,
2005). Post-editing seems less useful for quantitative comparisons, because there
are very large differences in the amount of post-editing which different people
perform, and hence a lot of noise in the quantitative data. But it is very useful for
qualitative analyses of problems and potential improvements, because the post-
edit data tells developers what specific parts of the texts subjects did not like, and
how they thought the texts should be improved.

We can also time subjects and see how long it takes them to read texts; this was
done in SkillSum, for example, since one of the goals of the project was to gen-
erate texts which low-skilled readers could easily read. Simply asking people to
silently read a text and press a button when finished is problematic, because some
subjects may read in depth while others just skim. It is better to ask subjects to read
a text for a concrete purpose, such as answering comprehension questions; another
possibility (for low-skill readers in particular) is to ask subjects to read texts
aloud. Experiments of both of these types were done in SkillSum (Williams &
Reiter 2008).

Last but not least, we can ask subjects to simply read texts and qualitatively
comment on them. This can be useful especially in the initial stages of a project;
this probably works best with subjects who are articulate and have some idea of
the project’s goals.

4.3 Metric-based corpus evaluations
As discussed in Chapter 11, EVALUATION OF NLP SYSTEMS, some fields of NLP
routinely use automatic metrics such as BLEU and ROUGE to evaluate output
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texts; these metrics work by comparing the output of the system to human-written
reference texts. Such metrics are occasionally used in NLG as well, but in a much
more limited way than in machine translation and document summarization. This
is largely because of doubts as to how well such metrics correlate with (predict)
the results of human evaluations.

Reiter and Belz (2009), who worked in the SumTime domain, empirically
evaluated how well BLEU and ROUGE scores correlated with human ratings of
weather-forecast texts generated by a number of systems. They found that, while
BLEU and ROUGE ratings did not correlate with human evaluations of the content
quality of generated texts, some variants of BLEU did correlate with human rat-
ings of the linguistic quality of generated texts, provided that the generated texts
were produced by systems built with similar technology (BLEU ratings do not cor-
relate well with human ratings of texts produced by systems built with different
technologies; Belz & Kow 2009). They conclude that BLEU could be used, with cau-
tion, in formative evaluations, but should not be used in summative evaluations
(this terminology is explained in Chapter 11, EVALUATION OF NLP SYSTEMS).

Other studies have been more negative. For example, Gatt et al. (2009) evaluated
systems that generated referring expressions using extrinsic task-based measures
(whether human subjects were able to successfully identify the reference target,
and how long it took subjects to do this); non-task-based human ratings, and sev-
eral automatic metrics (BLEU, ROUGE, and string edit distance). They found that
none of the automatic metrics they looked at had a significant correlation with
the extrinsic task-performance measures; the human ratings, in contrast, were
reasonably well correlated with the results of the extrinsic evaluation.

All of the above studies looked at existing automatic metrics, which were devel-
oped for other areas of NLP such as machine translation. Perhaps metrics can be
developed specifically for NLG, which do a better job of evaluating NLG systems;
this is one of the research challenges for the NLG community.

5 Some NLG Research Topics

In this section I discuss some (by no means all!) current research themes in NLG.

5.1 Statistical approaches to NLG
Statistical corpus-based techniques are very common in other areas of NLP (as
is clear from the other chapters in this handbook), and many researchers are
investigating how to use such techniques in NLG.

Perhaps the earliest use of statistical corpus-based techniques in NLG was real-
izers which overgenerated and then used a language model to select between the
options (Langkilde & Knight 1998). As mentioned in Section 3.3, this approach
is attractive because it reduces the amount of knowledge that must be explicitly
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encoded in a grammar, although it can raise quality assurance and maintenance
concerns.

The overgeneration approach can be used with other selection mechanisms
in addition to n-gram models. For example, Walker et al. (2007) have created
a microplanner based on the overgenerate-and-select approach. The selection is
based on ranking rules which are learned from a corpus of example texts which
have been ranked by humans. As Walker et al. point out, one advantage of
this approach is that it enables the microplanner to adapt to specific genres and
even individual differences, if appropriate training data is available; this is very
important since dealing with such differences is one of the main challenges in
microplanning.

Another statistical approach to NLG is to build statistical models of specific
choices that NLG systems must make. Rambow and colleagues have written
a number of papers about individual choices, including VP ellipsis (Hardt &
Rambow 2001) and lexical choice between near-synonyms (Bangalore & Rambow
2000).

Belz has tried to create a statistical model of the entire microplanning and real-
ization process. Her pCRU framework (Belz 2008) models the generation process
as a series of context-free rules. Corpus data is used to create a probabilistic model
of the likelihood of each of these rules being used. Given an input data set, the
pCRU system then repeatedly invokes the most likely rule, until an output data
text is produced; the system also has a Viterbi mode which maximizes the likeli-
hood of all decisions needed to generate a text (the Viterbi algorithm is discussed
in Chapter 12, SPEECH RECOGNITION).

The above researchers have tried to create statistical models which can be incor-
porated into current NLG systems; such models need to be reliable and have
good coverage in the target domain. Perhaps for this reason, these researchers
have tended to focus on either relatively well-understood choices (such as real-
ization) and/or on domains with relatively simple language (such as weather
forecasts). Barzilay and Lapata have taken the different approach of trying to
build stand-alone statistical models (i.e., models that are not part of an NLG sys-
tem) of poorly understood choices such as content selection (Barzilay & Lapata
2005a) and aggregation (Barzilay & Lapata 2006), in linguistically complex texts
(sports stories in newspapers). It is not clear if Barzilay and Lapata’s models are
comprehensive and reliable enough to be used in real systems, but they show
how statistical techniques might be used to solve some of the hardest problems
in NLG.

Relatively little evaluation has been conducted on how well statistical NLG
approaches work when incorporated into complete NLG applications of the kind
discussed in this chapter; this is perhaps one reason why the uptake of statistical
techniques in the NLG community has been slower than in other NLP commu-
nities. One exception is Belz (2008), who created pCRU systems in the SumTime
domain, and showed that human evaluators regarded pCRU texts to be similar in
quality to human-written weather forecasts.
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5.2 NLG inputs: connecting language to the world
Of course statistical techniques are an important research focus in almost all areas
of NLP. Two research questions which are more specific to NLG concern the inputs
and outputs of an NLG system. In this section we will look at some research issues
involving inputs; in the next section we will look at some research issues involving
outputs.

As mentioned previously, it is rare for the input to an NLG system to be the
sort of formal semantic representation which is described in Chapter 15, COMPU-
TATIONAL SEMANTICS. Usually the input to the system is some combination of
databases, knowledge bases, sensor data, event logs, outputs of other systems,
and human-authored texts – in other words, the kind of data that computer sys-
tems typically store and manipulate. Hence the NLG system must be able to either
work with such input data itself, or interface with an external data analysis system.
This raises a number of interesting technological, scientific, and even philosoph-
ical questions. In this section I will briefly discuss three of the research issues
involved in generating texts which are based on non-linguistic input data; see
Roy and Reiter (2005) for a description of some of the numerous other challenges
involved in connecting an NLP system to real-world input data.

5.2.1 Language and the world: what do words mean? There is a tradition
in linguistics, including computational linguistics, of treating language as a
‘stand-alone’ symbolic system and de-emphasizing how language relates to the
non-linguistic world. But of course language evolved to enable humans to com-
municate about their world (social, intellectual, and physical), not as an isolated
symbolic system. In particular, linguistic symbols (that is, words) should have
relationship to the non-linguistic world shared by the computer system and its
human users.

The problem of mapping data to words is a difficult one, which has received
surprisingly little attention in the linguistic community. Lexical semanticists have
examined how logical forms are mapped into words, but this is only part of the
problem. Using an example from Roy and Reiter (2005), if an NLG system is try-
ing to describe the visual appearance of an object based on camera data, it is not
particularly helpful to know that the predicate Red(X) maps to the adjective ‘red.’
What the system really needs to know is what pixel values from the camera can be
described as ‘red,’ and how this is influenced by context (lighting conditions, other
objects in the scene, user’s background, and object being described). The system
also may need to know when an object which incorporates many colors can still be
described as ‘red’ (for example, an apple whose skin is mostly red but has a brown
stalk and some greenish areas on its skin). Last but not least, the NLG system may
want to know if ‘red’ means more than just color; for example, if an apple is visu-
ally on the borderline between being ‘red’ and ‘green,’ perhaps the decision as to
which term to use should depend on how ripe it is, since ‘green apple’ suggests an
apple which is not ripe as well as an apple which is visually green.



“9781405155816_4_020” — 2010/5/8 — 12:15 — page 592 — #19

592 Ehud Reiter

Some of these issues were empirically investigated in the SumTime project,
especially for choosing phrases to describe time, and choosing verbs to communi-
cate increases and decreases (Reiter et al., 2005). The analysis was performed by
aligning the input data (numerical weather predictions) with the corpus texts, and
then trying to learn how corpus authors choose words, using both machine learn-
ing techniques and manual analysis. The main finding of this investigation was
that there were large individual differences in how different forecasters mapped
data to words. For example, some forecasters used ‘by evening’ to mean roughly
6pm, while others used ‘by evening’ to mean midnight. An example involving a
verb is that one forecaster said he used the verb ‘easing’ (instead of ‘decreasing’) to
communicate a decrease in wind speed when the absolute wind speed was low;
another said he used ‘easing’ when the absolute wind speed was high.

There were also differences between the forecast authors and the forecast read-
ers. For example, the forecast authors all used ‘later’ to mean near the end of a
forecast period, but some forecast users interpreted ‘later’ to mean after a period
of at least 12 hours. A few of the forecast readers (but none of the authors) also
thought that time terms should depend on season (because they were linked
to sunrise and sunset) and/or on country (because they were linked to cultural
expectations about when people woke up, ate, and went to sleep).

Thus, SumTime showed that there were large differences in how different indi-
viduals mapped data to words in the weather domain (and in fact psychologists
and linguists have observed such differences in many other domains; Reiter and
Sripada 2002). In other words, this aspect of language is not standardized across
a linguistic community in the same way that syntax and spelling are. Such prob-
lems may be overcome in human language use by lexical alignment mechanisms
(Brennan & Clark 1996); these help human participants in a dialogue agree on
word usage. However, we do not understand alignment well enough to let a
computer NLP system align with a human, and in any case most NLG systems
do not participate in dialogues with their users.

5.2.2 Data analysis for linguistic communication A data-to-text system
typically must include data analysis and reasoning modules as well as linguis-
tic modules (Reiter 2007). Another interesting research issue is how these modules
are affected by the need to generate textual summaries. In other words, how do
linguistic constraints and requirements affect the non-linguistic parts of a data-to-
text system?

Sripada et al. (2003) addressed this issue, and in particular hypothesized that
such data analysis modules are affected by the Gricean maxims (Grice 1975). For
example, the Gricean maxim of quality says that utterances should be truthful.
One popular data analysis technique is linear segmentation, which involves fitting
a straight line to a set of datapoints. For data analysis purposes, this is often done
by finding the line which best fits the data points, even if the end points of such a
line are not real datapoints. Sripada et al. argue (largely on the basis of linguistic
work such as corpus analysis) that if such line segments are explicitly mentioned
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in generated texts, it is better to use line segments anchored on real datapoints, as
this is more truthful.

Sripada et al.’s hypothesis is an interesting one, and more research is needed
to investigate to what degree Gricean maxims do indeed affect data analysis and
interpretation in systems that produce textual output. If this turns out to be the
case, it would be a very interesting example of how a linguistic theory (Gricean
maxims) affects what seems to be a non-linguistic task (data interpretation).

5.2.3 Integrating linguistic and non-linguistic knowledge Another important
research topic is representations and models that include both linguistic and
non-linguistic information. This is not straightforward because a vision system,
a knowledge-based reasoner, and an NLP system (for example) may represent
very different kinds of information. For example, an NLP system may need
to know that rain can be communicated using a verb which takes a dummy
subject; a knowledge-based meteorological reasoner may need to know that rain
is a type of precipitation; and a vision system may need to know that rain
consists of many small semi-spherical objects falling from the sky. It is unclear
to what degree it makes sense to try to integrate these types of knowledge into
a single representation, and to what degree it is better to keep them distinct.
Intuitively it seems that there should be some information which is shared by
the different reasoners; for example, rain is similar to snow from a linguistic
perspective (both can appear as verbs with dummy subjects, or as nouns), a
knowledge perspective (both are kinds of precipitation), and a visual perspective
(both consist of many small objects falling from the sky). But we do not know
how to design knowledge representations which capture such commonalities
while still effectively representing the information needed by the different kinds
of reasoners.

Even without integrated representation in the above sense, systems can still use
models and algorithms which utilize both linguistic and non-linguistic data. For
example, Kelleher et al. (2005) used both linguistic and visual data in a referring-
expression generation task. They computed the visual salience of objects in a
visual scene, and used this information, together with a conventional linguistic
discourse model, to generate referring expressions to objects in the scene.

5.3 NLG outputs, the role of language in
human–computer interaction

From a system perspective, an NLG module is usually part of a larger system
whose goal is to inform, assist, motivate, persuade, and/or entertain a user. The
larger system may be interactive, include graphical as well as textual outputs, and
be sensitive to the user’s disabilities, background, and tasks. This raises a number
of interesting research questions, ranging from basic questions about the effective-
ness of language vs. graphics as a communication tool, to more applied questions
such as what sort of language is most appropriate for blind people using a screen
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reader. Collectively these can be considered as questions about the appropriate
role of generated language in human–computer interaction (HCI). As with the
language-and-world issues mentioned in the previous section, these issues have
not received much attention in the linguistic community.

5.3.1 Text and graphics Perhaps the most studied of these issues is text and
graphics. In the 1990s there were many publications about ‘media choice,’ that is
the problem of deciding whether a particular bit of information should be pre-
sented linguistically or graphically. For example, Feiner and McKeown (1990)
suggested, in the context of generating instruction manuals, that physical loca-
tion should be communicated graphically, and conditional information should be
communicated linguistically. Bernsen (1995) proposed an abstract theory which
guided the choice of text vs. graphics. Other researchers pointed out that there
were many similarities between text and graphics, and in particular many lin-
guistic phenomena, such as conversational implicature (Marks & Reiter 1990),
rhetorical structure theory (André & Rist 1994), and sublanguages (Reiter 1995),
applied to graphics as well as text.

Of course, what most users really want is not text-only or graphics-only doc-
uments, but rather integrated documents that combine text and graphics. More
recent research has focused on integrating text and graphics, primarily in the con-
text of embodied conversational agents (ECA), that is animated characters which
move, gesture, and talk. I will not discuss ECAs here as they typically communi-
cate using speech instead of written language, but the interested reader can find
out more about recent NLG-related ECA research by looking at proceedings of
the Multimodal Output Generation (MOG) workshop (for example, Theune et al.,
2007 and van der Sluis et al., 2008). Bateman and his colleagues (Bateman et al.,
2001) have looked at integrating text and graphics in written documents, taking
into consideration layout issues.

One of the difficulties in this research area is evaluation. Users like graphics,
even if they are not actually useful and effective (Law et al., 2005). Hence eval-
uations of multi-modal systems which are based on user ratings or preferences
may not be good predictors of task effectiveness. In this area even more than other
areas of NLG, we need careful task-effectiveness studies to evaluate systems, and
indeed to provide the basis for good theories of media choice and integration.

One common observation about text and graphics is that the choice depends
on user characteristics. Most obviously, graphics are probably not appropriate for
a visually impaired user, and speech is not appropriate for a hearing-impaired
user. Less obviously but perhaps more importantly, the choice may depend on
the expertise of the user. In particular, as many visualization experts have pointed
out (Tufte 1983), it is easy to mislead people with graphics, intentionally or unin-
tentionally; viewers need some experience using graphs in order to be able to
interpret them correctly. Of course language can also mislead people, but almost
all users have decades of experience in using language, whereas relatively few
people have this much experience using visualizations.
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5.3.2 Interaction Another aspect of the ‘HCI of NLG’ is interaction. One of
the most impressive aspects of current visualization systems is their interactivity;
users do not just see a static graph, they can interact with the system and request
close-ups, choose to have different information presented, etc. In contrast, most
current NLG systems generate static texts which cannot be interacted with; indeed
better interactivity is one of the most common requests I receive from potential
users of NLG systems. Of course dialogue systems (see Chapter 16, COMPUTA-
TIONAL MODELS OF DIALOGUE) allow interaction, but the current state of the art
in dialogue technology makes it difficult to build systems with which the user can
reliably interact.

An alternative is to allow the user to interact with an NLG system via mouse
clicks and/or keyboard commands, as indeed users interact with visualization
systems. One way of structuring this interactivity is via ‘dynamic hypertext.’
Such NLG systems generate texts which include hyperlinks, and some of these
hyperlinks invoke the NLG system to generate different texts. The ILEX system
(O’Donnell et al., 2001), for example, generated descriptions of museum items,
which had hyperlinks to related items. Clicking on one of these links would invoke
ILEX to generate a description of the related item; this description could include
references and comparisons to the original description.

Other interaction models are also possible. For example, IGRAPH (Ferres et al.,
2006), which helps blind users browse statistical data sets, uses a keyboard inter-
face with keys which allow users to browse forward and backward in the data set,
and to get higher-level summaries or lower-level details. This interface is similar
to a screen reader, which of course is what most blind users are used to.

Most work on NLG interaction attempts to adapt existing types of interfaces,
such as hypertext and screen readers. But perhaps what NLG really needs is new
types of interfaces. One interesting idea is WYSIWYM (Power et al., 1998), which
uses NLG to help users construct knowledge bases and queries; the user con-
structs these entities by manipulating a feedback text, which is generated from
the actual knowledge base entity or query being authored. Another innovative
authoring interface is used in STANDUP (Ritchie et al., 2006), which allows chil-
dren with learning difficulties to create jokes. STANDUP uses an interface which
presents the process of creating a joke as a bus journey, with stops such as ‘Word
Shop.’ Hopefully we will see more experimentation with novel interfaces to NLG
systems in the future.

5.3.3 User modeling As should be clear by now, there are major differences
between individual users of NLG systems, in terms of the type of language they
prefer, (dis)abilities, expertise, and task. In principle it would be nice to represent
these differences in a user model, and take the user model into account during the
generation process.

Zukerman and Litman (2001) summarize research on user modeling in NLG
(and other aspects of NLP). In very broad terms, most research on user model-
ing for NLG has either explicitly asked users to classify themselves into one of a
small number of categories (such as ‘novice’ and ‘expert’), or tried to implicitly
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acquire user models based on how a user interacts with the NLG system. Neither
of these approaches allows very detailed models of users to be created; and hence
neither approach allows sophisticated in-depth tailoring of generated texts to the
particulars of individual users.

However, the benefit of tailoring texts to shallow user models does not seem
to be very high, at least in my experience. Detailed user models probably would
allow much better texts to be generated, but we do not know how to acquire such
models. Researchers have proposed ideas for acquisition of detailed models; for
example perhaps it would be possible to create detailed models (at least of a user’s
linguistic expertise) via corpus analysis of texts that a user has written, or by ask-
ing users to rate a large number of texts and analyzing their ratings (Walker et al.,
2007). However, to the best of my knowledge no one has yet tried to use these tech-
niques to obtain a good empirical understanding of how language varies between
individuals in a linguistic community. This is a pity, because such research could
shed light on fundamental questions about language, as well as improve NLG
technology.

5.4 Affective NLG: going beyond informing and
helping users

Most research on NLG has assumed that the purpose of generated texts is to
inform users and help them achieve a task. But of course language is used for
many other purposes, including motivation, persuasion, stress reduction, social
engagement, and entertainment. NLG systems which have such goals are called
affective NLG systems (de Rosis & Grasso 2000).

5.4.1 Motivation and persuasion Perhaps the best-studied affective NLG goals
are motivation and persuasion. There is of course an extensive literature in psy-
chology and marketing on the best way to motivate and persuade people; and
also a rich literature in philosophy and logic in formal models of argumentation.
Several NLG systems have attempted to use theories from these communities to
persuade and/or motivate people.

For example, the STOP system (Reiter et al., 2003a), which produced tailored
smoking-cessation letters, was based on a popular psychological model of how
people can change addictive behaviors (Prochaska & diClemente 1992). Unfortu-
nately, an evaluation of STOP showed that the system was not effective; recipients
of STOP letters were no more likely to stop smoking than recipients of control
non-personalized letters. This may be because STOP used fairly shallow user
models, and effective tailoring requires detailed user models (as discussed in
Section 5.3.3).

Another approach was taken by Carenini and Moore (2006), who based their
system on argumentation and decision theory. Their GEA system generated real-
estate descriptions of houses, and tried to make these descriptions more effective
(in terms of persuading potential buyers to seriously consider a house) by tailor-
ing the description based on a quantitative model of the buyer’s preferences.
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GEA was tested in an artificial context (with subjects who were pretending to be
house buyers, not real house buyers), with mixed but overall encouraging results.

More recently, Guerini et al. (2007) developed a sophisticated system which
attempted to persuade people to visit a museum. Guerini’s system was based
on an embodied conversational agent, so his system could display facial expres-
sions and use appropriate tones of voice. His system also had rich user models,
which included information about cognitive state (beliefs, desires, and intentions),
emotional state, and social relationships. Unfortunately Guerini’s system has only
been evaluated in small pilot evaluations (which did not see a significant effect),
so its effectiveness is unclear.

All of the above-mentioned systems relied heavily on user models; it may be
that the quality of the user model is one of the main limiting factors in the perfor-
mance of persuasive NLG systems. As mentioned in Section 5.3.3, acquiring good
information about users is a major challenge in itself.

5.4.2 Improving emotional state Another communicative goal is to make
people feel better; a particular goal of interest is to reduce stress. We know that
stress is often inversely correlated with sense of control; someone who feels they
have no control over a situation is likely to feel more stressed than someone who
feels that they are at least partially in control. Furthermore we know that, in
medical contexts in particular, people are likely to feel more in control if they
know more; patients of course are entitled to make decisions about their own
health care, but they can only effectively make decisions if they understand their
situation. Also, understanding one’s medical situation can reduce uncertainty, and
reduced uncertainty can reduce stress.

For these reasons, it seems plausible that a system which informs patients about
their medical condition could reduce their stress about their medical condition;
such a system would be very useful in many medical contexts. This hypothe-
sis was investigated by Cawsey et al. (2000), who built several systems which
tried to increase patients’ understanding of their medical record, using a browsing
dynamic hypertext interface. An evaluation showed that patients liked the system,
but unfortunately there was no significant reduction in stress among patients who
used the system.

A new area of research is using NLG to promote social interaction, for example
by helping friends and relatives provide support to parents of sick babies (Moncur
& Reiter 2007), and by helping people with communication disabilities engage in
social conversations (Reiter et al., 2009).

5.4.3 Entertainment Last but not least, some NLG systems generate texts that
are intended to entertain readers. For example Binstead and Ritchie (1997) devel-
oped a computer system which generated puns, and Ritchie et al. (2006) adapted
this technology to help humans (children with learning difficulties) create puns.
These systems combined theories of what makes a good pun with databases which
hold the necessary information about word pronunciation, meaning, etc.

There has also been considerable research on computer systems which
generate stories. This includes both research on the content and structure of
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computer-generated stories (Perez y Perez & Sharples 2004) (much of this is car-
ried out in the computational creativity community), and research on appropriate
language for stories (Callaway & Lester 2002). Much of this research is presented at
conferences which involve the computer-gaming community, such as Interactive
Digital Storytelling (Spierling & Szilas 2008).

6 NLG Resources

I conclude this chapter with a short survey of practical resources which might be
of interest to people who want to get involved in NLG research. One good general
source of NLG resources is the NLG portal of the Association for Computational
Linguistics wiki.2

Probably the most commonly requested resource is NLG software. There are
a number of realizers (Section 3.3) which are freely available on the web. These
realizers vary greatly in linguistic sophistication and ease of use, with the simplest
realizers (in linguistic terms) generally being the easiest to use. They also vary in
practical aspects such as documentation and programming language.

Unfortunately there are currently no software resources for microplanning and
document planning which have been successfully used outside the groups which
created them. Hopefully this situation will improve in the near future.

Data resources can also be very useful. Quite a few researchers have made
resources available on the web, but few of these have actually been used by other
people at the time of writing. Exceptions include the SumTime corpus,3 which
contains numerical weather predictions and human-written forecasts based on
these predictions; and the TUNA corpus,4 which contains scene descriptions and
referring expressions produced by human subjects from these scene descriptions.

Turning to information resources, such as textbooks and web sites, contempo-
rary NLP textbooks unfortunately say little about NLG. There is one specialist
NLG textbook, Reiter and Dale (2000), but it does not present developments since
2000. Bateman and Zock maintain a useful web page which lists NLG systems,
including links to homepages and key references.5 Other than that, the main
source of information is conference proceedings, especially the International NLG
Conference and the European NLG workshop; proceedings of many of these are
available from the ACL Anthology.6

NOTES

1 http://protege.stanford.edu
2 http://aclweb.org/aclwiki
3 www.csd.abdn.ac.uk/research/sumtime/
4 www.csd.abdn.ac.uk/research/tuna/corpus/
5 http://www.nlg-wiki.org/systems/
6 www.aclweb.org/anthology/
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RUSLAN MITKOV

This chapter discusses concepts related to the computational processing of dis-
course, and theories and methods related to or employed in this task. Section 1
introduces basic notions of discourse and Section 2 illustrates discourse structure
through examples from different genres. Section 2 also covers topic segmen-
tation and outlines major works such as Hearst’s TextTiling approach to text
segmentation.

Section 3 examines theories and formalisms which deal with the computational
treatment of coherence relations. Hobbs’s coherence theory and rhetorical struc-
tural theory (RST) as popular theories of organizing text in terms of coherence
relations are introduced. Another popular theory which models local coherence,
namely centering theory, is discussed in greater detail.

Section 4 covers anaphora, which make a vital contribution to the cohesion
of discourse and whose interpretation is crucial for discourse understanding. A
considerable part of this section is dedicated to the computational processing of
anaphora. The process of anaphora resolution with its distinct stages is covered
and major algorithms for anaphora resolution are outlined.

Section 5 discusses the role of discourse processing in NLP applications and
finally Section 6 points to references for further reading.

1 Discourse: Basic Notions and Terminology

Natural language texts do not normally consist of isolated pieces of text or sen-
tences but of sentences which form a unified whole and which make up what
we call discourse. According to the Longman dictionary,1 discourse is (1) a serious
speech or piece of writing on a particular subject, (2) serious conversation or dis-
cussion between people, or (3) the language used in particular types of speech or
writing. What Longman presumably mean by ‘serious’ (but do not explicitly say)
is that the text produced is not a random collection of symbols or words, but (a)
related and (b) meaningful sentences which have a particular communicative goal.
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The reference to ‘related’ and ‘meaningful’ sentences has to do with the fact that
discourse is expected to be both cohesive and coherent.

Discourse typically manifests cohesion, which is about the way textual units are
linked together. Cohesion occurs where the interpretation of some element in the
discourse is dependent on that of another and involves the use of abbreviated
or alternative linguistic forms which can be recognized and understood by the
hearer or the reader, and which refer to or replace previously mentioned items in
the spoken or written text.

Consider the following extract from Jane Austen’s Pride and Prejudice (Austen
1995: 23):

(1) Elizabeth looked archly, and turned away. Her resistance had not injured her
with the gentleman.

Although it is not stated explicitly, it is normal to assume that the second sen-
tence is related to the first one and that her refers to Elizabeth. It is this reference
which ensures the cohesion between the two sentences. If the text is changed
by replacing her with his in the second sentence or the whole second sentence is
replaced with This chapter is about discourse processing, cohesion does not occur any
more: the interpretation of the second sentence in both cases no longer depends
on the first sentence. In the above example it is the use of the pronoun her (see also
the section on anaphora below) that secures cohesion, but lexical cohesion is also
possible through simple repetition of words, synonyms, or hypernyms.2

Whereas cohesion in texts is more about linking sentences or, more generally,
textual units through cohesive devices such as anaphors and lexical repetitions,
discourse is also expected to manifest coherence, which is about it making sense.
More specifically coherence has to do with the meaning relations between two
units and how two or more units combine to produce the overall meaning of a
specific discourse.

(2) George passed his exam. He scored the highest possible mark.
(3) George passed the exam. He enjoyed red wine.

Whereas example (2) makes perfect sense in that the second sentence elaborates
on the fact the George excelled in his exam, example (3) sounds a bit odd and
somehow lacks overall meaning: most readers may even find the two sentences in
(3) unrelated. Leaving aside the hypothetical possibility/explanation that, because
George has passed his exam and he likes red wine, he is likely to treat himself to
a nice bottle of Rioja red wine, readers would find (3) hardly coherent as opposed
to (2) where the second sentence is in a meaningful relation to the first one in that
it elaborates on the fact presented in the first sentence.

Discourse could take the form of a monologue where a writer or speaker is the
author of the text.3 A particular form of discourse is the dialogue (see Chapter 16,
COMPUTATIONAL MODELS OF DIALOGUE, for more on dialogue), where there is
an interaction or conversation,4 usually between two participants. Another form
of discourse is the multiparty discourse which usually takes place at meetings.
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2 Discourse Structure

Discourse structure is a type of structure used to “refer to the structure of some
postulated unit higher than the sentence, for example the paragraph or some
larger entity such as episode or topic unit” (Halliday & Hasan 1976: 10). It is safe
to say that every genre has its own discourse structure (Halliday & Hasan 1976).5

In fact, under normal circumstances texts are organized logically and follow a spe-
cific structure of discourse topics. The stereotypical sequence of discourse topics is
characteristic of certain documents and genres and accounts for the way texts are
organized and segmented by topics.

2.1 Text organization
As an illustration of how a specific discourse is organized, consider the follow-
ing entry6 from The Hamlyn Pocket Dictionary of Wines which was written for the
explicit discourse goal of defining Flagey-Echezeaux (Paterson 1980: 2).

(4) Flagey-Echezeaux (France). Important red wine township in the Cote
de Nuits with two front-ranking vineyards, Echezeaux and Grands
Echezeaux. The first produces a fine rich, round wine and the second,
which is not a single vineyard but a group, is also capable of producing
fine wine but, like other divided properties, the quality of its wine is vari-
able. The lesser wines of Flagey-Echezeaux are entitled to the appellation
Vosne-Romanee.

The author does not randomly order the sentences in the text, but rather plans
an overall organizational framework within which the individual sentences are
produced. In the case of the above example, the framework chosen is typical of
definitions. Here, the author first identifies Flagey-Echezeaux by describing its
superordinate (‘important red wine township in the Cote de Nuits’), and then
introduces two of its constituents (Echezeaux and Grands Echezeaux). Next, a
description about each of the vineyards is provided in turn and finally the author
presents additional information about Flagey-Echezeaux in the last sentence. The
way the above discourse is organized can be explained in terms of rhetorical pred-
icates, where these are the means by which a writer or speaker can describe
information and organize the text. In this particular example the first sentence cor-
responds to the rhetorical predicate identification (‘important red wine township
in the Cote de Nuits’), followed by constituency (‘with two front-ranking vine-
yards’). Building on Grimes’s (1975) and Williams’s (1893) predicates, McKeown
observes typical patterns of rhetorical predicates referred to as schemata which
she uses to analyze text and then to apply these as text organization strategies
in natural language generation (for more on natural language generation, see
Chapter 20, NATURAL LANGUAGE GENERATION). McKeown’s schemata include
attributive schema, identification schema, and constituency schema. Each schema
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consists of a stereotypical sequence of rhetorical predicates with the identification
schema featuring a possible sequence of the following predicates: identification,
attributive, amplification, and particular illustration. For details, see McKeown (1985).

It is widely accepted that scientific papers and their abstracts have a predefined
structure which can be exploited in NLP applications. In its simplest form, a scien-
tific paper can be considered to have a problem–solution structure (Hutchins 1977),
but, in general, a more detailed organization can be identified in scientific papers:
background information about the domain tackled in the paper, the problem to be
addressed in the paper, the solution to the problem, evaluation of the solution and
conclusion (Swales 1990). These sections are normally referred to as moves or rhetor-
ical predicates. Research in the structure of abstracts confirms that, by and large,
these moves hold, but it is not unusual for abstracts to include only a subset of the
moves (Salanger-Meyer 1990; Orăsan 2001).

Another example of how text is organized are online medical patient informa-
tion leaflets (Connor 2006). Such leaflets exhibit typical discourse structure in that
different topics are not presented randomly but follow an established order. In
line with Clerehan and Buchbinder (2006), Connor (2006) identifies the structure
in terms of rhetorical moves or predicates. The leaflets first provide background
information on the medicine (rhetorical predicate inform), then give a summary on
the use of the medicine (describe), provide dosage instructions (instruct), followed
by an outline/explanation of the benefit of the medicine (explain). These leaflets
next feature information on the side effects (realized by the rhetorical predicate
inform), and then proceed with information about monitoring (suggest), constraints
on patient behavior (inform, warn), storage instructions (instruct), and the descrip-
tion of circumstances when medical advice is necessary. Finally disclaimers for
online contents are displayed.

2.2 Text segmentation algorithm
The examples above illustrate how discourse can be organized and segmented on
the basis of different topics. For many practical NLP implementations the auto-
matic segmentation of text according to the topics covered is crucial. Among the
different algorithms which have been developed to address this task, the TextTil-
ing (Hearst 1994; 1997b) approach is perhaps the best known. Hearst’s algorithm
does not attempt to capture any hierarchical relations and dependencies that hold
between topic segments (discourse units) as rhetorical structure theory does.7

Instead, it splits documents into a linear sequence of multi-paragraph segments,
each of which focuses upon a distinct subtopic within the main topic of the dis-
course. Its name derives from the fact that the goal of TextTiling is to partition
texts into contiguous, non-overlapping subtopic segments, broadly resembling
tiles, that are assumed to occur within the scope of one or more overarching main
topics, which span the length of the text.

Under this approach, the structure of a document is treated as a sequence
of subtopical discussions that occur in the context of one or more main topic
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discussions. This conception is illustrated in Hearst (1997) by the example of a
21-paragraph science news article called ‘Stargazers’, whose main topic is the
existence of life on earth and other planets. Its contents can be described as
consisting of nine subtopic discussions, presented below. In the example, the
numbers indicate paragraphs within the document so that paragraphs 1–3 present
‘Intro – the search for life in space,’ paragraphs 4–5 present ‘The Moon’s chemical
composition,’ etc.

1–3 Intro – the search for life in space
4–5 The Moon’s chemical composition
6–8 How early Earth–Moon proximity shaped the Moon

9–12 How the Moon helped life evolve on Earth
13 Improbability of the Earth–Moon system

14–16 Binary/trinary star systems make life unlikely
17–18 The low probability of non-binary/trinary systems
19–20 Properties of Earth’s Sun that facilitate life

21 Summary

The approach assumes that a particular set of lexical items is in use during the
course of a given subtopic discussion and, when the subtopic changes, a signifi-
cant proportion of the vocabulary changes too. The method assumes three broad
categories of lexical items to be found within a text:

(1) words that occur frequently throughout the text, which are often indicative
of its main topic(s);

(2) words that are less frequent but more uniform in distribution, which do not
provide much information about the divisions between discussions;

(3) groups of words that are ‘clumped’ together with high density in some
parts of the text and low density in other parts. These groups of words are
indicative of subtopic structure.

The problem of subtopic segmentation is thus the problem of determining
where these clusters of words in the third category begin and end. Hearst presents
a block comparison algorithm that addresses this task. Here, a block is defined as a
sequence of n contiguous sentences. Pairs of blocks are compared for their overall
lexical similarity and the ‘gap’ between each pair of blocks is assigned the result-
ing lexical score. The more words that the blocks have in common, the higher the
score assigned to the gap between them. If a gap with a low lexical score is fol-
lowed and preceded by gaps with high lexical scores, then the low-scoring gap
is likely to indicate a shift in vocabulary that corresponds to a subtopic change.
In its initial implementation, the blocks are represented by vectors and the lex-
ical score is computed as the normalized inner product of the two vectors. The
TextTiling system identifies subtopic shifts at gaps whose lexical score falls below
some threshold. Evaluation of the TextTiling approach to subtopic segmentation
revealed that performance levels were encouraging. When assessed on its ability
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to classify gaps between blocks as subtopic shifts, different configurations of the
system obtained F-scores ranging from 0.61 to 0.705, compared to human judges’
reliability scores on the same data (F-score of 0.77). When computing F-score, true
positives are gaps between blocks that both the TextTiling system and a human
annotator agree to be either points of subtopic shift or gaps that simply happen to
lie within a subtopic segment.

Since its original statement, several authors have experimented with differ-
ent parameters of the original TextTiling algorithm described in Hearst (1994).
Alternate methods for scoring the gaps between text blocks, including vocabulary
introductions and lexical chains, were applied in Hearst (1997). Choi et al. (2001)
successfully applied latent semantic analysis (LSA) in their variant of the TextTiling
algorithm, achieving significantly improved performance levels from the system.
Under this approach, the improvement is brought about by using LSA to replace
each word used in the text blocks with appropriate groups of words that co-
occur with them. The initial vectors are thus converted into matrices of vectors
whose similarity is computed by taking the sum of the cosine scores between
each of them. In this way, the approach can more accurately reduce the computed
depth of gaps between blocks that contain non-matching but semantically related
words.

Kozima (1993) describes a similar approach to discourse segmentation in which
each block of text in a document is assigned a lexical cohesion profile, defined as a
record of the lexical cohesiveness (semantic similarity) of the words in the block.
Low levels of lexical cohesiveness within a block imply that it spans discourse
segments and contains a subtopic shift.

Numerous alternative approaches to discourse segmentation, based on differ-
ent assumptions and methodologies, have been introduced since the inception of
TextTiling. Crowe (1996) describes an approach in which references to events are
identified in texts and each paragraph that mentions an event is then concate-
nated to form a representative discourse segment. Kan et al. (1998) implements
an approach to discourse segmentation based on lexical chains combined with
a weighting scheme established in a supervised training step. Paragraphs in the
text are then assigned a weight with reference to the type of chain link occur-
ring within them and their position with respect to other links. Paragraphs with
a high aggregate weight are considered likely to represent the beginning of a new
subtopic segment in the text. The authors report that this segmentation method
outperforms the TextTiling algorithm. Utiyama and Isahara (2001) present a prob-
abilistic method exploiting a graph search algorithm to find the most likely topic
segmentation of an input text.

Supervised approaches to discourse segmentation have been scarce due to a
lack of available training data. Litman and Passoneau (1995) present one super-
vised approach exploiting a decision tree classifier in the context of transcribed
dialogues. The method uses information about prosodic cues, cue phrases, and
anaphora within blocks of text. System performance compared favorably with that
of human annotators.
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3 Discourse Coherence

In the previous section we discussed the issue of discourse structure. In fact
the way that units are connected into meaningful relationships is another fac-
tor which contributes to the acceptability of the structure of a specific discourse.
In the next section we shall discuss theories for text coherence which have
played an influential part in different computational models of discourse and NLP
applications.

3.1 Hobbs’s theory of coherence relations
In Hobbs’s model (1979), discourse structure comprises text units and coherence
relations between them. Consider the following example, where the second sen-
tence is an elaboration of the first one as it expands on the first without giving
additional instructions:

(5) Go down Washington Street. Just follow Washington Street three blocks to
Adams Street.

Building on the work by Grimes (1975) and Halliday and Hasan (1976), Hobbs
proposed a set of 12 coherence relations, including cause, evaluation, background,
parallel, and elaboration. Hobbs’s work goes beyond previous similar or related
work in that he proposes an inference mechanism for reasoning about the
coherence relations.

As an illustration, Hobbs (1979) considers the text below, where the two sen-
tences are claimed to be in an elaboration relation by virtue of the second sentence
elaborating on the first one.

(6) John can open Bill’s safe. He knows the combination.

Following the outlines in Hobbs (1979) and Lochbaum et al. (2000), the proposi-
tions expressed by the two sentences can be represented as follows:

can(John, open(Safe))
know(he, combination(Comb,y))

Here John, Safe and, Comb are literals and he and y are variables. Then, by
employing domain axioms which express general facts about generating states
of affairs and more specific facts about the relation between safes and combina-
tions, it is possible to reason from the first of these propositions to the following
proposition:

know(John, cause(do(John, a), open(Safe)))
‘John knows that his doing some action a opens the safe.’
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Similarly, the following proposition can be pragmatically implied from the
second proposition:

know(he, cause(dial(z, Comb, y), open(y)))
‘He knows that z’s dialing the combination of y causes it to open.’

The requirements of the elaboration relation will be satisfied by these two propo-
sitions if dialing the combination of the safe is recognized as a specialization of
doing some action which will open the safe. The second statement thus elaborates
on the first by providing this additional property of how John can open the safe.

Hobbs’s work differs from previous approaches not only because of the central
role it assigns to reasoning, but also because it incorporates reference resolution
as a by-product of reasoning about coherence. For example, to recognize that the
elaboration relation held in the foregoing example, the variables he and z have to be
identified with John and the variable y with the safe. Therefore the anaphor he in
the second sentence was resolved to the antecedent John as part of the process of
reasoning about coherence.

3.2 Rhetorical structure theory
Rhetorical structure theory (RST) is a model of text organization initially pro-
posed by Mann and Thompson (1987) and later used by a number of NLP
researchers (e.g., Marcu 1997; 2000; see section 5). In RST relations are defined
to hold between two non-overlapping spans or text units called the nucleus and
the satellite. The nucleus is expected to be more central or topical to the author and
can be interpreted independently. The satellite is less central and usually its inter-
pretation is connected with the nucleus. Mann and Thompson define a set of 25
rhetorical relations. These relations include the evidence relation which applies to
two text spans where the satellite provides evidence for the claim contained in the
nucleus. Following the authors’ convention, the arrow in Figure 21.1 represents
the evidence relation by means of an asymmetric arrow.

In this example, the unit representing the second sentence is in an evidence rela-
tion with the unit representing the first sentence and increases the reader’s belief
in the claim expressed in this unit.

In the evidence relation the satellite supports the nucleus, but does not con-
tribute to it. This is different to the circumstance relation where the satellite sets a
framework (e.g., temporal or spatial) within which the nucleus can be interpreted.
Following Mann and Thompson (1987), consider the example:

(7) Probably the most extreme case of Visitors Fever I have ever witnessed was
a few summers ago when I visited the relatives in the Midwest.

In this example the satellite (‘when I visited the relatives in the Midwest’) pro-
vides a temporal framework for interpreting the nucleus (the preceding part of the
sentence).
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George is very tired. He has not slept all night long.

Figure 21.1 Example of the RST relation evidence.

As another example of a relation, consider the following text:

(8) The next LREC conference will take place in Marakesh, Morroco. I shall
give you more details in due course, but now is a good time to reserve a
hotel.

In this example, the units represented by the two clauses contained in the
second sentence are in a justify relation with the unit represented by the first sen-
tence. They tell readers why the writer believes he has the right to say unit one
(‘I shall give you more details in due course’) without giving more details, and in
particular without providing the dates for the conference.

In the original version of RST (Mann & Thompson 1987), relations are formally
defined by a set of constraints on the nucleus (N) and satellite (S) which explain the
goals and beliefs of the writer (W) and reader (R), and by the effect on the reader.
By way of example, the justify relation is defined as follows:

Relation name: Justify
Constraints on N: R might not believe N to a degree satisfactory to W
Constraints on S: R believes S or will find it credible
Constraints on the
N+S combination: R’s comprehending S increases R’s belief of N
Effect: R’s belief in N is increased

There are different sets of rhetorical relations in RST and variations of the theory.
By way of example, the RST TreeBank (Carlson et al., 2001) features 78 distinct
relations, grouped into 16 classes.

3.3 Centering
Centering is a theory about local discourse coherence and is based on the idea that
each utterance features a topically most prominent entity called the center. Centering
theory regards utterances8 which continue the topic of preceding utterances as more
coherent than utterances which feature a topic shift (or flag up an impending shift).

The main idea of centering theory (Grosz et al., 1983; 1995) is that certain enti-
ties mentioned in an utterance are more central than others and this imposes
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constraints on the use of referring expressions and in particular on the use of pro-
nouns. It is argued that the coherence of a discourse depends on the extent to
which the choice of the referring expressions conforms to the centering properties.

As an illustration, consider the following examples:

(9) Discourse A
(a) John works at Barclays Bank.
(b) He works with Lisa.
(c) John is going to marry Lisa.
(d) He is looking forward to the wedding.

Discourse B
(a) John works at Barclays Bank.
(b) He works with Lisa.
(c) John is going to marry Lisa.
(e) She is looking forward to the wedding.

Centering predicts that discourse B is less coherent than discourse A. In both
examples the discourse entity realized by John is the center in utterances (9b) and
(9c),9 but whilst in (9d) the center remains the same, utterance (9e) shifts the cen-
ter to the discourse entity realized by Lisa. The shift in center and the use of a
pronominal form to realize the new center contribute to making B less coherent
than A. In utterance (9d), unlike (9e), it is the center of utterances (9b) and (9c)
which has been pronominalized.

Discourses consist of continuous discourse segments. A discourse segment D con-
sists of a sequence of utterances U1, U2, . . ., UN. Each utterance U in D is assigned
a set of potential next centers known as forward looking centers Cf (U, D)10 which
correspond to the discourse entities evoked by the utterance. Each utterance (other
than the first) in a segment is assigned a single center defined in centering theory
as the backward looking center11 Cb (U). The backward looking center Cb (U) is a
member of the set Cf (U) and is the discourse entity the utterance U is about. The
Cb entity connects the current utterance to the previous discourse: it focuses on an
entity that has already been introduced. A central claim of centering is that each
utterance has exactly one backward looking center.12

The set of forward looking centers Cf (U) is partially ordered according to their
discourse salience. The highest-ranked element in Cf (U) is called the preferred cen-
ter Cp (U) (Brennan et al., 1987). The preferred center in a current utterance UN
(denoted as Cp (UN)) is the most likely backward looking center of the following
utterance (denoted as Cb (UN+1)). Discourse entities in subject position are pre-
ferred over those in object position, which are preferred over discourse entities in
subordinate clauses or those performing other grammatical functions.13

Grosz et al. (1995) define three types of transition relations across pairs of
utterances.

(1) Center continuation: Cb (UN+1)= Cb (UN), i.e., the backward looking cen-
ter of the utterance UN+1 is the same as the backward looking center in the
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utterance UN and this entity is the preferred center of Cf (UN+1). In this case
Cb (UN+1) is the most likely candidate for Cb (UN+2).

(2) Center retaining: Cb (UN+1)= Cb (UN), but this entity is not the most highly
ranked element in Cf (UN+1). In this case, therefore, Cb (UN+1) is not the
preferred candidate for Cb(UN+2) and, although it is retained as Cb in UN+1,
it is not likely to fill that role in UN+2.

(3) Center shifting: Cb (UN+1) �= Cb (UN)

Brennan et al. (1987) distinguish between smooth-shift or shifting-1 (if Cb(UN+1) =
Cp(UN+1)) and rough-shift or simply shifting (if Cb (UN+1) �= Cp(UN+1)).

To exemplify the theory, here are two very simple discourses differing in their
last sentences from Discourses A and B:

(9) Discourse C
(a) John works at Barclays Bank.
(b) He works with Lisa.
(c) John is going to marry Lisa.
(f) Lisa has known him for two years.

Discourse D
(a) John works at Barclays Bank.
(b) He works with Lisa.
(c) John is going to marry Lisa.
(g) She has known John for two years.

Sentence (9c) exhibits center continuation; the backward looking centers of (9b)
and (9c) and the forward looking centers of sentences (9a), (9b), and (9c) are listed
as follows:

(9) (a) John works at Barclays Bank.
Cb unspecified14

Cf = {John, Barclays Bank}

(b) He works with Lisa.
Cb = John
Cf = {John, Lisa}

(c) John is going to marry Lisa.
Cb = John
Cf = {John, Lisa}

In sentence (9f), we have center retaining:15

(9) (f) Lisa has known him for two years.
Cb = John
Cf = {Lisa, John}
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Whereas in (g) we have a center shift.

(g) She has known John for two years.
Cb = Lisa
Cf = {Lisa, John}

In addition to the transitions outlined above, centering theory also includes two
rules which state:

Rule 1: If some element of Cf (UN) is realized as a pronoun in UN+1, then Cb
(UN+1) must also be realized as a pronoun.

Rule 2: Transition states are ordered in terms of preference. The continue
transition is preferred to the retain transition, which is preferred to the
shift transition.16

Rule 1 stipulates that if there is only one pronoun in an utterance, then this pro-
noun should be the (backward looking) center. It is reasonable to assume that if
the next sentence also contains a single pronoun, then the two pronouns core-
fer. The center is the most preferred discourse entity in the local context which is
to be referred to by a pronoun.17 The use of a pronoun to realize the backward
looking center indicates that the speaker/writer is talking/writing about the same
thing. Psycholinguistic research (Hudson-D’Zmura 1988; Gordon et al., 1993) and
cross-linguistic research (Kameyama 1985; 1986; 1998; Di Eugenio 1990; Walker
et al., 1994) have validated that Cb is preferentially realized by a pronoun (e.g., in
English) or by equivalent forms such as zero pronouns in other languages (e.g.,
Japanese).

Rule 2 provides an underlying principle for coherence of discourse. Frequent
shifts detract from local coherence, whereas continuation contributes to coherence.
Maximally coherent segments are those which do not feature changes of center,
concentrate on one main discourse entity (topic) only, and therefore require less
processing effort.

Rule 2 is used as a preference in anaphora resolution (Brennan et al., 1987;
Walker 1989). As an illustration, consider the following discourse:

(9) Discourse E
(h) Although Jenny was in a hurry, she was glad to bump into Kate.
(i) She told her some exciting news.

This discourse segment consists of the following utterances:

U1 = Jenny was in a hurry
U2 = she was glad to bump into Kate
U3 = She told her some exciting news

The discourse entity ‘Jenny’ is both the backward looking center of the second
utterance Cb (U2) and the preferred center Cp (U2) on the list of forward looking
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centers. Since continuation is preferred over retaining (Rule 2, see above), center-
ing favors ‘Jenny’ as both Cb (U3) and Cp (U3), therefore predicting she as ‘Jenny’
and her as ‘Kate’ (the instantiations she = ‘Kate’ and her = ‘Jenny’ would have sig-
naled retaining since in this case we would have had Cp (U3) = ‘Kate,’ Cb (U3) =
‘Jenny’).18

Centering has proved to be a powerful tool in accounting for local coherence and
has been used successfully in anaphora resolution. However, as with every theory
in linguistics, it has its limitations (see also Kehler 1997). For instance, the original
centering model only accounts for local coherence of discourse. In an anaphora
resolution context, when the candidates for the antecedent of an anaphor in the
current utterance UK have to be identified, centering proposes that the discourse
entities in the immediately preceding utterance UK−1 be considered. Centering,
however, does not offer a solution for resolving anaphors in UK whose antecedents
can be found only in UK−2 (or even further back in the discourse). To overcome this
restriction, Hahn and Strube (1997) put forward an alternative centering model
that extends the search space for antecedents.

Walker (1998) goes even further and argues that the restriction of centering to
operate within a discourse segment should be abandoned in favor of a new model
integrating centering into the global discourse structure. To this end it is proposed
that a model of attentional state, the so-called cache model, be combined with the
centering algorithm.

For more work on centering see the references in Section 6.

4 Anaphora Resolution

(1) Elizabeth looked archly, and turned away. Her resistance had not injured her
with the gentleman.

We saw in this example how the pronoun her serves as a link and ensures cohe-
sion between the two sentences. Such words which point to previous items of
discourse and contribute to its cohesion are referred to as anaphors. The under-
standing of a discourse usually involves the understanding of anaphors whose
interpretation depends on either previous sentences or preceding words of the
current sentence. The interpretation of anaphors (made possible by anaphora reso-
lution, see Section 4.2) is of vital importance and has attracted considerable interest
in the area of computational discourse.

4.1 Anaphora: linguistic fundamentals
We define anaphora as the linguistic phenomenon of pointing back to a previously
mentioned item in the text. The word or phrase ‘pointing back’19 is called an
anaphor and the entity to which it refers or for which it stands is its antecedent.
When the anaphor refers to an antecedent and when both have the same referent
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in the real world, they are termed coreferential. Therefore coreference is the act of
referring to the same referent in the real world.

Consider the following example from Huddleston (1984):

(10) The Queen is not here yet but she is expected to arrive in the next half an
hour.

In this example, the pronoun she is an anaphor, the Queen is its antecedent and she
and the Queen are coreferential. Note that the antecedent is not the noun Queen
but the noun phrase (NP) the Queen. The relation between the anaphor and the
antecedent is not to be confused with that between the anaphor and its referent;
in the example above the referent is the Queen as a person in the real world (e.g.,
Queen Elizabeth) whereas the antecedent is the Queen as a linguistic form.

A specific anaphor and more than one of the preceding (or following) noun
phrases may be coreferential, thus forming a coreferential chain of discourse entities
which have the same referent. For instance in (11), Sophia Loren, she, the actress, and
her are coreferential. Coreference partitions discourse into equivalence classes of
coreferential chains and in (11) the following coreferential chains can be singled
out: {Sophia Loren, she, the actress, her}, {Bono, the U2 singer}, {a thunderstorm},
and {a plane}.

(11) Sophia Loren says she will always be grateful to Bono. The actress revealed
that the U2 singer helped her calm down during a thunderstorm while
traveling on a plane.

Note that not all varieties of anaphora have a referring function. Consider verb
anaphora, for example.

(12) When Manchester United swooped to lure Ron Atkinson away from the
Albion, it was inevitable that his midfield prodigy would follow, and in
1981 he did.

This sentence features the verb anaphor did which is a substitution for the
antecedent followed but does not have a referring function and therefore we can-
not speak of coreference between the two. Also, the anaphor and the antecedent
may refer but may still not be coreferential, as in the case of identity-of-sense
anaphora:20

(13) The man who gave his paycheck to his wife was wiser than the man who
gave it to his mistress (Karttunen 1969).

as opposed to identity-of-reference anaphora:

(14) This man gave his paycheck to his wife in January; in fact, he gave it to her
in person.
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In (13) the anaphor it and the antecedent his paycheck are not coreferential whereas
in (14) they are.

Bound anaphora is another example where the anaphor and the antecedent are
not coreferential.

(15) Every speaker had to present his paper.

Anaphora normally operates within a document (e.g., article, chapter, book),
whereas coreference can be taken to work across documents. We have seen that
there are varieties of anaphora that do not involve coreference. It is also possible
to have coreferential items that are not anaphoric with cross-document coreference
being an obvious example: two mentions of the same person in two different
documents will be coreferential, but will not stand in an anaphoric relation.

The most widespread type of anaphora is pronominal anaphora. Pronominal
anaphora can be exhibited by personal, possessive, or reflexive pronouns (‘A knee
jerked between Ralph’s legs and he fell sideways busying himself with his pain
as the fight rolled over him’) as well as by demonstrative pronouns (‘This was
more than he could cope with’). Relative pronouns are regarded as anaphoric too.
First- and second-person singular and plural pronouns are usually used in a deic-
tic manner21 (‘I would like you to show me the way to San Marino’), although
their anaphoric function is not uncommon in reported speech or dialogues as
demonstrated by the use of I in the last sentence of (16).

Lexical noun phrase anaphors take the form of definite noun phrases also called
definite descriptions, and proper names. Although pronouns, definite descriptions,
and proper names are all considered to be definite expressions, proper names and
definite descriptions, unlike pronouns, can have a meaning independent of their
antecedent. Furthermore, definite descriptions do more than just refer. They con-
vey some additional information as in (16) where the reader can learn more about
Roy Keane through the definite description Alex Ferguson’s No.1 player.

(16) Roy Keane has warned Manchester United he may snub their pay deal.
United’s skipper is even hinting that unless the future Old Trafford Pack-
age meets his demands, he could quit the club in June 2000. Irishman
Keane, 27, still has 17 months to run on his current £23,000-a-week con-
tract and wants to commit himself to United for life. Alex Ferguson’s No.1
player confirmed: “If it’s not the contract I want, I won’t sign.”

In this text, Roy Keane has been referred to by anaphoric pronouns (he, his, him-
self, I), but also by definite descriptions (United’s skipper, Alex Ferguson’s No. 1
player) and a proper name modified by a common noun (Irishman Keane). On the
other hand, Manchester United is referred to by the definite description the club and
by the proper name United.

Noun phrase anaphors may have the same head as their antecedents (the
chapter and this chapter) but the relation between the referring expression and
its antecedent may be that of synonymy (a shop . . . the store), generalization/
hypernym (a boutique . . . the shop, also Manchester United . . . the club as in (16)) or
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specialization/hyponym (a shop . . . the boutique, also their pay deal . . . his current
£23,000-a-week contract as in (16)).22 Proper names usually refer to antecedents
which have the same head (Manchester United . . . United) with exact repetitions not
being uncommon.

According to the form of the anaphor, anaphora occurs as verb anaphora
(‘Stephanie balked, as did Mike’) or adverb anaphora (‘We shall go to McDonalds
and meet you there’. Zero anaphora, which is typical of many languages such as
Romance, Slavonic and oriental languages, is also exhibited. Consider the example
in Spanish:

(17) Gloria is very tired. (She) has been working all day long.
Gloria está muy cansada. Ø Ha estado trabajando todo el día.

In the last example Ø stands for the omitted anaphor she.
Nominal anaphora arises when a referring expression – pronoun, definite noun

phrase, or proper name – has a non-pronominal noun phrase as antecedent. This
most important and frequently occurring class of anaphora has been researched
and covered extensively, and is well understood in the NLP literature. Broadly
speaking, there are two types of nominal anaphora: direct and indirect. Direct
anaphora links anaphors and antecedents by such relations as identity, synonymy,
generalization, and specialization (see above). In contrast, indirect anaphora links
anaphors and antecedents by relations such as part-of (‘Although the store had
only just opened, the food hall was busy and there were long queues at the tills’)
or set membership (‘Only a day after heated denials that the Spice Girls were
splitting up, Melanie C declared she had already left the group’). Resolution of
indirect anaphora normally requires the use of domain or world knowledge. Indi-
rect anaphora is also known as associative or bridging anaphora.23 For more on the
notions of anaphora and coreference, and on the different varieties of anaphora,
see Hirst (1981) and Mitkov (2002).

4.2 Anaphora resolution
The process of determining the antecedent of an anaphor is called anaphora reso-
lution. In anaphora resolution the system has to determine the antecedent of the
anaphor. For identity-of-reference nominal anaphora, any preceding NP which is
coreferential with the anaphor is considered as the correct antecedent. On the other
hand, the objective of coreference resolution is to identify all coreferential chains.
However, since the task of anaphora resolution is considered successful if any ele-
ment of the anaphoric (coreferential) chain preceding the anaphor is identified,
annotated corpora for automatic evaluation of anaphora systems require markup
of anaphoric (coreferential) chains and not only anaphor-closest antecedent pairs.

The process of automatic resolution of anaphors consists of the following main
stages: (1) identification of anaphors, (2) location of the candidates for antecedents,
and (3) selection of the antecedent from the set of candidates on the basis of
anaphora resolution factors.
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4.2.1 Identification of anaphors In pronoun resolution, only the anaphoric
pronouns have to be processed further, therefore non-anaphoric occurrences of
the pronoun it as in (18) have to be recognized by the program.

(18) It must be stated that Oskar behaved impeccably.

When a pronoun has no referential role, and it is not interpreted as a bound
variable (‘Every man loves his mother’), then it is termed pleonastic. Therefore,
grammatical information as to whether a certain word is a third-person pronoun
would not be sufficient: each occurrence of it has to be checked in order to find
out first if it is referential or not. Several algorithms for identification of pleonastic
pronouns have been reported in the literature (Paice & Husk 1987; Lappin & Leass
1994; Evans 2000; 2001; Boyd et al., 2005).

The search for anaphoric noun phrases can be even more problematic. Definite
noun phrases are potentially anaphoric, often referring back to preceding noun
phrases, as The Queen does in (19):

(19) Queen Elizabeth attended the ceremony. The Queen delivered a speech.

It is important to bear in mind that not every definite noun phrase is necessarily
anaphoric. Typical examples are definite descriptions which describe a specific,
unique entity, or definite descriptions used in a generic way. In (20) the NP The
Duchess of York is not anaphoric and does not refer to the Queen.

(20) The Queen attended the ceremony. The Duchess of York was there too.

As in the case of the automatic recognition of pleonastic pronouns, it is important
for an anaphora resolution program to be able to identify those definite descrip-
tions that are not anaphoric. Methods for identification of non-anaphoric definite
descriptions have been developed by Bean and Riloff (1999), Vieira and Poesio
(2000), and Muñoz (2001).

Finally, proper names are regarded as potentially anaphoric to preceding proper
names that partially match in terms of first or last names (e.g., John White . . .
John . . . Mr White).

4.2.2 Location of the candidates for antecedents Once the anaphors have been
detected, the program has to identify the possible candidates for their antecedents.
The vast majority of systems only handle nominal anaphora, since processing
anaphors whose antecedents are verb phrases, clauses, sentences, or sequences of
sentences is a more complicated task. Typically in such systems all noun phrases
(NPs) preceding an anaphor within a certain search scope are initially regarded as
candidates for antecedents.

The search scope takes a different form depending on the processing model
adopted and may vary in size depending on the type of anaphor. Since anaphoric
relations often operate within/are limited to a discourse segment,24 the search
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scope is often set to the discourse segment which contains the anaphor. Anaphora
resolution systems which have no means of identifying the discourse segment
boundaries usually set the search scope to the current and N preceding sentences,
with N depending on the type of anaphor. For pronominal anaphors, the search
scope is usually limited to the current and two or three preceding sentences. Def-
inite noun phrases, however, can refer further back in the text and, for such
anaphors, the search scope is normally larger. Approaches which search the
current or the linearly preceding units to locate candidates for antecedents are
referred to by Cristea et al. (2000) as linear models as opposed to the hierarchical
models which consider candidates from the current or the hierarchically preceding
discourse units such as the discourse-VT model based on veins theory (Cristea
et al., 1998; also see Section 6). Cristea et al. (2000) show that, compared with
linear models, the search scope of the discourse-VT model is smaller, which
makes it computationally less expensive, and potentially more accurate in pick-
ing out the potential candidates. However, in fact, the automatic identification
of veins cannot, at present, be performed with satisfactory accuracy and there-
fore this model is not yet sufficiently attractive for practical anaphora resolution
systems.

4.2.3 The resolution algorithm: factors in anaphora resolution Once the ana-
phors have been detected, the program will attempt to resolve them by selecting
their antecedents from the identified sets of candidates. The resolution rules based
on the different sources of knowledge and used in the resolution process (con-
stituting the anaphora resolution algorithm), are usually referred to as anaphora
resolution factors. These factors can be constraints which eliminate certain noun
phrases from the set of possible candidates. The factors can also be preferences
which favor certain candidates over others. Constraints are considered to be oblig-
atory conditions that are imposed on the relation between the anaphor and its
antecedent. Therefore, their strength lies in discounting candidates that do sat-
isfy these conditions; unlike preferences, they do not propose any candidates.
Typical constraints in anaphora resolution are gender and number agreement,25

c-command constraints,26 and selectional restrictions. Typical preferences are
recency (the most recent candidate is more likely to be the antecedent), center
preference in the sense of centering theory (the center of the previous clause is
the most likely candidate for antecedent), or syntactic parallelism (candidates
with the same syntactic function as the anaphor are the preferred antecedents).
However, it should be made clear that it is not difficult to find examples which
demonstrate that such preferences are not absolute factors since very often they
are overriden by semantic or real-world constraints.27 Approaches making use of
syntactic constraints, such as Hobbs (1976, 1978) and Lappin and Leass (1994) or
the knowledge-poor counterpart of the latter (Kennedy & Boguraev 1996), have
been particularly successful and have received a great deal of attention, one of the
reasons for this is that such constraints are good at filtering antecedent candidates
at intra-sentential (within the sentence) level.
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4.3 Algorithms for anaphora resolution
Anaphora resolution algorithms can be broadly classed into rule-based and
machine learning (ML) approaches. Initially it was the rule-based approaches such
as Hobbs’s naïve algorithm (Hobbs 1976; 1978) and Lappin and Leass’s (1994) res-
olution of anaphora procedure (henceforth RAP) which gained popularity (see
below). In recent years there has been a considerable amount of work reported
on machine learning (ML) approaches to pronoun (and, in general, to anaphora
and coreference) resolution (Soon et al., 2001; Ng & Cardie 2002; Müller et al.,
2002; Strube & Müller 2003). Ge et al.’s statistically enhanced implementation of
Hobbs’s algorithm has previously been reported to perform better than Hobbs’s
original algorithm itself (Ge et al., 1998), even outperforming Lappin and Leass’s
RAP (Preiss 2002c) and it is fair to say that ML approaches to anaphora resolu-
tion are/have been an important direction of research. However, the results from
a number of studies (Barbu 2001; Preiss 2002a; Stuckardt 2002; 2004; 2005) suggest
that ML algorithms for pronoun resolution do not necessarily perform better than
traditional rule-based approaches.

In this section we shall briefly outline five popular rule-based approaches: two
approaches based on full parsing and three based on partial parsing. Histori-
cally, the approaches based on partial parsing (referred to as ‘knowledge-poor
approaches’) were proposed in the 1990s and followed those applying to the
output of full parsers. Most knowledge-poor algorithms share a similar pre-
processing methodology. They do not rely on a parser to process the input and
instead use POS taggers and NP extractors. Nor do any of the methods make use of
semantic or real-world knowledge. The drive towards knowledge-poor and robust
approaches was further motivated by the emergence of cheaper and more reliable
corpus-based NLP tools such as POS taggers and shallow parsers, alongside the
increasing availability of corpora and other NLP resources (e.g., ontologies). For a
historical outline of anaphora resolution algorithms, see Mitkov (2002).

4.3.1 Approaches based on full parsing
4.3.1.1 Hobbs’s naïve algorithm Hobbs’s (1976; 1978) naïve algorithm28 operates
on fully parsed sentences. The original approach assumes that the surface parse-
trees represent the correct grammatical structure of the sentence with all adjunct
phrases properly attached and that they feature ‘syntactically recoverable omitted
elements’ such as elided verb phrases and other types of zero anaphors or zero
antecedents. Hobbs also assumes that an NP node directly dominates an N-bar
node, with the N-bar identifying a noun phrase without its determiner. Hobbs’s
algorithm traverses the surface parse-tree in a left-to-right and breadth-first fash-
ion, looking for a noun phrase of the correct gender and number. Parse-trees of
previous sentences in the text are traversed in order of recency. Hobbs’s algo-
rithm was not implemented in its original form, but later implementations relied
either on manually parsed corpora (Ge et al., 1998; Tetreault 1999) or a full parser
(Dagan & Itai 1991; Lappin & Leass 1994; Baldwin 1997).
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4.3.1.2 Lappin and Leass’s RAP Lappin and Leass’s (1994) algorithm29 termed
resolution of anaphora procedure (RAP), operates on syntactic representations
generated by McCord’s slot grammar parser (McCord 1990; 1993). It relies on
salience measures derived from syntactic structure as well as on a simple dynamic
model of attentional state to select the antecedent of a pronoun from a list of NP
candidates. RAP consists of the following components: an intrasentential syntac-
tic filter, a morphological filter, a procedure for identifying pleonastic pronouns,
an anaphor binding algorithm which handles reflexive and reciprocal pronouns,
a procedure for assigning values to several salience parameters for an NP, a pro-
cedure for identifying anaphorically linked NPs as an equivalence class, and a
decision procedure for selecting the preferred candidate for antecedent. The algo-
rithm does not employ semantic information or real-world knowledge in selecting
from the candidates.

4.3.2 Approaches based on partial parsing
4.3.2.1 Mitkov’s knowledge-poor approach Mitkov’s robust pronoun resolution
approach30 (Mitkov 1996; 1998) works from the output of a text processed by a
part-of-speech tagger and an NP extractor, locates noun phrases which precede
the anaphor within a distance of two sentences and checks for gender and number
agreement. The resolution algorithm is based on a set of boosting and impeding
indicators applied to each antecedent candidate. The boosting indicators assign
a positive score to an NP, reflecting a likelihood that it is the antecedent of the
current pronoun. In contrast, the impeding ones apply a negative score to an NP,
reflecting a lack of confidence that it is the antecedent of the current pronoun. A
score is calculated based on these indicators and the discourse referent with the
highest aggregate value is selected as the antecedent.

4.3.2.2 Kennedy and Boguraev’s approach Kennedy and Boguraev (1996)31 report
on a modified version of Lappin and Leass’s (1994) RAP which does not require
full syntactic parsing but applies to the output of a part-of-speech tagger enriched
with annotations of grammatical function. They use a phrasal grammar for iden-
tifying NP constituents and, similar to Lappin and Leass (1994), employ salience
preferences to rank candidates for antecedents. The general idea is to construct
coreference equivalence classes that have an associated value based on a set of
ten factors. An attempt is then made to resolve every pronoun to one of the pre-
viously introduced discourse referents by taking into account the salience value
of the class to which each possible antecedent belongs. It should be pointed out
that Kennedy and Boguraev’s approach is not a simple knowledge-poor adap-
tation of RAP. It is rather an extension, given that some of the factors used
are unique.

4.3.2.3 Baldwin’s CogNIAC CogNIAC (Baldwin 1997)32 makes use of limited
knowledge and resources and its pre-processing includes sentence detection,
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part-of-speech tagging and recognition of base forms of noun phrases, as well
as basic semantic category information such as gender and number (and, in one
variant, partial parse-trees). The pronoun resolution algorithm employs a set of
‘high-confidence’ rules which are successively applied to the pronoun under con-
sideration. The processing of a pronoun terminates after the application of the
first relevant rule. The original version of the algorithm is non-robust, a pronoun
being resolved only if a specific rule can be applied. The author also describes a
robust extension of the algorithm, which employs two additional weak rules to be
applied if no others are applicable.

4.3.3 Comparing pronoun resolution algorithms Mitkov and Hallett (2007)
compare the above five algorithms using the evaluation workbench, an envi-
ronment for comparative evaluation of rule-based anaphora resolution algo-
rithms (Mitkov 2000; Barbu & Mitkov 2001). The evaluation was conducted
on 2,597 anaphors from the three corpora, each one of them covering a dif-
ferent genre: technical manuals, newswire, and literary texts. The evaluation
results show that, on the whole, Lappin and Leass’s algorithm performed
best (success rate 60.65 percent), followed closely by Hobbs’s naïve algorithm
(60.07 percent). Mitkov’s approach was third and emerged as the best per-
forming knowledge-poor algorithm (57.03 percent), followed by Kennedy and
Boguraev’s method (52.08 percent), both systems surpassing Baldwin’s CogNIAC
(37.66 percent).

These results confirm the results from previous studies (Mitkov et al., 2002)
that fully automatic pronoun resolution is more difficult than previous work had
suggested. The results also depart significantly from the results reported in the
authors’ papers describing their algorithms. In fact, they are much lower than the
original results reported. Mitkov and Hallett believe that the main reason for this
is the fact that all algorithms implemented in the evaluation workbench operate
in a fully automatic mode, whereas in their original form they relied on some
form (to a lesser or higher degree) of post-editing of the output of their parsers,
which of course favored the performance of the algorithm. As a result, some of
the implemented algorithms could not benefit from specific rules which required
more accurate pre-processing, such as identification of pleonastic pronouns or
identification of gender or animacy, identification of clauses within sentences, etc.
Another important reason for the lower performance could have been the fact
that the evaluation corpus of technical manuals used in their study was taken
in its original format and as such featured texts that were frequently broken into
non-narrative sections.

Mitkov and Hallett’s results suggest that the best-performing pronoun reso-
lution algorithms score slightly higher than 60 percent if they operate in a fully
automatic mode. These results are comparable to those reported in a related inde-
pendent study carried out by Preiss (2002b) which evaluates Lappin and Leass’s
algorithm with different parsers and which reports an average success rate of
61 percent when the pre-processing is done with Charniak’s parser. In addition,
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different versions of Mitkov’s algorithm were also evaluated on technical
manuals in Mitkov et al. (2002) where the performance of the original, non-
optimized version of this algorithm was comparable to the results reported in
this paper.

5 Applications

5.1 Text organization and discourse segmentation
applications

The way in which discourse is organized has been exploited in numerous NLP
projects. As mentioned earlier, McKeown (1985) applies text organization strate-
gies in the form of schemata of rhetorical predicates in natural language generation.

This explicit structure of scientific papers in terms of moves (background infor-
mation, problem, solution, evaluation, conclusion) was used by Teufel (1999) and
Teufel and Moens (2002) to produce summaries automatically. Their work was
based on the assumption that these moves can be identified not only in the full
papers, but also in scientific abstracts. The automatic summarization task is a two-
stage procedure: identification of important sentences followed by recognition of
moves also referred to as the rhetorical roles of the extracted sentences. For both
stages, a Bayesian classifier inspired by the work described in Kupiec et al. (1995)
is used. In order to classify sentences as worthy of inclusion in the summary
and to identify their rhetorical roles, a set of low-level properties of sentences are
extracted and used as features for the classifier. Examples of features include the
presence of indicator phrases, the presence of indicator phrases which correspond
to a particular rhetorical class, and sentence relative location. For training data, a
corpus of 80 scientific articles was annotated with information about the rhetorical
category of each sentence. Teufel and Moens (2002) report an accuracy of 66 per-
cent for the classification of sentences as being worth including in a summary. In
addition, the classifier can identify the correct rhetorical role for 64 percent of the
correctly extracted sentences.

Mitkov and Corpas (2008) employ the identification of rhetorical predicates to
enhance the performance of a third generation translation memory system (Pekar
& Mitkov 2007). This TM system attempts to match sentences (segments) not only
in terms of syntax but also in terms of semantics. With semantic processing being
far from perfect, if two sentences (segments) under consideration for a semantic
match are also labeled with the same rhetorical predicate, the probability of their
matching is increased.

The identification of subtopic segments within a text has been exploited in
many different NLP applications, especially those concerned with processing long
documents. These applications include high-level discourse planning in natu-
ral language generation, summarization of topic structure, visualization and the
development of reading aids, information retrieval, and the efficient navigation of
documents.
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In the area of information access, Tombaugh et al. (1987) found that a more effi-
cient way to read long texts on computer screens is to divide the screen into two
windows. The first window displays information about the content of the overall
document and provides readers with visual cues about the locations of portions of
previously read text. This information can be presented as a fine-grained hyper-
linked table of contents that assists readers in their recall and ability to quickly
locate information that has already been read once. The second window of the
interface displays the segment of text associated with the hyperlink selected in the
first. Hearst (1997) notes that the effectiveness of such systems is improved when
they are capable of tokenizing long texts in terms of subtopic segments as opposed
to sentences or paragraphs.

Choi (2000) uses discourse segmentation to improve document navigation for
users who have visual impairment. Under his approach, telegraphic text com-
pression methods are applied to sentences and topic segments in a text in order to
create an index of entries that are read to the visually impaired user. The user may
then select entries of interest to be read more fully.

Hearst (1997) also demonstrates that discourse segmentation could be useful in
presenting a search engine’s results to a user. In the implemented TileBar system,
returned documents are presented visually, in the form of bars in which different
subtopic segments are represented by ‘tiles’ color-coded according to their rele-
vance to the input query. Clicking on a tile in the bar allows the user to access the
full document, with the browser initially displaying the discourse segment that
corresponds to the clicked tile.

Mooney et al. (1990) use linear discourse segmentation in the generation of
explanatory text. The authors argued that hierarchical structures of the kind
derived under approaches such as RST do not apply well to the generation of
extended explanations in which it is important to accurately obtain the high-
level structure of the hierarchy. They show that discourse segmentation is more
appropriate for high-level discourse planning in a natural language generation
system.

Discourse segmentation has also been used to facilitate automatic text sum-
marization. It is useful when summarizing long documents to identify different
topic segments within the input text and then apply a summarization method to
each topic in turn, concatenating and returning those outputs in the final sum-
mary. Barzilay and Elhadad (1997) used an approach to discourse segmentation to
produce a model of topic progression for a text for this purpose.

Harabagiu and Lacatusu (2005) employ five different topic representation
approaches, including the TextTiling algorithm (Hearst 1997) to generate multi-
document summaries. Boguraev and Neff (2000) propose a summarization
methodology based on linear discourse segmentation. Topic shifts are detected in a
text and integrated into a linguistically aware summarizer which exploits salience
by picking different chains of cohesively connected segments. Angheluta et al.
(2002) use generic topical cues for identifying the thematic structure of a text to
extract summaries in the form of tables of contents. Following this work, Moens
(2008) also describes a system which segments a text into topics and subtopics
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and which she uses for the generation of tables of contents. Each segment is charac-
terized by important key terms which are extracted from it as well as by its start
and end position in the text. A table of contents is built using the hierarchical and
sequential relationships between topical segments identified in a text. The table of
contents generator employs linguistic theories (deterministically and probabilis-
tically modeled) related to the topic and comment of a sentence. It also utilizes
patterns of thematic progression in text. The system is applied to English texts
(news, web, and encyclopedic texts).

5.2 Applications of discourse coherence theories
Rhetorical structure theory (RST) was initially developed with text generation in
mind (Mann & Thompson 1987) but later received considerable attention from a
number of NLP researchers. RST was widely used in summarization, mainly due
to Marcu’s (1997; 2000) work.

The distinction between nuclei and satellites made in rhetorical structure theory
was successfully employed to produce summaries automatically (Ono et al., 1994;
Marcu 1997; Corston-Oliver 1998). The underlying idea of these methods is that
a summary can be produced from the rhetorical structure tree by keeping only
the nuclei and removing the satellites. According to RST, the understanding of
nuclei does not depend on the satellites, and therefore the resulting summary is a
coherent text. This method is difficult to use because it is not trivial to determine
the type of each span and the relations between them. In addition, the method also
requires the organization of the spans into a tree structure.

Ono et al. (1994) determine relations between sentences or blocks of sentences
in Japanese texts using linguistic clues such as connectives, anaphoric expressions,
and idiomatic expressions. These relations are used to evaluate the importance of
each sentence and to produce a summary. The method was evaluated on 30 edito-
rial articles and 42 technical papers that were annotated with information which
indicated the important sentences. The proposed method extracts 60 percent of the
most important sentences from editorials and 74 percent from technical papers.
The authors argue that their method is very useful because the generated abstract
contains well-connected units rather than fragmentary sentences.

A formalized algorithm to build rhetorical structure (RS) trees was proposed by
Marcu (1997). The algorithm operates in three stages. First, it determines the tex-
tual units and the discourse markers, and hypothesizes a set of relations between
the units. On the basis of these elements, in the second step all the trees satisfying
a set of constraints are built. The last step of the algorithm is to choose the best
tree among the ones constructed in the previous step. A corpus analysis was used
to identify the set of constraints and discourse markers used by the algorithm, as
well as how the best tree should be built. Once the tree is constructed, it is pos-
sible to determine a partial order between the units of the text, which in turn can
be used to produce summaries of the desired length. The approach was evalu-
ated on five texts, and comparison between the units annotated by human judges;
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those selected by the program as important reported a recall of 52.77 percent and
precision of 50 percent.

The algorithm proposed by Marcu can prove very slow in building the tree
as it tries all the possible combinations of units. This problem is addressed by
Corston-Oliver (1998), who proposes an algorithm to build RS trees which com-
bines a backtracking algorithm with a greedy approach. In addition, the algorithm
does not rely only on cue phrases, as is the case in most of the previous work, but
instead it combines them with syntactic analysis and logical form. Even though
Corston-Oliver’s work is presented in the context of automatic summarization, the
paper contains only a preliminary evaluation of the quality of the RST produced.

Rhetorical information is also used by Alonso i Alemany and Fuentes Fort (2003)
to improve the performance of a summarizer based on lexical chains. Instead of
building the RS tree of the source, and producing a summary based on the tree,
rhetorical relations between textual units are used to further compress the text by
removing the satellites of the selected sentences. In addition, the argumentative
structure of the text is used to boost a lexical cohesion method. The advantage of
this method is that it only requires the identification of the spans and the relations
between them, and not the building of the whole tree.

Whereas the most popular application of centering theory has been in anaphora
resolution algorithms (Brennan et al., 1987; Walker 1989; Tetreault 1999; 2001), it
was also successfully used in automatic summarization to produce and evaluate
summaries. Barzilay and Lapata (2005b) discuss how local coherence can be used
in multi-document summarization by building an entity grid which captures the
transitions between sentences. Orăsan (2006) takes a similar approach to that used
in text generation by Karamanis and Manurung (2002) and produces summaries
which minimize the number of violations of the continuity principle.33 Evaluation
of the summaries produced reveals that the summaries are more informative than
those produced using other methods, but not necessarily more coherent as initially
assumed. The justification for this is that centering theory is a theory of local cohe-
sion, so it cannot deal very well with sentences extracted from different parts of a
document.

Hasler (2007) uses centering theory to evaluate summaries. Even though, in
her case, the summaries are analyzed manually, the proposed method could be
easily implemented with a view to conducting automatic analysis. The evalu-
ation method assigns scores to summaries on the basis of a preferred ordering
of transitions which occur between utterances within them. Pairs of summaries
were compared by judges using the proposed method, and an agreement rate of
70 percent was observed.

Miltsakaki and Kukich (2004) apply centering theory to improve the task of essay
scoring. They experiment with the e-rater essay scoring system and find that the use
of rough-shift transitions as a measure of local discourse coherence contributes
to the task of essay evaluation. More specifically, a metric based on rough-shift
(see Section 3.3) improves the performance of e-rater significantly, in that it better
approximates human scores and provides the option of giving additional instruc-
tional feedback to the student. A by-product of this project is the confirmation that
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the rough-shift transition, insufficiently covered in the literature, reliably accounts
for incoherence.

5.3 Anaphora resolution applications
Anaphora resolution has been extensively applied in NLP. The successful iden-
tification of anaphoric or coreferential links is vital to a number of applications
such as machine translation, automatic abstracting, dialogue systems, question
answering, and information extraction.

The interpretation of anaphora is crucial for the successful operation of a machine
translation system. In particular, it is essential to resolve anaphoric relations when
translating into languages which mark the gender of pronouns. Unfortunately, the
majority of MT systems developed do not adequately address the problems of
identifying the antecedents of anaphors in the source language and producing the
anaphoric ‘equivalents’ in the target language. As a consequence, only a limited
number of MT systems have been successful in translating discourse, rather than
isolated sentences. One reason for this situation is that, in addition to anaphora
resolution itself being a very complicated task, translation adds a further dimen-
sion to the problem in that the reference to a discourse entity encoded by a source
language anaphor by the speaker (or writer) has not only to be identified by the
hearer (translator or translation system), but also re-encoded in a different lan-
guage. This complexity is partly due to gender discrepancies across languages, to
number discrepancies of words denoting the same concept, to discrepancies in the
gender inheritance of possessive pronouns, and discrepancies in target-language
anaphor selection (Mitkov & Schmidt 1998).

Anaphora resolution in information extraction could be regarded as part of the
coreference resolution task which takes the form of merging partial data objects
about the same entities, entity relationships, and events described at different
discourse positions. The importance of coreference resolution in information extrac-
tion has led to the inclusion of the coreference resolution task in the Message
Understanding Conferences (MUC-6 and MUC-7). This in turn gave considerable
impetus to the development of coreference resolution algorithms and as a result
several new systems emerged (Baldwin et al., 1995; Kameyama 1997; Gaizauskas
& Humphreys 2000).

Researchers in text summarization are increasingly interested in anaphora res-
olution since techniques for extracting important sentences are more accurate if
anaphoric references of indicative concepts are taken into account as well. More
generally, coreference and coreferential chains have been extensively exploited for
abstracting purposes. Baldwin and Morton (1998) describe a query-sensitive doc-
ument summarization technique which extracts sentences containing phrases that
corefer with expressions in the query. Azzam et al. (1999) use coreferential chains
to produce abstracts by selecting a ‘best’ chain to represent the main topic of a
text. The output is simply the concatenation of sentences from the original docu-
ment which contain one or more expressions occurring in the selected coreferential
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chain. Boguraev and Kennedy (1997) employ their anaphora resolution algorithm
(Kennedy & Boguraev 1996) in what they call ‘content characterization’ of tech-
nical documents. Orăsan (2006; 2009), Mitkov et al. (2007), and Kabadjov (2007)
investigated the effect of anaphora resolution on text summarization. The results
of these studies suggest that fully automatic anaphora resolution in spite of its
low performance still has a beneficial, albeit limited, effect on text summariza-
tion. An interesting observation from these studies is that, once the success rate of
anaphora resolution reaches levels closer to 80 percent, summarization is almost
guaranteed to improve and that the performance of a summarizer also depends
on how anaphoric knowledge is incorporated.

It should be noted that cross-document coreference resolution has emerged as
an important trend due to its role in cross-document summarization. Bagga and
Baldwin (1998) describe an approach to cross-document coreference resolution
which extracts all sentences containing expressions coreferential with a specific
entity (e.g., John Smith) from each of several documents. In order to establish
cross-document coreference and, in this particular application, decide whether
the documents discuss the same entity (i.e., the same John Smith), the authors
employ a vector space model to resolve ambiguities between people having the
same name. Witte et al. (2005) identify both within-document and cross-document
coreference chains in order to establish the most important entities within a docu-
ment or across documents and produce a summary on the basis of one or several
documents.

Coreference resolution has proven to be helpful in question answering (QA).
Morton (1999) retrieves answers to queries by establishing coreference links
between entities or events in the query and those in the documents.34 The
sentences in the searched documents are ranked according to the coreference rela-
tionships, and the highest-ranked sentences are displayed to the user. Anaphora
resolution is employed for question answering in Harabagiu et al. (2001a). Watson
et al. (2003) demonstrate experimentally that anaphora resolution is highly rele-
vant to open domain QA. Recent experiments employing anaphora resolution in
QA are reported in Negri and Koulekov (2007) and in Bouma et al. (2007).

Mitkov et al. (2007) also conducted a study to investigate the impact of anaphora
resolution on term extraction and text categorization. As in the case of the results
on summarization, fully automatic anaphora resolution with performance in the
range of 50 percent has a positive, albeit limited, effect. Finally, Hendrickx et al.
(2008) report similar impact of coreference resolution with regard to information
extraction.

6 Further Reading

Kehler (1995) shows how the recognition of coherence relations affects the inter-
pretation of a variety of linguistic phenomena including verb phrase ellipsis,
gapping, tense, and pronominal reference. In later work, Kehler et al. (2008: 2)
revisit Hobbs’s theory which maintains that the mechanisms supporting pronoun
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interpretation are “driven predominantly by semantics, world knowledge, and
inference, with particular attention drawn to how these are used to establish the
coherence of a discourse.” On the basis of three new experimental studies, the
authors evaluate a coherence-driven analysis with respect to four previously pro-
posed interpretation biases – grammatical role parallelism, thematic roles, implicit
causality, and subjecthood – and argue that the coherence-driven analysis can
explain the underlying source of the biases and predict in what contexts evidence
for each will surface.

Radev (2000) introduces cross-structure theory (CST), which describes relation-
ships between two or more sentences from different source documents related
to the same topic. CST is related to rhetorical structure theory (RST) but takes into
account the features of multi-document structure and does not have an underlying
tree representation or make assumptions about writers’ intentions. There are 18
domain-independent relations such as identity, equivalence, subsumption, contradic-
tion, overlap, fulfilment, and elaboration between text spans. Radev argues that being
aware of these relations during multi-document summarization could help to min-
imize redundancy or the inclusion of contradictions from different sources, and
therefore improve the quality of the summary. Radev et al. (2003) developed the
CSTBank, a corpus annotated for CST which could be useful for multi-document
summarization as it provides a theoretical model for issues that arise when trying
to summarize multiple texts.

Strube (1998) proposes an alternative framework to centering by replacing the
backward looking center and the centering transitions with an ordered list of
salient discourse entities (referred to as S-list). The S-list ranking gives preference
to hearer-old over hearer-new discourse entities (Prince 1981) and can account for
the difference in salience between definite NPs (usually hearer-old) and indefinite
NPs (usually hearer-new). In contrast to centering, Strube’s model can also handle
intra-sentential anaphora.

Kibble (2001) discusses a reformulation of the centering transitions. Instead of
defining a total preference ordering, the author argues that a partial ordering
emerges from the interaction between ‘cohesion’ (maintaining the same cen-
ter), ‘salience’ (realizing the center as subject), and Strube and Hahn’s notion of
‘cheapness’ (realizing the anticipated center of a following utterance as subject).

A corpus-based study (Poesio et al., 2000; 2004) investigates the validity of the
claim that each utterance has exactly one backward looking center (apart from the
first utterance in the discourse segment) and of the claim stating that, if any Cf
(UN) is pronominalized in UN+1, then Cb (UN+1) must also be pronominalized. It
found that both these claims are subject to frequent violation. The authors exper-
imented with different definitions of utterances (Suri & McCoy 1994; Kameyama
1998) such as sentences or finite clauses, and also treating adjuncts as embedded
utterances. They allowed a discourse entity to serve as a Cb of an utterance even
if it was only indirectly referred to by a bridging reference. This led to fewer vio-
lations of the first claim but to more violations of the second. The study concludes
that texts can be coherent even if the above claims do not hold since coherence can
be achieved by other means such as rhetorical relations.
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Mitkov and Orăsan (2004) report on another corpus-based study whose aim is
to evaluate specific conventions of centering theory and to establish whether they
should be revisited. In particular, their study explores the relation between dis-
course coherence and several parameters such as the definition of an utterance,
the varieties of anaphora considered, the forms of the discourse entities, and the
type of genre. The results obtained in this study point to a number of interesting
observations which merit further investigation. Mitkov and Orăsan find that the
centering theory considers a discourse more coherent in English, when posses-
sive pronouns and zero pronouns are also counted as discourse units. In this case
defining the utterance as a coordinate clause would by and large result in better
coherence than if only sentences were considered. In most cases counting indirect
realizations yielded improved coherence. The study also found that the sample of
newswire texts was more coherent than the sample of encyclopedic texts. Whereas
the authors cautiously regard the study carried out and the results obtained as pre-
liminary, they believe that they indicate the value of revisiting some of the current
conventions in centering theory – e.g., reconsidering issues like the best defini-
tion of an utterance or a discourse entity, and asking whether indirect realization
should be counted as well.

Cristea et al. (1998) propose veins theory (VT) as a generalization of center-
ing theory by extending the applicability of centering rules from local to global
discourse. The authors define veins over discourse structure trees similar to the
trees used in RST which delimit domains of referential accessibility for each unit
in a discourse. Once identified, reference chains can be extended across seg-
ment boundaries, thus enabling the application of centering theory over the entire
discourse.

Walker et al. (1998) is a good collection of papers on centering.
For a detailed account on anaphora resolution, the reader is referred to Mitkov

(2002). For the latest research on anaphora resolution, see the proceedings of the
recent Discourse Anaphora and Anaphor Resolution Colloquium (DAARC) con-
ferences or the volumes based on these conferences (e.g., Branco 2007; Branco et al.,
2005).

For work and publications on dialogue, see Chapter 16 of this book, COMPU-
TATIONAL MODELS OF DIALOGUE. Recently there has been growing interest in
multiparty dialogue (e.g., Purver et al., 2006; 2007; Gupta et al., 2007; Ehlen et al.,
2008; Hawes et al., 2008).

Of the surveys on the computational treatment of discourse, chapter 21 in
Jurafsky and Martin (2009) is worth reading.
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NOTES

1 www.ldoceonline.com/
2 Cohesion is exhibited at grammatical level through the use of anaphora, ellipsis,

or substitution (grammatical cohesion), or at lexical level through the repetitions of
words (lexical cohesion). As with many linguistic phenomena, grammatical cohesion
and lexical cohesion cannot always be regarded as clear-cut distinctions and there are
borderline cases (Halliday & Hasan 1976: 6).

3 Monologues are usually intended for a reader or readership (in the case of a writer) or
hearer or audience (in the case of a speaker) but may not be intended for any readership
or audience (as in the case of personal diaries). Monologues may have more than one
author.

4 Dialogue usually involves freer interchange and turn taking.
5 This includes informal, spontaneous conversation which includes the principles of tak-

ing of turns. See Chapter 16, COMPUTATIONAL MODELS OF DIALOGUE, for more on
dialogue.

6 This example was used for illustrative purposes in McKeown (1985).
7 Rhetorical structure theory (RST) (see Section 3.2 of this chapter) and other dis-

course theories such as discourse representation theory (Kamp & Reyle 1993) represent
hierarchical structures and relations, and do not merely reflect linear sequences of
topics.

8 In very broad terms, we can think of an utterance as a finite clause or a sentence (in
fact, this is one of the various parameters that need to be defined when employing
centering).

9 Centering does not assign a center to the first utterance of a discourse segment.
10 To simplify notation, I shall drop D which denotes the discourse segment of which the

utterance is part.
11 The backward looking center is often referred to simply as the center. However, the

qualification ‘backward looking’ is in line with the requirement that the backward
looking center of a current utterance establishes a link to the previous utterance and
must be on its list of forward looking centers.

12 Apart from the initial utterance of a discourse segment.
13 This statement is valid for English and for a number of other languages.
14 According to Grosz et al. (1995), the first utterance in a discourse segment is not

assigned a center. It could be argued that there are cases where the most salient element
is clearly identifiable even in the first utterance (e.g., with cleft constructions).

15 Note that if there is one pronoun, it realizes the center (see below, rule 1).
16 As defined by Brennan et al. (1987), smooth-shift is preferred to rough-shift.
17 Deleted as a zero pronoun in languages exhibiting extensive use of zero pronouns such

as Japanese, Italian, Spanish, and Bulgarian.
18 Note that she and her in U3 cannot be coreferential (see Section 4.1 for definition of

coreferential).
19 The word (phrase) ‘pointing back’ is also called a referring expression if it has a

referential function.
20 In identity-of-sense anaphora, the anaphor and the antecedent do not correspond to

the same referent in the real world but to ones of a similar description.
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21 Deictic expressions are those words whose interpretation is derived from specific
features of the utterance (e.g., who the speaker is, who the addressee is, where and
when the utterance takes place), and not from previously introduced words, as is the
case with anaphors.

22 It should be noted that these are only the basic relationships between the anaphoric
definite NP and the antecedent but not all possible relations.

23 Note that some authors consider synonymy, generalization, and specialization as
examples of indirect anaphora.

24 Discourse segments are stretches of discourse in which the sentences are addressing
the same topic (Allen 1995).

25 However, Barlow (1998) and Mitkov (2002) point out that there are a number of
exceptions.

26 A node A c-commands a node B if and only if (1) A does not dominate B, (2) B does
not dominate A, and (3) the first branching node dominating A also dominates B
(Haegeman 1994). Therefore, in a tree generated by the rules S → AB, A → E, B →
CD, C → F, and D → G, A c-commands B, C, F, D, and G, B c-commands A and E, C
c-commands D and G, and D c-commands C and F.

27 Mitkov (2002) explains that constraints and preferences usually work in combina-
tion towards the goal of identifying the antecedent. Applying a specific constraint or
preference alone may not result in the tracking down of the antecedent.

28 The original algorithm handles personal and possessive pronouns whose antecedents
are NPs.

29 The original algorithm handles third-person pronouns, including reflexives and recip-
rocals, whose antecedents are NPs.

30 The original algorithm handles third-person personal pronouns whose antecedents
are NPs.

31 The original algorithm handles personal, reflexive, and possessive third-person pro-
nouns whose antecedents are NPs.

32 The original algorithm handles third-person personal pronouns whose antecedents are
NPs.

33 The continuity principle is the most general of the four principles proposed in Kibble
and Power (2000) to redefine centering theory and requires that two consecutive utter-
ances have at least one entity in common. The final version of Kibble and Power (2000)
does not use any name for this principle, but it is referred to as continuity principle in
Karamanis and Manurung (2002).

34 The coreference relationships that Morton’s system supports are identity, part–whole,
and synonymy.
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BONNIE WEBBER AND NICK WEBB

1 What is Question Answering?

Questions are asked and answered every day. Question answering (QA)
technology aims to deliver the same facility online. It goes further than the more
familiar search based on keywords (as in Google, Yahoo, and other search engines),
in attempting to recognize what a question expresses and to respond with an
actual answer. This simplifies things for users in two ways. First, questions do
not often translate into a simple list of keywords. For example, the question

(1) Which countries did the pope visit in the 1960s?

does not simply translate to the keywords ‘countries,’ ‘pope,’ ‘visit,’ ‘1960s’
because a search on those keywords will only find documents (web pages) that
contain the words ‘countries’ (or ‘country,’ if the search engine recognizes plurals),
‘pope,’ and ‘1960s,’ and not words or phrases that denote particular countries
(such as ‘United Kingdom,’ or the ‘United States’), or the pope (‘head of the
Catholic church,’ for example), or a date within the 10-year time span between
‘1960’ and ‘1970.’ A much more complex set of keywords is needed in order to get
anywhere close to the intended result, and experience shows that people will not
learn how to formulate and use such sets.

Second, QA takes responsibility for providing answers, rather than a searchable
list of links to potentially relevant documents (web pages), highlighted by snippets
of text that show how the query matched the documents. While this is not much
of a burden when the answer appears in a snippet and further document access is
unnecessary, QA technology aims to move this from being an accidental property
of search to its focus.

In keyword search and in much work to date on QA technology, the information
seeking process has been seen as a one-shot affair: the user asks a question, and the
system provides a satisfactory response. However, early work on QA (Section 1.1)
did not make this assumption, and newly targeted applications are hindered by
it: while a user may try to formulate a question whose answer is the information
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they want, they will not know whether they have succeeded until something has
been returned for examination. If what is returned is unsatisfactory or, while not
the answer, is still of interest, a user needs to be able to ask further questions that
are understood in the context of the previous ones. For these target applications,
QA must be part of a collaborative search process (Section 3.3).

In the rest of this section, we give some historical background on QA sys-
tems (Section 1.1), on dialogue systems in which QA has played a significant
role (Section 1.2), and on a particular QA task that has been a major driver of
the field over the past 8 years (Section 1.3). Section 2 describes the current state of
the art in QA systems, organized around the de facto architecture of such systems.
Section 3 discusses some current directions in which QA is moving, including the
development of interactive QA. We close with some pointers to further reading.

1.1 Early question answering systems
Early QA systems were developed to enable users to ask interesting questions
about well-structured data sets such as baseball statistics, personnel data, or chem-
ical analyses of lunar rock and soil samples. (Simmons (1965) provides an early
survey.) These early QA systems essentially attached a front end and a back end to
a database system. The front end performed parsing and interpretation, mapping
questions phrased in everyday terms onto a form that specified a computation to
be carried out over the database – for example, the question

(2) What is the average concentration of aluminum in high-alkali rocks?

would be mapped to a computation that identifies the high-alkali rocks in the
database, finds the aluminum concentration in each, and then computes an
average over those values.

Given the potential complexity of such queries, differences between the sys-
tem’s and the user’s underlying models of the data, as well as users’ frequent
lack of awareness of what information is actually in the database, early QA
development focused on such issues as:

• mapping user questions to computable database queries;
• handling questions that could not be parsed or that could not be interpreted as

a valid query;
• resolving syntactic and referential ambiguities detected in questions;
• handling differences in how user and system conceptualized the domain (e.g.,

user queries about the age of lunar rocks versus system data on potassium/
rubidium and uranium isotope ratios, as well as differences between what user
and system believed to be true in the domain (Kaplan 1982; Mays et al., 1982;
Pollack 1986; Webber 1986);

• identifying, in the case of distributed databases, what information needed to
be imported from where, in order to answer the user’s question (Hendrix et al.,
1978).
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User–system interactions designed to resolve ambiguities or reconcile mis-
matches between user and system beliefs about the domain showed that satisfying
a user’s information needs required the user to do more than just ask questions
and the system to do more than just answer them. But systems were still viewed
as question answerers, carrying out other types of interactions on an ‘as needed’
basis.

This first foray into database QA was essentially abandoned in the late 1980s for
two reasons – one technical, and one social. Technically, considerable effort was
needed to guarantee an effective and reliable mapping between user questions
and database queries. Not only did the correct mapping depend on the structure
of the particular database, but many disparately phrased user questions needed
to be mapped onto the same database query. Even worse, questions that differed
only minimally needed to be mapped onto very different database queries. The
only solution to these problems available at the time was more and more mapping
rules that had to be written by hand by system experts. As a solution, this was
neither scalable nor portable. The social problem involved the lack of a significant
audience for the technology: ordinary people lacked access to large data sets, and
managers whose companies maintained large data sets lacked sufficient interest
in accessing the data themselves. Companies such as Symantic which developed
state-of-the-art software for database QA (Hendrix 1986) ended up abandoning it.

With the advent of the web, this social problem disappeared, and machine
learning techniques that have proved so useful in other areas of language technol-
ogy are beginning to be applied to the problem of learning (complex) mappings
between user questions and database queries (Mooney 2007; Zettlemoyer &
Collins 2007). While it is still early days, this does mean that the growing num-
ber of databases containing rich and useful information may again be primed for
access through natural language questions.

1.2 Question answering in dialogue systems
QA was also a feature of early systems whose main purpose in interacting with
users in natural language was something other than answering their questions.
In one of the earliest of such dialogue systems, SHRDLU (Winograd 1973), users
could converse with an animated robot (with a visible arm) that could both act (in
response to user requests) and reflect on its actions (in response to user questions).
More generally, users could question SHRDLU about the state of its world (e.g.,
where objects were, what objects were where) or about its previous actions or its
plans (e.g., why or when it performed some action), which SHRDLU could answer
in terms of the history it maintained of its goals and actions.

Interactions with SHRDLU, and with another animated robot system called the
Basic Agent (Vere & Bickmore 1990), were through typed text. Later systems sup-
ported limited speech interaction (Allen et al., 1996; Lemon et al., 2001; Eliasson
2007). Because these robots did not have any goals of their own, apart from those
adopted in response to user requests/commands, and because no mechanism was
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provided for user–robot collaboration, the dialogic capability of these systems did
not extend to asking questions of the user or to making requests themselves.

Other more recent dialogue systems, which take on other roles with respect to
the user, also include QA capabilities in their repertoire. In intelligent tutoring sys-
tems, the system has goals in its role of tutor – e.g., assessing the student’s knowl-
edge, correcting the student’s errors, and imparting information that the student is
missing. Dialogues can thus involve the system introducing and describing a topic
for tutoring, after which it might ask the student a question about some aspect of
the problem, explain why the student’s response is correct or incorrect, and/or
remind the student of something already said previously during the interaction.
Here, it is the student who answers questions or says he/she does not know, but
it is still the system’s job to determine if an answer is correct. Again, the earliest
tutoring systems, like SOPHIE (Brown & Burton 1975), interacted through typed
text, while later systems such as ITSPOKE (Litman & Forbes-Riley 2006) allow for
spoken interaction.

The most industrially relevant role played by dialogue systems has been in
information provision and user assistance, such as in helping users to plan
travel (Goddeau et al., 1994), book flights (Seneff 2002), or find an appropriate
restaurant (Walker et al., 2004), or in routing user telephone calls (Chu-Carroll &
Carpenter 1999) or handling directory inquiries (de Roeck et al., 2000). All such
tasks involve the system getting sufficient information from the user to fully or
partially instantiate some form (often called a frame) which the system can eval-
uate (just like a database query) and present the results to the user as a basis for
further interaction. In such cases, the user’s information needs may be anywhere
from completely formed to vague. They may or may not be able to be satisfied
given the underlying data, and queries may need to be reformulated on the basis
of additional knowlege and relaxed constraints. Dialogues can thus involve the
system asking the user questions related to values of frame elements; the user
specifying such values (either precisely or vaguely); the system listing and/or
describing the results (when too numerous to list); the user choosing some item
from among the results or modifying or replacing some already specified values;
and the system requesting confirmation of its understanding.

A key emerging element of dialogue approaches is their inherent generality –
the potential for subdialogue structures independent of task or application (such
as for error correction or clarification) that will, in the future, allow them to be
seamlessly integrated with QA systems (Section 3.3). For more detailed discus-
sion of the issues and technology underlying dialogue systems, see Chapter 16,
COMPUTATIONAL MODELS OF DIALOGUE.

1.3 Question answering in TREC
Returning to straight QA systems, the advent of the web has made increasing
amounts of information accessible to people. To find the bits of interest, people
are using search methods pioneered in text retrieval (a field revitalized by the
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web), but scaled up to nearly instant response to vast numbers of users. In this
context, QA too has found a second life, with the idea that users would find not
just relevant documents (web content), but the particular information they are
seeking.

This vision of QA differs significantly from QA over databases, where (as noted
in Section 1.1) questions map onto computations carried out over a database of
known structure. Instead, in what has been called open domain question answer-
ing, the answer to a question must be found and extracted rather than computed,
as a natural extension to text retrieval. Advances in open domain QA have been
accelerated by its adoption within the Text Retrieval Conference (TREC).

Initially, TREC QA focused on ‘factoid’ questions – questions of who, what, where,
and, to some extent, when, that can be answered by a short word or phrase. From
1999 to 2007, TREC QA advanced on several fronts, to address increasingly large
document collections, increasingly complex questions, and increasingly complex
evaluation strategies. While the basic approach to factoid QA is now well under-
stood, challenges remain. This basic approach and the current state of the art
are described in Section 2, and some challenges that are now beginning to be
addressed, in Section 3.

2 Current State of the Art in Open Domain QA

A basic QA system involves a cascade of processes that takes a user’s question
as input and responds in the end with an answer or rank-ordered list of top
answer candidates, along with an indication of the source of the information (see
Figure 22.1). This embodies the de facto paradigm for QA characterized by Paşca
(2007) as:

• retrieve potentially relevant documents;
• extract potential answers (called here answer candidates);
• return top answer(s).

We discuss question typing in Section 2.1, query construction and text retrieval in
Section 2.2, text processing for answer candidates (including weighting, ranking, and
filtering candidates) in Section 2.3, and answer rendering in Section 3.3. Perfor-
mance evaluation is briefly discussed in Sections 2.4 and 3.4, and at greater length
in Chapter 11, EVALUATION OF NLP SYSTEMS.

2.1 Question typing
Questions generally undergo two initial processes to identify what type of infor-
mation is being sought (question typing) and in what piece of text it is likely to be
found (query construction). Although these processes can be carried out in parallel,
query construction is so intimately tied up with text retrieval, that we will discuss
them together in Section 2.2. Question typing aims to associate a label (QType) with
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Figure 22.1 Basic QA system architecture.

a question, indicating the kind of information being sought – e.g., the meaning
of an abbreviation (ABBREV) or of a word or phrase (DEFINITION), the name of the
person who has or had some particular property or set of properties (PERSON), etc.
For more on the location of specific entities in text, see Section 3 on name extrac-
tion in Chapter 18, INFORMATION EXTRACTION. These labels provide testable
semantic constraints on possible answer candidates. Labels assigned by question
typing have also been used to support text retrieval through predictive annotation
(Section 2.2), as well as to support the processing involved with identifying and
ranking answer candidates. For example, a system that has done text retrieval on
short passages may filter out ones that lack anything of the appropriate type as an
answer candidate (Section 2.3).

While manually constructed rules have been used for question typing – for
example,

• If the question starts with Who or Whom, QType is PERSON.
• If the question starts with Where, QType is LOCATION.

state-of-the art systems (Li & Roth 2006; Moschitti et al., 2007) use probabilistic
classifiers, P(QType | Q), where the question Q is represented as a set of features.
The features used have become more sophisticated over time, now extending to
syntactic and semantic, as well as lexical features.

Using syntactic features alone, Li and Roth (2006) achieve state-of-the-art perfor-
mance, using the SNoW classifier (Carlson et al., 1999) over the question types in
the widely available TREC 10 and 11 question sets (Voorhees 2002; available from
http://l2r.cs.uiuc.edu/∼cogcomp/). This corpus of 1,000 manually annotated
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questions has both coarse-grain (i.e., ABBREVIATION, ENTITY, DESCRIPTION,
HUMAN, LOCATION, NUMERIC) question types, and a further 50 refinements of
those categories (so for example the coarse-grain category HUMAN can be rep-
resented by four fine-grain categories: GROUP, INDIVIDUAL, TITLE, and DESCRIP-
TION). For the coarse-grain question types, Li and Roth (2006) achieve 92.5 percent
accuracy, and 85 percent on the fine grain. Using semantic information, including
named entities and some manually extracted word class information, did not sig-
nificantly improve classification accuracy over the coarse-grain question types, but
boosted accuracy over the fine-grain categories to 89.3 percent.

Such accuracy figures disguise the fact that a question can often have more than
one type of answer. For example, is What is an SME? an ABBREV question for which
an appropriate strategy would involve patterns commonly used to relate abbrevi-
ations with their full-text forms, or is it a DESCRIPTION question, for which an
appropriate strategy would involve patterns commonly used in defining terms? A
who question may be answered by a PERSON (Who won the Masters tournament in
1985?), or an ORGANIZATION (Who won the Nobel Peace Prize in 1999?), or a COUN-
TRY (Who won the World Cup in 2006?). When a question is asked, a system may
know neither which kind of information the user is seeking nor what information
the corpus contains. Allowing questions to have more than one possible type per-
mits the system to first see what kind of answers the corpus supports and, if more
than one, provide the user with answers that cover the different alternatives. It
is only because TREC has required systems to produce a single minimal answer
to a question that work on QA has by and large ignored the possibilities of such
helpful responses.

2.2 Query construction and text retrieval
In open domain QA, questions are always answered with respect to a corpus of
texts. This can be as vast and diverse as the web or more specialized, such as the
collection of biomedical abstracts in MedLine (www.ncbi.nlm.nih.gov/PubMed)
or the collection of news articles in the AQUAINT corpus (Voorhees & Tice 2000).
Because both the types of queries that one can construct and their success in
retrieving text with good answer candidates reflect characteristics of the corpus
and its access methods, it makes sense to discuss query construction and text retrieval
together. More specifically, the kind of query a system constructs depends on
which of two forms of retrieval is used to find text that might contain an answer
to a user’s question: relevance-based retrieval or pattern-based retrieval. These are
discussed in the next subsections.

2.2.1 Relevance-based retrieval In relevance-based retrieval, queries are inter-
preted as requests for texts relevant to a topic. Relevance may be assessed in terms
of MATCHING a Boolean combination of terms or proximity to a weighted vec-
tor of terms or language model, just as in standard text retrieval (Manning et al.,
2008). The problem, as already noted, is that QA demands answers, rather than the
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texts that contain them, and such answers are generally expressed very locally in
a text. (With complex questions, the evidence supporting an answer may actually
be distributed across one or even several texts. This is discussed in Section 3.2.)
Although standard word-based indexing of texts supports very fast and efficient
retrieval, such indexing characterizes texts in terms of their gross lexical proper-
ties, not by local information. For example, a news article on the 1987 Herald of
Free Enterprise ferry disaster may mention in passing ‘It was the worst peacetime
disaster involving a British ship since the Titanic sank in 1912.’ While this sentence
contains an answer to the question

(3) When did the Titanic sink?

this local information might simply be noise with respect to more prominent lexi-
cal properties of the article, such that it might not be retrieved on a relevance-based
search for ‘Titanic’ and ‘sink,’ or it might not be ranked high enough for the answer
candidate extraction process to ever get to it (Section 2.3). So, with respect to a
given question, text retrieval using relevance-based methods is not guaranteed to
return texts with a high likelihood of having an answer somewhere within them.
And if text retrieval fails to return texts containing answers, any subsequent pro-
cessing might as well not happen. Attempts to improve this situation are usually
found under the rubric information retrieval for question answering (IR4QA).

A simple and widely adopted solution to the locality problem in relevance-
based retrieval is simply to break texts into a set of separate passages, each of
which is separately indexed for text retrieval (passage retrieval), assuming that there
is a better correlation between standard metrics of relevance and answers in short
texts.

Other text retrieval techniques used instead of, or in addition to, segmentation
into smaller passages involve extensions to what is indexed. In predictive annotation
(Prager et al., 2000), texts are indexed not just by the position of each (non-stop)
word in the text, but also by the position of each of 20 types of named entities
(called here QA-tokens), each of which could answer a question of a given type.
For example, predictive annotation of the sentence

(4) Sri Lanka boasts the highest per capita income in South Asia.

would index the QA-token COUNTRY$ as occuring over the first two words of the
sentence, and the QA-token PLACE$ as occuring over the last two. (Techniques
used here are similar to those used in information extraction, as discussed in
Chapter 18, INFORMATION EXTRACTION.)

QA-tokens are used as well in query construction. When user questions are
mapped to queries, not just keywords from the question are included in the query,
but also an appropriate QA-token (or disjunction thereof) for the question type.
For example, the where question

(5) Where is the capital of Sri Lanka?



“9781405155816_4_022” — 2010/5/8 — 12:17 — page 638 — #9

638 Bonnie Webber and Nick Webb

would be mapped to a query comprising the keywords ‘capital,’ ‘Sri,’ and ‘Lanka,’
along with a disjunct of the QA-tokens (PLACE$, COUNTRY$, STATE$, NAME$), all
of which can potentially answer a where question. Such a query would cause to
be retrieved any passage containing the sentence in (4), although, as Prager notes,
it is important to discard the match between COUNTRY$ and the annotation of ‘Sri
Lanka’ as COUNTRY$, in order to answer the question correctly. (Even where QA-
tokens, or answer types, are not themselves indexed, they may still be used to filter
out retrieved texts or passages that lack any instance of the QA-token/answer
type.)

While predictive annotation reduces ‘false positives’ in text retrieval by demand-
ing passages that contain candidate answers of particular types, they can also be
reduced by indexing not just words and their positions but how the words are
used. This is illustrated in the Joost system (Bouma et al., 2005), which indexes
each word along various linguistic dimensions (e.g., part of speech, dependency
relations, etc.), as well as indexing the type and span of each named entity. Using
a genetic algorithm to optimize various weightings, Bouma and his colleagues
found a 10 percent improvement in passage retrieval on a test set of 250 questions,
measured by MRR (mean reciprocal ranking) over passages containing a correct
answer. Moreover, Morton (2005) found that when third-person pronouns were
resolved and indexed by the full NPs with which they corefer, the frequency of
both ‘false positives’ and ‘false negatives’ could be reduced by narrowing the
distance between potential answer candidates and terms from the question (all
treated as full NPs through coreference resolution).1

In all this work, the basic idea is that the more frequently a system can rely on
top-ranked passages to contain a correct answer, the fewer passages need to be
examined in the next stage of processing. It should be remembered, however, that
any ranking in text retrieval is a ranking on texts, not on the answers they may
contain. A separate process of answer candidate ranking is carried out at a later
stage (Section 2.3).

A survey of passage retrieval techniques for QA can be found in Tellex et al.
(2003).

2.2.2 Pattern-based retrieval The other type of text retrieval used in QA is
pattern-based retrieval. This relies on the quoted string search capabilities of search
engines, reflecting the assumption that, although natural language usually pro-
vides multiple ways to express the same information, it is expressed in the same
or a similar way to the question somewhere in the corpus. Pattern-based retrieval
also differs from relevance-based retrieval in taking the result of retrieval to be
the snippet returned as evidence for the match (cf. Section 1) rather than a pointer
to the text that contains it. Thus pattern-based retrieval does not derive any ben-
efit from breaking texts into smaller passages, as does relevance-based retrieval,
because it targets snippets rather than their source.

Pattern-based retrieval systems differ from one another in the kinds of string
patterns they use in performing the match. The well-known AskMSR system
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(Brill et al., 2002) used different sets of string patterns for different types of
questions. For where is questions, for example, retrieval patterns were generated
with ‘is’ in every possible position – e.g.

(6) Where is the Vale of Tears?
is the Vale of Tears
the is Vale of Tears
the Vale is of Tears
the Vale of is Tears
the Vale of Tears is

Patterns usually reflect a direct relationship between questions and their answers.
For example, since wh-questions in English (where, when, who, what, which,
why) usually involve fronting the question phrase (and, in some cases, an auxiliary
as well), as in:

(7) When was the telephone invented?
(8) In which American state is Iron Mountain located?
(9) What is the largest whale?

their answers are likely to be found non-fronted, directly to the right of the
strings:

• the telephone was invented in <answer>
• Iron Mountain is located in <answer>
• the largest whale is <answer>

Other syntactic relationships predict other string patterns, such as:

• invented the telephone in <answer>
• the telephone, invented in <answer>
• in <answer> the telephone was invented
• Iron Mountain, located in <answer>
• <answer> is the largest whale
• <answer> is the largest of the whales

As Lin (2007) notes, a quoted string search does not guarantee that the snippet
returned from a search engine as evidence will actually contain a filler for the ques-
tion phrase (i.e., an answer). There are several reasons for this. First, the answer
material may be outside the boundaries of the snippet. Secondly, since search
engines (as of this writing) ignore punctuation and case, a quoted string can also
match over successive sentences and/or clauses (i.e., across final punctuation),
producing false positive matches that have to be filtered out later on, as in

(10) He was six when the telephone was invented. In 1940, he . . .

which a search engine would find as a match for the string the telephone was
invented in.
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More recently, researchers have shown how lexical resources such as WordNet
(Miller et al., 1990) and FrameNet (Baker et al., 1998) can be used to construct addi-
tional string patterns that can be used in pattern-based retrieval (Kaisser & Webber
2007). Again, one must be aware that any ranking here is the search engine’s rank-
ing on the documents, not on any answer candidates contained in the snippets.
The ranking of answer candidates themselves is discussed in Section 2.3, after
answer candidate extraction.

2.3 Processing answer candidates
Once a set of passages or snippets has been retrieved, a system must determine
what, if anything, in each separate passage or snippet might serve as an answer
to the question (answer candidate extraction) and how good an answer it might be
(answer candidate evaluation). The latter requires assessing the candidate and its
textual context, possibly comparing it as well with the other, separately extracted
candidates. Candidates are then ranked based on this assessment, with the top-
scoring candidate (or top N scoring candidates) presented to the user. Techniques
for these different aspects of answer candidate processing are described below.

Two kinds of patterns are used for extracting answer candidates from pas-
sages or snippets. They can be extracted directly, using string patterns that identify
the contents of a particular bounded span as an answer candidate, or they can
be extracted using structured patterns, from the output of parsing, semantic role
labeling, and/or interpreting the passages or snippets.

String patterns are the simplest. They can be derived directly from the user’s
question (exactly as in pattern-based retrieval, Section 2.2.2), authored manually,
or computed by bootstrapping from questions with known answers. To illustrate
the latter, known [entity, location] pairs such as [Taj Mahal, Agra], [Grant’s Tomb,
New York City], etc., can be used to retrieve texts that suggest the following
patterns for identifying the answer to location questions:

<NAME> [is|are] located in <ANSWER>.
<NAME> in <ANSWER>,
<NAME> [lies|lie] on <ANSWER>.

In each case, the answer candidate is bounded on its left and right by an identifi-
able word or symbol. Such patterns can also be characterized by their reliability –
how often they pick up a candidate of the right type, as opposed to a random
string. Because patterns are so simple, they are rarely completely reliable, as in
example 11, where ‘the background’ is identified as an answer candidate. Because
parentheticals, adverbial modifiers, and adjuncts can occur so freely within a sen-
tence, no set of patterns can reliably capture all desired answer candidates, as in
example 12, where the adverbials ‘all the way up’ and ‘all the way down’ block
the ‘located in’ pattern from matching.

(11) ‘Where are the Rocky Mountains?’
<NAME> in <ANSWER>
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‘Denver’s new airport, topped with white fiberglass cones in imitation of
the Rocky Mountains in the background, continues to lie empty.’

(12) ‘Where are the Rocky Mountains?’
<NAME> [is|are] located in <ANSWER>.
‘The Rocky Mountains are located all the way up to Alaska and all the
way down to Mexico.’

To reduce false positives (as in example 11), answer candidates found by
string patterns are commonly filtered by tests derived from the question type
(Section 2.1). For example, for a where question, <ANSWER> must be classifiable
as a LOCATION. For a who question, it must be classifiable as a PERSON, or in some
cases, a PERSON or a COMPANY. Named entity recognition, often in conjunction
with WordNet and/or Wikipedia categories, has been used in this filtering.

Answer candidate extraction rarely produces a single candidate answer, so one
or more best candidates need to be selected and displayed to the questioner. To
produce a ranking of such candidates so as to be able to select the best, their quality
needs to be assessed. The simplest and most common method of doing so involves
computing their frequency of occurrence within the set of answer candidates (Brill
et al., 2002). To reflect true frequency, this requires recognizing answer candidates
that should be treated as equivalent, such as ‘Clinton,’ ‘Bill Clinton,’ ‘William
Jefferson Clinton,’ and ‘ex-President Clinton,’ rather than as distinct candidates.
Online resources such as Wikipedia are useful in this regard.

A more complex method can be used when correct answers to questions occur
only infrequently in the corpus. This method involves assessing the probability
that an answer candidate is the correct answer to the question (Xu et al., 2002; Ko
et al., 2007). Since lack of sufficient data prevents such probabilities from being
computed precisely, they are approximated using such features as the ways in
which the context of answer Ai matches question Q, whether Ai is correctly typed
for the argument role that the question word plays in Q, whether Ai is supported
as an answer by online resources such as gazetteers, WordNet, Wikipedia and/or
the snippets returned from web search. Probabilities based on these approxima-
tions have been shown to indeed increase the ranking of good answers, thereby
improving system performance.

Result of answer candidate extraction and evaluation is a rank-ordered list of
answer candidates, of which the top (or top N) is/are presented as the answer(s),
with each supported by either a document ID or a specific piece of text meant to
serve as evidence. In the case of answer candidates that occur multiple times, each
with different support, there has as yet been no attempt to assess the quality of
that evidence – whether one piece of text might provide either stronger or clearer
support for an answer.

2.4 Evaluating performance in QA
Factoid QA in TREC treats every question as having a single correct answer,
although it may be described in different ways (e.g., a distance question with an
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answer given in miles or in kilometers, with a precise value or an approximate
one, etc.). In early QA tracks, groups were allowed to return a list of five possible
answers for each question, in rank-order, so that a question could be scored by
the reciprocal rank of the first correct answer: if it ranks first, it gets a score of 1;
if it ranks second, it gets a score of 1/2; etc. If only the fifth answer is correct, it
gets a score of 1/5. Otherwise it scores a 0. Over a set of questions, then, a system
could be assessed in terms of mean reciprocal rank (MRR) – i.e., the average of the
reciprocal rank score of the question set. MRR is still often used to measure system
performance, as it is more lenient than assessing only a single answer.

Although recall and precision are also used in assessing system performance,
because they do not take account of the ranked position of answers and because
only the top-ranked correct answer to a given question actually matters (not how
many correct answers have been returned for the question), coverage and answer
redundancy are sometimes used as alternatives to recall and precision for assessing
retrieval in QA (Roberts & Gaizauskas 2004).

• Coverage is the proportion of the question set for which a correct answer can be
found within the top n passages retrieved for each question.

• Answer redundancy is the average number, per question, of passages within the
top n retrieved that contain a correct answer.

Coverage is preferable to recall because, since factoid questions are taken to have a
single answer, it does not make sense to worry about recall (i.e., the proportion of
documents containing that answer).

These metrics all assume that every question has a correct answer (or different
descriptions of the correct answer), so at issue is where judgments of correctness
come from. When evaluating QA systems, one must keep the document collection
fixed, so that differences in performance do not simply reflect differences in the
corpus. Because it is expensive to find all possible answers (or possible ways to
phrase every answer) in a large corpus, a method called pooling was developed.

As used in large, multi-system QA evaluations, pooling involves collecting the
rank-ordered results from all runs of all the participating systems; selecting N runs
per system; taking the top X documents from each of those N runs and merging
them into a judgment pool for that query, eliminating duplicates, and, finally, man-
ually assessing correctness judgments on only these pooled answers. Importantly,
pooling has been found not to be biased towards systems that contribute to the
pool – that is, there is no performance benefit to be gained by participating in the
pooling system. On the other hand, pooling makes it harder to assess new tech-
niques which may produce answers that may be correct but do not occur in the
pool formed from earlier results.

To allow for the development of such techniques, Lin and Katz (2006) attempted
to find all possible answers in the AQUAINT corpus for a subset of questions from
TREC, while, more recently, Kaisser and Lowe (2008) have used the Mechanical
Turk to create an even larger set of 8,107 [question, document id, answer, answer
source sentence] tuples for the over 1,700 TREC questions from 2002 to 2006.
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More discussion of evaluation methods used in QA can be found in Chapter 11,
EVALUATION OF NLP SYSTEMS.

3 Current Directions

QA technology is moving in several different directions, but here we will focus
on the three that we find most important: (1) extending the relationship between
question and corpus; (2) broadening the range of questions that can be answered;
and (3) deepening the relationship between user and system. We briefly discuss
each in turn, and then follow with a brief discussion of the consequences for
evaluation.

3.1 Extending the relation between question and corpus
We have mentioned several times that open domain QA involves finding answers
in text, while database QA involves computing them, usually from an assort-
ment of other, simpler facts. Section 2.2 showed that evidence that enabled an
answer to be located could take the form of words from the user’s question, pos-
sibly augmented by the syntactic relations between them, or the form of lexical
and/or syntactic variations on the question that could be predicted from hand-
made resources such as WordNet and FrameNet or from patterns found through
text mining. As Kaisser and Webber (2007) showed, however, this is not enough:
while a corpus as large as the web might yield an answer phrased similarly to
a given question, especially if the answer is widely discussed, this is much less
likely with a less extensive corpus or a popular topic. The corpus may still be able
to serve as the source of an answer, but only through inference.

Textual entailment captures the intuition that one piece of text – in this case, text
containing a correct answer to a given question – can be inferred from another. To
date, progress has been gauged by the PASCAL Recognising Textual Entailment
(RTE) Challenge (Bar-Haim et al., 2006; Dagan et al., 2008b).

Formally, the textual entailment task is to determine, given some text, T, and
hypothesis, H, whether the meaning of H can be inferred from the meaning of T.
For QA, H would be derived from a question such as:

(13) How many inhabitants does Slovenia have?

and T would be an answer passage such as:

In other words, with its 2 million inhabitants, Slovenia has only 5.5 thousand
professional soldiers.

Recognizing the value of RTE to QA, the RTE Challenge includes manually
annotated T–H data for training and testing, based on question–answer pas-
sage pairs from TREC (http://trec.nist.gov) and CLEF QA (http://clef-qa.itc.it)
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(see Chapter 10, LINGUISTIC ANNOTATION, for a discussion on annotating
language resources). To create the T–H pairs, annotators extract from the answer
passages answers of the correct type – but not necessarily the correct answer.
The original question with the selected answer term included becomes H, and
the answer passage becomes T. If, from example 13, annotators chose the answer
‘2 million inhabitants’ from T, they could create a positive entailment pair, with
‘Slovenia has 2 million inhabitants’ as H. Alternatively, if they chose ‘5.5 thou-
sand’ from T, they could create a negative entailment pair with ‘Slovenia has only
5.5 thousand inhabitants’ as H.

The RTE challenge has tested systems on a 50–50 mix of positive and neg-
ative T–H pairs, where 50 percent would be the baseline accuracy. For the
second RTE challenge, most systems obtained between 55 percent and 61 percent
(Bar-Haim et al., 2006), where the majority of approaches drew on some combi-
nation of lexical overlap (often using WordNet; Miller et al., 1990), semantic role
labeling, using FrameNet (Baker et al., 1998), and extensive use of background
knowledge. The top-performing system was LCC’s GROUNDHOG (Hickl et al.,
2006), which achieved an accuracy of 75.4 percent. Around 10 percent of this score
was obtained by expanding the training set of positive and negative entailment
examples by following Burger and Ferro (2005), collecting around 100,000 positive
examples consisting of the headline and first sentence of newswire texts. To cre-
ate negative examples, they extracted pairs of sequential sentences that included
mentions of the same named entity from a newswire corpus. Sample testing with
human annotators determined that both of these example sets were accurate to the
ninetieth percentile.

Although, intuitively, we might expect a deeper level of analysis to be required
to achieve high accuracy in the RTE task, systems that have employed such
analysis have so far failed to improve over the 60 percent baseline performance
achieved by simple lexical matching, a technique already exploited in QA. Any
future breakthrough in RTE is likely to be quickly and widely adopted in QA and
elsewhere.

3.2 Broadening the range of answerable questions
We noted in Section 1.3 that open domain QA has primarily addressed factoid
questions of who, what, when, how many, and where – in particular, ones that can
be answered with a word or short phrase from the corpus. Little effort has gone
into discovering systematic ways of answering why and how questions, which usu-
ally require longer answers. This may primarily have to do with the problem of
evaluating such answers. And completely ignored are polar (‘yes’/‘no’) questions
such as

(14) Is pinotage another name for pinot noir?
(15) Is calcium citrate better absorbed and a more effective treatment for

osteoporosis than calcium carbonate?
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Scenario 1: The al-Qaida Terrorist Group
Your division chief has ordered a detailed report on the al-Qaida Terrorist Group due in three
weeks. This report should present information regarding the most essential concerns, includ-
ing who are the key figures involved with al-Qaida along with other organisations, countries,
and members that are affiliated, any trades that al-Qaida has made with organisations or
countries, what facilities they possess, where they receive their financial support, what capa-
bilities they have (CBW program, other weapons, etc.) and how have they acquired them,
what is their possible future activity, how their training program operates, who their new
members are.

Figure 22.2 An ARDA scenario (from Small & Strzalkowski 2009).

because finding and presenting good evidence for an answer is more important
than the answer itself and because the problem of assessing the quality of evidence
has not really been addressed.

Nevertheless, there are now efforts to move beyond factoid QA in order to
address questions that require information from more than a single source text or
from multiple paragraphs within a text, possibly coupled with inference as above.
These are called complex questions, the simplest form of which Bouma et al. (2005)
have called ‘which questions,’ as in

(16) Which ferry sank southeast of the island Utö?

Answering this requires combining evidence that some entity sank southeast of
the island Utö with evidence that the entity is a ferry. Complex QA often requires
additional knowledge to process (from the data, from a model of the world, or
from the user), and is used to accumulate evidence to support a particular position
or opinion. This moves QA significantly away from the text retrieval dominated
paradigm of factoid QA. The US ARDA AQUAINT program has been a major
driver in the development of systems to address complex questions, often in the
context of an explicit task or scenario, such as in Figure 22.2.

Complex QA has been approached in different ways, two of which we describe
here: (1) decomposing the problem into subproblems and then dealing with each
one in turn; and (2) more complex document/passage indexing.

In question decomposition, a complex question is reduced to a set of subques-
tions, using linguistic and/or domain-specific knowledge. The subquestions are
meant to be ones that can be answered by existing factoid QA technology. For
example, the START system (Katz 1997) syntactically decomposes the question

(17) Who was the third Republican president?

into the sequence of questions Q1 (Who were the Republican presidents?), followed
by Q2 (Who is/was the third of them?), where ‘them’ stands for the list of answers
to Q1. Saquete et al. (2004) perform similar syntactic decomposition in answering
temporal questions such as
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(18) Where did Bill Clinton study before going to Oxford University?

which gets split into the pair of questions Q1 (Where did Bill Clinton study?) and Q2
(When did Bill Clinton go to Oxford University?), with a constraint that the answer to
Q1 fall in the period before the time associated with Q2.

The problem with syntactic decomposition is that it quickly becomes computa-
tionally expensive to generate and evaluate all syntactically legal decompositions
of a complex question. For the question

(19) What American companies have introduced a generic drug in a European
country?

possible subquestions include What companies have introduced a drug in a European
country?, What American companies have introduced a generic drug?, and so on. One
really only wants to generate those which have answers in the corpus, and that is
the goal of the second way of addressing complex questions – complex indexing.

In Section 2.2, we mentioned various ways in which text is indexed for QA –
by words (or stems), by named entities, by part-of-speech tags, and by depen-
dency relations. Even more complex indexing is used, either alone or with
question decomposition, in the parameterized annotations used in START (Katz
et al., 2005) and elsewhere, as a way of answering complex questions. Parame-
ters take the form of domain-specific templates with parameterized slots – such as
the following, from Katz et al. (2005):

In <year>, <group type> <group name> carried out a <event type> in
<country>, involving <agent type> <agent name>.

When used to index a passage, slots would be replaced by appropriate named
entities. Berrios et al. (2002) use similar templates to index paragraphs in medical
textbooks, in order to answer common clinical questions, including:

(20) What is the <Pathophysiology/Etiology> of <Manifestation/Pathology>?
(21) How can <Pharmacotherapy> be used to treat <Disease/Syndrome>?

Here the parameters are disjunctions of Unified Medical Language System
(UMLS) categories (www.nlm.nih.gov/research/umls/) that can be filled by a
term or phrase that belongs to any one of them.

Templates such as these function in a similar way to syntactic decomposition,
in that they can collect lists of responses for each subquery, then perform con-
straint propagation to find responses that satisfy all parts of the original query.
However, these templates need to be built for each domain or data resource under
consideration by the QA system – a significant overhead.

The LCC system (Lacatusu et al., 2005) achieves question decomposition in a
similar way. Top-down decomposition is driven by syntactic information. Bottom-
up decomposition is achieved by using predictive question–answer pairs (stored
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in a question–answer base, and referred to as QUABs) to expand the answer space.
These QUABs are selected from a database of 10,000 question–answer pairs cre-
ated offline by human annotators. So for a question such as What has been the
impact of job outsourcing programs on India’s relationship with the US?, those QUABs
which closely match the question, and are therefore adjudged to anticipate the
user’s information need, are presented to the user. Both methods of decomposi-
tion are powerful approaches, but require a high degree of manual knowledge
construction – creating templates or the construction of question–answer pairs –
in order to be effective. Some initial work has been undertaken to incorporate
existing large-scale knowledge sources, such as CYC (Curtis et al., 2005), into
the complex QA scenario, without yielding significant improvements in either
domain-specific or open domain QA, possibly due to the incompleteness of the
information represented in these knowledge sources.

3.3 Relation between user and system
Open domain QA has basically assumed a single correct answer to every factoid
question, very much a reflection of its origins in IR, which abstracts individual
relevancy judgments away to those of an average user, to serve as a gold standard.
But it should be clear that different correct answers will be appropriate for dif-
ferent users. The most obvious example of this comes in the degree of specificity
desirable in answering where is questions, such as:

(22) Where is the Verrazano-Narrows Bridge?
(23) Where is the Three Gorges Dam?

where someone in North America might appreciate a specific answer to the first
(e.g., New York City, or between Brooklyn and Staten Island) and a general answer
to the second (e.g., China), while for someone in Asia, the reverse might be true
(e.g., New York, and Western Hubei Province).

Addressing another aspect of tailoring responses to users, Quarteroni and
Manandhar (2009) show how a user’s age and assumed reading level can be used
to choose the most appropriate among possible correct answers to a question.
Alternatively, rather than trying to choose the most appropriate among possible
correct answers, a different approach would be to offer all of them, allowing users
to choose for themselves, as in the answer model for the question Where is Glasgow?
given in Figure 22.3.

Dalmas and Webber (2007) show that a similar approach can be taken in pre-
senting answers to ambiguous questions, such as the famous question Where is the
Taj Mahal? (the tomb? the casino/hotel? the local Indian restaurant? etc.)

But the main way of enriching the relationship between user and QA system
involves the use of interaction. In Section 1.2 we described early systems that could
engage in dialogue in the process of providing answers to user questions. Such
systems relied on complete descriptions of the target domain in order to choose
the next dialogue move, and so could only work in conceptually simple domains
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Manchester

Britain

Glasgow London

Glasgow

Scotland London

Figure 22.3 An answer model for the question: Where is Glasgow? (Dalmas & Webber
2007), showing both Scotland and Britain as possible answers. Here → conveys a part-of
relation, and a dashed line, an equivalence relation.

such as travel planning (Goddeau et al., 1994; Seneff 2002), finding an appropri-
ate restaurant (Walker et al., 2004), automated banking (Hardy et al., 2005), etc.
In more complex applications, a complete description of the domain is unlikely,
and systems must be able to ask questions of their own in order to work towards
providing the user with the information he/she is after. On the other hand, as user
questions become more complex, it becomes more difficult to anticipate all possi-
ble ways of answering them, and systems require dialogue to help guide them to
what it is that the user wants. This is the issue that we focus on, under the rubric
interactive question answering or IQA.

IQA can be seen as a process in which the user is a continual part of the informa-
tion loop – as originator of the query, arbitrator over information relevance, and
consumer of the final product. This mode of operation is useful for both factoid
and complex QA, but perhaps provides greatest benefit in those cases where the
user’s information need is still vague, or involves complex multifaceted concepts,
or reflects misconceptions or opinions – all cases where the expected information
content returned is complex, with a degree of variability not present in factoid
QA. Interactive QA systems borrow from dialogue systems their interaction, their
emphasis on completion of user task, their handling of incomplete or underspeci-
fied (as well as overspecified) user input and the constraint and relaxation phases
of the query process, while remaining focused on large or open domains, such as
law, biomedicine, or international politics.

Rather than attempting to resolve complex question ambiguity independently
of either the user or the context, both can be used to generate follow-up queries
to the user that can serve as significant directional tools to guide the information
seeking process. To achieve this requires an understanding of the context of the
user’s query and some knowledge about the domain of inquiry, or at least the
domain as represented by results returned by the specific query.

In the previous section, we described the use of predictive question–answer
pairs (QUABs) to expand the range of answerable questions. They are also used in
the interactive QA system FERRET (Harabagiu et al., 2005) to support interaction.
When the user asks a question, those QUABs that relate to the query are offered
to the user, as a way of expanding the search space. These QUABs can address
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not only subquestions decomposed from the original question, but also other
information that may be tangentially related to the question. However, this data
is often created manually, and thus is an expensive overhead. HITIQA (Small &
Strzalkowski, 2009) exemplifies an IQA system that does not rely on a priori knowl-
ege of the domain. Rather, HITIQA creates just-in-time semantic representations
of retrieved passages, using domain-independent ‘frames’, which are approxi-
mations of the underlying relationships between entities. While less precise or
targeted than the parameterized annotations used in the START system (Katz et al.,
2005) described in Section 3.2, they are sufficient for capturing the essence of a
paragraph.

A similar framing process is applied to the questions posed to the system, cre-
ating a goal frame. This allows for systematic comparison between the analyst’s
question and the retrieved text passages and for selection of instantiated frames
for answer passages. HITIQA uses interactive dialogue with the analyst to nego-
tiate the scope of the answer, and experiments with several groups of analysts
showed that users accept system suggestions regarding the current question scope
as well as those that relate to other aspects of their task, thus speeding up their
work. Dialogue is enabled through the frame-based representation of content and
more specifically through the mismatches between the goal frame and the data
frames in the answer space. This is best illustrated through the example interac-
tion taken from a live demonstration to the ARDA AQUAINT community in 2005
in Figure 22.4.

This interaction exploits the goal frame that was created for the question
(Figure 22.5) and the frames built for each of the retrieved passages (Figures 22.6
and 22.7). The passages in Figures 22.6 and 22.7 are represented by one-conflict
data frames in the analyst’s answer space (i.e., where there is one conflict between
the data frame and the question frame). The conflicts on the relation attribute were,
respectively: status vs. retirement and status vs. private accounts. These relations

Analyst: “What is the status of the Social Security System?”

HITIQA: “Would you be interested in information on retirement relative to your question?”

HITIQA: “Do you want to see information on private accounts?”

HITIQA: “Thank you, Please view your answer”
[final selection of passages are displayed]

Analyst: “Yes”

Analyst: “Yes”

[exact match answer passages are displayed]

Figure 22.4 Example interaction taken from a live demonstration to the ARDA
AQUAINT community in 2005.

RELATIONS status

Social Security SystemORGANIZATION

Figure 22.5 Goal frame for the question: What is the status of the Social Security system?
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Last week, the General Accounting Office, the auditing arm of Congress, issued a chilling report. Without
badly needed reform, Social Security is rapidly headed for financial ruin. By 2017, when baby boomers
are well into retirement, the program will start running annual deficits that will eventually bankrupt the
system, the GAO warned.

Social Security is sound for  today’s seniors and for those nearing retirement, but it needs to be fixed for
younger workers – our children and grandchildren. The goverment has made promises it cannot afford to
pay for with the current pay-as-you-go system.

RELATION retirement

General Accounting Office, Social Security, Congress, GAO

2017

ORGANIZATION

RELATION retirement

Social SecurityORGANIZATION

DATE

Figure 22.6 Two cluster seed passages and their corresponding frames relative to the
retirement clarification question.

One reform approach, favored by Bush, would let workers divert some of the 12.4% they and their
employers pay in Social Security taxes into private accounts in exchange for cuts in guaranteed Social
Security benefits. In the short term, however, it would take $1 trillion out of the system, as taxes diverted to
the private accounts wouldn’t be available to pay benefits for current retirees.

On Jan. 11, Bush kicked off his new campaign by telling a town hall meeting that younger workers should
be able to take some of their payroll tax and “set it aside in the form of a personal savings account.” Social
Security only provides returns of about 2% a year after inflation, and private accounts, says the President,
could top that easily if they were invested even partially in stocks.

RELATION private accounts

Social Security, GAO

Bush

12.4%, 1 trillion

private accounts

Social Security, town hall

Bush

2%

Jan. 11

ORGANIZATION

PERSON

NUMBER

RELATION

ORGANIZATION

PERSON

NUMBER

DATE

Figure 22.7 Two cluster passages and their corresponding frames relative to the private
accounts clarification question.
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were obtained from the passage’s cluster relations: one cluster containing retire-
ment (Figure 22.6) and the other cluster containing private accounts (Figure 22.7).
From the system’s viewpoint each of these clusters represents an alternative inter-
pretation of the user’s question about the status of Social Security, and so each is
offered to the user through automatically generated clarification questions. This
data-driven approach allows the system to work effectively in any domain and
with any text genre, without necessitating costly knowledge engineering.

3.4 Evaluating extended QA capabilities
As QA broadens and deepens to include the extensions described in this section,
so evaluation methods need to develop so that we can continue to assess how well
a method performs and/or how much better it is than the alternative(s).

In Section 2.4, we described some of the metrics used and the issues involved
in evaluating system performance on factoid questions, where it is assumed that
specific gold standard answers can be identified and agreed upon prior to evalua-
tion. (See also Chapter 11, EVALUATION OF NLP SYTEMS.) Here, for each way of
extending QA from where it is today, one can consider whether existing evaluation
methods suffice or whether new ones are needed.

Extending the relation between question and corpus is a matter of textual entail-
ment (Section 3.1), so methods used in assessing correctness in that task should
apply here as well, provided that QA systems identify the minimal set of sen-
tences within a document that entails the provided answer (rather than simply a
pointer to the document).

For answering why and how questions, nugget methods (Dang & Lin 2007)
should suffice initially, though one might also want to assess temporal, causal,
and/or subsumption relations that should be seen to hold between the nuggets.
Evaluating performance on answering polar questions could also be taken to be a
matter of textual entailment, where providing the minimal set of evidential sen-
tences would again be crucial for evaluation, not least for user acceptance. For
what Bouma et al. (2005) have called which questions, standard QA metrics should
suffice, though, as with textual entailment, systems should probably also identify
the set of sentences (within a document or across multiple documents) that were
used in computing the answer.

It is in the more complex relation between user and system that one finds
a challenge for QA evaluation. But even here, there is a gradient. Quarteroni
and Manandhar (2009) assess a QA system’s ability to tailor answers to a user’s
age and reading level by asking outside assessors to provide judgments on the
answers. For simple information needs, such as a list of the names of the N upcom-
ing conferences on language technology, along with their locations and acceptance
rates (Bertomeu et al., 2006) – i.e., the sort of information that one might be able to
get from a database if such a database existed – evaluation metrics developed in
dialogue system technology such as task completion, time to task completion, and
user satisfaction (Walker et al., 2000) would probably be equally effective here. But
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unlike the setup where assessors are considered the final consumers of answers,
as they are in a gold standard model, here motivated users must become system
assessors.

This is even more true as user information needs become more complex and
users may not even know what information might be relevant. Here there
has been an attempt to develop objective evaluation criteria – in the ciQA
track at TREC (www.umiacs.umd.edu/∼jimmylin/ciqa/), but see also iCLEF
(Gonzalo & Oard 2004; Gonzalo et al., 2006, and ACLIA (Advanced Cross-lingual
Information Access) track (http://aclia.lti.cs.cmu.edu/wiki/moin.cgi/Home) in
NTCIR. We want to argue, however, that ciQA and its evaluation criteria do
not reflect the true character of users attempting to solve complex information
needs.

A key element in a successful evaluation paradigm is the definition of the cen-
tral concepts. Evaluation metrics have gained increased prominence in recent
years, as they often influence the research agenda. Unfortunately, ciQA’s view
of complex interactive QA reflects TREC’s IR bias, and consequently fails to show-
case the true potential of the interaction process. In particular, it assumes that
the user’s information need does not have to be expressed via natural language
queries: it can be expressed in a template that represents the question in canonical
form. Only additional context (the narrative) is provided in natural language. For
example:

Template: What evidence is there for transport of <drugs> from <Bonaire> to
<the United States>?
Narrative: The analyst would like to know of efforts made to discourage narco traffickers
from using Bonaire as a transit point for drugs to the United States. Specifically, the
analyst would like to know of any efforts by local authorities as well as the international
community.

This narrative elaborates on the information need, providing context or a finer-
grained statement of interest, or a focus on particular topical aspects. While
this narrative could be used automatically by systems that adopt a question
decomposition approach, or could be exploited by a motivated user, to drive an
interaction around tangential issues surrounding the central concepts, ciQA eval-
uation has not been designed to discriminate between any attention being paid to
the narrative or not.

This template approach seems similar to the use of such templates in some of
the decomposition approaches discussed in Section 3.2, but with a fundamental
difference. Whereas those approaches attempt to process large amounts of data
into a form that has the potential to match a range of queries, here the templates are
known a priori, greatly reducing the problem space. Within IR, when evaluation
was fixed on a known data set, and fixed set of associated queries, performance
increased over time, but again many approaches failed to scale when the data set
increased, or substantially changed in form and content.
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A second problem with ciQA with respect to showcasing the true potential of
interaction is its limited definition of the term. In particular, it allowed only a sin-
gle interaction (2006) or single five-minute period of interaction (2007). This single
interaction or period of interaction reflects the mistaken view (deriving from an
idealization adopted in IR) that interaction involves no more than refining the
original query to better reflect the available data. However, as Wizard-of-Oz exper-
iments into the use of interaction in QA continue to show (cf. Bertomeu 2007),
success and satisfaction can depend on support for a variety of different inter-
changes and answer strategies, including clarification subdialogues, explanation
subdialogues, responses that overanswer a question (providing more information
and more kinds of information than the user actually requested), being unaware
of their relevance when the question was originally asked.

Since it is clear that neither the type of interaction supported in ciQA nor its
evaluation criteria (in terms of the ‘information nuggets’ contained in the system
responses) are a fair representation of the capabilities of a true interactive system, it
should be no surprise that the results of the first ciQA event were largely negative;
standard IR approaches performed as well as complex QA approaches. Of the 12
individual runs in 2006, only two scored higher than the manual baseline sentence
retrieval system. Thus Kelly and Lin (2007) note that ‘interaction doesn’t appear
to help much (at present),’ although they acknowledge both that the evaluation
design could be flawed (in limiting interaction to a single turn, and limiting the
time for that interaction), and that the types of interaction deployed (a variant of
relevance feedback) are not appropriate for this kind of task. Indeed, Lin (2007)
points to a truism that should be very revealing. Current IR paradigms maximize
recall – by returning more of the same. Complex QA, in contrast, values novelty –
what information the user has not seen, that may present another aspect of the
scenario. Some systems, such as HITIQA (Small & Strzalkowski 2009), explicitly
encode this assumption, remembering in the dialogue history both what users
have seen, and what they have indicated they like, versus what does not interest
them. This does not have to be explicit: interest can be gauged by a user copying
information into a report, or dismissing a window after just a few seconds, for
instance.

Perhaps a more useful indicator of evaluation is related work by Kelly et al.
(2009), which addresses the issue of instability of traditional evaluation metrics
in multi-user environments, and describes the use of questionnaires to evaluate a
range of IQA systems, as a method of garnering effective user feedback about the
systems themselves, and involving users in a subjective evaluation process. Key
is the ability to discriminate between the resulting systems on the basis of several
hypotheses, such as effort and efficiency. However, the assumption here, reflecting
a fact that the field will have to face fairly soon, is that effective evaluation of com-
plex interactive QA systems can only truly be achieved by subjective evaluations
by motivated users. This is certainly more expensive, and less statistically clear cut
than previous evaluation paradigms for QA, but may lead us to real discoveries of
strategies for complex interactive question answering.
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4 Further Reading

A survey of work on database QA can be found in Webber (1986), while the
most comprehensive description of a database QA system remains Woods (1978).
Prager (2007) provides the best introduction to open domain QA, while an incisive
component-by-component performance analysis of an open domain QA system
can be found in Moldovan et al. (2003). For collections of papers on open domain
QA, the reader is referred to Maybury (2003) and Strzalkowski and Harabagiu
(2006), and to special issues of the Journal of Applied Logic (on Questions and
Answers: Theoretical and Applied Perspectives 5:1, March 2007) and of the Jour-
nal of Natural Language Engineering (cf. Webb & Webber 2009, a special issue on
interactive question answering). Papers on QA appear regularly in conferences
sponsored by the Association for Computational Linguistics (ACL) and by the
Special Interest Group on Information Retrieval (SIGIR).

NOTE

1 Even when pronoun resolution is not used to support enhanced indexing, but only
answer candidate extraction and/or evaluation, it has been shown to be of benefit and
worth the cost (Vicedo & Ferrández 2000).
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adjunction, 124, 125, 551
adverb anaphora, 614
affect, 593
affective NLG, 596, 597
agenda, 110
aggregation, 581, 583, 584, 590
alignment, 584, 592
alignment error rate (AER), 537, 539
alignment template, 554
all-words tagging, 245
ALPAC report, 568
alphabet, 11–22, 24, 25, 28, 30, 34–6
AMALGAM (Automatic Mapping Among

Lexico-Grammatical Annotation
Models), 209

ambiguity, 33, 34, 334, 338, 394, 400, 402,
408, 410, 411, 484, 487, 489–96,
498–500, 502, 504, 507, 508, 510, 512

ambiguity resolution, 483, 490, 492
AMI, 303
analogical modeling, 164
analogy, 163
analytical layer, 256
anaphor, 606, 611, 612, 614–16, 618, 624, 627
anaphora, 68, 71, 72, 253, 394, 400, 405–7,

413, 426, 599, 604, 611–14, 616–18,
624–7

anaphora resolution, 599, 610, 611, 614–17,
619, 623–5, 627

annotation infrastructure, 239, 258, 264
annotation tool, 255, 265, 266, 268, 269
annotations evaluation nominal entity

tags, 238
answer, 447, 461, 470–3, 475
answer candidate extraction, 637, 640, 641
answer redundancy, 642
answerhood, 416–18, 421
answers, 416–19, 433, 434, 440, 447, 450,

464, 480
antecedent, 108, 125, 606, 611–16, 618, 624
AQUAINT, 636, 642, 645, 649
argument from the poverty of the stimulus

(APS), 215
argumentation, 596
arithmetic, Peano v. Presburger, 421
artificial intelligence, 482, 484, 575
artificial neural networks (ANNs), 221, 229,

236
AskMSR, 638
Aspectual Link (ALINK), 251



“9781405155816_6_index” — 2010/5/8 — 12:21 — page 764 — #2

764 Subject Index

assertion, 430, 433, 436, 447, 448, 461, 462,
464, 478, 480

associative anaphora, 614
ATIS, 303
attachment strategy, 492
attribution, 254
automatic content extraction (ACE), 518,

522, 524, 527, 530
automatic speech recognition (ASR), 74
auxiliary tree, 124, 125
avoid, 419

back-off, 78, 542
backpropagation, 222–4, 506
backtracking, 490, 492, 493, 512
backward-looking center, 608–10, 626
bagging, 188, 189, 191
basic agent, 632
Baum–Welch algorithm, 309
Bayes’s rule, 302, 499
Bayes’s theorem, 482
Bayesian, 199, 218
Bayesian technique, 482
beam search, 320, 335, 343, 351, 543,

545, 549
beliefs, desires, and intentions (BDI), 446
bias, 197, 199, 200, 213–16
bigram, 210, 319
bilexical context-free grammar, 117, 118
binary branching, 212, 213
binary-valued test, 185
BIO tags, 520
bitext, 532, 549
BLEU, 281, 285, 287, 537, 539, 546, 547, 551,

561, 562, 564, 568, 587, 588
boosting, 189, 190
bootstrap sample, 189, 190
bottom-up, 489, 490
bridging anaphora, 614
Brill tagger, 174
broad coverage, 500, 503, 513
buckets, 78

C4.5, 190, 191, 195
CART, 190, 195
categorial, 397, 398
CCG, 334, 341, 344
CELEX, 173

centering theory, 599, 607, 608, 610, 616,
623, 627

cepstral mean normalization, 324, 326
character encoding, 534
chart, 342, 343, 357–9, 482
chart parser, 553
chart parsing, 106, 129, 342
CHILDES, 216, 217, 220
Chomsky hierarchy of languages, 38, 42
Chomsky normal form, 92, 107–9, 113,

116, 129
Church typing, 413
Church–Turing thesis, 47
circumstances, 250, 258
CKY algorithm, 107–11, 113, 116, 118, 129
CKY parser, 549
CKY parsing algorithm, 347, 359
clarification request, 430, 431, 433, 437,

467, 469
class-based, 75
classification, 133, 147–9, 151–4
classification and regression tree, 312
classifier, 548, 560
clinical trial, 587
clitics, 366
closed vocabulary, 76
cluster, 211, 212, 503
clustering, 201, 210, 213
coarticulation, 311
cognitive, 482–6, 492, 493, 501, 509, 513
cognitive load, 247, 258, 259, 263
coherence, 599, 600, 605–7, 610, 611, 622,

623, 626
coherence relations, 599, 605, 606, 625
cohesion, 599, 600, 604, 611, 623, 626
cohesive, 600
Collins parsing models, 334, 337–9, 341–3,

348, 357, 360, 361
co-location, 403
combinatory categorial grammar, 335, 337,

352–61
communicative goal, 587, 597
competence–performance, 482
competitive activation, 509
complete parse, 83
complete parses, 86
completer step, 111
complex interactive question-answering

(ciQA), 652, 653
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complex question answering, 645, 647,
648, 653

complexity, 202, 205, 208, 483, 484, 486–8,
490, 492, 493, 500, 501, 511

component occupation probability, 310
composition, 563
compositionality, 395, 397, 422
compound, 368
comprehension, 488, 489, 502, 508, 509,

511–13
computational creativity, 598
computational psycholinguistics, 163
computational semantics, 394–428
computer-assisted translation, 558
concatenation, 12–14, 16, 21, 23, 25, 27,

36, 40
conditional random field, 330, 537
confusion network, 557
conjugate gradient, 142
CoNLL, 174
connectionism, 236
connectionist, 483, 509, 511–13
consequent, 108
consistency [as applied to phrase

alignment], 538
consistent, 109, 110, 114
constituent, 82, 243, 246, 247, 268
constituent chunking, 173
constituent structure, 200, 201, 211–14,

216–18
constructive type theory, 407, 413
constructive types, 407
content determination, 579
context, 74
context free, 207

grammar (CFG), 11, 30, 34–8, 40, 41, 55,
57, 58, 60, 63–7, 81, 106–11, 115, 123,
206, 398, 399

semantically annotated, 66, 67, 70
language, 28–41, 57–60

context sensitive, 203, 207
grammar (CSG), 55, 63
language, 63

continuity principle, 623
controlled language, 559, 568
conversational rule, 459, 460, 464
conversational speech, 301
conversion, 367
Cooper storage, 408, 410

coreference, 238, 240, 255, 257, 260, 268, 612,
614, 618, 624, 625

coreference resolution, 614, 624, 625
coreference tagging, 238
coreferential chain, 612, 614, 624
corpora, 197, 198, 208, 210, 214, 216, 495–7,

500, 503, 505, 507, 508, 510
corpus analysis, 575, 581, 583, 596
corpus selection, 239, 258–61
cost-complexity pruning (CCP), 188
coverage, 642
critical-value pruning, 186, 195
cross-document coreference resolution, 625
cross-validation, 78, 90, 278, 279
cube pruning, 549, 570
Curry typing, 413
CYK algorithm, 57, 65, 67

data analysis, 591, 592
database question answering, 632, 643, 654
DATALOG, 62
data-oriented translation (DOT), 551, 562,

564
data-text corpus, 581
decidable (language), 49
decision tree, 180, 181, 183–92, 194–6
decoder, 534, 543, 545, 547, 549, 554, 557,

560, 561
decoding, 318, 532, 543–5, 548, 549,

554, 570
deduction system, 108, 109, 111, 119, 122,

125, 129
definite clause grammar (DCG), 60–2
definite description, 615
delexicalized non-terminals, 117, 119
dependency, 242, 243, 247, 256, 259, 345,

346, 348, 351, 359, 361, 492, 506
dependency graph, 333, 345, 346, 348, 349
dependency parsing, 231–3, 335, 345–51,

361
dependency structure, 105, 123, 239, 242,

243, 247
dependency tree, 120–3, 346–8, 351
dependency-based evaluation, 547
dependent, 243, 248
dependent types, 407, 413
derivation, 30–3, 35, 36, 38, 40, 90
derivation tree, 32–4, 40
deterministic, 489
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determinization, 19–21
development, 78, 90
dialogue, 600, 604, 613, 624, 627
dialogue game board (DGB), 458, 459, 466
dialogue manager/management (DM)

finite-state, 444, 446, 449
frame, 444–51
inference, 444, 446–8, 450, 451, 476

dialogue move, 429, 432, 436, 446, 451,
453, 459

dialogue system, 429, 430, 432, 434, 443,
444, 446, 447, 449, 450, 476–8, 632,
633, 648, 651

diminutive formation, 173
direct anaphora, 614
disabilities, 578, 593, 597
disambiguation, 492, 494, 496, 497, 501, 504,

508, 510, 511
discounting, 542, 544
discourse, 395, 403, 405–7, 410, 413,

414, 599
discourse connective, 240, 247, 252–5,

260
discourse relation, 240, 252–4
discourse representation structure (DRS),

405
discourse representation theory (DRT),

404–7, 417
discourse segment, 604, 608, 610, 611, 616,

620, 621
discourse structure, 599, 601, 602, 605,

611, 627
discourse units, 252–4
discriminative model, 335, 343, 345–7
discriminative models of word alignment,

537
disfluency, 429, 430, 440, 442, 451, 470,

472, 480
distortion, 535, 536, 542, 545, 566
distributed representations, 223
distribution free, 200, 205
distributional, 201, 210–2, 220
document plan, 579–81, 580, 584, 586,

588, 598
document structure, 579–81
domain general, 198, 199, 207, 215, 219
domain specific, 199, 215–17
dotted rule, 109–11
double-blind annotation, 240, 246, 265

Dutch
diminutive formation, 173

dynamic hypertext, 595, 597
dynamic logic, 407
dynamic programming, 545

eager learning, 156
Earley parser, 58, 67
Earley’s algorithm, 110, 111, 113,

114, 129
edge-factored, 120
edit distance, 286, 556, 557
eigenvoices, 317
electroencephalography (EEG), 488
elementary, 50
elementary tree, 123, 124
ellipsis, 583, 590
embedding, 486, 490, 492, 506, 507
embodied conversational agents (ECA),

594
embodiment, 513
encoding, 376, 384, 393
English

prepositional-phrase attachment, 173
entailments, 395, 402, 416, 419, 425–7
entertainment, 596, 597
entity, 518, 519, 522, 524, 527, 530
entity extraction, 517–19, 522, 524, 527
entity mentions, 522–4, 527, 528
entropy, 134, 136, 137, 149, 150, 182, 183,

185, 501
epsilon rule, 110, 111, 113
equivalence class, 74
Europarl, 534, 561, 562, 565
evaluates, 504
evaluation, 271–81, 283–5, 287–94, 532, 533,

546, 547, 550, 556, 559, 561, 564, 568,
570, 634, 641–3, 651–3

extrinsic, 272–4, 288
formative, 272, 274, 277, 292
intrinsic, 272, 274, 288
summative, 272, 274, 277, 293

event, 238, 240, 248, 250, 251, 253–5, 259,
264, 517, 518, 523, 526, 528–30

event extraction, 517, 518, 526–9
event-related potentials (ERPs),

488, 489
example-based machine translation

(EBMT), 531, 553, 554
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expectation-maximization (EM), 212
algorithm, 536, 569

explanations, 578
exponential, 210
exponential prior, 147
exposed headword, 82, 83
expressiveness, 395, 402, 421, 422
EXPTIME, EXP, 51, 52, 62, 71
extended regular expression, 57
extrinsic evaluation, 587, 589
eye tracking, 487, 488

factoid question answering, 634, 641,
645, 648

Fambl, 169–77
features, 136–8, 144, 148, 149, 151, 152
fertility, 535, 536
finite languages, 202, 205, 207, 219
finite state, 79
finite state automaton, 17–19, 22, 25, 383,

388, 389
non-deterministic, 55, 56

Finite state transducer, 25, 26, 370, 387–90
first-order (logic), 67, 68, 70, 71, 412
F-measure, 272, 273, 279, 284
fMPE, 329
foot, 124, 125
formal grammar, 105, 106
formal language, 11–38, 40–2
formative evaluation, 589
forward looking center, 608, 609, 611
forward recursion, 308
forward-backward algorithm, 309
fragment, 429–31, 440, 450, 472–5, 478
fragmentation, 563
frame element, 248, 249
FrameNet, 238, 246–9, 503, 640, 643, 644
Frameset, 248, 262
frequency, 488, 493, 494, 496, 497, 502, 503,

505, 507, 510, 513
frontier, 563
F-score, 198, 200, 212, 213, 539, 564
function, 415
functional tag, 241, 242, 247
future cost estimation, 543, 544

gain ratio, 159, 186
garden-path sentence, 484, 491
Gaussian distribution, 308

Gaussian mixture model (GMM), 310
Gaussian prior, 146, 147
general text matcher (GTM), 547
generalized examples, 167
generalized template, 554, 567
generative capacity, 37, 39, 40, 42
generative grammar, 242, 263
generative model, 334, 337, 340, 342–4, 360

of word alignment, 535–7
genre, 239, 257, 259, 575, 577, 581, 582, 584,

585, 590
German

plural formation, 172
Gini index, 184
Giza++, 537, 551, 561, 562, 567
glue-language semantics, 411
Gold paradigm, 202, 203, 207
gold standard, 198, 199, 208, 209, 212, 216,

275, 285, 294, 547
gradient descent, 224
grammar, 333–6, 344, 350, 352, 354,

355, 357–62, 490, 491, 493, 497,
498, 500, 502, 503, 506, 507, 579,
585, 590

grammatical theory, 582
graph reachability, 56
grapheme-to-phoneme conversion, 191
graphical models, 235
graphics, 594
Gricean maxims, conversational, 592
GROUNDHOG, 644
grounding, 436, 439, 450, 457, 467, 479
groupings, 246, 267
guidelines, 255, 257, 258, 262–4, 270

halting function, 46
hard clustering, 75
head, 117, 121, 122, 242, 243, 254
head dependency, 213
head driven phrase structure grammar

(HPSG), 208, 397, 411
headword, 82
hidden layer, 505, 508
hidden Markov model (HMM), 149–51, 206,

306, 500, 535, 536, 557, 567, 569
hierarchical Bayesian models, 378, 379
hierarchical phrase-based machine

translation, 532, 548, 549, 570
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higher-order logic (HOL), 397,
401, 412

simply typed, 66
HITIQA, 649, 653
HMM-based speech synthesis, 308
hole semantics, 410
Hub4, 303
human evaluation, 587, 589
human–computer interaction (HCI),

594, 595
hybrid MT, 563
hyponyms, 403, 426

IB1, 158
IBM model, 531, 535, 536, 550, 553, 569
iCLEF, 652
identity-of-reference anaphora, 612
identity-of-sense anaphora, 612
idiolect, 584
imperatives (semantics of), 416, 419, 420
implicature, 594
implicit relation extraction (IRE), 526
impredicativity, 421
incremental sigmoid belief networks

(ISBNs), 235
indexing, 637, 638, 645, 646
indirect anaphora, 614
induction, 163, 181, 183, 185, 187–91
inferences, 394, 395, 402, 412, 417, 420,

426, 427
inflectional morphology, 164
information gain, 158, 182–5, 187, 195
information retrieval, 654

for question answering (IR4QA), 637
information state, 429, 443, 451, 453, 458,

464, 465, 468, 478
information state update (ISU), 444, 451
information theory, 501
initial tree, 124, 125
initializer step, 110, 111
input position, 107, 109, 111, 112, 119,

122, 127
intelligent tutoring systems, 633
intensional logic (IL), 398, 401, 416
intensional set theory, 416
intensionality, 395, 401, 414, 415
interaction, 593, 595
interactive question answering (IQA), 631,

648, 653

interactivity, 595
inter-annotator agreement, 238, 251, 254,

263, 276, 277, 280, 289, 294
inter-annotator disagreement, 264
inversion transduction grammars, 572
IOB tags, 174
IRE see implicit relation extraction
ITA, 246, 264, 267, 268
item, 107, 109–11, 113, 118, 122–5
iterative scaling, 140–1, 144
ITSPOKE, 633

Keller storage, 410
kernel functions, 153
Kleene closure, 13, 14, 16, 21, 22, 36
k-nearest neighbor classifier, 157
Kneser–Ney smoothing, 542, 570
knowledge acquisition, 581
knowledge base, 578, 579, 591, 593, 595
Kullback–Leibler distance, 287, 295

Lambek calculus, 58, 59
language, 482–94, 501, 506–9, 511–13
language acquisition, 163, 197, 198, 203,

215–19, 482, 511, 513
language and the world, 591, 592, 594
language faculty, 215
language model (LM), 221, 229–31, 234, 302,

535, 541, 542, 544, 545, 548, 549, 562,
566, 567, 570, 572

late closure (LC), 491, 496
latent semantic analysis (LSA), 423, 427, 604
latent semantic indexing (LSI), 423
latent variable, 221, 222, 229, 235, 236
lattice rescoring, 99, 324
layout, 594
lazy learning, 156
LCC, 644, 646
learning, 485, 497, 505, 507, 512, 513
learning theory, 197, 201, 218
left composition, 127, 128
left corner (LC), 490, 492
lemma, 240, 244, 245, 261, 263, 267
lexical access, 482, 485, 511
lexical choice, 581, 583, 590
lexical element, 116, 118
lexical functional grammar (LFG), 243, 547
lexical processing, 489, 494, 505
lexical retrieval, 482
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lexical sample corpus, 245
lexical semantics, 402, 584, 591
lexicalization, 337, 338
lexicalized grammar, 510
lexicalized parsers, 510
lexicalized probabilistic context-free

grammar (LPCFG), 200
lexicon, 245, 248, 491, 497, 500
likelihood function, 345, 356
linear discriminant analysis, 328
linear dynamical system, 330
linguistic annotation, 238, 239, 256–8,

264, 269
linguistic competence, 484, 486, 511
linguistic formalism, 14, 15, 40, 41
linguistic nativism, 203, 215, 216, 220
linguistic performance, 484, 487, 493
linguistics, 483, 484, 501
literacy, 577, 587
local minima, 224, 225
logic, 395, 397, 399–401, 407, 410, 413, 420–2,

426–8, 596
logical forms, 591
logistic regression, 223
log-linear function, 223
log-linear model, 133, 344, 345, 347, 352,

355, 356, 358, 360, 538, 542, 547, 548,
565–7

lower bound, 289
LUNAR, 631

machine learning (ML), 154, 197, 201, 205,
215, 216, 221, 229, 231, 235, 430, 440,
442, 476, 479, 581, 592

machine translation (MT), 133, 147–8,
153, 531–73

MAP, 309
MAP adaptation, 317
Markov, 81
Markov process, 308
matching, 547, 553, 572

matching [as in EBMT], 544, 571
maximize likelihood, 493
maximum entropy (MaxEnt), 133–53, 223,

235, 344, 350, 357, 537, 543
maximum entropy Markov models, 151
maximum entropy principle, 134, 136,

137, 145

maximum likelihood (ML), 78, 199, 213,
309, 540, 541

maximum likelihood estimation (MLE),
200, 339, 341, 497

maximum likelihood linear regression
(MLLR), 318, 324

maximum likelihood model, 345
maximum mutual information (MMI), 314
mean reciprocal ranking (MRR), 638, 642
meaning postulates, 415
meetings, 322
memory limitations, 491, 493
memory-based learning, 155
meronyms, 403, 426
Message Understanding Conferences

(MUC), 518, 522, 526
messages, 579–81, 584
metacommunication, 436, 449–51, 478
meteor, 287, 547
metric-based evaluation, 587, 588
microphone array, 325
microplanning, 577, 579, 581, 583, 586,

590, 598
mildly context-sensitive language, 11, 39, 40
minimal attachment (MA), 491
minimal recursion semantics (MRS), 411
minimization, 19–21
minimum Bayes risk (MBR), 314
minimum classification error (MCE), 313
minimum description length (MDL), 375–8,

384, 385
minimum error rate training (MERT), 542,

546, 570
minimum phone error (MPE), 314, 324
MK10, 374
modality, 415, 426
model theory, 395, 401, 402, 404, 415
modeling, 501, 503, 511
model-theoretic semantics, 64
modifier, 241, 247, 257, 260, 263
modularity, 486, 512
monadic second-order logic (MSO), 64
monologue, 600
mononuclear, 252
Montague semantics, 66
Monte Carlo Sampling, 564
morph, 364–6, 368–70
morpheme, 365, 366, 369, 373, 379, 381–4,

387, 390, 391
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morphology
derivational, 367, 369, 387
inflectional, 367, 369, 387
two-level, 388

morphophonology, 364, 365, 388, 390, 391
morphosyntax, 364, 365
Moses, 534, 545, 554, 560
motivation, 596, 597
MUC see Message Understanding

Conferences
MULTEXT-East, 211
multi-engine machine translation (MEMT),

556, 557
multi-layered linguistic resource, 256
multi-layered perceptron (MLP), 221–3, 226
multinuclear, 252
multi-modal, 437, 478, 479, 579, 594
multi-party dialogue, 477, 479, 627
multi-pass search, 320
multistyle training, 326
multi-valued tests, 185
mutual information, 482

named entity recognition, 149, 150
National Institute of Standards and

Technology (NIST), 533, 547, 565
natural language generation (NLG), 574
natural language syntax, 81
(n–1)-gram, 75
n-best list, 543, 545, 548, 549, 557
N-best rescoring, 99
N-best training, 93, 94
negative evidence, 203
nested storage, 410
neural network, 221, 223, 225, 228–31, 233,

235, 236, 505, 508
NEXPTIME, NEXP, 52, 71, 72
n-gram, 210
n-gram language model, 585
NIST rich transcription evaluation, 321
NLG evaluation, 586, 587, 589
NLOGSPACE, NL, 51, 53, 55, 56, 58, 69, 70
noisy channel model, 153, 535, 541, 550, 565
non-elementary, 50, 65, 67
non-projective, 120, 121, 123, 129
non-sentential utterances, 440
non-terminally separated (NTS), 207
normal form, 37

normalized exponential, 223, 225,
226, 235

noun phrase, 582, 583, 586
NP-complete, 54, 59, 62, 70, 71
NP-hard, 62
NPTIME, NP, 51, 52, 59, 62, 70, 71
nuclearity, 252, 254
nucleus (N), 606, 607
nugget methods, 651

observation independence, 308
on-line learning, 224, 347
online machine translation, 532, 558
ontology, 580
open domain question answering, 634, 636,

643, 644, 654
open vocabulary, 76
opinion tagging, 240
optimization, 137, 141, 143, 147
orientation [as applied to phrase

alignment], 539, 540, 569
overgeneration, 585, 590

PAC (probably approximately correct), 201
packed chart, 342, 347, 357–9
packed representations, 411
paradoxes (logical), 413, 415
parallel, 486, 491, 500, 505
parallel corpora, 239, 259, 261, 532, 533, 538,

566, 569
parallel model combination, 327
parameter tuning, 532
parse, 105–8, 110, 111, 113–18, 122, 125,

127–9
parse forest, 112–15, 129, 352, 357, 358
parse selection, 133, 151–2
parser, 198, 210, 212, 214
Parseval, 286

metrics, 336, 359
parsing, 105, 221, 228, 231–3, 235, 238, 241,

242, 256, 263, 266, 268, 333, 483–5,
489–94, 498, 500–4, 508, 510, 512, 513

model, 334, 335, 337–9, 341–9, 352, 357,
358, 360–2

part of speech, 484, 493–5, 500
tagger, 180
tagging, 133, 136, 149, 191, 192, 208, 238,

239, 245
partial parse, 82
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Parzen window, 157
passivization, 584
pattern-based retrieval, 636, 638–40
penalized loss function, 146, 147, 152
Penn Discourse Treebank (PDTB), 173,

212–14, 216, 231, 233, 240, 334–7, 340,
348, 351, 352, 354, 360, 362

perceptron, 222, 335, 344, 346, 348, 351,
537, 548

perplexity, 76, 209, 211, 287
persuasion, 596, 597
PETSc, 143, 144
Pharaoh, 549, 551, 562
phrase, 105, 116, 126
phrase alignment, 532, 536–9, 547, 557
phrase extraction, 535, 538, 539, 565, 569
phrase penalty, 542, 548, 549
phrase structure, 105, 239, 333, 335, 342,

346, 348, 349, 351, 354, 363
phrase table, 538, 543, 544, 557
phrase-based statistical machine translation

(PB-SMT), 531–41, 543–5, 548
phrase-structure, 241–3, 246, 247, 259, 263
plan, 446–8, 450, 451
planning (AI), 576, 580
plausibility, 501, 503, 504, 510, 513
pleonastic pronoun, 615, 618, 619
plural formation, 172
polymorphic types, 412, 413, 421
polymorphism, 412

schematic, 428
polynomial, 203, 205
pooling, 642
position-independent word error rate

(PER), 546
post-editing, 557, 570, 571, 576, 578, 587, 588
posterior probability, 199, 216
postprocessing, 266
poverty of the stimulus, 197
power (formal), 400, 421, 422
pragmatics, 486
precision, 198, 220, 272, 273, 279, 281, 283–5,

294, 642
predicate logic unplugged (PLU), 410
predicates, 398, 412, 414, 415
predictive annotation, 635, 637, 638
predictor step, 111
preferred center, 608, 610
prefix, 365, 366

prefix property, 393
pre-processing, 239, 258, 268, 269
principle of insufficient reason, 134
principles and parameters (P&P), 203
probabilistic context-free grammar (PCFG),

114, 115, 122, 129, 136, 151, 199, 217,
338, 339, 342, 497–9

probabilistic decision tree, 190, 194
probabilistic deterministic finite state

automata (PDFA), 206
probabilistic latent semantic analysis

(PLSA), 423
probabilistic parsing, 106, 114–16, 119, 129
probabilistic projective dependency

grammar, 120–2, 129
probabilistic push-down automata, 81
probability, 494, 496–9, 501–5, 507, 508, 512
probability estimation, 190–2, 194, 221, 223,

225, 230
probability models, 77
projective, 120, 122, 123
Prolog, 61
pronominalization, 574
pronouns, 400, 403, 404, 407, 575
proof theory, 395, 401, 402, 421
PropBank, 238, 241, 246–9, 252, 256, 257,

261, 262, 264
proper, 114
properties, 400, 401, 405, 412, 415, 416, 418,

422, 426, 427
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