The Handbook of
Computational
Linguistics and
Natural Language
Processing

Edited by
Alexander Clark, Chris Fox

and Shalom Lappin

MWWILEY-BLACKWELL

The Handbook of Computational Linguistics
and Natural Language Processing

Blackwell Handbooks in Linguistics

This outstanding multi-volume series covers all the major subdisciplines within linguistics today and,
when complete, will offer a comprehensive survey of linguistics as a whole.

Already published:

The Handbook of Child Language

Edited by Paul Fletcher and Brian MacWhinney
The Handbook of Phonological Theory

Edited by John A. Goldsmith

The Handbook of Contemporary Semantic Theory
Edited by Shalom Lappin

The Handbook of Sociolinguistics

Edited by Florian Coulmas

The Handbook of Phonetic Sciences, 2nd Edition
Edited by William J. Hardcastle and John Laver
The Handbook of Morphology

Edited by Andrew Spencer and Arnold Zwicky
The Handbook of Japanese Linguistics

Edited by Natsuko Tsujimura

The Handbook of Linguistics

Edited by Mark Aronoff and Janie Rees-Miller
The Handbook of Contemporary Syntactic Theory
Edited by Mark Baltin and Chris Collins

The Handbook of Discourse Analysis

Edited by Deborah Schiffrin, Deborah Tannen,
and Heidi E. Hamilton

The Handbook of Language Variation and Change
Edited by J. K. Chambers, Peter Trudgill, and
Natalie Schilling-Estes

The Handbook of Historical Linguistics

Edited by Brian D. Joseph and Richard D. Janda
The Handbook of Language and Gender

Edited by Janet Holmes and Miriam Meyerhoff
The Handbook of Second Language Acquisition
Edited by Catherine J. Doughty and Michael

H. Long

The Handbook of Bilingualism

Edited by Tej K. Bhatia and William C. Ritchie

The Handbook of Pragmatics
Edited by Laurence R. Horn and Gregory Ward

The Handbook of Applied Linguistics
Edited by Alan Davies and Catherine Elder

The Handbook of Speech Perception
Edited by David B. Pisoni and Robert E. Remez

The Blackwell Companion to Syntax, Volumes I-V
Edited by Martin Everaert and Henk van
Riemsdijk

The Handbook of the History of English

Edited by Ans van Kemenade and Bettelou Los

The Handbook of English Linguistics
Edited by Bas Aarts and April McMahon

The Handbook of World Englishes
Edited by Braj B. Kachru, Yamuna Kachru, and
Cecil L. Nelson

The Handbook of Educational Linguistics
Edited by Bernard Spolsky and Francis M. Hult

The Handbook of Clinical Linguistics
Edited by Martin]. Ball, Michael R. Perkins,
Nicole Miiller, and Sara Howard

The Handbook of Pidgin and Creole Studies
Edited by Silvia Kouwenberg and John Victor
Singler

The Handbook of Language Teaching

Edited by Michael H. Long and Catherine

J. Doughty

The Handbook of Language Contact
Edited by Raymond Hickey

The Handbook of Language and Speech Disorders
Edited by Jack S. Damico, Nicole Miiller, and
Martin J. Ball

The Handbook of Computational Linguistics
Edited by Alexander Clark, Chris Fox, and
Shalom Lappin

The Handbook of Language and Globalization
Edited by Nikolas Coupland

The Handbook of
Computational
Linguistics and Natural
Language Processing

Edited by

Alexander Clark, Chris Fox, and
Shalom Lappin

FWILEY-BLACKWELL

A John Wiley & Sons, Ltd., Publication

This edition first published 2010
© 2010 Blackwell Publishing Ltd except for editorial material and organization
© 2010 Alexander Clark, Chris Fox, and Shalom Lappin

Blackwell Publishing was acquired by John Wiley & Sons in February 2007. Blackwell’s publishing
program has been merged with Wiley’s global Scientific, Technical, and Medical business to form
Wiley-Blackwell.

Registered Office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 85Q, United
Kingdom

Editorial Offices

350 Main Street, Malden, MA 02148-5020, USA

9600 Garsington Road, Oxford, OX4 2DQ, UK

The Atrium, Southern Gate, Chichester, West Sussex, PO19 85Q, UK

For details of our global editorial offices, for customer services, and for information about how to
apply for permission to reuse the copyright material in this book please see our website at
www.wiley.com/wiley-blackwell.

The right of Alexander Clark, Chris Fox, and Shalom Lappin to be identified as the authors of the
editorial material in this work has been asserted in accordance with the UK Copyright, Designs, and
Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as permitted by the UK Copyright, Designs, and Patents Act 1988, without the prior
permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The publisher is not associated with any product or
vendor mentioned in this book. This publication is designed to provide accurate and authoritative
information in regard to the subject matter covered. It is sold on the understanding that the publisher
is not engaged in rendering professional services. If professional advice or other expert assistance is
required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

The handbook of computational linguistics and natural language processing / edited by Alexander
Clark, Chris Fox, and Shalom Lappin.
p. cm. — (Blackwell handbooks in linguistics)

Includes bibliographical references and index.

ISBN 978-1-4051-5581-6 (hardcover : alk. paper)
1. Computational linguistics. 2. Natural language processing (Computer science)
I. Clark, Alexander (Alexander Simon) II. Fox, Chris, 1965- III. Lappin, Shalom.

P98.H346 2010

410'.285-dc22

2010003116

A catalog record for this book is available from the British Library.

Set in 10/12pts, Palatino by SPi Publisher Services, Pondicherry, India
Printed in Singapore

1 2010

http://www.wiley.com/wiley-blackwell

For Camilla
ININAY 2NN MDY SDINNRDY ONITY TIT PNND

Contents

List of Figures

List of Tables

Notes on Contributors
Preface

Introduction

PartI Formal Foundations

1

2

Formal Language Theory

SHULY WINTNER

Computational Complexity in Natural Language
IAN PRATT-HARTMANN

Statistical Language Modeling

CIPRIAN CHELBA

Theory of Parsing

MARK-JAN NEDERHOF AND GIORGIO SATTA

PartII Current Methods

5

6

Maximum Entropy Models

ROBERT MALOUF

Memory-Based Learning

WALTER DAELEMANS AND ANTAL VAN DEN BOSCH
Decision Trees

HELMUT SCHMID

Unsupervised Learning and Grammar Induction
ALEXANDER CLARK AND SHALOM LAPPIN
Artificial Neural Networks

JAMES B. HENDERSON

ix
Xiv
ba%
XX1ii

11

43

74

105

131
133

154

180

197

221

viii

Contents

10

11

Linguistic Annotation

MARTHA PALMER AND NIANWEN XUE
Evaluation of NLP Systems

PHILIP RESNIK AND JIMMY LIN

Part Il Domains of Application

12

13

14

15

16

17

Speech Recognition

STEVE RENALS AND THOMAS HAIN
Statistical Parsing

STEPHEN CLARK

Segmentation and Morphology
JOHN A. GOLDSMITH
Computational Semantics

CHRIS Fox

Computational Models of Dialogue
JONATHAN GINZBURG AND RAQUEL FERNANDEZ
Computational Psycholinguistics
MATTHEW W. CROCKER

Part IV Applications

18

19

20

21

22

Information Extraction

RALPH GRISHMAN

Machine Translation

ANDY WAY

Natural Language Generation
EHUD REITER

Discourse Processing

RUSLAN MITKOV

Question Answering

BONNIE WEBBER AND NICK WEBB

References
Author Index
Subject Index

238

271

297
299

333

364

394

429

482

515
517

531

574

599

630

655

742
763

List of Figures

1.1
21
2.2
23

24
25

2.6
27
3.1
32
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
4.1
42
43
44
4.5

Chomsky’s hierarchy of languages.

Architecture of a multi-tape Turing machine.

A derivation in the Lambek calculus.

Productions of a DCG recognizing the language

{a"b"c"*d"e" | n > 0}.

Derivation of the string aabbccddee in the DCG of Figure 2.3.
Semantically annotated CFG generating the language of the
syllogistic.

Meaning derivation in a semantically annotated CFG.

Productions for extending the syllogistic with transitive verbs.

Recursive linear interpolation.

ARPA format for language model representation.

Partial parse.

A word-and-parse k-prefix.

Complete parse.

Before an adjoin operation.

Result of adjoin-left under NTlabel.

Result of adjoin-right under NTlabel.

Language model operation as a finite state machine.
SLM operation.

One search extension cycle.

Binarization schemes.

Structured language model maximum depth distribution.
Comparison of PPL, WER, labeled recall/precision error.
The CKY recognition algorithm.

Table 7 obtained by the CKY algorithm.

The CKY recognition algorithm, expressed as a deduction system.

The Earley recognition algorithm.
Deduction system for Earley’s algorithm.

39
45
59

61
61

66
67
69
78
79
82
83
83
84
84
84
85
85
89
92
98
101
108
108
109
110
111

x List of Figures

4.6
4.7
4.8

49
4.10

411

4.12

413
4.14
4.15

4.16
4.17

4.18
4.19
6.1
6.2
6.3

6.4

6.5

6.6
6.7

6.8

7.1
7.2
7.3
74

7.5

Table 7 obtained by Earley’s algorithm.

Parse forest associated with table 7 from Figure 4.2.

Knuth’s generalization of Dijkstra’s algorithm, applied to finding
the most probable parse in a probabilistic context-free grammar G.
The probabilistic CKY algorithm.

A parse of ‘our company is training workers,” assuming a bilexical
context-free grammar.

Deduction system for recognition with a 2-LCFG. We assume
w=a1-- -y, g1 = $.

Iustration of the use of inference rules (f), (c), and (g) of bilexical
recognition.

A projective dependency tree.

A non-projective dependency tree.

Deduction system for recognition with PDGs. We assume

w =aj - - -4y, and disregard the recognition of a,4+1 = $.
Substitution (a) and adjunction (b) in a tree adjoining grammar.
The TAG bottom-up recognition algorithm, expressed as a
deduction system.

A pair of trees associated with a derivation in a SCFG.

An algorithm for the left composition of a sentence w and a SCFG G.

An example 2D space with six examples labeled white or black.
Two examples of the generation of a new hyper-rectangle in NGE.
An example of an induced rule in RISE, displayed on the right,
with the set of examples that it covers (and from which it was
generated) on the left.

An example of a family in a two-dimensional example space and
ranked in the order of distance.

An example of family creation in Fambl.

Pseudo-code of the family extraction procedure in Fambl.
Generalization accuracies (in terms of percentage of correctly
classified test instances) and F-scores, where appropriate, of MBL
with increasing k parameter, and Fambl with k = 1 and increasing
K parameter.

Compression rates (percentages) of families as opposed to the
original number of examples, produced by Fambl at different
maximal family sizes (represented by the x-axis, displayed at a log
scale).

A simple decision tree for period disambiguation.

State of the decision tree after the expansion of the root node.
Decision tree learned from the example data.

Partitions of the two-dimensional feature subspace spanned by the
features ‘color” and ‘shape.’

Data with overlapping classes and the class boundaries found by a
decision tree.

112
113

115
117

118

119

119
121
121

123
124

125
127
128
157
168

169

170

171
172

175

175
181
183
183

184

186

List of Figures xi

7.6 Decision tree induced from the data in Figure 7.5 before and after

pruning. 187
7.7 Decision tree with node numbers and information gain scores. 187
7.8 Decision tree with classification error counts. 188
7.9 Probabilistic decision tree induced from the data in Figure 7.5. 190
7.10 Part of a probabilistic decision tree for the nominative case of nouns. 194
9.1 A multi-layered perceptron. 223
9.2 Category probabilities estimated by an MLP. 226
9.3 A recurrent MLP, specifically a simple recurrent network. 227
9.4 A recurrent MLP unfolded over the sequence. 228
9.5 The SSN architecture, unfolded over a derivation sequence, with
derivation decisions D! and hidden layers S'. 229
9.6 An SSN unfolded over a constituency structure. 232
10.1 An example PTB tree. 242
10.2 A labeled dependency structure. 243
10.3 OntoNotes: a model for multi-layer annotation. 257
12.1 Waveform (top) and spectrogram (bottom) of conversational
utterance ‘no right I didn’t mean to imply that.’ 305
12.2 HMM-based hierarchical modeling of speech. 307

12.3 Representation of an HMM as a parameterized stochastic finite
state automaton (left) and in terms of probabilistic dependences

between variables (right). 307
12.4 Forward recursion to estimate ozt(q]-) =p(X1, ..., X, gt = q; | A). 309
12.5 Hidden Markov models for phonemes can be concatenated to form

models for words. 311
12.6 Connected word recognition with a bigram language model. 319
12.7 Block processing diagram showing the AMI 2006 system for

meeting transcription (Hain et al., 2006). 323

12.8 Word error rates (%) results in the NIST RT’06 evaluations of the
AMI 2006 system on the evaluation test set, for the four decoding

passes. 325
13.1 Example lexicalized parse-tree. 339
13.2 Example tree with complements distinguished from adjuncts. 340
13.3 Example tree containing a trace and the gap feature. 341
13.4 Example unlabeled dependency tree. 346
13.5 Generic algorithm for online learning taken from McDonald et al.

(2005b). 347
13.6 The perceptron update. 348
13.7 Example derivation using forward and backward application. 353
13.8 Example derivation using type-raising and forward composition. 354
13.9 Example CCG derivation for the sentence Under new features,

participants can transfer money from the new funds. 355
14.1 The two problems of word segmentation. 372
14.2 Word discovery from an MDL point of view. 378

14.3 A signature for two verbs in English. 383

xii

List of Figures

144
14.5
15.1
16.1
16.2
16.3
16.4
16.5

17.1
17.2

17.3

17.4
17.5

17.6

18.1
19.1
19.2
19.3

19.4

19.5

19.6
19.7

19.8
20.1
20.2
20.3
204
20.5
21.1
22.1
22.2

Morphology discovery as local descent.

Building an FST from two FSAs.

Derivation of semantic representation with storage.

Basic components of a spoken dialogue system.

Finite state machine for a simple ticket booking application.

A simple frame.

Goal-oriented action schema.

A single utterance gives rise to distinct updates of the DGB for
distinct participants.

Relative clause attachment ambiguity.

An example for the parse-trees generated by a probabilistic-context
free grammar (PCFG) (adapted from Crocker & Keller 2006).
The architecture of the SynSem-Integration model, from Pado et al.
(2009).

A simple recurrent network.

CIANet: a network featuring scene-language interaction with a
basic attentional gating mechanism to select relevant events in a
scene with respect to an unfolding utterance.

The competitive integration model (Spivey-Knowlton & Sedivy
1995).

Example dependency tree.

A sentence-aligned corpus.

A non-exact alignment.

In the word-based translation on the left we see that the
noun-adjective reordering into English is missed. On the right, the
noun and adjective are translated as a single phrase and the correct
ordering is modeled in the phrase-based translation.

Merging source-to-target and target-to-source alignments (from
Koehn 2010).

All possible source segmentations with all possible target
translations (from Koehn 2004).

Hypothesis expansion via stack decoding (from Koehn 2004).
An aligned tree pair in DOT for the sentence pair: he chose the ink
cartridge, il a choisi la cartouche d’encre.

Composition in tree-DOT.

Human and corpus wind descriptions for September 19, 2000.
An example literacy screener question (SkillSum input).
Example text produced by SkillSum.

Example SumTime document plan.

Example SumTime deep syntactic structure.

Example of the RST relation evidence.

Basic QA system architecture.

An ARDA scenario (from Small & Strzalkowski 2009).

383
390
409
444
445
445
446

469
496

498

504
506

509

510
525
533
533

538

540

544
546

552
563
576
577
577
579
582
607
635
645

List of Figures

xiii

22.3

224

225

22.6

22.7

An answer model for the question: Where is Glasgow? (Dalmas &
Webber 2007), showing both Scotland and Britain as possible
answers.

Example interaction taken from a live demonstration to the ARDA
AQUAINT community in 2005.

Goal frame for the question: What is the status of the Social Security
system?

Two cluster seed passages and their corresponding frames relative
to the retirement clarification question.

Two cluster passages and their corresponding frames relative to
the private accounts clarification question.

648

649

649

650

650

List of Tables

3.1
3.2
3.3
34
3.5
6.1

6.2

6.3

7.1

8.1

8.2
11.1
11.2
16.1
16.2
17.1

19.1

20.1

Headword percolation rules

Binarization rules

Parameter re-estimation results

Interpolation with trigram results

Maximum depth evolution during training

Examples generated for the letter—phoneme conversion task, from
the word-phonemization pair booking-[bukIN], aligned as
[b-ukI-N]

Number of extracted families at a maximum family size of 100, the
average number of family members, and the raw memory
compression, for four tasks

Two example families (represented by their members) extracted
from the PP and CHUNK data sets respectively

Training data consisting of seven objects which are characterized
by the features ‘size,” “color,” and ‘shape.” The first four items belong
to class ‘+,” the others to class ‘—’

Comparison of different tag sets on IPSM data

Cross-linguistic evaluation: 64 clusters, left all words, right f <5
Structure of a typical summary of evaluation results

Contingency table for a document retrieval task

NSUs in a subcorpus of the BNC

Comparison of dialogue management approaches

Conditional probability of a verb frame given a particular verb, as
estimated using the Penn Treebank

Number of fragments for English-to-French and French-to-English
HomeCentre experiments

Numerical wind forecast for September 19, 2000

91
93
96
96
97

155

176

177

182
209
212
280
283
441
452

499

564
576

Notes on Contributors

Ciprian Chelba is a Research Scientist with Google. Between 2000 and 2006 he
worked as a Researcher in the Speech Technology Group at Microsoft Research.

He received his Diploma Engineer degree in 1993 from the Faculty of Electronics
and Telecommunications at “Politehnica” University, Bucuresti, Romania, M.S. in
1996 and PhD in 2000 from the Electrical and Computer Engineering Department
at the Johns Hopkins University.

His research interests are in statistical modeling of natural language and speech,
as well as related areas such as machine learning and information theory as
applied to natural language problems.

Recent projects include language modeling for large-vocabulary speech recog-
nition (discriminative model estimation, compact storage for large models), search
in spoken document collections (spoken content indexing, ranking and snipeting),
as well as speech and text classification.

Alexander Clark is a Lecturer in the Department of Computer Science at Royal
Holloway, University of London. His first degree was in Mathematics from the
University of Cambridge, and his PhD is from the University of Sussex. He did
postdoctoral research at the University of Geneva. In 2007 he was a Professeur invité
at the University of Marseille. He is on the editorial board of the journal Research
on Language and Computation, and a member of the steering committee of the Inter-
national Colloquium on Grammatical Inference. His research is on unsupervised
learning in computational linguistics, and in grammatical inference; he has won
several prizes and competitions for his research. He has co-authored with Shalom
Lappin a book entitled Linguistic Nativism and the Poverty of the Stimulus, which is
being published by Wiley-Blackwell in 2010.

Stephen Clark is a Senior Lecturer at the University of Cambridge Computer
Laboratory where he is a member of the Natural Language and Information Pro-
cessing Research Group. From 2004 to 2008 he was a University Lecturer at the
Oxford University Computing Laboratory, and before that spent four years as a
postdoctoral researcher at the University of Edinburgh’s School of Informatics,

xvi Notes on Contributors

working with Prof. Mark Steedman. He has a PhD in Artificial Intelligence from
the University of Sussex and a first degree in Philosophy from the University of
Cambridge. His main research interest is statistical parsing, with a focus on the
grammar formalism combinatory categorial grammar. In 2009 he led a team at the
Johns Hopkins University Summer Workshop working on “Large Scale Syntactic
Processing: Parsing the Web.” He is on the editorial boards of Computational Lin-
guistics and the Journal of Natural Language Engineering, and is a Program Co-Chair
for the 2010 Annual Meeting of the Association for Computational Linguistics.

Matthew W. Crocker obtained his PhD in Artificial Intelligence from the Univer-
sity of Edinburgh in 1992, where he subsequently held appointments as Lecturer
in Artificial Intelligence and Cognitive Science and as an ESRC Research Fel-
low. In January 2000, Dr Crocker was appointed to a newly established Chair
in Psycholinguistics, in the Department of Computational Linguistics at Saarland
University, Germany. His current research brings together the experimental inves-
tigation of real-time human language processing and situated cognition in the
development of computational cognitive models.

Matthew Crocker co-founded the annual conference on Architectures and
Mechanisms for Language Processing (AMLaP) in 1995. He is currently an asso-
ciate editor for Cognition, on the editorial board of Springer’s Studies in Theoretical
Psycholinguistics, and has been a member of the editorial board for Computational
Linguistics.

Walter Daelemans (MA, University of Leuven, Belgium, 1982; PhD, Compu-
tational Linguistics, University of Leuven, 1987) held research and teaching
positions at the Radboud University Nijmegen, the AI-LAB at the University
of Brussels, and Tilburg University, where he founded the ILK (Induction of
Linguistic Knowledge) research group, and where he remained part-time Full
Professor until 2006. Since 1999, he has been a Full Professor at the University
of Antwerp (UA), teaching Computational Linguistics and Artificial Intelligence
courses and co-directing the CLiPS research center. His current research inter-
ests are in machine learning of natural language, computational psycholinguistics,
and text mining. He was elected fellow of ECCAI in 2003 and graduated 11 PhD
students as supervisor.

Raquel Fernandez is a Postdoctoral Researcher at the Institute for Logic, Lan-
guage and Computation, University of Amsterdam. She holds a PhD in Computer
Science from King’s College London for work on formal and computational mod-
eling of dialogue and has published numerous peer-review articles on dialogue
research. She has worked as Research Fellow in the Center for the Study of
Language and Information (CSLI) at Stanford University and in the Linguistics
Department at the University of Potsdam.

Dr Chris Fox is a Reader in the School of Computer Science and Electronic Engi-
neering at the University of Essex. He started his research career as a Senior
Research Officer in the Department of Language and Linguistics at the University
of Essex. He subsequently worked in the Computer Science Department where he

Notes on Contributors xvii

obtained his PhD in 1993. After that he spent a brief period as a Visiting Researcher
at Saarbruecken before becoming a Lecturer at Goldsmiths College, University of
London, and then King’s College London. He returned to Essex in 2003. At the
time of writing, he is serving as Deputy Mayor of Wivenhoe.

Much of his research is in the area of logic and formal semantics, with a partic-
ular emphasis on issues of formal expressiveness, and proof-theoretic approaches
to characterizing intuitions about natural language semantic phenomena.

Jonathan Ginzburg is a Senior Lecturer in the Department of Computer Sci-
ence at King’s College London. He has previously held posts in Edinburgh and
Jerusalem. He is one of the managing editors of the journal Dialogue and Discourse.
He has published widely on formal semantics and dialogue. His monograph The
Interactive Stance: Meaning for Conversation was published in 2009.

John A. Goldsmith is Edward Carson Waller Distinguished Service Professor
in the Departments of Linguistics and Computer Science at the University of
Chicago, where he has been since 1984. He received his PhD in Linguistics in 1976
from MIT, and taught from 1976 to 1984 at Indiana University. His primary inter-
ests are computational learning of natural language, phonological theory, and the
history of linguistics.

Ralph Grishman is Professor of Computer Science at New York University. He
has been involved in research in natural language processing since 1969, and since
1985 has directed the Proteus Project, with funding from DARPA, NSE, and other
government agencies. The Proteus Project has conducted research in natural lan-
guage text analysis, with a focus on information extraction, and has been involved
in the creation of a number of major lexical and syntactic resources, including
Comlex, Nomlex, and NomBank. He is a past President of the Association for
Computational Linguistics and the author of the text Computational Linguistics: An
Introduction.

Thomas Hain holds the degree Dipl.-Ing. with honors from the University of
Technology, Vienna and a PhD from Cambridge University. In 1994 he joined
Philips Speech Processing, which he left as Senior Technologist in 1997. He took
up a position as Research Associate at the Speech, Vision and Robotics Group and
Machine Intelligence Lab at the Cambridge University Engineering Department
where he also received an appointment as Lecturer in 2001. In 2004 he joined the
Department of Computer Science at the University of Sheffield where he is now
a Senior Lecturer. Thomas Hain has a well established track record in automatic
speech recognition, in particular involvement in best-performing ASR systems for
participation in NIST evaluations. His main research interests are in speech recog-
nition, speech and audio processing, machine learning, optimisation of large-scale
statistical systems, and modeling of machine/machine interfaces. He is a member
of the IEEE Speech and Language Technical Committee.

James B. Henderson is an MER (Research Professor) in the Department of
Computer Science of the University of Geneva, where he is co-head of the
interdisciplinary research group Computational Learning and Computational

xviii Notes on Contributors

Linguistics. His research bridges the topics of machine learning methods for
structure-prediction tasks and the modeling and exploitation of such tasks in
NLP, particularly syntactic and semantic parsing. In machine learning his current
interests focus on latent variable models inspired by neural networks. Previously,
Dr Henderson was a Research Fellow in ICCS at the University of Edinburgh, and
a Lecturer in CS at the University of Exeter, UK. Dr Henderson received his PhD
and MSc from the University of Pennsylvania, and his BSc from the Massachusetts
Institute of Technology, USA.

Shalom Lappin is Professor of Computational Linguistics at King’s College
London. He does research in computational semantics, and in the application
of machine learning to issues in natural language processing and the cognitive
basis of language acquisition. He has taught at SOAS, Tel Aviv University, the
University of Haifa, the University of Ottawa, and Ben Gurion University of the
Negev. He was also a Research Staff member in the Natural Language group of
the Computer Science Department at IBM T.J. Watson Research Center. He edited
the Handbook of Contemporary Semantic Theory (1996, Blackwell), and, with Chris
Fox, he co-authored Foundations of Intensional Semantics (2005, Blackwell). His most
recent book, Linguistic Nativism and the Poverty of the Stimulus, co-authored with
Alexander Clark, is being published by Wiley-Blackwell in 2010.

Jimmy Lin is an Associate Professor in the iSchool at the University of Mary-
land, affiliated with the Department of Computer Science and the Institute for
Advanced Computer Studies. He graduated with a PhD in Computer Science from
MIT in 2004. Lin’s research lies at the intersection of information retrieval and nat-
ural language processing, and he has done work in a variety of areas, including
question answering, medical informatics, bioinformatics, evaluation metrics, and
knowledge-based retrieval techniques. Lin’s current research focuses on “cloud
computing,” in particular, massively distributed text processing in cluster-based
environments.

Robert Malouf is an Associate Professor in the Department of Linguistics and
Asian/Middle Eastern Languages at San Diego State University. Before coming
to SDSU, Robert held a postdoctoral fellowship in the Humanities Computing
Department, University of Groningen (1999-2002). He received a PhD in Linguis-
tics from Stanford University (1998) and BA in linguistics and computer science
from SUNY Buffalo (1992). His research focuses on the application of compu-
tational techniques to understanding how language works, particularly in the
domains of morphology and syntax. He is currently investigating the use of
evolutionary simulation for explaining linguistic universals.

Prof. Ruslan Mitkov has been working in (applied) natural language process-
ing, computational linguistics, corpus linguistics, machine translation, transla-
tion technology, and related areas since the early 1980s. His extensively cited
research covers areas such as anaphora resolution, automatic generation of

Notes on Contributors xix

multiple-choice tests, machine translation, natural language generation, automatic
summarization, computer-aided language processing, centering, translation
memory, evaluation, corpus annotation, bilingual term extraction, question
answering, automatic identification of cognates and false friends, and an NLP-
driven corpus-based study of translation universals.

Mitkov is author of the monograph Anaphora Resolution (2002, Longman) and
sole editor of The Oxford Handbook of Computational Linguistics (2005, Oxford Uni-
versity Press). Current prestigious projects include his role as Executive Editor
of the Journal of Natural Language Engineering (Cambridge University Press) and
Editor-in-Chief of the Natural Language Processing book series (John Benjamins
Publishing). Ruslan Mitkov received his MSc from the Humboldt University
in Berlin, his PhD from the Technical University in Dresden and he worked
as a Research Professor at the Institute of Mathematics, Bulgarian Academy of
Sciences, Sofia. Prof. Mitkov is Professor of Computational Linguistics and Lan-
guage Engineering at the School of Humanities, Languages and Social Sciences
at the University of Wolverhampton which he joined in 1995, where he set up
the Research Group in Computational Linguistics. In addition to being Head of the
Research Group in Computational Linguistics, Prof. Mitkov is also Director of
the Research Institute in Information and Language Processing.

Dr Mark-Jan Nederhof is a Lecturer in the School of Computer Science at the
University of St Andrews. He holds a PhD (1994) and MSc (1990) in computer sci-
ence from the University of Nijmegen. Before coming to St Andrews in 2006, he
was Senior Researcher at DFKI in Saarbriicken and Lecturer in the Faculty of Arts
at the University of Groningen. He has served on the editorial board of Computa-
tional Linguistics and has been a member of the programme committees of EACL,
HLT/EMNLP, and COLING-ACL.

His research covers areas of computational linguistics and computer languages,
with an emphasis on formal language theory and computational complexity. He
is also developing tools for use in philological research, and especially the study
of Ancient Egyptian.

Martha Palmer is an Associate Professor in the Linguistics Department and the
Computer Science Department of the University of Colorado at Boulder, as well
as a Faculty Fellow of the Institute of Cognitive Science. She was formerly an Asso-
ciate Professor in Computer and Information Sciences at the University of Pennsyl-
vania. She has been actively involved in research in natural language processing
and knowledge representation for 30 years and did her PhD in Artificial Intelli-
gence at the University of Edinburgh in Scotland. She has a life-long interest in the
use of semantic representations in natural language processing and is dedicated to
the development of community-wide resources. She was the leader of the English,
Chinese, and Korean PropBanks and the Pilot Arabic PropBank. She is now the
PI for the Hindi/Urdu Treebank Project and is leading the English, Chinese, and
Arabic sense-tagging and PropBanking efforts for the DARPA-GALE OntoNotes
project. In addition to building state-of-the-art word-sense taggers and semantic
role labelers, she and her students have also developed VerbNet, a public-domain

xx Notes on Contributors

rich lexical resource that can be used in conjunction with WordNet, and SemLink, a
mapping from the PropBank generic arguments to the more fine-grained VerbNet
semantic roles as well as to FrameNet Frame Elements. She is a past President of
the Association for Computational Linguistics, and a past Chair of SSIGHAN and
SIGLEX, where she was instrumental in getting the Senseval/Semeval evaluations
under way.

Ian Pratt-Hartmann studied Mathematics and Philosophy at Brasenose College,
Oxford, and Philosophy at Princeton and Stanford Universities, gaining his PhD
from Princeton in 1987. He is currently Senior Lecturer in the Department of
Computer Science at the University of Manchester.

Ehud Reiter is a Reader in Computer Science at the University of Aberdeen in
Scotland. He completed a PhD in natural language generation at Harvard in 1990
and worked at the University of Edinburgh and at CoGenTex (a small US NLG
company) before coming to Aberdeen in 1995. He has published over 100 papers,
most of which deal with natural language generation, including the first book ever
written on applied NLG. In recent years he has focused on data-to-text systems
and related “language and the world” research challenges.

Steve Renals received a BSc in Chemistry from the University of Sheffield in 1986,
an MSc in Artificial Intelligence in 1987, and a PhD in Speech Recognition and
Neural Networks in 1990, both from the University of Edinburgh. He is a Profes-
sor in the School of Informatics, University of Edinburgh, where he is the Director
of the Centre for Speech Technology Research. From 1991 to 1992, he was a Post-
doctoral Fellow at the International Computer Science Institute, Berkeley, CA, and
was then an EPSRC Postdoctoral Fellow in Information Engineering at the Uni-
versity of Cambridge (1992—4). From 1994 to 2003, he was a Lecturer then Reader
at the University of Sheffield, moving to the University of Edinburgh in 2003.
His research interests are in the area of signal-based approaches to human com-
munication, in particular speech recognition and machine learning approaches to
modeling multi-modal data. He has over 150 publications in these areas.

Philip Resnik is an Associate Professor at the University of Maryland, College
Park, with joint appointments in the Department of Linguistics and the Institute
for Advanced Computer Studies. He completed his PhD in Computer and Infor-
mation Science at the University of Pennsylvania in 1993. His research focuses on
the integration of linguistic knowledge with data-driven statistical modeling, and
he has done work in a variety of areas, including computational psycholinguis-
tics, word-sense disambiguation, cross-language information retrieval, machine
translation, and sentiment analysis.

Giorgio Satta received a PhD in Computer Science in 1990 from the University
of Padua, Italy. He is currently a Full Professor at the Department of Infor-
mation Engineering, University of Padua. His main research interests are in
computational linguistics, mathematics of language and formal language theory.
For the years 2009-10 he is serving as Chair of the European Chapter of the
Association for Computational Linguistics (EACL). He has joined the standing

Notes on Contributors xxi

committee of the Formal Grammar conference (FG) and the editorial boards of the
journals Computational Linguistics, Grammars and Research on Language and Compu-
tation. He has also served as Program Committee Chair for the Annual Meeting
of the Association for Computational Linguistics (ACL) and for the International
Workshop on Parsing Technologies (IWPT).

Helmut Schmid works as a Senior Scientist at the Institute for Natural Language
Processing in Stuttgart with a focus on statistical methods for NLP. He developed a
range of tools for tokenization, POS tagging, parsing, computational morphology,
and statistical clustering, and he frequently used decision trees in his work.

Antal van den Bosch (MA, Tilburg University, The Netherlands, 1992; PhD,
Computer Science, Universiteit Maastricht, The Netherlands, 1997) held Research
Assistant positions at the experimental psychology labs of Tilburg University and
the Université Libre de Bruxelles (Belgium) in 1993 and 1994. After his PhD project
at the Universiteit Maastricht (1994-7), he returned to Tilburg University in 1997
as a postdoc researcher. In 1999 he was awarded a Royal Dutch Academy of
Arts and Sciences fellowship, followed in 2001 and 2006 by two consecutively
awarded Innovational Research funds of the Netherlands Organisation for Sci-
entific Research. Tilburg University appointed him as Assistant Professor (2001),
Associate Professor (2006), and Full Professor in Computational Linguistics and
Al (2008). He is also a Guest Professor at the University of Antwerp (Belgium). He
currently supervises five PhD students, and has graduated seven PhD students
as co-supervisor. His research interests include memory-based natural language
processing and modeling, machine translation, and proofing tools.

Prof. Andy Way obtained his BSc (Hons) in 1986, MSc in 1989, and PhD in 2001
from the University of Essex, Colchester, UK. From 1988 to 1991 he worked at the
University of Essex, UK, on the Eurotra Machine Translation project. He joined
Dublin City University (DCU) as a Lecturer in 1991 and was promoted to Senior
Lecturer in 2001 and Associate Professor in 2006. He was a DCU Senior Albert
College Fellow from 2002 to 2003, and has been an IBM Centers for Advanced
Studies Scientist since 2003, and a Science Foundation Ireland Fellow since 2005.
He has published over 160 peer-reviewed papers. He has been awarded grants
totaling over €6.15 million since 2000, and over €6.6 million in total. He is the
Centre for Next Generation Localisation co-ordinator for Integrated Language
Technologies (ILT). He currently supervises eight students on PhD programs of
study, all of whom are externally funded, and has in addition graduated 10
PhD and 11 MSc students. He is currently the Editor of the journal Machine
Translation, President of the European Association for Machine Translation, and
President-Elect of the International Association for Machine Translation.

Nick Webb is a Senior Research Scientist in the Institute for Informatics, Logics
and Security Studies, at the University at Albany, SUNY, USA. Previously he was
a Research Fellow in the Natural Language Processing Group at the University
of Sheffield, UK, and a Research Officer at the University of Essex, UK, where
he obtained a BSc in Computer Science (with a focus on Artificial Intelligence)

xxii Notes on Contributors

and an MSc (in Computational Linguistics). His PhD from Sheffield concerns
the analysis of dialogue corpora to build computational models of dialogue-act
classification, and his research interests concern intelligent information access,
including interactive question answering and dialogue systems.

Bonnie Webber was a Researcher at Bolt Beranek and Newman while working
on the PhD she received from Harvard University in 1978. She then taught in the
Department of Computer and Information Science at the University of Pennsyl-
vania for 20 years before joining the School of Informatics at the University of
Edinburgh. Known for research on discourse and on question answering, she is
a Past President of the Association for Computational Linguistics, co-developer
(with Aravind Joshi, Rashmi Prasad, Alan Lee, and Eleni Miltsakaki) of the Penn
Discourse TreeBank, and co-editor (with Annie Zaenen and Martha Palmer) of the
new electronic journal, Linguistic Issues in Language Technology.

Shuly Wintner is a Senior Lecturer at the Department of Computer Science,
University of Haifa, Israel. His research spans various areas in computational
linguistics, including formal grammars, morphology, syntax, development of lan-
guage resources and machine translation, with a focus on Semitic languages. He
has published over 60 scientific papers in computational linguistics. Dr Wintner is
the Editor-in-Chief of the journal Research in Language and Computation.

Nianwen Xue is an Assistant Professor of Languages & Linguistics and Com-
puter Science at Brandeis University. His research interests include syntactic and
semantic parsing, machine translation, temporal representation and inference,
Chinese-language processing, and linguistic annotation (Chinese Treebank, Chi-
nese Proposition Bank, OntoNotes). He serves on the ACL SIGANN committee
and co-organized the Linguistic Annotation Workshops (LAW Il and LAW III) and
the 2009 CoNLL Shared Task on Syntactic and Semantic Dependencies in Multiple
Languages. He got his PhD in linguistics from the University of Delaware.

Preface

We started work on this handbook three years ago and, while bringing it to fruition
has involved a great deal of work, we have enjoyed the process. We are grateful
to our colleagues who have contributed chapters to the volume. Its quality is due
to their labor and commitment. We appreciate the considerable time and effort
that they have invested in making this venture a success. It has been a pleasure
working with them.

We owe a debt of gratitude to our editors at Wiley-Blackwell, Danielle
Descoteaux and Julia Kirk, for their unstinting support and encouragement
throughout this project. We wish that all scientific-publishing projects were
blessed with publishers of their professionalism and good nature.

Finally, we must thank our families for enduring the long period of time that we
have been engaged in working on this volume. Their patience and good will has
been a necessary ingredient for its completion.

The best part of compiling this handbook has been the opportunity that it has
given each of us to observe in detail and in perspective the wonderful burst of
creativity that has taken hold of our field in recent years.

Alexander Clark, Chris Fox, and Shalom Lappin
London and Wivenhoe
September 2009

Introduction

The field of computational linguistics (CL), together with its engineering domain
of natural language processing (NLP), has exploded in recent years. It has devel-
oped rapidly from a relatively obscure adjunct of both Al and formal linguistics
into a thriving scientific discipline. It has also become an important area of indus-
trial development. The focus of research in CL and NLP has shifted over the
past three decades from the study of small prototypes and theoretical models to
robust learning and processing systems applied to large corpora. This handbook
is intended to provide an introduction to the main areas of CL and NLP, and an
overview of current work in these areas. It is designed as a reference and source
text for graduate students and researchers from computer science, linguistics,
psychology, philosophy, and mathematics who are interested in this area.

The volume is divided into four main parts. Part I contains chapters on the
formal foundations of the discipline. Part II introduces the current methods that
are employed in CL and NLP, and it divides into three subsections. The first
section describes several influential approaches to Machine Learning (ML) and
their application to NLP tasks. The second section presents work in the annotation
of corpora. The last section addresses the problem of evaluating the performance
of NLP systems. Part III of the handbook takes up the use of CL and NLP pro-
cedures within particular linguistic domains. Finally, Part IV discusses several
leading engineering tasks to which these procedures are applied.

In Chapter 1 Shuly Wintner gives a detailed introductory account of the main
concepts of formal language theory. This subdiscipline is one of the primary
formal pillars of computational linguistics, and its results continue to shape the-
oretical and applied work. Wintner offers a remarkably clear guide through the
classical language classes of the Chomsky hierarchy, and he exhibits the relations
between these classes and the automata or grammars that generate (recognize)
their members.

While formal language theory identifies classes of languages and their decid-
ability (or lack of such), complexity theory studies the computational resources

2 Introduction

in time and space required to compute the elements of these classes. lan
Pratt-Hartmann introduces this central area of computer science in Chapter 2, and
he takes up its significance for CL and NLP. He describes a series of important
complexity results for several prominent language classes and NLP tasks. He also
extends the treatment of complexity in CL/NLP from classical problems, like syn-
tactic parsing, to the relatively unexplored area of computing sentence meaning
and logical relations among sentences.

Statistical modeling has become one of the primary tools in CL and NLP for
representing natural language properties and processes. In Chapter 3 Ciprian
Chelba offers a clear and concise account of the basic concepts involved in the
construction of statistical language models. He reviews probabilistic n-gram mod-
els and their relation to Markov systems. He defines and clarifies the notions of
perplexity and entropy in terms of which the predictive power of a language
model can be measured. Chelba compares n-gram models with structured lan-
guage models generated by probabilistic context-free grammars, and he discusses
their applications in several NLP tasks.

Part I concludes with Mark-Jan Nederhof and Giorgio Satta’s discussion of
the formal foundations of parsing in Chapter 4. They illustrate the problem of
recognizing and representing syntactic structure with an examination of (non-
lexicalized and lexicalized) context-free grammars (CFGs) and tabular (chart)
parsing. They present several CFG parsing algorithms, and they consider prob-
abilistic CFG parsing. They then extend their study to dependency grammar
parsers and tree adjoining grammars (TAGs). The latter are mildly context sen-
sitive, and so more formally powerful than CFGs. This chapter provides a solid
introduction to the central theoretical concepts and results of a core CL domain.

Robert Malouf opens the first section of Part II with an examination of max-
imum entropy models in Chapter 5. These constitute an influential machine
learning technique that involves minimizing the bias in a probability model
for a set of events to the minimal set of constraints required to accommodate
the data. Malouf gives a rigorous account of the formal properties of MaxEnt
model selection, and exhibits its role in describing natural languages. He com-
pares MaxEnt to support vector machines (SVMs), another ML technique, and
he looks at its usefulness in part of speech tagging, parsing, and machine
translation.

In Chapter 6 Walter Daelemans and Antal van den Bosch give a detailed
overview of memory-based learning (MBL), an ML classification model that is
widely used in NLP. MBL invokes a similarity measure to evaluate the distance
between the feature vectors of stored training data and those of new events or enti-
ties in order to construct classification classes. It is a highly versatile and efficient
learning framework that constitutes an alternative to statistical language modeling
methods. Daelemans and van den Bosch consider modified and extended versions
of MBL, and they review its application to a wide variety of NLP tasks. These
include phonological and morphological analysis, part of speech tagging, shal-
low parsing, word disambiguation, phrasal chunking, named entity recognition,
generation, machine translation, and dialogue-act recognition.

Introduction 3

Helmut Schmid surveys decision trees in Chapter 7. These provide an efficient
procedure for classifying data into descending binary branching subclasses, and
they can be quickly induced from large data samples. Schmid points out that
simple decision trees often exhibit instability because of their sensitivity to small
changes in feature patterns of the data. He considers several modifications of
decision trees that overcome this limitation, specifically bagging, boosting, and
random forests. These methods combine sets of trees induced for a data set to
achieve a more robust classifier. Schmid illustrates the application of decision trees
to natural language tasks with discussions of grapheme conversion to phonemes,
and POS tagging.

Alex Clark and Shalom Lappin characterize grammar induction as a problem in
unsupervised learning in Chapter 8. They compare supervised and unsupervised
grammar inference, from both engineering and cognitive perspectives. They con-
sider the costs and benefits of both learning approaches as a way of solving NLP
tasks. They conclude that, while supervised systems are currently more accurate
than unsupervised ones, the latter will become increasingly influential because of
the enormous investment in resources required to annotate corpora for training
supervised classifiers. By contrast, large quantities of raw text are readily avail-
able online for unsupervised learning. In modeling human language acquisition,
unsupervised grammar induction is a more appropriate framework, given that the
primary linguistic data available to children is not annotated with sample classi-
fications to be learned. Clark and Lappin discuss recent work in unsupervised
POS tagging and grammar inference, and they observe that the most successful of
these procedures are beginning to approach the performance levels achieved by
state-of-the-art supervised taggers and parsers.

Neural networks are one of the earliest and most influential paradigms of
machine learning. James B. Henderson concludes the first section of Part II with
an overview in Chapter 9 of neural networks and their application to NLP prob-
lems. He considers multi-layered perceptrons (MLPs), which contain hidden units
between their inputs and outputs, and recurrent MLPs, which have cyclic links to
hidden units. These cyclic links allow the system to process unbounded sequences
by storing copies of hidden unit states and feeding them back as input to units
when they are processing successive positions in the sequence. In effect, they pro-
vide the system with a memory for processing sequences of inputs. Henderson
shows how a neural network can be used to calculate probability values for its
outputs. He also illustrates the application of neural networks to the tasks of
generating statistical language models for a set of data, learning different sorts
of syntactic parsing, and identifying semantic roles. He compares them to other
machine learning methods and indicates certain equivalence relations that hold
between neural networks and these methods.

In the second section (Chapter 10), Martha Palmer and Nianwen Xue address
the central issue of corpus annotation. They compare alternative systems for
marking corpora and propose clear criteria for achieving adequate results across
distinct annotation tasks. They look at a number of important types of linguistic
information that annotation encodes including, inter alia, POS tagging, deep and

4 Introduction

shallow syntactic parsing, coreference and anaphora relations, lexical meanings,
semantic roles, temporal connections among propositions, logical entailments
among propositions, and discourse structure. Palmer and Xue discuss the prob-
lems of securing reasonable levels of annotator agreement. They show how a
sound and well-motivated annotation scheme is crucial for the success of super-
vised machine learning procedures in NLP, as well as for the rigorous evaluation
of their performance.

Philip Resnik and Jimmy Lin conclude Part II with a discussion in the last
section (Chapter 11) of methods for evaluating NLP systems. They consider both
intrinsic evaluation of a procedure’s performance for a specified task, and exter-
nal assessment of its contribution to the quality of a larger engineering system in
which it is a component. They present several ways to formulate precise quan-
titative metrics for grading the output of an NLP device, and they review testing
sequences through which these metrics can be applied. They illustrate the issues of
evaluation by considering in some detail what is involved in assessing systems for
word-sense disambiguation and for question answering. This chapter extends and
develops some of the concerns raised in the previous chapter on annotation. It also
factors out and addresses evaluation problems that emerged in earlier chapters on
the application of machine learning methods to NLP tasks.

Part III opens with Steve Renals and Thomas Hain’s comprehensive account in
chapter 12 of current work in automatic speech recognition (ASR). They observe
that ASR plays a central role in NLP applications involving spoken language,
including speech-to-speech translation, dictation, and spoken dialogue systems.
Renals and Hain focus on the general task of transcribing natural conversational
speech to text, and present the problem in terms of a statistical framework in which
the problem of the speech recogniser is to find the most likely word sequence given
the observed acoustics. The focus of the chapter is acoustic modeling based on hid-
den Markov models (HMMs) and Gaussian mixture models. In the first part of the
chapter they develop the basic acoustic modeling framework that underlies cur-
rent speech recognition systems, including refinements to include discriminative
training and the adaptation to particular speakers using only small amounts of
data. These components are drawn together in the description of a state-of-the-art
system for the automatic transcription of multiparty meetings. The final part of the
chapter discusses approaches that enable robustness for noisier or less constrained
acoustic environments, the incorporation of multiple sources of knowledge, the
development of sequence models that are richer than HMMs, and issues that arise
when developing large-scale ASR systems.

In Chapter 13 Stephen Clark discusses statistical parsing as the probabilistic
syntactic analysis of sentences in a corpus, through supervised learning. He traces
the development of this area from generative parsing models to discriminative
frameworks. Clark studies Collins’ lexicalized probabilistic context-free gram-
mars (PCFGs) as a particularly successful instance of these models. He examines
the parsing algorithms, procedures for parse ranking, and methods for parse
optimization that are commonly used in generative parse models like PCFG.
Discriminative parsing does not model sentences, but provides a way of modeling

Introduction 5

parses directly. It discards some of the independence assumptions encoded in
generative parsing, and it allows for complex dependencies among syntactic fea-
tures. Clark examines log-linear (maximum entropy) models as instantiations of
this approach. He applies them to parsers driven by combinatory categorial gram-
mar (CCG). He gives a detailed description of recent work on statistical CCG
parsing, focusing on the efficiency with which such grammars can be learned,
and the impressive accuracy which CCG parsing has recently achieved.

John A. Goldsmith offers a detailed overview in Chapter 14 of computational
approaches to morphology. He looks at unsupervised learning of word segmen-
tation for a corpus in which word boundaries have been eliminated, and he
identifies two main problems in connection with this task. The first involves iden-
tifying the correct word boundaries for a stripped corpus on the basis of prior
knowledge of the lexicon of the language. The second, and significantly more diffi-
cult, problem is to devise a procedure for constructing the lexicon of the language
from the stripped corpus. Goldsmith describes a variety of approaches to word
segmentation, highlighting probabilistic modeling techniques, such as minimum
description length and hierarchical Bayesian models. He reviews distributional
methods for unsupervised morphological learning which have their origins in
Zellig Harris” work, and gives a very clear account of finite state transducers and
their central role in morphological induction.

In Chapter 15 Chris Fox discusses the major questions driving work in logic-
based computational semantics. He focuses on formalized theories of meaning,
and examines what properties a semantic representation language must possess
in order to be sufficiently expressive while sustaining computational viability. Fox
proposes that implementability and tractability be taken as conditions of adequacy
on semantic theories. Specifically, these theories must permit efficient computation
of the major semantic properties of sentences, phrases, and discourse sequences.
He surveys work on type theory, intensionality, the relation between proof the-
ory and model theory, and the dynamic representation of scope and anaphora in
leading semantic frameworks. Fox also summarizes current research on corpus-
based semantics, specifically the use of latent semantic analysis to identify lexical
semantic clusters, methods for word-sense disambiguation, and current work
on textual entailment. He reflects on possible connections between the corpus-
based approach to semantics and logic-based formal theories of meaning, and he
concludes with several interesting suggestions for pursuing these connections.

Jonathan Ginzburg and Raquel Fernadndez present a comprehensive account in
Chapter 16 of recent developments in the computational modeling of dialogue.
They first examine a range of central phenomena that an adequate formal theory
of dialogue must handle. These include non-sentential fragments, which play an
important role in conversation; meta-communicative expressions, which serve as
crucial feedback and clarification devices to speakers and hearers; procedures for
updating shared information and common ground; and mechanisms for adapt-
ing a dialogue to a particular conversational domain. Ginzburg and Fernandez
propose a formal model of dialogue, KoS, which they formulate in the type
theoretic framework of type theory with records. This type theory has the full

6 Introduction

power of functional application and abstraction, but it permits the specification of
recursively dependent type structures that correspond to re-entrant typed feature
structures. They compare their dialogue model to other approaches current in the
literature. They conclude by examining some of the issues involved in construct-
ing a robust, wide-coverage dialogue management system, and they consider the
application of machine learning methods to facilitate certain aspects of this task.

In Chapter 17 Matthew W. Crocker characterizes the major questions and the-
oretical developments shaping contemporary work in computational psycholin-
guistics. He observes that this domain of inquiry shares important objectives
with both theoretical linguistics and psycholinguistics. In common with the for-
mer, it seeks to explain the way in which humans recognize sentence structure
and meaning. Together with the latter, it is concerned to describe the cogni-
tive processing mechanisms through which they achieve these tasks. However,
in contrast to both theoretical linguistics and psycholinguistics, computational
psycholinguistics models language understanding by constructing systems that
can be implemented and rigorously tested. Crocker focuses on syntactic process-
ing, and he discusses the central problem of resolving structural ambiguity. He
observes that a general consensus has emerged on the view that sentence process-
ing is incremental, and a variety of constraints (syntactic, semantic, pragmatic,
etc.) are available at each point in the processing sequence to resolve or reduce
different sources of ambiguity. Crocker considers three main approaches.
Symbolic methods use grammars to represent syntactic structure and parsing
algorithms to exhibit the way in which humans apply a grammar to sentence
recognition. Connectionists employ neural nets as non-symbolic systems of induc-
tion and processing. Probabilistic approaches model language interpretation as a
stochastic procedure, where this involves generating a probability distribution for
the strings produced by an automaton or a grammar of some formal class. Crocker
concludes with the observation that computational psycholinguistics (like theo-
retical linguistics) still tends to view sentence processing in isolation from other
cognitive activities. He makes the important suggestion that integrating language
understanding into the wider range of human functions in which it figures is likely
to yield more accurate accounts of processing and acquisition.

Ralph Grishman starts off Part IV of the handbook with a review, in Chapter 18,
of information extraction (IE) from documents. He highlights name, entity, rela-
tion, and event extraction as primary IE tasks, and he addresses each in turn.
Name extraction consists in identifying names in text and classifying them accord-
ing to semantic (ontological) type. Entity extraction selects referring phrases,
assigns them to semantic classes, and specifies coreference links among them.
Relation extraction recognizes pairs of related entities and the semantic type of
the relation that holds between them. Event extraction picks out cases of events
described in a text, according to semantic type, and it locates the entities that
appear in the event. For each of these tasks Grishman traces the development
of IE approaches from manually crafted rule-based systems, through supervised
machine learning, to semi- and unsupervised methods. He concludes the chapter
with some reflections on the challenges and opportunities that the web, with its

Introduction 7

enormous resources of online text in a variety of languages and formats, poses for
future research in IE.

In Chapter 19 Andy Way presents a systematic overview of the current state
of machine translation (MT). He discusses the evolution of statistical machine
translation (SMT) from word-based n-gram language models specified for aligned
multi-lingual corpora (originally developed by the IBM speech and language
group in the 1990s) to the phrase-based SMT (PB-SMT) language models that
currently dominate the field. He also looks at the use of both generative and dis-
criminative language models in SMT, and he considers results achieved with both
supervised and unsupervised learning methods. Way offers a systematic compar-
ison of PB-SMT with other paradigms of MT, including hierarchical, tree-based,
and example-based approaches, as well as traditional rule-based systems, that
continue to figure prominently in commercial MT products. He concludes with a
detailed discussion of the MT work that his research group is doing. This work
applies a hybrid view in which syntactic, morphological, and lexical semantic
information is combined with statistical language modeling techniques to maxi-
mize the accuracy and efficiency of the distinct components of an MT system. He
also discusses the role of MT in contemporary online and spoken applications.

Ehud Reiter describes natural language generation (NLG) in Chapter 20. He
characterizes the generation problem as mapping representations in one format
(or language) into text in a given language. As he observes, NLG is distinguished
from most other areas of NLP by the pervasive complexity of making choices from
a large set of alternatives at each point in the generation process. The mapping
of representations to text involves resolving numerous one-to-many selections.
Reiter identifies three main subtasks for NLG. Document planning determines the
content of the representation to be realized in NL text, and the general structure
of the content. Microplanning specifies the organization and linguistic structure
of the text. Realization produces the text itself. In the course of implementing
this sequence of tasks, an NLG procedure must decide on the general format of
the message to be realized, the nature of the syntactic units in which it will be
encoded, the internal structure of these sentences, and a variety of lexical and
stylistic choices. Reiter reviews a number of current NLG systems, and he dis-
cusses the central role of NLG in a variety of NLP applications. He concludes with
some thoughtful proposals for future research directions in this domain.

Ruslan Mitkov reviews computational analysis of discourse structure in
Chapter 21. He begins with algorithms for segmenting text into discourse ele-
ments. He then describes three major computational treatments of discourse
coherence relations: Hobbs’ coherence account, rhetorical structure theory, and
centering. He follows this with an extended discussion of anaphora resolution. He
points out that accurate anaphora resolution is a necessary condition for success
in many tasks, such as MT, text summarization, NLG, and IE. He concludes by
surveying some of the significant contributions that discourse modeling has made
to a wide variety of NLP applications.

Bonnie Webber and Nick Webb conclude Part IV, and the volume, with a
presentation of current work on question answering (QA) in Chapter 22. They

8 Introduction

trace the development of QA from early procedures that mapped NL questions
into queries in a standard database language for a closed data set, to contempo-
rary open systems that seek answers to questions across a large set of documents,
often the entire web. As with other NLP applications, this development has also
involved a move from manually crafted rules to machine learning classifiers, and
hybrid systems combining rule-based and probabilistic methods. They discuss the
relation between QA and text retrieval. While the latter provides documents in
response to user queries, the former seeks information expressed as natural lan-
guage replies. They survey the design and performance of current QA procedures,
focusing on the challenges involved in improving their coverage and extending
their functionality. An important method for achieving such extension is to incor-
porate methods for identifying text entailments in order to move beyond simple
word pattern matching. These entailments enrich the domain of possible answers
that a QA system can consider by adding a set of semantic implications to a ques-
tion and its range of possible answers. Webber and Webb also take up alternative
ways of evaluating QA systems, and they consider issues for future research.

While we have tried to provide as broad and comprehensive a view of CL and
NLP as possible, this handbook is, inevitably, not exhaustive. Many more chapters
could have been added on a host of important issues, and the field would still not
have been fully covered. Considerations of space and manageability have forced
us to limit the volume to a subset of central research themes. One might take issue
with our selection, or with the way that we have chosen to organize the chapters.
We suspect that this would be true for any handbook of this size. In many cases,
topics to which one might plausibly devote a separate chapter are treated from dif-
ferent perspectives in a number of chapters. So, for example, finite state methods
are discussed in the chapters on formal language theory, complexity, morphology,
and speech recognition. Therefore, we were able to forego a distinct chapter on
this area. In other instances, important new research, like work on text entailment,
is touched on lightly (see the brief discussions of text entailment in the chapters
on semantics and QA), but pressures of space and timely production prevented us
from including fuller treatments.

The survey of work provided here indicates that both symbolic and informa-
tion theoretic methods continue to play a major role across a large variety of tasks
and domains. Moreover, rather than these approaches being in conflict, there is
a strong movement towards hybrid models that integrate different approaches. It
seems likely that this trend will continue, as each method carries strengths and
weaknesses that complement the other. Symbolic techniques offer compact repre-
sentations of high level information that generally eludes statistical models, while
information theoretic procedures achieve a level of robustness and wide coverage
that symbolic systems rarely, if ever, achieve on their own.

Above all the chapters of this volume give a clear view of the remarkable diver-
sity and vitality of research being done in CL and NLP, and the enormous progress
that has been made in these areas over the past several decades. We hope that the
handbook communicates some of the excitement and the satisfaction that we and
our colleagues experience from our work in this amazing field.

PartI Formal Foundations

1 Formal Language Theory

SHULY WINTNER

1 Introduction

This chapter provides a gentle introduction to formal language theory, aimed at
readers with little background in formal systems. The motivation is natural lan-
guage processing (NLP), and the presentation is geared towards NLP applications,
with linguistically motivated examples, but without compromising mathematical
rigor.

The text covers elementary formal language theory, including: regular lan-
guages and regular expressions; languages vs. computational machinery; finite
state automata; regular relations and finite state transducers; context-free gram-
mars and languages; the Chomsky hierarchy; weak and strong generative
capacity; and mildly context-sensitive languages.

2 Basic Notions

Formal languages are defined with respect to a given alphabet, which is a finite
set of symbols, each of which is called a letter. This notation does not mean, how-
ever, that elements of the alphabet must be “ordinary” letters; they can be any
symbol, such as numbers, or digits, or words. It is customary to use ‘X’ to denote
the alphabet. A finite sequence of letters is called a string, or a word. For sim-
plicity, we usually forsake the traditional sequence notation in favor of a more
straightforward representation of strings.

Example 1 (Strings). Let ¥ ={0,1} be an alphabet. Then all binary numbers
are strings over X. Instead of (0,1,1,0,1) we usually write 01101. If ¥ =
{a,b,c,d,...,y,z}is an alphabet, then cat, incredulous, and supercalifragilisticexp-
ialidocious are strings, as are tac, qqq, and kjshdflkwjehr.

The length of a string w is the number of letters in the sequence, and is denoted
|w|. The unique string of length 0 is called the empty string and is usually denoted €
(but sometimes A).

12 Shuly Wintner

Let w1 = (x1,...,x4) and w2 = (y1,...,ym) be two strings over the same
alphabet X. The concatenation of w; and wp, denoted w; - wy, is the string
(x1,..., %0, Y1,-..,Ym). Note that the length of w; - w is the sum of the lengths of
wy and wy: |wy - wy| = |wy| + |wa|. When it is clear from the context, we sometimes
omit the *” symbol when depicting concatenation.

Example 2 (Concatenation). Let ¥ ={a,b,c,d,...,y,z} be an alphabet. Then master -
mind = mastermind, mind - master= mindmaster, and master - master=
mastermaster. Similarly, learn - s=learns, learn - ed=Ilearned, and learn -
ing = learning.

Notice that when the empty string ¢ is concatenated with any string w, the
resulting string is w. Formally, for every string w, w-€ = ¢ - w = w.

We define an exponent operator over strings in the following way: for every
string w, w? (read: w raised to the power of zero) is defined as €. Then, for n > 0,
w" is defined as w"~! - w. Informally, w" is obtained by concatenating w with itself
n times. In particular, w! = w.

1 2 1

Example 3 (Exponent). If w = go, thenuw® = ¢, w' =w=go,w* =w! - w=w -w=

gogo, w® = gogogo, and so on.

A few other notions that will be useful in the sequel: the reversal of a string w
is denoted wR and is obtained by writing w in the reverse order. Thus, if w =
<x1/x2/ e /xn>/ wR = (xn/ Xn—1,--- /xl)'

Example 4 (Reversal). Let ¥ = {a,b,c,d,...,y,z} be an alphabet. If w is the string
saw, then wX is the string was. If w = madam, then wR = madam = w. In this case
we say that w is a palindrome.

Given a string w, a substring of w is a sequence formed by taking contiguous
symbols of w in the order in which they occur in w: w, is a substring of w if and
only if there exist (possibly empty) strings w; and w; such that w = w; - w, - w,. Two
special cases of substrings are prefix and suffix: if w = w; - w, - w, then wy is a prefix
of w and w; is a suffix of w. Note that every prefix and every suffix is a substring,
but not every substring is a prefix or a suffix.

Example 5 (Substrings). Let X =f{a,b,c,d,...,y,z} be an alphabet and w=
indistinguishable a string over X. Then ¢, in, indis, indistinguish, and indistin-
guishable are prefixes of w, while ¢, e, able, distinguishable and indistinguish-
able are suffixes of w. Substrings that are neither prefixes nor suffixes include
distinguish, gui, and is.

Given an alphabet ¥, the set of all strings over X is denoted by X* (the reason
for this notation will become clear presently). Notice that no matter what the X is,
as long as it includes at least one symbol, X* is always infinite. A formal language
over an alphabet X is any subset of X*. Since X'* is always infinite, the number of
formal languages over X is also infinite.

As the following example demonstrates, formal languages are quite unlike
what one usually means when one uses the term “language” informally. They

Formal Language Theory 13

are essentially sets of strings of characters. Still, all natural languages are, at least
superficially, such string sets. Higher-level notions, relating the strings to objects
and actions in the world, are completely ignored by this view. While this is a rather
radical idealization, it is a useful one.

Example 6 (Languages). Let ¥ = {a, b, c, ..., y, z}. Then X* is the set of all strings
over the Latin alphabet. Any subset of this set is a language. In particular, the
following are formal languages:

2%

the set of strings consisting of consonants only;

the set of strings consisting of vowels only;

the set of strings each of which contains at least one vowel and at least one
consonant;

the set of palindromes: strings that read the same from right to left and from
left to right;

the set of strings whose length is less than 17 letters;

the set of single-letter strings;

the set {i, you, he, she, it, we, they};

the set of words occurring in Joyce’s Ulysses (ignoring punctuation etc.);

the empty set.

Note that the first five languages are infinite while the last five are finite.

We can now lift some of the string operations defined above to languages. If
L is a language then the reversal of L, denoted LR, is the language {w | wR € L},
that is, the set of reversed L-strings. Concatenation can also be lifted to lan-
guages: if L1 and L, are languages, then L; - L, is the language defined as
{w1 - wy | w1 € Ly and wy € Lo}: the concatenation of two languages is the set of
strings obtained by concatenating some word of the first language with some word
of the second.

Example 7 (Language operations). Let L1 ={i, you, he, she, it, we, they} and L=
{smile, sleep}. Then Llf = {i, uoy, eh, ehs, ti, ew, yeht} and L, - L, = {ismile, yous-
mile, hesmile, shesmile, itsmile, wesmile, theysmile, isleep, yousleep, hesleep,
shesleep, itsleep, wesleep, theysleep}.

In the same way we can define the exponent of a language: if L is a language
then LY is the language containing the empty string only, {¢}. Then, for i > 0,
LI = L-L7!, that is, L' is obtained by concatenating L with itself i times.

Example 8 (Language exponentiation). Let L be the set of words {bau, haus, hof,
frau}. Then L° = {¢}, L! = L and [? = {baubau, bauhaus, bauhof, baufrau,
hausbau, haushaus, haushof, hausfrau, hofbau, hofthaus, hofhof, hoffrau, fraubau,
frauhaus, frauhof, fraufrau}.

The language obtained by considering any number of concatenations of words
from L is called the Kleene closure of L and is denoted L*. Formally, L* = | J7°, L,

14 Shuly Wintner

which is a terse notation for the union of I? with L!, then with L2, L?f and so on
ad infinitum. When one wants to leave L° out, one writes Lt = (J7; L.

Example 9 (Kleene closure). Let L={dog, cat}. Observe that O={e}, L'= {dog,
cat}, L? = {catcat, catdog, dogcat, dogdog}, etc. Thus L* contains, among its infi-
nite set of strings, the strings ¢, cat, dog, catcat, catdog, dogcat, dogdog, catcatcat,
catdogcat, dogcatcat, dogdogcat, etc.

As another example, consider the alphabet ¥ = {a,b} and the language L =
{a,b} defined over X. L* is the set of all strings over a and b, which is exactly
the definition of X¥*. The notation for X* should now become clear: it is simply a
special case of L*, where L = X.

3 Language Classes and Linguistic Formalisms

Formal languages are sets of strings, subsets of X*, and they can be specified
using any of the specification methods for sets (of course, since languages may
be infinite, stipulation of their members is in the general case infeasible). When
languages are fairly simple (not arbitrarily complex), they can be characterized by
means of rules. In the following sections we define several mechanisms for defin-
ing languages, and focus on the classes of languages that can be defined with these
mechanisms. A formal mechanism with which formal languages can be defined is
a linguistic formalism. We use L (with or without subscripts) to denote languages,
and £ to denote classes of languages.

Example 10 (Language class). Let ¥ = {a,b,c, ..., y, z}. Let L be the set of all the
finite subsets of X¥*. Then L is a language class.

When classes of languages are discussed, some of the interesting properties to
be investigated are closures with respect to certain operators. The previous section
defined several operators, such as concatenation, union, Kleene closure, etc., on
languages. Given a particular (binary) operation, say union, it is interesting to
know whether a class of languages is closed under this operation. A class of lan-
guages L is said to be closed under some operation ‘e’ if and only if, whenever
two languages L; and L; are in the class (L1, Ly € £), the result of performing the
operation on the two languages is also in this class: L1 ¢ Ly € L.

Closure properties have a theoretical interest in and by themselves, but they
are especially important when one is interested in processing languages. Given an
efficient computational implementation for a class of languages (for example, an
algorithm that determines membership: whether a given string indeed belongs to a
given language), one can use the operators that the class is closed under, and still
preserve computational efficiency in processing. We will see such examples in the
following sections.

The membership problem is one of the fundamental questions of interest con-
cerned with language classes. As we shall see, the more expressive the class,
the harder it is to determine membership in languages of this class. Algorithms
that determine membership are called recognition algorithms; when a recognition

Formal Language Theory 15

algorithm additionally provides the structure that the formalism induces on the
string in question, it is called a parsing algorithm.

4 Regular Languages

4.1 Regular expressions

The first linguistic formalism we discuss is regular expressions. These are expres-
sions over some alphabet ¥, augmented by some special characters. We define a
mapping, called denotation, from regular expressions to sets of strings over X, such
that every well-formed regular expression denotes a set of strings, or a language.

DEFINITION 1. Given an alphabet X, the set of regular expressions over X is defined
as follows:

@ is a regular expression;

€ is a reqular expression;

ifa € X is a letter, then a is a reqular expression;

if 1 and ry are regular expressions, then so are (r1 + rp) and (r1 - 12);
if r is a regular expression, then so is (r)*;

nothing else is a reqular expression over X.

Example 11 (Regular expressions). Let X be the alphabet {a, b, c, ..., y, z}. Some
regular expressions over this alphabet are ¢, a, ((c - a) - t), (((m - e) - (0)*) - w),
@+E+ G+ (+uw))), (@+ €+ G+ (0+uw)))* etc.

DEFINITION 2. Given a regular expression t, its denotation, [r]l, is a set of strings
defined as follows:

81 = {3, the empty set;

[[ell = {€}, the singleton set containing the empty string;

ifa € X isaletter, then [[a]l = {a}, the singleton set containing a only;

if r1 and ry are two regular expressions whose denotations are [r1]l and [ry],
respectively, then [(r1 + ro)]l = [r1 1 U [[r2]l and [(r1 - r2)] = [0 - [r21;

o ifrisa reqular expression whose denotation is [r]] then [(r)*]] = [r]I*.

Example 12 (Regular expressions). Following are the denotations of the regular
expressions of the previous example:

@ @

€ {e}

a {a}

(c-a)-1) {c-a-t}

(((m-e)-(0)*) - w) {mew, meow, meoow, meooow, meoooow, ...}

@+ e+ G+ (0+uw))) {a,e,i,0,u}
((a+ e+ G+ (0+uw)))* the set containing all strings of 0 or more vowels

16 Shuly Wintner

Regular expressions are useful because they facilitate specification of complex
languages in a formal, concise way. Of course, finite languages can still be specified
by enumerating their members; but infinite languages are much easier to specify
with a regular expression, as the last instance of the above example shows.

For simplicity, we omit the parentheses around regular expressions when no
confusion can be caused. Thus, the expression ((a + (¢ + (i + (0 4+ u)))))* is written
as (@a+e+i+o0+w* Also, if ¥ = {ay,ay,...,a,}, we use X as a shorthand
notation for a; +a + - - - + a,. As in the case of string concatenation and language
concatenation, we sometimes omit the *-” operator in regular expressions, so that
the expression ¢ - a - t can be written cat.

Example 13 (Regular expressions). Given the alphabet of all English letters, X =
{a,b,c,...,y,z}, the language X* is denoted by the regular expression X*. The set
of all strings which contain a vowel is denoted by X* - (a +e+i+4+0+u) - X*. The
set of all strings that begin in “un” is denoted by (un) X*. The set of strings that
end in either “tion” or “sion” is denoted by X* - (s + t) - (ion). Note that all these
languages are infinite.

The class of languages which can be expressed as the denotation of regular
expressions is called the class of regular languages.

DEFINITION 3. A language L is regular iff there exists a reqular expression r such that
L=[rl.

It is a mathematical fact that some languages, subsets of X*, are not regular. We
will encounter such languages in the sequel.

4.2 Properties of regular languages

The class of regular languages is interesting because of its “nice” properties, which
we review here. It should be fairly easy to see that regular languages are closed
under union, concatenation, and Kleene closure. Given two regular languages, L
and Ly, there must exist two regular expressions, 71 and r, such that [r1]] = L; and
[[r2]l = L. It is therefore possible to form new regular expressions based on r; and
r2, such as r1 - 2, 1 + r2 and r]. Now, by the definition of regular expressions and
their denotations, it follows that the denotation of 71 - 72 is L1 - Lo: [[r1 - 2]l = L1 - Lo.
Since r1 - 7 is a regular expression, its denotation is a regular language, and hence
L1-L; is aregular language. Hence the regular languages are closed under concate-
nation. In exactly the same way we can prove that the class of regular languages
is closed under union and Kleene closure.

One of the reasons for the attractiveness of regular languages is that they are
known to be closed under a wealth of useful operations: intersection, complemen-
tation, exponentiation, substitution, homomorphism, etc. These properties come
in handy both in practical applications that use regular languages and in mathe-
matical proofs that concern them. For example, several formalisms extend regular
expressions by allowing one to express regular languages using not only the three

Formal Language Theory 17

basic operations, but also a wealth of other operations (that the class of regular
languages is closed under). It is worth noting that such “good behavior” is not
exhibited by more complex classes of languages.

4.3 Finite state automata

Regular expressions are a declarative formalism for specifying (regular) lan-
guages. We now present languages as entities generated by a computation. This
is a very common situation in formal language theory: many language classes
are associated with computing machinery that generates them. The dual view of
languages (as the denotation of some specifying formalism and as the output of a
computational process) is central in formal language theory.

The computational device we define in this section is finite state automata (FSA).
Informally, they consist of a finite set of states (sometimes called nodes or vertices),
connected by a finite number of transitions (also called edges or links). Each of the
transitions is labeled by a letter, taken from some finite alphabet ¥'. A computation
starts at a designated state, the start state or initial state, and it moves from one
state to another along the labeled transitions. As it moves, it prints the letter which
labels the transition. Thus, during a computation, a string of letters is printed out.
Some of the states of the machine are designated final states, or accepting states.
Whenever the computation reaches a final state, the string that was printed so
far is said to be accepted by the machine. Since each computation defines a string,
the set of all possible computations defines a set of strings or, in other words, a
language. We say that this language is accepted or generated by the machine.

DEFINITION 4. A finite state automaton is a five-tuple (Q,qo, X, 8, F), where X is a
finite set of alphabet symbols, Q is a finite set of states, qo € Q is the initial state,
F € Qs a set of final states, and § : Q x X x Q is a relation from states and alphabet
symbols to states.

Example 14 (Finite state automata). Finite state automata are depicted graphically,
with circles for states and arrows for the transitions. The initial state is shaded
and the final states are depicted by two concentric circles. The finite state
automaton A=(Q, ¥, qo, 8, F), where Q ={q0,91, 92,93}, X ={c,a,t,r}, F={g3}, and
§={{q0,¢,q1), (91,4,92), (92, t,93), (92,7, 43)}, is depicted graphically as follows:

t

To define the language generated by an FSA, we first extend the transition
relation from single edges to paths by extending the transition relation § to its
reflexive transitive closure, §. This relation assigns a string to each path (it also
assumes that an empty path, decorated by ¢, leads from each state to itself). We
focus on paths that lead from the initial state to some final state. The strings that
decorate these paths are said to be accepted by the FSA, and the language of the
FSA is the set of all these strings. In other words, in order for a string to be in the

18 Shuly Wintner

language of the FSA, there must be a path in the FSA which leads from the initial
state to some final state decorated by the string. Paths that lead to non-final states
do not define accepted strings.

DEFINITION 5. Given an FSA A = (Q, q0, X, 8, F), the reflexive transitive closure of the
transition relation 8 is 8, defined as follows:

e foreverystateq e Q, (q,€,9) € 3;
o for every string w € X* and letter a € ¥, if (q,w,q) € § and (¢,a,q9") € 8, then
qw-aq") e 5.

A string w is accepted by A if and only if there exists a state qf € F such that 8(qo,w) =
qr. The language of A is the set of all the strings accepted by it: L(A) = {w | there exists

qr € F such that S(qo,w) = qf}.

Example 15 (Language accepted by an FSA). For the finite state automaton of
Example 14, § is the following set of triples: (qo, €, 90), (q1,€,91), (92, €,92), (43, €,43),
(qo,¢,q1), (q1,4,92), (92, t,93), (92,7, 93), (Go, ca,q2), (q1,at,43), (q1,ar,q3), (qo, cat, g3),
(o, car, q3). The language of the FSA is thus {cat, car}.

Example 16 (Finite state automata). Following are some simple FSA and the lan-
guages they generate.
FSA, A L)

a
(@)
@ ©

a
’ a at ={a, aa, aaa, aaaa, ...}

We now slightly amend the definition of finite state automata to include what is
called e-moves. By our original definition, the transition relation § is a relation from
states and alphabet symbols to states. We extend § such that its second coordinate
is now X' U {e}, that is, any edge in an automaton can be labeled either by some
alphabet symbol or by the special symbol €, which as usual denotes the empty
word. The implication is that a computation can move from one state to another
over an e-transition without printing out any symbol.

=

a* = {e, a, aa, aaa, aaaa, . ..}

Example 17 (Automata with e-moves). The language accepted by the following
automaton is {do, undo, done, undone}:
u n d 0 n e
() (72) (75) (72) (75)
D)) —)

€ €

Formal Language Theory 19

Finite state automata, just like regular expressions, are devices for defining for-
mal languages. The major theorem of regular languages states that the class of
languages which can be generated by FSA is exactly the class of regular languages.
Furthermore, there are simple and efficient algorithms for “translating” a regular
expression to an equivalent automaton and vice versa.

THEOREM 1. A language L is reqular iff there exists an FSA A such that L = L(A).

Example 18 (Equivalence of finite state automata and regular expressions). For each of
the regular expressions of Example 12 we depict an equivalent automaton below:

’
a
: @—

c

((c-a)-t) q0

—~©
—©

©)

® G

(((m -e) - (0)*) - w) 90

a,e,i,0,u
@+ e+ i+ ©0+w)))

(@+ €+ @G+ (+w)HN*

© @ @ ©
°C@ @
©

a,e,i,0,U

®
)

4.4 Minimization and determinization

The finite state automata presented above are non-deterministic. By this we mean
that when the computation reaches a certain state, the next state is not uniquely
determined by the next alphabet symbol to be printed. There might very well be
more than one state that can be reached by a transition that is labeled by some sym-
bol. This is because we defined automata using a transition relation, §, which is not
required to be functional. For some state q and alphabet symbol a, § might include
the two pairs (g,a,41) and (g,4, g2) with g1 # g». Furthermore, when we extended
§ to allow e-transitions, we added yet another dimension of non-determinism:
when the machine is in a certain state 4 and an e-arc leaves g, the computation
must “guess” whether to traverse this arc.

DEFINITION 6. An FSA A = (Q, q0, X, 8, F) is deterministic iff it has no e-transitions
and § is a function from Q x X to Q.

Much of the appeal of finite state automata lies in their efficiency; and their
efficiency is in great part due to the fact that, given some deterministic FSA A and
a string w, it is possible to determine whether or not w € L(A) by “walking” the
path labeled w, starting with the initial state of A, and checking whether the walk
leads to a final state. Such a walk takes time that is proportional to the length of w,
and is completely independent of the number of states in A. We therefore say that

20 Shuly Wintner

the membership problem for FSA can be solved in linear time. But when automata
are non-deterministic, an element of guessing is introduced, which may impair
the efficiency: no longer is there a single walk along a single path labeled w, and
some control mechanism must be introduced to check that all possible paths are
taken.

Non-determinism is important because it is sometimes much easier to construct
anon-deterministic automaton for some language. Fortunately, we can rely on two
very important results: every non-deterministic finite state automaton is equiva-
lent to some deterministic one; and every finite state automaton is equivalent to
one that has a minimum number of nodes, and the minimal automaton is unique.
We now explain these results.

First, it is important to clarify what is meant by equivalent. We say that two finite
state automata are equivalent if and only if they accept the same language.

DEFINITION 7. Two FSA A; and Aj are equivalent iff L(A1) = L(Ap).

Example 19 (Equivalent automata). The following three finite state automata are
equivalent: they all accept the set {go, gone, going}.

n 8
! O——0
& 0 n e
A O O © O ®
0 i n &g
§ _ -0 O O O)
8 0 n e
42 O O O ©)
8
0
O——0
8 0
O O

Az

Note that A1 is deterministic: for any state and alphabet symbol there is at most
one possible transition. A is not deterministic: the initial state has three out-
going arcs all labeled by g. The third automaton, A3, has e-arcs and hence is
non-deterministic. While A, might be the most readable, A; is the most compact
as it has the fewest nodes.

Given a non-deterministic FSA A, it is always possible to construct an equiv-
alent deterministic automaton, one whose next state is fully determined by the
current state and the alphabet symbol, and which contains no e-moves. Some-
times this construction yields an automaton with more states than the original,

Formal Language Theory 21

non-deterministic one (in the worst case, the number of states in the deterministic
automaton can be exponential in the size of the non-deterministic one). However,
the deterministic automaton can then be minimized such that it is guaranteed that
no deterministic finite state automaton generating the same language is smaller.
Thus, it is always possible to determinize and then minimize a given automaton
without affecting the language it generates.

THEOREM 2. For every FSA A (with n states) there exists a deterministic FSA A" (with
at most 2" states) such that L(A) = L(A").

THEOREM 3. For every reqular language L there exists a minimal FSA A such that
no other FSA A’ such that L(A) = L(A’) has fewer states than A. A is unique (up to
isomorphism).

4.5 Operations on finite state automata

We know from Section 4.3 that finite state automata are equivalent to regular
expressions; we also know from Section 4.2 that the regular languages are closed
under several operations, including union, concatenation, and Kleene closure. So,
for example, if L1 and L; are two regular languages, there exist automata A; and
Ap which accept them, respectively. Since we know that L; U L, is also a regu-
lar language, there must be an automaton which accepts it as well. The question
is, can this automaton be constructed using the automata A; and A;? In this
section we show how simple operations on finite state automata correspond to
some operators on languages.

We start with concatenation. Suppose that A; is a finite state automaton such
that L(A;) = Ly, and similarly that A, is an automaton such that L(Az) = L. We
describe an automaton A such that L(A) = L1 - L. Aword wisin L; - Ly if and only
if it can be broken into two parts, w; and w, such that w = wy - wp, and wy € Ly,
wy € Ly. In terms of automata, this means that there is an accepting path for w; in
A1 and an accepting path for w; in A; so if we allow an e-transition from all the
final states of A1 to the initial state of A», we will have accepting paths for words
of L1 - Lp. The finite state automaton A is constructed by combining A; and A in
the following way: its set of states, Q, is the union of Q; and Q»; its alphabet is the
union of the two alphabets; its initial state is the initial state of Ay; its final states
are the final states of A,; and its transition relation is obtained by adding to §; U 6>
the set of e-moves described above: {{gf,€,qo0,) | qf € F1} where qo, is the initial
state of A,.

In a very similar way, an automaton A can be constructed whose languages
is L1 U Lp by combining A; and Aj;. Here, one should notice that for a word to be
accepted by A it must be accepted either by A; or by A; (or by both). The combined
automaton will have an accepting path for every accepting path in A; and in A;.
The idea is to add a new initial state to A, from which two e-arcs lead to the initial
states of A1 and Aj. The states of A are the union of the states of A1 and Aj, plus

22 Shuly Wintner

the new initial state. The transition relation is the union of §; with &, plus the new
e-arcs. The final states are the union of F; and F5.

An extension of the same technique to construct the Kleene closure of an
automaton is rather straightforward. However, all these results are not surprising,
as we have already seen in Section 4.2 that the regular languages are closed under
these operations. Thinking of languages in terms of the automata that accept them
comes in handy when one wants to show that the regular languages are closed
under other operations, where the regular expression notation is not very sugges-
tive of how to approach the problem. Consider the operation of complementation:
if L is a regular language over an alphabet X, we say that the complement of L is
the set of all the words (in X*) that are not in L, and write L for this set. Formally,
L = ¥*\ L. Given a regular expression 7, it is not clear what regular expression 7’
is such that [#']] = [7]. However, with automata this becomes much easier.

Assume that a finite state automaton A is such that L(A) = L. Assume also that
A is deterministic. To construct an automaton for the complemented language,
all one has to do is change all final states to non-final, and all non-final states to
final. In other words, if A = (Q, X, g0, §, F), then A=(Q, %, g0, 8, Q \ F) is such that
L(A) = L. This is because every accepting path in A is not accepting in A, and vice
versa.

Now that we know that the regular languages are closed under complementa-
tion, it is easy to show that they are closed under intersection: if L1 and L, are
regular languages, then L1 N Ly is also regular. This follows directly from funda-
mental theorems of set theory, since L1 N Ly can actually be written as L1 ULy, and
we already know that the regular languages are closed under union and comple-
mentation. In fact, construction of an automaton for the intersection language is
not very difficult, although it is less straightforward than the previous examples.

4.6 Applications of finite state automata in natural
language processing

Finite state automata are computational devices that generate regular languages,
but they can also be viewed as recognizing devices: given some automaton A and a
word w, it is easy to determine whether w € L(A). Observe that such a task can be
performed in time linear in the length of w, hence the efficiency of the represen-
tation is optimal. This reversed view of automata motivates their use for a simple
yet necessary application of natural language processing: dictionary lookup.

Example 20 (Dictionaries as finite state automata). Many NLP applications require
the use of lexicons or dictionaries, sometimes storing hundreds of thousands of
entries. Finite state automata provide an efficient means for storing dictionar-
ies, accessing them, and modifying their contents. Assume that an alphabet is
fixed (say, ¥ ={a, b, ..., z}) and consider how a single word, say go, can be repre-
sented. As we have seen above, a naive representation would be to construct an
automaton with a single path whose arcs are labeled by the letters of the word go:

Formal Language Theory 23

8 0
50" Oo0——0—®
To represent more than one word, add paths to the FSA, one path for each
additional word. For example, after adding the words gone and going, we obtain:

g 0 i n 8
O O O ©
. n e
g0, gone, going : O 'e) ®

. 8 0 n e
go, gone, going : O 'e) © 'e) ®

The organization of the lexicon as outlined above is extremely simplistic. A
possible extension attaches to the final states of the FSA additional information
pertaining to the words that decorate the paths to those states. Such informa-
tion can include definitions, morphological information, translations, etc. FSA are
thus suitable for representing various kinds of dictionaries, in addition to simple
lexicons.

Regular languages are particularly appealing for natural language processing
for two main reasons. First, it turns out that most phonological and morphologi-
cal processes can be straightforwardly described using the operations that regular
languages are closed under, in particular concatenation. With very few excep-
tions (such as the interdigitation word-formation processes of Semitic languages
or the duplication phenomena of some Asian languages), the morphology of most
natural languages is limited to simple concatenation of affixes, with some morpho-
phonological alternations, usually on a morpheme boundary. Such phenomena are
easy to model with regular languages, and hence are easy to implement with finite
state automata. Second, many of the algorithms one would want to apply to finite
state automata take time proportional to the length of the word being processed,
independently of the size of the automaton. Finally, the various closure properties
facilitate modular development of FSA for natural languages.

4.7 Regular relations

While finite state automata, which define (regular) languages, are sufficient for
some natural language applications, it is often useful to have a mechanism for
relating two (formal) languages. For example, a part-of-speech tagger can be
viewed as an application that relates a set of natural language strings (the source
language) to a set of part-of-speech tags (the target language). A morphological

24 Shuly Wintner

analyzer can be viewed as a relation between natural language strings (the surface
forms of words) and their internal structure (say, as sequences of morphemes).
In this section we discuss a computational device, very similar to finite state
automata, which defines a relation over two regular languages.

Example 21 (Relations over languages). Consider a simple part-of-speech tagger: an
application which associates with every word in some natural language a tag,
drawn from a finite set of tags. In terms of formal languages, such an applica-
tion implements a relation over two languages. Assume that the natural language
is defined over X1 = {a,b,...,z} and that the set of tags is ¥, = {PRON, V, DET,
ADJ, N, P}. Then the part-of-speech relation might contain the following pairs
(here, a string over X is mapped to a single element of X»):

1 PRON the DET
know V Cat N
some DET in P
new ADJ the DET
tricks N Hat N
said VvV

As another example, assume that X1 is as above, and X is a set of part-of-speech
and morphological tags, including {-PRON, -V, -DET, -ADJ, -N, -B, -1, -2, -3, -sg,
-pl, -pres, -past, -def, -indef}. A morphological analyzer is a relation between a
language over X1 and a language over X,. Some of the pairs in such a relation are:

I I-PRON-1-sg the the-DET-def
know know-V-pres Cat cat-N-sg
some some-DET-indef in in-P

new new-ADJ the the-DET-def
tricks trick-N-pl Hat hat-N-sg

said say-V-past

Finally, consider the relation that maps every English noun in singular to its plu-

ral form. While the relation is highly regular (namely, adding “s” to the singular
form), some nouns are irregular. Some instances of this relation are:

cat cats hat hats
ox oxen child children
mouse mice sheep sheep

goose geese

Summing up, a regular relation is defined over two alphabets, ¥; and Xj.
Of course, the two alphabets can be identical, but for many natural language
applications they differ. If a relation in X* x X* is regular, its projections on both
coordinates are regular languages (not all relations that satisfy this condition are
regular; additional constraints must hold on the underlying mapping which we

Formal Language Theory 25

ignore here). Informally, a regular relation is a set of pairs, each of which consists
of one string over X1 and one string over X, such that both the set of strings
over X1 and that over X constitute regular languages. We provide a precise
characterization of regular relations via finite state transducers below.

4.8 Finite state transducers

Finite state automata are a computational device for defining regular languages;
in a very similar way, finite state transducers (FSTs) are a computational device for
defining regular relations. Transducers are similar to automata, the only difference
being that the edges are not labeled by single letters, but rather by pairs of sym-
bols: one symbol from ¥ and one symbol from X». The following is a preliminary
definition that we will revise presently:

DEFINITION 8. A finite state transducer is a six-tuple (Q, qo, Z1, X2, 8, F), where Q is
a finite set of states, qo € Q is the initial state, F C Q is the set of final states, X1 and X,
are alphabets, and 8 is a subset of Q x X1 x X5 x Q.

Example 22 (Finite state transducers). Following is a finite state transducer relating
the singular forms of two English words with their plural form. In this case,
both alphabets are identical: X1 =Xy ={a,b,...,z}. The set of nodes is Q={q1,
g2, - -.,q11}, the initial state is g and the set of final states is F = {g5, q11}. The transi-
tions from one state to another are depicted as labeled edges; each edge bears two
symbols, one from X7 and one from X, separated by a colon (:). So, for example,
(91,0,¢,4q2) is an element of §.

g:8 o:e /\ o:e m s:8 e:e O
(@ EH—E—
s:s h:h e:e e:e p:r
(3 (78 (79
————()
Observe that each path in this device defines fwo strings: a concatenation of the
left-hand-side labels of the arcs, and a concatenation of the right-hand-side labels.

The upper path of the above transducer thus defines the pair goose:geese, whereas
the lower path defines the pair sheep:sheep.

What constitutes a computation with a transducer? Similarly to the case of
automata, a computation amounts to “walking” a path of the transducer, start-
ing from the initial state and ending in some final state. Along the path, edges
bear bi-symbol labels: one can view the left-hand-side symbol as an “input” sym-
bol and the right-hand-side symbol as an “output” symbol. Thus, each path of
the transducer defines a pair of strings, an input string (over X7) and an output
string (over X»). This pair of strings is a member of the relation defined by the
transducer.

26 Shuly Wintner

DEFINITION 9. Let T = (Q,q0, X1, 2,8, F) be a finite state transducer. Define § C
Q x X x X3 x Q as follows:

o foreachqe Q, 5(q ¢ ¢,q);
o if(q1, w1, w2, q2) and §(q2,a,b,q3), then 8(q1, w1 - a,wy - b, q3).

Then a pair (w1, ws) is accepted (or generated) by T if and only if §(qo, wy, wo, wy) holds
for some final state gs € F. The relation defined by the transducer is the set of all the
pairs it accepts.

As a shorthand notation, when an edge is labeled by two identical symbols, we
depict only one of them and omit the colon.

The above definition of finite state transducers is not very useful: since each arc
is labeled by exactly one symbol of ¥ and exactly one symbol of X, any rela-
tion that is implemented by such a transducer must relate only strings of exactly
the same length. This should not be the case, and to overcome this limitation we
extend the definition of § to allow also e-labels. In the extended definition, § is a
relation over Q, X1 U{e}, XrU{e} and Q. Thus a transition from one state to another
can involve “reading” a symbol of ¥ without “writing” any symbol of X, or the
other way round.

Example 23 (Finite state transducer with e-labels). With the extended definition of
transducers, we depict below an expanded transducer for singular—plural noun
pairs in English.

e O O O ©

s h e e p
O O O O ©

0
X €:e€ €:n
0 O O ©

0:1 Uu:e S:C e

O O O O ®

’

Note that e-labels can occur on the left or on the right of the “:’ separator. The
pairs accepted by this transducer are goose:geese, sheep:sheep, ox:oxen, and
mouse:mice.

4.9 Properties of regular relations

The extension of automata to transducers carries with it some interesting results.
First and foremost, finite state transducers define exactly the set of regular rela-
tions. Many of the closure properties of automata are valid for transducers, but
some are not. As these properties bear not only theoretical but also practical
significance, we discuss them in more detail in this section.

Given some transducer T, consider what happens when the labels on the arcs
of T are modified such that only the left-hand symbol remains. In other words,

Formal Language Theory 27

consider what is obtained when the transition relation § is projected on three of its
coordinates: Q, X1, and Q only, ignoring the ¥ coordinate. It is easy to see that
a finite state automaton is obtained. We call this automaton the projection of T to
%1. In the same way, we can define the projection of T to X» by ignoring X7 in the
transition relation. Since both projections yield finite state automata, they induce
regular languages. Therefore the relation defined by T is a regular relation.

We can now consider certain operations on regular relations, inspired by similar
operations on regular languages. For example, union is very easy to define. Recall
that a regular relation is a subset of the Cartesian product of XJ x X7, that is,
a set of pairs. If Ry and R; are regular relations, then R; U R, is well defined,
and it is straightforward to show that it is a regular relation. To define the union
operation directly over transducers, extend the construction of FSA delineated in
Section 4.5, namely add a new initial state with two edges labeled ¢ :¢ leading
from it to the initial states of the given transducers. In a similar way, concatenation
can be extended to regular relations: if Ry and R, are regular relations then R; -
Ry = {{w1 - wo, w3 - wy) | (w1, ws) € Ry and (w7, wy) € Ry}. Again, the construction
for FSA can be straightforwardly extended to the case of transducers, and it is easy
to show that R; - R is a regular relation.

Example 24 (Operations on finite state transducers). Let Rq be the following relation,
mapping some English words to their German counterparts: R = {tomato:Tomate,
cucumber:Gurke, grapefruit:Grapefruit, pineapple:Ananas, coconut:Koko}. Let R»
be a similar relation: Ry ={grapefruit:Pampelmuse, coconut:Kokusnufs}. Then:
R1 U Ry ={tomato:Tomate, cucumber:Gurke, grapefruit:Grapefruit, grapefruit:
Pampelmuse, pineapple:Ananas, coconut:Koko, coconut:Kokusnufs}.

A rather surprising fact is that regular relations are not closed under intersec-
tion. In other words, if Ry and R, are two regular relations, then it very well
might be the case that Ry N R; is not a regular relation. It will take us beyond
the scope of the material covered so far to explain this fact, but it is important to
remember it when dealing with finite state transducers. For this reason exactly it
follows that the class of regular relations is not closed under complementation: since
intersection can be expressed in terms of union and complementation, if regular
relations were closed under complementation they would have been closed also
under intersection, which we know is not the case.

A very useful operation that is defined for transducers is composition. Intuitively,
a transducer relates one word (“input”) with another (“output”). When we have
more than one transducer, we can view the output of the first transducer as the
input to the second. The composition of T and T, relates the input language of
T1 with the output language of T, bypassing the intermediate level (which is the
output of T1 and the input of T>).

DEFINITION 10. If Ry is a relation from X to X3 and Ry is a relation from X3 to X3
then the composition of Ry and Ry, denoted Ry o Ry, is a relation from X7 to X3 defined
as {{wy, w3) | there exists a string wy € X such that wyRyw; and waRows}.

28 Shuly Wintner

Example 25 (Composition of finite state transducers). Let Ry be the following rela-
tion, mapping some English words to their German counterparts: Ry = {tomato:
Tomate, cucumber:Gurke, grapefruit:Grapefruit, grapefruit:Pampelmuse, pine-
apple:Ananas, coconut:Koko, coconut:Kokusnufs}. Let R, be a similar relation,
mapping French words to their English translations: R, = {tomate:tomato,
ananas: pineapple, pamplemousse:grapefruit, concombre:cucumber, cornichon:
cucumber, noix-de-coco:coconut}. Then Ry o R is a relation mapping French
words to their German translations (the English translations are used to
compute the mapping, but are not part of the final relation): Ry o R; =
{tomate:Tomate, ananas:Ananas, pamplemousse:Grapefruit, pamplemousse:
Pampelmuse, concombre:Gurke, cornichon:Gurke, noix-de-coco:Koko, noix-de-
coco:KokusnufSe}.

5 Context-Free Languages

5.1 Where regular languages fail

Regular languages and relations are useful for various applications of natural lan-
guage processing, but there is a limit to what can be achieved with such means.
We mentioned in passing that not all languages over some alphabet X are regular;
we now look at what kind of languages lie beyond the regular ones.

To exemplify a non-regular language, consider a simple language over the
alphabet ¥ ={a,b} whose members are strings that consist of some number, 1,
of ‘a’s, followed by the same number of ‘b’s. Formally, this is the language L =
{a" - b" | n > 0}. Assume towards a contradiction that this language is regular, and
therefore a deterministic finite state automaton A exists whose language is L. Con-
sider the language L; = {a' | i > 0}. Since every string in this language is a prefix
of some string (' - b') of L, there must be a path in A starting from the initial state
for every string in L;. Of course, there is an infinite number of strings in L;, but by
its very nature, A has a finite number of states. Therefore there must be two dif-
ferent strings in L; that lead the automaton to a single state. In other words, there
exist two strings, @ and a*, such that j # kbut $ (qo,aj)y =14 (qg,ak). Let us call this
state g. There must be a path labeled b/ leading from g to some final state qf, since
the string a/b/ is in L. This situation is schematically depicted below (the dashed
arrows represent paths):

—_ - - -

~_—_ -

Therefore, there is also an accepting path a¥b/ in A, and hence also a*V/ is in L, in
contradiction to our assumption. Hence no deterministic finite state automaton
exists whose language is L.

Formal Language Theory 29

We have seen one language, namely L={a"-b" | n > 0}, which cannot be
defined by a finite state automaton and therefore is not regular. In fact, there are
several other such languages, and there is a well-known technique, the so-called
pumping lemma, for proving that certain languages are not regular. If a language is
not regular, then it cannot be denoted by a regular expression. We must look for
alternative means of specification for non-regular languages.

5.2 Grammars

In order to specify a class of more complex languages, we introduce the notion of
a grammar. Intuitively, a grammar is a set of rules that manipulate symbols. We
distinguish between two kinds of symbols: terminal ones, which should be thought
of as elements of the target language, and non-terminal ones, which are auxiliary
symbols that facilitate the specification. It might be instructive to think of the non-
terminal symbols as syntactic categories, such as Sentence, Noun Phrase, or Verb
Phrase. However, formally speaking, non-terminals have no “special,” external
interpretation where formal languages are concerned. Similarly, terminal symbols
might correspond to letters of some natural language, or to words, or to something
else: they are simply elements of some finite set.

Rules can express the internal structure of “phrases,” which should not nec-
essarily be viewed as natural language phrases. A rule is a non-empty sequence
of symbols, a mixture of terminals and non-terminals, with the only requirement
that the first element in the sequence be a non-terminal one (alternatively, one
can define a rule as an ordered pair whose first element is a non-terminal symbol
and whose second element is a sequence of symbols). We write such rules with a
special symbol, ‘—,” separating the distinguished leftmost non-terminal from the
rest of the sequence. The leftmost non-terminal is sometimes referred to as the head
of the rule, while the rest of the symbols are called the body of the rule.

Example 26 (Rules). Assume that the set of terminals is {the, cat, in, hat} and the
set of non-terminals is {D, N, B NE, PP}. Then possible rules over these two sets
include:

D — the NP - DN
N — cat PP — P NP
N — hat NP — NP PP
P — in

Note that the terminal symbols correspond to words of English, and not to letters
as was the case above.

Consider the rule NP — D N. If we interpret NP as the syntactic category noun
phrase, D as determiner, and N as noun, then what the rule informally means is that
one possible way to construct a noun phrase is by concatenating a determiner with
anoun. More generally, a rule specifies one possible way to construct a “phrase” of

30 Shuly Wintner

the category indicated by its head: this way is by concatenating phrases of the cat-
egories indicated by the elements in the body of the rule. Of course, there might be
more than one way to construct a phrase of some category. For example, there are
two rules which define the structure of the category NP in Example 26: either by
concatenating a phrase of category D with one of category N, or by concatenating
an NP with a PP.

In Example 26, rules are of two kinds: the ones on the left have a single terminal
symbol in their body, while the ones on the right have one or more non-terminal
symbols, but no rule mixes both terminal and non-terminal symbols in its body.
While this is a common practice where grammars for natural languages are con-
cerned, nothing in the formalism requires such a format for rules. Indeed, rules
can mix any combination of terminal and non-terminal symbols in their bodies.

Formal language theory defines rules and grammars in a much broader way
than that which was discussed above, and the definition below is actually only
a special case of rules and grammars. For various reasons that have to do with
the format of the rules, this special case is known as context-free rules. This has
nothing to do with the ability of grammars to refer to context; the term should not
be taken mnemonically. In the next section we discuss other rule-based systems. In
this section, however, we use the terms rule and context-free rule interchangeably,
as we do for grammars, derivations, etc.

DEFINITION 11. A context-free grammar is a four-tuple G = (V, X, P,S), where V
is a finite set of non-terminal symbols, ¥ is an alphabet of terminal symbols, P C
V x (VU X)*isaset of rules and S € V is the start symbol.

Note that this definition permits rules with empty bodies. Such rules, which
consist of a left-hand-side only, are called e-rules, and are useful both for formal
and for natural languages. Example 33 below makes use of an e-rule.

Example 27 (Grammar). The set of rules depicted in Example 26 can constitute the
basis for a grammar G = (V, 2, P,S), where V = {D, N, B NP PP}, ¥ = {the, cat,
in, hat}, P is the set of rules, and the start symbol S is NP.

In the sequel we depict grammars by listing their rules only, as we did in Exam-
ple 26. We keep a convention of using uppercase letters for the non-terminals and
lowercase letters for the terminals, and we assume that the set of terminals is the
smallest that includes all the terminals mentioned in the rules, and the same for
the non-terminals. Finally, we assume that the start symbol is the head of the first
rule, unless stated otherwise.

5.3 Derivation

In order to define the language denoted by a grammar we need to define the
concept of derivation. Derivation is a relation that holds between two forms, each a
sequence of grammar symbols (terminal and/or non-terminal).

Formal Language Theory 31

DEFINITION 12. Let G = (V, X, P, S) be a grammar. The set of forms induced by G is
(VU X)*. A form a immediately derives a form B, denoted by « = B, if and only if
there exist y;, yr € (V.U X)* such that « = yjAy, and B = viyeyr, and A — y. is a rule
in P. A is called the selected symbol.

A form o immediately derives 8 if a single non-terminal symbol, A, occurs in «,
such that whatever is to its left in «, the (possibly empty) sequence of terminal and
non-terminal symbols y;, occurs at the leftmost edge of 8; and whatever is to the
right of A in «, namely the (possibly empty) sequence of symbols y;, occurs at the
rightmost edge of 8; and the remainder of 8, namely y., constitutes the body of
some grammar rule of which A is the head.

Example 28 (Immediate derivation). Let G be the grammar of Example 27. The set of
forms induced by G contains all the (infinitely many) sequences of elements from
V and X, such as (), (NP), (D cat P D hat), {D N), (the cat in the hat), etc.

Let us start with a simple form, (NP). Observe that it can be written as y;NPy;,
where both y; and y;, are empty. Observe also that NP is the head of some grammar
rule: the rule NP — D N. Therefore, the form is a good candidate for derivation:
if we replace the selected symbol NP with the body of the rule, while preserving
its environment, we obtain y;D Ny, = D N. Therefore, (N) = (D N).

We now apply the same process to (D N). This time the selected symbol is D
(we could have selected N, of course). The left context is again empty, while the
right context is ¥, = N. As there exists a grammar rule whose head is D, namely
D — the, we can replace the rule’s head by its body, preserving the context, and
obtain the form (the N). Hence (D N) = (the N).

Given the form (the N), there is exactly one non-terminal that we can select,
namely N. However, there are two rules that are headed by N: N — cat and
N — hat. We can select either of these rules to show that both (the N) = (the cat)
and (the N) = (the hat).

Since the form (the cat) consists of terminal symbols only, no non-terminal can
be selected and hence it derives no form.

We now extend the immediate derivation relation from a single step to an
arbitrary number of steps by considering the reflexive transitive closure of the
relation.

DEFINITION 13. The derivation relation, denoted ‘=, is defined recursively as follows:
aSBifa=porife=yandy = B.

Example 29 (Extended derivation). In Example 28 we showed that the following
immediate derivations hold: (NP)= (D N); (D N)=> (the N); (the N)=> (the cat).
Therefore, (NP) = (the cat).

The derivation relation is the basis for defining the language denoted by a gram-
mar. Consider the form obtained by taking a single grammar symbol, say (A); if
this form derives a sequence of terminals, this string is a member of the language
denoted by A. The language of a grammar G, L(G), is the language denoted by its
start symbol.

32 Shuly Wintner

DEFINITION 14. Let G = (V, X, P, S) be a grammar. The language of a non-terminal
AeVis

Lg(A)={a1 - - ay |a; € X forl <i<nand (A) = (a1,...,a4,)}
The language of the grammar G is L(G) = Lg(S).

Example 30 (Language of a grammar). Consider again the grammar G of Exam-
ple 27. It is fairly easy to see that the language denoted by the non-terminal symbol
D, Lg(D), is the singleton set {the}. Similarly, Lg(P) is {in} and Lg(IN) = {cat, hat}.
It is more difficult to define the languages denoted by the non-terminals NP and
PP, although it should be straightforward that the latter is obtained by concatenat-
ing {in} with the former. We claim without providing a proof that Lg(INP) is the
denotation of the regular expression (the - (cat + hat) - (in- the - (cat + hat))*).

5.4 Derivation trees

Sometimes two derivations of the same string differ only in the order in which
they were applied. Consider again the grammar of Example 27. Starting with the
form (NP) it is possible to derive the string the cat in two ways:

(1) (NP) = (DN) = (D cat) = (the cat)
(2) (NP) = (DN) = (the N) = (the cat)

Derivation (1) applies first the rule N — cat and then the rule D — the whereas
derivation (2) applies the same rules in the reverse order. But since both use
the same rules to derive the same string, it is sometimes useful to collapse such
“equivalent” derivations into one. To this end the notion of derivation trees is
introduced.

A derivation tree (sometimes called parse tree, or simply tree) is a visual aid
in depicting derivations, and a means for imposing structure on a grammatical
string. Trees consist of vertices and branches; a designated vertex, the root of the
tree, is depicted on the top. Branches are connections between pairs of vertices.
Intuitively, trees are depicted “upside down,” since their root is at the top and
their leaves are at the bottom. An example of a derivation tree for the string the cat
in the hat with the grammar of Example 27 is given in Example 31.

X FKNQ
L] fy

cat in the hat

Example 31 (Derivation tree).

Formal Language Theory 33

Formally, a tree consists of a finite set of vertices and a finite set of branches
(or arcs), each of which is an ordered pair of vertices. In addition, a tree has a
designated vertex, the root, which has two properties: it is not the target of any arc,
and every other vertex is accessible from it (by following one or more branches).
When talking about trees we sometimes use family notation: if a vertex v has a
branch leaving it which leads to some vertex u, then we say that v is the mother
of u and u is the daughter, or child, of v. If u has two daughters, we refer to them
as sisters. Derivation trees are defined with respect to some grammar G, and must
obey the following conditions:

(1) every vertex has a label, which is either a terminal symbol, a non-terminal
symbol, or €;

(2) the label of the root is the start symbol;

(3) if a vertex v has an outgoing branch, its label must be a non-terminal symbol;
furthermore, this symbol must be the head of some grammar rule; and the
elements in the body of the same rule must be the labels of the children of v,
in the same order;

(4) if a vertex is labeled ¢, it is the only child of its mother.

A leaf is a vertex with no outgoing branches. A tree induces a natural “left-to-
right” order on its leaves; when read from left to right, the sequence of leaves is
called the frontier, or yield, of the tree.

Derivation trees correspond very closely to derivations. In fact, it is easy to show
that a non-terminal symbol A derives a form « if and only if « is the yield of some
parse tree whose root is A. In other words, whenever some string can be derived
from a non-terminal, there exists a derivation tree for that string, with the same
non-terminal as its root. However, sometimes there exist different derivations of
the same string that correspond to a single tree. The tree representation collapses
exactly those derivations that differ from each other only in the order in which
rules are applied.

Sometimes, however, different derivations (of the same string!) correspond to
different trees. This can happen only when the derivations differ in the rules which
they apply. When more than one tree exists for some string, we say that the string
is ambiguous. Ambiguity is a major problem when grammars are used for certain
formal languages, in particular for programming languages. But for natural lan-
guages, ambiguity is unavoidable as it corresponds to properties of the natural
language itself.

Example 32 (Ambiguity). Consider again the grammar of Example 27, and the
string the cat in the hat in the hat. Intuitively, there can be (at least) two readings
for this string: one in which a certain cat wears a hat-in-a-hat, and one in which a
certain cat-in-a-hat is inside a hat. If we wanted to indicate the two readings with
parentheses, we would distinguish between

((the cat in the hat) in the hat)

and

(the cat in (the hat in the hat))

34 Shuly Wintner

This distinction in intuitive meaning is reflected in the grammar, and two different
derivation trees, corresponding to the two readings, are available for this string:

A N&
T/\V | T/ |
in the hat in the at the cat in the hat in the hat

Using linguistic terminology, in the left tree the second occurrence of the preposi-
tional phrase in the hat modifies the noun phrase the cat in the hat, whereas in the
right tree it only modifies the (first occurrence of) the noun phrase the hat. This
situation is known as syntactic or structural ambiguity.

5.5 Expressiveness

Context-free grammars are more expressive than regular expressions. In
Section 5.1 we claimed that the language L = {a"V" | n > 0} is not regular; we now
show a context-free grammar for this language. The grammar, G=(V, ¥, P, S), has
two terminal symbols, ¥ = {4, b}, and one non-terminal symbol, V = {S}. The idea
is that whenever S is used recursively in a derivation (rule 1), the current form is
extended by exactly one a on the left and one b on the right, hence the number of
‘a’s and ‘b’s must be equal.

Example 33 (A context-free grammar for L = {a"b" | n > 0}).

(1) S—aSb
2) S—e¢

DEFINITION 15. The class of languages that can be generated by context-free grammars
is the class of context-free languages.

The class of context-free languages properly contains the regular languages:
given some finite state automaton which generates some language L, it is always
possible to construct a context-free grammar whose language is L. We conclude
this section with a discussion of converting automata to context-free grammars.

Let A = (Q, 40,8, F) be a deterministic finite state automaton with no e-moves
over the alphabet ¥. The grammar we define to simulate A is G = (V, X, P, S),

Formal Language Theory 35

where the alphabet X is that of the automaton, and where the set of non-terminals,
V, is the set Q of the automaton states. The idea is that a single (immediate) deriva-
tion step with the grammar simulates a single arc traversal with the automaton.
Since automata states are simulated by grammar non-terminals, it is reasonable to
simulate the initial state by the start symbol, and hence the start symbol S is qo.
What is left, of course, are the grammar rules. These come in two varieties: first,
for every automaton arc §(g,4) = ¢’ we stipulate a rule g — a 4. Then, for every
final state qf € F, we add the rule gr — .

Example 34 (Simulating a finite state automaton by a grammar). Consider the automa-
ton (Q,qo,68,F) depicted below, where Q = {q0,91,92,93}, F = {g3}, and § is
{{90,m, q1), (91, €,92), (92,0, 92), (92, W, 43), (g0, W, 42)}:

‘11 ‘72

The grammar G=(V, X, P,S) which simulates this automaton has V ={qo,q1,
92,93}, S = qo, and the set of rules:

(1) go— maq
2 n—eq
B) q2—oq
4) q2—>wqs
6G) q0—>waq
(6) qg — €

The string meoow, for example, is generated by the automaton by walking along
the path g0 — 1 — g2 — g2 — 92 — g3. The same string is generated by the grammar
with the derivation

{90) $ (mqq) :2> (meqy) :3> (meoqy) :3> (meooqy) :4> (meoowqs) :6> (meoow)

Since every regular language is also a context-free language, and since we have
shown a context-free language that is not regular, we conclude that the class of
regular languages is properly contained within the class of context-free languages.

Observing the grammar of Example 34, a certain property of the rules stands
out: the body of each of the rules either consists of a terminal followed by a
non-terminal or is empty. This is a special case of what are known as right-
linear grammars. In a right-linear grammar, the body of each rule consists of a
(possibly empty) sequence of terminal symbols, optionally followed by a sin-
gle non-terminal symbol. Most importantly, no rule exists whose body contains
more than one non-terminal; and if a non-terminal occurs in the body, it is
in the final position. Right-linear grammars are a restricted variant of context-
free grammars, and it can be shown that they generate all and only the regular
languages.

36 Shuly Wintner

5.6 Formal properties of context-free languages

Context-free languages are more expressive than regular languages; this addi-
tional expressive power comes with a price: given an arbitrary context-free
grammar G and some string w, determining whether w € L(G) takes time pro-
portional to the cube of the length of w, O(lw|®) (in the worst case). In addition,
context-free languages are not closed under some of the operations that the regular
languages are closed under.

It should be fairly easy to see that context-free languages are closed under union.
Given two context-free grammars G1 = (V1, X1, P1,51) and G2 = (V2, X3, P2, S),
a grammar G = (V, X, P,S) whose language is L(G1) U L(G2) can be constructed
as follows: the alphabet X' is the union of ¥ and X», the non-terminal set V is a
union of V1 and V3, plus a new symbol S, which is the start symbol of G. Then,
the rules of G are just the union of the rules of G; and G, with two additional
rules: S - 51 and S — S, where 51 and S; are the start symbols of G; and G
respectively. Clearly, every derivation in G; can be simulated by a derivation in
G using the same rules exactly, starting with the rule S — S;, and similarly for
derivations in Gp. Also, since S is a new symbol, no other derivations in G are
possible. Therefore L(G) = L(G1) U L(Gy).

A similar idea can be used to show that the context-free languages are closed
under concatenation: here we only need one additional rule, namely S — 5 5,
and the rest of the construction is identical. Any derivation in G will “first” derive
a string of G1 (through S1) and then a string of G, (through S»). To show clo-
sure under the Kleene-closure operation, use a similar construction with the added
rulesS - eand S — S 5.

However, it is possible to show that the class of context-free languages is
not closed under intersection. That is, if Ly and L, are context-free languages,
then it is not guaranteed that L1 N Ly is context-free as well. From this fact
it follows that context-free languages are not closed under complementation
either. While context-free languages are not closed under intersection, they are
closed under intersection with regular languages: if L is a context-free lan-
guage and R is a regular language, then it is guaranteed that L N R is context-
free.

In the previous section we have shown a correspondence between two spec-
ification formalisms for regular languages: regular expressions and finite state
automata. For context-free languages, we focused on a declarative formalism,
namely context-free grammars, but they, too, can be specified using a computa-
tional model. This model is called push-down automata, and it consists of finite
state automata augmented with unbounded memory in the form of a stack. Com-
putations can use the stack to store and retrieve information: each transition
can either push a symbol (taken from a special alphabet) onto the top of the
stack, or pop one element off the top of the stack. A computation is success-
ful if it ends in a final state with an empty stack. It can be shown that the class
of languages defined by push-down automata is exactly the class of context-free
languages.

Formal Language Theory 37

5.7 Normal forms

The general definition of context-free grammars stipulates that the body of a rule
may consist of any sequence of terminal and non-terminal symbols. However, it is
possible to restrict the form of the rules without affecting the generative capacity
of the formalism. Such restrictions are known as normal forms and are the topic of
this section.

The best-known normal form is the Chomsky normal form (CNF): under this
definition, rules are restricted to be of either of two forms. The body of any rule in
a grammar may consist either of a single terminal symbol, or of exactly two non-
terminal symbols (as a special case, empty bodies are also allowed). For example,
the rules D — the and NP — D N can be included in a CNF grammar, but the
rule S — a Sb cannot.

Unlike the right-linear grammars defined in Section 5.5, which can only gen-
erate regular languages, CNF grammars are equivalent in their weak generative
capacity to general context-free grammars: it can be proven that for every context-
free language L there exists a CNF grammar G such that L = L(G). In other words,
CNF grammars can generate all the context-free languages.

The utility of normal forms is in their simplicity. When some property of context-
free languages has to be proven, it is sometimes much simpler to prove it for
the restricted version of the formalism (e.g., for CNF grammars only), because
the result can then extend to the entire class of languages. Similarly, processing
normal-form grammars may be simpler than processing the general class of gram-
mars. Thus, the first parsing algorithms for context-free grammars were limited
to grammars in CNF. In natural language grammars, a normal form can embody
the distinction between “real” grammar rules and the lexicon; a commonly used
normal form defines grammar rules to have either a single terminal symbol or any
sequence of zero or more non-terminal symbols in their body (notice that this is a
relaxation of CNF).

6 The Chomsky Hierarchy

6.1 A hierarchy of language classes

We focus in this section on grammars as formalisms which denote languages. We
have seen two types of grammars: context-free grammars, which generate the class
of context-free languages; and right-linear grammars, which generate the class of
regular languages. Right-linear grammars are a special case of context-free gram-
mars, where additional constraints are imposed on the form of the rules. More
generally, constraining the form of the rules can constrain the expressive power
of the formalism. Similarly, more freedom in the form of the rules can extend the
expressiveness of the formalism.

One way to achieve this is to allow more than a single non-terminal symbol
in the head of the rules or, in other words, restrict the application of rules to a

38 Shuly Wintner

specified context. In context-free grammars, a rule can be applied during a deriva-
tion whenever its head, A, is an element in a form. In the extended formalism such
a derivation is allowed only if the context of A in the form, that is, A’s neighbors to
the right and left, are as specified in the rule. Due to this reference to context, this
formalism is known as context-sensitive grammars. A rule in a context-sensitive
grammar has the form a1 A ap — o18ap, where o1, a2, and B are all (possibly
empty) sequences of terminal and non-terminal symbols. The other components
of context-sensitive grammars are as in context-free grammars.

As usual, the class of languages that can be generated by context-sensitive gram-
mars is called the context-sensitive languages. Considering that every context-free
grammar is a special case of context-sensitive grammars (with an empty con-
text), it should be clear that every context-free language is also context-sensitive
or, in other words, that the context-free languages are contained in the set of the
context-sensitive ones. As it turns out, this containment is proper, and there are
context-sensitive languages that are not context-free.

This establishes a hierarchy of classes of languages: the regular languages are
properly contained in the context-free languages, which are properly contained
in the context-sensitive languages. These, in turn, are known to be properly con-
tained in the set of languages generated by the so-called unrestricted or general
phrase-structure grammars (this set is called the recursively enumerable languages).
Each of the language classes in this hierarchy is associated with a computational
model: FSA and push-down automata for the regular and context-free languages
respectively; linear bounded Turing machines for the context-sensitive languages;
and Turing machines for the recursively enumerable languages.

This hierarchy of language classes is called the Chomsky hierarchy of languages,
and is schematically depicted in Figure 1.1.

6.2 The location of natural languages in the hierarchy

The Chomsky hierarchy of languages reflects a certain order of complexity: in
some sense, the lower the language class is in the hierarchy, the simpler are its
possible constructions. Furthermore, lower language classes allow for more effi-
cient processing (in particular, the recognition problem is tractable for regular and
context-free languages, but not for higher classes). If formal grammars are used
to express the structure of natural languages, then we must know the location of
these languages in the hierarchy.

Chomsky presents a theorem that says “English is not a regular language” (1957:
21); as for context-free languages, he says “I do not know whether or not English
is itself literally outside the range of such analyses” (1957: 34). For many years,
however, it was well accepted that natural languages were beyond the expres-
sive power of context-free grammars. This was only proven in the 1980s, when
two natural languages (Dutch and a dialect of Swiss German) were shown to
be trans-context-free (that is, beyond the expressive power of context-free gram-
mars). Still, the constructions in natural languages that necessitate more than

Formal Language Theory 39

Phrase-structure
languages

Context-sensitive
languages

Context-free
languages

Regular
languages

Figure 1.1 Chomsky’s hierarchy of languages.

context-free power are few and very specific. (Most of these constructions boil
down to patterns of the form a"b™c"d™, known as cross-serial dependencies; with
some mathematical machinery, based mostly on closure properties of the context-
free languages, it can be proven that languages that include such patterns cannot
be context-free.) This motivated the definition of the class of mildly context-sensitive
languages, which we discuss in Section 7.

6.3 Weak and strong generative capacity

So far we have only looked at grammars as generating sets of strings (i.e., lan-
guages), and ignored the structures that grammars impose on the strings in their
languages. In other words, when we say that English is not a regular language
we mean that no regular expression exists whose denotation is the set of all and
only the sentences of English. Similarly, when a claim is made that some natu-
ral language, say Dutch, is not context-free, it should be read as saying that no
context-free grammar exists whose language is Dutch. Such claims are propo-
sitions about the weak generative capacity of the formalisms involved: the weak
generative capacity of regular expressions is insufficient for generating English;
the weak generative capacity of context-free languages is insufficient for Dutch.
Where natural languages are concerned, however, weak generative capacity might

40 Shuly Wintner

not correctly characterize the relationship between a formalism (such as regular
expressions or context-free grammars) and a language (such as English or Dutch).
This is because one expects the formalism not only to be able to generate the strings
in a language, but also to assign them “correct” structures.

In the case of context-free grammars, the structure assigned to strings is a
derivation tree. Other linguistic formalisms may assign other kinds of objects to
their sentences. We say that the strong generative capacity of some formalism is
sufficient to generate some language if the formalism can (weakly) generate all
the strings in the language, and also to assign them the “correct” structures. Unlike
weak generative capacity, which is a properly defined mathematical notion, strong
generative capacity is poorly defined, because no accepted definition of the
“correct” structure for some string in some language exists.

7 Mildly Context-Sensitive Languages

When it was finally proven that context-free grammars are not even weakly ade-
quate as models of natural languages, research focused on “mild” extensions of
the class of context-free languages. In a seminal work, Joshi (1985) coined the term
mildly context-sensitive languages, which is loosely defined as a class of languages
that:

(1) properly contains all the context-free languages;

(2) can be parsed in polynomial time;

(3) can properly account for the constructions in natural languages that context-
free languages fail to account for, such as cross-serial dependencies; and

(4) has the linear-growth property (this is a formal property that we ignore here).

One formalism that complies with these specifications (and which motivated
their design) is tree adjoining grammars (TAGs). Motivated by linguistic consider-
ations, TAGs extend the scope of locality in which linguistic constraints can be
expressed. The elementary building blocks of the formalism are trees. Whereas
context-free grammar rules enable one to express constraints among the mother in
a local tree and its immediate daughters, the elementary trees of TAG facilitate the
expression of constraints between arbitrarily distant nodes, as long as they are part
of the same elementary tree. Two operations, adjunction and substitution, construct
larger trees from smaller ones, so that the basic operations that take place dur-
ing derivations are not limited to string concatenation. Crucially, these operations
facilitate nesting of one tree within another, resulting in extended expressiveness.

The class of languages generated by tree adjoining grammars is naturally called
the tree adjoining languages. It contains the context-free languages, and several
trans-context-free ones, such as the language {a"b"'c""d™ | n,m > 0}. As usual, the
added expressiveness comes with a price, and determining membership of a string
w in a language generated by some TAG can only be done in time proportional
to |w|®.

Formal Language Theory 41

Several linguistic formalisms were proposed as adequate for expressing the
class of natural languages. Noteworthy among them are three formalisms: head
grammars, linear indexed grammars, and combinatory categorial grammars. All three
were developed independently with natural languages as their main motivation;
and all three were proven to be (weakly) equivalent to TAG. The class of tree
adjoining languages, therefore, may be just the correct formal class in which all
natural languages reside.

8 Further Reading

Much of the material presented in this chapter can be found in introductory text-
books on formal language theory. Hopcroft and Ullman (1979, chapter 1) provide
a formal presentation of formal language theory; just as rigorous, but with an
eye to linguistic uses and applications, is the presentation of Partee et al. (1990,
chapters 1-3). For the ultimate reference, consult the Handbook of Formal Languages
(Rozenberg & Salomaa 1997).

A very good formal exposition of regular languages and the computing machin-
ery associated with them is given by Hopcroft and Ullman (1979, chapters 2-3).
Another useful source is Partee et al. (1990, chapter 17). Theorem 1 is due to Kleene
(1956); Theorem 2 is due to Rabbin and Scott (1959); Theorem 3 is a corollary of the
Myhil-Nerode theorem (Nerode 1958). The pumping lemma for regular languages
is due to Bar-Hillel et al. (1961).

For natural language applications of finite state technology refer to Roche and
Schabes (1997a), which is a collection of papers ranging from mathematical prop-
erties of finite state machinery to linguistic modeling using them. The introduction
(Roche & Schabes 1997b) can be particularly useful, as will be Karttunen (1991).
Kaplan and Kay (1994) is a classic work that sets the very basics of finite state
phonology, referring to automata, transducers, and two-level rules. As an example
of an extended regular expression language, with an abundance of applications to
natural language processing, see Beesley and Karttunen (2003). Finally, Karttunen
et al. (1996) is a fairly easy paper that relates regular expressions and relations
to finite automata and transducers, and exemplifies their use in several language
engineering applications.

Context-free grammars and languages are discussed by Hopcroft and Ullman
(1979, chapters 4, 6) and Partee et al. (1990, chapter 18). The correspondence
between regular languages and right-linear grammars is due to Chomsky and
Miller (1958). A cubic-time parsing algorithm for context-free languages was first
proposed by Kasami (1965); see also Younger (1967). Push-down automata were
introduced by Oettinger (1961); see also Schiitzenberger (1963). Chomsky (1962)
proved that they were equivalent to context-free grammars.

A linguistic formalism that is based on the ability of context-free grammars to
provide adequate analyses for natural languages is generalized phrase-structure
grammars, or GPSGs (Gazdar et al., 1985).

42 Shuly Wintner

The Chomsky hierarchy of languages is due to Chomsky (1956, 1959). The
location of the natural languages in this hierarchy is discussed in several
papers, of which the most readable, enlightening, and amusing is Pullum and
Gazdar (1982). Several other works discussing the non-context-freeness of nat-
ural languages are collected in Part III of Savitch et al. (1987). Rounds et al.
(1987) inquire into the relations between formal language theory and linguistic
theory, in particular referring to the distinction between weak and strong gen-
erative capacity. Works showing that natural languages cannot be described by
context-free grammars include Bresnan et al. (1982) (Dutch), Shieber (1985) (Swiss
German), and Manaster-Ramer (1987) (Dutch). Miller (1999) is dedicated to gener-
ative capacity of linguistic formalisms, where strong generative capacity is defined
as the model theoretic semantics of a formalism.

Tree adjoining grammars were introduced by Joshi et al. (1975) and are dis-
cussed in several subsequent papers Joshi (1985; 1987; 2003). A polynomial-time
parsing algorithm for TAG is given by Vijay-Shanker and Weir (1993) and Satta
(1994). The three formalisms that are equivalent to TAG are head grammars
(Pollard 1984), linear-indexed grammars (Gazdar 1988), and combinatory cate-
gorial grammars (Steedman 2000); they were proven equivalent by Vijay-Shanker
and Weir (1994).

2 Computational Complexity
in Natural Language

IAN PRATT-HARTMANN

We have become so used to viewing natural language in computational terms that
we need occasionally to remind ourselves of the methodological commitment this
view entails. That commitment is this: we assume that to understand linguistic
tasks — tasks such as recognizing sentences, determining their structure, extracting
their meaning, and manipulating the information they contain — is to discover the
algorithms required to perform those tasks, and to investigate their computational
properties. To be sure, the physical realization of the corresponding processes in
humans is a legitimate study too, but one from which the computational inves-
tigation of language may be pursued in splendid isolation. Complexity theory is
the mathematical study of the resources — both in time and space - required to
perform computational tasks. What bounds can we place — from above or below —
on the number of steps taken to compute such-and-such a function, or a function
belonging to such-and-such a class? What bounds can we place on the amount
of memory required? It is therefore not surprising that, in the study of natural
language, complexity-theoretic issues abound.

Since any computational task can be the object of complexity-theoretic investiga-
tion, it would be hopeless even to attempt a complete survey of complexity theory
in the study of natural language. We focus therefore on a selection of topics in
natural language where there has been a particular accumulation of complexity-
theoretic results. Section 2 discusses parsing and recognition; Section 3 discusses
the computation of logical form; and Section 4 discusses the problem of determin-
ing logical relationships between sentences in natural language. But we begin with
a brief review of complexity theory itself.

1 A Brief Review of Complexity Theory

Any account of complexity theory rests on some model of computation. The most
widely used such model is the multi-tape Turing machine; and that is the model
we use here. Throughout this chapter, we employ standard notation for strings: if

44 Ian Pratt-Hartmann

X is an alphabet (a finite, non-empty set of symbols), X'* denotes the set of strings
(finite sequences of elements) over X. The length of any string o is denoted |o|;
the empty (zero-length) string is denoted ¢; and the concatenation of strings o and
7 is denoted o 7. We follow standard practice in ignoring the difference between
elements of X' and the corresponding one-element strings.

1.1 Turing machines and models of computation

Informally, a multi-tape Turing machine comprises a finite number of tapes, a finite
set of states, and an instruction table. The tapes may be thought of as the machine’s
memory, the states as the line numbers of its program, and the instruction table as
the instructions of that program. The tapes are numbered consecutively from 1 to
(say) K > 2; Tape 1 is referred to as the input tape and Tape K as the output tape;
all other tapes are work-tapes (Figure 2.1). Each tape consists of a one-way infinite
sequence of squares (i.e., there is a leftmost square, but no rightmost square), and
is scanned by its own tape-head, which is always located over one of these squares.
Every square contains a unique symbol, which is either a member of some non-
empty, finite set X, called the alphabet of the Turing machine, or one of the special
symbols L (read: ‘blank”) or > (read: ‘start’).

The set of states, Q, is assumed to contain a pair of distinguished states: the
initial state qo and the halting state q1; otherwise, states have no internal structure.
The instruction table of the Turing machine is a finite set T of quintuples

1) (p,5.q.td),

where p and g are states (i.e., elements of Q), s = (s1,...,5k) and P=(t,...,)
are K-tuples of symbols (i.e., elements of ¥ U {_,>}), and d=(d,...,dg) is a K-
tuple whose elements are the special tags 1eft, right, and stay. Informally, the
Turing machine interprets the instruction (1) as follows:

If the current state is p, and, for each k (1 < k < K), the square currently
being scanned on Tape k contains the symbol sk, then set the new state to be

(2) g, and, for each k (1 < k < K) do the following: write fx on the square cur-
rently being scanned on Tape k, and place Tape k’s head either one square
left, or one square right, or in its current location, as directed by dj.

We can make Tape 1 a read-only tape by insisting that it is never altered (i.e., that
t1 = s1); likewise, we can make Tape K a write-only tape by insisting that its head
never moves to the left. The symbol & is used to indicate the extreme left of a tape:
we insist that, if any tape-head is over this symbol, it never receives an instruction
to move left; moreover, > is never written or overwritten. The halting state g;
indicates that the computation is over, and we insist that no instruction can be
executed in this state. (It is easy to specify these conditions formally.) Technically
speaking, a Turing machine is simply a tuple M = (K, X, Q, g0, 491, T) conforming
to the above specifications.

Computational Complexity in Natural Language 45

o] [[an[o] e
N
> ‘ ‘ Tape 2
T AN
> 151 ‘ ‘ t | U ‘ TapeK
N

Figure 2.1 Architecture of a multi-tape Turing machine.

Turing machines perform computations, which proceed in discrete time-steps. At
each time-step, the machine is in a specific configuration, consisting of its current
state g, the position of the tape-head for each of the tapes, and the contents of each
of the tapes. The initial configuration is as follows: the current state is go (the initial
state), with each tape-head positioned over the leftmost square of the tape; Tape 0
has the symbol > in the leftmost square, followed by a string o € X*, called the
input of the computation, and is otherwise filled with ; all other tapes have the
symbol > in the leftmost square, and are otherwise filled with L. At each time-step,
an instruction from T of the form (1) is executed as specified in (2), resulting in the
next configuration. The computation halts when (and only when) no instruction
in T can be executed. Note that, if the halting state 41 is reached, the computation
necessarily halts at that point. A run is a (finite or infinite) sequence of configura-
tions obtained in this way; if the run is finite, so that the Turing machine halts, we
call it a terminating run. Given a terminating run, the output of the computation
is the string of X* which, in the final configuration, is written on the output tape
(strictly) between the > and the first Li. Notice that, in general, a Turing machine
may be able to execute more than one instruction at any given time. In that case,
we should think of the choice being made freely by the machine. We call a Turing
machine deterministic just in case, for any state p and any K-tuple of symbols 5, T
contains at most one instruction of the form (1) starting with the pair (p,s) (i.e., the
machine never has a choice as to which instruction to perform). A non-deterministic
Turing machine is just another term for a Turing machine.

DEFINITION 1 (COMPUTABLE). Let M be a deterministic Turing machine over alphabet
X. For any string o € X*, either M halts on input o, or it does not. In the former case, M
will output a definite string v € X*, and we can define the partial function fy : £* — X*
as follows.

T if M halts on input o
fm(o) =

undefined otherwise

46 lan Pratt-Hartmann

We say that M computes the function far. A partial function f : X* — X* is Turing
computable (or just: computable) if it is computed by some deterministic Turing
machine.

The instruction table of a Turing machine is fixed. Thus, a Turing machine is not
a model of a computing machine in the sense we normally imagine, but rather of
a computer program: there is only one thing it computes. On the other hand, since
Turing machines are, formally, just tuples of finite objects, any Turing machine
M can easily be coded as a string o, over a suitable alphabet %/, and that string
can be input to another Turing machine, say M'. It can be shown that there exists a
universal Turing machine U, which is able to simulate any Turing machine M over an
alphabet X' in the following sense: for any string, 0 € ~*, M has a non-terminating
run on input o if and only if U has a terminating run on input o;,0; moreover, in
case of termination, the output of M’ is the same as the output of M. Any such
Turing machine U is a model of a computing machine in the sense we normally
imagine: it is able to execute an arbitrary ‘program’ o}, on arbitrary ‘data’ 0. Given
such a coding scheme, consider the halting function, H : (£)* — {T, L} defined as

T if 6/ encodes a Turing machine M that has a terminating run on input €
He')= g g p
1 otherwise

This function is clearly well defined, and indeed total. Perhaps the most funda-
mental fact in computability theory is due to Turing (1936-7):

THEOREM 1 (TURING). The halting function is not computable.

Definition 1 applies to functions f : X* — X* for any alphabet ¥. However,
this definition can be extended to functions with other countable domains and
ranges, relative to some coding of the relevant inputs and outputs as strings over
an alphabet. Consider for instance the familiar coding of natural numbers as bit
strings (elements of {0,1}*). For n € N, denote by 7 the standard binary represen-
tation of n (without leading zeros); and for s € {0,1}*, denote by #s the natural
number represented by s. If f : N — N is a function, we consider f computable if
the function g : {0,1}* — {0, 1}* defined by

8(s) = (f(#s))

is computable in the sense of Definition 1. Computability of functions with other
domains and ranges — e.g., rational numbers, lists, graphs, etc. —is understood sim-
ilarly. Technically, this extended notion of computability is relative to the coding
scheme employed. In practice, however, all reasonable coding schemes usually
yield the same computability (and complexity) results; if so, it is legitimate to
speak of such functions as being computable or non-computable, leaving the
operative coding scheme implicit.

The architecture of Turing machines given above is, in all essential details, that
set out in Turing (1936-7). We have followed more recent practice in distinguish-
ing input, output and work-tapes (Turing’s machine had a single tape) to make it

Computational Complexity in Natural Language 47

a little easier to talk about space-bounded computations. But this makes no dif-
ference to any of the results reported here. The thesis that Turing computability
captures our pre-theoretic notion of computability is generally referred to as the
Church—Turing thesis. It is important to appreciate that this thesis does not rest on
the existence of universal Turing machines, or indeed on any purely mathematical
fact. Methodologically, the apparatus introduced above is an exercise in concep-
tual analysis: the proposed replacement of an informally understood notion with
a rigorous definition. Historically, several competing analyses of computability
were proposed at more or less the same time, most notably Godel’s notion of
recursive function and Church’s A-calculus. All three notions in effect coincide, how-
ever; so there is general consensus about the formal model presented here. For an
accessible modern treatment, see Papadimitriou (1994, Chapter 2).

The fundamental goal of complexity theory is to analyze the resources, in either
time or space, required to perform computational tasks. The first step is to measure
the computational resources required by particular algorithms.

DEFINITION 2. Let M be a Turing machine with alphabet X, and let g : N — N be a
function. We say M runs in time g if, for all but finitely many strings o € X*, any run
of M on input o halts within at most g(|o|) steps. Similarly, M runs in space g if, for all
but finitely many strings o € X*, any run of M on input o uses at most g(|o|) squares
on any of its work-tapes.

Allowing M to break the bound g in finitely many cases avoids problems caused by
zero-length inputs and other trivial anomalies. Notice also the asymmetry in the
definitions of time and space complexity: because measures of space complexity
include only the work-tapes (and so exclude the input and output tapes), they can
be sublinear. For time complexity, sublinear bounds make little sense, because they
do not give the machine the opportunity to read its input.

Unfortunately, Definition 2 is too fragile to provide a meaningful measure of
algorithmic complexity. Suppose M is a deterministic Turing machine computing
some function in time g, and let ¢ be a positive number. Provided g is mod-
erately fast-growing (say, faster than linear growth), it is routine to construct
another deterministic Turing machine M’ — perhaps with more tapes or more
states or a larger alphabet — that computes the same function in time cg(n). That
is: we can always speed up M by a linear factor! Since M and M’ do not rep-
resent interestingly different algorithms, the statement that a Turing machine
runs in time — say — 3n? + n + 4 as opposed to 14n? + 87n + 11 is, from an
algorithmic point of view, not significant. Similar remarks also apply to space
bounds.

DEFINITION 3. Let M be a Turing machine, and G a set of functions from N to N. We
say that M runs in time G if, for some g € G, M runs in time g. Similarly, we say that M
runs in space G if, for some g € G, M runs in space g.

In particular, the following classes of functions suggest themselves.

48 Ian Pratt-Hartmann

DEFINITION 4 (O-NOTATION). Let ¢ : N¥ — N be a function. Denote by O(g) the set
of functions

o) =1{g": NK — N | thereexist c € N, nj,...,n € Ns.t.

forallny > ny ... forall ng > my, §'(m, ..., m) <cg(n,...,np)}

Informally, O(g) is the class of functions which are eventually dominated by some
positive multiple of g. Combining Definitions 3 and 4, it makes sense to say, for
example, that a given Turing machine runs in time (or space) O1n?), or On®),
or O(2"). And this sort of complexity measure, it turns out, is robust under the
expansions of computational resources considered above. For example, it can be
shown that, for any k> 0, there is a function that can be computed by a deter-
ministic Turing machine running in time O(1#¥*1) which cannot be computed by
any deterministic Turing machine running in time O(1*); and similarly for space
bounds. (The precise statement of these theorems, known as separation theorems,
is somewhat intricate; see Kozen, 2006, Lecture 3, or Papadimitriou, 1994: 143ff.)
O-notation has the further advantage of permitting a useful degree of informality
when analyzing the complexity of an algorithm, since a pseudo-code description
of that algorithm, of the sort standardly found in computing texts, often suffices
to show that it will run in time or space O(g) (for some function g) without our
having first to compile that description into a Turing machine. Finally, a word
of caution. Knowing that a Turing machine (or algorithm) has time complexity
O(g) at best imposes a bound on how rapidly the cost of computation grows
with the size of the input. That is, the complexity measures in question are asymp-
totic. In many cases, algorithms with suboptimal asymptotic complexity measures
perform best in practice.

1.2 Decision problems

So far, we have discussed complexity measures for particular algorithms, under-
stood as deterministic Turing machines. We now develop this idea in two crucial —
though logically quite separate — ways.

The first development extends Definition 1 to non-deterministic computation.
To do this, we first restrict attention to functions whose range contains just two
elements — we conventionally employ T and L — representing “YES” and ‘NO’
respectively. A function f : A — {T, L}, where A is a countable set, is called a deci-
sion problem, or simply a problem. While decision problems may initially seem of
limited practical interest, they play a central role in complexity theory. Moreover,
the restriction to decision problems is less severe than might at first appear: the
complexity of many functions can often be usefully characterized in terms of the
complexity of closely related decision problems.

Now, any decision problem f : A — {T, L} can alternatively be regarded as a
subset of A —namely, the subset {a € A | f(a) = T}. In particular, if A = ¥* for some

Computational Complexity in Natural Language 49

alphabet X' (or if the encoding of A in X* is obvious), a decision problem defined
on A is, in effect, a set of strings over X, or, in the parlance of formal language
theory, a language over X. Conversely, of course, any language L € X* may be
regarded as a decision problem f : ¥* — {T, L} given by:

T ifo el
1 otherwise

jor-|
The observation that decision problems and languages are essentially the same
thing prompts the following definition.

DEFINITION 5. Let M be a Turing machine over the alphabet X, and suppose without
loss of generality that X contains the symbol T. We say that M accepts a string o € X*
if there exists a terminating run of M with input o and output T. The language L € X*
recognized by M, denoted L(M), is the set of strings accepted by M.

It is important to bear in mind that, in Definition 5, M can be non-deterministic. That
is: L(M) is the set of inputs for which M may yield the output T. (It is sometimes
convenient to imagine a benign helper guiding M to make the ‘right” choice of
instructions required to accept a string o € L.) Equally important is that, if o & L,
there is no requirement for M to produce any particular output (as long as it is not
T, of course), or indeed to halt at all.

The case where M halts on every input is of particular interest, however:

DEFINITION 6 (DECIDABLE). Let L be a language. We call L decidable if it is
recognized by a Turing machine guaranteed to halt on every input.

It is routine to show that any decidable language is in fact recognized by a deter-
ministic Turing machine that halts on every input. Furthermore, that machine can
easily be modified so as always to produce one of the two outputs T, L. Thus, a
decision problem f : ¥* — {T, L} is a computable function, in the sense of Defi-
nition 1, just in case the corresponding language L = {o|f(c) = T} is decidable,
in the sense of Definition 6. Henceforth, then, we shall identify decision problems
and languages, employing whichever term is most appropriate in context.

We may think of Definition 5 as a generalization of Definition 1 to the case of
non-deterministic computation. The significance of this generalization is that, while
deterministic and non-deterministic Turing machines recognize the same class of
languages, they may not in general do so within the same computational bounds,
a possibility which plays a central role in complexity theory.

We can generalize the above observations on linear speedup to the case of non-
deterministic computation for decision problems. We give a reasonably precise
version here:

THEOREM 2. Let L be a language over some alphabet, let g : N — Nand h : N - N
be functions, let ¢ > 1, and suppose g(n) > n + 1, and h(n) > logn. If L is recognized
by some Turing machine running in time cg(n), then it is recognized by some Turing
machine running in time g(n). If L is recognized by some Turing machine running in

50 Ian Pratt-Hartmann

space ch(n), then it is recognized by some Turing machine running in space h(n). The
previous statements continue to hold when “Turing machine” is replaced throughout by
“deterministic Turing machine.”

Now for the second development in our analysis of complexity. So far, we
have provided measures of the time and space requirements of particular Turing
machines (or, by extension, and using O-notation, of particular algorithms). But
what primarily interests us in complexity theory are the time and space require-
ments of a maximally efficient Turing machine for computing a particular function or,
more specifically, solving a particular decision problem. Recalling the equivalence
between decision problems and languages discussed above, we define:

DEFINITION 7. Let L be a language over some alphabet, and let G be a set of functions
from N to N. We say that L is in TIME(G) (or SPACE(G)) if there exists a deterministic
Turing machine M recognizing L, such that M runs in time (respectively, space) G.

Classes of languages of the form TIME(G) or SPACE(G) are referred to as (deter-
ministic) complexity classes. To avoid notational clutter, if g is a function from N
to N, we write TIME(g) instead of TIME({g}); and similarly for other complexity
classes.

So far, we have encountered classes of functions of the form O(g) for various g.
When analyzing the complexity of languages (rather than of specific algorithms),
however, larger classes of functions are typically more useful.

DEFINITION 8. Let P, E, and Ey (for k > 1) be the sets of functions from N to N defined
as follows:

A function g : N — N which is in Ey for some k is said to be elementary.

Non-elementary functions grow rapidly. However, it is easy to define a com-
putable function which is non-elementary:

2
2 }n times

fn) =2

Computational Complexity in Natural Language 51

Combining Definitions 7 and 8, we obtain complexity classes which are often
known under the following, more pronounceable names:

LOGSPACE = SPACE(log 1)
PTIME =TIME(P) PSPACE = SPACE(P)
EXPTIME = TIME(E) EXPSPACE = SPACE(E)
k-EXPTIME = TIME(Ey) k-EXPSPACE = SPACE(Ey)

Thus, PTIME is the class of languages recognizable by a deterministic Turing
machine in polynomial time, EXPSPACE, the class of languages recognizable by
a deterministic Turing machine in exponential space, and so on. In some texts,
LOGSPACE is referred to as L, PTIME as P, and EXPTIME as EXP. Notice, inciden-
tally, that there is no point in defining, say, G = {log(n‘) | c > 0} and then setting
LOGSPACE = SPACE(G), since, by Theorem 2, linear factors may be ignored.
Finally, if L is not recognizable by any Turing machine running in time bounded
by an elementary function, then L is said to have non-elementary complexity. We
shall encounter examples of decidable, but non-elementary, problems below.

Definition 7 may be adapted directly to deal with non-deterministic
computation.

DEFINITION 9. Let L be a language over some alphabet, and let G be a set of functions
from N to N. We say that L is in NTIME(G) (or NSPACE(G)) if there exists a Turing
machine M recognizing L, such that M runs in time (respectively, space) G.

Classes of languages of the form NTIME(G) or NSPACE(G) are referred to as (non-
deterministic) complexity classes.

Combining Definitions 8 and 9, we obtain complexity classes which are often
known under the following, more pronounceable names:

NLOGSPACE = NSPACE(log)
o) NPTIME = NTIME(P) NPSPACE = NSPACE(P)
NEXPTIME = NTIME(E) NEXPSPACE = NSPACE(E)
Nk-EXPTIME = NTIME(Ey) Nk-EXPSPACE = NSPACE(Ey)

In some texts, NLOGSPACE is referred to as NL, NPTIME as NP, and NEXPTIME
as NEXP.

Notice the asymmetry involved in the notion of non-deterministic computation:
M recognizes L € X* just in case, for each string o € X*, o € L if and only if there
exists a successfully terminating run of M (i.e., a terminating run with output T)
on input o — that is to say, 0 € X* \ L if and only if all runs of M on input o fail to
halt successfully. This asymmetry prompts us to define the complement classes as
follows.

DEFINITION 10. If C is a class of languages, then Co-C is the class of languages L such
that X* \ L is in C, where X is the alphabet of L.

It is easy to see that, for any interesting class of functions G, TIME(G) = Co-
TIME(G) and SPACE(G) = Co-SPACE(G). For this reason, we never speak of

52 Ian Pratt-Hartmann

Co-PTIME, Co-PSPACE, etc. The situation with non-deterministic complexity
classes is different, however. It is not known whether NPTIME = Co-NPTIME;
and similarly for many other classes of the form Co-NTIME(G). Indeed, such
complexity classes are regularly encountered. In particular, putting together
Definition 10, and the NTIME-classes listed in (3), we obtain the complexity
classes Co-NPTIME, Co-NEXPTIME, and Co-Nk-EXPTIME. (And similarly for the
corresponding space-complexity classes; but see Theorem 4.)

1.3 Relations between complexity classes

It is obvious from the above definitions that any language in TIME(G)
(or SPACE(G)) is non-deterministically recognizable within the same bounds.
Formally,

TIME(G) € NTIME(G) SPACE(G) € NSPACE(G)
A little less obviously, we see that:
NPTIME < EXPTIME NEXPTIME < 2-EXPTIME

Consider the first of these inclusions. If M non-deterministically recognizes L, and
p is a polynomial such that M is guaranteed to halt within time p(n) on input of
size 1, the number of possible runs of M on inputs of this size is easily seen to be
bounded by 27 for some polynomial g. But then a deterministic Turing machine
M, simulating M, can check all of these runs in exponential time, outputting T if
any one of them halts successfully. Hence, NPTIME € EXPTIME. The inclusion
NEXPTIME < 2-EXPTIME follows analogously; and so on up the complexity hier-
archy. In fact, similar arguments establish the following more elaborate system of
inclusions.

PTIME € NPTIME < PSPACE <
4) EXPTIME € NEXPTIME < EXPSPACE <
2-EXPTIME < 2-NEXPTIME - - -

The following result establishes that, for classes of sufficiently ‘large’ functions,
non-determinism makes no difference to space complexity (Savitch 1970).

THEOREM 3 (SAVITCH). If g(n) > logn, then NSPACE(g(n)) < SPACE((g(n))Z)

In some statements of this theorem, certain technical conditions are imposed on
g; but see, e.g., Kozen (2006: 15-16). Since the classes of functions P, E, Ej,
etc. are closed under squaring, we have NPSPACE = PSPACE, NEXPSPACE =
EXPSPACE, and so on. As an instant corollary, since these deterministic classes are

Computational Complexity in Natural Language 53

equal to their complements, we have NPSPACE = Co-NPSPACE, NEXPSPACE =
Co-NEXPSPACE, and so on.

Care is required when applying the reasoning of the previous paragraph. Setting
g(n) = logn, Theorem 3 tells us that NLOGSPACE < SPACE((log n)2); however,
this is not sufficient to imply that NLOGSPACE € LOGPSPACE. Nevertheless, the
following result establishes that equivalence under complementation continues to
hold even in this case (Immerman 1988).

THEOREM 4 (IMMERMAN-SZELEPCSENYI). If ¢(n) > logn, then NSPACE(g(n)) =
Co-NSPACE(g(n))

In some statements of this theorem, certain technical conditions are imposed on
g; but again, see Kozen (2006: 22—4). As a special case, we have NSPACE(n) =
Co-NSPACE(n), which settled a long-standing conjecture in formal language the-
ory (see Section 2.3 below). As an instant corollary of Theorem 4, NLOGSPACE =
Co-NLOGSPACE.

Adding these ‘small” complexity classes to the inclusions (4), we obtain

LOGSPACE < NLOGSPACE < PTIME <€ NPTIME <
5) PSPACE <€ EXPTIME € NEXPTIME <
EXPSPACE < 2-EXPTIME < 2-NEXPTIME - - -

1.4 Lower bounds

Notwithstanding the above caveats on the interpretation of asymptotic
complexity measures, saying that a language is in a complexity class C places
some kind of upper bound on the resources required to recognize it. But what of
lower bounds? What if we want to say that a language cannot be recognized within
certain time or space bounds? For the complexity classes introduced above, useful
lower-bound characterizations are indeed possible.

The basic idea is that of a reduction of one language (or decision problem) to
another. Let Ly and L; be languages, perhaps over different alphabets 1 and X».
Suppose that there exists a function g : ¥ — X7 such that, for any string o € X7,
o € Ly if and only if g(o) € Lo. We may think of g as a means of ‘translating’ L; into
Ly: in particular, any Turing machine recognizing L, can be modified to recognize
L1 by simply prepending the translation g. If the cost of this translation is small,
then we may regard L, as being ‘at least as hard to recognize as’ L.

DEFINITION 11 (REDUCTION). Let Xy and X be alphabets, and let L; be a language
over X (i = 1,2). A reduction of Ly to Ly is a function g : X — X7, such that g can
be computed by a (deterministic) Turing machine in space O(logn), and for all o € XY,
o € Ly ifand only if g(o) € Ly; in that case, we say that Ly is reducible to L. If, instead,
g can merely be computed in time O(n*) for some k, we call it a polynomial reduction,
and we say that L1 is polynomially reducible to L.

54 Ian Pratt-Hartmann

Let C be any of the complexity classes mentioned in (5), or the complement of any
of these classes. It can be shown that, if L, is in C, and L is reducible to L,, then
L1 is in C. We say that C is ‘closed under reductions’. If C is any of the complexity
classes mentioned in (4), then C is, similarly, ‘closed under polynomial reductions.’

THEOREM 5. The relation of reducibility is transitive: if Ly is reducible to Ly, and L; to
L3, then Lq is reducible to L.

We remark that Theorem 5 is not obvious (though its analogue in the case of
polynomial reducibility is) see, e.g., Papadimitriou (1994: 164).
Now we can give our characterization of lower complexity bounds.

DEFINITION 12 (HARDNESS AND COMPLETENESS). Let C be a complexity class. A
language L is said to be hard for C, or C-hard, if any language in C is reducible to
L; L is said to be complete for C, or C-complete, if L is C-hard and also in C. Addi-
tionally, L is said to be C-hard under polynomial reduction if any decision problem
in C is polynomially reducible to L; similarly for C-completeness under polynomial
reduction.

It follows from Theorem 5 that, if L1 is C-hard for some complexity class C, and L;
is reducible to Ly, then L, is C-hard. Similarly, mutatis mutandis, for hardness under
polynomial reductions. Notice that the notion of LOGSPACE-completeness is
uninteresting: any problem in LOGSPACE is by definition LOGSPACE-complete.
Under polynomial reductions, the notion of PTIME-completeness is similarly
uninteresting. Definition 12 reflects the fact that reducibility in logarithmic space
is taken to be the default in complexity theory. However, for most higher complex-
ity classes, it is generally easier and just as informative to work with reducibility
in polynomial time; and this is what is often done in practice. Hardness results,
in the sense of Definition 12, are sometimes referred to, for obvious reasons, as
‘lower complexity bounds.” However, it is important not to be misled by this ter-
minology: for example, it is easy to show that there are PTIME-hard problems in
TIME(n); but TIME(n) is properly contained in PTIME!

Many natural problems (it is easier here to speak of problems rather than lan-
guages) can be shown to be complete for the complexity classes introduced above.
Here are three very well-known examples. In the context of propositional logic,
a literal is a proposition letter or a negated proposition letter; proposition letters
are said to be positive literals, their negations negative literals. A clause is a disjunc-
tion of literals; a clause is said to be Horn if it contains at most one positive literal.
Theorems 6-9 are among the most fundamental in complexity theory. For an acces-
sible treatment, see, e.g., Papadimitriou (1994: 171, 176, and 398 respectively).
Theorem 6 is due to Cook (1971).

THEOREM 6 (COOK). The problem of determining whether a given set of clauses is
satisfiable is NPTIME-complete.

THEOREM 7. The problem of determining whether a given set of Horn clauses is
satisfiable is PTIME-complete.

Computational Complexity in Natural Language 55

THEOREM 8. The problem of determining the satisfiability of a given set of clauses, all of
which contain at most two literals, is NLOGSPACE-complete.

Theorem 8 is very closely related to the following graph-theoretical problem.
Given a finite directed graph, one node in that graph is said to be reachable from
another if there is a finite sequence of directed edges in that graph leading from
the first node to the second.

THEOREM 9. The problem of determining whether, in a given directed graph, one node is
reachable from another, is NLOGSPACE-complete.

Note that, in each case, we assume that inputs (clauses, graphs, ...) are coded in
some standard way as strings over some alphabet. All reasonable coding schemes
yield the same complexity results.

Such completeness results are often less surprising than they at first appear. For
example, Theorem 6 is established by showing that, given a non-deterministic
Turing machine M that runs in polynomial time, the conditions for a sequence of
configurations of M to be a run of M with input o can be encoded, in a natural way,
as a set of clauses whose size is bounded by a polynomial function of the length
of 0. And once one language L is shown to be hard for a complexity class, other
languages can be shown to be hard for that class by showing that L is reducible to
them.

2 Parsing and Recognition

As already mentioned, in the context of formal language theory, a language is a
set of strings over some alphabet ¥. Some languages are specified by grammars,
which are themselves finite objects whose semantics is defined by a grammar frame-
work. Familiar grammar frameworks are: context-sensitive grammars, definite
clause grammars, tree adjoining grammars, context-free grammars, and non-
deterministic finite state automata. Within a given grammar framework F, any
grammar G recognizes a unique language L(G), namely, the set of strings accepted
by G. Thus, the apparatus of the multi-tape Turing machine also constitutes a
grammar framework in this sense. Each grammar in that framework - that is,
each specific Turing machine M over signature X — recognizes the language L(M)
comprising the set of strings over X accepted by M, in the sense of Definition 5.

If F is a grammar framework, we understand the universal recognition problem
for F to be the following problem: given a grammar G in F and a string o over the
alphabet of G, determine whether o € L(G). This problem is to be distinguished
from the fixed-language recognition problem for any G in F: given a string o over
the alphabet of G, determine whether ¢ € L(G). The complexity of the universal
recognition problem for a framework F is in general higher than that of the fixed-
language recognition problem for any grammar in F.

In this section, we survey the complexity of the universal recognition problem
and the fixed-language recognition problem for various grammar frameworks. For

56 Ian Pratt-Hartmann

the framework of Turing machines, we already know the answer: it is (essentially)
a restatement of Theorem 1 that the universal recognition problem for Turing
machines is undecidable; and it is an immediate consequence of the existence of a
universal Turing machine that there exist Turing machines whose fixed-language
recognition problem is undecidable. For less expressive grammar frameworks,
however, there is much more to be said, as we shall see.

2.1 Regular languages

Let us begin with one of the least expressive of the commonly encountered
grammar frameworks. A non-deterministic finite state automaton (NFSA) is a tuple
A = (X¥,0Q,q0,q91,T), where ¥ is an alphabet, Q a set (the set of states of A), qo
and g; distinct elements of Q (the initial state and the accepting state respectively),
and T a finite set of triples (p, s, q) (the transitions of A), wherep,q € Qands € X.
Informally, the transition (p, s,) has the interpretation

If the current state is p, and the next symbol to be read is s, then set the new
state to be g.

An NFSA A s said to accept the string o = sy, .. ., s, if, starting in the state go, and
reading the symbols sy, ..., s, successively, there is a sequence of transitions in T
leading to the state g1. NFSAs may be pictured as labeled graphs in the obvious
way: the nodes are labeled by elements of Q, and the edges by elements of X. A
string is accepted if it is possible to step through the graph from the initial state to
the final state in such a way that the string is exactly consumed.

It is a standard result of formal language theory that the class of languages
accepted by NFSAs coincides with the class of regular languages. A regular expres-
sion over an alphabet X' is defined recursively to be any expression of the forms #,
€,5,e1 Uey, e1ep, or €, where s € X and ¢, ¢1, and e; are regular expressions. Any
regular expression e recognizes a language L(e) over X, defined (with harmless
abuse of notation) as follows:

LW@)=0 L(e1 Uep) =L(e1) UL(ep)
L(e) ={e} L(erep) ={ot | 0 € L(e1) and t € L(ep)}
L(s) ={s} forse X Le*)={oy1... ox |k >=0and o; € L(e) foralli (1 <i < k)}

A reqular language is any language L(e), where e is a regular expression.

Deciding whether a given NFSA accepts a given string is easily reducible to
the problem of reachability in directed graphs, and vice versa. By Theorem 9,
therefore, we have:

THEOREM 10. The universal recognition problem for NFSAs is NLOGSPACE-complete.

What about the fixed-language recognition problem? An NFSA can be thought of
as a Turing machine with a finite memory — that is, a Turing machine which never

Computational Complexity in Natural Language 57

uses more than a constant amount of space on any of its work-tapes. With a little
care, this equivalence can be shown to be exact: a language is regular if and only
if it can be recognized by a Turing machine with fixed space bound. Hence:

THEOREM 11. For any NFSA A, L(A) is in SPACE(c) for some constant c.

Thus, the universal recognition problem for NFSAs has higher complexity
than the recognition problem for any specific regular language. A subtly differ-
ent illustration of this phenomenon is provided by the grammar framework of
extended regular expressions. An extended regular expression over an alphabet X' is
defined exactly as for regular expressions, except that we have a complementation
operator ¢, with semantics given by:

L@ = Z*\ L(e)

A well-known theorem of formal language theory states that the class of regu-
lar languages is closed under complementation, and hence is equal to the class of
languages recognized by extended regular expressions. Thus, the grammar frame-
works of NFSAs and extended regular expressions are equal in expressive power.
However, Stockmeyer and Meyer (1973: 3) show that:

THEOREM 12. The universal recognition problem for extended regular expressions is in
PTIME.

Theorem 12 does not immediately follow from Theorem 10: extended regular
expressions constitute a more compact way of specifying regular languages than
do NFSAs. Of course, when it comes to the fixed-language recognition prob-
lem for languages defined by extended regular expressions, this must be the
same as for NFSAs, because they are the same languages. For a useful list of
complexity-theoretic results regarding regular languages, see Yu (1997: 96ff.).

2.2 Context-free languages

Probably the most familiar and useful grammar framework in linguistics is that
of context-free grammars. Formally, a context-free grammar (CFG) is a quadruple
G = (N, X,S,P), where N is a set of non-terminals (typically, category labels such
as S, NP, VP, etc.), X' an alphabet, S a distinguished start symbol in N (for example,
the category S), and P a list of productions for rewriting non-terminals (such as S —
NP VP, NP — Det N, etc.). Elements of X are usually referred to as terminals in this
context. A CFG accepts the string of terminals o if some sequence of productions
can be found which rewrites the start symbol S to 0. A language recognized by a
CFG is called a context-free language. For example, the language {a"b" | n > 0} is
context-free, but not regular. (For a detailed discussion, see Chapter 1, Section 6.)
A number of well-known algorithms exist to determine whether, given a CFG G
and a string o, G accepts o. Perhaps the best known is the CYK algorithm, named
after its simultaneous inventors, Cocke, Younger, and Kasami (see, e.g., Younger
1967). Under reasonable assumptions about what qualifies as a constant-time

58 Ian Pratt-Hartmann

operation, this algorithm runs in time O(@mn®), where m is the number of produc-
tions in G, and # is the length of o; however, it requires that the given grammar G
be in Chomsky normal form. The slightly more sophisticated algorithm of Earley
(1970) dispenses with this assumption. Thus, the universal recognition problem
for context-free languages is in PTIME. Furthermore, it is easy to reduce this prob-
lem to the satisfiability problem for Horn clauses in propositional logic, whence,
by Theorem 7, it is also PTIME-hard (Jones & Laaser 1977). Hence:

THEOREM 13. The universal recognition problem for CFGs is PTIME-complete.

On the other hand, for the fixed-language recognition problem, we can again do a
little better (Lewis et al., 1965; Nepomnyashchii 1975):

THEOREM 14. For any CFG G, L(G) is in SPACE((log 1)2). Moreover, there exists a
context-free language which is NLOGSPACE-hard.

The proof in both cases is rather technical.

CFGs are not the only way of describing context-free languages: the framework
of Lambek grammars (Lambek 1958) provides an alternative. We content ourselves
with an informal explanation here, referring the reader to, e.g., Carpenter (1997).
The Lambek calculus (with product) is a logical system allowing the derivation of
sequents involving category expressions. A category expression is either a basic cat-
egory or a derived category of the forms X/Y, Y\X, or X - Y. Examples of basic
categories are S and NP. Examples of derived categories are NP\S, NP - NP, and
(NP\S)/NP. Intuitively, a category expression X/Y describes a string which, when
a string of category Y is placed to its right, will result in a string of category X; sim-
ilarly, Y\ X describes a string which, when a string of category Y is placed to its left,
will result in a string of category X; and finally, X - Y describes a string which is the
result of concatenating a string of category X and a string of category Y. Thus, an
intransitive verb, and indeed any verb phrase, might be assigned category NP\S,
while a transitive verb might be assigned category (NP\S)/NP.

A sequent in the Lambek calculus is an expression of the form

X1 X=X,

where X, ..., X, and X are category expressions. Intuitively, such a sequent has
the meaning: “The result of concatenating any strings of categories Xj,..., Xy,
in that order, is a string of category X.” An example of a sequent is

(6) NP (NP\S)/NP NP — S,
which thus has the informal interpretation

if o1, 02, and o3 are strings of categories NP, (NP\S)/NP, and NP
respectively, then 010203 is of category S.

)

We remark that, under the advertised interpretations of the relevant derived cat-
egories, (7) is a true statement. Formally, however, it is the rules of the Lambek

Computational Complexity in Natural Language 59

S—S NP — NP O
NP (NP\S) — S NP — NP
NP (NP\S)/NP NP — S

D

Figure 2.2 A derivation in the Lambek calculus.

calculus (rather than judgments such as (7)) that determine whether any given
sequent is derivable. We do not give these rules here. As an example, how-
ever, Figure 2.2 shows the derivation of sequent (6). It can be shown that the
rules of the Lambek calculus are correct and complete for the interpretation given
above (Pentus 1994).

A Lambek grammar (with product) over a signature X is a finite list G of pairs of
the form (s, C) where s € ¥ and C is a category expression. We say that the gram-
mar G accepts the string o = s1...s; just in case there exist category expressions
C1,...,Cy such that: (i) (5;,C;) € G for each i (1 < i < n), and (ii) the sequent
C1 --- C; — S canbe derived in the Lambek calculus. (Again, S is a distinguished
start symbol.) For example, if G contains the pairs

(John,NP), (Mary, NP), (loves, (NP\S)/NP),

then, since (6) is a valid sequent, G accepts the sentence ‘John loves Mary.” It
is known (Pentus 1993, 1997) that the class of languages recognized by Lambek
grammars is exactly the class of context-free languages.

A crucial result concerning the Lambek calculus is the so-called cut-elimination
theorem (Lambek 1958), which allows us to show that the problem of determin-
ing the validity of a given sequent in the Lambek calculus is in NPTIME. More
recently, Pentus (2006) has shown that the problem of determining the validity
of a sequent in the Lambek calculus (with product) is NPTIME-complete. This
immediately translates, in the present context, to the following result.

THEOREM 15 (PENTUS). The universal recognition problem for Lambek grammars
(with product) is NPTIME-complete.

We remark in passing that the corresponding problem for the Lambek calculus
without the product operation - (i.e., just the operations / and \) is, at the time of
writing, open. This restriction does not decrease the class of languages which can
be recognized by such grammars: these are still exactly the context-free languages.

2.3 More expressive grammar frameworks

As the preceding discussion illustrates, the complexity of the universal recogni-
tion problem for a grammar framework cannot be read off in any simple way from
its expressive power. Nevertheless, commonly encountered grammar frameworks
with higher expressive power do tend, by and large, to exhibit higher recogni-
tion complexity. A well-known example is provided by the class of tree adjoining

60 Ian Pratt-Hartmann

grammars (TAGs). A more detailed explanation of TAGs can be found in Chapter 4,
Section 7. Very roughly, a TAG is a finite set of ‘local’ trees which can be combined
into larger trees to license sentences, much as CFGs combine productions (which
can equally be thought of as local trees) into phrase structures. The essentially
new element in TAGs is the operation of adjunction, in which a local tree may be
‘spliced” into an existing tree. A language recognized by a TAG is called a tree
adjoining language.

The more elaborate apparatus of TAGs leads to an increase in recognition capac-
ity: the languages {a"b"c" | n > 1} and {a"b"c"d" | n > 1} are tree adjoining
languages, but not context-free languages. It also leads to an increase in recog-
nition complexity. Various parsing algorithms have been developed which show
that the recognition problem for a TAG can be solved in time O(n°), where 7 is
the length of the input string (Schabes 1994). Interestingly, TAGs turn out to be
expressively equivalent to several other natural grammar frameworks, includ-
ing head grammars, linear-indexed grammars, and combinatory categorial grammars
(Vijay-Shanker & Weir 1994). These equivalences can be used to establish that all
these grammar frameworks have universal recognition problems with comparable
complexity.

More expressive still is the framework of definite clause grammars (DCGs). Again,
we give only an informal explanation here. Like a CFG, a DCG consists of a set of
productions over fixed sets of terminal and non-terminal symbols, together with
a distinguished non-terminal S. The only difference is that the non-terminals now
take arguments drawn from a term-language 7. The expressions of 7 are built up
from a fixed vocabulary of individual constants, variables, and function symbols.
We assume that there is at least one individual constant in 7. Each non-terminal
in a DCG is associated with a non-negative integer, called its arity, and, in any
production, is supplied with a list of arguments according to that arity. A typical
DCG production has the form

(8) A(Slr .. /Sn) g Bl (tl,l/ ceey tl,f]) te Bm(tm,l/ ceey tm,(fm)r

where A is a non-terminal with arity #, and the B; are non-terminals with arity ¢;
forall i (1 < i < m). (In general, the right-hand side is also allowed to contain
terminals.) The distinguished non-terminal S is assumed to have arity 0. A ground
instance of a production is the result of consistently substituting, for the variables
in that production, terms which contain no variables. The notion of acceptance is
then defined in the same way as for a CFG, by regarding each production as the
set of its ground instances. (Of course, this set of productions may be infinite, and
thus will not in general constitute an actual CFG.)

Figure 2.3 shows a set of productions for a DCG G with non-terminals
{S,A,B,C,D,E} and terminals {a, b, c,d, e}. Each of the non-terminals has arity 1,
except for S, the distinguished non-terminal. Figure 2.4 shows a derivation of
the string aabbccddee in G, where the variable x in the first production takes
the value f(1). This variable in effect counts the number of times the rules
for the non-terminals A, ..., E are invoked (with a value f”’l(l) encoding n

Computational Complexity in Natural Language 61

S — A(x) B(x) C(x) D(x) E(x)

A(l) > a A(f(x)) > a A(x)
B(1) - b B(f(x)) - b B(x)
C(1)—>c C(f(x)) » cC(x)
D(1)—d D(f(x)) - d D(x)
E(l) —» e E(f(x)) > eE(x)

Figure 2.3 Productions of a DCG recognizing the language {a"b"c""d"e" | n > 0}.

S
A(f(1) B(f(1)) C(£(1)) D(f(1)) E(f(1))
/\
a Al) b B(1) ¢ ca d D) e E(1)
. b ! } :

Figure 2.4 Derivation of the string aabbccddee in the DCG of Figure 2.3.

invocations), and ensures that this number is the same in each case. Thus,
L(G) ={a"b"c"d"e" | n > 0}; this language is not a tree adjoining language.

The DCG framework is of interest in part because it is so attractive to implement:
indeed, DCGs are a built-in feature of the Prolog programming language (Pereira
& Warren 1980). The basis for such implementations is the concept of unification.
We say that any terms f; and #; of 7 unify if there is a simultaneous substitu-
tion of terms for variables in t; and ¢» which make these expressions identical.
If two terms unify, then there is a ‘most general’ unifier, which is unique up
to renaming of variables. In a DCG-parser, when a non-terminal A(uz, ..., uy) is
expanded by the production (8), the most general unifier of the terms A(uy, . . ., uy)
and A(sy, . .., sy) is first computed; if this unifier exists, all variable bindings thus
created are carried through to all the non-terminals Bi(f), ..., Bm(ty), which are
then subject to expansion as before. Computing an explicit representation of the
most general unifier of two terms is computationally expensive, because that rep-
resentation is in general exponentially large in the size of the terms. However,
determining whether two terms unify is much easier (Paterson & Wegman 1978;
de Champeaux 1986):

THEOREM 16. The problem of determining whether two terms unify is in TIME(n +1).

DCGs thus present an interesting object of study from a complexity-theoretic
point of view. We have:

THEOREM 17. The universal recognition problem for DCGs is undecidable. Indeed, there
is a DCG G such that L(G) is undecidable.

62 Ian Pratt-Hartmann

Theorem 17 follows almost directly from Theorem 1, because the operation of any
Turing machine M can easily be simulated using a DCG in which the values of
variables are used to store configurations of M.

However, by imposing various reasonable constraints on DCGs, decidability
can be restored. Let us say that a production is consuming if the right-hand side
either consists of a single terminal or has a length of at least 2; and let us say
that a DCG is consuming if all its productions are. For example, the production
a(f(x))—a(x) is not consuming, because its right-hand side consists of a single non-
terminal; on the other hand, the DCG of Figure 2.3 is consuming. It is easy to show
that, if a consuming DCG accepts a string o of length 7, the resulting parse-tree
has at most 3n — 1 nodes, so decidability in this case should not be a surprise. In
fact, we have:

THEOREM 18. The universal recognition problem for consuming DCGs is NPTIME-
complete. Indeed, there exists a consuming DCG G such that L(G) is NPTIME-complete.

The upper bound in Theorem 18 follows from the following observations. Given
a consuming DCG G and a string o of length n, we first guess a parse-tree
featuring at most 3n — 1 nodes. Each non-leaf node is labeled with the (unin-
stantiated) production of G responsible for generating it, and each leaf node is
labeled with a terminal, so as to form the string o. (If the same production is
used at more than one non-leaf node, new copies are made containing fresh vari-
ables.) We need only check that the terms in the copies of the productions at
each node can be simultaneously unified in the obvious way. This check amounts
to determining the unifiability of two (polynomially large) terms, and can be
carried out in polynomial time by Theorem 16. The NPTIME-hardness of L(G)
for certain consuming DCGs G is easily shown by a simple reduction of the
satisfiability problem for propositional logic clauses; the result then follows by
Theorem 6.

Alternatively, we might say that a DCG is function-free if there are no func-
tion symbols in its productions. (Thus, the DCG featured in Figure 2.4 is not
function-free, because several of its productions feature the function symbol f.)
We have:

THEOREM 19. The universal recognition problem for function-free DCGs is EXPTIME-
complete. However, for any fixed function-free DCG G, L(G) is in PTIME.

Theorem 19 follows straightforwardly from the close connection between
function-free DCGs and the logic programming language DATALOG (see,
e.g., Libkin 2004, Chapter 10, or Dantsin et al., 2001). More generally, there is a
close connection between DCGs on the one hand and so-called fixed-point logics
on the other, which allows standard results from complexity theory to be carried
over to the study of DCGs. For example, Rounds (1988) describes two DCG-
like grammar frameworks, one able to recognize all and only the languages in
TIME(2"), the other able to recognize all and only the languages in PTIME. Rounds

Computational Complexity in Natural Language 63

shows that the second of his two grammar frameworks is at least as expressive as
that of TAG (and its equivalents), mentioned above.

A more traditional grammar framework generalizing CFGs is that of the
context-sensitive grammars. A context-sensitive grammar (CSG) is like a CFG,
except that the productions are now of the form « — g, where o and g are strings
of symbols such that |«| < |8|. These productions are interpreted as rewrite rules,
in much the same way as productions of a CFG. For comparison, note that, in a
CFG, all productions have the form A — B, where A is a non-terminal. Indeed,
if we assume (which we may without essential loss of generality) that produc-
tions in CFGs have non-empty right-hand sides, the condition |«| < |B] is then
trivially satisfied, whence CFGs are a special case of CSGs. Recalling the equiva-
lence of languages and decision problems, it is routine to show that the class of
context-sensitive languages is exactly the complexity class NSPACE(n). In fact, we
have the following result concerning recognition complexity for context-sensitive
languages.

THEOREM 20. The universal recognition problem for CSGs is PSPACE-complete.
Indeed, there exists a CSG G such that L(G) is PSPACE-complete.

For a formal definition of context-sensitive grammars and a proof of Theorem 20,
see Hopcroft and Ullman (1979b: 223 and 347ff.). It was long conjectured that
the complement of a context-sensitive language is itself a context-sensitive lan-
guage. This conjecture was settled, positively, by Theorem 4, using the fact that
the context-sensitive languages coincide with NSPACE(n).

All the grammar frameworks examined so far have precise formal definitions,
which makes for a clear-cut complexity analysis. However, many mainstream
grammar frameworks which aspire to describe natural languages are much less
rigidly defined (and indeed much more liable to periodic revision); consequently,
it is harder to provide definitive results about computational complexity. Trans-
formational grammar is a case in point. Let us take a transformational grammar
to consist of two components: a CFG generating a collection of phrase-structure
trees — so-called deep structures — and a collection of transformations which map
these deep structures to other phrase-structure trees — so-called surface structures.
A string o is accepted by G just in case o can be read off the leaves of some sur-
face structure obtained in this way. Absent a formal specification of the sorts of
transformations allowed in transformational grammar, it is impossible to deter-
mine the complexity of its recognition problem. However, analyzing a version of
Chomsky’s aspects theory, Peters and Ritchie (1973) show the existence of trans-
formational grammars which can recognize undecidable languages. Certainly,
then, the universal recognition problem for transformational grammars (thus
understood) is undecidable. Other analyses of grammar frameworks in the trans-
formational tradition paint a picture of lower complexity, however. Thus, Berwick
and Weinberg (1984: 125ff.) analyze the complexity of government-binding gram-
mars, a formalization of the approach taken in Chomsky (1981), and show that
recognition complexity for such grammars is in the class PSPACE.

64 Ian Pratt-Hartmann

2.4 Model-theoretic semantics

Recent trends in linguistics — particularly within the transformational
tradition — have shown a preference for specifying grammars not in terms of gener-
ative mechanisms but, rather, in terms of constraints to which sentence structures
are required to conform. On this view of grammar, a string ¢ is grammatical just
in case it has a structure which satisfies those constraints. How can we determine
the complexity of the recognition problem when grammars are presented in this
way? The answer is to employ a formal language: this formal language must be
powerful enough to express the constraints constituting the grammar in question,
and yet not so powerful that working with it leads to undecidable problems.

Monadic second-order logic (MSO) is a formal language containing two sorts of
variables: those ranging over objects (as in ordinary first-order logic), and those
ranging over sets of objects. For the moment, let us suppose that the ‘objects’ in
question are positions in a string o over an alphabet X¥'. We confine ourselves to
a language containing a unary atomic predicate s, for every s € X, and binary
predicates € and <. We now interpret these predicates over the set of positions in ¢
as follows (we adopt the convention of using lowercase letters for object variables
and uppercase letters for set variables): x € X means ‘x is a member of X’; x <y
means ‘x is non-strictly to the left of y’; and s(x) means “position x is filled with
symbol s,” for each s € X¥. Formulas are built up from atomic formulas using
Boolean connectives and quantifiers (over both sorts of variables) in the normal
way. The standard semantics for these connectives then determines, for a given
formula ¢ (with no free variables) and a given string o, whether ¢ is true in o.
That is: any o € X* is a structure (in the logicians’ sense) interpreting the above
language.

On this view, we can think of an MSO-formula ¢ (with no free variables) as a
grammar: a string o is accepted by ¢ just in case ¢ is true in . The following result
was proved by Biichi (1960).

THEOREM 21 (BUCHI). A language is recognized by an MSO-formula if and only if it
is reqular.

Now, this approach to defining languages using formulas of MSO can be gen-
eralized in the following way. Suppose we take our variables to range, not over
positions in strings, but over positions (nodes) in finite trees. (Think of the trees
in question as phrase structures of sentences.) And suppose we take our language
to feature the binary predicates €, <1, and <, as well as unary predicates drawn
from a finite set of labels. These predicates are then interpreted as follows: x € X
again means ‘x is a member of X’; x <1 ¥ means “x is the mother of y’; x <x y means
‘x is a left sister of y’; and s(x) means that x is labeled with s, for each label s. All
other formulas are then interpreted according to the usual semantics of MSO. In
this way, we can think of an MSO-formula ¢ (with no free variables) as licensing a
set of labeled trees: namely, the trees in which ¢ is true. It was shown by Thatcher
and Wright (1968) that the sets of trees (i.e., tree languages) recognized in this way
are — to within some additional labeling — the sets of trees generated by CFGs.

Computational Complexity in Natural Language 65

Indeed, one can interpret MSO-formulas over ‘trees’ of higher dimensions,
obtaining grammar frameworks of still greater expressive power. This approach
to syntax is often referred to as model-theoretic syntax (Rogers 2003). Its appeal is
partly due to the fact that MSO can express many relationships dear to linguists’
hearts. For example, it is straightforward to write down a formula ¢c(x, y) which
is satisfied by nodes x and y in a tree just in case node x C-commands node y
in that tree. Rogers (2003) notes that some principles of Rizzi’'s theory of rela-
tivized minimality (Rizzi 1990) can be expressed using formulas of the language
sketched above. From a complexity-theoretic point of view, this approach is inter-
esting because the problem of determining whether a formula of MSO is satisfiable
over finite trees is decidable (see, e.g., Borger et al., 1997: 3151f.):

THEOREM 22. The problem of determining the satisfiability of a formula of MSO over
finite trees is decidable, but has non-elementary complexity.

3 Complexity and Semantics

Most linguistic theories are more than a criterion for defining a set of acceptable
sentences: they also assign one or more levels of structure to those sentences which
they do accept. The question then arises as to the computational complexity of
recovering that structure.

Consider, for example, context-free grammars. Let G be a CFG. If 0 € L(G),
then G assigns to ¢ one or more phrase structures representing the derivation of
o by the productions of G. It is easy to construct a CFG G for which there exists a
sequence {0, },eN Of strings accepted by G, such that the length of 5, is bounded
above by some polynomial function of #, while the number of phrase structures
which G assigns to o;, is bounded below by an exponential function of 7. That is:
the number of parses produced by a CFG G can grow exponentially. Nevertheless,
the set of phrase structures assigned to any string ¢ by G may always be compactly
represented in the form of an acyclic directed graph, which can be expanded into
a complete list of the phrase structures in question; moreover, using a variant of
the CYK or Earley algorithms, that compact representation may be computed in
time O(nm). (Trivially, listing all the represented phrase structures will in general
take exponential time.) For a general discussion on the relationship between the
complexity of recognition and parsing, see Ruzzo (1979).

Arguably, determining the syntactic structure of a sentence is of little value
unless we can use that structure to recover the sentence’s meaning. The notion of
meaning in general is too vague to admit of immediate formal analysis. However,
we might sensibly begin with the more specific problem of recovering, at least
for certain fragments of natural languages, logical form, in the sense of producing
translations such as:

Every boy loves some girl who admires him

©) Vx(boy(x) — Jy(girl(y) A admire(y, x) A love(x, y)))

66 lan Pratt-Hartmann

IP/y1(2) — NP/y1 U/ Det/Aprq[Ix(p(x) A q(x))] — some
I'/y1 —> isaN'/y Det/ApAqIVx(p(x) — q(x))] — every
I'/Ax[—y1(x)] - is not a N'/yq Det/ApArq[Vx(p(x) — —q(x))] — no
NP/y1; — PropN/y;

NP/y1(y2) — Det/y1 N’ /iy, N/cynic — cynic

N'/y1 — N/y1. N/philosopher — philosopher

PropN/Apl[p(socrates)] — Socrates
PropN/ip[p(diogenes)] — Diogenes

Figure 2.5 Semantically annotated CFG generating the language of the syllogistic.

The framework of CFGs (and indeed the other grammar frameworks mentioned
above) can be modified to yield such logical forms. Approaches vary, but one
popular technique is to associate with each vocabulary item an expression of the
simply typed A-calculus (STLC) representing its meaning, and to associate with
each production a prescription for combining the meanings of the items in its
right-hand side. In the following explanation, we assume basic familiarity with
STLC; for an in-depth account, the reader is referred to Hindley and Seldin (1986,
Chapter 13). A production in such a grammar has the form

A/E = Bi/y1...Bm/ym

where 1, ...,y are distinct variables, and £ is an STLC-expression whose free
variables are confined to yi,...,y,. Such a production functions exactly as in
an ordinary CFG, except that the meaning of the phrase A is computed by
substituting the (already computed) meanings of the By, ..., By for all occur-
rences of the corresponding variables y1, ..., in &, and then g-reducing. This
approach is, more or less, that championed by Montague (1974) (see Chapter 15,
Section 2.1). For an accessible modern treatment, including a relatively non-
technical explanation of the relevant aspects of higher-order logic, see Blackburn
& Bos (2005).

Consider, for example, the productions shown in Figure 2.5. The underlying
CFG evidently recognizes the sentence ‘Every cynic is a philosopher,” via the
parse-tree shown in Figure 2.6. By computing the semantic values of each node
in that tree, as shown, the (expected) first-order translation

Vx(cynic(x)A — philosopher(x))

is eventually generated. In fact, the grammar of Figure 2.5 recognizes the set of
English sentences having the forms

Every
Some L isa
No isnota !

S

Computational Complexity in Natural Language 67

1P
Vx(cynic(x) — philosopher(x))

NP T
AqIVx(cynic(x) — q(x))] philosopher
Det N’ is a N’
ApAg[Vx(p(x) — q(x))] cynic philosopher
\ \
Every N lll
cynic philosopher
\ \
cynic philosopher

Figure 2.6 Meaning derivation in a semantically annotated CFG.

where S is a proper noun, and L and M are common nouns, yielding, in each case,
the expected translation into first-order logic. The question now arises: what is the
computational complexity of recovering logical forms in this way?

The answer depends on how, exactly, logical forms are allowed to be repre-
sented. If the underlying grammar G is a CFG, then the CYK or Earley algorithms
can again be modified to produce, in polynomial time, a compact representation of
all meanings which G assigns to a given string o, just as for parse-trees. However,
these representations will not be g-reduced. That is, in order to produce ordi-
nary logical translations such as (9), we need to compute the normal forms for the
expressions which our parser yields. That these normal forms can be computed
follows at once from the normalization theorem for STLC, though the complexity
of the relevant function is high (Statman 1979):

THEOREM 23. The problem of deciding whether one expression in STLC is the normal
form of another has non-elementary complexity.

In practice, however, the normalization of semantic representations produced by
realistic semantically annotated CFGs is never a problem.

4 Determining Logical Relationships between
Sentences

Computing anything is of little use if nothing is then done with the results. And
while the uses to which humans put computed meanings may perhaps forever
remain lost in the mists of psycholinguistics, complexity theory does have some-
thing to say about the more definite subject of determining logical relationships
between sentences in natural language. That is the topic of this final section.

68 Ian Pratt-Hartmann

That sentences in natural language exhibit interesting logical relationships was
recognized in antiquity. For example, the argument

Every logician is a philosopher
Some stoic is a logician

No dentist is a philosopher
Some stoic is not a dentist

(10)

is evidently valid: every possible situation in which the premises are true is one
in which the conclusion is true. Likewise valid, but less evidently so, is the
argument

Every skeptic recommends every skeptic to every cynic

No skeptic recommends any stoic who hates any cynic
to any philosopher

Diogenes is a cynic whom every skeptic hates

Every cynic is a philosopher

No stoic is a skeptic

(11)

Observe that argument (11) uses a wider variety of grammatical constructions
than argument (10), specifically: transitive and ditransitive verbs, as well as rel-
ative clauses. The question therefore arises as to how the difficulty of determining
logical relationships between sentences in naturally delineated fragments of natu-
ral languages depends on the grammatical resources included in those fragments.
Are ditransitive verbs really harder than transitive verbs? Passives harder than
actives? How much extra effort is required to deal with relative clauses (either
subject relatives or object relatives)? Is ‘donkey-anaphora” more computationally
intensive than other forms of bound-variable anaphora? And so on.

Consider the grammar of Figure 2.5, which, as we saw in Section 3, yields the
language of the traditional syllogistic. In particular, this grammar recognizes all
the sentences in argument (10), and translates that argument to the first-order
sequent

Vx(logician(x) — philosopher(x))
Jx(stoic(x) A logician(x))
Vx(dentist(x) — —philosopher(x))
Jx(stoic(x) A —dentist(x))

Since the primary form-determining element in this fragment of English is the
copula, we refer to it as Cop. With translations into first-order logic at our disposal,
we can now formally characterize a notion of validity in this fragment. Specifically,
we take an argument in the fragment Cop to be valid just in case the first-order
sequent into which it is translated is valid according to the semantics of first-order
logic. Likewise, we take a set of sentences in Cop to be satisfiable just in case the set
of formulas to which they are translated is satisfiable according to the semantics
of first-order logic.

Computational Complexity in Natural Language 69

I'/y1 — VP/yq TV /xsix[s(ry[admire(x, y)])]
I'/y1 — NegP/y1 — admires
NegP/Aix[—y1 (x)] — Neg VP/y; TV /xsix[s(ry[despise(x, y)]]

VP/y1(y2) — TV/y1 NP/yp — despises
Neg — does not

Figure 2.7 Productions for extending the syllogistic with transitive verbs.

Thus, the fragment Cop is more than a mere set of strings (the grammatical sen-
tences): it is a set of strings together with associated logical concepts of validity and
satisfiability. In particular, we may pose the satisfiability problem for Cop: given
a set E of sentences in Cop, determine whether E is satisfiable. Furthermore, since
every sentence in Cop is logically equivalent to the negation of some other, satisfi-
ability and validity are dual notions, in the familiar sense: an argument is valid just
in case its premises together with the negation of its conclusion are unsatisfiable.
Hence, the complexity of the validity problem for Cop can be read off immediately
from the complexity of the satisfiability problem.

It is routine to show that determining the satisfiability of a collection of sen-
tences in the fragment Cop is essentially the same as the problem of determining
the satisfiability of a collection of propositional clauses each of which contains at
most two literals. Recalling Theorem 8, we have:

THEOREM 24. The problem of determining the satisfiability of a set of sentences in Cop
is NLOGSPACE-complete.

It follows of course that the problem of determining the validity of an argument
in Cop is also NLOGSPACE-complete, by Theorem 4. This confirms our subjective
impression that this problem is nearly trivial.

What happens if we expand the fragment Cop? Let us define the fragment
Cop+TV to be the set of sentences recognized by the productions of Figure 2.5
together with those of Figure 2.7. (We have simplified the treatment by ignor-
ing verb inflections and negative-polarity determiners; these simplifications are
not computationally significant.) It is easy to see that this fragment contains the
following sentence, and translates it to the indicated first-order formula.

(12) Every stoic hates every sceptic
Vx(stoic(x) — Vy(sceptic(y) — hate(x,y)))

We need to address the issue of scope ambiguities in the context of Cop+TV. There
are two possibilities here: either we can resolve these ambiguities by fiat, tak-
ing subjects always to outscope objects; or we can augment the language with
some form of marking to indicate quantifier scope. For simplicity, we choose the
former course (though the latter would lead to essentially the same complexity
results). Similarly, let Cop+TV+DTV be the fragment which extends Cop with both
transitive and ditransitive verbs. (Writing the required productions is completely
routine.) Thus, Cop+TV+DTV contains the following sentence, and translates it to
the indicated first-order formula.

70 Ian Pratt-Hartmann

(13) No stoic recommends every sceptic to some cynic
Vx(stoic(x) — —Vy(sceptic(y) — Jz(cynic(z) A recommend(x, y,z))))
Again, we take subjects to outscope direct objects, and direct objects to outscope

indirect objects.
Is inference in these larger fragments more complex? The following two results
(substantially) answer this question.

THEOREM 25. The problem of determining the satisfiability of a set of sentences in
Cop+TV is NLOGSPACE-complete.

THEOREM 26. The problem of determining the satisfiability of a set of sentences in
Cop+TV+DTV is in PTIME.

The proofs of these theorems are more elaborate than for Cop; we refer the
reader to Pratt-Hartmann and Moss (2009) and Pratt-Hartmann and Third (2006)
respectively.

Returning to the fragment Cop, what happens if we now add relative clauses?
Thus, for example, we have the valid argument

Every philosopher who is not a stoic is an Epicurean
No Epicurean is a beekeeper

No stoic is a beekeeper

No philosopher is a beekeeper

It is straightforward to write a semantically annotated context-free grammar
accepting such sentences, and generating the obvious semantics. Let us call the
resulting fragment of English Cop+Rel (see Pratt-Hartmann 2004 for a formal def-
inition). The first-order formulas into which Cop+Rel sentences are translated all
have one variable — that is to say, they lie within the one-variable fragment of first-
order logic. The satisfiability problem for this fragment is essentially the same as
that for clauses of the propositional calculus. Thus, from Theorem 6:

THEOREM 27. The problem of determining the satisfiability of a set of sentences in
Cop+Rel is NPTIME-complete.

On the other hand, the fragment Cop+Rel+TV+DTV recognizes all the sentences
in argument (11), and translates them into the first-order sequent

Vx(sceptic(x) — Yy(sceptic(y) — Vz(cynic(z) — recommend(x, Yy, z))))

Vx(sceptic(x) — —3Jy(stoic(y) A Iz(cynic(w) A hate(y, w))A
Jz(philosopher(z) A recommend(x, y, z))))

cynic(diogenes) A Vx(sceptic(x) — hate(x, diogenes))

Vx(cynic(x) — philosopher(x))

Vx(stoic(x) — —sceptic(x))

Again, we have the question: does adding transitive and ditransitive verbs to
Cop+Rel lead to an increase in complexity? This time, the answer is yes.

Computational Complexity in Natural Language 71

THEOREM 28. The problem of determining the satisfiability of a set of sentences in
Cop+Rel+TV is EXPTIME-complete.

THEOREM 29. The problem of determining the satisfiability of a set of sentences in
Cop+Rel+TV+DTV is NEXPTIME-complete.

Theorem 29 confirms our subjective impression that determining the validity of
argument (11) is harder than determining the validity of argument (10). For proofs
of the above theorems, see Pratt-Hartmann (2004) and Pratt-Hartmann and Third
(2006).

A remark is in order at this point to correct a false impression that the foregoing
discussion may have created. As we have observed, the complexity of determin-
ing entailments within a fragment of a natural language evidently depends on
the constructions made available by the syntax of that fragment. However, it also
depends, of course, on the presence in the lexicon of words with a ‘logical” charac-
ter. Consider, for example, the effect of expanding the fragments Cop and Cop+TV
with numerical determiners, yielding sentences such as

(14) Atleast 13 artists are beekeepers
in the former case, and
(15) At most 5 carpenters admire at most 4 dentists
in the latter. Calling the resulting fragments Cop+Num and Cop+TV+Num, we

obtain the following results (Pratt-Hartmann 2008):

THEOREM 30. The problem of determining the satisfiability of a set of sentences in
Cop+Num is NPTIME-complete; the problem of determining the satisfiability of a set of
sentences in Cop+TV+Num is NEXPTIME-complete.

Thus, the complexity-theoretic impact of such numerical expressions is dramatic.
Finally, we consider the complexity-theoretic consequences of adding bound-
variable anaphora to our fragments. Consider the sentences

No artist admires any beekeeper who does not admire himself
No artist admires any beekeeper who does not admire him

It is routine to add grammar rules to Cop+Rel+TV producing the conventional
translations into first-order logic:

Vx(artist(x) — Yy(beekeeper(y) A —admire(y, y) — —admire(x, y)))
Vx(artist(x) — Yy(beekeeper(y) A —admire(y, x) — —admire(x, y)))

For such anaphoric fragments, two further issues regarding the first-order trans-
lations arise. First, we assume the (standard) universal interpretation of ‘donkey-
sentences’

72 Ian Pratt-Hartmann

Every farmer who owns a donkey beats it
VxVy(farmer(x) A donkey(y) A own(x,y) — beat(x,y))

Second, we must decide how to treat anaphoric ambiguities. The sentence
(16) Every sceptic who admires a cynic despises every stoic who hates him
has two interpretations:
Vx(sceptic(x) A Jy(cynic(y) Aadmire(x, y)) —
Vz(stoic(z) A hate(z, x) — despise(x, z)))

VxVy(sceptic(x) A cynic(y)Aadmire(x, y) —
Vz(stoic(z) A hate(z,) — despise(x, 2)))

(17)

(18)

according as the pronoun ‘him’ takes as antecedent the NP headed by ‘sceptic” or
the NP headed by ‘cynic’. (The NP headed by ‘stoic’ is not available as a pronoun
antecedent here.)

Note that, in the (standard) phrase-structure tree for this sentence, the NP
headed by ‘sceptic’ is closer to the pronoun than is the NP headed by ‘cynic’. This
observation suggests making the artificial stipulation that pronouns must take their
closest allowed antecedents. Here, closest means ‘closest measured along edges of the
phrase-structure” and allowed means ‘allowed by the principles of binding theory.’
(We ignore case and gender agreement.) Thus, under this stipulation, sentence (16)
has only the reading (17). Let the resulting fragment of English, with the stipula-
tion of closest available pronomial antecedents, be called Cop+Rel+TV+RA (‘RA’
for restricted anaphora).

Formula (17) can be equivalently written

Vx(sceptic(x) A Jy(cynic(y) A admire(x, y)) —
Vy(stoic(y) A hate(y,x) — despise(x,y)))

with the variable z replaced by y. The resulting formula has only two variables.
Indeed, it can be shown that every sentence of Cop+Rel+TV+RA translates into a
formula in the two-variable fragment of first-order logic. The satisfiability problem
for this fragment is known to be NEXPTIME-complete (see, e.g., Borger et al.,
1997, Chapter 8). Moreover, Cop+Rel+TV+RA can easily be shown to encode a
NEXPTIME-hard problem. Hence, we have:

THEOREM 31. The problem of determining the satisfiability of a set of sentences in
Cop+Rel+TV+RA is NEXPTIME-complete.

We mention in passing that the reduction of NEXPTIME-hard problems to satisfia-
bility for sets of Cop+Rel+TV+RA sentences does not require the use of sentences
featuring donkey-anaphora. However awkward such sentences may be for the
smooth running of formal semantics, they do not lead to more complex inferential
problems.

Computational Complexity in Natural Language 73

The restriction that pronouns take their closest possible antecedents is essential
to the complexity bound of Theorem 31. As an alternative treatment of anaphoric
ambiguity, we might augment the sentences of Cop+Rel+TV+RA with indices
indicating antecedents in the normal way. Thus, for example, the sentence

Every sceptici who admires a cynic, despises every stoics who hates him»

would have (18) as its only reading. Let the resulting fragment be denoted by
Cop+Rel+TV+GA (‘GA’ for general anaphora). It is possible to show:

THEOREM 32. The problem of determining the satisfiability of a set of sentences in
Cop+Rel+TV+GA is not decidable.

It seems clear that many more results of the kind outlined in this section await
discovery.

See also: Chapter 1, FORMAL LANGUAGE THEORY, Chapter 4, THEORY OF
PARSING, and Chapter 15, COMPUTATIONAL SEMANTICS.

3 Statistical Language
Modeling

CIPRIAN CHELBA

Many practical applications such as automatic speech recognition, statistical
machine translation, and spelling correction resort to variants of the well-
established source-channel model for producing the correct string of words W
given an input speech signal, sentence in foreign language, or typed text with
possible mistakes, respectively. A basic component of such systems is a statis-
tical language model which estimates the prior probability values for strings of
words W.

1 Introduction to Statistical Language Modeling

A statistical language model estimates the prior probability values P(W) for
strings of words W in a vocabulary V whose size is in the tens, or hundreds of
thousands. Typically the string W is broken into sentences, or other segments such
as utterances in automatic speech recognition, which are assumed to be condition-
ally independent. For the rest of this chapter, we will assume that W is such a
segment, or sentence.

Estimating full-sentence language models is computationally hard if one seeks
a properly normalized probability model® over strings of words of finite length in
V*. A simple and sufficient way to ensure proper normalization of the model is
to decompose the sentence probability according to the chain rule and make sure
that the end-of-sentence symbol </s> is predicted with non-zero probability in
any context. With W = wy, w», ..., w, we get:

n
1) PW) = [[Pwilwi,w, ..., wi1)
i=1
Since the parameter space of P(wy|wy, wy, ..., wk_1) is too large, the language

model is forced to put the context Wy_1 = wy,wy, ..., wk_1 into an equivalence
class determined by a function @ (Wk_1). As a result,

Statistical Language Modeling 75

2 POW) = [[P(wyl®(Wi_1))
k=1

The word strings encountered in a practical application are of finite length. The
probability distribution P(W) should assign probability 0.0 to strings of words of
infinite length, and thus sum up to 1.0 over the set of strings of finite length —
the support of P(W). From a modeling point of view in a practical situation,
the text gets broken into sentences, and the language model needs to predict the
distinguished end-of-sentence symbol </s>. It can be easily shown that if the lan-
guage model is smooth, i.e., P(wy|® (Wi_1)) > € > 0, Ywy, Wk_1, then we also have
P(</s>|®(Wk_1)) > € > 0,YW_1 which in turn ensures that the model assigns
probability 1.0 to the set of word sequences of finite length.

Research in language modeling consists of finding appropriate equivalence
classifiers @ and methods to estimate P(wy|® (Wk_1)).

The most successful paradigm in language modeling uses the (n — 1)-gram
equivalence classification, that is, defines

D (Wi_1) = Wk—nt1, Wk—n42, - - -, Wk—1

Once the form &(Wy_;) is specified, only the problem of estimating
P(wy|® (W_1)) from training data remains.

In most cases, n = 3, which leads to a trigram language model. The latter
has been shown to be surprisingly powerful and, essentially, all attempts to
improve on it in the last 30 years have failed. The one interesting enhancement,
facilitated by maximum entropy estimation methodology, has been the use of
triggers (Rosenfeld 1994) or of singular value decomposition (Bellegarda 1997)
(either of which dynamically identify the topic of discourse) in combination with
n-gram models. Other widespread choices are class-based language models,
which further restrict the equivalence class of the context to @(Wi_1) to use
explicit equivalence classes on words, [w]; one can also predict the next word
using its class: P(wy|[Wk—1]) =P(wi]l[Wk-1]) - P(wi|[wk]), if the class member-
ship [w] is a function of w — a case referred to as hard clustering; if the class mem-
bership is ambiguous — soft clustering — one needs to sum over all possible class
assignments for both the context and predicted words.

1.1 Measures of language model quality

1.1.1 Perplexity A statistical language model can be evaluated by how well it
predicts a string of symbols W; — commonly referred to as test data — generated by
the source to be modeled.

Assume we compare two models M; and M, using the same vocabulary? V.
They assign probability Py, (W;) and Py, (W;), respectively, to the sample test
string W;. The test string has been neither used nor seen at the estimation step of
either model and it was generated by the same source that we are trying to model.
‘Naturally,” we consider M; to be a better model than M if Ppr, (Wp) > P, (Wp).

76 Ciprian Chelba

A commonly used quality measure for a given model M is related to the entropy
of the underlying source and was introduced under the name of perplexity
(PPL) (Jelinek 1997):

N
1
(3) PPL(M) = exp <_N E In [PM(wk|Wk—1)])
k=1

To give intuitive meaning to perplexity, it represents the number of guesses the
model needs to make in order to ascertain the identity of the next word, when
running over the test word string from left to right. It can be easily shown that
the perplexity of a language model that uses the uniform probability distribution
over words in the vocabulary V equals the size of the vocabulary; a good language
model should of course have lower perplexity, and thus the vocabulary size is an
upper bound on the perplexity of a given language model.

Very likely, not all words in the test string W; are part of the language model
vocabulary. It is common practice to map all words that are out-of-vocabulary to a
distinguished unknown word symbol, and report the out-of-vocabulary (OOV)
rate on test data — the rate at which one encounters OOV words in the test
string W; — as yet another language model performance metric besides perplex-
ity. Usually the unknown word is assumed to be part of the language model
vocabulary — open vocabulary language models — and its occurrences are counted
in the language model perplexity calculated in equation (3). A situation far less
common in practice is that of closed vocabulary language models where all words
in the test data will always be part of the vocabulary V.

1.1.2 Task-specific measures In many practical applications the language
model is used as part of a larger statistical system, and the metrics for evaluating
such systems are dictated by the problem at hand. Typical applications that use
language models include, but are not restricted to: speech recognition, machine
translation, spelling correction, case restoration (true-casing), spam filtering, and
other text classification applications.

Although the language model performance in such a system is still reasonably
correlated with perplexity, this correlation is not always strong. A particular class
of systems is that using the source-channel paradigm, e.g., speech recognition or
machine translation: given an input sequence F of continuous or discrete valued
symbols, one wishes to determine the most likely word sequence W that would
give rise to it:

4) argmvexP(WlF) = argmﬁXP(W) - P(FIW)

For such situations the discriminative power of the language model relative to the
channel model P(F|W) is what matters most, rather than performance in isolation
on correct text, as measured by perplexity.

Statistical Language Modeling 77

An intuitive explanation is that, during the search for the maximum scor-
ing word sequence in equation (4), the decoder examines a large set of word
sequences, each being accompanied by the channel model score P(F|W). Depend-
ing on the channel model quality, the language model may be asked the prob-
ability of n-grams that are rarely seen on correct text, and yet they may receive
a reasonably high language model probability under the maximum likelihood
estimate, instead of a strong negative vote of confidence.

Recent work demonstrates that significant performance gains can be obtained
by training the language model in this way (Collins 2000). For the particular
case of speech recognition, Chelba (2006) proposes an alternative to perplex-
ity named acoustic-sensitive perplexity as an objective function for evaluating
language models used in a source-channel setup.

1.2 Smoothing

Since the language model is meant to assign non-zero probability to unseen strings
of words (or, equivalently, ensure that the cross-entropy of the model over an
arbitrary test string is not infinite), a desirable property is that:

(5) P(Wk|¢(Wk,1)) > € > 0/ Vwk! Wk*l

This is also known as the smoothing requirement.

A large body of work has accumulated over the years on various smooth-
ing methods for n-gram language models that ensure this to be true. The two
most widespread smoothing techniques are probably Kneser-Ney (1995) and Katz
(1987). Goodman (2001) is an excellent overview that is highly recommended to
any practitioner of language modeling.

A simple smoothing method for discrete probability models due to Jelinek and
Mercer (1980) is recursive linear interpolation among relative frequency estimates
of different orders f(-),k = 0...n using a recursive mixing scheme (see Figure 3.1).

Let U/ be the vocabulary in which the predicted random variable u (not
necessarily a word) takes values.

Pn(”|21/ e /ZVI) =
Mz, ,20) - Puoalze, oo znm1) + (A= Az, .00, z0) - fu(ulze, ..o 20),

P_1(u) = uniformU)
where:

e Zi,...,z; is the context of order n when predicting u;

78 Ciprian Chelba

f, (ulzy...z,)
Pr (w2 20) £ (ulzy ..z,

P (ulzy...z,4) fo (u)

Py (u)
Pi(uw=1/1Ul

Figure 3.1 Recursive linear interpolation.

o fi(ulz1,...,zr) is the order-k relative frequency estimate for the conditional
probability P(u|z1, ..., z):

fe@lzy, ..., ze) =Cu,z1,...,20)/C(z1,...,2z0), k=0...n,

Cu,z1,...,zx) = Z Z Cu,z1, .., 2k, Zkt1 - - - Zn),

Zk+1 €241 zZn€Zy

Ci,.m) =Y Cluz,...,20);
ueld

e A(z1,...,2z¢) €10,1], k=0...n are the interpolation coefficients.

The A(z1, ..., zx) coefficients are grouped into equivalence classes — tied — based
on the range into which the count C(zy, ..., z) falls; the count ranges for each
equivalence class — also called buckets — are set such that a statistically suffi-
cient number of events (u|z1, . . ., zx) fall in that range. The approach is a standard
one (Jelinek & Mercer 1980). In order to determine the interpolation weights, we
apply the deleted interpolation technique:

(1) split the training data in two sets — development and cross-validation respec-
tively;

(2) get the relative frequency — maximum likelihood — estimates
fe(lz1,...,zx), k=0...n from development data;

(3) employ the expectation-maximization (EM) algorithm (Dempster et al., 1977)
for determining the maximum likelihood estimate from cross-validation data
of the tied interpolation weights A(C(z1, . . ., z¢)).

The cross-validation data cannot be the same as the development data; if this were
the case, the maximum likelihood estimate for the interpolation weights would be
AMC(z1, ..., z) =0, disallowing the mixing of different order relative frequency
estimates and thus performing no smoothing at all.

It is a simple exercise to cast such a language model as a back-off n-gram
model (Katz 1987).

As a final comment on LM smoothing, most of the techniques currently in use
(Katz, Kneser—-Ney, etc.) have been developed for tasks using relatively small

Statistical Language Modeling 79

ARPA LM format with back-off rule for probability calculation:

p(wd3|wdl,wd2) =

if (trigram exists) p_3 (wdl,wd2,wd3)
else if (bigram wl,w2 exists) bo wt 2(wl,w2)*p(wd3|wd2)
else p(wd3|w2)
p(wd2|wdl) =
if (bigram exists) p_2(wdl,wd2)
else bo wt_1(wdl)+p_1(wd2)

All probs and back-off weights (bo wt) are given in logl0 form.

Everything before the beginning of the data mark is a comment
Beginning of data mark: \data\ on a line by itself

End of data mark: \end\ on a line by itself

The data block is thus encoded as follows:

\data

ngram l=nr # number of unigrams
ngram 2=nr # number of bigrams
ngram 3=nr # number of trigrams
\1l-grams:

p_1 wd bo_wt_1

\2-grams:

p_2 wdl wd2 bo_wt_2

\3-grams:

p_3 wdl wd2 wd3

\end\

Figure 3.2 ARPA format for language model representation.

amounts of training data (1-100 million words). While the importance of LM
smoothing cannot be overemphasized, the impact of a particular choice for the
smoothing technique used in building a language model may become less impor-
tant as large amounts of training data become available for a task of interest (Brants
et al., 2007).

1.3 Language model representation in practice

A commonly accepted way of representing back-off n-gram models is the ARPA
format described in Figure 3.2, which we consider to be self-explanatory.

In many practical situations, including automatic speech recognition, it is
convenient to represent an n-gram language model as a finite state machine
(FSM) that drives the decoding (search) process. An excellent starting point is the
OpenFst toolkit (Allauzen et al., 2007).

In such a representation, the transitions are labeled with words in the lan-
guage model vocabulary, and the costs on such arcs are the language model
probabilities in an appropriate representation (usually as log-probabilities since
that also has computational advantages in terms of the precision of floating point

80 Ciprian Chelba

operations); the states in the FSM are the n-gram contexts of the LM. We note that,
due to the smoothing constraint (see equation (5)), all YN-1 contexts of length
N — 1 would have to be represented, which is intractable for common vocabulary
sizes of 100,000 words or more. A widespread approximation used for represent-
ing back-off language models as FSMs is to use as states only the contexts listed
in the ARPA representation of the language model and to add back-off transitions
whose cost is the back-off weight. This reduces the LM state space drastically,
at a small cost in modeling accuracy — the LM representation is not exact, and
non-deterministic.

As increasing amounts of training data become available, it becomes of par-
ticular interest to reduce the number of parameters, as well as efficiently store
language models. The number of n-grams in an LM can be reduced while having
the least possible impact on model perplexity by using pruning techniques. They
range from simple count cut-off pruning (discarding n-grams whose count in the
training data is below a certain threshold) to the more sophisticated entropy-based
pruning techniques (Seymore & Rosenfeld 1996; Stolcke 1998). The interaction
between pruning and various smoothing techniques deserves a more careful
study, in particular for more aggressive pruning regimes. One such example is the
rapid deterioration of Kneser-Ney models with entropy pruning (Siivola et al.,
2007).

The use of a trie for storing n-gram back-off language models is well estab-
lished: the CMU (Rosenfeld 1995), SRILM (Stolcke 2002) toolkits, as well as others
(Whittaker & Raj 2001; Hsu & Glass 2008) all rely on it in one form or another.
Its refinement using array indexes instead of pointers for the trie representation
is also an established idea — it was implemented in later versions of the CMU
(Clarkson & Rosenfeld 1997) toolkit, as well as the more recent MITLM (Hsu &
Glass 2008). The array sizes are known in advance and can be pre-allocated to
avoid memory fragmentation.

The quantization of LogP/BoW values is also an established procedure for
reducing the storage requirements. The work in Whittaker and Raj (2001) applies
both techniques, and in addition makes the important connection between LM
pruning and compression/quantization. By representing Logl’/BoWs on a vari-
able number of bits (codewords) at each n-gram order, quantizing recursively
the differences between actual LogP value and quantized back-off estimate, and
removing redundant n-grams using a similar criterion to Stolcke (1998) and
Seymore and Rosenfeld (1996), the authors show that the LM performance on an
ASR task can be preserved while dramatically reducing the memory footprint of
the model.

More recent approaches (Harb et al., 2009) enhance the standard use of integer
arrays to represent the trie by applying block compression techniques in order to
reduce the storage requirements for both skeleton and payload. The compression
methods used are lossless.

In a significant departure from traditional techniques, randomized encoding
schemes (Talbot & Osborne 2007; Talbot & Brants 2008) achieve excellent compres-
sion performance by using a lossy representation of the model. These can store
parameters in constant space per n-gram independent of either vocabulary size

Statistical Language Modeling 81

or n-gram order, but return an incorrect value for a ‘random’ subset of n-grams
of tunable size: the more errors allowed, the more succinct the encoding. In the
case of Talbot and Brants (2008), n-grams can also be looked up in constant time
independent of the compression rate. On the other hand, these schemes cannot
easily store a list of all future words for each n-gram context as required by certain
applications, e.g., when representing the language model as an FSM.

We conclude our introduction to language modeling (in particular n-gram
models) here. The rest of the chapter contains a presentation of the structured lan-
guage model (Chelba & Jelinek 2000). This novel language modeling approach
attempts to leverage n-gram modeling techniques in order to exploit the syn-
tactic structure exhibited by natural language. Section 2 outlines the underlying
probabilistic model and its estimation from training data annotated with syntac-
tic parse-tree information. Section 3 details experiments in an automatic speech
recognition setup, followed by Section 4 which presents refinements to the orig-
inal formulation in an attempt to better capture the syntactic dependencies in
language. Section 5 compares our approach to related ones, followed by conclu-
sions suggesting research directions for language modeling, and the structured
language model in particular.

2 Structured Language Model

As outlined in equation (2), a language model predicts the next word in a string of
words based on an equivalence classification of the word prefix @ (Wg_1).

From a theoretical point of view, the finite-order Markov assumption on which
the estimation of n-gram models rests is inadequate for modeling the dependen-
cies in natural language. The main criticism is that such a model operates on the
surface of the word string, and ignores the more complex dependencies exhibited
in natural language syntax — best described using parse-trees. A more expressive
formal language that is able to take into account such dependencies is the class of
context-free grammars (CFGs).

The structured language model (SLM) we present addresses this problem by
using a parser for classifying the word prefix hierarchically and proposing several
possible equivalence classifications @' (Wy_1),l =1...N fora given word prefix
Wi_1, each accompanied by a probability P(®!(Wi_1)|Wi_1).

We wish to emphasize that the encoding for a word sequence together with a
parse-tree used by the SLM is different from that provided by a CFG. The excel-
lent study in Abney et al. (1999) contrasts CFGs and the class of probabilistic
push-down automata (to which the SLM belongs) from a learning, and power
of expression, point of view.

The remaining part of the SLM presentation is structured as follows: the basic
idea behind the hierarchical method for organizing the word prefix is outlined in
the next section. One main constraint imposed on it by the incremental operation
of the language model in a speech recognizer — see equation (1) — is that it has to
proceed left to right through the word sequence.

82 Ciprian Chelba

ended_VP’

loss_NP cents_NP

/ﬁtmdNP

the_DT contract_ NN ended_VBD with_IN a_DT loss_NN of IN7_CD cents_NNS after

Figure 3.3 Partial parse.

Section 2.2 presents a model that assigns probability to each possible pair
consisting of a word sequence and parse. This is then used to assign probabil-
ity P(®!(Wi_1)|Wi_1) to each equivalence classification of Wi_; considered by
the model, and finally mix them to get a word-level probability P(wy|Wk_1), as
described in Section 2.4. A few shortcuts are introduced to make the compu-
tation feasible. Section 2.6 describes two successive stages of model parameters
re-estimation. Finally, Section 2.7 presents experiments carried out on the UPenn
Treebank corpus and compares the results of our approach to those obtained from
the 3-gram model.

2.1 Basic idea and terminology

Consider predicting the word after in the sentence: the contract ended
with a loss of 7 cents after trading as low as 9 cents. A 3-
gram approach has to predict after from (7, cents) whereas it is intuitively
clear that the strongest predictor would be (contract, ended) which is
outside the reach of even 7-grams.

The linguistically correct partial parse of the word history when predicting
after is shown in Figure 3.3; the word exoep is called the headword of the
constituent (ewpep ended (wits with (...))) and =wpep is an exposed head-
word when predicting after — topmost headword in the largest constituent that
contains it. A model that uses the two most recent exposed headwords would
predict after from contracr, Enpep, in agreement with our intuition. Another intu-
itive argument in favor of the headword prediction is the fact that the headword
context is invariant to the removal of the (or of (cents 7 cents)) constituent —
yielding a correct sentence — whereas the trigram predictor is not invariant to this
transformation.

Our working hypothesis is that syntactic structure filters out irrelevant words
and points to the important ones — exposed headwords — thus providing an equiv-
alence classification of the word prefix and enabling the use of long-distance
information when predicting the next word.

Statistical Language Modeling 83

h_{-m} = (<s>, SB) h_{-2} h_{~1} h_0 = (h_0.word, h_0.tag)

(<s>, SB) (w_r, t_r) (w_{p-1}, t_{p-1}) (W_p, t_p) (W_{p+1}, t_{p+1}) (w_k, t_k) w_{k+1}.... </s>
Figure 3.4 A word-and-parse k-prefix.

(</s>, TOP)
(</s>, TOP)

(</s>, TOP)

(<s>,SB) (W_1, t_1) ecerreereennne (w_n, t_n) (</s>, SE)

Figure 3.5 Complete parse.

The SLM will attempt to build the syntactic structure incrementally while
traversing the sentence left to right. It will assign a probability to every word
sequence W and parse T — every possible POS tag assignment, binary branching
parse, non-terminal label, and headword annotation for every constituent of T.
The probability assignment is based on a simple encoding of the (W, T) pair that
is described in the next section.

2.1.1 Word sequence and parse encoding Let W be a sentence of length n
words to which we have prepended <s> and appended </ s> so that wy = <s>and
Wy+1 = </s>. Let Wy = wp ... wy be the word k-prefix of the sentence and W Tk
the word-and-parse k-prefix. To stress this point, a word-and-parse k-prefix
contains only those binary subtrees whose span is completely included in
the word k-prefix, excluding wy = <s>. Single words along with their POS
tag can be regarded as root-only trees. Figure 3.4 shows a word-and-parse
k-prefix; h_0...h {-m} are the exposed heads, each head being a pair (head-
word, non-terminal label), or (word, POS tag) in the case of a root-only tree.
A complete parse — Figure 3.5 — is defined to be any binary parse of the
(<s>, SB) (w1, t1)...Wn, ty) (</s>,SE)3 sequence with the restrictions that:

e (</s>, TOP) isthe only allowed head;
o (w1,t1)...(wy,ty) (</s>, SE) forms a constituent headed by (</s>,
TOP').

Note that in a complete parse (wy,t1) ... (wy, ty) need not form a constituent? but,
for the parses where it does, there is no restriction on which of its words is the
headword or what the non-terminal label is that accompanies the headword. To
clarify this point, the constituents available at the time the end-of-sentence </s>
is predicted are attached to </s> under the TOP’ non-terminal tag. For example, a

84 Ciprian Chelba

valid SLM parse is one in which each word in the sentence is a separate constituent
of span length one — corresponding to the regular n-gram model.
The model operates by means of three modules:

o WORD-PREDICTOR predicts the next word wy;1 given the word-and-parse
k-prefix and then passes control to the TAGGER;

e TAGGER predicts the POS tag of the next word ty;q given the word-and-
parse k-prefix and the newly predicted word and then passes control to the
CONSTRUCTOR;

e CONSTRUCTOR grows the already existing binary branching structure by
repeatedly generating transitions from the set (unary, NTlabel), (adjoin-left,
NTlabel), or (adjoin-right, NTlabel) until it passes control to the PREDICTOR
by taking a null transition. NTlabel is the non-terminal label assigned to the
newly built constituent and {left, right} specifies where the new headword is
inherited from.>

The operations performed by the CONSTRUCTOR are illustrated in
Figures 3.6-3.8 and they ensure that all possible binary branching parses with
all possible headword and non-terminal label assignments for the w; . .. w; word

h_{-2} h_{-1} h 0

......... T_{-2} T_{-1} T_0

Figure 3.6 Before an adjoin operation.

h'_{-1}=h_{-2} h’_0=(h_{-1}.word, NTlabel)

T_{-m+1}<—<s>

............... T (-1} <-T_{-2} T _{-1} TO0

<s>

Figure 3.7 Result of adjoin-left under NTlabel.

h’_{-1}=h_{-2} h’_0=(h_0.word, NTlabel)

T _{-m+1}<—<s>
............... T _(-1)<-T_{-2}

<s>

Figure 3.8 Result of adjoin-right under NTlabel.

Statistical Language Modeling 85

predict word

adjoin_{left,right}

Figure 3.9 Language model operation as a finite state machine.

Transition t; // a CONSTRUCTOR transition
predict (<s>, SB);
do {

//WORD-PREDICTOR and TAGGER
predict (next word, POStag);
//CONSTRUCTOR
do {
if (h_{-1}.word != <s>) {
if (h 0.word == </s>) {
t = (adjoin-right, TOP’) ;
} else {
if (h_0.tag is in set of NTlabels)

t = [(adjoin-{left,right}, NTlabel), null];
else
t = [(unary, NTlabel), (adjoin-{left,right}, NTlabel), nulll;
1
} else {
if (h_0.tag is in set of NTlabels)
t = null;
else
t = [(unary, NTlabel), null];

}

} while(t != null) //done CONSTRUCTOR
while (! (h 0.word==</s> && h {-1}.word==<s>)
= (adjoin-right, TOP); //adjoin <s>_ SB; DONE;

Figure 3.10 SLM operation.

sequence can be generated. The finite state machine in Figure 3.9 presents a
simplified operation of the model. Algorithm (10) below formalizes the above
description of the sequential generation of a sentence with a complete parse. The
unary transition is allowed only when the most recent exposed head is a leaf of
the tree — a regular word along with its POS tag — hence it can be taken at most
once at a given position in the input word string. The second subtree in Figure 3.4
provides an example of the structure that results from a unary transition followed
by a null transition.

86 Ciprian Chelba

It is easy to see that any given word sequence with a complete parse — see
Figure 3.5 — and headword annotation is generated by a unique sequence of model
actions.® Conversely, a generative model running according to algorithm (10) can
only generate a complete parse.

2.2 Probabilistic model

The language model operation provides an encoding of a given word sequence
along with a parse-tree (W, T) into a sequence of elementary model actions. In
order to obtain a correct probability assignment P(W, T) one has to simply assign
proper conditional probabilities to each transition in the finite state machine that
describes the model - see Figure 3.9.

The probability P(W,T) of a word sequence W and a complete parse T can be
calculated as:

n+1
POW,T) = [[P@dWira Teen) - PIWiTier, w0 - P(TE [Wiea it wi b)|
k=1

P (T£_1|Wk_1Tk_1) = ﬁp (pi(‘Wk—lTk—l/wk/ tk,pl{ .. .pi-{_1>
i=1

where:

o Wi_1Tk_1 is the word-parse (k — 1)-prefix;

o Wy is the word predicted by WORD-PREDICTOR;

e i is the tag assigned to wy by the TAGGER;

° T,’jfl is the parse structure attached to Ty_; that generates Ty = T_1 | T,’;l ; we

use || to denote this particular concatenation operation;

e Nj — 11is the number of operations the CONSTRUCTOR executes at position
k of the input string before passing control to the WORD-PREDICTOR (the
Nj-th operation at position k is the null transition); N is a function of T;

o pi.‘ denotes the i-th CONSTRUCTOR action carried out at position k in the word
string: pé‘ € { (adjoin-left, NTtag), (adjoin-right, NTtag)},1 <
i < Ng, pé{ =null,i = Nj.

Note that each (Wi_1Tk_1, Wk, t, p’{ .. .pi.‘_l) defines a valid word-parse
k-prefix W Ty at position k in the sentence, i = 1. .. Nj.

To ensure a proper probabilistic model over the set of complete parses for any
sentence W, certain CONSTRUCTOR and WORD-PREDICTOR probabilities must
be given specific values:”

e Pmull|WiTy) =1,ifh {-1}.word = <s>andh {0} # (</s>, TOP') —
that is, before predicting </s> — ensures that (<s>, SB) is adjoined in the
last step of the parsing process;

Statistical Language Modeling 87

e P((adjoin-right, TOP)|WiTyx)=1, if h 0 = (</s>, TOP') and
h {-1}.word = <s>
P((adjoin-right, TOP’)|WiTyx)=1, if h 0 = (</s>, TOP’) and

h {-1}.word # <s>
both ensure that the parse generated by our model is consistent with the
definition of a complete parse;

o Je>0 s.t. YWr_1Ti_1, P(wry = </s>|Wk_1Tx_1) > € ensures that the model
halts with probability 1, and thus is a proper probability model over strings
of words of finite length; once the end of sentence symbol </s> is gener-
ated, the model wraps up (completes) the parse with probability 1. In practice
smoothing (see equation (5)) makes sure this requirement is met.

2.2.1 Model component parameterization In order to be able to estimate the
model components we need to make appropriate equivalence classifications of
the conditioning part for each component. The equivalence classification should
identify the strong predictors in the context and allow reliable estimates from a
treebank. Our choice relies heavily on exposed heads: the experiments in Chelba
(1997) show that exposed heads are good predictors for the WORD-PREDICTOR
component of the language model; Collins (1996) shows that they are useful for
high accuracy parsing, making them the favorite choice for the CONSTRUCTOR
model as well; our experiments showed that they are also useful in the TAGGER
component model.®

(6) P(wi|Wi—1Tik—1) = P(wi|[Wx—1Tx-11) = P(wilho,h_1)

(7) P(telwy, Wk—1Tik—1) = P(telwg, [Wk—1Tx—11) = P(txlwy, ho.tag, h_1.tag)

®) P (pFIWeTe) = P (pHIWiTi) = P (phiho, h1)

The above equivalence classifications are limited by the severe data sparseness
problem faced by the 3-gram model and by no means do we believe that they
cannot be improved upon, especially that used in CONSTRUCTOR model (8).
Richer equivalence classifications should use a probability estimation method that
deals better with sparse data than the one presented in Section 2.2.2.

It is worth noting that the 3-gram model belongs to the parameter space of our
model: if the binary branching structure developed by the parser were always
right-branching — the null transition has probability 1 in the CONSTRUCTOR
model — and we mapped the POS tag vocabulary to a single type, then our model
would become equivalent to a trigram language model.

2.2.2 Modeling tool All model components - WORD-PREDICTOR, TAG-
GER, CONSTRUCTOR - are conditional probabilistic models of the type
P(u|z1,z2,...,24) where u,z1,2,...,z, belong to a mixed set of words, POS
tags, NTtags, and CONSTRUCTOR actions (u only). The smoothing technique
of Jelinek and Mercer (1980) has been used for estimating all models.

88 Ciprian Chelba

2.3 Pruning strategy

Since the number of parses for a given word prefix Wy grows faster than exponen-
tial® with k, £2(2), the state space of our model is huge even for relatively short
sentences. We thus have to prune most parses without discarding the most likely
ones for a given prefix Wi. Our pruning strategy is a synchronous multi-stack
search algorithm.

Each stack contains hypotheses — partial parses — that have been constructed
by the same number of PREDICTOR and the same number of CONSTRUCTOR opera-
tions. The hypotheses in each stack are ranked according to the In(P(Wg, T)) score,
highest on top. The ordered set of stacks containing partial parses with the same
number of PREDICTOR operations but different number of CONSTRUCTOR
operations is referred to as a stack-vector.

The amount of search is controlled by two parameters:

e the maximum stack depth — the maximum number of hypotheses the stack can
contain at any given time;

e log-probability threshold — the difference between the log-probability score of
the topmost hypothesis and the bottommost hypothesis at any given state of
the stack cannot be larger than a given threshold.

Figure 3.11 shows schematically the operations associated with the scanning of a
new word wy,1.10 First, all hypotheses in a given stack-vector are expanded with
the following word. Then, for each possible POStag the following word can take,
we expand the hypotheses further. Due to the finite stack size, some are discarded.
We then proceed with the CONSTRUCTOR expansion cycle, which takes place in
two steps:

(1) first all hypotheses in a given stack are expanded with all possible CON-
STRUCTOR actions excepting the null transition. The resulting hypotheses
are sent to the immediately lower stack of the same stack-vector — same
number of WORD-PREDICTOR operations and exactly one more CON-
STRUCTOR move. Some are discarded due to finite stack size;

(2) after completing the previous step, all resulting hypotheses are expanded
with the null transition and sent into the next stack-vector. Pruning can still
occur due to the log-probability threshold on each stack.

2.4 Left-to-right perplexity

To maintain a left-to-right operation of the language model, the probability
assignment for the word at position k + 1 in the input sentence was made using;:

©) P@ipalWi) = Y Pwya|WiTy) - p(W, Tp),
Ti€Sk

p(Wi, T) = POWiTy)/ Y P(WiTy)
TkGSk

Statistical Language Modeling 89

(k) (k) N (k+1)

J---r-->
0 parser op 0 parser op ™S * | 0parser op

k predict. k+1 predict. [~ k+1 predict.

]
N

1

I
———— -

1

I

1/

NN

p parser op p parser op Ty p parser op
k predict. k+1 predict. N\~~~ 1 k+1 predict.
I
L of-)- L >
p+1 parser p+1 parser d : ° | p+1 parser
k predict. k+1 predict.[[7|~ "~~~ A k+1 predict.
1
I
I
1
I T
P_k parser P_k parser N : - | P_k parser
k predict. k+1 predict.[~ 7§ =~~~ 4 k+1 predict.
I
I
P7k+1parser7)T P_k+1 parser

k+1 predict.

word predictor

and tagger N .
null parser transitions

parser adjoin/unary transitions

1
k+1 predict. . :‘ -
1
I
I

Figure 3.11 One search extension cycle.

where Si is the set of all parses present in our stacks at the current stage k. This
leads to the following formula for evaluating the perplexity:

N
(10) L2R-PPL = exp <—1 /NZln [P (wi|Wi_1)])
i=1

2.5 Separate left-to-right word predictor in the
language model

An important observation is that the next-word predictor probability P(wy1|
Wi Ty) in (9) need not be the same as the WORD-PREDICTOR probability (6) used
to extract the structure Ty. Thus P(wk,1|WiT) can be estimated separately. To be
more specific, we can in principle have a WORD-PREDICTOR model component
that operates within the parser model whose role is to strictly extract syntactic
structure and a second L2R-WORD-PREDICTOR model that is used only for the
left to right probability assignment:

(1) Pa(rralWi) = Y Pwp(@ia|WiTo) - (Wi, Tp),
TreSk

90 Ciprian Chelba

(12) pWi, To) = PWiTp / Y P(WiTp)
TreSk

In this case the interpolation coefficient given by (12) uses the regular WORD-
PREDICTOR model whereas the prediction of the next word for the pur-
pose of word-level probability assignment is made using a separate model
Pwp (W41 1 Wi Ti).

2.5.1 Initial parameters Each model component - WORD-PREDICTOR, TAG-
GER, CONSTRUCTOR - is initialized from a set of parsed sentences — a treebank —
after the parses undergo headword percolation and binarization, as explained
below.

Using the same notation as in the previous section, each binary parse-tree
(W, T) with headword annotation is decomposed into its derivation d(W,T).
Separately for each m-th model component, we then:

e gather joint counts C" ™, z(™) from the derivations that make up the
development data — about 90 percent of the training data;

e estimate the interpolation coefficients on joint counts gathered from cross-
validation data — the remaining 10 percent of the training data — using the EM
algorithm (Dempster et al., 1977). The buckets used for tying the interpolation
weights are determined heuristically.

These are the initial parameters used with the re-estimation procedure
described in the previous section.

2.5.1.1 Headword percolation In order to obtain training data for our model, we
need to binarize the UPenn Treebank-style parse-trees and percolate headwords
(Marcus et al., 1993). The procedure used was to first percolate headwords using a
context-free (CF) rule-based approach and then binarize the parses by again using
a rule-based approach. Inherently a heuristic process, we were satisfied with the
output of an enhanced version of the procedure described in Collins (1996).

The procedure first decomposes a parse tree from the treebank into its phrase
constituents, identified solely by the non-terminal /POS labels. Within each con-
stituent we then identify the headword position and then, in a recursive third
step, we fill in the headword position with the actual word percolated up from the
leaves of the tree.

The headword percolation procedure is based on rules for identifying the head-
word position within each constituent. They are presented in Table 3.1.!! Let
Z — Yjp...Y, be one of the context-free (CF) rules that make up a given parse.
We identify the headword position as follows:

e identify in the first column of the table the entry that corresponds to the Z
non-terminal label;

e search Y7...Y, from either left or right, as indicated in the second col-
umn of the entry, for the Y; label that matches the regular expressions

Statistical Language Modeling 91

Table 3.1 Headword percolation rules

TOP right _SE _SB
ADJP right <~QP|_JJ|_VBN|~ADJP|_$|_JJR>
<"~PP|~S|~SBAR|_.|_,|_"|_“|_“|_"|_:|_LRB|_RRB>
ADVP right < RBR| RB| TO|~ADVP>
<"~PP|~S|~SBAR|_ |7,|7”|7“|7‘|7’|7:|7LRB|7RRB>
CONJP left _RB <"_.|_, |_"|_“| ‘|] _:|_LRB|_RRB>
FRAG left <~ .| _,|_"]_|_*]_"|_:|_LRB|_RRB>
INTJ left <"_.|_,|_"|_™|_"|_"|_:|_LRB|_RRB>
LST left LS <"_.|_,|_"|_“|_“|_"|_:|_LRB|_RRB>
NAC right < NNP| NNPS|~NP| NN| NNS|~NX| CD|~QP| VBG>
<~] _"]_™_|_"]_:|_LRB|_RRB>
NP right < NNP| NNPS|~NP| NN| NNS|~NX| CD|~QP| PRP| VBG>
<~ o] 1_"]_"_*|_"]_:]|_LRB| RRB>
NX right <_ NNP|_NNPS|~NP| NN| NNS|~NX| CD|~QP| VBG>
<" ol M2 | _LRB|_RRB>
PP left _IN _TO _VBG _VBN ~PP
<~ | "]~ _|_"]_:|_LRB|_RRB>
PRN left ~NP ~PP ~SBAR ~ADVP ~SINV ~S ~VP
<~ ol "™]| _:| _LRB| RRB>
PRT left _RP <”_.|_,|_"|_“|_|_"|_:|_LRB|_RRB>
QP left < CD|~QP> < NNP| NNPS|~NP| NN| NNS|~NX> < DT| PDT>
< JJR| J3> <~ cc| .| | _"|_™_*]_"|_:|_LRB| RRB>
RRC left ~ADJP ~PP ~VP <" .| _,|_"|_“|_‘|_"|_:|_LRB|_RRB>
S right ~VP <~SBAR|~SBARQ|~S|~SQ|~SINV>
<~ |l 1_"]_*]_*|_"|_:|_LRB| RRB>
SBAR right <~S|~SBAR|~SBARQ|~SQ|~SINV>
<~) 1_"1_*_*|_"]_:|_LRB|_RRB>
SBARQ right ~SQ ~S ~SINV ~SBAR <" .| ,|_”|_“|_*|_"|_:|_LRB| _RRB>
SINV right <~VP|_VBD|_VBN|_MD|_VBZ|_VB|_VBG|_VBP> ~S ~SINV
T T | _:|_LRB|_RRB>
SQ left < VBD|_VBN|_MD|_VBZ| VB|~VP|_VBG|_ VBP>
<A_.|_,|_"|_“|_‘| *|_:|_LRB|_RRB>
ucp left <~ .| _,|_"|_*|_*|_"|_:|_LRB|_RRB>
VP left <_VBD|_VBN| MD| VBZ|_VB|~VP|_VBG|_VBP>
<~) l_"1__"|_"]_:|_LRB| RRB>
WHADJP right <~ .| _,|_"|_“|_*|_"|_:|_LRB| RRB>
WHADVP right _WRB <" _.|_,|_”|_“|_‘|_’|_:|_LRB|_RRB>
WHNP right _WP _WDT _JJ _WP$ ~WHNP
<~ "1 _*l_"|_:|_LRB| RRB>
WHPP left _IN <~_.|_,|_"|_“|_“|_"|_:|_LRB|_RRB>
X right <~ .| _,|_"|_*|_*|_"|_:|_LRB| RRB>

listed in the entry; the first matching Y; is going to be the headword of
the (Z (Y1...)...(Yy...)) constituent; the regular expressions listed in one
entry are ranked in left-to-right order: first we try to match the first one, if
unsuccessful we try the second one, and so on.

92 Ciprian Chelba

Y_1 Y_k Y_n
Figure 3.12 Binarization schemes.

A regular expression of the type < CD|~QP> matches any of the con-
stituents listed between angular parentheses. < ... > are used for constituent
types which are desired as headwords, whereas <* ... > are used for con-
stituent types which are not acceptable as headwords. For example, the
< ol vl | | _LRB|_RRB>regular expression will match any
constituent that is not — list begins with <* — among any of the elements in the list
between <” and >, in this case any constituent which is not a punctuation mark is
eligible to be a headword. The terminal labels — POS tags — have _ prepended to
them —as in _CD; the non-terminal labels have the ~ prefix —as in ~QP; | is merely
a separator in the list.

2.5.1.2 Binarization Once the position of the headword within a constituent is
identified to be k, we binarize the constituent — equivalent with a CF production
of the type Z — Y1,...Y},, where Z,Yq,...Y}, are non-terminal labels or POS tags
(only Y; can be a POS tag) — as follows: a fixed rule is used to decide which of the
two binarization schemes in Figure 3.12 to apply depending only on the value of
Z. The intermediate nodes created by the above binarization schemes receive the
non-terminal label Z’.

The choice among the two schemes is made according to the list of rules pre-
sented in Table 3.2, based on the identity of the label on the left-hand side of a CF
rewrite rule. Notice that whenever k = 1 or k = n — a case which is very frequent —
the two schemes presented above yield the same binary structure.

Another problem when binarizing the parse-trees is the presence of unary pro-
ductions. Our model allows unary productions of the type Z — Y only, where Z
is a non-terminal label and Y is a POStag. The unary productions Z — Y where
both Z and Y are non-terminal labels were deleted from the treebank, only the Z
constituent being retained: (Z (Y (.) (.))) becomes (Z (.) (.)).

Binarization brings the training data parse-trees to Chomsky normal form,
and renders them suitable for the next stage of parameter estimation in our
statistical model. Each tree is fed as input to the finite state machine that describes
the model - see Figure 3.9. Each transition generates an n-gram event for one of
the model components.

2.6 Model parameter re-estimation

As outlined in Section 2.4, the word-level probability assigned to a training/test
set by our model is calculated using the proper word-level probability assignment

Statistical Language Modeling 93

Table 3.2 Binarization rules

first column : constituent label

second column: binarization type : A or B
TOP
ADJP
ADVP
CONJP
FRAG
INTJ
LST
NAC

NP

NX

PP

PRN
PRT

QP

RRC

S

SBAR
SBARQ
SINV
SQ

UCP

VP
WHADJP
WHADVP
WHNP
WHPP

X

fvo T =B v I v v« B~ s oA v v v« B i s = e < v o B vo B <R v v A o o I 4

in equation (9). An alternative which leads to a deficient probability model is to
sum over all the complete parses that survived the pruning strategy.
The estimation procedure of the SLM parameters takes place in two stages:

(1) the N-best training algorithm (see Section 2.6.1) is employed to increase
the training data ‘likelihood’ calculated using the deficient sum-probability
assignment. The initial parameters for this first estimation stage are gath-
ered from a treebank. The perplexity is still evaluated using the formula in
equation (9);

(2) estimate a separate L2R-WORD-PREDICTOR model such that the likelihood
of the training data according to the probability assignment in equation (11)
is increased. The initial parameters for the L2ZR-WORD-PREDICTOR compo-
nent are obtained by copying the WORD-PREDICTOR estimated at stage one.

94 Ciprian Chelba

As a final step in refining the model we have linearly interpolated the structured
language model (9) with a trigram model.

Section 2.6.1 presents the basic idea behind the N-best training stage.
Section 2.6.2 presents the training of a separate L2ZR-WORD-PREDICTOR model -
the second re-estimation stage.

2.6.1 N-best EM re-estimation We would like to estimate the model compo-
nent probabilities (6-8) such that the likelihood of the training data is increased.
Since our problem is one of maximum likelihood estimation from incomplete
data — the parse structure along with POS/NT tags and headword annotation for
a given observed sentence is hidden — our approach makes use of the expectation-
maximization algorithm (EM) (Dempster et al., 1977). Two specific modifications
we make are:

e E-step: instead of scanning all the hidden events allowed — parses T — for a
given observed one — sequence of words W — we restrict the algorithm to oper-
ate with N-best hidden events;!2 the N-best are determined using the search
strategy described in Section 2.3. For a presentation of different modifications
to the EM, the reader is referred to Byrne et al. (1998).

e M-step: assuming that the count ranges and the corresponding interpolation
values for each order are kept fixed to their initial values — see Section 2.5.1 —
the only parameters to be re-estimated using the EM algorithm are the maximal
order counts C" (u,z1, . ..,z,) for each model component. The interpolation
scheme outlined in Section 2.2.2 is then used to obtain a smooth probability
estimate for each model component.

The derivation of the re-estimation formulas, the initial parameter values and
further comments and experiments on the first model re-estimation stage are
presented in Chelba and Jelinek (2000).

2.6.2 Second stage parameter re-estimation Once the model is trained accord-
ing to the procedure described in the previous section, we proceed into a
second stage of parameter re-estimation. In order to improve performance, we
develop a model to be used strictly for word prediction — see (11) — different
from the WORD-PREDICTOR model (6). We will call this new component the
L2R-WORD-PREDICTOR.

In order to train this fourth model component, the key step is to recognize in (11)
a hidden Markov model (HMM) with fixed transition probabilities — although
dependent on the position in the input sentence k — specified by the o (W, T)
values.

The E-step of the EM algorithm (Dempster et al., 1977) for gathering joint
counts C™ (y™, x(™M) T2R-WORD-PREDICTOR-MODEL, is the standard one
whereas the M-step uses the same count smoothing technique as that described
in Section 2.6.1. The second re-estimation step operates directly on the £L/2R(C, Py)
likelihood.

Statistical Language Modeling 95

The second re-estimation pass is seeded with the WORD-PREDICTOR model
joint counts C" (y™, x(™) resulting from the first parameter re-estimation pass
(see Section 2.6.1).

2.7 UPenn Treebank perplexity results

During the original development of the SLM we chose to work on the UPenn
Treebank corpus (Marcus et al., 1993) — a subset of the WS] (Wall Street Journal) cor-
pus. This is a well-known corpus and the existence of a manual treebank makes it
ideal for our experiments.

Unless specified otherwise in a specific section, the vocabulary sizes were:

(1) word — also WORD-PREDICTOR operation — vocabulary: 10,000, open — all
words outside the vocabulary are mapped to the <unk> token;

(2) POStag — also TAGGER operation — vocabulary: 40,000, closed;

(3) non-terminal tag vocabulary: 52,000, closed;

(4) CONSTRUCTOR operation vocabulary: 107,000, closed.

The training data was split into:

(1) development set (929,564 words (sections 00-20));
(2) cross-validation set (73,760 words (sections 21-2));
(3) test set (82,430 words (sections 23-4).

The development and cross-validation sets were used strictly for initializing the
model parameters as described in Section 2.5.1 and then with the re-estimation
techniques described in Sections 2.6.1 and 2.6.2.

The parameters controlling the search — see Section 2.3 — were set to:
maximum-stack-depth =10 and LnP-threshold = 6.91.

As explained in Section 2.6.1, the first stage of model parameter re-estimation
re-evaluates the maximal order counts for each model component.

Each iteration involves parsing the entire training data which is a time-
consuming process — about 60 hours of Sun Sparc Ultra-2 CPU-time. Table 3.3
shows the results of the re-estimation iterations; E0-3 denote iterations of the
re-estimation procedure described in Section 2.6.1; L2R0-5 denote iterations of
the re-estimation procedure described in Section 2.6.2. A deleted interpolation tri-
gram model derived from the same training data had perplexity 167.14 on the
same test data.

Simple linear interpolation between our model and the trigram model:

QWr41/Wx) = A - P(Wyeq1 /Wi—1, wi) + (1 — 1) - P(wyy1/Wi)

yielded a further improvement in PPL, as shown in Table 3.4. The interpolation
weight was estimated on check data to be A = 0.36. An overall relative reduction
of 11 percent over the trigram model has been achieved.

96 Ciprian Chelba

Table 3.3 Parameter re-estimation results

Iteration DEYV set TEST set
number L2R-PPL L2R-PPL
EO 24.70 167.47
E1 22.34 160.76
E2 21.69 158.97
E3 21.26 158.28
L2RO (=E3) 21.26 158.28
L2R5 17.44 153.76

Table 3.4 Interpolation with trigram results

. TEST set PPL
Iteration
number A=0.0 A=0.36 A=1.0
EO 167.47 152.25 167.14
E3 158.28 148.90 167.14
L2RO0 (=E3) 158.28 148.90 167.14
L2R5 153.76 147.70 167.14

2.7.1 Maximum depth factorization of the model The word-level probability
assignment used by the SLM can be thought of as a model factored over different
maximum reach depths. Let D(T) be the depth in the word prefix Wy at which the
headword h_1.word can be found:

d=k
(13) P(wis1IWi) = Y PAIWg) - P(wy 1| Wi, d),
d=0

where:

P@AWp) = Y p(Wi, Tp) - (D(Ty), d)
TkeSk

P(wy1 [Wi, d) =) P(Tx| Wy, d) - P(wg 11| W, Tr)
TkeSk
P(T|Wk, d) = p(Wi, Tx) - 8(D(Ty), d)/P(d|Wi)

We can interpret equation (13) as a linear interpolation of models that reach back
to different depths in the word prefix Wy. The expected value of D(Tk) shows how

Statistical Language Modeling 97

Table 3.5 Maximum depth evolution
during training

Iteration number Expected depth E[D]

EO 3.35
El 3.46
E2 3.45

far the SLM reaches in the word prefix:

k=N d=k

(14) Espm[D1=1/NY_ > d- P(d|Wy)
k=0 d=0

For the 3-gram model we have E3_¢y[D] = 2. We evaluated the expected depth
of the SLM using the formula in equation (14). The results are presented in
Table 3.5.

It can be seen that the memory of the SLM is considerably higher than that of
the 3-gram model — whose depth is 2.

Figure 3.13 shows!?® the distribution P(d|Wy), averaged over all positions k in
the test string:

N
Pd|W) = 1/N Z P(d|Wg)
k=1

It can be seen that the SLM makes a prediction which reaches farther than the
3-gram model in about 40 percent of cases, on the average.

2.7.1.1 Non-causal 'Perplexity’ Attempting to calculate the conditional perplex-
ity by assigning to a whole sentence the probability:

(15) POWIT*) = [| P(wis1 [WiT}),
k=0

where T* = argmaxrP(W,T) — the search for T* being carried out according to
our pruning strategy — is not valid because it is not causal: when predicting w1
we would be using T* which was determined by looking at the entire sentence.
In order to have a valid perplexity calculation we would need to factor in the
uncertainty of guessing the prefix of the final best parse T} before predicting wy, 1,
based solely on the word prefix Wj.

However, the perplexity value calculated using (15) is an indication of the lower
bound for the achievable perplexity of our model; for the above search parameters
and E0 model statistics this bound was 98, corresponding to a relative reduction
of 40 percent over the perplexity of the 3-gram model. For comparison, the value

98 Ciprian Chelba

Depth distribution according to P(T/W)
0.7 T T T T
E[depth(E0)] = 3.35
E[depth(E1)] = 3.46

P(depth)

depth

Figure 3.13 Structured language model maximum depth distribution.

when conditioning on the manual parses in the UPenn Treebank — which was used
to get the EO statistics — was 115. This shows that the parses found by our model
are better predictors — under the exposed heads parameterization — than those in
the treebank.

This suggests that a better parameterization in the SLM — one that reduces
the entropy H(p(Tx|Wy)) of guessing the ‘good” parse given the word prefix —
would lead to a better model. Indeed, as we already pointed out, the trigram
model is a particular case of our model for which the parse is always right-
branching and we have no POS/NT tag information, leading to H(po (Tx|Wy)) =0
and a standard 3-gram WORD-PREDICTOR. The 3-gram model is thus an
extreme case of the structured language model: one for which the ‘hidden’
structure is a function of the word prefix. Our result shows that better mod-
els can be obtained by allowing richer ‘hidden’ structure — parses — and that
a promising direction of research is to find the best compromise between the
predictive power of the WORD-PREDICTOR - measured by H(wy1|Tk, Wk)) —
and the ease of guessing the most desirable hidden structure Ty|Wy -
measured by H(p (Tx|Wg)) — on which the WORD-PREDICTOR operation is based.
The re-estimation procedure we presented is one such method.

Statistical Language Modeling 99

3 Speech Recognition Lattice Rescoring Using the
Structured Language Model

The SLM was developed primarily for use in speech recognition. A simple way to
evaluate a complex language model in such applications is a two-pass recognition
approach:

a computationally cheap decoding step is run as the first pass;

a set of hypotheses is retained as an intermediate result;

a more sophisticated recognizer is run over these in a second pass — usually
referred to as the rescoring pass.

The search space in the second pass is much more restricted compared to the first
pass so we can afford to use better — usually also computationally more intensive —
acoustic and/or language models.

The two most popular two-pass strategies differ mainly in the number of inter-
mediate hypotheses saved after the first pass and the form in which they are
stored.

In the so-called N-best rescoring method,'# a list of complete hypotheses along
with acoustic/language model scores are retained and then rescored using more
complex acoustic/language models.

Due to the limited number of hypotheses in the N-best list, the second pass
recognizer might be too constrained by the first pass so a more comprehensive
list of hypotheses is often needed. The alternative preferred to N-best list rescor-
ing is lattice rescoring (Aubert et al., 1994). The intermediate format in which the
hypotheses are stored is a directed acyclic graph in which the nodes are a subset
of the language model states in the composite hidden Markov model and the arcs
are labeled with words. Typically, the first pass acoustic/language model scores
associated with each arc — or link — in the lattice are saved and the nodes contain
time alignment information.

Compared to N-best lists, lattices typically offer a higher density of paths for a
given graph size (measured in number of arcs/nodes). For both cases one can cal-
culate the ‘oracle’ word error rate (WER): the word error rate along the hypothesis
with the minimum number of errors. The oracle WER decreases with the number
of hypotheses saved; thinking of it as an “achievable’ WER is misleading, since there
may not exist an AM/LM in the class of models used that can actually select the
word sequence attaining it.

Of course, a set of N-best hypotheses can be assembled as a lattice, the difference
between the two being just in the number of different hypotheses — with differ-
ent time alignments — stored in the lattice. One reason which makes the N-best
rescoring framework attractive is the possibility to use ‘“whole sentence’ language
models: models that are able to assign a score only to complete sentences due
to the fact that they do not operate in a left-to-right fashion. The drawbacks are
that the number of hypotheses explored is too small and their quality reflects the

100 Ciprian Chelba

models used in the first pass. To clarify the latter assertion, assume that the second
pass language model is dramatically different from the one used in the first pass
and that if we extracted the N-best list using the second (better) language model,
different kinds of errors, specific to this language model, would be observed. In
that case, simple rescoring of the N-best list generated using the weaker language
model may prevent the stronger language model from showing its merits.

It is thus desirable to have as complete a sample as possible of the possible word
hypotheses — not biased towards a given model — and one of a manageable size.
This is what makes lattice rescoring the chosen method in our case.

There are several reasons that make A* appealing for lattice decoding using the
SLM:

e the lattice can be conceptually structured as a prefix tree of hypotheses —
the time alignment is taken into consideration when comparing two-word
prefixes;

o the algorithm operates with whole prefixes x, making it ideal for incorporating
language models whose memory is the entire utterance prefix;

e a reasonably good overestimate h(y|x) and an efficient way to calculate h (x)
are readily available using the n-gram language model.

We have applied the SLM for rescoring lattices on both Wall Street Journal (WS])
and Switchboard (SWB). The word error rate reduction over a state-of-the-art
3-gram model was:

e 1% absolute (10.6% to 9.6%, 9% relative) on WSJ;
e 1% absolute (41.3% to 40.3%, 2% relative) on SWB.

We have also evaluated the perplexity reduction relative to a standard deleted
interpolation 3-gram trained under the same conditions as the SLM. We have achieved
a relative reduction in PPL of 15 percent and 5 percent on WS] and SWB
respectively.

4 Richer Syntactic Dependencies

The statistical parsing community have used various ways of enriching the depen-
dency structure underlying the parameterization of the probabilistic model used
for scoring a given parse-tree (Collins 1999; Charniak 2000). Recently, such mod-
els (Charniak 2001; Roark 2001a) have been shown to outperform the SLM in
terms of both PPL and WER on the UPenn Treebank and WS] corpora respec-
tively. In Chelba (2001), a simple way of enriching the probabilistic dependencies
in the CONSTRUCTOR component of the SLM also showed better PPL and WER
performance; the simple modification to the training procedure brought the WER
performance of the SLM to the same level with the best reported in Roark (2001a).

Statistical Language Modeling 101

PPL

180

160

14

13

12
60

LR-error

40 1

20
LP—-error

30 | 1

baseline PA OP OP+PA h-2 h-2+PAh-2+OP h-2+OP+PA

Figure 3.14 Comparison of PPL, WER, labeled recall/precision error.

The work reported in Xu et al. (2002) presents three simple ways of enriching
the syntactic dependency structure in the SLM, extending on the work in Chelba
(2001). The results show that indeed a good parser (as measured by LP/LR) is
helpful in reducing the PPL and WER. Another remarkable fact is that a lan-
guage model exploiting elementary syntactic dependencies obviates the need for a
3-gram model in N-best rescoring.

In particular, the best-performing enriching scheme achieved a 0.4 percent abso-
lute WER reduction over the performance of the standard SLM. Overall, the
enriched SLM achieves 10 percent relative reduction in WER over the 3-gram
model baseline result.

The enriched SLM outperformed the 3-gram used to generate the lattices and
N-best lists, without interpolating it with the 3-gram model. Although the N-best
lists are already highly restricted by the 3-gram model during the first recognition
pass, this fact still shows the potential of a good grammar-based language model,
especially when the SLM was trained on 20 million words of WS]J, while the lattice
3-gram model was trained on 45 million words of WS] text. Our results are not
indicative of the performance of SLM as a first pass language model.

It is very interesting that labeled recall and language model performance
(WER/PPL) are well correlated. Figure 3.14 compares PPL, WER (A = 0.0 at train-
ing iteration 0), and labeled precision/recall error (100-LP/LR) for all models.
Overall, the labeled recall is well correlated with the WER and PPL values. We
believe that these results show that improvements in parser accuracy are expected
to lead to improvements in WER.

102 Ciprian Chelba

5 Comparison with Other Approaches

The SLM shares many features with both class-based language models (Brown
et al., 1992) and skip n-gram language models (Rosenfeld 1994); an interesting
approach combining class-based language models and different order skip-bigram
models is presented in Saul and Pereira (1997). It seems worthwhile to make two
comments relating the SLM to these approaches.

The smoothing involving NT/POS tags in the WORD-PREDICTOR is similar
to a class-based language model using NT/POS labels for classes. We depart,
however, from the usual approach by not making the conditional independence
assumption P(wy1|wy, class(wy)) = P(wy1|class(wy)). Also, in our model, the ‘class
assignment’ — through the heads exposed by a given parse T for the word prefix
Wy and its ‘weight’” p(Wg, Tk), see equation (9) —is:

highly context-sensitive — it depends on the entire word prefix W;
is randomized — a few equivalence classes are extracted from each context, each
weighted by p (W, Ty);

e and is syntactically motivated through the operations of the CONSTRUCTOR.

We also found the POS/NT labels in the PREDICTOR equivalence classification to
be useful for better word prediction.

Recalling the depth factorization of the model in equation (13), our model can
be viewed as a skip n-gram where the probability of a skip P(dy, d1|Wy) —do, d1 are
the depths at which the two most recent exposed headwords hg, hi; can be found,
similar to P(d|Wy) — is highly context-sensitive. Note that the hierarchical scheme
for organizing the word prefix allows for contexts that do not necessarily consist
of adjacent words, as in regular skip n-gram models.

6 Conclusion

Among the directions which we consider worth exploring in the future for
improving the structured language model, there are:

automatic induction of the SLM initial parameter values;

study of other binarization schemes, in particular left-corner ones promise to
be extremely suitable to the SLM operation;

better integration of the 3-gram model and the SLM;

better parameterization of the model components;

study of the interaction between SLM and other language modeling techniques
such as cache and trigger or topic language models.

In the broader scope, a couple of important and promising directions in
statistical language modeling are:

Statistical Language Modeling 103

e language model adaptation: how to leverage data sources that may not be
fully matched to a scenario of interest; finding relevant data to be used in an
adaptation setup (Berger & Miller 1998) is of course equally important;

e discriminative training for language models — n-gram or more general ones —
used in a source-channel paradigm.

Of particular interest is a direction worth highlighting separately: scalability.
Scaling to very large training data sets and language models, along the lines
of Brants et al. (2007), is a significant disruption as far as modeling techniques
are concerned. Many techniques developed on small to medium data sets (10—
100 million words) may lose their edge, while others prove valuable by being
more effective learners. Computational issues aside, the rate at which a given
model improves when presented with increasing amounts of relevant training
data becomes a critical aspect in such a data-rich regime. Despite its simplis-
tic treatment of natural language, the n-gram model is extremely successful in
practice, not least because of its ability to easily make use of large amounts of
data. Techniques that attempt to model language better need to balance modeling
power with simplicity in order to scale well with increasing amounts of data.

Finally, it is worth putting in perspective the fact that in a source-channel
approach (see equation (4)), the language model is nothing more than a prior guess
on the word sequence W, which completely disregards the input signal F. As
such, its ability to reduce the conditional entropy H(W|F) is expected to be lim-
ited, especially when the channel model is poor and provides limited information
about the W string that gave rise to the signal F. An intuitive explanation is that
the language model is our best guess for what the user might say or type at the
input of an automatic speech recognition or statistical machine translation system
respectively, before the input speech, or sentence F, is revealed!

From this point of view, it is unrealistic to expect a large impact on performance
coming from the language model alone; it can do so to the extent that it comple-
ments the channel model well. Speculatively comparing the impact of similar-size
language models across different applications (ASR, SMT, spelling correction) and
similar tasks seems to support this view. The SMT noisy channel constrains the
choice of output words much more than the ASR one: the latter starts from a pres-
sure wave instead of a sentence in foreign language. As such, the sensitivity of
SMT accuracy to LM performance is generally higher than in ASR. The same rela-
tionship seems to hold when comparing similar LMs used in spelling correction
and SMT, the former being a more constrained noisy channel.

ACKNOWLEDGMENT

Parts of this chapter appeared in Computer Speech & Language 14(4):283-332, October 2000,
and are used with the permission of Elsevier Limited.

104 Ciprian Chelba

NOTES

10

11

12

13

14

We note that in some practical systems the constraint on using a properly normalized
language model is sidestepped at a gain in modeling power and simplicity.

Language models estimated on different vocabularies cannot be directly compared
using perplexity, since they model completely different probability distributions.
SB/SE is a distinguished POS tag for sentence begin and end respectively.

The set of complete parses is a superset of the parses in the UPenn Treebank which
insist that (wq, t1) ... (wy, ty) forms a constituent.

Obviously, the headword origin after a unary transition is fully determined.

This will prove very useful in initializing our model parameters from a treebank — see
Section 2.5.1.

The set of constraints on the probability values of different model components is
consistent with algorithm 10.

Since the word to be tagged is in itself a very strong predictor for the POS tag, we limit
the equivalence classification of the TAGGER model to include only the NTlabels of
the two most recent exposed heads.

Thanks to Bob Carpenter, Lucent Technologies Bell Labs, for pointing out this
inaccuracy in our paper (Chelba & Jelinek 1998).

Py is the maximum number of adjoin operations for a k-length word prefix; since the
tree is binary we have Py =k — 1.

The origin of this table of rules is not clear, they are attributed to Magerman and Black.
For a better understanding, this procedure can be thought of as analogous to a com-
promise between the forward-backward and Viterbi re-estimation for hidden Markov
models.

The non-zero value of P(1|W) is due to the fact that the prediction of the first word in
a sentence is based on context of length 1 — sentence begin — in both SLM and 3-gram
models.

The value of N is typically 100-1,000.

4 Theory of Parsing

MARK-JAN NEDERHOF
AND GIORGIO SATTA

1 Introduction

In the context of natural language processing, the term parsing refers to the process
of automatically analyzing a given sentence, viewed as a sequence of words, in
order to determine its possible underlying syntactic structures.

Parsing requires a mathematical model of the syntax of the language of interest.
In this chapter, these mathematical models are assumed to be formal grammars.
A formal grammar consists of a collection of rules that specify how elements of the
language, e.g., words, may be combined to form sentences, and how sentences
are structured. Rules may be concerned with purely syntactic information, such
as grammatical functions, subject-verb agreement, word ordering, etc., but some
models may also incorporate issues such as lexical semantics.

There is a wide range of grammatical formalisms, which depend on various
syntactic theories, and the structures that result from parsing, or parses, may differ
substantially between one such formalism and another. Many formalisms spec-
ify the syntactic analysis of a sentence in terms of a phrase structure, which is an
ordered, labeled tree that expresses hierarchical relations among certain group-
ings of words called phrases. An alternative representation is dependency structure,
which indicates binary grammatical relations between words in a sentence.

In contrast to these ‘deep’ representations, there are also ‘shallow’ representa-
tions of syntactic structures, where the maximum depth is severely restricted. Such
representations are typically obtained using finite state techniques.

The main importance of parse structures lies in the grammatical information
they convey to modules that implement semantic, pragmatic, and discourse pro-
cessing, which are crucial in applications such as text summarization, question
answering, and machine translation. Parsing can therefore be seen as a central part
in typical natural language processing systems, and the accuracy of the parses can
have much impact on the success of an application as a whole.

In this chapter we do not further discuss the interaction between parsing and
the other types of linguistic processing mentioned above, nor do we discuss the

106 Mark-Jan Nederhof and Giorgio Satta

criteria for the possible choices of grammatical formalisms and parse structures.
Instead, we cast the parsing problem into an abstract framework, and analyze
mathematical and computational aspects of parsing algorithms.

Parsing is related to recognition, which is the process of determining whether an
input sentence is in a chosen language or, equivalently, whether some underlying
syntactic structure can be assigned to a given sentence. Many of the algorithms
that we will discuss in this chapter are recognition algorithms, but since they can
be straightforwardly extended to perform parsing, we will sometimes blur the
distinction between parsing and recognition.

The set of parses that a natural language grammar allows for a given input sen-
tence is typically very large. This is because formal grammars often fail to capture
subtle properties of the structure, meaning, and use of language, and consequently
allow many parses that humans would not find plausible. Significant practical
difficulties in computing and storing the parses can be avoided by computing iso-
lated fragments of these and storing them in a table. The advantage of this is that
one such fragment may be shared among many different parses. This is called
tabular parsing.

Many tabular parsing methods are capable of computing and storing expo-
nentially many parses using only polynomial time and space. Tabular parsing,
invented in the field of computer science in the period roughly between 1965 and
1975, also became known later in the field of computational linguistics as chart
parsing. Tabular parsing is a form of dynamic programming, a standard paradigm
in the design of computer algorithms.

In natural language systems, parsing is commonly one stage of processing
among several others. The effectiveness of the stages that follow parsing gener-
ally relies on having obtained a small set of preferred parses, ideally only one,
from among the full set of parses. This process is called syntactic disambiguation.

One common approach is to augment each grammar rule with some kind of
numeric value, or weight. During parsing these values are combined to give
values for entire parses, and the optimal value (which might be the minimum
or the maximum, depending on the nature of the values) then determines the
preferred parse.

One special case of this is probabilistic parsing, which relies on the assignment of
probabilities to grammar rules. The probability of a parse is defined as the product
of the probabilities of the rules out of which it is constructed. Disambiguation is
achieved by selecting the parse with the highest probability. The success of prob-
abilistic parsing, and weighted parsing in general, is due to their flexibility and
scalability, in contrast to approaches to syntactic disambiguation that rely on much
deeper knowledge of language.

The structure of this chapter is as follows. In Section 2 we look at simple recogni-
tion algorithms for context-free grammars. We then consider the parsing problem
for context-free grammars in Section 3, and its probabilistic extension in Section 4.
Section 5 explores the parsing problem for context-free grammars that have been
augmented with lexical information. The related subject of dependency pars-
ing is discussed in Section 6. Parsing of tree adjoining grammars, a formalism

Theory of Parsing 107

generatively more powerful than context-free grammars, is discussed in Section 7.
In Section 8 we show how parsing algorithms can be exploited in syntax-based
machine translation.

2 Context-Free Grammars and Recognition

In this section we consider two algorithms that perform context-free recogni-
tion. The input consists of a context-free grammar ¢ = (¥,N, S, R) and a string
W = aay - --ay. Here ¥ and N are two disjoint sets of terminal and non-terminal
symbols respectively, S € N is the start symbol, and R is the set of rules of
the grammar. The output is a Boolean value, depending on whether w is in the
language generated by G.

Both algorithms are tabular, and run in polynomial time, both in the size of the
input grammar and in the length of the input string. Furthermore, they are among
the best-known and most widely used recognition algorithms in natural language
processing, often in an extended form as parsing algorithms, as will be explained
in the next section.

The older of the two algorithms is called the Cocke-Kasami—-Younger algorithm,
or CKY algorithm for short, after the three authors by whom it was independently
discovered. The algorithm implements a pure bottom-up strategy, which means it
starts by recognizing non-terminal occurrences near the leaves of parse-trees, and
works upwards from there.

The CKY algorithm requires the grammar to be in Chomsky normal form (CNF),
that is, each rule must have one of the following two forms:

A — BC, whereB,C € N;
A — a, wherea € X.

Any CFG, provided it does not derive the empty string, can be cast into CNF
by a transformation that preserves the language. To accommodate for the empty
string, some definitions of CNF include S — ¢ as an allowable rule, provided
that S does not occur in the right-hand side of any rule. To keep the presentation
simple, however, we will further ignore rules of the form S — «¢.

We let 7 denote the table of the CKY algorithm. The elements stored in the
table, which we will refer to as items, have the form [i, A,j], where A € N and
0 <i <j < n, and n is the length of the input string w = ay - - - a,. The numbers i
and j are best thought of as input positions: the position 0 precedes a1, each position
iwith 1 <i <n — 1 separates the symbol occurrences a;_; and 4; in w, and n is the
position following a,.

If an item [7, A, j] is added to the table, this signifies that the substring a;1 - - - 4
of w can be derived from non-terminal A, or formally A =% 4,1 - - - a;. This can be
seen as a partial recognition result, and the main goal of the algorithm is to add
item [0, S, n] to the table. This item is found at the end of the process if and only if
the input string is correct.

108 Mark-Jan Nederhof and Giorgio Satta

: Function CKY (G, w) {w = ay - - -ay; R the rules of G}
T 0
: for all j from 1 up to n do
for all rules A — a;in R do

add[j—1,A,jlto T;
for all i from j — 2 down to 0 do

forall k fromi+1uptoj—1do

for all rules A — B Cin R do
if [i, B,k] and [k, C,j] are both in 7 then

10: add [i,A,jlto T;
11: if [0,S,n]isin 7 then
12: return true;
13: else
14: return false;

PN AN

©

Figure 41 The CKY recognition algorithm.

1 2 3 4
0 [A[SA[SA[SA
1 A A]A
2 S5
3 S

Figure 42 Table 7 obtained by the CKY algorithm.

The algorithm is presented in Figure 4.1. The table is initially empty (line 2).
For each input position j, the algorithm considers substrings ending in j, and finds
the non-terminals from which the substrings can be derived. First, substrings a; of
length 1 are considered. The Chomsky normal form implies that any parse of such
a substring consists of a single rule occurrence of the form A — g;. This justifies
lines 4 and 5.

Then, substrings a;,1 - - -4; of length greater than 1 are considered (j > i + 1).
The CNF implies that if such a substring can be derived from A, then there is
arule A — B C, for some B and C, from which a;y1 ---a; and a1 - - -4; can be
derived respectively, for some choice of k, where i < k < j. This is the basis for
lines 6 through 10.

As an example, consider the CFG with ¥ = {a,b}, N = {S, A}, and with rules
$§—-S8S55—-AAS—>bA—>AS A— AA and A — g, and consider the input
string w = aabb. The table 7 produced by the CKY algorithm is given in Figure 4.2,
represented as an upper triangular matrix. Each cell at row i and column j contains
all the non-terminals B such that [i, B,] is in 7. This means that the main diagonal
represents derivations of substrings of length 1, the next diagonal corresponds to
substrings of length 2, etc. In the example, the string w is recognized since the start
symbol S is found in the cell in the upper right corner.

An alternative way of describing a tabular algorithm is by means of a deduction
system, where we have logical, declarative expressions in place of procedural ones.
This is exemplified for CKY recognition in Figure 4.3. A deduction system contains
a set of inference rules, each consisting of a list of antecedents, which stand for items
that we have already added to 7, and, below a horizontal line, the consequent,

Theory of Parsing 109

[i, B, k]
[k, C,j]

Aza @ 4,

- A BC (b
oA | {A=BC ®

Figure 4.3 The CKY recognition algorithm, expressed as a deduction system.

which stands for an item that we derive from the antecedents and that is added
to 7 unless it is already present. To the right of the horizontal line, we may also
write a number of side conditions, which indicate when rules may be applied, on
the basis of the given grammar.

One difference between pseudo-code as in Figure 4.1 and deduction systems as
in Figure 4.3 is that the latter does not specify the exact order of the steps. Let us
consider the upper triangular matrix in Figure 4.2. The contents of a cell depend,
directly or indirectly, on cells that are (1) on the same row or a row further down,
and (2) on the same column or a column further to the left. These dependencies
between cells are consistent with an algorithm that computes the columns from
left to right, and within each column computes the rows from bottom to top. This
is realized in Figure 4.1. Another algorithm could for example compute the rows
from bottom to top, and within each row compute the columns from left to right.
The deduction system allows both strategies, as well as several others.

The time complexity of a recognition algorithm is commonly determined by the
number of steps, but not by their relative order. A deduction system can therefore
allow a simpler and more abstract description of an algorithm, while the computa-
tional properties remain identical to those of a specification of the same algorithm
in pseudo-code.

In the case of the CKY algorithm, the complexity is dominated by the inference
rule in Figure 4.3(b). As this inference rule involves one grammar rule and three
input positions, the number of corresponding steps is O(|R| n3) = O(|G|n%), and
this is also the total time complexity of the CKY algorithm. The number of items
of the form [i, A, j] is O(|N| n%) = O(|G| n?), and this is also the space complexity.

When considering the size of the grammar in the above analysis, one should
remember that transformation to CNF is needed before the CKY algorithm can be
applied, and such transformations may increase the size by a square function. The
second algorithm we consider, called Earley’s algorithm, circumvents this problem
by allowing the input grammar to be an arbitrary context-free grammar. To sim-
plify the presentation, however, we will assume that there is only one rule in R of
the form S — «. (If this does not hold, it suffices to add a new start symbol S™and
arule ST — S.)

The items for Earley’s algorithm are of the form [i, A — « ¢ B,j], where A —
af is a rule from R. The components A — « e S are often called dotted rules.
Intuitively, the dot separates the grammar symbols that have already been found
to derive some portion of the input string (between positions i and j) from those
grammar symbols that are still to be processed. Whereas CKY parsing only used
combinations of i and j such that i < j, Earley’s algorithm relaxes this constraint
toi < j. The added case i = j is particularly relevant if « is the empty string, but

110 Mark-Jan Nederhof and Giorgio Satta

1: Function EARLEY(G, w) {w = ay - - - ay; R the rules of G}
2: 7T <~ A< {[0,S— e0,0]};
3: for all j from 0 to n do

4 for all items [i, A — « e aa’,j — 1]in 7 do
5 ifa= 4 then
6: add [i, A - aa e &/,j] to 7 and to A;
7 while A # () do
8: remove some [k, A — o o &/,] from A;
9: if «’ = BB then
10: forall rules B — y inR do
11: ifitem [j,B — e y,j]isnotin 7 then
12: add [j,B — e y,jlto T and to A;
13: forall items [j,B — y o ,jlin 7 do
14: if item [k, A — aB e B,jlisnotin 7 then
15: add [k, A - aB e f,jlto 7 and to A;
16: if o/ = ¢ then
17: for all items [i,B — B e Ay, k]in 7 do
18: if item [i, B — BA e y,jlisnotin 7 then
19: add [i,B — BA e y,jlto T and to A;
20: if [0,S — o e ,n]isin 7 then
21: return true;
22: else
23: return false;

Figure 4.4 The Earley recognition algorithm.

it may also occur if « merely derives the empty string by epsilon rules. (By epsilon
rule, we mean a rule with an empty right-hand side.)

In addition, an item of the form [i, A — « e §,j]is only added to the table 7 if an
occurrence of A — af starting at position i is consistent with the input preceding
position i. More precisely, [i, A — « e 8,]]is eventually added to 7 if and only if:

(1) S=*ay---a;Ay, for some y, and
2) a=>%ajq-- - 4j.

The second condition mirrors the condition for items in the CKY algorithm,
whereas the first condition introduces a type of left-to-right directionality, in such
a way that no rule occurrence can be considered unless it fits in a parse-tree that is
consistent with the input to the left of the position currently considered.

Earley’s algorithm is presented as pseudo-code in Figure 4.4. Next to the famil-
iar table 7, there is another set A, in which items are stored that still need to be
processed. We call this set the agenda. We ensure that items are never added to the
agenda more than once, so that the parsing process is guaranteed to terminate.

Initially, in line 2, the agenda is made to contain a single item, with dotted rule
S — e o. This is sometimes called the initializer step. The intuition is that it starts
the investigation whether the input can be derived from S, under the assumption
we made earlier that S — o is the only rule with left-hand side S. The dot is at
the beginning of the right-hand side as no grammar symbols have been matched
against the input yet.

Theory of Parsing 111

li,A— o eaB,j—1]

05-e00 @ A anepy 1770 ©
li, A~ o o BB, j] i, A~ a e BB,KI
H{B%V ® kByedl o

Figure 4.5 Deduction system for Earley’s algorithm.

Lines 4 to 6 are called the scanner step, as the processed part of the right-hand
side is extended by matching one terminal symbol against a symbol from the input
string. Lines 10 to 12 are called the predictor step, as they predict an occurrence of a
rule starting at position j. The completer step consists of lines 13 to 15 and of lines 17
to 19. Both code fragments do essentially the same, namely combining two items
associated with two consecutive substrings into a third item associated with the
joint substring. One or the other code fragment is used depending on whether
the first or the second of these items is found first. Lines 13 to 15 are in fact only
necessary if there are epsilon rules; otherwise y in line 13 cannot derive the empty
string and therefore the item on that line cannot exist.

In the formulation as deduction system, in Figure 4.5, the completer step is
expressed more succinctly, as inference rule (d). The initializer step appears as
rule (a), the predictor step as rule (b), and the scanner step as rule (c).

The step that dominates the running time is clearly the completer step, as
that involves three input positions and two rules, making the time complexity
O(G|* n®), which can be improved to O(|G| n3) with a small trick that we will not
discuss here. The space complexity is O(|G] n?).

Let us consider the CFG consisting of the rules S — E,E — E—E,and E — g,
and consider the input string w = a — a — a. The table produced by Earley’s algo-
rithm can be represented as an upper triangular matrix, as illustrated in Figure 4.6.
Each cell at row i and column j contains all the dotted rules A — o e § such that
[i,A— aep,jlisinT.

This matrix is similar to the one in Figure 4.2, which was constructed by the CKY
algorithm. One difference is that there is now an extra diagonal, which contains
items that correspond to the empty string. Items resulting from the predictor step
will end up in cells in this diagonal.

Observe that [0,E — E — E e ,5] can be derived from [0,E — E— e E,4] and
[4,E— ae ,5]orfrom[0,E— E— e E,2] and [2,E — E — E e ,5]. This indicates
that w is ambiguous.

3 Context-Free Parsing

In this section we look at the computation of parse-trees, and consider how
recognition algorithms can be extended to become parsing algorithms. Since the
number of parse-trees can be exponential in the length of the input string, and

112 Mark-Jan Nederhof and Giorgio Satta

0 1 2 3 4 5
0| S—eE E—>ae E—E—eE |E—>E—Ee | E—>E—eE | E—>E—Ee
E—~eE—E|S—Ee S—Ee S—Ee
E—ea E—> Ee—E E—> Ee—E E— Ee—E
1
2 E—>eE—E | E—ae E—E—eE | E>E—Ee
E—ea E—Ee—E E—Ee—E
3
4 E—>eE—E | E—ae
E—ea E—Ee—E
5

Figure 4.6 Table 7 obtained by Earley’s algorithm.

even infinite when G is cyclic, one first needs to find a way to compactly represent
the set of all parse-trees.

Let us assume a CFG § = (X, N, S, R) and an input string w = ay - - -a, over X.
A representation of all parse-trees of w is called a parse forest and is itself a CFG G,
The alphabet of G, is the same as that of G, and the non-terminals of G,, have the
form (j, X, i), where X ¢ NU ¥ and 0 < j < i < n. The start symbol of Gy, is (0, S, n).

If w is in the language generated by G, then the rules of G, should ideally
be the rules (i — 1,4;,i)) = a; (1 < i < n) plus the rules (ig, A, i) = (i, X1,11) - - -
(im—1, Xm, im) such that:

1) (A—>Xp---Xp) €R,
(2 S=%*ai---aj,Aa;,1---ay, and
3) Xj=* @i 41 forl <j<m.

In words, there are two kinds of rules in G,. The first, of the form (i — 1,4;,1) — a;,
is little more than a notational convenience. It attaches appropriate input posi-
tions to occurrences of terminals in the input. The second kind, of the form
(io, A, im) — (o, X1,11) - - (iy—1, Xim, i), is obtained by taking a rule from G and
annotating it with input positions that project the members of the right-hand side
onto consecutive substrings of the input. Constraint (2) above guarantees that the
rule occurrence thus specified is part of at least one complete parse-tree, which
spans the entire input string and has label S at the root.

In intermediate stages of parsing, however, constraint (2) and sometimes also
constraint (3) may be violated, which means that G, contains useless rules, that is,
rules that either do not derive any string, or that cannot be reached from the start
symbol. Useless rules can be removed from a CFG by a process called reduction,
which has a running time that is linear in the size of the grammar.

Theory of Parsing 113

©,a,1) —a ©0,5,3) — (0,A,1) (1,4,3)
1,4,2) —a 0,5,3) — (0,5,2) 2,5,3)
2,b,3) — b 0,4,3) — (0,A,1) (1,A,3) ©
G3,b,4) —b 0,4,3) = (0,A,2) (2,5,3) +
04,1~ 0,41 (1,A,4) > (1,A,2) 2,5,4)
1,4,2) > (1,4,2) (1,A,4) — (1,4,3) (3,5,4)

2,53 - (2,b,3)
G54 —>Gb4d
0,52 - 0,41 (LA2

0,549 - 0,A1D 1,A4
0,549 - 0,52 2549
0,54 - (©,5,3) 3,54

0,A,2) > (0,A,1) (1,A,2) t 0,A,4) — (0,A,1) (1,A,4)+
1,4,3) > (1,4,2) 2,5,3) 0,A4) — (0,4,2) 2,54 1
2,54 — (2,53) (3,54 0,4,49—0,A3GSHT

Figure 4.7 Parse forest associated with table 7 from Figure 4.2.

If the input string w is not in the language generated by G, then reduction of Gy
removes all rules, including those of the form (i — 1,4;,i) — a;, and thereby G,
generates the empty language. If the string is in the language, then G,, generates
the singleton language {w}. Furthermore, the parse-trees of G, are isomorphic to
those parse-trees of G that derive w.

Many recognition algorithms can be easily extended to become parsing algo-
rithms. For the CKY algorithm, this involves adding a rule of the form (i, A,j) —
@i,B,k) (k,C,j) to G, each time an item [i, A,]] is found, based on the existence
in the table of items [, B, k] and [k, C,j] and a rule A — BC. In the resulting parse
forest, constraint (3) is always satisfied, but constraint (2) may be violated, and
a top-down traversal may be needed to remove rules that are not reachable
from (0, S, n).

Let us return to the grammar from Section 2 with rules S — SS, S — AA, S— b,
A— AS,A— AA, A— a, and input w = aabb. We have seen the table in Figure 4.2
that is produced by CKY recognition. The corresponding parse forest is given in
Figure 4.7. Rules that are subsequently eliminated by reduction are marked by f.

As the CKY algorithm assumes the input grammar G is in CNF, the size of Gy,
is dominated by the number of rules of the form (i, A,j) — (i, B, k) (k, C,j), which
is O(|G| n®). From the resulting parse forest G, an individual parse-tree can be
extracted in time proportional to the size of the parse-tree itself, which is O(n).
In contrast, the table 7 can be stored with only O(|G| n?) space, but extracting an
individual parse-tree directly from 7 requires running time O(n?).

For general CFGs, CKY parsing is not applicable, but we can extend Earley’s
algorithm to produce parse forests, as a side-effect of recognition. The size of a
parse forest is then |G, | = O(|G| nP+1), where p is the length of the longest right-
hand side of a rule in G, which is considerably bigger than if the input grammar
were in CNFE

For this reason, practical systems often store the set of parse-trees using a mod-
ified form of parse forests, with rules having no more than two members in
the right-hand side. The main differences with Chomsky normal form are that
unary rules and epsilon rules are allowed. For such parse forests, extraction of an

114 Mark-Jan Nederhof and Giorgio Satta

individual parse-tree is more involved, but can still be done in linear time in the
size of that parse-tree.

4 Probabilistic Parsing

Many parsing algorithms can be extended to compute probabilities of strings or
of parses, which we refer to as probabilistic parsing. One application is to iden-
tify the most likely parse of an input sentence, as a form of disambiguation. To
simplify the presentation, we will here consider a form of disambiguation that
is strictly separated from the parsing process. More precisely, we assume that a
parse forest is constructed as first step, for example by CKY parsing or Earley’s
algorithm. Subsequently, the parse forest is analyzed to identify the parse-tree
with the highest probability. The presentation is further simplified by showing
only how to compute that highest probability, rather than the parse-tree itself.

In order to assign probabilities to parse-trees, we define a probabilistic context-free
grammar (PCFG) to be of the form G = (X, N, S, R, p), where (¥, N, S, R) is a CFG
and p is a mapping from rules in R to real numbers between 0 and 1. We say a
PCFG is proper if for every non-terminal A:

Z pA—-a)=1

A—a

In other words, properness means that for each A, p defines a probability
distribution over the rules with left-hand side A.

Let us define the probability of an occurrence of a rule in a parse-tree as the
probability of that rule, as specified by p. The probability of a parse-tree is then
defined as the product of the probabilities of the rule occurrences out of which
it is constructed. We say that a PCFG is consistent if the sum of probabilities of
all allowable parse-trees is 1. Many proper PCFGs that arise in practice are also
consistent, but consistency is not guaranteed by properness.

Given a probabilistic CFG G and a string w, a parse forest G, is constructed
much as in the previous section. One difference in the present section is that G, is
itself also a probabilistic CFG. A rule of Gy, of the form (i — 1, 4;,i) — a; is assigned
the probability 1, and a rule of the form (ip, A, i) — (io, X1,71) - - - (im—1, Xin, im)
is assigned the probability p(A — Xj --- X;,), where p is the probability assign-
ment of the input grammar G. The parse forest G, is in general neither proper nor
consistent, even when G is proper and consistent.

Consider for example the PCFG G with the following rules, with probabilities
between brackets:

S—>A 0.7)
S—-AS (03
A—a (0.8)
A—AA (02

Theory of Parsing 115

1: Function KNUTH(G)
2. E« X
3: repeat
F«—{AlA¢ENTA - X1 XulXq, ..., Xm € &N}
if 7 = (then
return ‘failure’
forall A € F do
q(A) < max p) - Pmax(X1) - .. Pnax(Xm)
T=(A—Xq1 - Xm):
X1, Xme&
9: choose A € F such that g(A) is maximal
10: Pmux(A) <~ Q(A)
11: E «— EU{A}
12: untilS e £
13: return pu;ax(S)

Figure 4.8 Knuth’s generalization of Dijkstra’s algorithm, applied to finding the most
probable parse in a probabilistic context-free grammar G.

With input w = aa, G, is the following PCFG:

©,5,2) - (0,4,2) 0.7)
©,5,2) - 0,4,1) (1,52 (0.3)
0,4,2) > 0,4, 1) (1,A,2) (0.2)

1,5,2) - (1,A,2) 0.7)
0,A,1) - (0,a,1) (0.8)
(1,A,2) - (1,a,2) 0.8)
©0,a,1) —a @))
1,a,2) —>a €))

The two parse-trees in G, have probabilities 0.7 % 0.2 % 0.8 % 0.8=0.0896 and
0.3 % 0.8 % 0.7 x 0.8 =0.1344 respectively. Disambiguation could therefore opt for
the second of these parses.

We have already observed in the previous section that parses of w have roughly
the same structures as parses in G,. Because the probabilities of corresponding
parses are identical as well, we can reduce the problem of finding the most likely
parse of w with grammar G to the problem of finding the most likely parse in
grammar Gy.

Let us therefore consider an arbitrary PCFG G, which may, but need not, be a
parse forest produced by CKY parsing or a comparable parsing algorithm. One
way of finding the most likely parse in G is the algorithm in Figure 4.8, which
is due to Knuth. It generalizes Dijkstra’s algorithm to compute the shortest path
in a weighted graph. Knuth'’s algorithm finds the probability pyax(A) of the most
probable subparse with root labeled A. The value p;x(S), where S is the start
symbol, then gives us the probability of the most probable parse.

The set £ contains all grammar symbols X for which py.x(X) has already been
established. At the beginning, this is just the set of terminals, assuming pjx(a) = 1
foralla e X.

116 Mark-Jan Nederhof and Giorgio Satta

At each iteration, the set F contains non-terminals A such that a subparse with
root labeled A exists consisting of a rule A — Xj - - - X;;, and subparses with roots
labeled Xj, ..., X;; matching the values of pyax(X1), ..., Pmax(Xwm) found earlier.
From these candidates, the non-terminal A for which such a subparse has the
highest probability is then added to £. The process ends normally when py;ax(S)
is found. If there are no parses at all in the grammar, which may happen if the
grammar is not reduced, then the algorithm returns a ‘failure’ value.

The number of iterations of Knuth’s algorithm is linear in the number of non-
terminals. Values of the form p(i) - pimax(X1) - - .. - Pmax (X)) need to be computed
only once for each rule. The set 7 can be reused between two subsequent itera-
tions, with minor modifications. The choice of A in line 9 relies on the arrangement
of the elements in F in a priority queue according to the values of 4. It follows
that the running time is O(|G| + [N|log(|IN|)), where the factor log(|N|) corre-
sponds to the running time of operations of the priority queue containing up to
IN| elements.

In the example above, the first two values of pu,y that are found are
Pmax((0,4,1)) = 1 and pmax((1,4,2)) = 1. As the values are identical, they can
be found in any order. Similarly, the next two values, puux((0,A,1)) = 0.8 and
Pmax((1,A,2)) = 0.8, can be found in either order. Then, puux((1,S,2)) = 0.7 %
Pmax((1,A,2)) = 0.56 and ppax((0,A4,2)) = 0.2 * prax((0, A, 1)) * pmax((1,4,2)) =
0.128 are found, and, lastly, puax((0,S,2)) is found as the maximum of 0.7 x
Pmax((0,A,2)) = 0.0896 and 0.3 * puax((0,A, 1)) * pmax((1,5,2)) = 0.1344, which
is 0.1344, as we have seen before.

If the input grammar is in Chomsky normal form, values of the form
Pmax((i, A, j)) can be computed in a fixed order, in such a way that all pj.x((i, B, k))
and puax((k, C,j)) are computed before any value px((i, A,j)). This is achieved
by a probabilistic extension of CKY recognition. It is also regarded as an extension
to CFGs of Viterbi’s algorithm for probabilistic finite state models.

The probabilistic CKY algorithm is given by Figure 4.9. It is instructive to com-
pare this to CKY recognition as presented in Figure 4.1. Instead of adding elements
[i,A,j] to T, the probabilistic algorithm assigns non-zero values to puax([i, A, j1).
The two algorithms have the same time complexity. Finding the most likely parse
based on values of p;ux also has the same time complexity as the extraction of a
parse-tree from 7.

5 Lexicalized Context-Free Grammars

A central issue in modeling the syntax of natural language is the sensitivity of
syntactic structures to the choice of terminal symbols, also called lexical elements.
Consider the difference between the following two sentences:

(1) our company is training workers
(2) our problem is training workers

In the first case, ‘training workers’ should be parsed as verb phrase with ‘is” as aux-
iliary verb. In the second case, ‘training workers’ is used nominally as argument of

Theory of Parsing 117

1: Function CKY (G, w) {w = a1 - - -ay; R the rules of G}
2: forall j from 1 up ton do

3: for all non-terminals A do

4 if there is a rule A — a; then

5: pmax(lj — LA, D) < p(A — a));
6: else

7 pmax([j - 11A/f]) ~0;

8 for all i from j — 2 down to 0 do

9: for all non-terminals A do
10: Pmax([irArj]) ~0;
11: forall k fromi+1uptoj—1do
12: for all rules A — B Cin R do
13: Pn1ux([i/Arj]) <~
14: max(pmax([i, A, j]),

p(A = B C) - pmax (i, B, k]) - pmax([k, C,j1));
15: return pyx ([0, S, n]);

Figure 4.9 The probabilistic CKY algorithm.

‘is,” which requires a different parse. Traditional CFGs with non-terminals for basic
categories such as noun, verb, noun phrase, etc., lack the means to distinguish
between lexical elements, needed to disambiguate sentences such as the above.

A common solution is to incorporate a lexical element as a so-called head in
each non-terminal of the CFG. These heads play an important role in the syn-
tactic and semantic content of the derived string. In this section we consider a
model called bilexical context-free grammar. This model is used extensively in
natural language parsing. It allows us to write rules of the form S[training] —
NP[company] VP[training], which expresses that a noun phrase whose main
element is ‘company’ can combine with a verb phrase whose main element is
‘training.” One might, however, want to exclude a rule of the form S[training] —
NP[problem] VP[training] as, typically, a problem cannot be the subject of training.
Alternatively, in probabilistic bilexical context-free grammars, which are discussed
further at the end of this section, such a rule may be given a very low probability.

Formally, a bilexical context-free grammar (2-LCFG) is a CFG with non-terminal
symbols of the form A[a], where a is a terminal symbol and A is a symbol drawn
from a set of so-called delexicalized non-terminals, which we denote as Vp. Every
rule in a 2-LCFG has one of the follow