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PREFACE

Annual Reports in Computational Chemistry is a new periodical focusing on timely

reviews of topics important to researchers in the field of computational chemistry.

It is published and distributed by Elsevier for the Division of Computers in

Chemistry (COMP) of the American Chemical Society. The COMP Executive

Committee is pleased to have developed this periodical over the past several

years and expect that it will bring great benefit to the Division members and to the

scientific community at large. We expect that future volumes of the ARCCwill build

on the example set by the contributions of the first volume.

The Section Editors have completed the selection and editing of 18 contributions

in six sections for the first volume. Sections covered include contributions in the

area of Quantum Mechanical Methods (Section Editor: T. Daniel Crawford),

Molecular Modeling Methods (Carlos Simmerling), QSAR/QSPR (Yvonne Martin),

Applications of Computational Methods (Heather Carlson), Chemical Education

(Theresa Zielinski), and Emerging Science (Ralph Wheeler).

The Annual Reports in Computational Chemistry is assembled entirely by

volunteers in order to produce a high-quality scientific publication at the lowest

cost possible. I would like to thank those people who have contributed to make this

first edition possible. The authors of each of this year’s contributions and the

Section Editors have been gracious in working with the Editor and the publisher

during the development of this edition. I would like to thank all the members of the

COMP Executive team, past and present, for their commitment to this publication,

for pushing and prodding, and for their ideas on topics, contributors, Section

Editors, and in general for helping to make this a reality. Peter Grootenhius

deserves special thanks for challenging us to publish our first volume in early

2005. Thank you one and all.

I hope that you will find this first edition to be interesting and valuable. We are

currently planning the second edition and solicit input from our readers about

future topics. Please e-mail me your suggestions and to volunteer as a contributor.

I can be reached at arcc_editor@yahoo.com.

Sincerely

David C. Spellmeyer

xi
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CHAPTER 1

An Introduction to the State of the Art

in Quantum Chemistry

Frank Jensen

Department of Chemistry, University of Southern Denmark, DK-5230 Odense, Denmark
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1. INTRODUCTION

The fundamental building blocks in quantum chemistry are nuclei and electrons.

The small electronic mass necessitates the use of quantum mechanics for

describing the electron distribution, but the nuclear masses are sufficiently heavy

that their motion to a good approximation can be described by classical

mechanics. The large difference in mass is the basis for the Born–Oppenheimer

approximation, where the coupling between the nuclear and electronic motions is

neglected. From the electron point of view, the nuclei are thus stationary, and the

electronic Schrödinger equation can be solved with the nuclear positions as

parameters. A (large) set of such solutions forms a 3N26 dimensional potential

energy surface (PES) upon which the nuclear motions can be solved

subsequently. The multi-dimensional nature of the surface prevents a complete

mapping for systems with more than four nuclei, and for larger systems, the effort

must therefore be focused on the chemically important low-energy region.

Traditionally such investigations have been done by a static approach, by locating

minima and first-order saddle points on the PES [1]. Minima describe stable

molecules, while first-order saddle points relate to the chemical transformation of
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ISSN: 1574-1400 DOI 10.1016/S1574-1400(05)01001-7 All rights reserved



one species to another via transition state theory. More recently, the PES has also

been explored by direct dynamics, where Newton’s equations for the nuclear

motions are solved using energies and derivatives generated on-the-fly, as

required by the dynamics [2]. In the present context, we will only be concerned

with methods for solving the electronic Schrödinger equation and not with

methods for exploring the resulting PES.

Solving the electronic Schrödinger equation is difficult for two main reasons:

† The electrons are indistinguishable and the differential equation couples all the

electronic coordinates.

† The interaction between electrons is only a factor of Z (nuclear charge) less

than the interaction between the nucleus and the electrons.

The standard approach for solving multi-variable differential equations is to find

a set of coordinates where the variables can be separated and solve them one at a

time. This is not possible for the electronic Schrödinger equation with more than

one electron and the relatively large electron–electron interaction compared to the

nucleus–electron interaction prevents a central-field approximation. Neglect of

the electron–electron interaction leads to a wave function composed of hydrogen-

like orbitals, but this is too poor a model to be useful. A qualitatively correct

description can be obtained by a mean-field approximation, where the average

electron–electron interaction is included, and within the wave function approach,

this is known as the Hartree–Fock (HF) method. In order to improve the

computational efficiency, various approximations to the HF equations can be

made, with the reduction in fundamental accuracy being (partly) made up for by

parameterization against experimental data. Such methods can collectively be

called semi-empirical methods. Alternatively, the inherent deficiencies due to the

mean-field approximation can be reduced by adding many-body corrections and

these are called electron correlation methods [3].

Density functional theory (DFT) may be considered as an alternative

formulation of quantum mechanics, where the electron density is the fundamental

variable, rather than the electron coordinates [4]. DFT can also be considered as

an improvement of the HF model, where the many-body correlation is modeled as

a function of the electron density. DFT is analogous to the HF method a pseudo

one-particle model, leading to a computationally efficient way of determining the

electronic structure for large systems. While DFT has been a widely used tool

for several decades in solid-state physics, it was only after the introduction of

so-called gradient-corrected functionals in the early 1990s that the accuracy

improved sufficiently to become a useful tool in computational chemistry.

An integrated element in practical calculations is the expansion of the orbitals

(one-particle wave functions) in a set of known functions, the basis set. Only

Gaussian-type basis functions will be considered in the present case, as these are
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used almost universally for application purposes. An ideal basis set should give a

good accuracy for a small number of functions, be computationally efficient and

allow a systematic way of extrapolating to the basis set limit. Unfortunately,

different methods have different basis set requirements and it is not possible to

find a single basis set optimum for all purposes.

In the following, we will briefly review the theoretical background for methods

aimed at solving the electronic Schrödinger equation and present some highlight

of the recent research within each area.

2. HARTREE–FOCK

The electronic Schrödinger equation in abbreviated form can be written as

HC ¼ EC

where the Hamilton operator H contains four terms corresponding to the electron

kinetic energy, the nuclear–electron attraction, the electron–electron repulsion

and the nuclear–nuclear repulsion. The latter is an additive constant within the

Born–Oppenheimer approximation.

H ¼ Te þ Vne þ Vee þ Vnn

The variational principle states that an approximate wave function will always

have an energy higher than the exact wave function and the (energetically) best

wave function can thus be determined by minimizing the energy. In an

independent particle picture (HF), each electron is described by an orbital f and

the whole wave function is a product of such orbitals. The antisymmetry

requirement means that the wave function is not simply a product of orbitals, but

rather a linear combination of such products, which conveniently can be written in

the form of a (Slater) determinant. The HF energy is given by integrals of

molecular orbitals over the Te and Vne operators, often collected in a one-electron

operator h, and over the two-electron Vee operator. The latter gives rise to two

contributions: a Coulomb term corresponding to the classical interaction between

two charge clouds and an exchange term arising from the wave function

antisymmetry. Setting the first derivative of the energy with respect to the

molecular orbitals to zero gives the HF equation, which has the same form as the

Schrödinger equation, except that it is now at the orbital (one-electron) level.

Ff ¼ 1f

The Fock operator F describes the motion of one electron in the field of all the

nuclei and the mean-field of all the other electrons. Since the latter is given by the

An Introduction to the State of the Art in Quantum Chemistry 5



orbitals, the HF equation depends on its own solutions and must be solved

iteratively.

In practical applications, the molecular orbitals are expanded in a basis set,

thereby transforming the HF equations into the Roothaan–Hall equations, which

can be written as a (generalized) matrix eigenvalue problem.

FC ¼ 1SC

The variational parameters are the molecular orbital coefficients contained in

the C matrix which, together with the basis functions, determine the shape of the

molecular orbitals. The dimension of the matrix equation is the number of the basis

functions, a quantity that is under user control. The elements in the F matrix

contain integrals of the one- and two-electron operators over basis functions,

multiplied with products of the molecular orbital coefficients collected into a density

matrixD. The iterative sequence corresponds to diagonalization of the Fockmatrix

to give an updated density matrix, which is used for constructing the next Fock

matrix, etc. The iteration is started with a suitable guess of the density matrix and

continued until the difference between two consecutive density matrices are within

a suitable (small) threshold. At this point, the solution corresponds to a self-

consistent field (SCF), i.e., the calculated electric field generated by the electrons

is consistently with the electron distribution.

There are two major computational problems in a HF calculation, calculating the

two-electron integrals and solving the HF (Roothaan–Hall) equations. The

calculation of a single two-electron integral is computationally quite easy, but the

number of such integrals is approximately 1=8M4 for a basis set containing M

functions. A medium-sized basis set will typically have 15–20 functions for each

atom, and already a 100-atom system may result in several thousand basis

functions, and thus potentially ,1012 two-electron integrals. In a traditional

implementation, these integrals are calculated and stored on disk, requiring

,10 TB of disk space. A straightforward implementation of the HF model is,

therefore, an N 4 method, increasing the system size by a factor of two will

increase the computational time and storage by a factor of 16, and this effectively

limits the application to systems with less than ,30 atoms.

Two developments have been essential for reducing the scaling and thereby

pushing the limit for feasible calculations. The first is the introduction of the direct

SCFmethod with differential update of the Fock matrix [5]. The Fock matrix can be

written as a one-electron contribution h, which is independent of the density

matrix, and a contraction of the density matrix D with a two-electron tensor G. The

change in the Fock matrix is thus given by the change in the density matrix.

Fi ¼ hþ DiG

F. Jensen6



DFi ¼ DDiG

Rather than calculating all the two-electron integrals prior to solving the

Roothaan–Hall equation, the integrals can be recalculated in each iteration. While

this avoids the requirement for massive amounts of disk storage, it potentially

increases the computational timewith a factor close to the number of iterations. The

availability of the density matrix elements, however, means that not all integrals

have to be calculated, only those that will bemultiplied with sufficiently large density

matrix elements are required. The density matrix elements between atoms that are

spatially far apart will be close to zero and this effectively reduces the method

scaling from N4 to N2 for large systems. Furthermore, as the iterative solution

proceeds, the change in thedensitymatrix (hopefully) becomessmaller andsmaller

and the integral screening therefore becomes more and more efficient.

For large systems, the dominating integrals are those describing the Coulomb

interaction between electrons, leading to an overall N2 scaling. In fast-multipole

methods, the Coulomb contribution is not calculated by two-electron integrals, but

is replaced with the interaction between two electron densities [6]. The latter can

be calculated in a more efficient fashion by partitioning the physical space into

boxes and evaluating the interaction between densities within the boxes as

interactions between multipoles located at the center of the boxes. The required

multipole order and box size depends on the distance between boxes for a given

final accuracy, and distant interactions can, therefore, be calculated with a coarser

granulation than the near-field contribution. For sufficiently large systems, this

leads to a computational complexity of order N, i.e., the computational effort only

increases linearly with the system size.

Solution of the Roothaan–Hall equation by repeated diagonalization of the Fock

matrix requires a computational time proportional to the cube of the matrix

dimension. For small systems, the matrix diagonalization time is insignificant

compared to the construction of the Fock matrix, but for large systems, the N3

diagonalization becomes the dominating step. In order to achieve a true linear

scaling implementation, the HF energy can be written as a function directly of the

density matrix elements and standard optimization techniques like conjugate

gradient methods can be used for minimization [7].

When discussing the method scaling, i.e., the increase in computational time

with system size, the focus is on the most demanding computational step in the

large system limit. More important for practical calculations is the size of the

corresponding prefactor, i.e., Time ¼ Prefactor p Nn: A low-order scaling method

with a large prefactor will ultimately be more efficient than a higher order method

with a small prefactor, but this region may not be attainable within the limitation of

the available computational resources. Figure 1 illustrates the computational time

as a function of the system size for three methods with linear (N), quadratic (N2)

and quartic (N4) scaling.

An Introduction to the State of the Art in Quantum Chemistry 7



As seen from Fig. 1, theN4 method is the most efficient for systems smaller than

NA, the best method for systems between NA and NB is the N
2 method, while the

linear scaling method becomes the preferred choice for systems larger than NB.

For the HF model, the switch between a conventional N4 and an N2 (direct) SCF

method occurs for so small systems that direct methods often are the default

option for all systems. The switch for when the linear scaling method becomes

favorable, however, occurs for systems that currently are near the feasibility limit,

i.e., a few hundred atoms.

In the above, it has been assumed implicitly that the iterative Roothaan–Hall

procedure converges, i.e., the difference between two consecutive density

matrices decreases during the iterative process, but this is by no means

guaranteed. A closely related problem is that the optimization converges on a

local, rather than the global, minimum. Close-lying states often mean that the

density matrix switches between different state descriptions during the iterative

procedure, leading to a non-convergent behavior. The direct inversion in the

iterative subspace (DIIS) has been a favorite tool for improving both the

convergence and reducing the number of iterations at the same time [8], while

second-order methods can be used to force convergence, albeit at a significant

increase in computational time [9].

3. ELECTRON CORRELATION METHODS

The HF model only accounts for the average electron–electron interaction and

thus neglects the correlation between electrons. Since HF is the energetically best

Fig. 1. Illustrating the regimes where different methods are most efficient.
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single determinant wave function, correlated methods must necessarily involve

more than one Slater determinant. This also means that the mental picture of each

electron residing in a separate orbital must be abandoned. Rather, one must

accept a picture with a range of orbitals having a fractional number of electrons.

The HF model has Nelec orbitals with occupation numbers being exactly 1, while

correlated methods have Nelec (natural) orbitals with occupation numbers close to

1, and the remaining having occupation numbers close to 0. The total amount of

electrons moved from occupied to empty HF orbitals is a measure of how

important electron correlation is for the particular system.

There are three main methods for calculating the correlation energy:

configurational interaction, many-body perturbation theory and coupled

cluster [10].

3.1. Configuration interaction and multi-configurational
self-consistent field methods

The configuration interaction (CI) method relies on writing a multi-determinant trial

wave function and using the variational principle for determining the weight of each

determinant in the total wave function. The additional determinants beyond HF are

generated by ‘exciting’ electrons from occupied to empty orbitals, and they can be

characterized by the excitation level, i.e., singly (S), doubly (D), triply (T),

quadruply (Q), etc. excited determinants relative to the HF configuration. The

orbitals are taken from a HF calculation and kept fixed. If they also are optimized,

the method is called multi-configurational self-consistent field (MCSCF), and is

primarily used for obtaining a correct qualitative description for systems where the

single determinant HF wave function is insufficient. The full CI method includes all

excitations and represents an exact solution within the limitations of the basis set.

The number of excited determinants, however, increases factorially with the

number of electrons and basis functions, and is therefore only possible for small

systems. For practical applications the excitation level must be truncated, leading

to the CISD, CISDT, CISTDQ, etc. models. Due to the orbital optimization in the

HF model, CIS is identical to HF for ground state energies. The CISD method

scales as N 6 with the system size, CISDT has a scaling of N 8 , while CISDTQ is

an N 10 order process, and only the CISD method is sufficiently efficient

computationally to be generally useful.

A major disadvantage of truncated CI methods is the lack of size consistency,

i.e., calculating the energy of two non-interacting systems do not give the same

results as adding the energies from two separate calculations. CI is the oldest

method for including electron correlation, but the lack of size-consistency means

that there have been relatively few developments in recent years. The full CI is

useful as an absolute reference for evaluating new approximate methods and

An Introduction to the State of the Art in Quantum Chemistry 9



improvements in computational algorithms and computer hardware have pushed

the limit to ,1010 excited determinants. The factorial dependence on size,

however, means that this number of determinants is reached already for ,10

electrons and ,30 basis functions.

3.2. Many-body perturbation theory

Themost popular many-body perturbation theory is theMøller–Plesset (MP) form,

where the Hamilton operator is partitioned into a sum of Fock operators and a

remaining ‘fluctuation’ potential. The Fock operator part can be solved exactly, with

the solutions being excited Slater determinants generated from the HF wave

function. By assigning a perturbation parameter to the fluctuating potential, the

corrections to the energy and wave function can be determined to various orders.

The HF result is recovered at first order and electron correlation thus starts at order

two (MP2). Higher ordermethods become increasingly complex, butMP3 andMP4

results can be obtained routinely for quite large systems, and implementation of the

MP5 and MP6 contributions have also been reported [11]. MP2 is the least

expensive method for including electron correlation, having a scaling of (only) N5

with the system size and a quite small prefactor. It furthermore recovers a

substantial fraction of the correlation energy, often ,80% of the amount possible

within the limitations of the basis set. Each successive term in the perturbation

series has a computational complexity one order higher, i.e., MP3 is anN6 method,

MP4 is N7; MP5 is N8; etc. The MP form of perturbation theory is size consistent.

Although an explicit implementation of perturbation corrections beyond MP6

has not been reported, the results to any order can be generated from a full CI

calculation (equivalent to MP1). Analysis of such results has shown that the

perturbation series for many systems is divergent, i.e., inclusion of higher order

terms does not necessarily lead to more accurate results [12]. The MP2 result may

still provide a reasonable estimate of the correlation effect, but there is no

guarantee that the MP3 or MP4 results will be more accurate. For this reason the

development of MPmethods beyondMP2 have to a large extent been abandoned.

3.3. Coupled cluster methods

In the coupled cluster (CC) approach, the excited Slater determinants are

generated by an exponential parameterization, in contrast to the CI method, where

the excitations enter in a linear fashion [13]. The exponential parameterization

ensures that the method is size consistent, but also leads to sets of non-linear

coupled cluster equations, which must be solved by iterative methods. CCSD is a

coupled cluster model where only single and double excitation operators are

F. Jensen10



considered, but due to the exponential parameterization, higher order excited

determinants are accounted for implicitly. If the triple excitation operator is also

included, the CCSDT model arises, addition of the quadruply excitation operator

leads to the CCSDTQmodel, etc. The CCSDmodel is anN6 method, analogous to

CISD, CCSDT has anN8 complexity and CCSDTQ is anN10 process. The iterative

nature of the coupled cluster equations means that CCSD is computationally more

expensive than CISD, although they both are N6 methods, i.e., CCSD has a larger

prefactor than CISD.

The CCSD model neglects the important connected triple excitations, but the

CCSDT model is computationally so complex that it can only be used for small

systems. CCSD(T) is a popular hybrid method, where the result from a CCSD

calculation is augmented with the T-contribution calculated by fourth-order per-

turbation theory, and it has a computational scaling of N7: While CCSD(T) results

have been shown to give a very accurate description even for difficult systems, the

high scaling and large prefactor limits the applicability to relatively small systems.

Several attempts have been made at reducing the scaling of coupled cluster

methods, e.g., Cholesky decomposition [14], reformulating the coupled cluster

equations as matrix equations [15] and using localized orbitals [16]. It is unclear,

however, what the increase in the resulting prefactors is, i.e., at what system size

will such methods become favorable relative to more traditional methods.

4. DENSITY FUNCTIONAL THEORY

DFT rests on the Hohenberg–Kohn theorem, which states that there is a unique

one-to-one correspondence between the ground state electron density and the

energy of a system [17]. In the Kohn–Sham version of DFT, the density is written

as an antisymmetric product of orbitals, analogous to the HF model [18]. The one-

electron term and the Coulomb interaction between electrons are identical to those

in the HF model, but the exchange and correlation contributions are incorporated

as functionals of the electron density. DFT shares the same computational

complexity as HF, i.e., a formal N4 method, which can be reduced to a linear

scaling method by, e.g., fast-multipole methods and direct optimization of the

Kohn–Sham equations. The problem of SCF convergence is more severe for DFT

methods than for HF, but the use of fractional occupation numbers have recently

been shown to improve the convergence towards the global minimum [19].

Although it can be proven that there is a unique exchange-correlation functional,

its mathematical form is unknown. There are currently three relatively well-defined

levels of DFT:

1. Local spin density approximation (LSDA). For the special case of a uniform

electron density it is possible to derive explicitly that the exchange energy can
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be calculated as a constant times the integral of the density raised to the

power of 4/3. The correlation energy can be calculated by Monte Carlo

methods and mathematical fitting functions have been devised for providing

an analytical form of the correlation energy as a function of the electron

density [20].

2. Generalized gradient approximation (GGA). These methods express the

exchange and correlation functionals as a function of the electron density and

its first derivative. Several different functional forms have been proposed,

some of which employ empirical parameters determined by fitting to

experimental data [21].

3. Hybrid methods. These methods employ a mix of the LSDA and GGA

functional forms and mixes in the ‘exact’ exchange energy as calculated

by HF theory [22]. The appropriate mixing of the three terms is

determined by fitting to experimental data.

LSDA methods have been used since the dawn of scientific computation

[23]. For chemical applications, the accuracy is similar or inferior to HF, and

HF has been preferred in the chemical community, but LSDA has played a

major role in solid-state physics. The introduction of gradient corrected

methods in the early 1990s significantly improved the accuracy and moved

DFT into mainstream computational chemistry. Development of new exchange-

correlation functionals is a very active research area, and has been pursued

both with respect to increasing the number of fitting parameters and by

including exact exchange, orbital-dependent quantities and second derivatives

of the electron density [24]. Following the initial rapid improvements in

performance by introduction of gradient corrections and exact exchange, there

has been relatively little progress in recent years. The main problem in DFT is

the non-systematic way the results can be improved toward the exact result,

but its strength is that it can deliver results of a good accuracy at a

computationally very favorable price. The accompanying review by Furche and

Burke in this volume provides a review of the most recent developments for

time-dependent DFT methods.

5. SEMI-EMPIRICAL METHODS

The major computational effort in the HF model is calculating two-electron

integrals over basis functions. In order to improve the computational efficiency,

and thus allowing treatment of larger systems, it is necessary both to limit the

size of the basis set and neglect certain classes of integrals. Semi-empirical

methods are characterized by using only a minimum valence basis set, i.e.,

core electrons are accounted for by reducing the effective nuclear charge.
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All integrals extending over more than two nuclear centers are furthermore

neglected. Since the HF model in the full implementation is only capable of

modest accuracy, such drastic approximations are expected to lead to a poor

model. The success of semi-empirical methods relies on not actually calculating

the surviving terms, but turning them into parameters and fitting these to

experimental data. The best known of these methods is the MNDO, AM1 and

PM3 family [25], primarily used for geometries and energetics, although the

ZINDO method has been widely used for spectroscopic purposes [26]. The

AM1/PM3 methods rely on extensive parameterization against experimental

data, primarily structures and stabilities, and have been developed for elements

important for organic chemistry, since this is where most of the required

experimental information is available.

The fundamental computational problem is the same as for the HF methods,

formation of a Fock-type matrix and iterative solution of the Roothaan–Hall

equations. The Fock matrix construct is formally an N2 process, since only two-

center terms are included explicitly and the prefactor is much smaller than for HF.

This means that matrix diagonalization methods for solving the variational problem

rapidly becomes dominating and linear scaling methods for solving the HF

equations becomes important even for relatively small systems [27]. More

recently, the MNDOmethod has been extended to include d-orbitals [28], the PM3

parameterization has been extended to transition metals [29] and a new PM5

method has been introduced [30].

6. BASIS SETS

The use of nuclear centered basis functions allows a formal way of approaching

the basis set limit, by including more and more functions, and of increasingly

higher angular momentum. Since a complete (infinite) basis set is computationally

infeasible, error cancellation is the key to achieving good results with modest-

sized basis sets. A good basis set is characterized by having a balanced

composition, i.e., a proper number of functions and angular momenta.

Unfortunately, different methods have different requirements for achieving a

basis set balance. HF and DFT methods only need to represent the electron

density, and have a (fast) exponential convergence towards the basis set limit as a

function of the highest angular momentum functions included in the basis set [31].

Electron correlation methods, on the other hand, display a (slow) inverse power

convergence towards the basis set limit [32]. The slow basis set convergence can

to some extent be solved by including the interelectronic distance as a variable,

although such methods are still primarily used for calibration studies [33]. The

difference in convergence rate indicates that a balanced basis set for HF and DFT
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will contain more low-angular momentum functions than basis sets tailored for

electron correlation. For calculation of molecular properties, like polarizabilities or

nuclear chemical shifts, the basis set may be augmented by special diffuse or tight

functions in order to improve the performance.

The smallest basis set, called a minimum basis set, has only the necessary

number of functions for containing the electrons in the isolated atom. For hydrogen

this is one s-function, for a first row element like carbon it is two s- and one p-

function, for a second row element it is three s- and two p-functions, etc. An

improved description can be obtained by doubling (DZ), tripling (TZ), quadrupling

(QZ), etc. the number of valence functions. The core orbitals are described by a

single set of functions, as they are essentially independent of the molecular

environment. In order to describe the distortion of the electron density upon bond

formation, and for describing electron correlation, the basis set must be

augmented with higher angular momentum functions. The number and nature of

these polarization functions should balance the number of s- and p-functions. In

order to increase the computational efficiency, the number of variational

parameters can be reduced by contracting some of the basis functions. Typically

the functions describing the core electrons are contracted into fixed linear

combinations, and the DZ, TZ, QZ,… classification refers to the number of

contracted functions. A given basis set can thus be classified by:

† the highest angular momentum functions included;

† the number of lower angular momentum functions;

† the degree of contraction (i.e., how many primitive functions are used for each

contracted function); and

† the basis set exponents.

Many different basis sets have been proposed over the years [34]. The early

ones were typically determined from HF calculations, and especially the 6-31G

basis set has been popular in routine applications. Dunning and co-workers have

proposed a series of correlation-consistent basis set of double, triple, quadruple,

etc. quality, with the acronym cc-pVXZ (X ¼ D, T, Q, 5, 6) [35]. These basis sets

have been developed specifically for recovering electrons correlation, using

correlation energies for determining the balance between the different types of

basis functions and their exponents. These basis sets can be augmented by

diffuse functions (aug-cc-pVXZ) for improving the quality of the results for

properties depending on the wave function tail [36], and with additional

tight functions (cc-pCVXZ) for recovering the core and core-valence correlation

energy [37].

More recently, the concept of using energetic criteria for determining basis

set composition have been used for designing basis sets tailored for DFT

type calculations, denoted ‘polarization consistent’ in analogy with the
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correlation-consistent basis sets for electron correlation [38]. The level of

polarization beyond the isolated atom is denoted with a number, i.e., a pc-1 type

basis set is of DZ quality, a pc-2 type basis set is of TZ quality, etc.

In the limit of a complete basis set and recovering all the electron correlation, the

Schrödinger equation is solved exactly. By performing a series of calculations with

different methods and increasingly larger basis set, the full-CI-complete-basis-set

limit can be estimated. Several groups are active in designing a computationally

efficient way of estimating this ‘exact’ limit [39] and the accompanying review in

this volume by Martin discusses this in more detail.

7. SUMMARY

While computer hardware continues to closely follow Moore’s law (doubling the

performance–price ratio every 18 months), the introduction of new algorithms

over the years has given at least the same amount of improvements. For HF and

DFT methods, the scaling with system size appears to have been solved, and

these methods are well suited for running in parallel on inexpensive cluster-type

computers. There is little doubt that systems containing up to thousands of atoms

will be attempted in the near future. Unfortunately, there is at present no clear

picture of how the current exchange-correlation functionals can be improved for

achieving a better accuracy of DFT methods.

Semi-empirical methods have been resurrected after lying dormant for almost a

decade, and are being parameterized for more elements, and attempts are being

made at developing DFT analogues of semi-empirical methods. Already with the

current technology, systems with 10,000 atoms are possible on single CPU

machines. Semi-empirical methods currently hold the best promise for performing

direct dynamics for systems with thousands of atoms, but the fundamental

accuracy is still somewhat lower than desired.

The two major problems in wave function based electron correlation methods

are the agonizing slow convergence with respect to basis set size and the high

scaling of computer time with system size. Methods using the interelectronic

distance as a variable hold promises for improving the basis set convergence, but

have so far primarily been used for calibration purposes. The few attempts of

designing methods with reduced scaling with system size have so far had very

little influence, presumably because the break-even point in terms of computer

time is well beyond the current feasibilities. The high scaling of these methods is at

variance with the fundamental physical interaction being pair-wise, and achieving

even a N2 scaling would be a major breakthrough. Algorithmic improvements are

also required before these methods can be used efficiently on massively parallel

computers.
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Time-dependent density functional theory (TDDFT) is increasingly popular for

predicting excited state and response properties of molecules and clusters. We

review the present state of the art, focusing on recent developments for excited

states. We cover the formalism, computational and algorithmic aspects, and the

limitations of present technology. We close with some promising developments.

Extensive reviews on many aspects of TDDFT exist [1–5], and no pretence at

comprehensive coverage is made here; instead, we rely heavily on our own work

and that of our collaborators.
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1. BACKGROUND

Standard (i.e., ground state) density functional theory (DFT) is derived from

traditional wavefunction-based quantum mechanics. The Hohenberg–Kohn (HK)

theorem is a simple rewriting of the Rayleigh–Ritz variational principle [6]. Time-

dependent DFT is based on a different theorem [7], which is a simple

consequence of the time-dependent Schrödinger equation. For a given initial

wavefunction and particle interaction, a time-dependent one-electron density rðr tÞ

can be generated by at most one time-dependent external (i.e., one-body)

potential. By starting in a non-degenerate ground state, the dependence on the

initial wavefunction can be absorbed into the density dependence, by virtue of HK.

We define a set of time-dependent Kohn–Sham (TDKS) equations that

reproduce rðr tÞ; from a TDKS potential. This consists of the external potential, the

Hartree potential, and the unknown time-dependent exchange correlation (XC)

potential vxc½r�ðr tÞ: This is a much more sophisticated object than the ground state

vxc½r�ðrÞ; as it encapsulates all the quantum mechanics of all electronic systems

subjected to all possible time-dependent perturbations.

2. ELECTRONIC EXCITATIONS

To extract electronic excitations, apply a weak electric field, and ask how the

system responds, as in standard perturbation theory. We do not need the entire

vxc½r�ðr tÞ; but only its value close to the ground state. This is captured in the XC

kernel, fxcðr r
0
; t2 t0Þ ¼ dvxc½r�ðr tÞ=drðr

0 t0Þ: This is a new functional introduced by

the time dependence. Its Fourier transform, fxcðr r
0
;vÞ; reduces to the ground state

value as v! 0: The standard adiabatic approximation ignores the frequency

dependence and uses the second derivative of the ground state XC energy

functional. Typical examples are the local density approximation (LDA),

generalized gradient approximation (GGA), and hybrids, such as B3LYP.

Several practical routes have been adopted for extracting excitation energies

from TDDFT response theory. In 1995, Casida converted the optical response

problem into the solution of an eigenvalue problem (EVP) [2] whose indices are

the single-particle transitions of the ground state Kohn–Sham potential:

A B

B A

 !
2Vn

1 0

0 21

 !" #
Xn

Yn

 !
¼ 0

The form of this EVP is well known from time-dependent Hartree–Fock (TDHF)

theory. ðAþ BÞ corresponds to the electric and ðA2 BÞ to the magnetic Hessian

of the electronic ground state energy. The dominant contributions to the

A matrix are the Kohn–Sham transition frequencies along the diagonal.
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(Explicit expressions for A and B may be found, e.g., in Ref. [8].) The transition

vectors ðXn YnÞ correspond to collective eigenmodes of the TDKS density matrix

with eigenfrequenciesVn: The Hartree and XC kernels produce both diagonal and

off-diagonal contributions to A and B, correcting the transitions between occupied

and unoccupied levels of the ground state KS potential into the true transitions of

the system. If the different Kohn–Sham transitions do not couple strongly to one

another, a useful approximation is to take only the diagonal elements of A. One

can view the KS transition as being corrected by an integral over fxcðr r
0
;vÞ on the

transition matrix elements, and the KS oscillator strengths will be good

approximations to the true ones [9].

Alternatively, many physicists propagate the TDKS equations in real time,

usually on a real-space grid inside a large sphere. They calculate the time-

dependent dipole moment of their system, whose Fourier-transform yields the

optical response.

3. COMPUTATIONAL ASPECTS

The response theory outlined above can be re-cast in variational form [8]. To this

end, one defines a Lagrangian L which is stationary with respect to all its

parameters at the excited state energies. L depends on the ground state KS

molecular orbitals (MOs), on the excitation vector, and three Lagrange multipliers.

This is convenient for excited state property calculations, because the Hellmann–

Feynman theorem holds for L: The LCAO (linear combination of atomic orbitals)-

MO expansion reduces the computation of excited state energies and properties

to a finite-dimensional optimization problem for L; which can be handled

algebraically. The stationarity conditions for L lead to the following problems which

have to be solved subsequently in an excited state calculation.

(i) Ground state KS equations in a finite basis. Results are the ground state KS

MOs and their eigenvalues. Computational strategies to solve this problem

have been developed over decades, e.g., direct SCF (self-consistent field), RI

(resolution of the identity), and linear scaling methods. Efficient excited state

methods take advantage of this technology as much as possible.

(ii) The finite-dimensional TDKS EVP (Casida’s equations) [10,11]. Results are

the excitation energies and transition vectors. They are used (a) to compute

transition moments and (b) to analyze the character of a transition in terms of

occupied and virtual MOs. Complete solution of the TDKS EVP for all excited

states leads to a prohibitive OðN6Þ scaling of CPU time and OðN5Þ I/O (N is the

dimension of the one-particle basis). In most applications only the lowest

states are of interest; iterative diagonalization methods such as the Davidson

method are therefore the first choice [12–14]. In these iterative procedures,
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the time-determining step is a single matrix-vector operation per excited state

and iteration, which can be cast into a form closely resembling a ground state

Fock matrix construction [15]. In this way, a single-point excitation energy can

be computed with similar effort as a single-point ground state energy. Block

algorithms lead to additional savings if several states are computed at the

same time [16]. Sometimes, the Tamm–Dancoff approximation is used [3],

which amounts to constraining Y to zero in the variation of L:

(iii) The ‘Z-vector equation’. Results are the TDKS ‘relaxed’ excited state density

and energy-weighted density matrices. Excited state properties such as

dipole moments and atomic populations can be computed from the excited

state density matrix; analytical gradients of the excited state energy with

respect to the nuclear positions require the energy-weighted density matrix as

well. Using iterative methods similar to those above, the cost for computing

the Z-vector is again in the range of the cost for a single-point ground state

energy. Geometry optimizations for excited states are therefore not

significantly more expensive than for ground states.

Flexible Gaussian basis sets developed for ground states are usually suited for

excited state calculations. The smallest recommendable basis sets are of split

valence quality and have polarization functions on all atoms except H, e.g., SV(P)

or 6-31G*. Especially in larger systems, these basis sets can give useful accuracy,

e.g., for simulating UV spectra (see below). However, excitation energies are

typically overestimated by 0.2–0.5 eV, and individual oscillator strengths may be

qualitatively correct only. A useful (but not sufficient) indicator of the quality is the

deviation between the oscillator strengths computed in the length and the velocity

gauge, which approaches zero in the basis set limit. Triple-zeta valence basis sets

with two sets of polarization functions, e.g., cc-pVTZ or TZVPP, usually lead to

basis set errors well below the functional error; larger basis sets are used to

benchmark. Higher excitations and Rydberg states may require additional diffuse

functions.

4. PERFORMANCE

4.1. Vertical excitation and CD spectra

So far, simulation and assignment of vertical electronic absorption spectra has

been the main task of TDDFT calculations in chemistry. Most benchmark studies

agree that low-lying valence excitations are predicted with errors of ca. 0.4 eV by

LDA and GGA functionals [10,17,18]. Hybrid functionals can be more accurate,

but display a less systematic error pattern. Traditional methods such as TDHF or

configuration interaction singles (CIS) often produce errors of 1–2 eV at
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comparable or higher computational cost. Bearing in mind that UV-VIS spectra of

larger molecules are mostly low-resolution spectra recorded in solution, and in

view of the relatively low cost of a TDDFT calculation, errors in the range of 0.4 eV

are acceptable for many purposes.

Calculated oscillator strengths may be severely in error for individual states, but

the global shape of the calculated spectra is often accurate. Because semi-local

functionals often predict the onset of the continuum to be 1–2 eV too low (due to

the lack of derivative discontinuity), this is especially true for excitations in the

continuum (excitation energy . lHOMO energyl) [19]. Rotatory strengths which

determine electronic circular dichroism (CD) spectra can be computed from

magnetic transition moments in the density matrix based approach to TDDF

response theory [20]. The simulated CD spectra predict the absolute configuration

of chiral compounds in a simple and mostly reliable way. In particular, TDDFT also

works well for inherently chiral chromophores [21] and transition metal compounds

[22] where semi-empirical methods tend to fail.

Successful applications of TDDFT vertical excitation and CD spectra have been

reported in various areas of chemistry, including metal clusters, fullerenes,

aromatic compounds, porphyrins and corrins, and many other organic

chromophores. As an example, we show the simulated and measured CD

spectra of the chiral fullerene C76 in Fig. 1 [16]. We used the Becke-Perdew86

GGA together with the RI-J approximation and an SVP basis set augmented with

diffuse s functions; a uniform blue shift of 0.4 eV was applied to all excitation

energies to correct systematic errors of the calculation and solvent effects. The

computed spectrum reproduces the main features of the experimental spectrum;

even the intensities are in the right range. The absolute configuration of C76 can be

Fig. 1. The simulated CD spectrum of fullerene C76 compared to experiment.
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determined in this way, because the measured spectrum can be assigned to one

of the two enantiomers whose CD spectra differ by their sign only. The simulated

spectrum involves 240 excited states; its calculation took 30 h on a single

processor 1.2 GHz Athlon PC using TURBOMOLE V5-4 [23].

4.2. Excited state structure and dynamics

An adequate description of most photophysical and photochemical properties

requires information on excited potential energy surfaces beyond vertical

excitation energies. Early benchmark studies indicated at least qualitative

agreement of excited potential surfaces calculated using TDDFT and correlated

wavefunction methods [24,25]. An increasing number of excited state reaction

path calculations using TDDFT have been reported. A limitation of most studies is

that the reaction paths do not correspond to minimum energy paths (MEPs), i.e.,

the internal degrees of freedom other than the reaction coordinate are not

optimized.

Analytical gradients of the excited state energy with respect to the nuclear

positions are a basic prerequisite for systematic studies of excited state potential

energy surfaces even in small systems. Implementations have become available

only recently [2,26,27]. While errors in adiabatic excitation energies are similar to

errors in vertical excitation energies, the calculated excited state structures, dipole

moments, and vibrational frequencies are relatively accurate, with errors in the

range of those observed in ground state calculations. The traditional CIS method,

which has almost exclusively been used for excited state optimizations in larger

systems, is comparable in cost, but significantly less accurate. Moreover, the KS

reference is much less sensitive to stability problems than the HF reference, which

is an important advantage especially if the ground and excited state structures

differ strongly.

Individual excited states of larger molecules can be selectively investigated by

pump-probe experiments. The resulting time-dependent absorption, fluor-

escence, IR, and resonance Raman spectra can be assigned by TDDFT excited

state calculations. First applications show that calculated vibrational frequencies

are accurate enough to determine the excited state structure by comparison with

experiment [28]. The combination of TDDFT and transient spectroscopy methods

offers a promising strategy for excited state structure elucidation in larger

systems. Computed normal modes of excited states can be used to study the

vibronic structure of UV spectra within the Franck–Condon and Herzberg–Teller

approximation [29]. For a detailed understanding of photochemical reactions

beyondMEPs, excited state nuclear dynamics simulations including non-adiabatic

couplings are necessary. The first steps towards this ambitious goal have already

been made [30,31].
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5. QUALITATIVE LIMITATIONS OF PRESENT FUNCTIONALS

Next we discuss situations where today’s approximations in TDDFT

produce much larger errors, or entirely miss important aspects of the optical

response.

5.1. Inaccurate ground state KS potentials

It had been well known for many years that the XC potentials of LDA and GGA are

inaccurate. At large distances, they decay exponentially rather than as the correct

21=r: This can be a severe problem for TDDFT, since the orbital energies can be

very sensitive to the details of the potential. This is not a problem if only low-lying

valence excitations of large molecules are required, but the energy of low-lying

diffuse states is often considerably underestimated, while higher Rydberg states

are completely missing in the bound spectrum [32].

There now exist several schemes for imposing the correct asymptotic decay

of the XC potential [33]. But such potentials are not the functional derivative of

any XC energy. While this has no direct effect on vertical excitation energies,

other excited state properties are not well defined. Exact exchange DFT

methodology is developing rapidly (see Section 5.2), which does not suffer from

this problem. Furthermore, when correctly interpreted, even the physicists’

TDLDA calculations recover the correct oscillator strength despite these

difficulties [19].

5.2. Adiabatic approximation

The frequency dependence of the XC kernel is ignored in most calculations. A

simple approximation is to use the v-dependent XC kernel of the uniform gas [34].

However, any collective motion of the electrons that does not deform the

density, e.g., an overall boost, should not excite the electrons, but a frequency-

dependent kernel violates this exact condition (whereas adiabatic approximations

do not) [35].

5.3. Multiple excitations

In principle, the exact electronic response functions contain all levels of excitation.

But Casida’s equations span the space of KS single-particle excitations only, and

this is unchanged by a frequency-independent XC kernel, i.e., within the adiabatic

approximation.
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5.4. Extended systems

Unlike ground state DFT, there are non-trivial complications when TDDFT is

applied to bulk systems. These arise because the XC kernel has long-range

contributions, comparable to the Hartree 1=lr2 r0l: However, our usual local and

semi-local approximations yield XC kernels that are of the form dð3Þðr2 r0Þ; or

derivatives thereof. Thus they have little effect on the calculated optical response

of extended systems.

5.5. Charge transfer problems

Charge transfer (CT) excitations are notoriously predicted too low in energy,

sometimes by more than 1 eV [36]. In chain-like systems such as polyenes,

polyacenes, or other conjugated polymers, the error in CT excitation energies

increases with the chain length [37,38]. In the limit of complete charge separation,

this can be related to the lack of derivative discontinuities in semi-local functionals

[36]. To correct CT excitation energies, methods have been suggested that

estimate the derivative discontinuity from a DSCF calculation [36,39]. The validity

of this approach depends on assumptions such as complete charge separations

that may rarely be justified in real systems.

6. PROMISING DEVELOPMENTS

Here we discuss several promising paths to overcome present limitations.

6.1. Exact exchange

Many problems are related to spurious self-interaction, which affects energies and

potentials computed with semi-local functionals. The self-interaction free exact

exchange functional leads to a potential with the correct 21=r tail, greatly

improving the description of Rydberg states [40,41]. Moreover, the absence of

self-interaction is a prerequisite for a correct derivative discontinuity, as has been

demonstrated numerically. The use of exact exchange potentials improves the

description of optical properties of conjugated polymers. Unfortunately, exchange

alone is not enough. So far, calculations employing the full frequency-dependent

exchange kernel have been reported for solids only [42]. Excitation energies of

valence states obtained with exchange-only potentials plus ALDA kernel are not

systematically better than those from GGA calculations. Moreover, the neglect of

correlation effects generally leads to an overestimation of the energy of ionic

states, as is well known, e.g., from TDHF. Adding an LDA or GGA correlation
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potential to the x-only potential leads to marginal improvements only, because the

error compensation between approximate exchange and correlation is lost. In

practice, one often resorts to hybrid functionals, which contain a (relatively small)

fraction of exact exchange only. Thus, moderately diffuse states and certain CT

excitations can still be handled [43]. A more fundamental solution may require

correlation functionals compatible with exact exchange.

6.2. Beyond the adiabatic approximation

Higher-order excitations are accounted for by dramatic frequency dependence in

fxc; and building it into the kernel allows one to recover, e.g., a double excitation

close to a single. In fact, the usual adiabatic approximation simply combines both

into one peak, which will be a good approximation to the total oscillator strength

[44,45].

Over the last year, it has been shown that incorporation of the essential terms of

the polarizability from the Bethe–Salpeter equation (i.e., an orbital-dependent

functional) recovers excellent excitonic peak shifts in semiconductors [46,47].

Chemists with long molecules should be aware of this, as the standard

methodology misses these effects.

6.3. TD current DFT

The Runge–Gross theorem in fact establishes that the potential is a functional of

the current density, jðrÞ: This approach allowed Vignale and Kohn [48] to construct

a gradient expansion in jðrÞ that goes beyond the adiabatic approximation without

violating exact conditions for boosts. This formulation leads naturally to ultra non-

local functionals that can shift exciton peaks and correct polarizability problems for

polymers [49] and solids [50], but no accurate universally applicable

approximation is yet available [51,52].

7. OUTLOOK

TDDFT in its present incarnation works remarkably well for many systems and

properties. The number of papers is growing exponentially. While most are

focused on extracting electronic transitions, there are many other promising

applications. For example, atoms and molecules in intense laser fields can be

handled with this formalism. Recently, it has been shown that scattering cross-

sections can also be extracted [53].
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This is a golden age of TDDFT in quantum chemistry, in which we are right now

discovering which systems and properties can be handled routinely, where our

favorite approximations fail, and how to fix these failures. We anticipate several

more exciting years.
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1. INTRODUCTION

The field of computational thermochemistry – the computational prediction of

thermochemical properties – has come of age in the last decade and a half. A very

wide variety of tools has become available – and is often leaving the novice

confused. The present contribution seeks to offer a compact overview of the

available quantum mechanics-based approaches to the problem.

Within the limited scope of this review, it is plainly impossible to offer a detailed

explanation of the underlying electronic structure methods – for that, the reader is

referred to other contributions in this journal or to a specialized text such as, e.g.,

the textbooks by Cramer [1] or Jensen [2]. Nor will it be possible to cover every

detail of every computational thermochemistry method, but more detailed

discussions can be found in two recent review volumes [3,4].

2. SEMIEMPIRICAL METHODS

The performance of semiempirical MO methods for thermochemistry has fairly

recently been reviewed by Thiel [5]. Since such methods (especially on massively
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parallel machines) can handle systems from hundreds to thousands of atoms,

they offer an alternative for cases beyond the reach of all other methods (pace

molecular mechanics). Semiempirical methods rely on very heavy parametrization

(on the order of a dozen empirically adjusted parameters per chemical element) of

otherwise quite unflexible theoretical models (valence-only minimal basis set

Hartree–Fock with various neglect-of-overlap approximations and empirical

integral formulas). As a result, they end up yielding respectable performance for

common molecules similar to those used in parametrization, and wildly erratic

results for chemically outlandish systems. This translates into a very wide error

distribution.

3. DENSITY FUNCTIONAL METHODS

While density functional methods can still be applied to rather large systems, the

picture for thermochemistry is considerably brighter than with semiempirical

methods.

Basis sets in DFT can be as flexible as required, and some small-molecule

DFT programs eliminate basis set incompleteness error entirely by working in

a basis of numerical orbitals [6]. This leaves the form of the exchange-

correlation functional as the main fount of uncertainty and/or empiricism in

DFT calculations.

Arguably, the greatest milestone for DFT thermochemistry was the develop-

ment of the very popular B3LYP functional [7]. This functional is a linear

combination of the local density approximation, gradient corrections to the same,

and ‘exact’ Hartree–Fock exchange: the three mixing coefficients were

parametrized against the total atomization energies of a set of 55 small

molecules. Some next-generation functionals [8,9] indeed contain as many as

10–16 empirical parameters.

While this is a lesser order of empiricism than semiempirical methods that may

involve as many parameters for a single element, it exposes these functionals to

the criticism of being merely very sophisticated ‘chemical interpolation methods’.

Although parametrization bias cannot be eliminated rigorously, the problem can

be greatly mitigated by using ever larger and more diverse parametrization sets,

by additionally involving properties other than energetics, and by generating

additional parametrization data, not (reliably) available from experiment, by

rigorous ab initio calculations. The approach of the Handy group [9] combines all

of the above, and the HCTH/407 functional of Boese and Handy [10] may well be

the most reliable GGA (generalized gradient approximation, i.e., involving only the

density and its gradient) functional for thermochemistry available. Best

performance overall appears to be achieved [11] by the hybrid GGA functional

B97-1, a reparametrization [9] of Becke’s 1997 functional [8]. Still marginally better
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results may be achieved by the t-HCTH hybrid functional [12], which includes a

term involving the kinetic energy density. Its ‘pure DFT’, counterpart, the t-HCTH

meta-GGA functional, somewhat outperforms HCTH/407, as may another (less

parametric) functional, TPSS [13].

Yet it should be noted that even in the case of B97-1, a mean absolute error of

5.6 kcal/mol is obtained for binding energies of 215 neutral molecules [12].

Although basis set convergence in DFT is fairly rapid, its importance has often

been underestimated. Boese et al. [11] recently investigated the role of the basis

set in some detail and found that diffuse-function augmented spdf basis sets

generally are close enough to the DFT limit. The recently developed ‘polarization

consistent’ basis sets of Jensen [14] allow essentially reaching the Kohn–Sham

limit for first-row systems.

One important deficiency of most contemporary functionals is in the area of

transition state structures and reaction barrier heights. Barriers are commonly

seriously underestimated and sometimes reactions are erroneously predicted to

be barrierless [15,16]. It was noted repeatedly [16–18] that DFT reaction barriers

can be greatly improved by increasing the percentage of Hartree–Fock exchange,

from the 15–25% region optimal for most equilibrium properties, to the 40–50%

region; however, this improvement goes at the expense of all other properties [19].

Very recently, Boese and Martin [19] found that, if terms dependent on the kinetic

energy density are additionally admitted, the dependence of performance for

equilibrium properties on the percentage of Hartree–Fock exchange is strongly

reduced, and thus they were able to develop a new functional (termed BMK) that

combines B3LYP-like or better performance for equilibrium properties with

accurate barrier heights.

4. AB INITIO THERMOCHEMISTRY: PRELIMINARIES

By and large, ab initio thermochemistry can be seen as a two-dimensional

convergence problem, with one dimension being the one-particle basis set and the

other the n-particle correlation treatment. (Additional dimensions result from the

relativistic treatment and Born–Oppenheimer corrections.) The greatest strength

of ab initio thermochemistry is that the computational problem is rigorously

defined, and that a clear pathway to improving one’s predictions exists (even

though it may be prohibitive in terms of computing resources needed).

Its greatest weakness is the exceedingly slow convergence of the correlation

energy with the one-particle basis set, which in practice limits rigorous ab initio

methods to quite small systems. A number of approximate ab initio

thermochemistry schemes have been proposed over the years: we will discuss

them in order of increasing rigor.
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5. USE OF ISODESMIC AND ISOGYRIC REACTIONS

One way to accelerate convergence of computed thermochemical properties with

the level of theory is to not calculate them directly at all, but to obtain them

indirectly from (experimental or benchmark ab initio) data for some reference

compounds and the reaction energy for some chemical transformation involving

only the reference compounds and the compound of interest. The greater the

chemical similarity between the reactant and the product side, the more rapidly the

computed reaction energy will converge with the level of theory.

Reactions in which the number of unpaired electrons is conserved are said to be

isogyric [20]. Reactions in which the number of formal bonds of each type is also

conserved are said to be isodesmic [21]. If in addition, the number of carbon atoms

in each hybridization state is conserved, the reaction is said to be homodesmotic

[22,23].

Isodesmic reaction energies converge quite fast with the level of theory

(particularly since the correlation energies of both sides of the equation are quite

similar), and homodesmotic ones even more so. But clearly, unless accurate data

are available for all species in the reaction except one, neither isodesmic nor

homodesmotic reactionswill be very helpful, except perhaps as interpretative tools.

6. EMPIRICALLY CORRECTED METHODS: G1, G2, G3 THEORY

Compare, e.g., the basis set of the direct dissociation reaction

N2! 2N

with that of the isogyric reaction

N2 þ 6H! 2Nþ 3H2

The former reaction has a particularly slow basis set convergence behavior.

Almlöf’s pioneering 1989 paper [24] showed that even i functions contribute

0.5 kcal/mol to the dissociation energy, while expanding the basis set from

5s4p3d2f1g to 6s5p4d3f2g1h adds no less than 2.3 kcal/mol.

By contrast, the energy of the latter reaction is reasonably close to convergence

even at the QCISD(T)/6-311þG(2df,p) level of theory. In effect, one is using the

difference between the known binding energy of H2 and the error at that level of

theory as a correction term.

This was one of two elements of the rationale behind the ‘G1 theory’ of Pople

and co-workers [25]. It gets expressed in a ‘high-level correction’ term:

DEðHLCÞ ¼ 20:19na 2 5:95nb ðmillihartreeÞ
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where na and nb represent the numbers of spin-up and spin-down electrons,

respectively. The other element was an additivity approximation:

E½QCISDðTÞ=6-311þGð2df; pÞ� < E½QCISDðTÞ=6-311Gðd; pÞ�

þ E½MP4=6-311þGðd; pÞ�2 E½MP4=6-311Gðd; pÞ�

þ E½MP4=6-311Gð2df; pÞ�2 E½MP4=6-311Gðd; pÞ�

There are two underlying ‘weakness of coupling’ assumptions here: between

the effects of adding diffuse functions and additional polarization functions on one

hand, and between expansion of the basis set and improvement in the electron

correlation treatment on the other. (Evidence exists [26] that, in practice, this latter

assumption holds less well than usually assumed.)

Reference geometries are obtained at the MP2/6-31Gp level; zero-point

vibrational energies and thermal corrections are obtained from HF/6-31Gp

vibrational frequencies scaled by 0.8929.

Curtiss et al. introduced some refinements, leading to the G2 theory [27] which

is still fairly commonly used. Here (a) an additional basis set additivity step is

considered at the MP2 level, namely

E ½MP2=6-311þGð3df; 2pÞ�2 E½MP2=6-311þGðd; pÞ�

2 E½MP2=6-311Gð2df; pÞ� þ E½MP2=6-311Gðd; pÞ�

and (b) the two coefficients in the ‘high-level correction’ are turned into empirical

parameters. For the original G2 test set [27], 55 atomization energies, 25 electron

affinities, 38 ionization potentials, and 7 proton affinities, this approach yields a

mean absolute error of 1.21 kcal/mol – close to the target of ‘chemical accuracy’

and well beyond anything possible with present-day density functional methods.

Note that subvalence correlation is not considered at all and neither is atomic

spin–orbit splitting, although a paper [28] on the extension of G2 theory to third-

row main group molecules recommends spin–orbit splitting be considered there.

(For molecules in nondegenerate ground states, this is easily done as a sum of

atomic corrections.)

In G3 theory [29], some further improvements are introduced: (a) the

6-311þG(3df,2p) basis set is replaced by a still more extended ‘G3large’ set; (b)

inner-shell correlation is accounted for at the MP2/G3large level; (c) different

‘high-level corrections’ are used for atoms and molecules; and (d) atomic spin–

orbit splitting is taken into account. A minor variant called G3X [30] currently

represents the most sophisticated Gn method: here, more reliable B3LYP/

6-31G(2df,p) reference geometries and frequencies (the latter scaled by 0.9854)

are employed, and for second-row molecules, an additional SCF step is done with

the G3large basis set with an added g function.
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As pointed out by Truhlar [31], multiplicative corrections lend themselves much

better to being applied to all points on a potential surface than additive correction.

In this spirit, and following earlier work by Truhlar and co-workers [31], the G3S

[32] and later the G3SX [30] methods were proposed.

For the more extended G2-97 test set [33], the mean absolute error drops from

1.48 kcal/mol for G2 theory to 1.01 kcal/mol for G3 theory: the RMS error drops

from 1.93 to 1.45 kcal/mol [29]. Mean absolute (RMS) errors for the even larger

G3/99 test set [29] range from 1.07(1.54) kcal/mol for G3 and 1.08(1.55) kcal/mol

for G3S to 1.02(1.35) kcal/mol for G3X and 0.95(1.38) kcal/mol for G3SX [30].

Several extensions were considered that are somewhat more robust for species

with significant nondynamical correlation [34] and for radicals [35]. Also, reduced-

cost approximations like G3(MP2), G3X(MP2), and G3SX(MP3) have been

proposed [29,30], in which the MP4 and QCISD(T) steps were eliminated. This

entails some sacrifices in accuracy, but the mean absolute (RMS) error of

1.04(1.54) kcal/mol of G3SX(MP3) surprisingly approaches that of standard G3

theory [30].

Martin [36] recognized that s and p bonds tend to have qualitatively different

convergence behaviors, and proposed a three-term correction

HLC ¼ nsAs þ npAp þ nLPALP

where ns, np, and nLP represent the number of sigma bonds, pi bonds, and lone

pairs in the system, respectively. Mean absolute errors for small molecule

samples can be brought down into the 0.5 kcal/mol range for spdfg basis sets, but

the approach offers no practical advantage over nonempirical extrapolation-based

methods like W1 theory (see below) and has been abandoned.

7. HYBRID EXTRAPOLATION/CORRECTION METHODS: CBS-n

Schwartz [37] considered the basis set convergence of the correlation energy for a

helium-like atom, at second order in many-body perturbation theory (MBPT-2 or

MP2). In a singlet state, EðLÞ ¼ E1 þ A=L3 þOðL24Þ; where L represents the

highest angular momentum present in the basis set. For a triplet state, EðLÞ ¼

E1 þ A=L5 þOðL26Þ: Hill [38] and Kutzelnigg and Morgan [39] extended this

treatment to arbitrary electron pairs in a spherically symmetric system.

The CBS-n methods of Petersson and co-workers rely on a combination of (a)

additivity approximations for higher order correlation effects; (b) Schwartz-type

extrapolations for individual MP2 pair correlation energies; and (c) empirical cor-

rections (which are numerically much less important here). A hierarchy of methods

has evolved over the years, with the CBS-4M method [40] as an inexpensive low-

end option, CBS-QCI/APNO (presently only applicable to first-row systems)

at the top [41], and CBS-QB3 [42] as the method of choice in most cases.

J.M.L. Martin36



Over a somewhat modified G2/97 test set [40], CBS-QB3 and G3 theory have

roughly comparable mean absolute errors (1.10 and 0.94 kcal/mol, respectively)

and RMS errors (1.45 and 1.33 kcal/mol, respectively). Our experience [43]

suggests that CBS-QB3 is somewhat less prone to outliers than ordinary

G3 theory (not necessarily G3X theory).

8. NONEMPIRICAL EXTRAPOLATION APPROACHES: Wn THEORY

Our primary goal in designing the Weizmann-n (Wn) approaches [43–45] was not

to have ‘chemical accuracy’ (^1 kcal/mol) on average, but to achieve^1 kcal/mol

worst-case and ^1 kJ/mol typically. It is impossible to reach this goal without a

substantial markup in cost compared to Gn and CBS-n methods.

Secondary design goals were total absence of parameters derived from

experiment, black-box character similar to Gn and CBS-n (i.e., operator decisions

only being required in exceptional cases), and sufficient cost-effectiveness for

application to benzene-sized molecules on commodity workstations.

For first- and second-row compounds, the following components can be

expected to contribute at the 1 kJ/mol or greater level to ground-state binding

energies: (1) Hartree–Fock; (2) valence CCSD correlation energy; (3) valence (T)

correlation energy; (4) inner-shell correlation energy; (5) scalar relativistic effects;

(6) first-order spin–orbit coupling; and (7) anharmonicity in the zero-point

vibrational energy. A fairly small set of 28 molecules (the W2-1 set) was selected

for which (a) atomization energies were known experimentally to great accuracy

(better than 1 kJ/mol, better than 0.1 kcal/mol in most cases); (b) anharmonic

zero-point corrections were available from experiment or large-scale ab initio

calculations; and (c) severe nondynamical correlation effects are absent.

All of the above components were then subjected to exhaustive benchmark

calculations, and in each component, approximations were then introduced in a

controlled fashion until the point of unacceptable deterioration was found.

The valence steps in W2 theory [43] are based on CCSD(T) calculations with

spdf ðL ¼ 3Þ and spdfg ðL ¼ 4Þ basis sets, and a CCSD calculation with an spdfgh

ðL ¼ 5Þ basis set.

The SCF component was originally extrapolated geometrically [46] from all

three SCF energies, but this technique has the annoying property that the result

becomes dependent on whether one extrapolates on the energy difference or on

the component total energies. Inspired by the SCF extrapolation in the CBS

methods, we, therefore, later adopted [47] a simple Aþ B=L5 extrapolation from

the L ¼ 4 and L ¼ 5 energies. We also note that the basis sets employed have

been enhanced with diffuse functions for C through Ne and P through Ar, and that

high-exponent d and f functions have been added to second-row elements to

accommodate inner polarization on these elements [48].
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The CCSD correlation energy is extrapolated from the L ¼ 4 and L ¼ 5 energies

using a simple Aþ B=L3 formula; the (T) component converges faster, and can be

extrapolated from the L ¼ 3 and L ¼ 4 results using the same formula (thus

obviating the need for a CCSD(T)/spdfgh calculation).

Extensive investigation into the nature of inner-shell correlation revealed [43]

that (a) the contribution of connected triple excitations may reach up to 50% of the

differential contribution to binding energies; (b) at least an spdf basis set with high-

exponent d and f functions is required. The MP2/G3large approach used in G3

theory yields reasonable results in the first row because of an error compensation

between basis set superposition error (leading to an overestimate) and neglect of

higher order correlation effects; in the second row, BSSE becomes too large and

poor results are obtained [49].

For first- and second-row molecules, it turned out that expectation values of the

ACPF wave function with an spdf basis set were quite adequate. However,

Douglas–Kroll [50] CCSD(T) calculations in a similar basis set will be even more

reliable, and are also applicable to heavier elements. (They do presuppose the

availability of a Douglas–Kroll code.)

For systems in degenerate ground states, spin–orbit coupling constants were

computed at the CISD level with an spdf basis set. (It was found important to

include 2s, 2p correlation in second-row elements for these calculations.)

The totally nonempirical method thus obtained achieved a mean absolute error

of 0.23 kcal/mol over the W2-1 set and a maximum error (for O2) of 0.64 kcal/mol.

A more economical ‘W1 theory’ was proposed for applications on larger

systems. Here all basis sets were reduced by one angular momentum, i.e., the

valence contributions are now based on CCSD(T)/spd, CCSD(T)/spdf, and

CCSD/spdfg calculations. The use of the Aþ B=L3 formula led to systematic

overshooting here: in a reluctant compromise, we decided to make the exponent

an adjustable parameter, but adjusted it to W2 results rather than experiment.

W1 andW2 theory have been validated in some detail in Ref. [47] and a number

of cost-effective approximations proposed in Ref. [44].

The main limitation of W2 theory (other than, inevitably, cost) is applicability to

systems with severe nondynamical correlation. A general coupled cluster code

developed by Kállay et al. [51] enabled us to investigate [45] correlation effects

beyond CCSD(T). Our conclusions were: (a) higher order connected triple

excitations systematically reduce the binding energy (generally away from

experiment); (b) connected quadruple excitations systematically increase binding

energies, and the excellent performance of CCSD(T) for many systems is the

result of error compensation; (c) the connected quadruples contribution converges

very rapidly with the basis set, such that even an spd basis set can give useful

answers; (d) connected quintuple and higher excitations are unimportant for all

except the most pathological systems (like C2 or BN in their respective lowest

singlet states). We thus proposed [45] a W3 theory, which is essentially W2 theory
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with approximate post-CCSD(T) correlation effects added. Mean absolute errors

for the W2-1 set were only marginally improved (from 0.24 to 0.20 kcal/mol):

however, for some molecules that used to be beyond the reach of W2 theory,

errors are dramatically reduced (e.g., O3, from 3.01 to 0.38 kcal/mol). For a new

parametrization set which now includes a number of ‘problem molecules’ like O3,

NO2, and N2O, mean absolute error is reduced from 0.36 to 0.16 kcal/mol and

RMS error from 0.72 to 0.23 kcal/mol.

A number of avenues for increasing accuracy even further were explored, to no

significant avail. Possible remaining error sources include higher order correlation

effects in the inner shell correlations, deviations from Born–Oppenheimer

(primarily for hydrides), and higher order relativistic effects (primarily for heavier

systems).

The focal-point approach [52] has a somewhat similar philosophy toW1/W2/W3

theory, but was never intended to be a black-box method. In fact, it has been

combined [53] with the explicitly correlated approaches discussed below, and thus

straddles the fence between them and Wn-type methods.

9. EXPLICITLY CORRELATED METHODS

A frontal assault on the slow convergence of pair correlation energies involves the

use of explicitly correlated basis functions, i.e., basis functions that involve

interelectronic distances [54]. The idea goes back all the way to Hylleraas’

historical paper on the He ground-state wavefunction [55], but the obstacles to

general application on systems of practical interest are formidable and are only

recently beginning to be surmounted. Practical implementation for more general

molecular systems is only now starting to become a reality.

In the R12 approach [56,57], terms linear in the interelectronic distances are

admitted to the wavefunction. Particularly CCSD(T)-R12 [57] is an extremely

powerful method for systems where its formidable computational requirements

can be fulfilled. It has been shown by Kutzelnigg and Morgan [39] that pair

correlation energies in such a method asymptotically converge as L27 rather than

L23: this means that de facto basis set limit results can be achieved using

practical-sized basis sets, especially when extrapolations are employed.

10. CONCLUSIONS

In the overview given above, one can discern some parallel trends. The first is

from methods applicable – with present-day workstation computers or modest

clusters thereof – to 1000-atom systems, to those restricted to few-atom

molecules. The second is frommethods involving as many as a dozen parameters
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derived from experiment per chemical element, over second-generation DFT

functionals that involve less than a score of such parameters total, over compound

thermochemistry methods with a few such parameters, to purely nonempirical

methods such as Wn theory and CCSD(T)-R12. Sensitivity to unusual bonding

types and nondynamical correlation effects is less neatly hierarchical, as the

relatively low sensitivity of DFT methods to the latter bucks the general trend.

The common engineering truism ‘better, cheaper, faster – pick any two’ could

be rephrased in the context of computational thermochemistry as: ‘more accurate,

less empirical, less computationally demanding – pick any two’.
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1. INTRODUCTION

Ab initio quantum chemical methods can predict the equilibrium properties of small

molecules in the gas phase to near-spectroscopic accuracy. However, a detailed

understanding of a chemical reaction often requires knowledge of its dynamics,

which in turn requires knowledge of the potential energy surface. The computation

of potential energy surfaces to high accuracy is, unfortunately, much more

challenging theoretically than the computation of equilibrium properties: if

any bonds are formed or broken, then near degeneracies arise among the

electron configurations, invalidating the assumptions of most standard methods.

Although we focus on bond breaking (or, equivalently, bond formation), these
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same difficulties can occur for diradicals or metals of the first transition row. This

chapter provides an introduction to the bond-breaking problem for nonspecialists

and describes the reliability of different theoretical methods in such situations.

2. THE CHALLENGE OF BREAKING BONDS

2.1. Difficulties for Hartree–Fock molecular orbital theory

Hartree–Fock theory fails for bond-breaking reactions; energies at the

dissociation limit are far too high. Let us consider the dissociation of H2 into two

H atoms. Both electrons (alpha and beta) are placed in the same s bonding orbital.

Because the s orbital is delocalized over both H atoms, the single-determinant

wave function contains terms corresponding not only to Hz
þ Hz , but also to

H2
þ Hþ . These ionic terms are unphysical at large distances and increase the

energy dramatically.

By allowing the alpha and beta electrons to occupy different orbitals, the wave

function can avoid the unphysical ionic terms. This approach is called unrestricted

Hartree–Fock (UHF), as opposed to the usual, restricted Hartree–Fock (RHF)

method. The UHF potential energy curve is qualitatively correct, but often

quantitatively poor. It also has the rather undesirable property that it is not an

eigenfunction of the electronic spin operator S 2 . At the dissociation limit for the

singlet ground state of H2, the UHF wave function is a 50/50 mixture of singlet and

triplet functions; hence, predictions of any spin-dependent properties will be

wrong. Next, we discuss alternative solutions to the bond-breaking problem that

avoid this spin contamination.

2.2. The multiconfigurational self-consistent-field method

Consider again the case of H2 dissociation. As the internuclear distance grows,

the two H atoms become so far apart that it no longer matters if the H 1s orbitals

combine in phase or out of phase, and the s and sp orbitals should become

degenerate. At this point, the configurations (s)2 and (sp )2 should contribute

equally to the wave function, and the orbitals should be determined as those

appropriate for both configurations. The importance of the (sp )2 configuration is

technically referred to as ‘nondynamical electron correlation’, and it contrasts with

the usual situation in which other determinants serve mainly to help describe the

correlated motion of electrons at close range, the ‘dynamical electron correlation’.

A multiconfigurational self-consistent-field (MCSCF) wave function is written as

a linear combination of N-electron functions (Slater determinants or configuration

state functions) appropriate to provide a qualitatively correct description of

the electronic state, including relevant near-degenerate electron configurations.
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The coefficients of this expansion are solved variationally, according to the usual

configuration interaction (CI) method. At the same time, the orbitals are determined

variationally as those which minimize the energy of this small CI wave function.

A reviewof theMCSCFmethodhasbeengiven recently bySchmidt andGordon [1].

2.3. The complete-active-space self-consistent-field method

Although MCSCF provides a proper framework for obtaining a qualitatively correct

wave function for bond-breaking reactions, it has some disadvantages. Orbitals

can be hard to converge for an arbitrary MCSCF wave function [2], and the

selection of the ‘important’ configurations can be difficult for nonspecialists. An

approach that helps solve both these problems is complete-active-space self-

consistent field (CASSCF) [3], also called full optimized reaction space (FORS)

[4]. In a CASSCF procedure, one selects a subset of orbitals that is the most

important for the breaking and forming of bonds for a given reaction. Within this

‘active space’, all possible determinants of the correct symmetry are constructed.

This gives an exact, ‘full CI’ (FCI) treatment of electron correlation within the space

of active orbitals. The orbitals are determined as those which minimize the energy

of this active-space FCI expansion.

CASSCF is the most widely used quantum chemical method for bond-breaking

reactions. CASSCF wave functions are usually easier to converge than general

MCSCF wave functions, and the ambiguity of selecting individual configurations is

removed. On the other hand, one still must select a set of active orbitals, and the

cost of the CASSCF scales factorially with the number of active electrons and

orbitals. Quite frequently, severe compromises are made in the number of active

orbitals to make the computations feasible. An intermediate method, which allows

a larger active space but still allows the user to avoid choosing individual

configurations, is the restricted-active-space self-consistent-field (RASSCF)

method of Malmqvist et al. [5]. In that approach, the orbitals are divided into

several subsets, and the configurations are chosen according to how many

electrons are placed in each of the orbital subsets. For example, one might

approximate a CASSCF wave function by discarding determinants which are more

than, say, quadruply substituted relative to the Hartree–Fock reference.

2.4. The generalized valence bond method

The problematic ionic terms that make the RHF energy too high for large

separations can also be avoided by using nonorthogonal orbitals in the valence

bond approach. Modern versions of this formalism, called generalized valence

bond (GVB) methods, have been developed by Goddard and coworkers [6].
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The generalized valence bond perfect pairing (GVB-PP) approximation includes

pairwise substitutions within the valence space and is analogous to a constrained

MCSCF wave function.

3. FAILURE OF STANDARD SINGLE-REFERENCE METHODS

3.1. Methods based on a single, restricted Hartree–Fock reference

With the need to choose configurations and/or active spaces, the MCSCF and

CASSCF methods are clearly less ‘black box’ than other ab initio methods. Is this

extra complexity truly necessary to solve the bond-breaking problem? After all,

any of the correlated, post-Hartree–Fock theories also include both critical

configurations, · · · (s)2 and · · · (sp )2 , necessary to break a single bond, and many

other configurations besides.

The configuration interaction singles and doubles (CISD) wave function

includes the Hartree–Fock reference determinant and all determinants which

differ from it by the substitution of no more than two orbitals. The · · · (sp )2

configuration is included in CISD because it represents a double substitution (one

for alpha, one for beta) from the · · · (s)2 configuration. The other determinants

included in CISD are primarily important in describing the short-range, correlated

motion of electrons (dynamical correlation) relative to the · · · (s)2 configuration.

We note that dynamical correlation is not adequately described with respect to

the · · · (sp )2 configuration, since that would require double substitutions relative

to · · · (sp )2 , which would be quadruple substitutions relative to · · · (s)2 . This

imbalanced treatment of dynamical correlation for the near-degenerate

configurations also occurs to varying degrees for the other single-reference

methods introduced below.

The second-order Møller–Plesset perturbation theory (MP2) wave function

includes the same doubly substituted determinants as CISD, but it neglects the

coupling between different electron pairs. Coupled-cluster theory with single and

double substitutions (CCSD), on the other hand, includes this coupling as well as

approximate descriptions of triple, quadruple, and higher-order substitutions as

products of singles and doubles [7]. This approach can be improved with an

approximate, perturbative treatment of irreducible triple substitutions to yield the

CCSD(T) method, which is the most reliable of the commonly used single-

reference methods and is often referred to as a ‘gold standard’ of quantum

chemistry. Finally, we will also consider density functional theory (DFT), which

dispenses with the wave function and solves instead for the electron density. This

method has become very popular among computational chemists in the past

decade. Here we will employ the widely used B3LYP hybrid functional, which often

gives accurate predictions for molecular properties.
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Given that the RHF reference function is qualitatively incorrect, let us consider

what ought to be the easiest possible test for the single-reference methods, that of

breaking a single bond to hydrogen. Figure 1 displays potential energy curves [8]

generated by these methods, along with the exact (FCI) curve for BH in the large,

aug-cc-pVQZ basis set. It should be mentioned that DFT energies such as those

from the B3LYP functional are not directly comparable to FCI for a finite basis set;

in typical cases, including this one, the DFT energies are actually lower than the

FCI energies, because DFT methods converge more rapidly with respect to basis

set than wave function-based methods. Nevertheless, the comparison of the

B3LYP curve and the FCI curve should remain instructive, and the aug-cc-pVQZ

basis should be large enough to minimize the basis set errors in the FCI curve.

As discussed previously, the RHF energy rises far too rapidly at large

separations. B3LYP, although it includes an approximate treatment of electron

correlation, nevertheless fails in essentially the same way as RHF: the

dissociation energy is tremendously overestimated. We also note a catastrophic

failure for MP2. The MP2 energy diverges to negative infinity because it includes

denominators that approach zero as the energies of the s and sp orbitals become

degenerate. It is noteworthy that the CCSD(T) method, a gold standard in other

contexts, also fails dramatically. At large distances, the energy levels off to a value

much lower than the true asymptote. This is due to the perturbative treatment of

triple substitutions, and we have already seen from MP2 that nondegenerate

perturbation theory fails totally for this problem. The CISD energy is too large near

dissociation because it lacks dynamical correlation for the (sp )2 configuration, as

Fig. 1. Potential energy curves for BH in an aug-cc-pVQZ basis set for correlated
methods based on an RHF reference function. Data adapted from Ref. [8]. B3LYP
curve shifted up by 0.1 hartree.
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discussed previously. Only CCSD displays a reasonable potential energy curve

for BH, but even that curve is not as parallel to the exact curve as one might wish,

featuring a nonparallelity error (the difference between the maximum and

minimum errors along the curve) of 8 kcal mol21 .

3.2. Methods based on a single, unrestricted Hartree–Fock
reference

Having seen that correlated methods based on an RHF reference are

unsatisfactory even for the simple bond-breaking case of BH, let us consider

what improvement is afforded by switching to a UHF reference, which at least

gives qualitatively correct potential energy curves. We note once again that the

price we pay for this alternative is that the wave function is massively

contaminated by higher-multiplicity spin states.

Figure 2 displays potential energy curves for correlated methods using a UHF

reference [8,9]. The curves are greatly improved over those generatedwith anRHF

reference, and noneof them fail catastrophically. However, energies rise too rapidly

at intermediate distances. This is perhapsmost obvious for UMP2, and the problem

becomes less severe for UCCSD and then UCCSD(T). It is also clear that the

UHF potential well is much too shallow compared to that for FCI. The nonparallelity

errors are 28 (UHF), 17 (UMP2), 5 (UCCSD), 3 [UCCSD(T)], and 6 kcal mol21

(UB3LYP). Although these errors may be acceptable for some applications, they

are surprisingly large for such a simple test case. Errors in more typical bond-

breaking reactions will be at least this large, and usually significantly larger.

Fig. 2. Potential energy curves for BH in an aug-cc-pVQZ basis set for correlated
methods based on a UHF reference function. Data adapted from Ref. [8]. UB3LYP
curve shifted up by 0.1 hartree.
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The CASSCF method, by including near-degenerate electron configurations,

is greatly superior to either RHF or UHF. However, it still has a large error

compared to FCI and the error is larger near equilibrium (,30 kcal mol21 for BH

with a valence active space, and a nonparallelity error of about 9 kcal mol21).

CASSCF lacks dynamical electron correlation, which is more important at

shorter distances, where the electrons are closer to each other. In the next

section, we discuss bond-breaking methods which include dynamical

correlation.

4. METHODS IMPROVING UPON MCSCF/CASSCF

As seen above, there are various ways to improve a Hartree–Fock wave function

to account for electron correlation, including configuration interaction, perturbation

theory, and coupled-cluster theory. There are analogous ways to add dynamical

correlation to multiconfigurational reference wave functions (although typically the

formalism becomes much more complex).

4.1. Multireference configuration interaction

CISD fails at large distances because it includes only those determinants

necessary for dynamical correlation of the leading Hartree–Fock · · · (s)2

configuration, and not those necessary for dynamical correlation of the

degenerate · · · (sp )2 configuration. The simplest solution is to include all

determinants that can be reached by single and double substitutions from either of

these configurations. This is an example of a multireference CISD (MR-CISD)

wave function [10]. The computational cost of MR-CISD is proportional to the

usual cost of CISD (N 6 , where N is proportional to the size of the molecule),

multiplied by the number of references. For more than a few references, this cost

becomes impractical. The most complete type of MR-CISD is the ‘second-order

CI’, in which one takes as references all possible determinants that can be formed

in the active space (i.e., the same set of determinants used in a CASSCF wave

function). One way to reduce the cost of multireference configuration interaction

(MRCI) is to act single and double substitution operators onto the MCSCF wave

function taken as a whole, with fixed internal CI coefficients. This internally

contracted MRCI introduces only a small error while leading to significant savings

in computer time [11].

4.2. Multireference perturbation theory

There are many different ways to add dynamical electron correlation to a

multiconfigurational reference function by perturbation theory, as discussed in
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several recent reviews [12–14]. We may distinguish between methods designed

to handle a single electronic state and those designed to handle multiple states

(as might be important when two electronic states of the same symmetry become

close energetically). The former, single-state methods are generalizations of the

usual, single-reference many-body perturbation theory methods, adapted for

multiconfigurational reference wave functions. The complete-active-space

second-order perturbation theory (CASPT2) method of Roos and coworkers

[12] is an example of this approach, and it is the most popular way to improve

upon CASSCF. The latter, multistate methods employ quasidegenerate

perturbation theory, in which an effective Hamiltonian is constructed and then

diagonalized [14].

4.3. Multireference coupled-cluster theory

Considering the great success of coupled-cluster methods for equilibrium

properties, multireference coupled-cluster theories (MRCCs) [15] hold great

promise for bond-breaking reactions. Such methods have been pursued for some

time, but because of the great complexity of the equations, efficient computer

programs implementing these theories are not yet widely available. However,

recent results are encouraging [16].

To compare MR-CISD against CASPT2, Fig. 3 displays the errors vs. FCI for

bond breaking in BH [17]. Also included are the errors for UCCSD(T), which

performed best among the single-reference methods. Both MR-CISD and

CASPT2 have much smoother error curves than UCCSD(T), which is consistent

Fig. 3. Errors (vs. full CI) for potential energy curves of BH in a cc-pVQZ basis.
Valence orbitals were chosen as active for the CASPT2 and MR-CISD wave
functions. The MR-CISD is a second-order CI. Data from Ref. [17].
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with the great improvement in the underlying reference function. The MR-CISD

wave function used here is a second-order CI, and its performance is truly

impressive; the nonparallelity error is only 0.3 kcal mol21 . Although the UCCSD(T)

and CASPT2 error curves look very different from each other, the nonparallelity

errors are about the same at 3 kcal mol21 . However, we note that MR-CISD and

CASPT2 should work as well for more difficult bond-breaking reactions, whereas

the quality of UCCSD(T) degrades rapidly. For example, in the dissociation of C2,

the nonparallelity error of UCCSD(T) grows to over 20 kcal mol21 [18].

5. NEW PERSPECTIVES

5.1. Approximations to CASSCF

We have already mentioned RASSCF [5], which uses a limited CI instead of an

FCI in the active space, as a less expensive alternative to CASSCF. Other works

have explored coupled-cluster approximations to the active-space FCI [19] or less

expensive choices of orbitals [20].

5.2. Spin-flip methods

Krylov has introduced a new family of single-reference methods based on the idea

that triplet states are often easier to model across a potential energy surface than

singlets. Starting from a Hartree–Fock determinant for a high-spin triplet state,

‘spin-flipped’ determinants are generated in which one of the alpha electrons is

flipped back to beta, to yield the target value ofMs ¼ 0: The simplest such method,

spin-flip self-consistent field (SF-SCF), includes all spin-flipped single substitutions

relative to the high-spin triplet reference. This approach includes the determinants

most critical for a qualitatively correct description of breaking a single covalent

bond [21]. This original prescription was recently improved to ensure that the

wave functions are spin eigenfunctions, in the spin-complete SF-SCFmethod [22].

More complete treatments of electron correlation have also been explored [23].

5.3. Improved coupled-cluster methods

Piecuch and coworkers have pursued simple, state-selective energy corrections

that improve the usual ground or excited state coupled-cluster methods in bond-

breaking reactions. These ‘method of moments’ coupled-cluster methods (and the

related renormalized and completely renormalized variants) were recently

reviewed [24]. More robust alternatives to the (T) correction in CCSD(T) have

also been considered [25].
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5.4. Methods discarding the potential energy surface

Mapping complete potential energy surfaces for molecules with more than a few

atoms becomes impossible due to the very large number ð3N26Þ of dimensions.

In ab initiomolecular dynamics (AIMD) methods, one avoids explicit computations

of entire potential surfaces and only computes energies and gradients for those

nuclear configurations which are accessed along a trajectory of a molecular

dynamics simulation.

A more extreme solution is to discard the Born–Oppenheimer approximation

entirely and to solve for nuclear and electronic motion simultaneously. It is also

possible to retain the Born–Oppenheimer approximation for some nuclei, and

couple the electrons only to light nuclei like hydrogen which might tunnel. Over the

past few years there has been significant interest in such methods [26], which

might be useful in modeling proton transfer reactions in biochemistry. However,

some fundamental difficulties remain to be solved [27].

6. CONCLUSIONS

The long-recognized bond-breaking problem has received significantly greater

interest in the past few years. FCI studies have been critical in understanding the

failures of single-reference methods and in analyzing the performance of new

methods. Recent theoretical advances show great promise.
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Recent advances in simulation techniques have prompted the re-parameterization

of earlier water models, which were originally parameterized using older

simulation methods. Many of these newly developed water models focused on

reproducing specific properties, or a number of properties in a particular phase;

other models have been designed to save on computational costs while some

others take advantage of faster computational resources by treating various

interactions more effectively. In this review, we examine the TIP4P and TIP5P

water models and the recent re-parameterizations to include current Ewald

summation techniques to treat long-range electrostatics, which has been shown to

be superior to that of previous truncation cut-off techniques. The empirical

differences between the models along with the change in observed properties will

be reviewed, as well as the applications of these models in the literature.

1. INTRODUCTION

Molecular simulations have been used for the past 40 years to observe properties

of bio-molecules, organic, and inorganic compounds in their natural environment

ANNUAL REPORTS IN COMPUTATIONAL CHEMISTRY, VOLUME 1 q 2005 Elsevier B.V.
ISSN: 1574-1400 DOI 10.1016/S1574-1400(05)01005-4 All rights reserved



on a time scale that is not feasible with current experimental techniques [1,2]. Data

from molecular simulations has been used to save huge amount of resources in

the scientific community, but still are only as reliable as the work that was put into

simulation and its preparation [3]. In order for a molecular model to be as accurate

as possible, one must consider all influences in that particular system and the

contribution that each makes to the overall stability of the observed molecules.

Thus, it is reasonable to assume that the solvent would be one of the most

important choices in preparing a molecular simulation, as solvents tend to make

up most of the bulk of a bio-molecular simulation. The bulk of bio-molecules,

proteins, and ions are found naturally occurring in an aqueous solution, so the

natural environment for most molecular simulations is in water or some type of

aqueous solution. Prior to computational molecular simulations, there have been

many proposed models to try and explain all the unique properties of water [4–7].

The models of water have unique forms and properties that are associated with

them and influence molecular simulations accordingly.

As there is no one water model that can provide all the properties of water within

experimental uncertainty, there have been numerous water models proposed

throughout the literature, each with its advantages and weaknesses [8,9]. In

choosing a water model for use in a molecular simulation, the desired properties of

interest must be planned, as it will determine which water model would be optimal

for the simulation. Efforts have been taken in parameterizing certain empirical

water models to make them suitable for simulations under specific conditions

[10–12]. An important feature of water molecules is the transferability of the force

fields in different simulation programs. In some cases, transferability of the model

may not be possible, as some programs use different functional forms for their

potential energy. The functional form is also a computational consideration, since

more descriptors of the water molecule may lead to better calculated properties, at

the cost of the speed and resources needed for the simulation [1,2,13]. These

considerations have been dealt with in many of the water molecules, and certain

water molecules have emerged from the literature as the more popular water

molecules in these types of simulations.

Among some of the most widely used water molecules are the 4-site and 5-site

transferable intermolecular potential water molecules, TIP4P and TIP5P,

respectively, developed by Jorgensen and coworkers [12,14]. These water

molecules were parameterized to be used in a wide range of simulations and

reproduce many experimental water properties, with reasonable computational

cost. The TIP4P and TIP5P water molecules were originally parameterized using

truncated cut-off methods for long-range electrostatics to save on computational

costs [12,14]. As computational resources have increased in recent years, the

treatment of the long-range electrostatics has become a priority in the simulation

community, as the truncated portion can now be treated more precisely and more

reasonably from a resource standpoint [15–21]. Re-parameterization of these
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water molecules has been done in order for Ewald summation techniques to be

used in the long-range electrostatic summation, which has been shown to be

superior to its predecessor cut-off method. These new models, the TIP4P-Ew and

TIP5P-E, have shown improved properties of water over their base models, even

without the use of flexibility or polarizability, which has been previously done in the

literature [3,22].

With each developed water molecule, there come a number of simulations

that show the simulated properties of the water molecule, along with the limits

of the molecule for use in bio-molecular and phase transitional simulations.

This review will encompass the simulations completed with the previously

mentioned water models, the TIP4P, TIP4P-Ew, TIP5P, and TIP5P-E. An

examination of the parameters and properties that were used in the

parameterization will be presented, along with the literature use of these

water models. Comparisons of the water molecules simulated structural, kinetic,

and thermodynamic properties will be shown along with their comparisons to

water’s experimental values.

2. METHODS

All the water models in this review are empirical water models that use a force field

equation that involves only non-bonded terms, as the water molecules themselves

are rigid. The interaction for any of the water molecules with themselves or

external influences can be calculated as:

UðrÞnon-bonded ¼
X

ð1ij½{ðsij=rijÞ £ 12}2 {ðsij=rijÞ £ 6}� þ ðqiqjÞ=ð1DrijÞÞ ð1Þ

where the UðrÞ is the potential energy of the system that is summed over all the

non-bonded atoms of the system, 1ij the well depth calculated from the individual

atoms, sij the collision diameter, q the charges on the atoms, 1D the dielectric

constant, and rij the distance between atoms i and j: The well depth and collision

diameter for the pairs are calculated from the standard mixing rules that can be

shown as [23]:

sAB ¼ ½ðsAA þ sBBÞ=2� ð2Þ

and

1AB ¼ ½ð1AA1BBÞ £
1
2
� ð3Þ

where the AA and BB terms are the interaction of two like atoms and the AB terms

are the mixed terms.
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For the potential energy of the system to be calculated, the Lennard-Jones (LJ)

and the Coulombic interactions are calculated separately. The LJ interactions are

calculated between a pair and are based on a cut-off distance with both a

smoothing function and a correction term applied for the energy lost after the cut-

off. The electrostatic interaction can be calculated in several ways, including the

truncated cut-off method and the Ewald summation method.

The Ewald summation technique has been shown to be superior to that of the

truncated cut-off method used in previous simulations. It has been shown that the

cut-off technique underestimates the energy of the system due to the interactions

that were disposed of after the cut-off boundary. Although the energies after the

cut-off might seem negligible at first to the contribution to the overall energy, the

conservation of energy in the simulation is affected enough to make an impact on

the outcome of the simulation.

Problems arise when treating long-range electrostatics due to the summation of

the electrostatic interaction converging quite slowly, which makes the electro-

statics quite costly. Methods were used that would save computational costs in the

area of the expensive electrostatic contribution summations. Truncated cut-off

methods looked at the overall contribution of the electrostatic summation and

found a defining radius where indispensable electrostatic contribution was

defined, where the interaction beyond this point could be deemed negligible and

were excluded from the overall electrostatic contribution. This cut-off distance

depended on the type of simulation being done, the types of molecules in the

system, the solvent choice, and, as it seems in some cases, the discretion of the

user, although explicit spherical cut-offs were set in the original parameterizations.

The Ewald summation technique is effective in treating the long-range

electrostatics by splitting the summation into two separate series and then treating

the two summations with a self-correction factor. The advantage of splitting the

summation into two series is that each of the series converges much more rapidly

than the original summation. With the series in the Ewald summation converging

much more rapidly than that of the traditional calculation of the long-range

electrostatics, it is possible to treat all electrostatic interactions using Ewald

summation techniques. For a more thorough discussion on how to calculate or

implement the Ewald summation techniques, refer to articles by De Leeuw et al.

[24–26] and sections in referenced books [23,27].

3. 4-SITE WATER MODELS

3.1. TIP4P

The 4-site transferable intermolecular potential (TIP4P) model was developed by

Jorgensen et al. to reproduce experimental structural and thermodynamic
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properties of water at 1 atm pressure [12]. At the time of its development, TIP4P

was a balance between computational cost and reliability, with a rigid 4-site model

This is computationally less expensive than earlier 5-site models, and reproduces

liquid structure and density at 298 K and 1 atm better than some previous 3-site

models, including the CF1, TIP3P, and SPC water models [10,12,28].

The orientation of the TIP4P water model can be seen in Fig. 1. It is an

adaptation of a 3-site model with the charge of the oxygen moved down to a

fictitious site, M. This site M is located in the bisecting plane of the HOH angle and

at a distance of 0.15 Å from the oxygen atom. For the geometry of the water

model, the experimental gas-phase geometry was chosen, where the distance

from the oxygen to the hydrogen, d; is set at 0.9572 Å, with an HOH angle of

104.528. The charge of the midpoint was set to 21.040e, with a 0.520e charge

placed on each of the hydrogen atoms; this yields an overall dipole moment of

2.177 D. This dipole moment is significantly improved over the rigid 3-site models

in the literature. For the LJ interactions, the s was set at 3.15365 Å, with a well

depth, 1; of 0.1550 kcal/mol. A summary of the empirical parameters for the TIP4P

water model can be seen in Table 1.

Since its development, numerous Monte Carlo (MC) and molecular dynamic

(MD) simulation have been performed using the TIP4P water model [29–37].

From these simulations, many property values have been computed with

reasonable statistical uncertainty. Densities of liquid water have been calculated

over a temperature range for the TIP4P model, and it has been found that

the density maximum occurs at ,260 K, with a value of 1.001 ^ 0.001 g/cm3 at

STP (298 K and 1 atm) [32,38–41]. The DvapH at STP is shown to be

10.65 ^ 0.01 kcal/mol showing ,1% deviation from the experimental value of

10.51 kcal/mol. Other calculated thermodynamic and kinetic values for TIP4P,

such as Cp; k; a; and 1; are within reasonable agreement with the experimental

values at STP. TIP4P yields a Cp value of 20.4 ^ 0.7 cal/mol K, a k £ 106 value of

60 ^ 5 atm21 , an a £ 105 value of 44 ^ 8 deg21 , and 1 values of 53, 61, and 72

[38,42–44]. The corresponding experimental values for Cp; k; and a are,

respectively, 18.0 cal/mol K, 45.8 £ 106 atm21 , 25.7 £ 105 deg21 , and 1 is found

to be 78 [12,41,45–47]. While these values are close to values reported from

Fig. 1. Structure of TIP4P and TIP4P-Ew water models.
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TIP3P and SPC water, the radial distribution functions (RDFs) for TIP4P are much

closer to experiment, with an OO RDF showing well-defined second and third

peaks, without sacrificing the OH and HH RDFs [38].

3.2. TIP4P-Ew

More recently, there has been a move to treat electrostatic interactions more

accurately than previous truncated cut-off methods as computational resources

have increased and algorithms are more refined. The truncated energy in the

original TIP4P water model has been found to play a significant part in the overall

energy of the molecular system, and the use of the Ewald summation technique

for long-range electrostatics with the original TIP4P water model shows significant

deviation from the properties that it was originally parameterized to reproduce [3].

A re-parameterization of the TIP4P water model was undertaken to account for the

changes in structural, thermodynamic, and electrostatic properties of liquid water,

with the use of the Ewald summation and long-range Lennard-Jones interactions,

as it has been shown to lower energies of the order of ,2% [48,49]. This new

model has been dubbed the TIP4P-Ew water model, as it is meant for use with

electrostatic contributions calculated with Ewald summation techniques and more

precise long-range Lennard-Jones interactions.

Precise experimental thermodynamic and structural properties were used to re-

parameterize the new water model for use with Ewald. Of these precise

experimental quantities, the enthalpy of vaporization, DvapHðTÞ; and the density,

rðTÞ; were used to parameterize the new model, without sacrificing any of the

previous model properties. This was done by minimizing the error of both DvapHðTÞ

and rðTÞ; over a desired temperature range, with the new inclusion of the more

precise energies. The temperature range selected for the parameter error

reduction was from 235.5 to 400 K, the entire liquid range for simulated water;

these were all done at 1 atm pressure. The authors of the TIP4P-Ew model also

note the precise calculation of the structural and thermodynamic properties of the

system with statistical uncertainties weighted appropriately for the analysis.

Table 1. Force field parameters for TIP4P and TIP4P-Ew

TIP4P TIP4P-Ew

s (Å) 3.15365 3.16435
1 (kcal/mol) 0.155 0.16275
d (Å) 0.9572 0.9572
u (8) 104.52 104.52

d 0 (Å) 0.15 0.125

q (e2) 1.04 1.04844
Dipole moment, m (D) 2.177 2.321
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The TIP4P-Ew water model retains the gas-phase geometry of its predecessor,

TIP4P, with changes being done with the other parameters of the water model.

The re-parameterization included changing the charge, q; on site M from 1.040e in

the original TIP4Pmodel to 1.04844 and subsequently changing the charge on the

hydrogens. This change improves the overall dipole moment ðmÞ of the water

molecule to a value of 2.321 D, which is a significant improvement over the TIP4P

m; which is 2.177 D. TIP4P’s 1 was changed to a value of 0.162750 with a s value

set at 3.16435 Å. Although changes to these values appear only miniscule, they

have drastically changed the structural, thermodynamic, and kinetic properties of

the simulated bulk water.

The desired properties of the re-parameterization were improved significantly

over the original model. Since the TIP4P-Ew model has only recently been

released, the calculated properties are reported by Horn et al. [3] The bulk density

curve moved its maximum to the experimental value of 277 K at 1 atm. This

density curve also more closely follows the experimental density curve than TIP4P

and even more closely than that of the polarizable TIP4P-pol [50], at lower

temperatures, and the 5-site TIP5P, although the shape of the TIP5Pmodels more

closely matches the experimental slope. The overall absolute average density

error is found to be 0.0056 g/cm3 for the TIP4P-Ew model. The DvapHðTÞ over the

simulated temperature range for the TIP4P-Ew model closely follows the

experimental values and slope, with a maximum error of þ1.7% at 235.5 K; this

yields heat capacities, CpðT Þ; that are slightly high [3].

4. 5-SITE WATER MODELS

4.1. TIP5P

The TIP5P water model was developed by Jorgensen and Mahoney to reproduce

known experimental values of water better than its 4-site and 5-site predecessors,

including the TIP4P and ST2 models [12,14,51]. The 5-site transferable

intermolecular potential (TIP5P) is similar to previous 5-site models, where the

sites are located on the atoms of the water molecule and on two lone pair sites, as

can be seen in Fig. 2. The geometry of water in the TIP5P model is the same as

the TIP4P model, where the experimental gas-phase geometry was adopted. The

distance from the oxygen to the lone pairs, rOL; is 0.70 Å, while the uLOL angle is set

to 109.468. Charges for the water molecule reside on the two hydrogens and the

two lone pairs, with LJ terms only residing on the oxygen. The charge for the lone

pairs is each 0.241e, with corresponding charge residing on each hydrogen atom;

this charge separation yields a dipole moment, m; of 2.29 D for the molecule. The

LJ terms were set as 3.120 Å for s and 0.160 kcal/mol for 1: All the empirical

parameters for the TIP5P model can be seen in Table 2.
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TIP5P water reproduces the experimental density curve from 235.5 to 335.5 K

remarkably well with an average error in density of only 0.006 g/cm3 [14]. The

maximum density of TIP5P reproduces the experimental maximum at 277 K, with

better agreement below 323 K. Trends for Cp; k; and a are similar to that of TIP4P

water, with only slight error from experimental value. However, the error reported

from TIP4P is from only STP, while the TIP5P model follows the temperature

range from 235.5 to 348 K considerably well, with slight deviation at the extremes

[14]. The dielectric constant from 273 to 373 K is reproduced well when compared

to experiment, and the slope is similar only translated higher by ,6%, although

this would be assumed as the dielectric constant would improve with a better

description of the quadrupole moment, as seen in the literature [42,52].

Structural properties of the TIP5P model show similar results to the TIP4P

model, which offered significant improvements over 3-site models. The TIP5P

Fig. 2. Temperature dependence of bulk water density for TIP4P, TIP4P-Ew,
TIP5P, and TIP5P-E.

Table 2. Force field parameters for TIP5P and TIP5P-E

TIP5P TIP5P-E

s (Å) 3.12 3.097
1 (kcal/mol) 0.16 0.16275
dOH (Å) 0.9572 0.9572

d 0
OL (Å) 0.7 0.7

uHOH (8) 104.52 104.52

u 0
LOL (8) 109.47 109.47

qH (e2) 0.241 0.241
Dipole moment, m (D) 2.29 2.29

T.J. Dick and J.D. Madura66



model reproduces the experimental g00 as well as the TIP4P model, with even

better improvements in the shape of the second peak, with some H–H RDF being

somewhat high [14]. Hydrogen bonding over the simulated temperature scales

seems to be in agreement with the TIP4P model, with more tetrahedral-like

geometries being sampled at higher temperatures [14]. Kinetically, TIP5P water

reproduces theDself over a wide range of temperatures (235.5–348 K) reasonably

well, following the trend with a maximum deviation from experiment occurring at

higher temperatures [22,53]. There has been considerable work done on the

pressure dependence of the Dself of TIP5P at high pressures; it is noted that there

is good correlation between experimental values and TIP5P from 1 to ,1700 atm

for temperatures between 298 and 363 K [53]. Similar results reported by Rick are

with ,2% error [22].

4.2. TIP5P-E

Recently released is the re-parameterization of the TIP5P model to include Ewald

summations, dubbed the TIP5P-E model [22]. Similar to that of the 4-site models,

the use of Ewald summations lowers the energies and changes the properties

of the original water model, to a certain degree, as previously discussed. The

TIP5P-E model reproduces many of the experimental properties of water and is

as quantitative in reproducing the accuracy that has been associated with the

TIP5P model.

The TIP5P re-parameterization, TIP5P-E, has made changes to the LJ terms of

the TIP5Pmodel, as can be seen in Table 2. Structural geometries and electrostatic

potentials remain the same as the original model, but the LJ potentials were

modified for use with the Ewald summations by lowering the short-range repulsion

forces by ,2% and raising the long-range attractive forces by ,6% from their

original TIP5Pvalues. Thewell depthwas set at 0.162750 kcal/mol and the collision

diameter was set to 3.097 Å. Since the charge was not changed in this model, the

dipole moment remains the same as the original TIP5P model.

The results reported here for the structural, thermodynamic, and kinetic

properties are values reported by Rick [22]. TIP5P-E reproduces the density curve

of water over a wide range of temperatures, with an average error in the density of

only 0.004 g/cm3 and a maximum density occurring at 277 K. The enthalpy of

vaporization, DvapHðTÞ; maintains a similar slope to that of TIP5P, which is in

reasonable agreement over the simulated temperature range of 235.5–348 K. The

TIP5P-E DvapH results at 298 K are 10.377 kcal/mol for 512 water molecules,

which is ,1% higher than that of TIP5P water at 298 K. DvapHðTÞ; over the

temperature range mentioned above, for TIP5P and TIP5P-E shows that the

Ewald model reproduces the experimental enthalpy better at lower temperatures,

while TIP5P does slightly better at higher temperatures. The temperature
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dependence for TIP5P and TIP5P-E can be seen in Figs 2 and 3, of the density

and enthalpy of vaporization, respectively.

Calculated properties of the TIP5P-E model show similar results to that of the

TIP5P model. TIP5P reproduces the Cp; k; and a over the temperature range of

235.5–348 K reasonably well. Results seen in Table 3 show that agreement is

seen between the 5-site models presented here and with experimental values.

The Cp and a values are closer to the experimental values than TIP5P, for values

,260 K; the TIP5P and TIP5P-E results deviate differently here, as the TIP5P-E

seems to make a drastic change. TIP5P-E reproduces the k better than TIP5P for

temperatures lower than 298 K, but results are similar between the two models

above 298 K. The static dielectric constant is reproduced better with the TIP5P

model, but is within the error of the TIP5P-E model over the specified temperature

(Fig. 4).

Fig. 3. Temperature dependence of enthalpy of vaporization for TIP4P,
TIP4P-Ew, TIP5P, and TIP5P-E.

Fig. 4. Structure of TIP5P and TIP5P-E water models.
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Table 3. Calculated properties of TIP4P, TIP4P-Ew, TIP5P, and TIP5P-E

Property Model 235.5 K 248 K 260.5 K 273 K 285.5 K 298 K

r (g/cm3) TIP4P [38] 1.015 1.019 1.018 1.011 1.005 1.001
TIP4P-Ew [3] 0.9845 (4) 0.9935 (4) 0.9986 (3) 0.9996 (3) 0.9984 (3) 0.9954 (3)
TIP5P [53] 0.9725 (3) 0.9814 (4) 0.9979 (8) 1.007 (1) 1.005 (1) 0.999 (1)
TIP5P-E [22] 0.973 (2) 0.980 (3) 0.995 (2) 1.003 (1) 1.0039 (6) 1.0000 (5)
Expt [58,59] 0.9688 0.98924 0.99714 0.99981 0.99953 0.99716

DvapH (kcal/mol) TIP4P [38] 11.54 11.35 11.15 10.97 10.81 10.65
TIP4P-Ew [3] 11.373 (4) 11.191 (4) 11.025 (4) 10.869 (4) 10.723 (4) 10.575 (4)
TIP5P [22] 12.084 (3) 11.823 (7) 11.367 (8) 11.041 (8) 10.735 (7) 10.46 (1)
TIP5P-E [22] 12.03 (3) 11.67 (3) 11.27 (2) 10.924 (7) 10.633 (4) 10.377 (4)
Expt [58] 11.18 11.0372 10.9029 10.7732 10.6483 10.5176

Cp (cal/molK) TIP4P [38] 23 23.2 23.3 21.8 20.7 21.4
TIP4P-Ew [3] 24.2 (3) 21.9 (3) 20.8 (3) 20.1 (3) 19.6 (3) 19.2 (3)
TIP5P [22] 43.0 (2) 39.4 (3) 33.8 (5) 30.9 (8) 29.1 (8)
TIP5P-E [22] 19 (2) 22 (1) 32 (3) 31 (2) 29 (1) 27.2 (6)
Expt [58–60] 23.47 19.34 18.38 18.17 18.048 18.004

105 a (deg21) TIP4P [38] 237.2 211.6 33.8 66.3 39.8 44
TIP4P-Ew [3] 28.7 (3) 25.3 (3) 22.4 (3) 20.1 (3) 1.8 (3) 3.4 (3)
TIP5P [22] 212.5 (1) 210.5 (3) 23.2 (5) 3.3 (7) 6.3 (6)
TIP5P-E [22] 1.2 (21) 1.1 (14) 25.0 (30) 21.8 (22) 1.8 (9) 4.9 (6)
Expt [59] 29.674 23.712 20.705 1.185 2.558

106 k (atm21) TIP4P [38] 43.9 51.5 44.1 45.4 52 60.3
TIP4P-Ew [3] 54.3 48.9 48.1
TIP5P [22] 17 (1) 24 (1) 31 (1) 36 (1) 41 (2)
TIP5P-E [22] 18 (3) 29 (3) 48 (4) 52 (4) 53 (3) 52 (3)
Expt [59] 71.88 58.27 51.56 47.86 45.85

continued on next page
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Table 3. continued

Property Model 235.5 K 248 K 260.5 K 273 K 285.5 K 298 K

Dself (10
29 m2/s) TIP4P [61] 3.31 (8)

TIP4P-Ew [3] 0.172 (1) 1.179 (1) 2.335 (4)
TIP5P [53] 0.070 (8) 0.14 (2) 0.43 (3) 1.01 (2) 1.87 (8) 2.62 (4)
TIP5P-E [22] 0.09 (2) 0.17 (2) 0.48 (5) 1.2 (1) 1.9 (1) 2.8 (1)
Expt [62,63] 0.66 1.1 1.64 2.3

1 TIP4P
TIP4P-Ew [3] 81.9 (5.2) 70.8 (1.4) 63.9 (0.9)
TIP5P [22] 92 (2) 82 (2)
TIP5P-E [22] 95 (14) 90 (9) 92 (14)
Expt [64] 87.74 83.02 78.3

tnmr (ps) TIP5P [22] 69 (7) 1.58 (5)
TIP5P-E [22] 63 (10) 28 (2) 10.3 (9) 4.1 (3) 2.3 (1) 1.55 (4)
Expt [65] 3.44 2.46

Property Model 310.5 K 323 K 335.5 K 348 K 360.5 K 373 K

r (g/cm3) TIP4P [38] 0.991 0.981 0.971 0.961 0.952 0.931
TIP4P-Ew [3] 0.9908 (3) 0.9843 (3) 0.9771 (3) 0.9688 (3) 0.9594 (3) 0.9492 (3)
TIP5P [53] 0.989 (1) 0.978 (2) 0.967 (2) 0.9512 (9)
TIP5P-E [22] 0.9926 (6) 0.9827 (6) 0.9714 (6) 0.9586 (7)
Expt [58,59] 0.99362 0.98838 0.98207 0.97527 0.96737 0.95869

DvapH (kcal/mol) TIP4P [38] 10.47 10.29 10.11 9.96 9.82 9.65
TIP4P-Ew [3] 10.444 (4) 10.297 (4) 10.155 (4) 10.018 (4) 9.875 (4) 9.73 (4)
TIP5P [22] 10.207 (6) 9.967 (3) 9.744 (6) 9.519 (7)
TIP5P-E [22] 10.133 (3) 9.910 (3) 9.697 (3) 9.493 (5)
Expt [58] 10.3986 10.264 10.1286 9.9993 9.8619 9.7206
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Cp (cal/mol K) TIP4P [38] 22.2 22.4 21.2 19.4 20.5
TIP4P-Ew [3] 18.9 (3) 18.7 (3) 18.6 (3) 18.5 (3) 18.5 (3) 18.5 (3)
TIP5P [22] 27.6 (3) 27 (1) 25.9 (9) 25.9 (8)
TIP5P-E [22] 26.6 (5) 25.5 (9) 24.9 (5) 24 (1)
Expt [58–60] 17.995 18.004 18.024 18.054 18.096 18.151

105 a (deg21) TIP4P [38] 77.4 81.3 82.4 76.4 129.2
TIP4P-Ew [3] 4.6 (3) 5.5 (3) 6.3 (3) 7.0 (3) 7.6 (3) 8.3 (3)
TIP5P [22] 8.7 (5) 9.2 (11) 11.0 (10) 12.7 (7)
TIP5P-E [22] 6.9 (10) 9.1 (13) 10.6 (9) 11.8 (14)
Expt [59] 3.648 4.567 5.379 6.121 6.821 7.498

106 k (atm21) TIP4P [38] 44.2 50.1 50.1 55.3 63.2 78.6
TIP4P-Ew [3] 49.4 53.6 59.9
TIP5P [22] 47 (1) 56 (4) 59 (3) 65 (3)
TIP5P-E [22] 58 (3) 60 (3) 64 (4) 67 (4)
Expt [59] 44.91 44.76 45.22 46.22 49.65

Dself (10
29 m2/s) TIP4P [61]

TIP4P-Ew [3] 3.822 (4) 5.637 (4) 7.709 (4)
TIP5P [53] 3.70 (9) 4.74 (8) 6.33 (7) 6.78 (10)
TIP5P-E [22] 3.88 (6) 5.2 (2) 6.4 (2) 8.0 (2)
Expt [62,63] 3.07 3.95 4.96 6.08

1 TIP4P
TIP4P-Ew [3] 60.0 (0.7) 54.1 (0.7) 48.7 (0.6)
TIP5P [22] 75 (2) 69 (2)
TIP5P-E [22] 80 (2) 77 (9) 80 (2) 72 (1)
Expt [64] 74.11 69.91 66.17 62.43

tnmr (ps) TIP5P [22] 0.47 (2)
TIP5P-E [22] 1.03 (3) 0.74 (1) 0.58 (1) 0.44 (2)
Expt [65] 1.92 1.66 1.41 1.12
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5. CONCLUSIONS

The 4- and 5-site transferable intermolecular potential water models for use with

truncated cut-offs and Ewald summation electrostatic treatments are reviewed.

The use of Ewald summation techniques is found to lower the energy and change

the molecular properties of the model. These changes in the molecular properties

are within the error of the original model or have significantly improved upon them,

when the models have been parameterized taking into account long-range

electrostatics using Ewald techniques.

TIP4P-Ew has been found to reproduce the density curve considerably better

than TIP4P. Better agreement between the new parameterization and the original

TIP4P model was also found for the enthalpy of vaporization and self-diffusion

coefficient, as seen in Table 3. The TIP4P-Ew water model reproduces the density

curve and the slope of the enthalpy of vaporization, as seen in Figs 2 and 3,

respectively, better than any of the water models reviewed. The TIP4P-Ew model

has been tested in BOSS [54], AMBER [55], GROMACS [56], and CHARMM [57].

Table 3 summarizes the calculated properties of the TIP4P, TIP4P-Ew, TIP5P,

and TIP5P-E water models along with the experimental values; a review of the

presented data shows that the Ewald re-parameterizations of the original 4- and

5-site models have moderate to significant improvements in the calculated

properties.
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1. INTRODUCTION

Over the last decade, molecular modeling and bio-molecular simulation methods

have been increasingly applied to give insight into nucleic acid structure, dynamics,

and interaction. This includes simulation of RNA andDNA alone, bound to proteins,

interacting with drugs, in various damaged and modified forms, and in different

environments ranging from the gas phase to varied solvent and ionic environments.

This revolution in the application of bio-molecular simulation methods – including

molecular dynamics (MD) simulation and various enhanced sampling and free

energy methods – has been made possible by a convergence of capabilities. In

particular, enabling technologies include the availability of faster computational

hardware (and parallelized simulation codes), better force fields for simulating both

explicitly and implicitly solvated nucleic acids [1–6], and the emergence of efficient

means to accurately treat the long-range electrostatics interactions either through

Ewald methods [7,8] or smoothing of the forces at the cutoff [9,10].

The previous decade (from ,1994 to 2004) might aptly be termed the ‘10-

nanosecond era’ as it has been characterized by a large series of MD simulations
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of small nucleic acid models in explicit solvent almost exclusively on the 1–10 ns

time scale. A large international community of researchers has together applied

these methods to nucleic acid systems and exposed the promise of these

simulation methods by directly complementing experiment and by further

providing detailed information not readily accessible by experiment.

In addition to the promise, these rather short time-scale MD simulations have

begun to expose both sampling limitations and force field deficiencies. Although

these fundamental limitations are not unique to nucleic acids, nucleic acids typify a

class of atomistic systems that tend to easily expose such deficiencies. Nucleic

acids are highly charged, highly flexible, and subject to motions across large time

and size scales. The structures of nucleic acids are strongly influenced by the

surrounding solvent and ionic environment and are stabilized via a subtle balance

between the hydrophobic/dispersion-attraction induced stacking of the bases, the

hydrophilic and ionic interactions of the backbone (and grooves), and specific

pairing of the bases. Individual motions of the bases, sugars, and backbone are

relatively rapid and short ranged, whereas larger fluctuations, such as base pair

opening, bending/twisting, compaction and breathing, occur over longer size and

time scales. These issues not only complicate theoretical treatments but also

plague experiments where it is difficult to probe fast time scale dynamics (such as

sugar repuckering or BI/BII backbone transitions), to avoid artifacts due to the

representation (such as crystal packing artifacts or fast time scale disordering of

structure), and to otherwise fully understand the nature of nucleic acids at the

atomic level. Particular controversy, in both experiment and theory, relates to the

interaction and role of ions in nucleic acid structure, distortion, and dynamics

[11–21]. The difficulties in understanding the effect of ions on nucleic structure are

not limited to monovalent ions, as recent work clearly demonstrates that putative

Mg2þ ions intricately bound to RNA are not in every case Mg2þ cations;

reinterpretation of nucleic acid structures in some cases show that bound Cl2 or

sulfate anions are often incorrectly assigned in crystal structures asMg2þ ions [22].

We believe that theory and bio-molecular simulation can fill in the gaps in our

understanding of nucleic acid structure and dynamics. Proving this, however,

turns out to be a tricky proposition at present since we do not always know what

the correct answer is (and, therefore, whether what we observe in simulation is

correct or significant), nor do we fully understand the limitations in our models,

methods, and representations. In this report, we will highlight some of the

successes and some of the limitations in the modeling and simulation of the atomic

structure of nucleic acid emerging from current work and work in the last few

years. Our intent is not to provide a comprehensive view, but to express this

author’s opinion related to the current state of the art in modeling of nucleic acids.

As the capabilities have evolved in this 10-ns era, the larger ‘we’ of the nucleic

acid simulation community has not only revolutionized our study of nucleic acids,

but published a large set of detailed reviews [18,21,23–39]. Detailed overviews of
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the simulation success and progress for the first half of the nanosecond era are

available in the reviews by Beveridge et al. [24] and by Cheatham and Kollman

[25]. An introduction to modeling and simulation methods as applied to nucleic

acids is available in a series of papers by Cheatham et al. [40–43] and most

recently in a wonderful review of the methods by Orozco et al. [35]. Rather

comprehensive reviews have recently appeared highlighting DNA dynamics [39],

association of ions to RNA [21] and DNA curvature and flexibility [38,44] (both from

a simulation and experimental perspective). A current review by our group is

forthcoming [45].

2. SUCCESSES

2.1. Agreement with experiment

Before anyone will trust MD simulation results and ultimately believe predictions, it

is critical to show agreement with experiment. This is a non-trivial exercise for

nucleic acids due to their profound flexibility and sensitivity to the environment. In

fact, it is not fully clear from experiment what the rate of sugar repuckering is, nor in

detail how fast the fast time scale motions (such as crankshaft transitions in the

backbone) are. This makes the comparison between the MD simulation and

experiment tough since there is a significant gap in the time scales sampled by MD

compared to NMR or crystallography. This is demonstrated nicely in recent work

that suggests that good agreement between the 13C NMR relaxation

measurements and MD can only be obtained by averaging out the high frequency

motions [46]. A further issue is that the effects of the environment are subtle, be it a

subtle push from a protein side chain to perturb the DNA structure [47] to

crystallization artifacts [48,49], to the observed non-linear dependence of melting

temperature on Naþ ion concentration [50]. In reproducing nucleic acid structure,

three dominant force fields have emerged. These include the Cornell et al. force

field [1] and its recent variants [2,3], the CHARMM27 all-atom force field [4,5] and

a hybrid force field by Langley [6]. All three of these force fields have been shown

to perform rather well in reproducing B-DNA structure [28,51] and in a wide variety

of applications as discussed herein and in the cited reviews. The methods have

also been shown to give detailed insight into nucleic acid dynamics [39,52–54],

including the coupled motions in the DNA backbones [55–59]. Base pair opening

has also received considerable attention through the application of umbrella

sampling methods that allow estimations of the potential of mean force for opening

the pair [60–63]. Similar methods have been applied to probe the distortion of

base pair steps by insertion of protein side chains into the minor groove [64].

Such opening, dynamic, and deformability events likely play a key role in DNA

repair [65–68] and recognition of nucleic acids by proteins [69,70].
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A clear success of the methods has been demonstrated by the Beveridge

and Bolton groups who provide a detailed comparison between MD-calculated

and NMR-observed properties of the duplex d(CGCGAATTCGCG)2 in solution

[71]. Their results show that the 2D NOESY volumes and scalar coupling

constants back calculated from a 14-ns MD simulation are in better agreement

with the NMR data than back calculations based on canonical A-DNA, B-DNA,

or crystal geometries of the same duplex. Another clear set of successes

relates to the combination of experiment and theory to understand the

interaction of drugs with the minor groove of DNA. Wilson and Neidle have

teamed up to investigate the binding of the drug CGP 40215A to AT-rich

sequences in DNA using a combination of surface plasmon resonance,

footprinting, CD and UV spectroscopy, and MD simulation [72,73]. This group

also investigated a series of other bisbenzimidazole derivatives to give insight

into 2:1 binding at TTAA vs. AATT sequences [74]. Similar work, including

NMR, gives insight into nickel–peptide interactions with the minor groove of

DNA [75]. We have also demonstrated reasonable estimates of the relative

binding affinity of DAPI bound to the minor groove of DNA in various different

binding modes (with a variety of different force fields) using the MM-PBSA

methodology [76]; to get reasonable binding affinity estimates, we suggest it is

necessary to include some of the specifically bound explicit water [77]. The

importance of water is also shown by Liedl and co-workers, however, in this

case it is due to differential hydration of the free drug [78]. Beyond DNA,

simulations have also probed intercalating dye interactions with RNA [79] and

the affinity of ligands binding to a RNA aptamer [80]. Calculating absolute

binding affinities is difficult, not only due to subtleties in the balance between

the molecular mechanical energies and continuum solvation, but also mainly

due to the difficulty in accurately estimating the solute entropic components

and in particular the loss of rotational and translational freedom. These issues,

including a detailed theoretical framework for the MM-PBSA approaches are

presented in recent work [81].

2.2. Insight beyond experiment?

The simulations over the past decade suggest that MD simulations applied to

nucleic acids have come of age and are ready to give detailed insights that not only

complement experiment but also are predictive. Areas where we have glimpsed

beyond what is accessible experimentally includes detailed investigation of DNA

in the gas phase [82], DNA on surfaces [83], the effect of dynamics on the

electronic properties of DNA [84–87], and in the simulation of new models

or modified bases and backbones. Examples include investigations into

the formation of quadruplex DNA (showing the importance of the integral
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monovalent ions) [88], antiparallel triplex DNA with modified bases [89],

antiparallel Hoogsteen duplexes [90], and damaged DNA alone or interacting

with proteins [91–94]. Simulations have also probed the effect of specific base

substitution in RNA hairpin loops [95].

2.3. Methodological and force field advances

Although these advances are not limited to applications involving nucleic acids,

there have been a number of methodological developments and force field

enhancements that directly or indirectly lead to improvements in the analysis,

simulation accuracy, or sampling of nucleic acid structures. One common need

is methods for fast and accurate estimation of solvation and electrostatics

effects. Implicit solvent models can greatly speed up the calculations allowing

for significantly longer simulation, post-processing of the MD results with MM-

PBSA type methods, or even ligand docking studies. Kang et al. optimized a

set of parameters for a generalized Born implicit solvent model in the docking

program DOCK with reference to a large set of ligand–DNA and ligand–RNA

complexes [96]. Using MD simulation and free energy perturbation methods,

Banavali and Roux developed a set of continuum radii (for use in Poisson–

Boltzmann calculations) that is consistent with the all-atom CHARMM27 force

field for nucleic acids [97]. Although, the current set of implicit solvent models

are not perfect – and generally not as accurate as simulations in explicit

solvent – such methods give ready insight into nucleic acid structure and

dynamics. This includes insight into the deformation of DNA induced by protein

binding [98], RNA loop dynamics [99] and folding [100,101] mismatches in

RNA structure [102], drug binding to DNA [103], and characterization of

unusual DNA structures [104].

The best behaved efficient implicit solvent models for use in MD simulation are

likely the generalized Born methods [105,106]. The generalized Born model, when

compared to simulation in explicit solvent, does a decent job at probing the

structural and dynamical implications of replacing a single base with pyrene [107].

However, even with the ‘faster’ implicit solvent models, sampling is still limited as

shown by trapping of the nearby 50 adenine into both syn and anti conformations

with no inter-conversion. To allow inter-conversion and proper sampling of both

states, enhanced sampling methods are required as shown by the application of

the locally enhanced sampling (LES) method during simulations in explicit solvent.

More recently this group has extended the LES methodology to work correctly

within the generalized Born implicit solvent model and applied this to RNA hairpin

loop structures [108]. Compared to LES in explicit solvent, more motion is evident

(including greater exploration of different transition paths by the copies) in the LES

simulations in implicit solvent.
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3. LIMITATIONS

3.1. Artifacts from the boundary conditions

In addition to significantly increasing the computational cost, the use of explicit

solvent in MD simulations of nucleic acids typically comes at a further price;

specifically the potential for artifacts due to the boundary conditions either when

periodic boundary conditions are applied (such as in Ewald calculations) or when a

finite system (such as a solvent blob) is simulated. In the former case, there is

significant worry that the artificial imposition of periodicity could dampen motion

[109] and otherwise over-stabilize particular structures [110,111]. Recently,

Hunenberger and co-workers [112] have re-investigated this issue in the context

of nucleic acid simulation. Contrary to intuition, the induced periodicity tends to

increase fluctuations in the DNA structure (although the periodicity tends to over-

stabilize the native conformation particularly in the absence of ions). Fortunately,

the magnitude of these artifacts for a water-solvated system are not too large (on

the order of kT) and appear to be less of a problem under conditions of just net-

neutralizing salt (as opposed to no salt or excess salt) which represents the most

commonly simulated conditions for nucleic acids. Periodicity artifacts are likely to

be more of an issue in low dielectric solvents or if sufficient solvation is not present.

The alternative to periodic boundaries, for simulations including explicit solvent, is

some finite representation. In these cases, there is often a problem due to the

discontinuity between the explicit solvent and the external environment (often a

vacuum). In the worst case, structures can be completely over-stabilized and

dynamics inhibited, such as we have previously shown in the simulation of nucleic

acids within a minimal explicit solvent bath applying a distance-dependent

dielectric constant [28]. To overcome this, Mazur developed a model that appears

to perform well in the representation of the A-DNA $ B-DNA equilibrium in a

minimal explicit solvent environment [113]. Also, recently in the context of

simulations of lipid bilayers, reaction field methods were applied and compared to

Ewald simulation [114]. Although the results with a reaction field differ from the

Ewald results, they are significantly better than truncation of the long-range

electrostatic interactions and may hold promise for simulation of nucleic acids.

3.2. Force field issues and sampling limitations

Another significant limitation in MD simulation comes not from the nucleic acid

force field itself, but from the ionic environment and inconsistency in the

parameters. The inconsistencies include the neglect of polarization, the wide

variety of parameterizations available, artifacts due to initial ion placement, and

poor sampling efficiency. We have touched on issues related to the long-time
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scales required for equilibration of even monovalent ions and shown that artifacts

from initial ion placement can lead to perturbed structure and significant over-

estimation of the lifetime of bound ions [28]. In some cases, such as the use of the

standard Mg2þ , Kþ , and Cl2 parameters in the Cornell et al. force field [1], we

have observed magnesium ions tunnel in between bases to disrupt pairing and

even spontaneous formation of salt crystals in simulations of phased A-tracts

(Cheatham, unpublished data). That there could be issues in mixing and matching

ion parameters is highlighted in a nice systematic study of various parameters for

sodium and chloride applied in MD simulations [115]. The simulations suggest

incredible differences in the calculated coordination states, transport properties,

and radial distribution functions. Sampling limitations are also significant. Very

recently, detailed experimental studies on monovalent ion exchange have

appeared; these provide estimates of occupancies in the 50% range and lifetimes

in the 10 ns to 100 ms for Naþ bound into the minor groove of A-tract regions [116].

As our simulations are just beginning to push the 100 ns barrier, and further since

there are hints that we are underestimating our ion–nucleic acid interaction

strength [117,118], there may be reason for concern. The problems are further

compounded by difficulties in interpreting ion densities from experiment. For

example, it is tricky to distinguish Naþ or Kþ ions from water. Recently, Auffinger

and Westhof performed a systematic analysis of nucleic acid structures, including

MD simulation, and convincingly suggest that some of the ions placed in nucleic

acid structure may not actually be cations but anions [22]. Despite these issues,

MD simulations have given detailed insight into ion influences on DNA structure

including B-DNA to A-DNA transitions [113,119–121] and have strongly

suggested that the binuclear Mg2þ binding motif observed in the crystal structures

of the 5S rRNA loop E are better described by partial occupancy by ions [122] and

also that clear Kþ binding sites are evident [123]. Early on, MD simulations also

demonstrated clear ion binding to the minor groove of A-tract DNA [12] and also in

the major groove of RNA [124], and more recently characterized the interaction of

polyamines with model fibers [125,126].

Beyond the hard to reconcile and subtle force field differences seen to date –

such as differences in the effective rate of sugar repuckering and backbone

transitions to variations in twist and groove widths seen when comparing the

nucleic acid force fields – larger deficiencies have started to emerge. This

includes significant differences in the effective opening rates for bases in RNA

comparing the CHARMM27 all-atom force fields to the Cornell et al. force field

[124,127] and apparent force field differences emerging in simulations of various

RNA loops or bulges [128–131]. At this point in time, there are unresolved issues

in that both sets of force fields have shown stability in some cases and instability in

others. A more dramatic demonstration of issues with loop structures is seen in the

recent studies of DNA quadruplex loop geometries, where the converged LES and

MD simulation runs in explicit solvent locate a favorable loop geometry that differs
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considerably from the experimental structures and lacks characteristic ion binding;

at this point, it is not clear if the deficiencies relate to the ion parameters, the DNA

force field or the MM-PBSA post-processing [132].

4. CONCLUSIONS

Although there are still issues with the force fields and sampling limitations, MD

simulation of nucleic acids has proven to be a valuable tool for giving detailed

atomistic insight into nucleic acid structure, dynamics, and interactions. With

anticipated improvements in the methods and force fields, and continued

advances in the computational technology, it is clear that we will break the

microsecond barrier in the near future and facilitate investigation of larger nucleic

acid assemblies (such as in the recent work on the ribosome [133,134]).
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1. INTRODUCTION

Understanding structure–activity relationships (SAR) of biological macromol-

ecules has been greatly facilitated by theoretical methods based on empirical

force fields [1]. Empirical force-field-based methods allow for atomic detail

interpretation of a variety of experimental data as well as impart the ability to

access short-lived conformations occurring in structural transitions and chemical

catalysis [2] that are not readily accessible to experimental approaches. While a

variety of algorithmic improvements have greatly facilitated the application of

force-field-based techniques to biological systems, the quality of the empirical

force fields themselves makes a huge contribution to the accuracy of the method.

Force fields have undergone significant improvements in the last 30þ years.

Most early force fields primarily focused on geometries and conformational

energies of small molecules, while the consideration of both intramolecular and

intermolecular terms dominates current force-field development. These develop-

ments have been fueled by increased computational resources allowing more

rigorous evaluation of force-field accuracy in condensed phase simulations as well

as allowing for higher level quantum mechanical (QM) calculations on model

compounds representative of biomolecules. In this review an overview of force
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fields commonly used for protein simulations will be presented, including

discussion of approaches used in the development of the force fields and the

relevance of those methods to their applicability. This will be followed by a short

section on future force-field developments and a closing summary section.

2. PROTEIN FORCE FIELDS

Protein simulations typically involve thousands to hundreds of thousands of atoms

for durations of nanoseconds or more. To access systems of these sizes and time

scales, it is necessary to use a simple equation to calculate the energy as a

function of the structure or conformation of the system of interest. The typical

potential energy function used in biomolecular simulations includes terms for the

intramolecular or internal portion of the potential energy function along with

intermolecular (aka external or nonbonded) terms. The form of the potential

energy function common to protein force fields has been presented elsewhere

[3,4]. Such energy functions contain terms describing the structure and the

parameters that allow for the simple potential energy functions to treat complex

systems such as proteins. It is the combination of the form of the potential energy

function and the parameters used in that function that comprise a force field. As

discussed below, the parameters are optimized to reproduce a variety of target

data from both QM and experimental studies. The ultimate quality of a force field

lies in its ability to accurately reproduce a wide variety of experimental target data,

thereby insuring that the results obtained from empirical force-field-based studies

are representative of the experimental regimen.

The first biomolecular MD simulation was performed on BPTI in the gas phase

using a force field based primarily on small molecule parameters [5]. Since then a

number of force fields have been developed and applied to simulation studies of

proteins. Readers are referred to a recent review on protein force fields by Ponder

and Case [6] for additional information as well as an alternative point of view on

protein force fields. Currently, the three most commonly used all-atom force fields

are the OPLS/AA [7,8], CHARMM22 [4] and AMBER (PARM99) [3] models.

Parameters for all three force fields were extensively optimized based on small

molecular weight compounds with the resultant parameter set then extended to

proteins. In all three force fields, nonbonded parameters were carefully optimized

at the small molecule level to reproduce a variety of condensed-phase properties.

With OPLS and CHARMM22 the partial atomic charges were based on HF/6-31Gp

supramolecular data while the AMBER charges are based on the restrained

electrostatic potential (RESP) method. In the supramolecular approach the

charges are optimized to reproduce QM-determined interaction energies and

geometries of the model compound with, typically, individual water molecules

although model compound dimers are often used. Such charges are generally
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developed for functional groups, so that they may be transferred between

molecules allowing for charge assignment to novel molecules to be performed

readily. RESP fitting involves optimization of charges to reproduce a QM-

determined electrostatic potential mapped onto a grid surrounding the model

compound. Such methods are convenient and a number of charge fitting methods

based on this approach have been developed. In both methods the HF/6-31Gp

level of theory was used for the QM calculations. This level typically overestimates

dipole moments, thereby approximating the influence of the condensed phase on

the obtained charge distribution. This, ideally, yields a charge distribution that is

implicitly polarized, allowing for satisfactory condensed-phase properties to be

obtained.

LJ parameters for all three force fields have primarily been based on the

reproduction of condensed-phase properties, typically neat liquids, based on the

pioneering work of Jorgensen [9]. Following assignment of partial atomic charges,

the LJ parameters for a model compound are adjusted to reproduce

experimentally determined heats of vaporization and density as well as

isocompressibilities and heat capacities when available. Alternatively, heats or

free energies of aqueous solvation or heats of sublimation and lattice geometries

can be used as the target data for the LJ optimization [10]. Targeting experimental

data for LJ parameter optimization insures that satisfactory condensed-phase

properties for proteins will be obtained, including packing of the protein interior.

However, the parameter correlation problem (i.e., the fact that force-field

parameters are typically underdetermined, allowing for multiple combinations of

parameters to yield similar properties) allows for LJ parameters for different atoms

in a molecule (e.g., H and C in ethane) to compensate for each other such that it is

difficult to accurately determine the ‘correct’ LJ parameters of a molecule based on

the reproduction of condensed-phase properties alone [11]. To overcome this

problem, a method was developed that determines the relative value of the LJ

parameters based on high level QM data and the absolute values based on the

reproduction of experimental data [12,13], thereby decreasing, though not

eliminating, the parameter correlation problem.

Careful optimization of the nonbond parameters is essential to maximize the

quality of a force field in accurately reproducing experimental observables,

including the treatment of atomic interactions. The latter is important because the

atomic details of SAR in proteins from simulation studies are of extreme interest

and often difficult to obtain experimentally, especially for short-lived intermediates.

The partial atomic charges and LJ parameters in a force field largely dictate the

atomic nature of intermolecular interactions. With the partial atomic charges,

the overall trends are similar for the three force fields, although differences are

present, even in the backbone charges [6]. Notably, even though parameter

optimization methodologies used in the CHARMM and OPLS/AA force fields are

similar, significant differences in the atomic details of interactions have been
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observed [13]. Such differences emphasize the importance of evaluating the

results from force-field-based studies with respect to the strategy used in the

optimization of the parameters. In some cases, it may be considered desirable to

reproduce ‘interesting’ results from an MD simulation with a second force field, if

feasible. In addition, it should be emphasized that the LJ parameters and partial

atomic charges are highly correlated, such that LJ parameters determined for a

given set of charges are typically not appropriate for charges determined via

another methodology.

Accurate treatment of the internal portion of the biomolecular force fields

insures that the intramolecular distortions the proteins undergo during MD

simulations will be representative of the experimental regimen. Essential to the

quality of protein force fields is their treatment of conformational energies

associated with f,c (i.e., the Ramachandran map [14]), as they dictate, to a large

extent, the sampling of conformational space in MD simulations. The alanine

dipeptide is the quintessential model compound for the optimization of dihedral

parameters associated with f,c and, accordingly, has been the subject of a variety

of QM studies [15,16]. In the case of AMBER and OPLS/AA the final adjustment of

the dihedral parameters that control the f,c conformational energies was

dominated by QM data, while with CHARMM22 a combination of fitting to QM data

and empirical adjustments based on simulations of carboxymyoglobin was applied

(see below). Recently, results fromMD simulations showing the oversampling of p

helices [17] and protein-folding studies indicating overstabilization of different

secondary structures by the different force fields [18,19] have motivated additional

optimization of the protein backbone parameters in CHARMM and AMBER, as

discussed below.

To date, all three force fields have each been used in hundreds of simulation

studies of proteins, attesting to their general utility and lack of any catastrophic

problems in all three cases. Thus, all three force fields may be considered of

similar quality, as validated by a recent comparison, showing all three to reproduce

experimental structures in a similar manner in MD simulations of proteins [20].

However, differences in the optimization strategies for the force fields emphasize

the need for users to interpret results from simulations with care, accounting for

biases in the force fields that may impact the obtained results.

2.1. Gas-phase versus condensed-phase target data

A general question in protein, as well as other biomolecular force fields, is the

validity of directly applying gas-phase QM data to produce a force field that will be

used in condensed-phase simulations. An example of the importance of this

consideration is the geometry of the peptide bond. Upon going from the gas to the

condensed phase there is a significant decrease in the length of the peptide bond,
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while the carbonyl bond length increases [21]. Alterations also occur in selected

bond angles and it is known that in the gas phase the peptide bond is nonplanar

[22,23]. These alterations are associated with changes in the delocalization of the

amide nitrogen lone pair due to hydrogen bonding in the condensed phase. Such

effects are also present in the conformational energies of the alanine dipeptide

and related compounds [24,25]. This phenomenon was initially shown to be

important for protein force fields, where it was necessary to deviate from gas-

phase energetic data based on the alanine dipeptide in order to better reproduce

conformational distributions of f,c in simulations of carboxymyoglobin [4]. More

recent studies have verified this observation (see below). Thus, it is often

preferable to optimize parameters to reproduce condensed-phase target data

versus gas-phase data, due to the inability of current force fields to adequately

model changes in electronic structure, such as lone pair delocalization, as the

environment is altered [26].

Recently, we have tested, in the context of the CHARMM22 force field, the

ability of the current form of potential energy function and extensions of the

potential energy function to accurately treat the entire f,c energy surface of

the alanine dipeptide and how that impacts results from MD simulations [27,28].

This work involved extension of the force field to include a 2D dihedral energy grid

correction map (CMAP) that accounts for the energy difference between a target

energy surface (e.g., a QM energy surface) and the empirical force-field surface.

This approach allows the force field to reproduce the target surface to near-

quantitative accuracy. Based on this approach, application of a f,c gas-phase QM

energy surface for the alanine dipeptide to MD simulations of proteins in their

crystal environment resulted in systematic differences in f between calculated

and experimental crystal structures. This motivated empirical adjustments to the

alanine dipeptide f,c energy surface leading to improved f,c sampling in MD

simulations as judged by the reproduction of survey data from the PDB [29]. It is

anticipated that this approach will have general applicability in empirical force

fields for proteins.

Recent adjustments of the AMBER all-atom force field have been performed.

The current AMBER force field (PARM99) was optimized to reproduce

conformational energies for both the alanine di- and tetra-peptides [30]. Other

modification of the f,c dihedral parameters has focused on improving the

backbone conformational properties in peptide simulations, typically performed

using continuum solvation models [18,31]. In another study the AMBER f,c

dihedral parameters were optimized to reproduce full surfaces of the alanine and

glycine dipeptide [32]. Interestingly, the QM data were obtained using a reaction

field solvation model with a dielectric constant of 4 to model the condensed-phase

environment present in protein simulations. The use of reaction field models to

include condensed-phase effects in QM data is an interesting alternative for target
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data for force-field optimization, although extensive tests of such data have yet to

be performed.

2.2. Free energies of aqueous solvation

Another area in which improvements are required is in the thermodynamics of

solvation of the amino acid side chains. In a recent study, free energies of

solvation of model compounds representative of protein side chains were

calculated for the AMBER, CHARMM and OPLS-AA force fields and compared

with experiment [33]; similar studies have been reported elsewhere [34–36].

Overall, all three force fields performed well, with OPLS-AA being the best of the

three. However, with all three force fields poor results were obtained for selected

compounds. These results indicate that improvements in the nonbonded aspects

of the force fields can be made.

2.3. Comments on enhancements to protein force fields

While the need for improvements in the current protein force fields is evident, such

improvements must be performed with care. The CMAP correction implemented

in CHARMM22 is based on the assumption that all other aspects of the force field

have been properly optimized. This is necessary to insure that all the terms in the

potential energy function, excluding the f,c related dihedral parameters, are

making an appropriate contribution to the backbone conformational energies,

thereby assuring that the atomic contributions to the conformational properties are

representative of the experimental regimen. It is then appropriate to include an

energy correction such as CMAP, which is, in essence, accounting for a variety of

limitations in the potential energy function. It should be noted that this is not a new

approach, as in the majority of force fields final optimization of selected dihedral

parameters has been performed to obtain target conformational energies, as

discussed above for the alanine dipeptide. It should be emphasized that since the

CMAP type of correction can, in principle, be used to make any collection of atoms

reproduce a selected target surface (i.e., CMAP could be applied to pentane to

yield an energy surface identical to that of the alanine dipeptide), such an

approach must applied with care to avoid ‘hiding’ other problems in a force field.

Changes in the partial atomic charges for AMBER based on high level QM data

have been performed in conjunction with adjustments to the backbone dihedral

parameters [32]. Alterations to the charge distribution of a protein force field

should be done with great care. New charges should be accompanied by

reevaluation of all aspects of the internal portion of the force field as changes in

geometries, vibrational spectra and conformational energies will occur due to
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electrostatic contributions to those properties. For example, the electrostatic

contribution to the energy difference between the C5 and C7eq conformations of

the alanine dipeptide is 4.0 kcal/mol, versus a total energy difference of 0.9 kcal/

mol in CHARMM22.

While the motivation for additional optimization of any force field is to make

improvements, care must be taken to avoid the creation of a collection of divergent

force fields, which may lead to problems in comparing results from different

studies as well as make it difficult to perform future enhancements in a coherent

fashion. Furthermore, with all adjustments it is essential that tests be performed on

a wide variety of proteins to insure that the changes in the force field are not biased

by a limited set of target data.

2.4. United-atom protein force fields

United- or extended-atom force fields are models where only polar hydrogens are

included explicitly, while nonpolar hydrogens (e.g., aliphatic and aromatic

hydrogens) are treated as part of their parent carbon. These force fields

dominated early theoretical studies of proteins due to the savings in CPU

associated with the decreased number of atoms and are still widely used,

especially in the area of protein folding. United-atom force fields include OPLS/UA

[9], the early AMBER force fields [37], GROMOS87 and 96 [38] and CHARMM

PARAM19 [39]. The GROMOS united-atom force fields [38] are still widely used in

MD simulations that include explicit solvent representations. Enhancements in

GROMOS96 have included condensed-phase tests [40] and additional

optimization of LJ parameters to reproduce experimental condensed-phase

properties [41]. For protein-folding studies the PARAM19 force field currently

dominates. This is associated with, in part, the development of a variety of

implicit solvent models consistent with this model. These include EEF1 [42], ACE

[43], several GB models [44–46] and a model by Caflisch and coworkers [47].

It should be noted that these and other implicit solvent models are often used with

the all-atom force fields discussed above [48].

2.5. Future directions

As emphasized above, there is room for improvements in the current force fields

for proteins. Such improvements can be made within the context of the current

form of the potential energy function or based on extended forms. Within the

context of the current form, improvements can be made by simply improved

optimization of the parameters. Such enhanced optimization is often based on

additional experimental or QM target data that allow for more rigorous testing of
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force fields as well as the ability to perform condensed-phase simulations at a rate

that allows for comparisons with target data in an iterative fashion as required for

parameter optimization. Protein-folding calculations are having a significant

impact in this area. Comprehensive free energies of solvation of model

compounds representative of the protein backbone and side chains, in

combination with pure solvent thermodynamic data, offer the potential to

implement improvements in the nonbonded portion of the force fields. Again,

changes in the nonbonded portion of the force field should include reevaluation of

the internal portion of the model to assure that consistency between the

nonbonded and internal aspects of the force field is maintained. With respect to

the nonbonded parameters, improvements could be made via the explicit inclusion

of lone pairs. Lone pairs have been shown to yield improvements for specific

interactions, such as in-plane versus out-of-plane interactions between pyridine

and water [49] and the recently developed TIP5P water model contains lone pairs

[50]. In general, the addition of lone pairs to a force field will improve the accuracy

due to the increased number of parameters available. However, the addition of

lone pairs could lead to complications in parameter optimization due to the

parameter correlation problem [11], such as the determination of partial atomic

charges via fitting to QM electrostatic potentials, which is already problematic as

emphasized by the need to include restraints (i.e., RESP method) when using this

approach [51].

Concerning extended forms of the potential energy function, the 2D grid

correction map (CMAP) is a good example of how improvements can be made by

adding new terms to the potential energy function. Another extension that is

anticipated to have a significant impact on protein force fields is the inclusion of

electronic polarizability [6,52]. While current additive force fields are optimized to

yield charge distributions that include implicit polarization, thereby allowing them

to satisfactorily treat an aqueous environment, they cannot accurately model

electrostatics over a wide range of environments. A good example is the need to

overestimate the interaction energy of the gas-phase water dimer in order to

accurately treat the pure solvent [53]. A recent review [54] covers the approaches

used to treat polarizability as well as applications of those methods. Notably, to

date, published work on the application of polarizable models to full proteins has

been limited. Kaminski et al. presented results on polarizable MD simulations of a

collection of proteins, although the simulations were only of 2 ps duration and

performed in the gas phase [55]. More recently, Patel et al. presented results for

several proteins in solution using a full polarizable model (i.e., both solvent and

protein were polarizable) based on the CHARMM22 force field that yielded stable

structures of the proteins in MD simulations of up to several nanoseconds in

duration [56]. Other efforts towards polarizable protein force fields are ongoing

[57–59]. Thus, slow progress is being made towards the development of

polarizable force fields for proteins as well as other biomolecules. It should be
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emphasized that the usefulness of such force fields, as judged by improved

accuracy in a variety of scenarios, will not be possible until well-optimized

polarizable models have been developed.

3. SUMMARY

As is evident a variety of force fields for empirical-based studies of proteins have

been produced. Of these the AMBER (PARM99), CHARMM22, OPLS-AA and

GROMOS 87/96 force fields are the most widely used. As each of these force

fields has been employed in hundreds of studies, it is clear that they are all

satisfactory for simulation studies of proteins. The recent focus on protein-folding

studies, the p-helical phenomena discussed above and several comprehensive

studies on the free energies of solvation of model compounds representative of

amino acid side chains indicate that additional improvements in protein force fields

in the context of the present potential energy function as well as in extended

functions can be made. Motivated by these studies, variants of both the CHARMM

and AMBER force fields have been presented. While in all cases improvements

are evident based on the particular target data used in the study, the true value of

these modifications in leading to improved accuracy for a wide variety of peptides

and proteins in different environments has yet to be shown. Finally, it should be

emphasized that results from empirical force-field-based calculations, as with all

scientific investigations, have to be evaluated within the context of the

assumptions and models used in those studies. Accordingly, it is important for

users of force fields to be aware of the assumptions made in their development

and gauge the robustness of the obtained results in that context.
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1. INTRODUCTION

Free energies are central quantities to both thermodynamics and kinetics,

relating to experimentally determined properties such as equilibrium constants

and reaction rates. Even though proper computation of enthalpies is relatively

simple at particular molecular conformations, estimates of the entropic factors

require sampling over large numbers of conformations. Modern applications of

free energy calculations in computational chemistry are used for ligand binding

[1], free energy profiles in mixed quantum–classical enzymatic calculation [2]

and hydration free energies [3]. These calculations are done under (if possible)

equilibrium conditions, or with as full sampling as possible. We will review

recent work done using nonequilibrium calculations of free energies, based on

the so-called Jarzynski relationship [4–8] which has been extended and shown

to be part of a subset of classical thermodynamics dealing with very small

systems, as well as with fluctuations in macroscopic properties. This review is

assembled as follows: first, we will introduce the Jarzynski relationship and

discuss its connection to more classical methods for the computation of free

energies. Then we will move into recent work in theoretical applications and

experimental advances associated with nonequilibrium free energy

calculations.
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2. THE ORIGINAL JARZYNSKI METHOD

The free energy difference between two states A and B (described by a single

variable l bounded between 0 and 1) is formally described by

DG0!1 ¼ G1 2G0 ¼ 2
1

b
ln

Z1

Z0

� �

¼ 2
1

b
ln

Ð

dr expð2bH1Þ
Ð

dr expð2bH0Þ

 !

ð1Þ

where DG represents the Gibbs free energy, and 0 and 1 correspond to the end

points of the system (A and B, respectively). Z stands for the canonical partition

functions, which are explicitly written in terms of Boltzmann weights in the right-

hand side of equation (1).

Methods for the computation of such quantities have a long history. All of them

have to surmount an important hurdle: in order to compute the partition function,

very extensive (one might say complete) sampling of the phase space at both A

and B must be done. This is of course mostly unattainable, and one must rely on a

number of approximations. One widely used idea can be traced to Zwanzig [9] and

is widely known as free energy perturbation (FEP). It requires the calculation of the

energy difference between states A and B, ensemble averaged over the initial

ensemble A and is used as in

DG0 !1 ¼ 2
1

b
lnkexpð2bðH1 2 H0ÞÞlA ð2Þ

There are alternative formulations, requiring a Hamiltonian that varies smoothly

between A and B, for instance.

HðlÞ ¼ Hð0Þ þ l½ðHð1Þ2 Hð0ÞÞ� ð3Þ

Other forms of the interpolation scheme can be used as well as Hamiltonian

decomposition into energy terms. The definition of the l-dependent Hamiltonian

allows for the computation of free energy derivatives with respect to l, which in

turn enables the calculation of the free energy difference between A and B using

the so-called thermodynamics integration (TI) method.

DG0 !1 ¼
ð1

0

dl
›HðlÞ

›l

� �

l

ð4Þ

If one thinks about the system as evolving from A to B with a time-dependent

Hamiltonian, then the above equations can be rewritten simply by assuming a

perturbation parameter, l ¼ lðtÞ (which obviously, according to equation (3),

immediately means a Hamiltonian HðtÞ).
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The second law of thermodynamics requires that the ensemble average of the

work done onto the system by the external perturbation be larger or equal to the

free energy difference, with the difference being the dissipative (nonuseful) work.

Under a quasi-static (QS) transformation from A to B (in infinite time), the

perturbation is continuously very close to equilibrium conditions, and only then the

work is exactly equal to the free energy difference, namely

kWA!BlA $ DGA!B ð5Þ

In the case of simulations, the average is taken over members of the equilibrium

ensemble of state A. For QS changes, all realizations of the experiment will give

the same value of W, and a well-defined value for DG. This is equivalent to the

statement that the distribution of work values under a QS transformation is a delta

function around the exact value of DG.

It is then clear that under non-QS changes from A to B, a number of statements

must be true:

1. The average work will be larger than DG.

2. The distribution of work values will have a width . 0.

3. Any individual realization could give rise to work values lower than DG.

Even though these are interesting points, they were of no use at all until a

seminal article by Jarzynski in 1997 [4]. In that paper, he proved the so-called

Jarzynski relationship (JR) that states:

DGA!B ¼ 2
1

b
lnkexpð2bWA!BÞlA ð6Þ

where W is the out of equilibrium work done onto the system when going from

point A to point B in phase space, and the exponential average is done over an

equilibrium ensemble of state A only. This formula seems very counterintuitive at

first, since it makes a clear connection between nonequilibrium work values (which

are, by definition, path dependent), with the equilibrium free energy, a state

function (and hence, not path dependent). Moreover, the only two requirements

for this equality to work are that the initial ensemble over state A be equilibrated,

and that the exponential average be converged, which in turn requires large

numbers of realizations of the transformation. There is no requirement as to how

the switch from state A to state B should be done (in computational

implementation, how fast can one switch the system Hamiltonian from A to B),

which seems counterintuitive. First, let us see that this setup reduces to known

expressions under certain limits. Clearly, if the switch is done close to infinitely

slowly, then the transformation is QS. In that case, the work W is equal to the
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free energy (there is no dissipative work) and the JR holds true. In the other

extreme, one could switch from state A to state B instantaneously. In that regime,

the work done on the system is simply the enthalpy change between initial and

final points as in

DGA!B ¼ 2
1

b
lnkexpð2bDHA!BÞlA ð7Þ

Note that this is an already well-known formulation known as FEP and that

equation (7) is the same as the previously described equation (2).

In a general situation, the transformation of the system from A to B and the

application of the Jarzynski relation can be seen in Fig. 1. At an initial state A

ðl ¼ 0Þ; the system is equilibrated. This is represented by the vertical line at left.

This initial ensemble could be equilibrated by long molecular dynamics or Monte

Carlo runs, or by advanced sampling techniques such as replica exchange

[10,11]. Once this is done, a number N of initial frames is taken from the initial

ensemble. They are then transformed into state B (and all states between), at

l ¼ 1 at a finite rate. The work for each realization is then computed, and the

overall free energy is extracted by using the JR as shown in equation (6).

The demonstration of the validity of the JR is beyond the scope of this review,

but the interested reader is encouraged to read the original Jarzynski’s article [4].

However, it is important to provide a simple description of why this seemingly

strange equality might work. Figure 2 presents a hint as to the behavior of the

system. Under near-equilibrium conditions, the distribution of work values could

be expected to be roughly Gaussian (this requirement is not needed, but makes

explanations clearer). The vertical line at 1 unit of work (arbitrary units) represents

Fig. 1. General scheme for the use of the JR. The system is equilibrated at l ¼ 0.
N Snapshots are taken from that equilibrated ensemble and transformed into the
final state (l ¼ 1) in a finite time. Work is computed for each realization (Wi).
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the free energy difference in going from a state with l ¼ 0 to l ¼ 1: Under QS

conditions, the distribution of work values is very nearly a delta function (a very

narrow Gaussian). However, under any transformation rate larger than zero, two

things happen at the same time. The average work gets larger as the rate

increases, while the width of the work distribution also increases. The JR takes the

exponentially weighted average of this distribution. The net effect of this nonlinear

averaging is to pick, from the work distribution, trajectories that are low in work

values. The ‘number’ of these trajectories decreases drastically with an increase

of the transformation rate, and hence the effort required to converge the

nonexponential average increases quickly. There is also a result that seems to

contradict the second law of thermodynamics – the probability of an individual

realization of the transformation from A to B having work lower than the free

energy difference between A and B is nonnegligible. This would seem to indicate a

negative dissipative work, which is of course not possible. The reader is invited to

see that the second law applies only to macroscopic systems. Under those

conditions, the proper quantity to compare to the free energy is the average work,

which indeed is always larger than DG.

At this point, a remarkable early work of Hermans [12] comes into focus. He

described that one could improve on the simple use of many free energy

calculations starting from different initial conditions, by not simply averaging

linearly, but making use of the standard deviation of the work calculations (or

measured).

DG < kW l2
b

2
s 2

W ð8Þ

Fig. 2. Hypothetical work distributions for different transformation rates, showing
that the tails of the work realizations is crucial to a proper estimation of the free
energy according to the JR.

Nonequilibrium Approaches to Free Energy Calculations 107



This relationship, which has been substantially used in the literature, turns out to

be a simple linear response expansion of equation (6). This may be shown in two

interrelated ways. First, if one assumes a Gaussian distribution of work values

(a reasonable zeroth-order approximation), then equation (8) is exact. Second, if

one describes the exponential average as a cumulant expansion, then equation

(8) becomes simply the first- and second-order cumulants. There are also third

and higher order cumulants (which are all exactly zero in the case of linear

response), which alternate in sign and are very slowly converging.

3. EXPERIMENTAL APPLICATIONS

The year 2003 saw the JR used by a number of groups, as an interpretational

aid to the nonequilibrium measurements these groups performed. These

measurements were mainly of the force-induced unfolding type, where an

external potential (an optical trap, an AFM tip for instance) is used to change

end-to-end distances in attached biomolecules such as RNA [13] and DNA [14].

‘Before’ Jarzynski such measurements could not make use of free-energy-

related data, since the average work could not be easily interpreted. Currently,

many of these experiments are simply repeated enough times until the

exponential average of equation (6) or the approximation of equation (8) can be

safely used.

Protein–protein interactions have also been studied using force-induced

unbinding, and interpreted by means of JR-type relations [15]. This technique has

been applied to regulation of integrin activity, cell adhesion and leukocyte rolling.

A more basic experimental study was used to show local, single particle

violations of the second law of thermodynamics, by following entropy production

and consumption over short trajectory durations [16]. Of course, this violation

disappears when averaging is taken over longer time scales and many molecules

at once.

4. THEORETICAL DEVELOPMENTS

New derivations of the JR are appearing, in what seems to be a trend to put the

original work into a more general framework. A recent article by Evans highlights

the close relationship between the nonequilibrium free energy theorems and the

fluctuation theorem [17]. In a different derivation, Mittag [18] generalized the

fluctuation theorem to thermostated dissipative systems which respond to time-

dependent dissipative fields. This chapter highlights the deep connection between

the second law of thermodynamics, time-reversal symmetry and the fluctuation

theorem.
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Despite the many applications of the Jarzynski estimator, its behavior is not yet

fully understood. Among the still unresolved issues, one outstanding is the

computation of errors, both in term of bias and sampling. The convergence of

the estimator and the error bars with the number of realizations has been

described by Gore et al. [19].

Hummer discussed recently a simple procedure to extract kinetic information

from pulling experiments and illustrated it for the I27 subunits of the protein

titin [20].

A curious extension of the JR is the work of Mukamel [21] where the equality is

extended to quantum systems. There is an analogy between the nonequilibrium

trajectories and the phase fluctuations over phase space, described by the use of

the stochastic Liouville equation.

One of the potential drawbacks of the JR is the fact that many trajectories are

generated as realization of the transformations, and are averaged in post-

processing. This opens the possibility of using better choices of trajectories. Sun

[22] proposes the use of Monte Carlo sampling of very short nonequilibrium

trajectories which can yield good estimates of the equilibrium free energy change.

This work has very close relation with the path sampling techniques of Chandler

and coworkers [23].

5. COMPUTATIONAL USES

As an example of the current state of use of the JR, we still see a larger number of

theoretical developments, compared to a much smaller number of pure application

articles. As the usefulness of this technique extends, we expect the actual uses to

increase, to encompass a large number of possible applications.

Li [24] used steered nonequilibrium simulations in which the unfolding dynamics

of the I27 domain of the muscle protein titin is studied by a series of

nonequilibrium, steered molecular dynamics simulations. They find that the

distribution of the unfolding force as well as its dependence on the pulling rate

predicted by their simulations is found to be in agreement with atomic force

microscopy experiments.

There is a recent study by Park et al. [25] where the Jarzynski equality is

applied to the helix–coil transition of deca-alanine in vacuum as an example.

With about 10 trajectories sampled, the second-order cumulant expansion of

equation (8), among the various averaging schemes examined, yields the most

accurate estimates. They also show a curious but important analytical result; if

the distribution of work values at short times is Gaussian, then this distribution

will remain Gaussian at all times after. The usefulness of this result resides in

the fact that a second-order expansion of the JR is exactly valid, and rapidly

converging.
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6. CONCLUSIONS

The calculation of free energies of many processes has a long history within

computational chemistry. With the introduction of the JR, and the recent formal

and computational work associated with it, the field is ripe to see a widespread use

of this technique. As the ideas find their way into widely accessible software, we

are bound to see new, yet unpredicted applications.
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1. INTRODUCTION

A deeper understanding of how a protein recognizes its biologically relevant ligand

or a small molecule inhibitor will have a profound effect on our understanding of

biological recognition processes and on our ability to design small molecule

therapeutics. Becauseof their importance, these interactionshavebeen thesubject

of intense research and significant advances have beenmade in understanding the

overall process. A worldwide effort in structural biology has led to the elucidation of

the structures of a large number of protein–ligand complexes at atomic resolution

which are now available in the Protein Data Bank (PDB) [1]. A complementary

experimental effort by the academic and biopharmaceutical industry has resulted in

the characterization of numerous ligands bound to a diverse range of protein

targets. As a result, a unique opportunity has been presented to the theoretical/

computational biology community where hypotheses to describe protein–ligand

interactions can be formulated and validated against the wealth of available

structural and experimental data. Moreover, the past decade has also seen

staggering advances in computer technology with the price/performance ratio

consistently falling and the rise of new computing paradigms such as distributed

computing and cluster-based computing [2]. Many computing problems that were
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deemed intractable just a few years ago are now well within reach, and more

problems are going to enter the realm of possibility in the coming years.

As a result, computational methods that characterize protein– ligand

interactions from 3D structures based on the laws of physics and chemistry

have been a subject of much recent research. The success or failure of these

methods is measured not only by their ability to qualitatively describe protein–

ligand interaction but also by their ability to quantify the strength of interaction. The

strength of interaction is determined by the free energy of binding and can be

measured experimentally. Computational methods strive to calculate the free

energy of binding from 3D structures and evaluate their performance by

comparing with experimentally observed free energies of binding. In spite of all the

recent developments in this area the accurate prediction of the free energy of

binding using computational methods based on a description of the energetic

components of binding has proved to be a major challenge. A physically satisfying

and accurate computational method will have widespread practical application in

structure-based drug design and virtual screening protocols [3–5].

There is relentless pressure on the pharmaceutical industry to reduce costs,

because of the extreme difficulty in bringing a compound to the market as a drug.

In silico structure-based screening has been a very attractive and potentially cost-

saving alternative because of its ability to screen a large number and broad range

of compounds [6]. Virtual screening experiments screen a database of

compounds against a protein target and identify those compounds that are

thought to bind to the protein target. This process entails docking of compounds

into a protein binding site and then scoring the docked ‘poses’ to determine their

activity [7–9]. Scoring is related to the strength of the interaction between the

ligand and the protein, which experimentally is expressed as the free energy of

binding. Hence computational protocols for explicitly calculating the binding free

energy, in addition to being of interest as a fundamental problem in molecular

recognition, also have practical implications.

In this chapter we will discuss the basic principles that govern protein–ligand

interactions and how they can be quantified in terms of a binding free energy. We

will also discuss some computational methodologies that take a physically based

approach towards the calculation of the free energy of binding. We also review

scoring functions that are available in the literature to calculate protein–ligand

binding affinities. Finally, we interpret the results from these studies and assess

our understanding of binding in light of these observations.

2. CALCULATING BINDING FREE ENERGY

Binding affinity can be estimated experimentally by kinetic experiments that

measure the inhibition of the protein or enzyme in the presence of both the inhibitor
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and the substrate, and is reported as an inhibition constant Ki. Under equilibrium

conditions, the free energy of binding is given as the dissociation constant Kd
which is the ratio of the concentration of the reactants (protein and ligand) to

products (complex):

Kd ¼

�
P
��
L
�

�
PL

� ð1Þ

Finally, the free energy of binding is related to the dissociation of [PL] as

DG ¼ DG0
2 RT In Kd ð2Þ

where DG is the free energy change for the reaction, R the gas constant, and T the

temperature. DG0 is the free energy change associated with the reaction at

standard conditions where all concentrations are at 1 M, temperature is 298 K,

and pressure is 1 atm. Theoretical calculations determine the free energy of

binding in a more direct fashion by calculating the properties of individual

structures of the protein, ligand, and the complex, or of their ensembles. Binding

free energy is a state function and is treated as such in these calculations, which

means that it is independent of the path taken from the reactants to the product.

Hence, the free energy of the reaction calculated from the dissociation constant Kd
can be compared with theoretically calculated free energies of binding. The free

energy of binding can be calculated as a difference of the free energy of the

reactants (protein and ligand) and the free energy of product as

DGbind ¼ DGcomplex 2 ðDGprotein þ DGligandÞ ð3Þ

where DGbind is the free energy of binding, DGcomplex the free energy of the

protein–ligand complex, DGprotein and DGligand the free energies of the protein

and ligand, respectively. The free energy of binding is usually decomposed into

different free energy components that are additive and are represented by a single

equation or a ‘master equation’. We will use the master equation proposed by Ajay

and Murcko [10], and discuss this master equation in light of recent protocols used

for the calculation of the individual components that make up this equation. The

master equation has the following form

DGbind ¼ DGint þ DGsolv þ DGmotion þ DGconf ð4Þ

where the first term DGint is the free energy due to the interaction of the reactants

that form the complex, and it is dominated by enthalpic contributions from steric and

electrostatic interactions upon complex formation. These interactions are generally

strong and short range due to the close proximity of the ligand and the protein.
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These interactions can be calculated at the classical or quantum level of theory.

The steric interactions are usually modeled by a pairwise Lennard-Jones (LJ)

potential [7,11–14] and the electrostatic interaction energy is usually calculated

via Coulomb’s law using atom-centered point charges. The effect of the protein

environment is mimicked by scaling the Columbic interaction by a distance-

dependent dielectric constant that is usually set to 4 [15]. Both steric and

electrostatic interactions are calculated for non-bonded atoms in molecular

mechanics force fields such as AMBER [16], CHARMM [13], MMFF [17], OPLS

[18], and MM3 [12]. However, classical point charge based models of electrostatic

interaction represent a significant approximation since higher order effects like

polarization and charge transfer are ignored. Polarization and charge transfer play

a significant role in molecular interaction as shown by us and others [19–21]. Such

effects can be captured using quantum mechanics. Rigorous and exhaustive

calculation of electrostatic interaction energies can be performed at high levels of

quantum theory. Such calculations are feasible only for small model chemistries

and are severely restricted by the computational cost associated with the study of

larger molecules. Ab initio and density functional theories (DFT) are still not being

applied to macromolecular biological systems routinely. However, linear scaling

technologies in quantum mechanics are trying to bridge this gap and have made

significant advances in the past decade [22–24]. These advances are applicable

to density functional, Hartree–Fock, and semiempirical quantum theories and can

now solve the Schrödinger equation for large molecular systems containing

thousands of atoms [25,26]. Semiempirical approaches have been shown to be

very useful in studying electrostatic interactions in protein-folding and protein–

ligand interaction [20,27,28]. Recently we have used our linear scaling divide and

conquer computer program DivCon [29], to calculate the electrostatic interaction

energy using the semiempirical AM1 Hamiltonian [21]. DivCon utilizes the divide

and conquer algorithm (D&C), which scales linearly with the size of the system.

The D&C method divides a molecular system into overlapping subsystems and

the localized Roothan-Hall equation

ðFaCa ¼ SaCaEaÞ ð5Þ

is solved for each of the subsystems a. Here C a is the subsystem coefficient

matrix, F a the subsystem Fock matrix, and E a the diagonal matrix of the orbital

energies for subsystem a. S a is the overlap matrix and is the identity matrix for

standard Semiempirical Hamiltonians. The diagonalization of the global Fock

matrix is the most expensive part of the calculation and the D&C method replaces

global diagonalization with numerous ‘subsystem’ diagonalizations that results in

linear scaling. Local subsystem density matrices are used to assemble the global

density matrix and the total energy is calculated from the global density matrix.

Finally, the heat of formation of a molecular system is calculated as the sum of the
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electronic energy, core–core repulsion, and individual heats of formation of the

constituent atoms:

DHf ¼ Eelectronic þ Ecore–core þ SDHf atoms ð6Þ

Both classical and semiempirical quantum mechanical methods can calculate

pairwise interaction energy terms. This allows the calculation of the gas-phase

interaction energy between the ligand and the protein in the complex. The

interaction energy is enthalpic in nature and hence the free energy DGint can be

thought of as being dominated by enthalpic contributions. In a recent study,

Nikitina et al. [30] calculated the binding enthalpy of eight protein–ligand

complexes from the PDB using semiempirical QM at the PM3 level of theory. The

calculated binding enthalpies are within 2 kcal/mol of the available experimental

data. Semiempirical methods are thus capable of calculating the enthalpic

contribution to binding.

The free energy of solvation, DGsol, has a very important role to play in binding.

The role of solvent (usually water) in binding is well known [31–36]. Water has bulk

or macroscopic properties that account for long-range effects such as the

hydrophobic effect and dielectric relaxation which are not pairwise additive. Water

also has microscopic properties in the active site of a protein where it mediates key

hydrogen bond interactions between the ligand and the protein. The entropic part of

the solvation free energy DSsolv results from an increase in the entropy of water

when it is released from the active site upon complexation. DSsolv has been

described computationally by surface area burial in protein–ligand and protein–

protein interactions to within experimental error [10,37–39]. This is a fast and

approximate way of accounting for this effect andmost protocols for the calculation

of binding free energy use surface area burial to estimate solvent entropy. The

enthalpic part of the solvation free energy arises from the electrostatic and van der

Waals interaction of water with itself and with the protein–ligand complex.

Free energy of solvation can also be calculated using molecular dynamics (MD)

simulation of the protein–ligand complex in explicit water under periodic boundary

conditions. The linear interaction energy (LIE) method estimates the effect of

solvation on protein–ligand complexation explicitly via MD simulations [40–42].

However, this method is time consuming because of the nature of the solvation

free energy. Macroscopic properties of water like the dielectric constant and

hydrophobic effect are average effects that can be accurately calculated by MD

simulation in the limit of infinite time. Therefore, long MD simulations are critical for

calculating meaningful free energies of binding which make this approach less

practical in structure-based design efforts.

The last decade has seen tremendous advances in the development of

implicit models for calculating solvation free energies [31,35,36,43–50].

The Poisson–Boltzmann (PB) equation can be used to calculate solvation free
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energies where the solvent is represented implicitly by a dielectric constant 1 (for

water 1 ¼ 78:3) and the dielectric boundary is defined by the van derWaals surface

or the solvent-accessible surface of the molecule. The Poisson–Boltzmann

equation relates the electrostatic potential FðrÞ to the charge density rðrÞ as

71ðrÞ7FðrÞ2 k 0FðrÞ ¼ 24prðrÞ ð7Þ

where k 0 is the Debye–Huckel screening constant.FðrÞ is calculated using a finite

difference scheme on a grid or using the boundary element method [50–53].

Computer programs such as DELPHI [50,54], UHBD [44], and APBS [55] solve the

PB equation using the finite difference scheme. We have also developed a

PB/SCRF methodology in our group [46]. The electrostatic part of the solvation

free energy is largely due to the polarization of the solute electron density because

of the presence of an external reaction field potential. These effects, while hard to

capture by classical atom-centered fixed point charge models, are perfectly suited

for QM methods. We capture the perturbation of the gas-phase Hamiltonian due

to the presence of a solvent reaction field using our Poisson–Boltzman based

Self-Consistent Reaction Field (SCRF) method implemented in DivCon [29].

The perturbed Hamiltonian contains the potential energy operator of the

interaction between the solvent-polarized surface chargeswith the solute electrons

and the nuclei and has been described in detail elsewhere [46]. Using these

approaches the solvation free energyGsolv is described in terms of electrostatic and

non-polar effects:

Gsolv ¼ Gelec þGnon-polar ð8Þ

The electrostatic part of solvation comes from the PB equation, while the non-

polar part comes from parameterized surface area terms [46]. Related to these

PB approaches is the Generalized Born/SA approaches that are also capable of

giving solvation free energies and are used in ligand-binding free energy

calculations [56].

The free energy change associated with changes in the ‘motion’ of the protein,

ligand, and the complex is DGmotion. When a protein and ligand form a complex,

three degrees of rotational and three degrees of translational motion are lost. The

entropy and internal thermal energy of a system is calculated from partition

functions related to the translational, rotational, and vibrational components of

binding. Standard statistical mechanical formulations are used to calculate these

contributions [57]. For protein–ligand interactions, the free energy associated with

translation and rotation towards binding has been estimated by Schwarzl et al. [33]

to be of the order of 16–18 kcal/mol for benzaminidine-based trypsin inhibitors.

The vibrational component is significantly lower at about 24.0 kcal/mol for the

same set of inhibitors. Based on this data, it appears that the loss of translation
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and rotational motions during complexation is unfavorable and is partially

compensated by the vibrational component.

The free energy due to conformational changes during complexation is DGconf.

This depends on the conformation of the ligand and the protein before and after

binding. DGconf has enthalpic and entropic components. Both protein and ligand

lose conformational entropy during binding. This enthalpic part arises from the

internal energy of the protein and the ligand. Calculating DGconf accurately is

challenging because many times the atomic resolution structure of the free protein

and ligand are unavailable. In such a scenario, assumptions are made about the

initial state of the reactants, by generally assuming that the conformation of the

protein and ligand are not very different from their conformations in the complex.

This assumption may or may not be true depending on the flexibility of the ligand

and the active site. Both ligand and receptor flexibility can be explicitly or implicitly

modeled. The conformational entropy of the ligand can be implicitly estimated

from the number of rotatable bonds that are ‘frozen’ during binding. Estimates for

the energy penalty associated with this process are 0.4–0.9 kcal/mol [58].

However, many times the number of rotatable bonds are fit in order to optimize the

correlation with experiment [59,60]. For example, Ishchenko and Shakhnovich

found the optimized value for an sp3–sp3 bond as 1.2 kcal/mol and an sp3–sp2

bond as 20.5 kcal/mol. For the protein, the loss of conformational flexibility of the

amino acid side-chains that are involved in binding can be estimated from the

entropic scale derived by Creamer [61] for all 20 amino acids. The internal energy

change of the ligand and the protein during complexation can be calculated using

any potential function. Molecular mechanics potentials derived from AMBER,

CHARMM, MMFF, etc., are routinely used for such calculations. In a recent study,

Lin et al. account for receptor and ligand conformational flexibilities using the

‘relaxed receptor scheme’. They used MD simulation to generate an ensemble of

receptor conformations [62]. The ligand was then docked into the active site of the

receptor ensemble using a docking program. The binding free energy was

calculated using the Molecular Mechanics/Poisson–Boltzmann Surface Area

(MM/PBSA) [15,63–65] protocol. The interesting finding of this study was that the

binding free energy of the ligand calculated using this method varies over 3 kcal/

mol (which is a 100 to 1000-fold difference in the dissociation constants). Thus,

microscopic simulations to estimate the DGconf can be a source of uncertainty in

the computation of the binding free energy.

3. SCORING FUNCTIONS

Master equations are used to guide the development of scoring functions. Scoring

functions are also designed to predict binding modes of inhibitors and discriminate

between true (‘native’) and false (‘decoy’) binding modes. Scoring functions have

Calculating Binding Free Energy in Protein–Ligand Interaction 119



been reasonably successful in virtual High Throughput Screening (vHTS)

experiments in drug discovery, where consensus schemes have been used to

dock a database of small molecules into protein-derived pharmacophore [69–71].

We will review scoring functions only from the point of view of affinity ranking or

binding affinity prediction. However, there are numerous reviews on scoring

functions and their ability to predict binding modes [72–74]. Scoring functions

include either all or some of the important energetic contributions discussed

above. Most of the present generation of scoring functions discard a more rigorous

representation of the binding free energy and opt for an empirical expression that

takes into account only a few dominant contributions. This is often due to the

requirement of these functions to be fast and reasonably accurate in predicting

binding modes or rank potential leads in virtual screening experiments often from a

rigid receptor structure. Since different scoring functions emphasize different

contributions to the free energy of binding, consensus scoring schemes with

multivariate statistical analysis methods are used to improve structure-based

virtual screening [75]. Present generation scoring functions can be categorized

into: physical chemical, empirical, and knowledge based. This section will review

some of the main scoring functions that have been reported.

3.1. Physical chemical

The MM/PBSA method for calculating the free energy of binding is physically

based. The main equation for MM/PBSA calculation can be summarized as

DGbind ¼ DGMM þ DGC
sol 2 DGP

sol 2 DGL
sol 2 TDS ð9Þ

where

DGMM ¼ DGele
int þ DGvdw

int ð10Þ

The electrostatic and van der Waals interaction energies between the ligand

and the protein are calculated using a molecular mechanics potential like AMBER

[14] or CHARMM [13]. The electrostatic part of the solvation energy is calculated

using the Poisson–Boltzmann method, and the non-polar part is calculated from

the surface area burial. The TDS term is calculated using the usual statistical

mechanical partition functions [57]. All the parts that contribute to binding in the

above equation are ensemble averages. Molecular dynamics simulations of the

complex are carried out to calculate the MM/PBSA energy of a finite number of

snapshots from the ensemble. Details of the simulation such as treatment of long-

range electrostatics and cutoff for non-bonded interactions are important factors

that impact the quality of the prediction in such calculations. MM/PBSA-based

K. Raha and K.M. Merz Jr.120



methods have also been used with docking simulations to calculate the binding

affinities of ligands docked into a hydrophobic cavity created in lysozyme [66].

Kuhn and Kollman studied nine streptavidin and avidin ligands and have

calculated the free energy of binding using the MM/PBSA protocol. They obtained

very good agreement with the experiment (correlation coefficient R2 of 0.92) [63].

This study sheds light on the nature of the compensatory effects in binding. In

particular, the role of electrostatics is quite revealing. MM/PBSA studies in the

literature consistently find the total electrostatic interaction to be unfavorable

towards binding [15,63–65]. While the gas-phase interaction between the protein

and the ligand is favorable, the solvent-screened electrostatic interaction is

unfavorable. This is due to the large desolvation penalty that the ligand and the

protein pay during complex formation. Hence, it appears that the strength of

binding is driven by short-range (van der Waals) and long-range non-polar

(hydrophobic) forces. This observation has also been reported elsewhere in the

literature [67]. Indeed the hydrophobicity-based computational model HINT that

used parameters derived from experimental Log P values for small organic

molecules was shown to correlate with the binding free energy for 53 protein–

ligand complexes with a standard error of 2.6 kcal/mol [68]. For the case of

electrostatic interactions in solution, the desolvation penalty paid by the ligand and

the protein offsets the favorable electrostatic interactions between them in the

complex. Moreover, the ionization state(s) of the ligand and binding pocket are

often assigned at physiological pH, or as observed in the apo-crystal structure of

the protein. Almost all examples of binding affinity calculation do not consider the

effect of the changing environment as a result of protein–ligand interactions in

terms of shifted pKas of the ionizable groups or the effect of polarization on the

ionization state of the functional groups in the protein and ligand. The errors due to

these approximations have not been quantified in the literature since it is non-

trivial to calculate the perturbed pKas of the ligand and the protein side-chains in

the active site. Therefore perturbed pKas and ionization states can only be

assigned by empirical observations which often require detailed analysis of the

active site and its electrostatic properties. In spite of all the advances in this field,

the treatment of electrostatic interaction energies is still a significant challenge and

has scope for further development.

Recently, we have developed a quantum mechanics based scoring function

that takes into account the role of metal ions in binding. We use semiempirical QM

to calculate the gas phase electrostatic interaction energy between the protein and

the ligand at the AM1 level of theory using DivCon [29]. The solvation correction to

the gas phase electrostatic energy was calculated using our PB/SCRF method

that accounts for polarization of the solute charges in the presence of a solvent

reaction field [46]. The attractive/dispersive part of the non-polar interaction was

calculated using a Lennard-Jones potential based on AMBER force field

parameter set. The solvent entropy was calculated from surface area burial due
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to complex formation. The conformational entropy was evaluated from the number

of degrees of freedom that were lost in the small molecule and side chains in the

active site during binding. Finally, the active site of the uncomplexed protein was

modeled with a zinc-bound water molecule. Using this scoring function, we

successfully predicted the binding affinity for 23 ligands bound to the zinc

metalloenzymes carbonic anhydrase and carboxypeptidase [21]. We achieved

good agreement with available experimental binding free energies (R2 of 0.69

ðR ¼ 0:83Þ and a mean standard error of 1.5 kcal/mol). Another important

observation from this study was the observed charge transfer between the

protein and the ligand of the order of 1e for carbonic anhydrase, and 0.5e for

carboxypeptidase.

3.2. Empirical scoring functions

These scoring functions relate the binding affinity to weighted contributions from

different energy terms that are thought to play a role in binding. Often these terms

are simple potentials such as the van der Waals bump potential or a hydrogen

bond potential based on geometric measures such as distance and angle

[7,76–86]. In some scoring functions, individual terms are calculated using force

field based physical potentials [11,77]. However, the coefficients for these terms

are derived by regression methods that are used to fit the observations to

experimental binding affinities, either for a set of ligands bound to one target

receptor or for ligands that are bound to a diverse set of protein targets. The

coefficients are optimized to maximize the correlation between computed and

experimental binding affinities in the training set. Linear and non-linear regression

methods can be used to derive the coefficients for the different terms in the scoring

function. The model for prediction, which is a combination of the weighted terms, is

then applied to a prediction set [78,80,81,85]. Empirical scoring functions trained

on a particular protein target work best for calculating the relative binding affinity of

ligands that bind to the same target.

AUTODOCK is an example of a scoring function that makes use of force-field

equations and parameters to calculate the binding energy. The binding free

energy is described as a sum of the intermolecular interactions between the ligand

and the protein and the internal steric energy of the ligand [11,76]. It can be

represented by the equation:

EAUTODOCK ¼ Evdw þ EH-bond þ Eelectrostatic þ Einternal ð11Þ

The van der Waals interaction is calculated using a LJ 6-12 potential between

the protein and the ligand atoms. The steric part of the H-bond term is calculated

using a LJ 10-12 potential. The intermolecular electrostatic interaction is

calculated using Coulomb’s law. The internal energy of the ligand is a sum of
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steric and electrostatic interactions calculated for non-bonded ligand atoms. LUDI

is an empirical scoring function that was developed by Bohm [78]. It calculates

binding free energy as a sum of polar and non-polar interaction terms. The polar

interactions are represented as a sum of the H-bond interactions while non-polar

interactions are estimated from hydrophobic burial. LUDI differentiates between

neutral and ionic (salt-bridge) interactions in its hydrogen bond term. It also has an

entropic term that accounts for the loss of rotatable bonds in the ligand, which are

presumed ‘frozen’ in the active site of the protein. ChemScore is similar to LUDI

but has an additional term that accounts for metal ion coordination in the active site

[76]. F-Score is similar to LUDI and was developed to discriminate between native

and decoy binding modes [60].

D-Score is implemented in DOCK [7,77]. It has a very simple form based on a

LJ 6-12 interaction term and a Coulombic interaction term between the protein and

the ligand atoms. It only accounts for the DGint component in the master equation.

G-Score is a scoring function implemented in GOLD [87]. It was parameterized for

binding mode prediction rather than ranking binding affinities of ligands. It is also

force field based and has the following form:

Etotal ¼ Ecomplex þ EH-bond þ Einternal ð12Þ

Ecomplex is calculated using a LJ 8-4 potential. The H-bond interaction energy is

calculated using a function that depends on the type and geometry of the donor

and acceptor involved in the interaction. The internal energy is calculated for the

ligand and is a sum of steric interactions calculated using a LJ 6-12 potential and a

torsional energy term [87]. XScore is an empirical scoring function that combines

three individual scoring schemes HSScore, HPScore and HMScore that are

differentiated by their interpretation of the hydrophobic effect [85]. The common

terms in these three schemes are the van derWaals term calculated using a LJ 8-4

potential, a hydrogen bonding term, and a conformational entropy term

represented by the number of rotatable bonds. These different terms were

parameterized to reproduce experimental binding affinities.

3.3. Knowledge-based scoring functions

This class of scoring functions is based on statistical potentials derived from a

database of protein–ligand complexes. The PDB has been used to design

statistical potentials for both protein structure prediction and protein–ligand

interactions [88–90]. Statistical potentials rely on the occurrences or counts of

interacting atom pairs from the PDB. It is assumed that the structures of protein–

ligand complexes in the PDB are in a state of thermodynamic equilibrium that

represents the global free energy minimum of the complex and the distribution of

the atoms in the complex obey Boltzmann’s law. Hence, probabilities of atom pair
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occurrences in the PDB can be related to the potential of mean force (PMF) of

interaction between the ligand and the protein. Knowledge-based potentials (KBP)

are first built from a structural database by calculating distance dependent

probability distributions of atom-pairs. This can then be used to calculate the

Helmholtz free energy ðAijÞ or PMF of atom-pair interaction by

AijðrÞ ¼ 2kBT ln ½rijðrÞ=rijðbulkÞ� ð13Þ

where rijðrÞ is the number density, or the pair correlation function of an atom-pair of

type ij at a distance between r and rþ dr; while rij(bulk) is a normalization factor

that is the bulk density for the atom-pair when they are not interacting in the range

between r and rþ dr: Atom-pairs are non-interacting when for a particular distance

‘bin’ atom type i and atom type j are not interacting with each other but are

interacting with some other protein or ligand atom. Pair correlation functions for

atom types can thus be calculated at different distance bins from the database.

The pairwise nature of such a potential makes it easy to use because the pre-

computed pair potentials are simply summed up for all protein–ligand atom pairs

to form a score that relates to the binding affinity. Various groups have designed

KBPs but there are differences in the approach in terms of the normalization

factors and implicit inclusion of effects such as desolvation. In this section we

briefly review the main KBP and their predictive capability.

Wallqvist et al. proposed a KBP based on receptor–ligand contact preferences

for different atom types [91]. This scoring function used a surface area based

packing score and atom–atom preference for each atom pair. Verkhivker et al.

designed the KBP piecewise linear potential (PLP) and then used it to compute

binding free energies of HIV-Protease inhibitors [84,92]. PLP divides the distance

dependent potential function into linear pieces for calculating the interaction

between two atom types. The interaction types considered are steric interactions

that depend on the radii of the interacting atoms and hydrogen bond interactions

that include an angle dependent scaling function [84]. DeWitte and Shakhnovich

developed the Small Molecule Growth (SMoG) algorithm that used KBPs to

estimate the free energy of binding [90]. Ishchenko and Shakhnovich [59]

redefined the reference state and the normalization of contact probabilities based

on composition of the atom types in the database. This was implemented in

SMoG2001 that was successfully used in a computational combinatorial

experiment to predict two enantiomeric ligands that bound to Human Carbonic

Anhydrase with high potency [71]. PMFScore is a KBP developed by Muegge and

Martin, which has been validated to predict the binding affinity across a wide range

of protein targets [93]. The main feature of this KBP is similar to SmoG, where the

number densities of atom-pair interactions over radial distance bins were used to

calculate the PMF of interaction between the interacting atom-types. However,

PMFScore also has an important ligand volume correction term that implicitly

captures the desolvation effect in the pair-potentials. Binding affinities calculated
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using PMFScore showed a good correlation with experiment with an R2 of 0.61

and standard deviation of 1.8 log Ki units for a set of 77 protein–ligand complexes

representing a diverse set of protein targets and ligands. Endothiapepsin inhibitors

(R2 ¼ 0:22; SD ¼ 1:89 log Ki units) and sugar binding proteins (R2 ¼ 0:48; SD ¼

0:86 log Ki units) fared poorly with this KBP. Gohlke et al. designed DrugScore for

recognizing binding modes, predicting binding affinities, and to identify hotspots in

protein– ligand complexes [79]. In addition to distance dependent pair

preferences, they also included a solvent accessible surface area dependent

term for protein and ligand atoms. They demonstrated the physically intuitive

behavior of pair potentials with respect to minima of atom pair interactions. The

success of DrugScore is good compared to others. It succeeds in predicting the

binding affinities in log Ki units for serine proteases ðR2 ¼ 0:86Þ and

metalloproteases ðR2 ¼ 0:7Þ: Interestingly this KBP, like PMFScore, also fares

poorly in predicting binding affinities for sugar binding proteins ðR2 ¼ 0:22Þ and

endothiapepsin ðR2 ¼ 0:30Þ: This suggests that KBPs are superior to empirical

scoring functions because they use fewer parameters and they show good

prediction for a diverse range of protein–ligand targets. However, KBPs capture

the bulk or macroscopic features of the binding phenomenon. They account for

important features of binding such as the hydrophobic effect and solvation from

the shape of the active site, penetration of the ligand and the statistical nature of

atom-pair interactions. Also, protein–ligand complexes used for validating KBPs

have strong molecular weight dependence. Scoring with KBPs perform well for the

serine protease class, which is a set that has a strong molecular weight

dependence. The R2 for a fit of molecular weight of the inhibitor versus the binding

free energy for the 16 serine protease inhibitors used in the validation of

PMFScore is 0.86. On the other hand the binding free energy of endothiapepsin

inhibitors have a very weak molecular weight dependence ðR2 ¼ 0:29Þ: Another

drawback of the KBPs is that if an interaction is not statistically significant in the

databank, the scoring function will fail to take it into account. Hence while the role

of metal ions in binding is important, KBPs completely ignore such interactions

since their occurrences in the database are not statistically significant [93].

4. CONCLUSIONS

Themajor conclusions that can be drawn from this revieware as follows: theoretical

treatment of the phenomenon of protein–ligand interaction has scope for further

improvement. While our understanding of the basics is satisfactory, computational

methods that can accurately calculate the free energy of binding based on

theoretical understandingare still lacking. Specifically, electrostatic interactions are

far from being well understood or well characterized and their role in binding based

on review of the current literature is unclear. Electrostatic calculations involve

significant approximations or simplistic treatments that ignore many features of
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these interactions between the solvent and the participating species. Moreover,

understanding the role electrostatics play in altering the protonation state of the

ligand and/or protein is in its infancy. Validation is still a major issue, with no widely

accepted standard ‘test’ set being available to rigorously test scoring functions.

This, combined with many structural problems with available PDB structures, is a

major bottleneck for systematic improvement. The role molecular weight plays in

many scoring functions is also a source of concern. Concerted, well defined, and

organized efforts are clearly needed to explore the complex role of electrostatics

and other interactions in the phenomenon of binding.
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1. INTRODUCTION

Over the last 5 years, the integration of ADMET (absorption, distribution,

metabolism, excretion and toxicity) studies into the early phases of drug

discovery has been universally implemented within the pharmaceutical industry.

The motivation for this paradigm shift has been the requirement to reduce what is

termed the ‘attrition rate’, i.e., the number of drug candidates that fail during

late-stage development or clinical trials due to poor ADMET properties. The

proportion of failures ascribed to this cause is often quoted as being in the region

of 40–50%. If as many as possible of these expensive failures can be identified

and eliminated early in the drug discovery process, there is considerable scope

for improving the efficiency and cost-effectiveness of the industry. The maxim

‘fail fast, fail cheap’ is now firmly embedded in the minds of all drug discovery

research managers.
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To this end, a battery of in vitro ADMET assays is now routinely applied during

the hit-to-lead and lead optimization phases of drug discovery [1]. To allow timely

testing of the numbers of compounds typically of interest at these stages of a

project, many assays have been developed in automated, high-throughput

formats permitting the testing of hundreds or thousands of compounds per week.

In spite of these technical and methodological advances, in vitro assays still

require that time, effort and money be invested in the synthesis or acquisition of

the compounds in question.

The ultimate goal of computational research into ADMET prediction is to be

able to identify compounds liable to later stage failure before they are even

synthesized, bringing even greater efficiency benefits [2]. While this ‘Holy Grail’ is

still beyond the grasp of the current generation of in silico approaches, it is

nonetheless attractive enough for much research effort to have been poured into

its attainment in recent years. In what follows, we attempt to survey the current

state of the art in the computational prediction of some key ADMET properties and

to identify some of the current obstacles on the road to what some reviewers have

named ‘prediction paradise’ [3]. Given the breadth of the field and the limited

space, the treatment here will necessarily be brief. However, some excellent

reviews have been published in the not-too-distant past and the reader is referred

to these for further details [3,4]. Reviews specific to particular aspects of ADMET

will be cited in the relevant sections.

2. INTESTINAL PERMEABILITY

For reasons of ease of administration and patient compliance, there is an

overwhelming preference for drugs to be orally bioavailable. One of the key

requirements for oral bioavailability is that a compound be capable of

permeating the intestinal epithelium, crossing from the gut into the systemic

circulation. For obvious reasons, human data pertaining to permeability are fairly

sparse, but those that are available have been modeled by Winiwarter et al.

using Partial Least Squares (PLS). In their initial work [5], they discovered that

the permeability data could be well modeled by polar surface area, a count

of hydrogen bond donors and a lipophilicity descriptor ðC log PÞ: Similar

results were obtained in more recent work [6], which examined a broader range

of hydrogen-bonding descriptors. One of the resulting models is shown in

equation (1)

log Peff ¼ 23:1282 0:0088PSA2 0:215HBDþ 0:172 log PCr

n ¼ 13; r 2 ¼ 0:945; q2 ¼ 0:932 ð1Þ
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where log Peff is the logarithm of the human effective intestinal permeability

measured by a regional jejunal perfusion system [7], PSA the polar surface

area, HBD a count of the number of hydrogen bond donors and log PCr the

calculated logarithm of the octanol/water partition coefficient calculated using

the Ghose–Crippen method [8]. This model was able to predict the log Peff

values of a small ðn ¼ 4Þ test set with an error of less than 0.5 log units. While

0.5 log units is quite a large error on the scale of the log Peff training set data,

which range from 25.5 to 23.0, given the high variability in the experimental

data, it might be unrealistic to expect a model to perform much better than this.

Given the difficulty in obtaining human permeability data, the pharmaceutical

industry has resorted to a surrogate model for permeability – the Caco-2 cell

monolayer [9]. While it is now possible to measure Caco-2 permeability in high-

throughput assays, only relatively small collections of data are currently available

in the public domain. Efforts to generate predictive models from these data have

been recently reviewed by the author [10] and so only a single illustration will be

given here. One of the difficulties facing modelers is the notorious inter-laboratory

variation in Caco-2 permeability values, which makes the compilation of data from

different experimental sources a risky endeavor. For this reason, Artursson and

co-workers [11,12] have generated a relatively small set of high-quality Caco-2

permeability data ðlog PappÞ in their own laboratories and used it as the basis for

predictive modeling. In the most recent work [12], a combination of partitioned

molecular surface area descriptors with PLS analysis led to the development of a

model showing good training set statistics ðn ¼ 13; r2 ¼ 0:93; q2 ¼ 0:83Þ and

reasonable performance on an external test set ðn ¼ 26; RMSE ¼ 0:85Þ: An

analysis of the model showed that hydrogen-bonding features (e.g., PSA and the

surface area specifically attributable to doubly bonded oxygens and N–H groups)

were the primary determinants of Caco-2 cell permeability.

As a final remark in this section, it is worth stressing in passing that the Caco-2

model of intestinal permeability is just that – a model – and so data from Caco-2

cell assays (and predictions based upon them) may need careful interpretation,

especially when Caco-2 cell permeability is (predicted to be) low. In such

instances, it is still possible that compounds may exhibit reasonable intestinal

permeability due to the morphological differences between the Caco-2 cell

monolayer and the intestinal epithelium [9].

3. AQUEOUS SOLUBILITY

Although not always thought of as an ADMET property, the aqueous solubility of a

compound is a key factor in determining its oral absorption – if a compound is

poorly soluble in the gut, then only a small fraction of it will be available to

permeate the intestinal epithelium. Consequently, the interest in predicting
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aqueous solubility has intensified over the last few years, not least due to the work

of Lipinski [13,14], who has brought to the fore the plethora of issues that can

result from poor compound solubility. It is often forgotten that one of the intentions

of the now ubiquitously adopted ‘rule-of-5’ is to identify compounds with poor

solubility, not just permeability [15]. Although numerous attempts have been made

to generate predictive models for aqueous solubility (Lobell and Sivarajah [16]

recently counted at least 17 different approaches), it is proving a difficult quantity

to predict accurately [17–20]. The publicly available data are biased towards non-

drug-like compounds of lower molecular weight and lipophilicity than many

compounds of interest in drug discovery. Additionally, the solubility values have

often been determined using different protocols. It has been estimated that the

average experimental error in log S (log of molar solubility) measurements is of the

order of 0.6 log units, so computational models should not be expected to better

this in their performance [17]. In what follows, recent work in this area is

summarized.

In an attempt to move away from non-drug-like training sets, Lobell and

Sivarajah [16] assembled a training set of 202 drug-like compounds and a test set

of 442 compounds. These compounds were determined to be predominantly

uncharged at the pH at which the solubility measurement was carried out.

From the training set, a simple linear model with a single lipophilicity descriptor

ðA log P98Þ was derived ðr2 ¼ 0:64; MAE ¼ 0:54Þ: When applied to the test set,

the simple A log P-based equation outperformed a set of nine other solubility

models, many of which had been trained on non-drug-like compound sets.

Cheng and Merz [21] have provided a thoughtful discussion of the issues

surrounding solubility prediction and presented a fast QSPR model developed

using the Cerius2 software [22]. The model was trained on 775 compounds with an

r2 value of 0.84. Among the eight descriptors in the regression equation were

lipophilicity, the product of the number of hydrogen bond donors and acceptors

(believed to be related to the crystal-packing energy of a solute), and various

topological indices coding for molecular size. When applied to a test set of 1665

compounds, the model was able to predict log S values with an unsigned error of

0.77 log units, which appears respectable in the light of the comments above

regarding the likely magnitude of experimental error.

Using data for 1293 organic compounds, Yan and Gasteiger [23,24] have

developed solubility prediction models using two different modeling techniques

(multiple linear regression (MLR) and a back-propagation neural network (BPNN))

and two different sets of descriptors. In the first paper, each compound was

characterized by a radial distribution function code derived from its 3-D structure

[25], together with eight additional descriptors encoding features such as the

relative aromatic/aliphatic balance in a compound and its hydrogen-bonding

capacity. Using these descriptors, the BPNN model was able to predict the log S

values of a 496-compound test set with a standard deviation of 0.59 log units [23].

D.E. Clark136



More recently, the same set of compounds has been represented by 18

topological descriptors. In this case, on a 552-compound test set, the BPNNmodel

was able to predict log S with a standard deviation of 0.52 log units [24].

Group contribution approaches have been used successfully in solubility

prediction in the past (e.g., [26]). More recently, using a dataset of similar size to

that of Yan and Gasteiger, Hou et al. [27] used an atom-contribution approach to

generate a solubility prediction model. A set of 76 atom types was employed

and the resulting model was shown to perform well on a small, but widely used,

test set of 21 compounds ðr ¼ 0:94; s ¼ 0:84; MAE ¼ 0:52Þ: The authors

suggest that using atoms, rather than molecular fragments, as descriptors may

help to eliminate the ‘missing fragment’ problem that bedevils group contribution

approaches.

Support Vector Machines (SVMs) constitute an emerging technique for

regression and classification across the spectrum of ADME properties. Their use

for solubility prediction has been reported by Lind and Maltseva [28]. In this work,

data from a training set of 883 compounds characterized by molecular fingerprints

were used to generate a model ðr2 ¼ 0:88; RMSE ¼ 0:62Þ: The model was then

applied to predict the log S values of a test set of 412 compounds ðr2pred ¼ 0:89;

RMSE ¼ 0:68Þ:

4. HUMAN INTESTINAL ABSORPTION

The prediction of the fraction of a drug absorbed in humans (usually denoted HIA

or FA) has been aided in recent years by the Herculean efforts of Abraham and

co-workers who carefully compiled and analyzed a set of FA data for 241 drugs

from the literature [29]. (Notably, this article was awarded the Ebert Prize, given by

the American Pharmaceutical Association for the best paper published in

J. Pharm. Sci. in 2001.) Of the 241 data, 169 were deemed to be reliable and these

were used to generate a QSPR model using Abraham’s solute descriptors

FA ¼ 90þ 2:11Eþ 1:70S2 20:7A2 22:3Bþ 15:0V

n ¼ 38; r2 ¼ 0:83; r2ðCVÞ ¼ 0:75; s ¼ 16; F ¼ 31 ð2Þ

where E is an excess molar refraction, S the dipolarity/polarizability, A the

hydrogen bond acidity of the compound, B is the hydrogen-bond basicity of

the compound and V its characteristic (McGowan) volume. The model suggests,

in keeping with other work, that increasing the hydrogen-bonding capacity is

deleterious to facile intestinal absorption. The performance of this model on the

test set of 131 compounds was quite impressive: an RMSE of 14% and an

average absolute error (AAE) of 11%. Given the inherent variability in
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experimental absorption data, this level of prediction error would seem to be quite

respectable. One point to note here, which has been well made by Burton et al.

[30] in their excellent perspective on absorption prediction, is the skew in the

data set towards well-absorbed compounds (of the 241 compounds, 108 have

FA . 90%).

This data set has been seized on by other workers and used to help generate a

number of other models. Deretey et al. [31] used two descriptors generated by the

MOE program [32] to create a non-linear absorption model based on 124 of the

Abraham data. The descriptors in question were a total hydrogen bond descriptor,

taken as the sum of donor and acceptor atomic centers computed in MOE,

and S log P; which is the logarithm of the octanol–water partition coefficient,

computed using the method of Wildman and Crippen [33]. Additionally, Sun [34]

developed a Partial Least Squares Discriminant Analysis (PLS-DA) model based

on a set of atom-type descriptors that was able to classify the 169 compounds

from Abraham’s work into three classes with a good level of accuracy ðr2 ¼ 0:92Þ.

Recursive partitioning tools within the Algorithm Builder package [35] were

applied by Zmuidinavcius and co-workers to a large set of FA data [36]. The

decision tree built for a set of molecules in the molecular weight range 255–580

featured three descriptors: topological polar surface area, Abraham’s hydrogen

bond acidity (a measure of hydrogen bond donating ability) and calculated

lipophilicity. Such descriptors appear frequently in absorption/permeation models

and it is particularly interesting to note the presence of a descriptor relating to

hydrogen bond donation (cf. equation (1)). There is a growing body of evidence

that hydrogen bond donors are more deleterious to absorption than acceptors.

Oprea [37] has hypothesized that this is due to the favorable interactions that can

occur between hydrogen bond donors and the ester moieties located within lipid

headgroups.

Hydrogen bond donors also figure in the model reported by Klopman et al. [38].

The count of OH þ NH groups was used along with 36 structural fragments

generated by the CASE program [39] to model FA data from 417 compounds. On

a 50 compound test set, the prediction statistics were r2 ¼ 0:79; s ¼ 12:32: Again,

this level of accuracy seems in keeping with the probable level of experimental

error in the data.

More detailed reviews of absorption prediction are available in some recent

publications [10,40].

5. HUMAN ORAL BIOAVAILABILITY

Fewer attempts have been made to predict human oral bioavailability than oral

absorption, probably because of the greater complexity inherent in the former,

which includes the effects of first-pass metabolism in the gut and liver. For this
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reason, it is necessary to delve a little deeper into the past to obtain a sense of

progress.

Andrews et al. [41] collated a set of 591 structures with human oral bioavail-

ability data from public and proprietary sources and used stepwise regression to

create a model in which compounds were described by 85 substructural

fragments. The r2 value for the model was 0.71 and the cross-validated r2

(leave-one-out) was 0.63, indicating a reasonable level of internal predictivity. The

RMSE value for the model was 18%, which in the context of an experimental

RMSE of 12% is encouraging. For more complete validation, application to an

external test set is required.

A classification, rather than regression, approach was adopted by Yoshida and

Topliss [42] to model the bioavailability of 232 drugs. This test set was split into

four classes. A novel parameter D log D ðlog D6:5 2 log D7:4Þ was developed that,

together with 15 substructural fragment descriptors, was able to classify 71% of

the drugs correctly and 97% to within one class. Using a separate test set of 40

compounds, a classification accuracy of 60% (95% to within one class) was

obtained. The difficulty in applying this model in a purely in silico manner is the

requirement for accurate prediction of log D; which in turn requires the accurate

prediction not only of log P but also for ionizable species, pKa:

More recently, Pintore et al. [43] have expanded the data set used by Yoshida

and Topliss and split it into four classes in the samemanner. The compounds were

characterized by a set of 164 molecular descriptors. Using a hybrid genetic

algorithm/stepwise method for descriptor selection and adaptive fuzzy partitioning

for classification, a superior performance was obtained on the Yoshida and

Topliss set (82% correct classification on the training set and 75% on the test set).

A good level of performance was also observed on the expanded set of 432

compounds (70% correct classification).

Other work pertaining to bioavailability prediction has been reported by Turner

et al. [44,45] and Bains et al. [46]. Mandagere and Jones [47] have recently

reviewed the prediction of bioavailability both with in vitro and in silico techniques.

A previously cited review is also of relevance [40].

6. ACTIVE TRANSPORT

To date, predictive approaches to permeability/absorption prediction have largely

confined themselves to compounds that are transported across the intestinal

mucosa by predominantly passive (usually transcellular) absorption mechanisms.

However, there are well-known classes of drug (e.g., many ACE inhibitors and

beta-lactam antibiotics) that rely on active transport systems to convey them

from the gut to the bloodstream. Our knowledge of these transporters and

understanding of their implications for drug delivery is growing all the time.
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Of the active transporters identified to date, most attention has been focused on

Peptide Transporter 1 (PepT1), a member of the proton-coupled, oligopeptide

transporter (POT) family [48]. Initial modeling work on PepT1 substrates was

carried out by Swaan et al. [49,50] and Bailey et al. [51]. More recently, Gebauer

et al. [52] developed CoMFA and CoMSIA models from a set of 79 dipeptide

PepT1 substrates for which affinity data had been generated under consistent

conditions. Both approaches yielded models with good statistics (CoMFA: r2 ¼

0:901; q2 ¼ 0:642; CoMSIA: r2 ¼ 0:913; q2 ¼ 0:776) and when applied to a test

set of 19 compounds, all but one of the predicted affinity values were within 1 log

unit of the experimental result. By analyzing the CoMSIA maps, six recognition

elements for binding to PepT1 were proposed.

A fairly recent review of other modeling efforts in this area has been provided by

Zhang et al. [53].

7. EFFLUX BY P-GLYCOPROTEIN

Efflux by P-glycoprotein (P-gp), the most extensively studied of the ATP-binding

cassette (ABC) transporters, is a serious liability for potential drug compounds,

particularly those seeking to cross the blood–brain barrier (BBB) [54]. The

considerable challenges facing modelers attempting to create predictive models

for interaction with P-gp have been delineated by Stouch and Gudmundsson [55]

and Seelig et al. [56]. A brief review of recent work has been presented by Ekins

[57] and so only subsequent developments will be covered here.

Gombar et al. [58] used a training set of 95 compounds (63 substrates, 32 non-

substrates) with efflux data derived from MDR1-MDCK transport assay to derive

a linear discriminant function capable of accurately classifying the compounds

as substrates/non-substrates. The function comprised 27 molecular descriptors

including E-state indices, computed molar refractivity and lipophilicity. When

applied to a test set of 58 compounds (35 substrates, 23 non-substrates), the

model proved able to identify the substrates very accurately (33/35 correct)

and the non-substrates with reasonable accuracy (17/23 correct). As a simple

rule-of-thumb, Gombar et al. report that compounds with a molecular E-state

(MolES, representing the molecular bulk of a compound) value of .110 are

likely to be P-gp substrates, while those with a MolES value ,49 are likely to be

non-substrates.

8. BLOOD–BRAIN BARRIER PERMEATION

Many QSAR approaches to the prediction of BBB permeation have been

developed in recent years [59]. The field has been reviewed fairly recently by the
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author [60] and so only newer work will be discussed here. Generally speaking,

approaches to date can be divided into two classes: regression models seeking

to predict log BB (¼ log([brain]/[blood])) and classification models seeking to

classify compounds correctly as BBBþ (i.e., brain permeating) or BBB2 (i.e., non-

brain-permeating). Activity in both these directions continues.

Hou and Xu [61] have reported a log BB model based on a training set of 78

compounds that uses only three descriptors: calculated lipophilicity, highly

charged polar surface area and excessive molecular weight greater than 360

ðr2 ¼ 0:77; s ¼ 0:36Þ. The combination of polar surface area and lipophilicity has

been shown to be useful for predicting BBB permeation by a number of workers in

the past [59]. Applied to two test sets of 14 and 23 compounds, the model

predicted the log BB values of the compounds with RMSEs of 0.26 and 0.48,

respectively. Hutter [62] has developed a somewhat more computationally

expensive approach for log BB prediction using descriptors derived from semi-

empirical molecular orbital (AM1) calculations. Key variables in the final

regression equation ðr2 ¼ 0:87; s ¼ 0:31Þ included properties derived from the

electrostatic potential, hydrogen bond donor and acceptor capacities, shape and

molecular flexibility. Other log BB prediction models have been reported recently

by Sun [34] and Subramanian and Kitchen [63].

In recognition of the important role that P-gp plays at the BBB, a classification

approach has been followed by Adenot and Lahana [64] who assembled a data

set comprising 1336 BBBþ compounds, 259 BBB2 compounds and 91 P-gp

substrates (which were either BBBþ or BBB2). Discriminant functions for BBB

permeation and P-gp substrate/non-substrate classification were developed

allowing the simultaneous evaluation of the efflux liability and brain permeation

characteristics of a compound. When considering just brain permeation, a simple

rule-of-thumb emerged: most BBB2 compounds have more than eight

heteroatoms (where a heteroatom may be N, O, S, P or halogen) while most

BBBþ compounds have fewer than nine heteroatoms. A similar observation has

been made by Norinder and Haeberlein [59].

An alternative, but less commonly used to date, measure of brain permeation is

log PS (where PS denotes a permeability–surface area product). Unlike log BB,

which represents an equilibrium distribution between brain and blood, log PS is a

direct measure of brain permeability and, in principle, is not confounded by plasma

and brain tissue binding. It has been suggested that log PS may therefore be a

more relevant parameter in brain permeation studies [65]. A recent paper has

reported a QSPR model based on log PS data obtained for 23 passively

transported, drug-like compounds [65]

log PS ¼ 22:19þ 0:262 log Dþ 0:0683vsa_base2 0:009TPSA

n ¼ 23; r2 ¼ 0:74; s ¼ 0:5; F ¼ 18:2 ð3Þ
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where log D (at pH 7.4) was calculated by ACDlabs software [66], vsa_base is the

van der Waals’ surface area due to basic atoms and TPSA is the topological polar

surface area – the latter descriptors being computed by MOE [32]. Here again, the

combination of polar surface area and lipophilicity descriptors is noteworthy.

9. PLASMA PROTEIN BINDING

There have been relatively few attempts at modeling plasma protein binding

(PPB), and most of those reported have focused on human serum albumin (HSA),

which is the most abundant protein in plasma although certainly not the only one

responsible for PPB [4]. In silico approaches to PPB (HSA) prediction have been

critically reviewed in the recent past by Lombardo et al. [4] and Colmenarejo [67].

One paper to emerge subsequent to these reviews is that of Hajduk et al. [68].

This group measured the binding affinity of 889 diverse compounds to the domain-

3A of HSA (which contains the diazepam binding site) using heteronuclear NMR

correlation and fluorescence spectroscopy. A moderate correlation between

affinity and C log P was observed ðr2 ¼ 0:56Þ; which reflects medicinal chemistry

experience [69]. A superior model was obtained by adopting a group contribution

approach using 74 structural fragments. The resulting model exhibited good

statistics ðr2 ¼ 0:94; q2ðleave-several-outÞ ¼ 0:90Þ and a mean error in predicted

binding affinity of only 0.11 log units, although no validation on an external test set

was reported. The interpretability of the model is attractive inasmuch as the

coefficients for the fragments comprising the model should provide a

straightforward guide when seeking to modify compounds to modulate their

HSA binding. In other recent work, Hall et al. [71] used the chromatographic

retention data generated by Colmenarejo et al. [70] to generate a predictive QSPR

comprising various E-state and molecular connectivity indices.

10. METABOLIC STABILITY

A variety of in vitro assays for the high-throughput assessment of the metabolic

stability of compounds have been developed in recent years, including those

based on hepatocytes and various subcellular fractions such as microsomes and

S9 [72]. As data from these have become available, publications describing

attempts to generate predictive models have begun to appear [73].

Shen et al. have reported QSPRmodels for metabolic stability based on percent

turnover (at 30 min) data generated in human liver S9 homogenate for 631

GlaxoSmithKline compounds [74]. The compounds were grouped into four

classes according to their percent turnover values, ranging from stable (,25%) to

unstable (.75%). The 631 compounds were split into a training set of 572 and a
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test set of 59 compounds. An additional validation set of 107 compounds became

available during the course of the work. Using a k-nearest neighbors method, two

different QSPR models were generated: one based on atom-pair descriptors, the

other on topological indices. Both showed an impressive classification accuracy

for the stable and unstable classes of about 80% across training and test sets. The

model based on topological descriptors predicted 50 of the additional validation

compounds to be stable and 42 of these were verified as being stable by

experiment (84% success in prediction).

Other models have been reported by Ekins [75], who used a recursive

partitioning procedure to generate a model based on human liver microsomal

stability data for 800 compounds, and Bursi et al. [76], who developed a CoMFA

model to help rationalize the SAR of the microsome-catalyzed hydrolysis rate of

some ester prodrugs. Finally, taking a more a priori approach, Lewin and Cramer

[77] have evaluated various quantum mechanical models for the estimation of

C–H bond dissociation energy (BDE), concluding that a method based on the

AM1 Hamiltonian should be able to predict BDEs with an error of ,4 kcal/mol.

11. INTERACTION WITH CYTOCHROME P450s

As well as studying metabolic stability in a general sense, there has been much

interest in recent years in the prediction of the interactions of compounds with

individual cytochrome P450 (CYP450) enzymes, which constitute the major drug

metabolizing enzyme system in the human body. Two broad approaches have

been adopted: those using available X-ray structures to create homology models

of important CYP450s and those that are ligand based, studying known

inhibitors/substrates in an attempt to generate pharmacophore or QSAR models.

However, the approaches should not be considered as mutually exclusive, and

are often best used in a complementary fashion [78].

An excellent illustration of the complementary use of homology modeling

and QSAR applied to CYP2C9 has been published recently by Afzelius et al.

[79]. A training set of 22 CYP2C9 inhibitors was used to develop a 3-D

QSAR model using the alignment-independent ALMOND descriptors ðr2 ¼ 0:81;

q2ðleave-one-outÞ ¼ 0:62Þ: When applied to a test set of 12 compounds, the Ki

values of nine were predicted with an error of ,0.3 log units and the worst

error was 0.97 log units. An examination of the key interaction points derived from

the 3-D QSAR model showed that they corresponded well with important

residues in the active site of a CYP2C9 homology model.

Reviews of comparative modeling of CYP450s by Kirton et al. [80] and Lewis

[81] give a picture of the field prior to the publication of the first X-ray structure of a

human CYP450 [82]. This landmark achievement is likely to give a new impetus to

homology modeling efforts. Another major human CYP450 structure (3A4) has
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been solved but not yet published [83]. Lewis et al. [84–88] have published

a number of models recently based on the mammalian 2C5 structure. The

pharmacophore approach has been reviewed by de Groot and Ekins [89], and

Ekins et al. [90] have more recently discussed applications to just the CYP3A

family. Lewis [91] has compiled data for substrates and inhibitors of the CYP1,

CYP2 and CYP3 families and also described a number of QSAR models,

particularly in the context of his COMPACT methodology [92]. High-throughput

computational filters seeking to identify compounds likely to interact strongly with

important CYPs have also been developed. Two recent examples have been

published by Ekins et al. [93] and Susnow and Dixon [94]. Both pieces of work

employed recursive partitioning: the former to develop models for the prediction of

CYP2D6 and CYP3A4 inhibition, the latter for just inhibition of CYP2D6.

The next level of sophistication in CYP450 modeling is the prediction of the

likely site(s) of metabolism in a compound. Singh et al. [95] have recently

described a method for predicting sites in compounds that are likely to be

metabolized by CYP3A4. Two properties of an atom were found to be important

in determining its likelihood of being a site of metabolism: the energy required

to abstract a hydrogen atom from it (as computed by AM1) and its accessible

surface area.

Finally, while most attention to date has focused on the prediction of CYP450

inhibition, the important issue of CYP450 induction is also now receiving attention

from modelers [96].

12. TOXICITY

Lack of space precludes a thorough coverage of the prediction of toxicity. Suffice it

to say that it remains a significant challenge, not least because of the plethora of

toxicological endpoints, some of which can be ill-defined and the fact that multiple

mechanisms can lead to the same endpoint. The progress in computational

toxicity prediction has been reviewed by Greene [97] and Dearden [98], and Feng

et al. [99] have recently published an interesting comparison of statistical methods

and molecular descriptors applied to four toxicological data sets. There has also

been much interest recently in homology and QSAR models to help predict

interaction with the human Ether-a-go-go Related Gene (hERG) channel, due to

its implication in cardiac toxicity [57,100].

13. CONCLUSIONS

It is clear from the above that much effort has been, and continues to be,

expended in the development of predictive ADMET models. Currently, the major
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obstacles on the path to improved models are related to data. Primarily, there are

simply too few data (at least in the public domain) to allow the creation of robust

models that are applicable to a variety of chemotypes. Models for predicting log P

have over 11,000 experimental data (the Starlist) to draw on [3]. In most cases,

ADME models have only a few tens or hundreds of data at most. Thus, it is

unreasonable to expect ADME models to perform any better than log P models,

which can still be erroneous, despite the size of the training set. Secondly, there is

a growing realization that the data need to be of the ‘right kind’ – they should be

generated for drug-like compounds that span a diverse structure and

physicochemical property space. It is not sufficient just to use the data that

happen to be available from past and present projects. Future ADME models may

well require bespoke data generation. The complexity – and our current lack of

understanding – of many of the underlying physiological processes involved in

ADMET also places a limit on the accuracy with which they can bemodeled [30]. In

some respects, it is surprising that the current generation of models performs as

well as it does.

In the future, it is likely that the field of ADME prediction will see an increasing

adoption of consensus approaches – already popular in virtual screening – in the

hope of generating more robust predictions by combining the outputs of multiple

models. Future models should also give better estimates of the errors in their

predictions and indicate when a given compound falls outside the training set

space [73]. This kind of output will help to engender greater confidence in models

in non-expert users. There will also be a growing realization that different models

are needed for different tasks. For instance, high-throughput ‘filters’ may be

appropriate for very early stage drug discovery to sift through large compound

collections or help design exploratory combinatorial libraries. However, in the lead

optimization phase, lower-throughput, but highly interpretable, models will be

required to guide molecular design. Models may also be differentiated as being

‘global’ or ‘local’ in nature, the former being applicable to a wide range of chemical

classes and the latter to perhaps just a single compound series. While there

seems to be no shortage of molecular descriptors and statistical methods to apply

to ADMET data sets, it may be that as those data sets increase in size, there will

be a need for further developments in both these areas. Support vector machines

are an example of a recently adopted statistical method that seems to be finding

favor with the modeling community [28].

Looking at the full spectrum of ADMET properties, it is evident that there are

gaps that are not currently being addressed in detail by predictive methods. In

particular, excretion-related properties have been sparsely treated so far [4]. The

prediction of active transport and efflux processes should also develop in the

coming years as more data become available for modeling. Additionally, our

understanding of how and why compounds interact with CYP450s should increase

as more co-crystal structures with bound ligands become available. The ultimate
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goal would be an integrated system capable of predicting the fate of a compound

in man, taking into account all the phenomena outlined in this review. It may be

that the pharmacologically based pharmacokinetic models that are already

available will provide a means to accomplish this [101]. This remains as yet

a distant goal, but given a more profound understanding of the processes

involved, sufficient data and appropriate modeling techniques, it may not be an

unattainable one.
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Recent advances in filtering in drug discovery are reviewed. Filtering is used in a

global broad sense to include exclusionary as well as inclusionary criteria and

encompasses the following topics related to the discovery of drugs: (1)

computational definitions of drug-likeness; (2) positive filters for drug-like activity;

(3) lead-likeness as a concept; (4) oral activity filters; (5) CNS drug filters;

(6) intestinal permeability filters; (7) drug metabolism parameter filters; (8)

promiscuous compound filters; and (9) agrochemical filters. This review does not

cover what could be termed as local parameters such as pharmacophore models,

docking and scoring, etc.

1. DRUG-LIKENESS

To this author there seems to be much more agreement as to what is drug-like

than there is as to what is diverse. Defining what is drug-like and non-drug-like

requires some type of reference point. The property distributions of commercially

available databases have been examined. The available chemicals directory

(ACD) seems to be the most common non-drug-like database. The pesticide

manual has been used as an alternate standard for non-drug-likeness because it
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is composed primarily of compounds designed to cause fatality to the primary

organism. The Comprehensive Medicinal Chemistry (CMC), Derwent Word Drug

Index (WDI) and Modern Drug Data Report (MDDR) are among the more

commonly used drug-like databases [1,2]. In addition, the 10,000 or so Phase II

compounds are used to define drug-like compounds [3]. A compound’s drug-like

index has been calculated based upon the knowledge derived from known drugs

selected from the CMC database [4]. The property distributions in combinatorial

compounds compared to drugs or natural products largely reflect combinatorial

chemistry synthesis constraints such that there are fewer chiral centers and

complex ring systems [5]. The distribution of ring systems across multiple

databases has been described [6] and a program was written and tested on the

MDDR database [7] to identify candidate chemical ring replacements

(bioisosteres). From the study of a database of commercially available drugs it

is clear that the diversity of molecular framework (ring) shapes is extremely low.

The shapes of half of the drugs in the database are described by the 32 most

frequently occurring frameworks [8]. The diversity that side chains provide to drug

molecules is quite low since only 20 side chains account for over 70% of the side

chains [9]. Defining drug-like by what exists in databases leads to the criticism that

most of chemistry space will be undefined and that discovery opportunities in

unexplored chemistry space will be limited. A solution is to populate chemistry

space with non-drug-like markers akin to the way point in a GPS navigation

system [10].

Multiple filters (properties) may be incorporated into a definition of drug-

likeness and this leads to trade-offs among compound properties in

compounds intended for screening [11]. Optimization of compound properties

may require some type of multi-parameter optimization scheme in library

design [12]. Fingerprint algorithms can be used to guide diversity [13]. Filters

also need to be employed in the chemistry synthesis planning process so that

good quality compounds are made [14]. Differences in property ranges

between oral and injectable drugs have been summarized [15]. Oral drugs are

lower in MWT and have fewer H-bond donors, acceptors and rotatable bonds.

Property profiles of oral drugs are independent of the year in which the drug

was approved to market and to some degree independent of target. Polar

surface area (PSA) in one definition is the solvent accessible surface covered

by oxygen, nitrogen and the hydrogens attached to oxygen and nitrogen. As a

compound progresses through clinical trials there is a steady change in

properties, e.g., MWT, Log P and PSA all decline with a MWT of about 340

found for marketed drugs [16,17]. The reason for this pattern is unclear since

properties related to oral absorption would be expected to have reached a

plateau by Phase II and hence selection pressure for properties related to oral

absorption should have disappeared by then [18]. Pulmonary drugs tend to

have higher PSA because pulmonary permeability is less sensitive to polar
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hydrogen-bonding functionality [19]. Anatomically this makes sense since

lungs are a closed compartment and any accumulating fluid and compounds in

terminal alveoli must be cleared. Discrimination between antibacterial and non-

antibacterial activity has been achieved based on 3D molecular descriptors.

The overall classification rate was around 90% on a data set of 661 compounds

using 2–3 variables selected from log P, charged-weighted negative surface area,

positive surface area of heavy atoms and maximum donor delocalizability. Three-

dimensional geometry variations had little impact on the discriminatory

performance [20].

2. DRUG-LIKENESS AND CHEMISTRY QUALITY

Descriptors for drug-like are most effective if they have physical meaning so as to

facilitate chemists designing in drug-likeness [21]. Drug-likeness in the design of

combinatorial libraries [22,23] involves the use of rule-based filters like the rule of 5

[24], the use of exclusionary filters to remove undesired chemistry functionality

[25] and the capture of privileged structure information, e.g., from natural product

collections [26] or from retro synthetic analysis of collections of bioactive

molecules [27]. Natural product structural features are particularly well

represented in the cancer chemotherapy and infectious disease areas [28].

Exclusionary filters have been described that remove reactive chemical

functionality based on the premise that compounds having covalent chemistry

possibilities have no place in drug discovery [29]. Filters are also necessary to

remove cross reactivity in pooled compounds [30]. Pooling is a procedure in which

single well-characterized compounds are deliberately mixed to speed screening.

Components of the mixture must neither contain structural features causing assay

false positives nor must they contain common substructural elements that would

confuse the deconvolution of activities of the individual components. The

magnitude of the number of poor quality screening compounds is emphasized by

the report that only 37% of 1.6 million unique commercially available compounds

are drug-like [31]. A very similar result was found in a virtual screen for SARS-CoV

protease against commercially available and academic compounds. Of the 0.07%

virtual hits against 3.6 million compounds, 47% failed three or more of 13

druggability criteria [32]. The criteria were based on physical, chemical and

structural properties. Providing high-quality chemistry subject matter is now

supported under the NIH molecular library small molecule repository initiative

which aims to collect one million drug-like molecules from commercial, industry

and government sources [33]. Emphasizing the point that drugs must contain

adequate functionality to achieve acceptable receptor interactions, a single filter

separates drug-like from non-drug-like compounds based on the observation that

non-drugs are often under-functionalized [34].
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3. POSITIVE DESIRABLE CHEMISTRY FILTERS

Privileged structures, e.g., benzodiazepines are recurring structures active

against targets unrelated by target family. They can be viewed as molecular filters

selecting for desirable chemistry subject matter. As such they are rich sources for

screening libraries and have recently been reviewed [35]. Privileged structure

features have been employed in the combinatorial design of GPCR libraries [36],

in the combinatorial synthesis of privileged bicyclic structures [37] and in the

combinatorial synthesis of cyclic peptides [38]. Homology modeling suggests a

parallelism between common privileged GPCR ligand features and complemen-

tary deeply buried protein features in class A GPCRs [39]. Grouping by target

family is also another method helping focus on particular target-directed privileged

structures [40]. The idea is that structurally similar target family members will bind

structurally similar small molecule ligands [41]. NMR screening helps identify

privileged protein binding elements albeit of smaller size [42]. Although not strictly

speaking a privileged structure, privileged structural elements such as the

hydroxamate moiety found in many metalloprotease inhibitors can be identified

[43]. Discernment of privileged structures has historically largely been a data

mining exercise. However, very similar recurring structural motifs, so-called

‘molecular anchors’ have been described based on structure-based ligand binding

considerations [44,45]. Rigid small molecule ligands (the molecular anchors) are

incapable of hydrophobic collapse and a single non-collapsible ligand conformer

binds at a protein cavity site which is also often incapable of hydrophobic collapse.

This concept explains the frequent occurrence of non-collapsible spiro structures

in privileged structures/molecular anchors. Chemistry design principles directed to

the very difficult goal of small molecule interference with protein–protein

interactions via an allosteric interaction have been described [46]. An intriguing

aspect is the hypothesis that chemistry emphasis should be placed on compound

cores capable of interacting with relatively fixed protein hinge regions rather than

on elaboration of lipophilic side chains attached to the core. The thermodynamic

penalty attendant to ligand binding to a non-lowest energy protein conformer

suggests that screening should allow for slow binding with adequate assay

equilibration time. An implication is that for this type of target it is better to make

larger numbers of smaller libraries than fewer numbers of large libraries. This

trend to smaller libraries is now well documented [47]. Taken to its extreme this

approach takes the typical dense chemistry space coverage of the traditional

combinatorial library (target-oriented synthesis) towards the direction of the

diversity-oriented synthesis approach to chemistry lead generation which

populates diverse single molecules broadly through chemistry space [48]. This

direction is of course in the direction of less efficient, more difficult chemistry. The

focus on biological information content richness suggests natural products as

combinatorial library starting points [49]. Chemical content richness is found in
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compounds produced by multicomponent reactions (MCR) which are chemical

transformations in which as many as four components form a new compound in a

single chemistry reaction step. The Ugi reaction of a carboxylic acid, amine,

aldehyde and isonitrile is a classic example. In theory while offering an efficient

approach to synthesis of diverse compounds, MCR in high-throughput mode

currently suffers from significant chemistry limitations [50].

4. LEAD-LIKENESS

The difference between drug-like and lead-like has been described [51]. Leads are

less complex in most parameters than drugs, which is understandable in that

medicinal chemistry optimization almost invariably increases MWT and Log P

[52]. However, the structural resemblance between a starting lead and a drug is

marked [53]. The implication is that a quality lead as opposed to a flawed lead is far

likely to lead to a real drug [54]. Lead-like discovery also refers to the screening of

small molecule libraries with detection of weak affinities in the high micromolar to

millimolar range. The process usually by itself does not lead to an acceptable

chemistry starting point. Something else has to be added after the primary screen.

Generally, multiple small molecules do not bind to non-adjacent target sites [55],

so the screening is that of small MWT singletons. However, binding of two

components to the same receptor site is possible as attested by the discovery of

sub-nanomolar ligands in what is termed click chemistry [56]. In this process an

acetylene and azide terminus from two receptor site independently bound

molecules cyclize to a single compound with the two components linked via a 1,2,3

triazole ring. Filtering in the context of lead-like small molecule screening implies

control of the properties of drug starting points that eventually result from this

process. A rule of three [57] has been coined for small molecule fragment

screening libraries; MWT , 300; Log P , 3; H-bond donors and acceptors , 3

and rotatable bonds , 3. Small fragment screening can be by NMR [58–60], by

X-ray [61,62], or in theory by any method capable of detecting weak interactions.

5. ORAL DRUG ACTIVITY

The topic of filtering in human therapeutic drug discovery has received numerous

frequent reviews [23,63–65] as well as criticism if fundamental medicinal

chemistry principles are neglected [66]. The ‘rule of 5’ describes four simple

parameters associated with improved prospects for oral activity. Poor solubility or

poor permeability are more likely if there are .5 H-bond donors (expressed as

sum of OH and NH); .10 H-bond acceptors (expressed as sum of O þ N);

MWT . 500 and Log P . 5. There are only four rules. The 5 in rule of 5 arises
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from the frequent appearance of a 5 in the cutoff parameters. Compounds classes

such as natural products, infectious disease drugs, etc. where transporter affinity

is prevalent are exceptions [24]. Rotatable bond count is now a widely used filter

following the finding that greater than 10 rotatable bonds correlates with

decreased rat oral bioavailability [67]. The mechanistic basis for the rotatable bond

filter is unclear since the rotatable bond count does not correlate with in vivo

clearance rate in the rat but the filter is reasonable from an in vitro screening

viewpoint since ligand affinity on average decreases 0.5 kcal for each two

rotatable bonds [68]. Compounds indexed in medicinal chemistry journals show

the recent trend towards poor properties. Over 50% of medicinal chemistry

compounds with activities above 1 nM have MW . 425, Log P . 4.25 and

Log Sw , 24.75, indicating that these compounds are larger, more hydrophobic

and less soluble when compared to time-tested quality leads [52]. The concept of

the importance of compound properties (e.g., rule of 5 compliance) beyond

potency is widely accepted [69]. although there are notable occasional exceptions

where an orally bioavailable compound is found that lies well outside the rule of 5

limits [70]. Can the rule of 5 be bypassed by delivering drug by a non-oral route,

e.g., pulmonary, intra-nasal or dermal? The answer depends very much on the

dose. If the total dose is 20 mg or less then alternative delivery routes begin to be

feasible. However, a limitation is that only about 10% of current clinical candidates

have sufficient potency in the 0.1 mg/kg range to result in such a low dose and

finding such very potent compounds seems to be mostly a matter of luck [71].

Beyond chemistry-based features, oral drugs can also be defined by their

biological target. It is striking that the 100 best selling (mostly oral) drugs are

ligands for proteins encoded by only a very small subset of genes and that a very

considerable portion of the targets for orally active drugs may have already been

discovered [72]. The term ‘druggable genome’ has been coined to describe the

severe restriction that chemistry considerations related to oral activity super-

impose on possible biology target space [73].

6. CNS DRUGS

A scheme for separating CNS from non-CNS active drugs in the WDI allowed

discovery of simple parameters relating to passive blood brain barrier (BBB)

permeability and prediction of p-glycoprotein (PGP) affinity [74]. The PGP

transporter is a major barrier to the entry of compounds to the CNS [75].

Appropriately determined PGP efflux ratios can be used as a measure of

compound affinity to PGP. However, the value of filters based on PGP efflux ratios

from the commonly used high-throughput mode Caco-2 colonic cell permeability

cell culture assay have been questioned as efflux ratios do not correlate with in vivo

rat brain penetration [76]. A PSA value of less than 60–70 Å2 tends to identify
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CNS active compounds [77]. A very simple set of two rules predicts CNS activity: If

N þ O (the number of nitrogen and oxygen atoms) in a molecule is less than or

equal to 5, it has a high chance of entering the brain. The second rule predicts that

if log P 2 (N þ O) is positive then the compound is CNS active [78]. More complex

commercially available software programs have been compared as to their ability

to predict CNS log BBB ratio [79]. Experimental and theoretical reasons support

the belief that surface tension measurements can be predictors for blood brain

permeability [80]. Predictors for absorption, distribution, metabolism and excretion

(ADME) currently appear most useful in global models. Limitations in local models

likely reflect a lack of quality experimental data sets [81] and user dissatisfaction

may result from unrealistic expectations given the magnitude of experimental

ADME errors [82]. An additional limitation to schemes for separating CNS from

non-CNS compounds is the complexity of the BBB. Compounds with affinity to

transporters are exceptions to physicochemically based filters like the rule of 5.

This is a problem for the CNS since it is estimated that about 15% of all genes

selectively expressed at the BBB encode for transporter proteins and that only

about 50% of BBB transporters are currently known [83].

7. INTESTINAL PERMEABILITY

PSA in rather simple models is a commonly used parameter to predict intestinal

permeability [84]. Its rule-based calculation (TPSA) is very fast and does not

require 3D structure [85]. A better prediction of intestinal permeability has been

reported when PSA is partitioned into smaller molecularly based components [86].

Using molecular surface properties compounds selected from the World Health

Organization’s (WHO) list of essential drugs could be classified with 87% accuracy

as to permeability and solubility using a six bin scheme similar to that in the FDA

biopharmaceutical classification system [87]. Pharmacokinetic parameters

including permeability can also be generated for filtering or ligand affinity

prediction through the Volsurf software [88]. An analysis of small drug-like

molecules suggests a filter of log D . 0 and ,3 enhances the probability of good

permeability [89]. A collection of 222 commercially available drugs was used to

determine the exclusion criteria that differentiate poorly absorbed drugs from

well-absorbed drugs. Similar to the rule of 5, MWT , 500 and log P , 5 were

associated with better absorbed compounds. Exceptions to the MWT criteria were

compounds with a sugar moiety, high atomic weight and large cyclic structure [90]

suggesting the involvement of absorptive biological transporter systems. Based

on the intestinal absorption of 158 drug and drug-like compounds in rats there is a

significant relationship between rat intestinal absorption, and by extrapolation

human absorption, to drug hydrogen-bond acidity and basicity [91].
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8. AQUEOUS SOLUBILITY

Poor aqueous solubility is a wide spread problem in combinatorial libraries as

opposed to poor intestinal permeability which is much less of a problem. About

one-half of poor solubility is due to large size/lipophilicity. Log P . 5 identifies 75%

of these compounds. The other 50% of poor aqueous solubility is due to crystal

packing considerations for which there is no computational filter [92]. Melting point

is an experimental indicator of crystal packing. Aqueous solubility decreases

about 10 £ for each 100 8C rise in melting point and so melting point, if available,

is a valuable parameter in solubility prediction [93]. Progress toward a

computational melting point is suggested by the 63% success in qualitative

ranking of compounds into low-medium and high-solubility bins. Descriptors for

hydrophilicity, polarity, partial atom charge and molecular rigidity were found to be

positively correlated with melting point whereas non-polar atoms and high

flexibility within the molecule were negatively correlated [94].

9. DRUG METABOLISM

Volume of distribution (VD) is a key pharmacokinetic parameter. A low VD of less

than 1 l/kg identifies drugs residing in the plasma compartment. A VD greater than

1 l/kg identifies compounds accessing tissue compartments outside the plasma

compartment, e.g., many CNS drugs have VD values in the tens or higher. A

recently developed computational approach to predict VD for neutral and basic

drugs works as well as the in vivo experimental measurement provided that

accurate experimental compound log D and pKa are available. Predictivity is

retained if computed log D and pKa are used but accuracy declines somewhat

[95,96]. Approximately 80% of drugs are oxidized by the cytochrome P450 (CYP)

family of enzymes; hence a decision tree for CYP substrate affinity is important.

This has been described in that characteristics of CYP substrates, such as

lipophilicity, MWT and hydrogen-bonding potential, govern selectivity towards

individual CYPs [97].

10. PROMISCUOUS COMPOUNDS

Compounds with a marked propensity to bind to multiple targets, so-called

nuisance compounds, are of little value in drug discovery. Such compounds can

be experimentally identified by their binding to fetal calf serum [98]. It has long

been known that compounds could be identified as reproducible actives in HTS

screens that could not be optimized in chemistry. Such compounds often appear

active in multiple screens that have no biological relationship. An analysis of such
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promiscuous compounds from HTS hits led to the conclusion that colloidal

aggregates in the 50–1000 nm size range were responsible. The apparent HTS

screen activity was due to a biophysical effect rather than due to a normal ligand

receptor affinity and hence the hits were unoptimizable in chemistry [99]. This

promiscuous aggregation effect was found among 8 of 15 kinase inhibitors widely

used in biology screening [100] emphasizing the importance of exclusionary filters

to prevent wasting of biology research time by testing compounds with flawed

properties. The aggregation phenomenon has been found among known drugs,

albeit only when tested at high non-physiological concentrations and a predictive

model was developed [101].

11. AGROCHEMICALS

Filtering has also been applied to agrochemicals. Compared to drugs intended for

human use, agrochemicals tend to have fewer hydrogen-bond donors [102]. For

agrochemical screening computationally intensive surface area parameters

offered no advantage over the rule of 5 [103]. Analogous to drug-likeness,

agrochem-likeness for large compound collections has been explored using

support vector machines (SVM). In this study SVM performed better than neural

networks [104].
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1. INTRODUCTION

Structure-based drug design is an increasingly integral part of the drug

discovery process. As the number of therapeutic targets with structural

information dramatically increases [1,2], computational drug design methods

continue to advance [3,4] to make it possible for the pharmaceutical industry to

achieve greater efficiency. Structure-based drug design (Fig. 1) encompasses

both lead generation (through virtual screening, including molecular docking)

and lead optimization/de novo design. While structure-based virtual screening

is emerging as an increasingly powerful tool for lead discovery, structure-

based lead optimization has played a crucial role in drug discovery over the

last 10 years. A typical computational chemist/molecular modeler in an

industrial setting spends the majority of their time working on lead

modification. Although true de novo design – starting with an apo protein

structure and no ligand information – is rare, when structural information

is available it is always used to guide the synthesis of new compounds.
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Given a high-resolution (ideally ,2.5 Å) X-ray structure of a protein–ligand

complex, computational methods are used to design potentially improved

compounds that are predicted to make better or similar interactions with the

target structure. A high-quality NMR structure or homology model may also be

used, provided the binding mode of the initial lead can be identified with a high

level of confidence. For use of a homology model, a high-resolution structure

of a closely related protein with the same lead or a very similar compound

bound may be required. Additional biological data (competition assay data,

NMR binding data, etc.) to help confirm the binding mode in the actual target

would also be desirable. With that level of structural information, an iterative

process of designing, synthesizing, and experimentally testing new compounds

can ensue. Much of the computational work is not published or eventually

appears as a paragraph in an experimental paper describing a few molecules.

Leads are optimized not only in terms of potency but often to improve the

physical properties of the compounds to address issues such as bioavailability,

metabolism, and protein binding, and sometimes to engineer novelty into the

compounds to avoid patent infringement.

This report includes a brief section on lead generation and how the origin of a

lead may affect the choice of lead optimization methods used, a discussion of the

process an industrial chemist typically goes through for lead modification and

some of the computational methods used and, finally, a specific example of the

application of the approach to a given target.

Fig. 1. Structure-based lead generation and optimization.
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2. LEAD DISCOVERY

New leads for a therapeutic target can be generated via (i) known inhibitors for the

target or a very related target, (ii) high-throughput screening of corporate

compound collections or screening of natural product libraries, or (iii) virtual

screening of corporate or other large vendor databases. The way that leads are

generated and the characteristics of the leads will determine to an extent the

optimization strategy that is subsequently employed.

2.1. Compound equity

Occasionally, if nothing novel has been found, a published inhibitor or even an

existing drug is taken as a ‘lead’ for a project. If a published compound is taken as

a starting point, the goal is to modify the chemical entity without dramatically

reducing its potency, although some decrease in potency will be tolerated. Then,

the resulting new lead will be further optimized. More often compound equity is

taken advantage of by testing all in-house leads or hits for a related target against

the target of interest. In addition, family-focused compound plates may be

screened. Kinases are an example of a protein family for which the latter two

approaches can be productive. If the most closely related kinase (or kinases) in

the company’s portfolio can be identified by sequence alignment or possibly active

site alignment, all hits for that kinase can be tested for the new target kinase. If a

lead is generated in this manner, the immediate objective of lead modification is to

design more selective analogs. Also, since these new leads may be fully optimized

compounds for the related target, another challenge is to improve the potency of

the compounds for the target of interest without significantly increasing their

molecular weight and lipophilicity.

2.2. High-throughput screening

Today a significant percentage of novel leads for a target is found through high-

throughput screening (HTS) [5]. Companies routinely and rapidly screen their

corporate libraries each year for hits against a variety of targets. The advantage of

HTS is that several hundred thousand compounds can be experimentally

screened for binding to the target in a matter of weeks. The disadvantages are that

it is expensive and the resulting data are typically very noisy. A commitment of

resources to transfer the biological assay to HTS format, run the screen, confirm

statistically significant hits, analyze the results, and follow up with secondary

assays must be in place. Often throughput limits dictate the number of compounds

passed from one stage to the next, so true hits may be overlooked. Also, the more
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potent confirmed hits are often known hits for related targets or in the worst case

nonspecific binders that hit for many targets. Unless all statistically significant hits

in the primary HTS are confirmed, less potent and more lead-like hits may be

missed. Ideally, a lead has molecular weight less than 400, clogP less than 5,

fewer than seven rotatable bonds, and a polar surface area less than 140 Å2 [6,7].

These filters allow for the optimization process to increase the complexity of the

molecules, as is common, and still yield drug-like molecules [8,9].

2.3. Virtual screening

Increasingly new leads for a target are identified through virtual screening [10].

Both ligand-based [11,12] and structure-based [13,14] approaches have been

successfully used. If for a given therapeutic project, a set of active ligand

molecules is known for the macromolecular target, but little or no structural

information exists on the target, ligand-based screening methods can be

employed. These include pharmacophore searches (e.g., [15–18]) and shape

searches (e.g., the program ROCS [19]; OpenEye, Santa Fe, NM, 2003).

Traditionally, a pharmacophore is the set of features common to a series of active

molecules, where features can include acceptors, donors, ring centroids,

hydrophobes, etc. A three-dimensional (3D) pharmacophore specifies the spatial

relationship between the groups or features, often defining distances or distance

ranges between groups, angles between groups or planes, and exclusion

spheres. Deriving a pharmacophore model involves aligning or overlaying the

structures of the known ligands and identifying the common features. Once

generated, programs like Catalyst (Accelrys, San Diego, CA, 2003) and UNITY

(Tripos, St. Louis, MO, 2003) can search large 2D or 3D molecular databases for

additional molecules that possess the pharmacophore. Given just one active

ligand known to bind to the target, a shape search can be performed, whereby 3D

molecular databases are searched for other compounds that have the same

shape. Knowledge of the bound conformation of the ligand is highly desirable.

With certain shape search methods [19], some chemical matching can also be

specified in addition to shape fit. The assumptions behind ligand-based methods

are that the set of known ligands all bind at the same site in the target structure,

that the bioactive conformer of each known ligand can be accurately predicted

(in the case of 3D methods), and that any utilized alignment of the set is

biologically relevant.

Structure-based virtual screening or molecular docking uses a heuristic to orient

each database ligand in the binding site of the target structure and then scores

each orientation. In this manner, poses for a given ligand are ranked relative to one

another and to those of all other ligands in the database. In general, molecular

docking involves searching a database for compounds that fit into the binding site
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of the target structure in terms of shape and electronic complementarity. To be a

viable technique for screening commercial and corporate databases as well as

virtual libraries of several hundred thousand molecules, search times on the order

of seconds per molecule are desired. With molecular docking the 3D structure of

the target binding site is known, potential key interactions with the target are

identifiable, and the search is for ligands that can bind to the specified site. One

typical assumption is that the protein structure used is competent to bind all active

compounds; i.e., generally, the protein structure is held rigid during the docking. In

reality, a given protein structure may only be competent to bind, say, 60% of active

compounds [20,21]. As a result, some true actives will be missed. With structure-

based virtual screening compared to ligand-based, however, additional

experimental information is taken into account and expected to make the results

more predictive. Furthermore, greater novelty may be expected in the ligands that

are identified.

Conformational flexibility of the database ligands, however, must be considered

in docking. Ligand flexibility can be incorporated either by flexing the ligand as it is

incrementally built into the binding site or by docking rigid, precomputed

conformers from conformationally expanded databases. The first category

includes methods that employ Monte Carlo sampling [22], genetic and

evolutionary algorithms [23–25], simulated annealing [26], and incremental

construction [27–29]. The second group includes rigid docking of flexibases, in

which individual conformers are separately docked and scored [30], and rigid

docking of conformational ensembles [31–34] generated by overlaying related

conformers. Some of the many docking programs in use include FlexX [28], GOLD

[23], ICM [35], FRED (OpenEye, Santa Fe, NM, 2003), GLIDE [36,37], DOCK [38],

and our in-house PhDock [31].

FlexX [28] is an incremental construction method that first decomposes the

ligand into fragments by breaking all single acyclic and nonterminal bonds. The

ligand is incrementally built up starting from the position of an anchor fragment.

The set of allowed interaction types and the empirical scoring function are defined

as in the program LUDI [39] with slight modifications. This model of discrete

conformational flexibility for the ligand, with finite sets of allowed torsional angles

for single acyclic bonds and precomputed conformations for ring systems, allows

the docking to be fast.

The program DOCK [40] uses a heuristic that matches ligand atoms to pre-

defined site points in the binding site of the target structure. Our pharmacophore-

based docking method, PhDock [31], is implemented in DOCK4.0 [38] and allows

for pharmacophore-based docking of ensembles of precomputed conformers.

In a PhDock database, precomputed conformers of the same or

different molecules are overlaid based on their largest 3D pharmacophore.

The pharmacophore points (and not all of the ligand atoms) are matched to the

predefined site points to determine the allowed orientations for the ensemble in
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the binding site. Each individual conformer within the ensemble is scored in the

binding site and the best scoring conformer (or a set number of best scoring

conformers) for each molecule is saved. Docking pharmacophoric ensembles

provides an efficient strategy for rapidly docking large databases of molecules.

Theoretical pharmacophore points which represent ‘hot spots’ in the target

binding site can be used as the matching site points to orient the candidate

ligands more rapidly. More specifically, chemically labeled site points can be

generated in an automated fashion using the script MCSS2SPTS [20].

MCSS2SPTS employs the program MCSS (Multiple Copy Simultaneous

Search) [41–43] to determine the target-based theoretical pharmacophores.

MCSS functional group maps (or preferred binding sites) are calculated for

nine different groups, spanning ionizable, polar, and hydrophobic atom types.

Chemically labeled site points are automatically extracted from selected

low energy functional-group minima and clustered together. Chemically

labeling the site points can significantly reduce the search time by restricting

the search space to areas relevant to the target, thereby reducing the

combinatorial problem.

A number of research groups are developing docking methods that allow for

some degree of target flexibility. This has largely been limited to a few side chain

motions or water displacements (e.g., SLIDE [44]). Others try to account for

protein flexibility by using multiple scoring grids, representing multiple protein

structures, or a scoring function with values averaged over or derived from a

number of protein structures (e.g., AutoDock [45], FlexE [46]).

Once a virtual screen is completed and some visual inspection or further

prioritization ([47]; http://www.metaphorics.com/products/magnet) of the top

ranked hits has occurred, compounds (10s–100s) are selected for experimental

testing. Ideally, docking hits are molecules with novel scaffolds for binding the

target, which may initially be relatively weak binders; these hits serve as new

starting points for synthetic optimization. Thus, virtual screening should be

initiated as early in the project as possible. Often virtual screening is done prior to

or concurrently with experimental HTS. It can also be carried out at the later stages

of a project to search for backup or follow-on series. Very large commercial

databases, such as the Available Chemicals Directory (ACD) database, as well as

corporate databases can be rapidly screened. When a virtual screen is carried out

for a corporate database in parallel with experimental HTS, virtual screening can

identify false negatives from the HTS or compounds not present in the HTS

plates. During the setup or generation of these large databases in a suitable

docking format, filters are applied to eliminate nonlead-like and undesirable

molecules [47,48]. If a target-focused or family-focused library is being screened,

less stringent filters may be applied because the resulting hits are expected to

require less optimization.
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In a recent example using PhDOCK and MCSS2SPTS, our corporate database

was screened for binding to a particular kinase target (D. Joseph-McCarthy,

unpublished). Out of 20 compounds selected and experimentally tested, the

screen identified two novel scaffolds for the target not found through the HTS.

Both were reversible, mM inhibitors; one was also relatively selective. These

compounds are currently being further characterized and serve as backup series

for the program.

3. LEAD MODIFICATION

3.1. Structure visualization

A lead optimization project involves interaction and collaboration between the

modeler and the medicinal chemists on the project, on a weekly or regular basis. In

today’s global economy with multisite, international, or collaborative alliances this

communication is often required to be via the Internet and teleconference. An

Internet meeting software such as WebEx (WebEx, San Jose, CA, 2003) can be

used with a pc-based graphics or visualization program such as Weblab Viewer

(Accelrys, San Diego, CA, 2002), VIDA (OpenEye, Santa Fe, NM, 2003), or MOE

(Chemical Computing Group, Montreal, Quebec, 2003). At the present time, often

the pc-based graphical user interface is not the one associated with the programs

that the modeler used to generate the models; a number of commonly used

modeling packages are still largely Unix based although this is expected to change

in the near future. These Internet meetings are still limited by the speed of the

connection, and one would ideally like to have visualization software which

transmits the commands (e.g., the translation/rotation matrices for a move) then

applies them locally in another instance of the program. Whether the meetings are

face to face or via the Internet, an iterative process ensues and can last for many

months. The simplest part of the collaboration involves viewing existing structures

and newly calculated models to generate additional design ideas. Structures are

overlaid, surfaces are displayed on the protein or sometimes on the ligand to get a

sense of how well the ligand is filling and complementing (in terms of electrostatic

interactions, lipophilicity, etc.) the protein binding site, and distances between

ligand and protein atoms are measured to help to determine where different or

additional substituents could be modeled.

3.2. Fragment positioning

Fragment positioning methods are often employed for lead optimization (Fig. 2).

These methods determine energetically favorable binding site positions for
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various functional group types or chemical fragments. Several well-known

programs are GRID [49], MCSS [41–43], MUSIC [47], LUDI [51,52], and

Superstar [53]. With the MCSS program, probe groups are fully flexible and

individual atoms are represented using the CHARMM [54] potential energy

function. Very briefly, several thousand copies of a given functional group are

randomly distributed in the binding site. The functional group copies are then

simultaneously minimized in the time-dependent Hartree approximation such that

each copy of the group feels the full force field of the protein but the group copies

do not interact with each other. In general, using any fragment positioning method,

chemical group sites or ‘hot spots’ can be calculated for a wide range of groups

(typically 10s of groups) either for a protein structure with any bound ligands

removed or for a protein structure with a ligand or the scaffold part of the ligand

bound. Even when the functional group maps are calculated for the protein

structure alone, structures or models of existing leads bound to the target can be

superimposed with the maps; this overlay is used to predict substitutions that are

likely to improve the potency of the lead. More detailed calculations, like the ones

described in the next section, can then be carried out on the proposed improved

ligands, or if a small combinatorial library of ligands is being synthesized, the

Fig. 2. Optimal fragment positions in the binding site (e.g., the light grey triangles
represent a given chemical group and the labels 1, 2, 3, etc. specify their position
rank) identified for the modification of an existing lead or the design of entirely new
molecules.

D. Joseph-McCarthy176



functional group site information on its own can be utilized to focus the library [55].

Since we typically use MCSS2SPTS with PhDOCK to setup a virtual screen,

functional group maps for nine diverse groups are automatically calculated for the

target protein structure in the process and can be simultaneously or subsequently

used for lead optimization.

3.3. Molecular simulation

There are a number of ways to model a series of specific analogs into the binding

site of a target structure. The approach taken can depend on the number of

analogs (specific molecules with substitutions to the existing lead structure) to be

modeled (10s vs. 100s or 1000s), the time allotted for the calculations, and the

character of the binding site. If, for example, the existing lead makes a specific

interaction with the protein that is to be maintained in any candidate compounds,

then the modeling method may need to allow for constraints to be setup (e.g.,

distance constraints specifying a hydrogen bond or a salt bridge). A very flat,

narrow binding pocket as in the ATP-binding site of kinase structures may allow

only for minimization unless constraints are applied to keep the scaffold portion of

the molecule in the binding site. The first step in any lead optimization effort

involves determining which methods and scoring schemes can best reproduce the

known binding modes of existing leads. A method has to be able to reproduce

accurately any X-ray complex structures of the leads bound to the target to be

useful for lead optimization. The results are generally system dependent in that an

approach that works well for kinases may not work as well for metalloproteases.

If 10s of substitutions are to be modeled for a given lead, the binding mode is

well established, and the substituents are small, simply building the molecule into

the binding site with the substituents in all plausible orientations and energy

minimizing with a molecular mechanics force field such as CHARMM [56], AMBER

[57], or MMFF94s [58] may be sufficient. Adding an implicit solvation term while

minimizing may help. Minimizing using the MMFF94s force field with a solvation

correction can readily be done within the MOE software package (Chemical

Computing Group, Montreal, Quebec, 2003), for example. A better approach may

be to do either a Monte Carlo or a simulated annealing simulation for each ligand in

the binding site. These methods provide more sampling and therefore it is not

generally necessary to build the ligand into the binding site in multiple orientations.

The FLO99 [22] algorithm involves Monte Carlo (MC) perturbation (wide-angle

torsional Metropolis perturbation as well as translation and rotation of ligand

atoms) followed by energy minimization in Cartesian space for flexible ligand

binding to a target structure based upon a modified AMBER [57] potential. Using

the graphical interface of FLO99, individual ligand molecules can be easily built

and docked into the protein site. On an SGI R12000 (400 MHz) processor run
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times for 1000 cycles of MC are approximately 30 min per ligand and therefore this

is a medium throughput approach.

3.4. Library enumeration and docking

If 100s or 1000s of candidate ligands are to be modeled, a relatively high

throughput approach is desirable. With FLO99, for example, if the scaffold position

is known and a particular R group position is to be varied using a specified

chemistry up to a thousand or more substituents can be modeled relatively quickly

(typically in a day or two). In that case, the attachment position is labeled on the

scaffold, an SDF format file containing the set of substituents (a list of amines for

example) is read and the chemistry for attachment is indicated. FLO99

automatically generates each library ligand and docks it into the site; because

the scaffold position is known, MC sampling can be limited to the R group

speeding up the calculations and reducing the number of cycles required. A library

of analogs can be enumerated in a number of different ways. Packages such as

Sybyl (Tripos, St. Louis, MO, 2003), MOE (Chemical Computing Group, Montreal,

Quebec, 2003), and Cerius2 (Accelrys, San Diego, CA, 2003), for example, are

capable of constructing the library ligands. The ligands can then be docked into

the target binding site using any of the medium to high throughput methods

discussed above in Section 2.3.

If the scaffold position is known, an anchor and growth method such as FlexX

which places the anchor and then grows the rest of the molecule as the docking

proceeds may work well. If a complex structure of the lead bound to the target

exists, some part of the ligandmolecule can be defined as the scaffold or anchor. It

is generally assumed that the binding mode of the scaffold portion of a lead is to be

maintained during the optimization. An alternative approach that we are

developing involves using DOCK to search databases for suitable R groups that

can attach to a given scaffold bound to the target (J. Zou, I.J. McFadyen, J.C.

Alvarez, D. Joseph-McCarthy, in preparation). A ranked list of acceptable (and

presumably synthetically accessible) substituents is generated for each R group

position. Select R group substituents are automatically recombined to generate

novel analogs that are predicted to bind to the target and are not found in the

original database.

3.5. Ligand–target complex evaluation

Once a model for a ligand–protein complex is obtained, it can be evaluated using

any number of scoring functions. If a series of closely related analogs are

modeled, molecular mechanics energies may be sufficient to rank them or at least

D. Joseph-McCarthy178



to separate out the binders vs. the nonbinders. To account for desolvation effects,

a solvation correction can be added using a Poisson–Boltzmann continuum

model [59,60] or a generalized Born implicit solvent model [61]. Physicochemical

scoring functions [62–65] and knowledge-based potentials [66] can also be used

to evaluate complexes. Consensus scoring is an effective method that requires a

complex to score well by several different metrics to be predicted as a good ligand

[67,68].

4. APPLICATION TO A SPECIFIC TARGET

4.1. Acyl carrier protein synthase

Acyl carrier protein synthase (AcpS) catalyzes the conversion of apo-acyl carrier

protein (apo-Acp) to holo-Acp through the transfer of the 40-phosphopantetheinyl

group of coenzyme A to a serine residue of apo-Acp. This transfer is an important

step in the fatty acid biosynthesis pathway and therefore AcpS is of interest as an

antibacterial target [69]. An HTS lead was the starting point for a lead optimization

project that involved designing and modeling improved analogs for individual

synthesis as well as focusing, or biasing, a relatively large combinatorial library for

binding to the target. The initial lead was a novel anthranilic acid inhibitor of AcpS

with a mM IC50 value. Modifications to the lead were proposed based on structure-

based modeling using FLO99 and a small number of (less than 10) individual

compounds were synthesized resulting in a 20-fold lower IC50 value. In addition,

the binding mode of the final inhibitor bound to AcpS has been confirmed by X-ray

crystallography (K.D. Parris, D. Joseph-McCarthy et al., in preparation).

Concurrently, modeling was used to identify positions off a related scaffold that

could be varied for optimization (Fig. 3).

Modeling constraints aided in the design of an initial focused library that led

through the use of D-optimal design to the synthesis of a second library resulting in

a 0.27 mM inhibitor [70].

Fig. 3. Schematic of the scaffold.
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5. CONCLUSIONS

Structure-based lead optimization continues to make the drug discovery process

more efficient. As computer power increases, scoring functions improve, and

computational methods for lead optimization are more fully automated, an even

greater impact of the technology will be realized.
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1. INTRODUCTION

Despite their importance in cellular signal trafficking, protein kinases were initially

considered poor drug discovery targets due to the highly conserved protein fold

and ATP binding site. This conservation was expected to result in a lack of

selectivity against other members of this large target class. Recently, the kinase

family has garnered significantly more interest with the clinical success in

cancer therapeutics of small-molecule inhibitors of tyrosine kinases. These

compounds include Gleevec (imatinib, STI-571), acting through the Bcr–Abl

kinase, and Iressa (gefitinib), which inhibits the epidermal growth factor receptor

kinase. Medicinal chemistry efforts in this field have benefited much from

structural biology insights into inhibitor binding interactions and selectivity.
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Computational chemistry has flourished at the interface of these two disciplines.

This review will outline the kinase structural motif, computational methods that

have been adapted for kinase applications, and many of the most recent

applications of computational chemistry techniques to the design of potent and

selective kinase inhibitors.

2. THE KINOME

2.1. Background

The kinases are a family of enzymes that catalyze the transfer of the g-phosphate

group of ATP in the presence of metal ion cofactors (i.e., Mg2þ ) to substrates,

primarily protein sequences with hydroxyl-containing residues serine, threonine,

or tyrosine, using the machinery of a catalytic domain with a conserved fold. More

than 500 protein kinases encoded in the human genome, the kinome, have been

classified into groups and families by sequence alignment [1], expanding upon the

fundamental work in this area by Hanks and Hunter [2]. The cognate kinases for

the CMGC group are the computationally well-studied cyclin-dependent kinases

(CDKs), the mitogen-activated protein kinases (MAP kinases), glycogen synthase

kinase 3 (GSK3), and CDK-like kinases, all of which phosphorylate serine and

threonine residues in their appropriate substrates. The tyrosine kinase group (TK)

can be further organized into families of receptor TKs, such as epidermal growth

factor receptors (EGFR, ErbB) and vascular endothelial growth factor receptors

(VEGFR), and nonreceptor TKs, of which Abl, Src, and Lck are prime examples.

Other groups include CAMK, with kinases related to the family of calmodulin-

dependent kinases, and AGC, named for the cyclic-nucleotide-dependent kinases

such as protein kinase A, protein kinase G, and protein kinase C which form its

basis. As will be seen, fewer modeling studies have been reported for other groups

of kinases, for example, the tyrosine-kinase-like (TKL) or homologs of yeast sterile

kinase (STE) groups, and a number of kinases fall outside the major

classifications described here.

Protein crystallography has made a tremendous impact on elucidating the

mechanisms by which kinases can be inhibited, as is described in a number of

excellent reviews [3–5]. Although crystal structures are static ‘snapshots’ of

protein conformation, the variety of conformations reported for kinases is an

indication of the importance of conformational dynamics in the binding process.

Kinases in their active states have similar structures, but kinases crystallized in

their unphosphorylated, inactive forms reveal the complexity of the situation [6].

Small-molecule kinase inhibitors have been reviewed [7,8], and medicinal

chemistry efforts are introducing compounds at a rapid rate, resulting in entire

journal issues devoted to the topic [9]. Most reported inhibitors are ATP

competitive, and historically these have been shown to inhibit the active form of a

M.L. Lamb186



given kinase. However, compounds have also been identified that bind to the

inactive form, most notably Gleevec (with Abl) and inhibitors of isoforms of p38

kinase of the MAPK family [10]. Most recently, Pfizer has disclosed inhibitors of

MAP Kinase/Erk Kinase (MEK) that bind concurrently with ATP [11].

The regulation of kinase signaling can be controlled through a number of

mechanisms [12]. Among those identified for the tyrosine kinase family are

extracellular ligand binding and dimerization of receptor TKs, autophosphoryla-

tion, recognition of additional domains such as Src-homology SH2 and SH3

domains, and N-terminal myristoylation, in the case of c-Abl [13,14]. While some

computational work has focused on these binding events, for example, the binding

of ephrin ligands to ephrin receptor TKs [15], and diacylglycerol and diacylglycerol

lactones which initiate translocation to the membrane of the protein kinase C [16],

as the majority of recent effort has been directed toward ATP-competitive

compounds, these will be the focus of this report. For earlier work, the reader is

referred to the review written by Woolfrey and Weston [17].

2.2. ATP site recognition elements

The kinase fold consists of two domains connected by a linker (or hinge) region.

The N-terminal domain is primarily b-sheet in structure with a single a-helix, while

the C-terminal domain is largely composed of a-helices. The ATP binding site is a

narrow channel located at the hinge between the domains. A flexible, glycine-rich

loop is responsible for phosphate binding, while the activation loop regulates

kinase activity through its phosphorylation state and conformation. This loop

in most kinases contains a well-conserved Asp-Phe-Gly motif; in the active

conformation, the aspartic acid can interact with an inhibitor or ATP and the

phenylalanine side chain is directed out of the ATP site. In an inactive

conformation, the Phe residue is directed into the site and can either block ATP

binding or stack against aromatic rings of inhibitors such as Gleevec.

The ATP site (scheme below) can be divided into a number of subsites

including the adenine-binding region, the sugar-binding pocket, the phosphate-

binding region, a hydrophobic specificity pocket not exploited by ATP,

and a hydrophobic surface patch en route to the entrance of the site

(the ‘solvent channel’). Molecular recognition of adenine in 68 ATP-binding

proteins (11 kinases) through hydrogen-bonding, p–p stacking, and cation–p

interactions has been characterized in these crystal structures [18,19]. Ab initio

calculations on model systems were used to interpret the contributions of each

interaction to binding. The adenine-recognition motif includes hydrogen bonds

to backbone atoms in the hinge region. One nitrogen of the pyrimidine is a

hydrogen-bond acceptor interacting with the amide NH of residue i; while the

acyclic amine donates to the backbone carbonyl oxygen of residue i2 2:
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In the scheme, these interactions are indicated with solid arrows. Beyond the

adenine site, the hydrophobic selectivity pocket has been the target of many

kinase inhibitors, to pick up interactions not accessible to ATP. The size of

this pocket has been related to the residue at position i2 3 in the hinge;

this residue may be termed the ‘gatekeeper’ of the selectivity pocket [5]. The

contribution of heterocyclic CH interactions with protein carbonyl oxygen atoms

(a CH· · ·O hydrogen bond) has also been studied [20]. Relative to a general set

of aromatic ligand–protein interactions in crystal structures, these authors found

contacts between kinase inhibitors and the hinge backbone carbonyl oxygens

(with distances similar to those in ATP to the carbonyl of residue i; indicated

with a dotted arrow) that provided additional favorable interactions.

The computed quantum mechanical interaction energies and geometries for

19 heterocycle–water complexes elucidate the magnitude of the effect for

different inhibitors and suggest ideas for future ligand design. In addition to

these studies, within the phosphate site, quantum mechanical calculations have

been used in two laboratories recently to investigate the catalytic mechanism, in

particular, supporting the participation of a conserved aspartic acid residue in

the phosphoryl transfer reaction in cAMP-dependent protein kinase (Protein

Kinase A) [21,22].

3. METHODOLOGY FOR KINASE TARGETS

3.1. Homology models

Models for kinase targets based on sequence homology to those with known

structure have provided insights useful for the development of potent and selective
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inhibitors for this protein family, aswill be seen in the applications below.Commonly

used homology modeling approaches [23] have been employed successfully in

many cases. In addition, a new algorithm has been described for kinases that

focuses on the conformations of loops near the active site [24]. This approach,

using dipeptide conformations from a database of proteins, was validated on an

‘open’ structure of Lck and a ‘closed’ structure of c-Src, and applied to modeling of

the open conformations of c-Src and Jak-2 based on the Lck structure.

Two studies have considered if homology models are accurate enough for

molecular docking and scoring algorithms to correctly identify kinase inhibitors

from within a larger set of compounds [25,26]. Diller et al. created homology

models for four growth factor receptor kinase domains and also p38 and Src [25].

More than 1000 compounds gathered from the literature were seeded within

32,000 random compounds from a corporate collection with similar calculated

physical properties, and these compounds were docked into the models (and the

corresponding crystal structure, if known). The authors discuss model building

with apo, ATP-analog-, and inhibitor-bound templates where induced fit can

reduce performance of the model in docking. For kinases excluding the fibroblast

growth factor receptor (FGFR1), the docking protocol demonstrated an

enrichment of ,5 compared to random compounds and an enrichment of ,2

with respect to other kinase inhibitors. With FGFR1, the choice of another

template improved the docking outcome, illustrating the importance of the

template-selection step in model building. In a more limited study, with CDK2 as

the representative kinase, Oshiro et al. addressed the question of when might a

homology model improve enrichment of active molecules relative to its template

kinase structure (i.e., the structure upon which the model was based), and to the

actual crystal structure [26]. It was suggested that when sequence homology is

greater than 50%, it was worth building a model for a specific target – otherwise,

docking to the template structure was just as effective.

3.2. Docking and scoring

A number of the challenges in applying molecular docking and scoring techniques

(virtual screening) to kinase targets have recently been highlighted through

enrichment analyses for docking methods applied retrospectively to a literature

CDK2 indenopyrazole and in-house Src kinase data sets [27]. To improve docking

results for kinases, constraints that incorporate the canonical hydrogen bonds

within the ATP site or other key pharmacophore features can be employed.

Programs such as FlexX-Pharm [28], Glide [29,30], DOCK [31], and GOLD [32]

have this facility, to either focus the search phase of the docking calculation, or to

filter the molecular poses to report only those which satisfy the constraint. Other

commonly used docking methods have been further developed to obtain better
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performance when approaching the kinase family. For example, results from

AutoDock 2.4 have been improved by the augmentation of hydrogen bond

potentials (an alternative to explicit hydrogen-bond constraints) and the addition of

terms reflecting solvation within the scoring functions [33]. Cavasotto and

Abagyan have expanded the internal coordinate mechanics (ICM) docking

approach to include receptor flexibility in an effort to account for conformational

changes in kinase structures [34]. Occasionally, accounting for crystallographic

water molecules or their displacement has been necessary to reproduce binding

mode of a known kinase–inhibitor complex [35]; a method to carry out more

detailed analysis of active site hydration has been reported for CDK2 and may be

useful in such cases [36].

Tominaga and Jorgensen have developed a scoring function for kinases using

Monte Carlo simulations with explicit solvent and an extended linear response

analysis of the sampled configurations [37]. Fifteen descriptors were considered in

a multiple linear regression approach following simulations of ,150 CDK2, p38,

and Lck ligands and their protein–ligand complexes. Key factors in the derived

models were the protein–ligand interaction energy, the change in hydrogen bonds

to the ligand, the total change in ligand solvent accessible surface area, and Lcorr;

an indicator variable that is 1 if the compound is an Lck inhibitor. This final variable

was initially included to accommodate variations in assay conditions (IC50 vs. Kd;

etc.) but may also compensate for aryl CH· · ·O interactions and protein–ligand

interactions bridged by water molecules, which are not accounted for in the

hydrogen-bonding term.

3.3. Selectivity

The promiscuity of many kinase inhibitor scaffolds has been exploited for the

design of kinase ‘gene family’ libraries, expected to provide enhanced hit rates

against targets in this family [38,39]. However, selectivity, while demonstrably

achievable (at least for a subset of kinases profiled with a given inhibitor) and

theoretically preferable to avoid off-target toxicity, has been difficult to predict to

date. In the Monte Carlo simulation study described above, the average

electrostatic and van der Waals components of the protein–ligand interaction

energy were shown to emphasize residues in the kinase domain that should

contribute to specificity amongst the kinases [37]. Earlier work by Rockey and

Elcock demonstrated that starting from a given inhibitor and its crystal structure,

average binding energies for correctly docked poses in homology models of

related targets could generally predict which other kinases would be successfully

inhibited by the compound [40].

Within the Janus kinase family, alpha shape molecular similarity analysis and

multiple-copy simultaneous search techniques were used to map protein binding
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sites and explore functional groups that may contribute to selectivity of tyrphostin

inhibitors such as AG-490 1 between Jak2 and Tyk2 kinases [41]. A similar

principal components (PC) analysis was employed to classify and explore

selectivity more broadly across kinase subfamilies [42]. Probe interactions across

binding-site grids from 26 aligned kinases were analyzed. The first principal

component, associated with the adenine-binding pocket when visualized using

hydrophobic probe contours, largely discriminates between the PKA structures

and those of other kinases, while the second PC separates the CDK group from

the other structures and appears to be associated with differences in the

phosphate-recognition site and hydrophobic pockets not occupied by ATP.

Interactions highlighted for CDKs through the protein-structural analysis were

interpreted using a 3D-QSAR analysis of 2,6,9-substituted purines aligned within a

CDK2 crystal structure.

In another study, the selectivity of STI-571 (Gleevec) for Abl and platelet-derived

growth factor receptor (PDGFR) a and b isoforms over the closely related Flt3

receptor tyrosine kinasewas traced to the gatekeeper residue (threonine in Abl and

PDGFRs, phenylalanine in Flt3) through homology modeling and docking. This

findingwasconfirmedwhen theFlt3F691Tmutantwassuccessfully inhibitedby the

compound [43]. An analogous mutation to threonine was not sufficient to render

FGFR1or the insulin receptor kinase sensitive to the compound, however. Analysis

of thefandcbackboneangleswithin theAsp-Phe-Glymotifof theactivation loops in

crystal structures of seven tyrosine kinases (active and inactive forms) suggested

the conformation of this loop is essential for binding STI-571. Interactions that

stabilize this loop conformation were indicated, as were residues that might be

targeted for selectivity by corresponding inhibitor design.

3.4. Structure-based hybridization

A staple of modern medicinal chemistry is the use of multiple crystallographic

structures and compound SAR to suggest combinations of known inhibitors from

different chemical classes to improve potency, selectivity, or novelty. One recent

application demonstrated optimization of a series of imidazo[1,2-a ]pyridine

inhibitors of CDK2 (or CDK4), incorporating information from overlaid structures of

bisanilinopyrimidine compounds bound in a similar mode [44]. Pierce et al.

at Vertex have reported a simple but powerful automated approach to
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structure-based hybridization, called BREED, to create novel inhibitors from

crystal structures of known ligands [45]. Target structures are aligned, resulting in

inhibitor superposition. Acyclic bonds between pairs of ligands that match in terms

of bond order, atom proximity at each end of the bond within 1 Å, and an angle

between the two bonds of #158 indicate fragments that might beneficially be

exchanged between the molecules. Newmolecules are created for each matching

bond as the fragments are ‘swapped’ and are output to a file, retaining the

coordinates of the proposed binding mode based on the original superposition.

These molecules/poses can then be evaluated visually within the aligned active

sites, or scored by any external approach. Interesting molecules generated from

known CDK2 and p38 ligands were reported, and the statistics for the full

experiment based on 10 kinase–inhibitor complexes (including proprietary

structures for GSK3, Src, and Aurora2) were described as well. These 10 ligands

resulted in 119 compound combinations, including known inhibitors (not contained

in the input set) and novel kinase structures. The authors suggest that the pool of

solved crystal structures could be increased further with the addition of docked

structures, to provide additional new ideas through this approach.

4. APPLICATIONS ACROSS THE KINOME

4.1. CMGC group

To identify new inhibitors for the CDK family of kinases, docking of ,50,000

commercially available compounds, requiring a match of four site points from

within the ATP site of the CDK2–staurosporine complex, has been performed

[46]. In the first round of screening, 120 top-ranked compounds resulted in six hits

with IC50 less than 20 mM. In a second round, following modification of van der

Waals parameters, the best-scoring 28 compounds, along with 28 randomly

selected compounds, were screened. In this case, the hit rate at greater than 30%

inhibition (compound concentration, 30 mM) was 29% for the docked compounds

and 7% for those selected at random. The crystal structures of leads based on

scaffolds such as 2 and 3 revealed their binding modes, and the role of inhibitor

binding on the stability of the Lys33-Asp145 salt-bridge interaction as a

determinant of activation loop conformation was investigated.
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An alternative approach to select compounds for screening, iterative informative

library design, was illustratedwith a retrospective analysis of data generated during

a CDK2 project [47]. The dataset of more than 17,500 compounds, composed of a

general screening library aswell asCDK2-focused synthetic libraries, was released

with this report. An initial 3- and 4-point pharmacophore design space was derived

from the general screening library. For subsequent rounds of ‘synthesis’,

compounds were selected such that the sampling of the pharmacophore space

was optimized for refinement with subsequent screening data. The model in each

round was then refined to retain pharmacophores that best discriminate between

active and inactive molecules. For the final round of selection, the 100 remaining

compounds most similar to the actives identified in earlier rounds were selected.

The cumulative enrichment for this protocol compared to a baseline diversity/

similarity process was significant, and the informative approach identified 11 of 14

active scaffolds, compared to seven with the diversity/similarity technique. The

same group previously reported a structure-based approach to informative design,

using pharmacophores derived from the ATP sites of one or more CDK2 structures

[48]; others [49] have utilized Catalyst [50] to create higher-order pharmacophore

models of CDK activity and screened large combinatorial libraries.

The McCammon group has reported free energy calculations using a

continuum solvent model to understand the binding of flavopiridol 4-based

inhibitors of CDK2 [51]. Probing the sensitivity of the binding energy to small

changes in atomic partial charges highlighted regions of the ligand that should be

optimized and the electrostatic characteristics that would be preferred, as well as

regions of the kinase site that contributed most to ligand binding. Based on this

analysis, the rationale for synthesis of a number of additional compounds was

provided. Hybrid homology models for other CDK family members, where only

active site residues were ‘mutated’ from the template structure, did not yield

quantitative results with this approach. However, an analysis of the CDK2 active

site in terms of the residue conservation of ,400 kinase sequences provided

other opportunities for selectivity; Glu12, Phe82, and Lys89 were proposed to

have a role in selectivity vs. CDK4.
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Fifty-two paullone analogs (alsterpaullone, 5) formed the basis of a

comparative molecular similarity analysis of GSK-3b inhibition and the related

CDK1 and CDK5 serine/threonine kinases [52]. GSK-3b is of interest as an

Alzheimer’s disease target. Compounds were docked into a model of CDK1/

cyclin B and minimized within the kinase ATP site to generate alignments for the

3D-QSAR model, which yielded cross-validated q 2 values of 0.699 (CDK1),

0.652 (CDK5), and 0.554 (GSK-3b). The models were further tested with 21

newly synthesized paullones. Optimization of the electrostatics within this series

was suggested for future selective GSK-3b inhibitor design. With similar goals in

mind, indirubin 6 analogs that inhibit GSK-3b selectively over CDKs have been

pursued, although in this case 23 training set compounds were minimized within

the active site and their binding affinities estimated using PrGen [53]. The binding

affinities of 15 additional compounds were then predicted, with an RMS error of

1.74 kcal/mol. Another recent report of selective inhibitors based on scaffold 7

developed out of a structure-based design approach [54].

The MAP kinases, in particular the p38 kinases, have received much attention,

resulting in compounds in the clinic for inflammatory diseases [10]. Most recently,

however, two groups have explored the conformational preferences of inhibitors to

rationalize structure–activity relationships in indole-5-carboxamides 8 [55] and

aminobenzophenone 9 [56] series.

4.2. TK group

In theEGFR tyrosine kinase family,Muegge andEneydy reported identification of a

novel inhibitor of the ErbB2 (HER2) kinase [27]. A homology model for the catalytic

domain was built from an insulin receptor kinase domain in the active conformation

and was relaxed with molecular dynamics simulations that included explicit water

molecules. DOCK was used for a preliminary shape-based screen of the ATP site,

followed by more a rigorous docking and scoring protocol that was applied to only

the top 20,000 compounds. After visual inspection of the top-ranked compounds at
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this stage, 141 were chosen for the biochemical assay. The most potent hit 10 had

an IC50 of 1.5 mM and was selective vs. EGFR. Interestingly, it was shown to be an

irreversible inhibitor, forming a covalent bond with Cys805.

Three recent reports have applied 3D-QSAR methods to develop models for

EGFR inhibition. In the Buolamwini laboratory, comparative molecular field and

similarity analyses of 172 anilinoquinazoline and anilinoquinoline inhibitors were

performed, using a variety of ligand alignment protocols [35]. Receptor-guided

alignments with docking or dynamics based on the crystal structure of erlotinib

(Tarceva) with EGFR were included. A similar study was carried out to explore the

selectivity and potential binding modes of a series of tyrphostins for EGFR or

HER2 and to guide future synthesis efforts [57]. In addition, a pseudoreceptor

approach to 3D-QSAR has been applied to 27 pyrrolo[2,3-d]pyrimidine and

1H-pyrazolo[3,4-d]pyrimidine inhibitors of EGFR [58].

Within the VEGFR family, inhibitors in a number of chemical series have been

discovered [59]. Homology models and docking have contributed to understanding

their binding modes, leading to improved aqueous solubility for a set of KDR

(VEGFR-2) inhibitors by directing solubilizing groups appropriately toward the

solvent channel [60]. When applied to the Src family of nonreceptor tyrosine

kinases, this approach led to improved physical properties for Lck inhibitors [61]

and selectivity in targeting bone tissue with the addition of phosphonomethyl-

phosphonic acid warheads to Src inhibitors [62]. In another study, conformational

and molecular electrostatic potential analysis of a potent phthalazine-based

inhibitor 11 of KDR (IC50 ¼ 37 nM) and Flt-1 (VEGFR-1, IC50 ¼ 77 nM) lead to a

substructure search for anthranilic acids that would mimic the phthalazine ring with

an intramolecular hydrogen bond. Compound 12 from that search was tested

(3.7 mM vs. KDR), providing impetus for synthesis of 13, which provided a similar

activity profile to the original lead (20 nM vs. KDR, 180 nM vs. Flt-1) [63].

.
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4.3. CAMK group

Associated by sequence similarity to the CAMK group, checkpoint kinase-1

(Chk-1) blocks the activity of CDKs and causes cells with damaged DNA to

arrest at the G2/M cell cycle checkpoint. To focus a corporate collection into a

subset to be screened against Chk-1 and thereby identify compounds that

would allow damaged cells to proceed into mitosis and death, the collection

was filtered for compounds that contained a simple kinase recognition pharma-

cophore (a hydrogen bond donor and acceptor pair separated by 1.35–2.40 Å)

[64]. In a subsequent virtual screen with FlexX-Pharm, docked compounds

were required to match their donor/acceptor pair to the backbone carbonyl of

Glu85 and the backbone NH of Cys87. Compounds were then re-scored with a

consensus score validated in a pilot study using CDK2. Of the 250 compounds

inspected visually, 103 were screened against Chk-1, and 36 compounds were

identified with IC50s between 110 nM and 68 mM. Example hits came from

bisanilinopyrimidine and quinazoline scaffolds.

4.4. AGC group

Inhibitors of the serine/threonine Rho kinase were developed from weak

screening hits through docking to a homology model [65]. Five scaffold ideas

derived from the docked poses of the pyridine-containing compounds lead to

the docking of a small virtual library. Following synthesis and testing,

compounds with IC50 values less than 1 mM were reported from four cores:

pyridines (best IC50 ¼ 200 nM), 1H-indazoles (20 nM), isoquinolines (100 nM),

and phthalimides (900 nM). For the aurora2 kinase, a cancer target with

homology to the cyclic-AMP-dependent kinases in this group, docking of

similar scaffolds led to prioritization of quinazoline and isoquinoline scaffolds

for further molecular design [66].

4.5. Other kinase groups

A pharmacophore and shape-based virtual screening approach was taken to

identify inhibitors of a TKL family member, Type I TGFb Receptor kinase,

based on a literature triarylimidazole inhibitor [67]. The Catalyst query

incorporated a requirement for two hydrogen bond acceptors and three

aromatic centers, and filtered a commercial 200,000 compound database to 87

hits for testing against this serine/threonine kinase. Crystallography confirmed

that compound 14 (Kd ¼ 5 nM) bound as predicted by the query.

M.L. Lamb196



The compound was found to stabilize the inactive conformation of the target,

as does the protein inhibitor of this pathway, FKBP12.

Finally, an inhibitor of CK2 (casein kinase 2) was discovered through a virtual

screening protocol employing DOCK [68]. Compounds with an energy score better

than235 kcal/mol against the homology model were further required to make two

hydrogen bonding interactions to either Val116 alone or in combination with

Glu114. After consensus scoring, ,1600 compounds remained for visual

inspection. Of 12 compounds tested, four hits were achieved in four chemical

classes. The most active, 15 (IC50 ¼ 80 nM), was found to be selective against a

panel of 20 kinases. The authors suggested that this results from a salt-bridge

interaction to Arg43, which is not conserved in other kinases.

5. CONCLUSIONS

Clearly, computational chemistry has had a large impact on kinase inhibitor design

and analysis of structure–activity relationships. Crystal structures have assisted

many studies, but homology models have played an important role as well. Thus

far, the promiscuity of the active site has been exploited to find hits, and certain

subsites of the ATP site have provided the selectivity necessary to optimize leads.

However, accurate predictions of kinase selectivity for individual compounds or

chemical classes remain elusive. Additional efforts to improve modeling of the

flexibility of the activation loop should enable a fuller understanding of which

compounds will bind to active or inactive kinase conformations. Even more

challenging, perhaps, will be the development of methods to identify and adapt

inhibitors to mutations within a given kinase, for example, the Gleevec-resistant

mutations reported in Bcr–Abl [69] and the recently reported activating mutations

in EGFR [70,71] that may point the way toward patient targeted therapies.
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1. INTRODUCTION

It is well known and accepted that the United States provides a world-premiere

postsecondary educational system. According to the 2000 US census, 66% of

Americans enter college after high school. In contrast, the United Kingdom has

43%, France 33%, and Switzerland 15% of their population entering college

(based on 1998 numbers). Despite the obvious successes and scientific advances

since World War II, it is clear that a number of modern day issues have begun to

place considerable stress on the US educational system’s ability to provide the

superb educational infrastructure that has flourished in the past.

Two statistics indicate a growing problem for the future. First, there has been a

decrease in the percentage of domestic students entering college as science

majors since 1970. To compensate for the decline in domestic students applying

to graduate school, the American system has relied heavily upon quality

international graduate students to support the research and educational mission of

the university. However, this option is quickly becoming unavailable as foreign

universities have become more advanced and competitive, and student

visas have become more restricted due to recent political and world events.
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Over the last few years, the trend has become clear to institutions outside the

window of the top 50 elite universities; fewer quality international students are

willing to travel abroad or simply cannot obtain visas to enter the United States. A

recent report has indicated that 64% of the 320 institutions surveyed have

experienced declines in international student applications and visa requests [1].

The major reason for the decline was the increase in visa denials. The dwindling

number of quality graduate students will become a major issue in the near future

for all universities. One method to address this problem is to focus efforts towards

recruiting domestic undergraduates into science.

Secondly, only 3% of the institutions that grant bachelor’s degrees per year are

classified as research universities [2]. This statistic underscores a dramatic

departure from the ‘golden years’ in the American higher educational system. As a

greater percentage of the population enters college, a great number of the

students will experience 2-year colleges, or schools not equipped with the

infrastructure to carry out research [3]. This is of concern since an active research

experience is considered one of the most effective ways to attract talented

undergraduates and retain them in careers in science and engineering, including

careers in teaching [2]. Consequently, the inspiration and motivation for studying

chemistry or biochemistry will not be experienced by a vast majority of college

students. Unless we find a way to provide research opportunities for college-

bound students early in their academic experience, there will be fewer students,

domestic or international, available for research and teaching in chemistry.

The Boyer Commission on educating undergraduates in the research university

was created in 1995 under the Carnegie Foundation for the advancement of

teaching [2,4]. The commission released its report on undergraduate education in

1998, which described 10 ways to reinvent the undergraduate experience to

strengthen science education in the United States. One focus of the commission

is research- and inquiry-based learning for freshmen. The belief is that

undergraduate education at research universities should be fully integrated with

the research faculty. As the report states “…thousands of students graduate

without ever seeing the world-famous professors or tasting genuine research.”

This sentiment is echoed in the National Academies report entitled ‘Improving

Undergraduate Instruction in Science, Technology, Engineering, and Mathe-

matics: Report of a Workshop’ which indicated that “all undergraduates [need to]

have learning experiences that motivate them to persist in their studies and

consider careers in these fields” [5]. As a result of these reports, more efforts have

been placed into the development of undergraduate research experiences.

The two ideas described within this annual report touch upon several of the

Boyer strategic points and are reflected by a number of organizations and

agencies, such as the Council on Undergraduate Research (CUR) and the

National Science Foundation (NSF). First, how can we provide active and

engaging modes of learning involving research opportunities of significant
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pedagogical value? Specifically, how do we approach a larger number of students

earlier in their undergraduate careers in a manner that will attract and retain them

as science majors? Secondly, how can we successfully influence a broad

spectrum of students at institutions with no history of research and the increasingly

important 2-year colleges? It is clear that academic ‘business as usual’ is no

longer sufficient to educate the modern student body and instill a desire for

graduate education.

2. CURRENT STATUS

From 1977 to 1999, the total number of college students in America increased

250%, from about 6 million in 1970 to about 15 million in 1999 [6]. However, the US

Census Bureau indicates that between 1985 and 1998, the number of graduate

students in the physical sciences stayed approximately constant at 29,000 [7]. The

number of chemistry majors has not kept pace with the large influx of college

students, which indicates that as a percentage of college students, chemistry and

biochemistry is losing significant ground. The apparent loss of students from the

chemistry profession is less troublesome than the missed opportunity to attract the

brightest and most talented students that will ultimately have the greatest impact

on chemical and biochemical advances in the future.

The higher number of students entering college has been attributed to the

desire of students to earn higher wage jobs. However, students have primarily

focused on technology or health-related fields. For example, between 1970 and

1998 computer and information sciences, agriculture and health-related fields saw

an average of a 250% increase [8]. During this same time period, Snyder observed

a loss of students in the physical sciences and Hudson noted “…the shift in the

past three decades… away from the humanities and hard [physical] sciences

toward business, technical, and health fields” [9]. Studies conducted by Seymour

and Hewitt on the reason why students have moved away from the physical

sciences has indicated that over half of the students who enter college intending to

pursue majors in the natural sciences change majors within 2 years of taking their

first college science or mathematics classes [10]. Seymour and Hewitt reported

that students were dissatisfied with what they perceived as poor teaching and

other negative experiences in ‘weed-out’ science courses and the reliance upon

memorization rather than problem and research-based testing [10].

Several investigators have recently reported on the importance of undergradu-

ate research [11–18]. The belief is that undergraduate education should be fully

integrated with research faculty. However, the proper method and timing of

introducing undergraduates to meaningful research experiences have become a

matter of debate and controversy. Too early of an introduction could lead to

student confusion and alienation, yet a delay to research exposure could fail to
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pique student interest during critical decision times concerning career choices.

Due to a number of issues, fundamental research skills are rarely taught to

undergraduates by using a structured classroom setting. Instead, traditional

research opportunities, primarily reserved for upper-level juniors and seniors,

have been carried out under the guidance of a faculty member; well after a

commitment to study chemistry has been made.

Educators have recently reported their attempts to create active learning

environments in lower level university classes by invoking research experiences

through less regulated projects and laboratory assignments [11–38]. For

example, pre-defined industrial-based mini-projects have been used to better

prepare second-year students for more sophisticated third-year research [29].

Similarly, second-year students have gained valuable experience and skills by

optimizing problematic analytical procedures commonly used in pharmaceutical

and industrial production [32]. Sophomore organic and spectroscopy laboratories

have been redesigned to provide more project-based and independent research

experiences [33,34]. Representative of most upper-level classes, Whipple-

VanPatter [27] required second-year students to design, conduct, analyze, and

present a final 5-week research project based upon the analytical techniques

taught in class. Finally, Weisshaar [37] exposed first-year students to an 8-week

independent laboratory project based upon a genuine research project. One

current view of the more successful pedagogies is in the development of

‘research-supportive curriculum’ to create time in the already tight curriculum

schedules for the students and alleviate increasing pressures on faculty

members [11].

3. COUNCIL ON UNDERGRADUATE RESEARCH

The CUR and its affiliated colleges, universities, and individuals share a focus on

providing undergraduate research opportunities for faculty and students at

predominantly undergraduate institutions [39]. Many of the recent publications

involving undergraduate research are associated with CUR members [20–28].

CUR believes that faculty members enhance their teaching and contribution to

society by remaining active in research and by involving undergraduates in

research. CUR’s publications and outreach activities are designed to share

successful models and strategies for establishing and institutionalizing

Undergraduate Research Programs (URPs). Serving faculty and administrators

at primarily undergraduate institutions, CUR has 3000 members representing over

870 institutions in eight academic divisions. CUR’s wide range of services has had

a positive impact on URPs at their individual institutions and increases their

connections with funding agencies and colleagues.
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4. NATIONAL SCIENCE FOUNDATION

The NSF has been proactive in promoting research experiences for

undergraduates. Two of the NSF’s principal efforts have been through the

Research Experiences for Undergraduates (REU) and Undergraduate Research

Center (URC) programs [40,41]. There are currently 67 REU sites across the

nation. The REU program aims to provide appropriate and valuable educational

experiences for undergraduate students through research participation. REU

projects involve students in meaningful ways in ongoing research programs or in

research projects specially designed for the purpose. REU projects feature high-

quality interaction of students with faculty and/or other research mentors and

access to appropriate facilities and professional development opportunities. REU

opportunities are an excellent way to reach broadly into the student talent pool of

our nation. The NSF provides a complete list of REU sites and contact information

for undergraduate research opportunities [42]. The URC program seeks new

models and partnerships with the potential to expand the reach of undergraduate

research to include first- and second-year college students; and to enhance the

research capacity, infrastructure, and culture of participating institutions, thereby

strengthening the nation’s research enterprise.

5. UNDERGRADUATE RESEARCH PROGRAM

Several excellent university programs have been established to promote the

involvement of undergraduates into the research laboratory. CIRRUS is a

chemistry Internet resource that identifies opportunities for undergraduate

research [43]. Duquesne University is one such example where a tradition of

undergraduate research has been a priority for the faculty and school [44]. The

Bayer School of Natural and Environmental Sciences at Duquesne University

officially established its URP in 1998. However, the School has been providing

REU since 1951. Initially the research experiences were limited to the biological

sciences, chemistry and biochemistry, and physics. Over the last 4 years, the URP

has expanded to provide research opportunities in the pharmaceutical, health, and

forensic sciences.

To assist in a successful and meaningful 10-week experience in research, the

URP coordinates faculty and staff in the training of students in using the library

for effective literature searches [45], reading and writing scientific papers

[46], presenting their research findings, and treatment of ethical issues in science

[47,48]. In addition, the URP administers web-based advertising, online

application processing, program assessment, scheduling of weekly scientific

seminars, community outreach activities, group outings, and coordination of

combined ethics meetings with local REU sites in the greater Pittsburgh area.
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Chemistry and biochemistry faculty members have extensive experience in

mentoring undergraduate researchers (Table 1). Specifically, over the last 11

years, the faculty members have provided mentoring for 199 undergraduates,

resulting in 229 professional presentations and 63 peer-reviewed publications by

undergraduates. The faculty members have provided research experiences for

over 15 students per summer, limited only by available scholarships and stipends.

Collaborative efforts have been on the rise over the last 4 years, where chemistry

faculty members have worked with pharmaceutical sciences and biological faculty.

In 2004 URP, six students worked on interdisciplinary projects with more than one

researchmentor. Currently the students are supported through a variety of sources

derived from the National Science Foundation, National Institutes of Health,

Department of Defense, Department of Education, and Duquesne University.

Acceptance into the URP is competitive. Each year over 160 completed

applications are considered for approximately 35 positions. The URP has a

flexible recruitment plan that has three principal target areas involving students

from regional colleges without research capacity, commonly overlooked first- and

second-year undergraduates, and underrepresented students. Sixty percent of

the students come from colleges or universities that do not have the resources to

carry out research. Not only does the university consider this a form of service

learning, but also the faculty members find it to be an effective tool for graduate

student recruitment. Over the last 3 years, one of every eight entering graduate

students in chemistry has had a URP experience; 90% have benefited from a

previous research experience. On the other hand, there is immense pressure on

faculty members to increase or maintain the highest level of scholarship. As such,

some faculty members struggle with the idea of training a student only to lose them

after 10 weeks.

Analysis of the student demographics reveals that 17% of the successful

candidates are first-year students. The URP committee intentionally keeps the

percentage of first year undergraduates at a high rate, since they know that the

first year is a critical time in the student’s career choices. The faculty members at

Duquesne University have come up with a number of innovative ideas to provide

more research exposure for freshmen. Our philosophy is to give freshmen the

necessary skills and motivation to carry out research, and not let them ‘sink or

swim’. The development of our new educational model of introducing freshmen

into research revolves about honors freshman chemistry. Since its inception in

1998, the class size is approximately 20 students per year. The students are

accepted into the class based upon SAT scores or from TOLEDO examination

performance. We have also honored requests from students who display the

necessary motivation and desire to be challenged.

The students meet once a week in the first semester to be trained in the use of

the library for literature searching, safety procedures and guidelines, reading and

writing of scientific papers, and application of the scientific method. A university
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Table 1. Bayer School’s Undergraduate Research Program (URP) statistics over the last 7 years

1998 1999 2000 2001 2002 2003 2004 Average URP Statistics

8 8 8 8 7 9 8 8 Funded by Bayer School
2 8 9 6 4 0 0 6 Funded by NSF REU (biology)
0 0 0 0 0 0 10 10 Funded by NSF REU (chemistry)
14 9 12 3 6 14 9 10 Funded by departments
0 1 0 4 4 4 3 3 Funded by other schools
6 10 4 7 10 8 6 7 Funded by external sources
30 36 33 28 31 35 36 3363 Total participants

6 7 6 4 5 7 2 5 Freshmen
10 12 14 10 15 14 13 13 Sophomores
12 16 12 13 9 13 19 13 Juniors
2 1 1 1 2 1 2 1 Seniors

13 21 16 11 14 15 9 14 Worked in biological sciences
16 14 16 11 13 15 20 15 Worked in chemistry/biochemistry
0 0 0 1 0 0 0 1 Worked in health sciences
0 0 0 2 1 1 2 2 Worked in physics
0 0 3 3 3 4 5 4 Worked in pharmacy

Entries are the numbers of students.
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librarian trains the students how to use the library’s electronic and printed

resources. Faculty members assist by providing examples on how to search the

literature exhaustively. The university’s safety officer trains the students to use fire

extinguishers and gas cylinders, treat chemical spills, store compounds, and

dispose of hazardous waste. The honors chemistry faculty members share the

responsibility of teaching the students how to read and write scientific papers. The

process starts with the reading of short papers or communications and discussion

as a group under the direction of a faculty member. The students are also given

specific writing assignments on mock research projects. The students are then

exposed to the research faculty by short research seminars. The semester-long

experience culminates in the student selection of their research mentor. A

research project is decided upon and becomes the focus of the following

semester. The faculty members feel that this program results in a well-trained

student who has an appreciation of how science is conducted and whose success

within the sciences are increased.

Another goal of the URP is to improve upon the number of underrepresented

students (currently 14%) and maintain the number of women participants

(currently 60%) in the program. We have made significant advances in the last 3

years. A strong connection with Florida Memorial College (FMC), a historically

black college with 2242 students and 38 undergraduate degree programs, has

been established to create research opportunities for under-represented students.

Prof. Ayivi Huisso from FMC has become a crucial member of the URP team in

terms of mentoring and recruitment. Over the last 3 years, Duquesne has awarded

12 research fellowships to FMC and Mississippi State College for Women. Five of

these students have won research awards by presenting their research at

subsequent research symposia.

6. CONCLUSIONS

The United States continues to provide a world-premiere postsecondary

educational system. However, a number of modern day issues have begun to

deteriorate the superb educational infrastructure that has flourished over the last

century. Difficult times lie ahead for a majority of research universities. The

problems stem from decades of neglect in the recruitment of domestic students

into the sciences and from the lack of training of the entering college population by

the top research universities. Agencies and organizations such as the National

Science Foundation and the Council on Undergraduate Research have been

active in reversing trends that are detriment to the higher education system. Novel

ideas and programs are starting to make a difference. Programs that promote the

involvement of undergraduate students in research and incorporate these ideas

not just in the laboratory, but also in the classroom should provide one mechanism

to help recruit talented students into the physical sciences.
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1. INTRODUCTION

“Physical Chemistry: The process by which all natural phenomena are reduced to

y ¼ mxþ b” [1].

Browse through early mathematical reference texts for chemists, such as the

classic ‘Mathematical Preparation for Physical Chemistry’ by Daniels [2], and it is

clear that historically there is more than a little truth in this humorous definition.

Several chapters are typically devoted in these tomes to graphical analyses of

data with advice ranging from the selection of appropriate paper and scales, to

how to most reliably extract slopes and intercepts. Early in the last century,

computational chemists were not quantum mechanics or molecular dynamicists,

but masters of curve fitting and error analysis [3].

Physical chemistry as a field has grown and diversified since these classic texts

were written, and the physical chemistry curriculum has been challenged to grow

and stretch along with it. While mathematical and computational techniques

remain a mainstay of a student’s experience in physical chemistry, both the

necessary concepts and available tools have changed tremendously. Not only has

the advent of inexpensive, widely available computing driven these changes, but

the penetration of physical chemistry into other disciplines, ranging from medicine

to environmental science, is a significant impetus for change as well.

In 2000, the Mathematical Association of America (MAA) convened a working

group of chemists to consider the connections between the undergraduate

mathematics and chemistry curricula [4]. The group noted the significant impact of
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technology on both curricula, commenting that it allowed chemists to take on

questions of increased complexity. They identified nine uses of technology critical

to chemists in general, of which I will highlight the first two as of particular interest

to physical chemists: multivariate modeling and visualization, and iterative

solutions. Six areas of mathematical expertise necessary to chemistry were

acknowledged, four of which involve significant use of computers: multivariable

relationships, numerical methods, visualization and data analysis. The chemists in

the working group expressed concern about the impact of technology on the

teaching of the base skills and concepts in these areas, as well as acknowledging

that symbolic algebra programs are in common use in upper division courses such

as physical chemistry.

More recently, Zielinski and Schwenz have considered the state of the physical

chemistry curriculum in the new century [5]. They provide a comprehensive picture

of recent pedagogical developments relevant to the teaching of physical

chemistry. The choice of what to include in a first course in physical chemistry

has grown more difficult as the range of the material has grown, and Zielinski and

Schwenz advocate tailoring the courses to the interests and needs of students.

They stress the need for physical chemistry students to have access to a robust

computational resource.

One hopes that it is the rare student who now escapes physical chemistry

without once using a computer to solve a problem: either a numerical problem or

for a quantum chemical calculation. Symbolic programming environments such as

Mathematica [6], Maple [7], Matlab [8] and Mathcad [9] are widely accessible to

students and instructors, and more and more material is being developed for use

in teaching physical chemistry [10–12]. The advent of GUI interfaces for quantum

chemistry software has brought the use of programs such as AMPAC [13],

GAMESS [14], Gaussian [15] and Spartan [16] into not only the physical chemistry

classroom, but into general chemistry and organic chemistry as well. Current

textbooks clearly incorporate both types of computational approaches into their

problems, if not always into the body of the text, and ancillary materials using

symbolic algebra environments are widely available [11].

It remains that the emphasis in most texts is on deterministic approaches, rather

than stochastic models or dynamical simulations. A simple stochastic experiment

undertaken in my office in which I randomly selected one recent physical

chemistry text, opened to a chapter at random and determined the percentage of

problems on a page that required students to fit data to a line, reveals that even

current students might not disagree with the tongue-in-cheek definition of physical

chemistry as a field given above [17]. Current practitioners certainly would take

issue with this circumscribed view of computations in physical chemistry, as both

molecular dynamics and stochastic methods such as Monte Carlo simulations are

standard parts of the computational chemist’s repertoire. The MAA working group

on mathematics and chemistry [4] supported the notion that students must
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develop facility with common computational techniques, including both stochastic

and deterministic approaches. Zielinski and Schwenz [5] advocate for introduction

of stochastic methods into the curriculum for students on an engineering track.

I would extend that emphasis and suggest that students destined for graduate

work should also be exposed to at least the conceptual framework of stochastic

algorithms and simple implementations of both Monte Carlo techniques and

molecular dynamics. The accessibility of resources such as Mathematica and

Mathcad makes it possible for students to ‘get inside’ these methods in ways not

possible even a decade ago. Though many texts might not reflect this part of the

field, if one looks beyond the texts and into the literature, one finds that stochastic

methods and molecular dynamics are indeed finding their way into the physical

chemistry curriculum.

2. MOLECULAR DYNAMICS

Lamberti et al. have developed a superb introduction to molecular dynamics for

students (and for instructors who might not be intimately familiar with the workings

of dynamics simulations) [18]. As well as providing a clear, easily readable and

solid conceptual framework for these methods, the authors emphasize throughout

the practical aspects of implementing a dynamics algorithm. Both simple Euler

integration and Verlet’s more sophisticated algorithm are laid out. Sample

programs in FORTRAN and C, along with some suggested exercises for students,

are available through JCEOnline [19]; the URL provided by the authors in the

chapter is no longer accessible. The code provided could easily be ported to any of

the symbolic algebra environments, and a laboratory exercise devoted to

exploring these methodologies.

Cropper’s Mathematica Computer Programs for Physical Chemistry [20]

includes a treatment of molecular dynamics and includes CD programs for

students to use and modify. The treatment here is also accessible to

undergraduate students.

3. STOCHASTIC METHODS

Cropper’s monograph also devotes space to stochastic methods, including

covering Monte Carlo methods and techniques based on random walk algorithms.

Applications to stochastic kinetics and random coil polymers are described. Again,

the CD provides a starting point for working with the algorithms, rather than just

reading about how they might work.

Bluestone describes a simple problem which can be solved using Monte Carlo

methods [21]. Thermodynamic properties of a simple system with evenly spaced
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energy levels are computed using a Monte Carlo algorithm. The system is

conceptually accessible to undergraduate physical chemistry students and

applying Monte Carlo techniques emphasizes the underlying statistical nature of

the observed thermodynamics.

Woller, while a teaching assistant at University of Nebraska, developed

materials for an undergraduate physical chemistry lab introducing students to

Monte Carlo methods and their use in molecular simulations [22]. Written in 1996,

the page remains the second most common entry point into the University of

Nebraska, Lincoln chemistry department web page (the most common entry is the

departmental home page). The software which accompanies the lab is not

available on the site, but the introduction is so easily readable by a physical

chemistry student that I include it here. I have used it in class with an exercise to

determine p to quickly convince students of the power of these methods.

More recently, Mira et al. provide a useful pedagogical framework comparing

deterministic techniques for modeling chemical kinetic equations to stochastic

approaches [23]. They point out that physical chemistry courses typically limit their

discussion of chemical kinetics to deterministic methods, even though chemical

reactions are inherently stochastic events. The limitations of deterministic

methods are well known [24], particularly when describing processes such as

nucleation or explosions and some biological reactions. Deterministic approaches

can be algorithmically simpler; the simplest examples can be worked with pencil

and paper, though even deterministic models can easily grow sufficiently complex

to require extensive computational investment (e.g., solutions of coupled rate

equations for atmospheric models). Two examples are used to highlight the

differences in the approaches. Matlab is used to implement the algorithms, and

the code is available at JCEOnline [19].

A more sophisticated piece of code, which uses stochastic approaches to

model chemical kinetics, is available from IBM [25]. The code, designed to let

experimentalists explore systems rapidly and develop mechanisms based on

experimental data, can also be used in the classroom. It is available for several

platforms, including Macintosh and Windows, and there is good documentation at

the website as well. Instructors should expect to invest a bit of time in learning

input methodologies, but the ability to see what happens when you alter a

mechanism is worth the investment.

Genetic algorithms are another class of stochastic methods used frequently by

computational chemists, as well as by chemical engineers and process chemists.

Rowe and Colbourn cover the basics of neural networks, including fuzzy logic and

genetic algorithms, highlighting the applications to industrial processes [26].

This would be a good starting point for a class about these often less familiar

techniques. (Though many students will have heard about ‘fuzzy logic’ in the

news, few are acquainted with the details.)
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4. CONCLUSIONS

Physical chemistry is a dynamic and growing field; it is therefore a challenge to

keep the undergraduate physical chemistry curriculum in concert with develop-

ments in the discipline, as well as to design courses that provide students with the

necessary conceptual and practical background necessary to go on. Instructors

should consider ways to expose students to both the practical aspects of

molecular dynamics as well as to stochastic approaches for solving problems of

interest to chemists. Materials accessible to undergraduate physical chemistry

students are available which do not require substantial investment of faculty time

to implement in the classroom. I look forward to the development of more materials

to help instructors bridge the inevitable gap between physical chemistry as it is

practiced and as it is taught.
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1. INTRODUCTION

On the basis of a continuous monitoring of the developments in symbolic

computation engines (SCE) and their increasing use in pedagogical
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circumstances, and on several years of SCE-assisted classroom experience in the

teaching of physical chemistry, we have identified four specific areas in which SCE

have impacted the physical chemistry curriculum. We thus propose in this chapter

a classification structured on the degree of integration of the SCE functions in the

solution process. As we view it, of all the chemical branches physical chemistry is

best positioned for the development of students’ ability to convert qualitative

concepts into quantitative descriptions of chemical systems. In this respect, the

pedagogical use of SCE can be maximally beneficial to students’ knowledge

acquisition. We argue, then, that apart from the conceptual limits inherently

associated with a logical description of any natural object, the accuracy of the

description is ultimately linked to its appropriate numerical definition. In the past, in

order to keep a proposed model unaltered by its mathematical description,

the pace of integration of the quantitative treatment of chemical systems into the

academic curriculumwasmore dependent on the required mathematical expertise

of the student than on the conceptual difficulty itself. For example, coverage of

molecular modeling, or of the activity of the normal modes of molecular vibration,

was part of the graduate education because of the pedagogical response to the

prohibitively laborious calculations required, rather than to the intellectual difficulty

related to the clear understanding of the symmetry principles upon which both

those fields are based.

Recently, as a response to the increased burden of mathematical algorithms

necessary to solve chemical problems, SCE (or ‘mathematical slaves’) have

imposed themselves as the pedagogical option currently favored. Thus, almost all

current major textbooks in physical chemistry now include nonaltered numerical

examples of the chemical concepts covered, based on the use of SCE. In addition,

an increasing number of the practice problems proposed are designed directly for

the use of the calculation/graphing power of SCE [1,2].

All major SCEmanufacturers – Matematicae, MathCade, Maplee, Matlabe –

designed pedagogically useful and practical tools to address the shortcomings of

the traditional ‘blackboard and chalk’ approach: eliminating for example, the

difficulty, experienced by a ‘classic’ teacher in trying to exemplify the normal

modes of vibration of methane. However, even more crucial to the dramatically

increasing use of SCE in teaching environments was when these SCEs

embedded HTML-exporting procedures thus unleashing the pedagogic potential

of the World Wide Web. Indeed, the most recent and even more exciting

development in this area is the possibility offered by some SCEs to export to

HTML not only text or figures/animations, but also interactive Java-based applets

allowing 3D-manipulations of the SCE-objects.

Close observation of recent developments in SCE use demonstrates that it is

now a common practice that the treatment of chemical problems is proposed in the

applications package (‘procedures’) of the SCEs where dedicated servers offer to

SCE users practically unlimited web space to propose new solutions to enhance
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SCE-exposure benefits, leading, in turn, to an increased rate of incorporation of

new subjects in the core package of procedures offered by the SCE libraries. The

result of this sustained innovation in the last 2 years has led to an impressive

collection of application-specific procedures, produced by large number of

contributors covering many chemical aspects. However, till this time, only a limited

number of attempts are known to us that have been designed to provide a

consistent, complete SCE-assisted approach to cover all classical physical

chemistry textbook chapters for the classroom [3–6]. We are aware, however, that

such attempts are just the tip of the iceberg for a clear new trend in the teaching of

science, and the teaching of physical chemistry in particular. The preferred format

in these initiatives appears today to be a CD-ROM accompanied by an

explanatory book, rather than a book accompanied by a CD-ROM, as was the

case 5 years ago – a preference that we hold can be directly linked to the natural

environment of the SCE, and to the inherent limitations of a hard copy to

accommodate manipulations of 3D objects and animations.

As we stated above we have observed, following the increased level of SCE

integration in the teaching of physical chemistry, four ‘pilot areas’ of new

developments. They are:

† Creation of self-extracting, self-expanding databases (quantum chemistry

[7–9], thermodynamics, spectroscopy).

† Use of the graphing power of SCE for enhanced and accurate visualization of

chemical concepts.

† Design of specialized procedure based on the fast and powerful numerical

computation engine of the SCE (‘templates’).

† Emulation of professional software and advanced dedicated applications

(molecular modeling procedures [10]).

† Development of advanced modeling tools for research activities involving

quantification of the description of the chemical systems under scrutiny.

In what follows we elaborate on our perception of the specificity of the SCE

approach at each of the above-mentioned levels, each one illustrated with a

selected example to serve for an application-gain analysis.

2. CREATION OF SELF-EXTRACTING DATABASES

The computational power of SCE coupled to storage facilities associated with a

general computer-assisted environment can be used to create and expose the

principles at the creation of physical chemistry databases. We have selected three

independent examples, in the areas of thermodynamics, spectroscopy, and

quantum chemistry, illustrating increasing degrees of the functionalities of SCE.
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3. STORAGE CAPACITY IN SYMBOLIC/COMPUTATIONAL FORM

3.1. Relationships between thermodynamic functions of state [11]

The database is structured on the Bridgman table principle of the partial derivatives

of state functions. The laborious, purelymathematical algorithm of the independent

variable change of the functions of state is simply avoided. The capacity storage of

the computer is the main function of the SCE used, together with the symbolic

definition of the mathematical formulae. The use of the database created, simply

requires a clear understanding of the definition of the functions of state, and thus

allows focus on the physical interpretation of the derived relationship. For example,

Table 1 presents three applications. Rows 1.1 and 1.2 show the commands and

resulting output for two limiting cases, the straightforward definition of a basic

quantity – Cp, and theoutput for a upper level relationship – respectively.Row1.3 is

an illustration of a practical application: the formula of the Joule–Thomson

coefficient, ð›T=›PÞH; commonly usedasanexample for theprocedureof changeof

variables for thermodynamic state-functions, is extracted from a Bridgman library,

and expressed as a function of state parameters.

3.2. Storage of the data in functional form

The example selected for this category is based on the consistency of the

theoretical treatment of a problem with the experimental data, when the

generalizing principle is not targeted. Due to the specificity of the large database

required for the solution of various problems, thermodynamics is a fertile area for

SCE-embedded applications designed for the storage of data in symbolic/nume-

rical form adapted for SCE processing. Pedagogically oriented templates with

limited model-complexity have been developed by educators, such as general

templates for acid/base neutralization problems [12]. At the same time, using the

Table 1. Extraction of relationships between thermodynamic state functions
using a Maple-assisted library based on Bridgman Tables

SCE input SCE output

1.1. . DiffðH;TÞ½P� ¼ dHp=dTp
�

›

›T
H

�
P
¼ Cp

1.2. . DiffðF;GÞ½H � ¼ dFh=dGh
�

›

›G
F

�
H
¼

dFH

2 VðCp þ SÞ þ TS

�
›

›T
VðTÞ

�
1.3. . DiffðT;PÞ½H � ¼ dTh=dPh �

›

›P
T

�
H
¼ 2

V2 T

�
›

›T
VðT Þ

�
Cp
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same format, more elaborate templates have addressed the chemical equilibrium:

determination of activity coefficients from various models for Gibbs free enthalpy

[13], liquid/vapor phase equilibrium [14], and determination of chemical

equilibrium in homogeneous chemical systems [15]. Since for all these

calculations, a core entity of thermodynamic calculations is the Cp-function of

temperature, an SCE-adapted database is under current elaboration. Such a

database can be obtained through the collection and accuracy-sensitive weighted

empirical interpolation of accessible data found in existent databases, such as

International Critical Tables, Handbook of Physics and Chemistry, updated

continuously with new experimental data. These values can be extracted and

used for routine thermodynamic calculations, and the database, then,

implemented in procedures used to calculate the chemical equilibrium in various

systems, or to study a particular chemical reaction at various temperatures.

3.3. Storage of quantified versions of chemical principles

Quantification of second-order spin-coupling effects and magnetization proximity

transfer in NMR has been proposed for COSY experiments, for AX, A2MX

J-resolved, and A2MX 1D systems [16]. A somewhat different approach has been

used in the creation of self-expanding database for use in spectroscopy. Here, we

present a simple and efficient use of SCE in the creation of a library with direct

application in the interpretation of mass spectra. The object of the project was to

provide students with a library to calculate the intensities of the isotopic peaks in

mass spectra. The net result has enhanced the consistency of the calculations

and accuracy, reducing the very voluminous MS tables, necessary for the

interpretation of a mass spectrum, to just a few command lines at the same time.

This library has an output giving the exact position of the MIP, and the relative MIP,

M þ 1 and M þ 2 isotopic peak intensities, as presented in Table 2. Apart from the

creation and efficient handling of the library, the students are given the opportunity

for appending various modules of less general applications. As a pedagogical

issue, the comparison with the existent MS tables found in any mass spectrometry

textbook allows students to better understand the significance and reliability of the

isotopic peak counts in a mass spectrum.

4. USE OF THE GRAPHING POWER OF SCE FOR ENHANCED AND
ACCURATE VISUALIZATION OF CHEMICAL CONCEPTS

4.1. Visualization of wave functions, orbitals’ phase and probability

(N.B.: in the general case, the three-variable wavefunctions obtained require a

visualization procedure impossible to use in textbook format, e.g., 3D animation.)
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Solving the Schrödinger equation for a specific quantum system, under various

boundary conditions and/or symmetry constraints, is a fundamental component in

any quantum chemistry course. Once the solutions are derived, the appropriate

and efficient use of these solutions becomes the main focus for the student. The

storage of the spherical harmonic solutions to the Schrödinger equation is a simple

and useful tool for the teaching of quantum chemistry, very much like the use of

crafted models used to represent the geometrical properties of molecules. The

next step, consisting of the calculation of electronic probabilities, phase domains,

or overlap integrals to cite only a few examples, is the focus of the chemist. The

storage capacity of the SCE can be used to create the database of the spherical

harmonic functions. These functions are then called as independent objects from

the ‘library’, each being defined via the characteristic set of quantum numbers.

Used already in the early stages of SCE integration, such applications rely on the

accurate representation of a scientific model. The strength of the approach resides

in the perfect correlation between the scientific model under scrutiny and its

graphic representation. The results can then be used to correct current

misrepresentations derived from the inaccuracy of common sense-derived

‘drawing’ of concepts, and to elaborate on the sources of inaccuracy. One example

Table 2. SCE-assisted mass spectrum based on a self-expanding library
predicting relative isotopic peaks intensities from the molecular formula

Introduction of molecular formula under tabular form, graphic representation of the
predicted mass spectrum, tabular form for the molecular ion peak (MIP), and the
isotopic peaks M þ 1, M þ 2.
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is the treatment of the geometrical representations of atomic orbitals for freshmen

students, as presented in Table 3. The first row presents the command lines and

graphical representations in spherical coordinates of the pz wavefunctions (3.1.1),

and of its square (‘pz-orbital’, 3.1.2, respectively). Explanation of the general

Table 3. Accurate representations of the angular wavefunctions and atomic
orbitals via automatic extraction from a self-expanding library

3.1.1 >plot3d(pz,_wavefunction,
phi ¼ 0…2 p Pi, theta ¼ 0…Pi,
coords ¼ spherical, axes ¼ box,
scaling ¼ constrained)

3.1.2. >plot3d(pz_wavefunction^2,
phi=0…2 p Pi, theta ¼ 0…Pi,
coords ¼ spherical, axes ¼ box,
scaling ¼ constrained)

3.2.1. >plot3d(px_wavefunction^2+
py_wavefunction^2, phi ¼ 0…2 p Pi,
theta ¼ 0…Pi, coords ¼ spherical,
axes ¼ box, scaling ¼ constrained)

3.2.2. >plot3d(px_wavefunction^2+
py_wavefunction^2+ pz_wavefunction^2,
phi ¼ 0…2 p Pi, theta ¼ 0…Pi,
coords ¼ spherical, axes ¼ box,
scaling ¼ constrained)

The generation of solutions to the Schrödinger equation applied to hydrogen-like
systems is based on the appropriate selection of quantum number sets.
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concept of ‘spherical harmonics’ becomes self-explanatory, as presented by the

stepwise reconstruction presented in row 3.2 (2D mixing 3.2.1, and 3D spherical

harmonics reconstruction – 3.2.2.)

5. DESIGN OF SPECIALIZED PROCEDURES BASED ON THE
RAPIDITY AND NUMERICAL COMPUTATION POWEROF THE SCE

Obviously, the core-usage of SCE is targeting its main functionality, its

computation power. The examples below belong to formal kinetics and quantum

chemistry.

5.1. Automatic procedure for the kinetic analysis of van’t Hoff
reactions

We have chosen to illustrate this second level of integration of SCE, where the

storing capacity is complemented by dedicated procedures to identify the solution

of a problem in formal chemical kinetics. Similar attempts integrating Microsoft

Excel Solver [17–21], or other computational programs, [22–24] accompanied

the simultaneous development of similar Maple-assisted procedures. A more

accurate solution, including statistical weights of the experimental points has been

proposed by Zielinski and Allendoerfer [25]. The approach under our scrutiny is

commonly called a ‘template approach’ because the procedure can be

generalized to obtain solutions for a defined class of problems, rather than

offering a solution to a singular problem. The design of such a template is based

on a modular approach to the problem resolution: data collection, selection of the

kinetic model from a finite series of possible models, sequential correlation of the

experimental data with all kinetic models considered, followed by the evaluation of

the degree of correlation between the experimental data and the models.

The selection of the model with the highest correlation coefficient represents the

solution to the problem. In this section we present such a template (Table 4),

designed to find automatically the kinetic parameters of a van’t Hoff reaction – the

experimental rate constant and the order of reaction (row 4.5) based on the

maximization of the correlation coefficient (column 3 in table element 4.4.2), with

respect to the experimental data introduced in vector-form (row 4.1, 4.2, and 4.3).

The computational process can be visualized inside the SCE file in real time, via

a graphical interface (not shown here, since the visualization is based on a

2D animation procedure). Numerical intermediate results before selection of

the maximum correlation coefficient can be optionally displayed, showing the

correspondent fit to a proposed reaction order (column 2 in 4.4.2). Column I

in 4.4.2 is just an internal counter of the procedure, indicating the loop sequence.
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6. EMULATION OF PROFESSIONAL SOFTWARE AND ADVANCED
APPLICATION-SPECIFIC PROCEDURES

The emulation of molecular modeling procedures has been particularly targeted in

SCE-assisted physical chemistry. These procedures are all almost easily

corroborated with appropriate graphic user interfaces due to the integrated

graphing capabilities with the SCE. Various applications include calculations of the

properties of molecular orbitals (potential energy surfaces, iso-surfaces, property

maps), structural optimization (equilibrium geometry, conformation analysis,

geometry of transition states), and vibrational modeling. The following two

examples have been selected to exemplify this section.

6.1. Phase of molecular orbitals

Although the effects of the orbital overlap can be understood by direct visualization

of the phase of the orbitals, the phase distribution within hybrids, or extended

molecular orbitals, is not straightforward. In this case, a fast and affordable mixing

Table 4. Automatic calculation of the parameters of a van’t Hoff reaction

4.1. Product concentration U [0.260, 0.680, 1.020, 1.470, 1.690]

4.2. Time U [3600, 10,800, 18,000, 32,400, 43,200]

4.3. Initial reactant concentration U 2.162

4.4.1. Output of the procedure
for maximization of the correlation
coefficient function of the reaction
order R;
Column 1 ¼ nr. crt.;
Column 2 ¼ order;
Column 3 ¼ R-value 4:4:2:

1 22:00 0:88161837

2 21:75 0:89570465

· · ·

12 0:75 0:99886447

13 1:00 0:99998805

14 1:25 0:99890481

· · ·

28 4:75 0:86881441

29 5:00 0:85950195

2
66666666666666666666664

3
77777777777777777777775

4.5.

Correlation coefficient Experimental order rxn Rate constant

0:99998805 1:00 0:000035196716
1

s

	 

2
64

3
75
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procedure (LCAO, or even more evolved evaluation methods) is required for the

visualization of the orbital-set basis. The example provided in Table 5 is an

example of fast evaluation of the phase distribution in the sp3d2 set of hybrids.

The figure immediately above presents the results of the Maple input (example

based on a self-extracting specific library of hydrogen-like wavefunctions):

.hyb1: ¼ 1/sqrt(6) p WFs þ 1/sqrt(2) p WFpz þ 1/sqrt(3) p WFdz;: p1: ¼ plot3d

(hyb6, phi ¼ 0…2 p Pi, theta ¼ 0…2 p Pi, coords ¼ spherical, axes ¼ frame,

scaling ¼ CONSTRAINED, axes ¼ box, color ¼ [signum(hyb1),0,1]): etc…dis-

play({p1,p2…p6}).

Table 5. Representation of phase distribution in sp3d2 hybrid-set
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6.2. Modeling of molecules with high symmetry (maximum three
parameters)

Table 6 shows the Maple output of a procedure designed to optimize the geometry

of D3d - ethane by minimizing the first-order perturbation of Gibbs free enthalpy,

using the Newton–Raphson convergence. Minimization of the number of

parameters is based on the constraint of an exact D3d symmetry of the optimized

configuration of the molecule.

Observe that, if the two parameters chosen are C–C–H bending angle and

C–H length, convergence to the 10th digit is obtained after only five iterations,

while the bending angle is resolved within the first loop, as shown in Table 6.

7. DEVELOPMENT OF TOOLS FOR RESEARCH ACTIVITIES
REQUIRING QUANTIFICATION OF THE DESCRIPTION
OF THE CHEMICAL SYSTEM UNDER SCRUTINY

7.1. Process design using SCE

The borders between teaching, research, and even industrial practice, may

become diffuse in cases when real data are used in a highly accurate model made

possible by the expanded limits of the numeric analysis. We have selected for this

presentation one example featuring an integrated technological/commercial

Table 6. Selected Newton–Raphson output for geometry optimization of
D3d-C2H6 vs. C–C–H bending angle (column 3), and six equal C–H bond
lengths (column 2)

: : : : : : : : : :

Bond length Bond length Bending angle Nr count

1:126475049 1:126475049 109:3382661 1

1:240993905 1:240993905 109:3382661 4

1:241000000 1:241000000 109:3382661 5

2
6666666666666

3
7777777777777
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analysis of an in-house synthesis of acetic anhydride via acetone cracking [26].

Although designed for educational purposes, the model presented below has

been adopted by industry. The analysis, based on Douglas’ methodology [27,28],

involves the modeling of a process integrating the kinetic behavior of six

simultaneous reactions with ketene intermediate, a thermodynamic analysis, and

specific financial aspects of the process. The model made extensive use of SCE-

embedded packages, such as fitting experimental data, numerical solutions of non

linear systems of algebraic equations, and unconstrained linear optimization. The

model has a modular structure: input of kinetic and thermodynamic chemical data,

batch/continuous process design, product recovery by liquid separation from the

anhydride column, sensitivity analysis of project economics. The result of the

model is a graph of the ‘overall economic potential’ vs. ‘acetone conversion’.

7.2. Description of the oscillating systems involving transamination
of poly(organo)silanes during polymer-source chemical vapor
deposition (PS-CVD)

PS-CVD [29] is intended to introduce a combinatorial approach for the

experimental design of ceramic thin films for semiconductor and optoelectronic

devices via synthesis of semiconductor thin layers with oscillating properties. The

method was developed in our group for the synthesis of thin layers on large

surfaces, where chemical vapor deposition is not applicable, such as large,

irregular or dielectric substrates. The method uses the oscillating chemical system

generated in the gas phases via controlled fragmentation of polysilanes exposed

to specific thermal and/or chemical conditions. One such complex set of chemical

reactions is presented below, involving reactions with ammonia. The system

produces oscillations of the gaseous silazane intermediates, appearing as a result

of an autocatalytic transamination step in the fragmentation of polysilanes. An

oscillating regime of the targeted intermediate species (polycarbosilazane) is

induced by the chemical system. Four chemical reactions are selected as the

analysis core of the system. This time-based oscillating regime is transformed into

spatial oscillations via local perturbation of the reaction medium. The analysis of

this perturbation was possible by the design of a SCE-based procedure, involving

three correlated modules. The first involved the analysis of the oscillating chemical

system (a series of four reversible reactions), parameterized with respect to the

relative concentrations of the species in the system and a set of eight rate

constants; the graphical output of the solution of the system of eight differential

equations associated with the four reversible reactions is presented in Row 7.1.

The behavior of the system within a perturbed gaseous phase contained in a 3D

space involved modeling of the flow of the intermediate and was obtained via an

in-house Maple-assisted visualization of a CFX-imported solution for general fluid
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dynamics based on mixed mass/heat transfer in a Navier–Stokes environment

(Table 7).

Two other SCE-based procedures have been designed: a second one for the

modeling of the local perturbation, parameterized with respect to intensity of

the perturbation and localization in the system, and, finally, a third one, involving

the introduction of border conditions defining the cylindrical symmetry of the actual

experimental setup and prediction of the interference pattern based on the

oscillation of the production of the intermediate. At the end of the analysis, a

selection process based on a trial-and-error procedure was used to determine the

most probable set of parameters required to maximize the correlation of the

general solution to the oscillating system – Row 7.2 – with the experimental result

presented in Row 7.3.

Table 7. Simulation of the PS-CVD oscillatory system

7.1

7.2

7.3
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8. CONCLUSIONS

At the end of the 18th century, the scientist A. Quetelet made the then radical

observation that “we may judge the degree of perfection to which a science has

arrived by the facility with which it may be submitted to calculation”. As time has

shown, such an observation has held true when applied, for example, to the early

20th century physics of microparticles that led to the full theoretical development

of quantum mechanics. Nor does one need Quetelet’s courage today to observe

that, within all chemical branches – organic, inorganic, general, or biochemistry –

physical chemistry is best positioned to develop a student’s ability to convert

qualitative concepts into quantitative descriptions of chemical systems. As we

hope this chapter has demonstrated, SCE-assisted pedagogy can make the

understanding and study of physical chemistry approach ever closer the state of

‘perfection’ that Quetelet posited over 300 years ago and open doors to new

possibilities that neither he nor we can fully predict.
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1. INTRODUCTION

Molecular simulation methods, both molecular dynamics and Monte Carlo, and

computer speeds have developed to the point where it is possible to envision

these methods as being able to provide reliable estimates of thermal properties

(equation of state, vapor pressure, viscosity to name a few) of industrially

interesting fluids. These methods are considered to be one of the ‘enabling’

technologies of computational chemistry that are expected to facilitate the

application of chemical science knowledge of condensed phase properties in the

chemical industry for conditions where experimental data are sparse [1]. To date,

these methods have been used to implement the connections statistical

mechanics provides between the thermal properties and the underlying

intermolecular interactions of the molecules of the fluid [2]. This is accomplished

by sampling the phase space of the system and using the coordinates of the

configurations so generated to calculate various fluid properties. There are several

books available that describe simulation methods and the reader is referred to

them for details on the technique [3–5].

There are two barriers to realizing the vision of robust fluid thermophysical

property predictions from molecular simulations. The first barrier is the need for

‘accurate’ interaction potentials (or force fields) between the molecules that can

be evaluated ‘cheaply’ since millions of energy and force determinations are
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needed for even a small system simulation. The second barrier is the need for

algorithms that can efficiently generate statistically significant estimates of fluid

properties. These barriers and various ways to try to overcome are examined in

the following sections. The terms ‘accurate’ and ‘cheaply’ will depend on the

specific problems of industrial interest. Data and property information are most

likely to be available on commodity materials, but industrial competition requires

fast and flexible means to obtain data on novel materials, mixtures, and

formulations under a wide range of conditions. For the vast majority of

applications, particularly those involving mixtures and complex systems (such as

drug–protein interactions or polymer nanocomposites), evaluated property data

simply do not exist and are difficult, time-consuming, or expensive to obtain. For

example, commercial laboratory rates for measuring vapor–liquid equilibria for

two state points of a binary mixture are of the order of $30–40k. Hence, industry

is looking for a way to supply massive amounts of data with reliable uncertainty

limits on demand. Predictive modeling and simulation have the potential to help

meet this demand.

The Council for Chemical Research’s Vision 2020 [6] states that the desired

target characteristics for a virtual measurement system for chemical and physical

properties are as follows: problem setup requires less than 2 h, completion time is

less than 2 days, cost including labor is less than $1000 per simulation, and that it

is usable by a non-specialist, i.e., someone who cannot make a full-time career out

of molecular simulation. Unfortunately, we are a long way from meeting this goal,

particularly in the area of molecular simulations.

All fluid properties are ultimately determined by the electronic structure of the

chemical species present, but effectively linking this quantum world to the

macroscopic properties of dense fluids, such as density, solubility, viscosity,

boiling point, has never been done. Forging this link in a rigorous manner requires

exploitation of the quantum wavefunction to obtain an accurate description of the

intermolecular forces that determine condensed phase properties, integrated with

a proper treatment of statistical mechanics in a molecular simulation framework to

capture the dynamic nature of a fluid. Statistical mechanical methods using

molecular simulations are reliable and successful in determining properties of

simple classical model systems. Descriptions of intermolecular interactions

responsible for condensed phase properties are currently limited to fits of

experimental data. The reliability of the resulting potential models is unknown and

they cannot be systematically transferred, extended, or improved. This problem

was clearly demonstrated recently by the results of the ‘First Industrial Fluid

Properties Simulation Challenge’ [7]. This challenge [8] was organized by several

US chemical companies and coordinated by NIST as a first step to show

quantitatively that “…a lack of validation of different methods and of reliable

comparison studies was a major limitation to industrial application of atomistic

scale (fluid properties) simulation.”
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The ‘Challenge’ results underscore the notion that modeling intermolecular

forces remains an art form rather than a robust, scientific methodology. In

contrast, intramolecular interactions (bonding, structure) can be readily described

by quantum mechanics for small, isolated gas-phase molecules. The total energy

of the weaker intermolecular interactions can be accurately calculated for pairs of

molecules, but this requires the highest level, most computationally intensive

theoretical methods. Hence, it is not possible to simply increase the number of

molecules in the system to extend quantum mechanics to the condensed phase

for fluids. A doubling of computer power every 18 months is not sufficient to

overcome the formal scaling of n7 (where n ¼ number of electrons) necessary for

accurate calculation of intermolecular forces [9]. At a fundamental level, it is the

polarizability and electrostatic interactions resulting from the electronic structure of

a molecule that determine how it interacts with its environment and the resultant

properties of the fluid. These interactions are two of the most difficult aspects of

the bulk phase to treat accurately, because they arise out of both short- and long-

range interactions, respond dynamically to a changing environment, and are a true

multi-body effect. The force fields in common use for simulations that have been

developed from static binary interactions have limited fundamental validity.

2. THE INTERMOLECULAR POTENTIAL FUNCTION BARRIER

In molecular simulations, the potential functions describing the intermolecular

interactions determine how the phase space of the system is sampled as well as

being used to evaluate the physical properties of the system. This means that the

extent to which the computed properties agree with experimental values for those

quantities depends critically on how well the potential functions represent the true

intermolecular interactions. The early simulation research used model potentials,

such as the Lennard-Jones 12-6 potential, with only passing intent that the results

might correspond to a physical fluid [10].

Although such simple model potentials are not capable of representing real

physical fluids, these models were valuable for developing physical understanding

of the way intermolecular interactions influence various properties. For

simulations to be useful for industrial purposes, it is necessary that the

intermolecular potentials be able to generate properties that are approximately

congruent with the fluids of interest under the appropriate state conditions of

temperature, pressure, and composition. The challenge is one of learning how to

do this so that the potentials are predictive rather than just descriptive. Most of the

model potentials currently in use are obtained by a combination of quantum

chemistry calculations plus an empirical component where selected properties are

used to adjust the potentials. Since this is more an art than science, the predictions
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from the model potentials must be compared with measured physical properties in

order to validate the model.

The situation is worse for mixtures. Frequently, empirical, or semi-empirical

combining rules are used to generate potential parameters for the unlike molecule

interactions from the potentials for the pure components. This introduces yet

another level of uncertainty. Because most industrial applications involve

mixtures, the real challenge is not just the generation of models for like

molecules, but also calls for the development of methods to produce good

interactions between unlike molecules. The combining rules are reasonable when

the two species are chemically similar, but the results contain large, unknown

uncertainties.

3. THE SAMPLING BARRIER

In order for a molecular simulation to have value in most industrial settings, it must

be possible to obtain answers ‘promptly’. The saying that problems should be

solved ‘over coffee’, ‘over lunch’, or ‘overnight’ sets a typical time scale for

providing answers. There are (at least) two ways to speed up simulations so that

such methods could become able to fit into an industrially acceptable performance

level.

The first is to make use of faster computers and simulation algorithms than can

make efficient use of parallel computing environments. Molecular dynamics

algorithms have been developed that can scale nearly linearly with the number of

processors [11–13]. In principle, this is also the case for Monte Carlo algorithms.

Molecular dynamics and Monte Carlo simulations are used to obtain

thermodynamic properties and can do this well once the potentials are specified.

Also, there is a simple method that can be used to monitor a simulation and

indicate when a statistically adequate sample has been generated. It makes use of

the ergodic requirement that time averages of properties associated with

individual molecules converge to the per molecule average of the entire sample

[14]. It applies equally well to Monte Carlo simulations when time average is

replaced by cumulative average obtained during the random walk in phase space

that occurs during the simulation [15].

Transport properties, such as the thermal conductivity and the viscosity, are

more difficult to obtain from a molecular dynamics simulation because the usual

linear response approach, also known as the Green-Kubo formulation of transport

coefficients, requires a large number of statistically independent time origins in

order to obtain reliable estimates. In practice, the time required to obtain a

viscosity coefficient is at least an order of magnitude longer than is needed to

obtain thermodynamic properties. This has led to the development of non-

equilibrium methods where the system is ‘sheared’ to mimic more closely the
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experimental approach to measure the viscosity [16]. Even so, this method

requires a number of simulations at different shear rates so that an extrapolation to

low shear rates can be made with some confidence. The result is that the time

needed to obtain a viscosity coefficient remains long. While much less effort has

been devoted to determining the thermal conductivity, the difficulties are the same

as for viscosity.

Both the linear response approach and the non-equilibrium approach use the

same basic assumption. A gradient is applied and the resulting current is

calculated with the transport coefficient being the ratio of the two quantities.

Recently, a suggestion was made to reverse this by imposing a current and

calculating the resulting gradient [17]. This basic idea has been used to determine

the thermal conductivity of a fluid [18] and also the thermal diffusion in a mixture

[19]. This approach is not yet mature, but may make it possible to obtain transport

coefficients with a reasonable time cost.

Another alternative approach to estimating the viscosity is to simulate a well-

characterized, transient flow and to infer the viscosity from the decay of the

momentum current [20]. The initial results obtained are encouraging. The

equivalent scheme for estimating the thermal conductivity has not been reported.

The idea of inferring the viscosity from the decay of a current is not new, but this

method appears to be much more efficient than the ones based on the decay of

the transverse momentum current correlation function [21,22].

4. CHALLENGES/OPPORTUNITIES

For the barrier of obtaining accurate intermolecular potentials, the challenge is to

develop quantum mechanical methods that accurately calculate intermolecular

forces in the condensed phase. Secondly, one needs to describe those forces in a

readily evaluated computational method with sufficient accuracy to capture the

underlying physics.

For the sampling barrier, the short-term task is to critically evaluate the novel

non-equilibrium methods mentioned previously [17–20]. For the longer term,

the challenge is to develop user-friendly simulation packages so that the learn-

ing curve cost of using simulations is reduced to a level that encourages

industrial use.
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1. INTRODUCTION

Protein design refers to the identification of amino acid sequences that fold to

predetermined structures. In some cases, structure itself may also be an element

of design. De novo designed proteins have the potential to serve as novel

therapeutics, catalysts, biomaterials, and molecular scaffolds. In addition, protein

design tests our understanding of folding and structure–function relationships,

since the biological functions of proteins are usually contingent on their forming

unique, well-defined three-dimensional structures.

Two different experimental approaches have advanced de novo protein design.

Building upon trends observed in the known structures of proteins, simple

structural motifs common to proteins may be assembled to form whole proteins or

protein complexes. This hierarchical protein design [2] has been successful in

designing proteins with repeating building blocks such as helix bundles and coiled

coils [3,4]. On the other hand, partially random protein libraries with diversities

.105 may be generated, from which variants with desired characteristics may be

selected using a high throughput screen [5]. Catalytic antibodies and phage

display demonstrate the power and versatility of combinatorial approaches to

protein engineering [6,7], which are appropriate for cases where we have

incomplete knowledge about the determinants of structure and/or function.
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Despite their notable successes, both hierarchical and combinatorial

approaches to protein design are troubled by a number of issues, including the

complexity of protein structures, the accuracy of the energy functions used for

sequence–structure compatibility, and the exponentially large number of possible

sequences. This review summarizes the recent accomplishments in compu-

tational protein design (CPD), focusing on efforts where large numbers of

simultaneous mutations are identified. CPD allows sequences to be rapidly

screened or characterized in silico, with far-reaching implications on how proteins

may be discovered and crafted in the future.

2. COMPUTATIONAL PROTEIN DESIGN

CPD involves several fundamental elements, summarized in this section [8].

2.1. Target structure

The choice of the target structure is a key decision made during CPD. Most

redesign efforts start with a high-resolution structure obtained through X-ray

crystallography or solution NMR, sometimes with modifications to reflect specific

design goals [1]. The reuse of an existing structure need not limit functional

diversity that may be achieved, since nature often produces proteins with vastly

different functionalities using the same protein fold [9]. Novel tertiary structures

may also be modeled to obtain new structures and topologies [1,10].

2.2. Degrees of freedom

Two types of degrees of freedom that must be simultaneously optimized during

CPD are the amino acid identities and their side chain conformations. Not all

amino acids are required to create functional proteins in the laboratory [11], and

the use of prepatterning or a reduced alphabet can vastly simplify design. From

statistical analyses of high-resolution structures, combinations of low-energy side

chain torsion angles are preferentially populated, yielding discrete sets of

rotamers. Rotamer approximations reduce the degrees of freedom available to

each amino acid and greatly accelerate the computation [12].

2.3. Energy function

Protein sequence–structure compatibility is evaluated using physicochemical

potentials. The physical potentials are usually optimized independently of the
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protein design process itself, and several well-characterized atomistic potentials

are available (e.g., Amber [13], CHARMM [14], Gromos [15]). Most potentials

have terms involving bond lengths, bond angles, and dihedral angles, as well as

terms accounting for the van der Waals, electrostatic and H-bonding interactions.

Often only the two-body, noncovalent terms are explicitly evaluated during CPD,

since bond lengths, bond angles, and dihedral angles are determined by the

rotamers. The energy is compared among candidate sequences. Reduced,

database-derived potentials that address structural propensities and do not

include atomistic detail may also be incorporated in sequence design [16].

2.4. Solvation and patterning

Since hydrophobic effects provide a main driving force behind protein folding [17],

it is important to include terms that describe the solvation preferences of the amino

acids. The use of explicit solvent during design is computationally prohibitive, and

solvation effects are usually modeled with a phenomenological free energy term

that quantifies the hydrophobicity or solvent exposure of the side chain [18].

Another way of accounting for solvation is through hydrophobic patterning [19] to

ensure that nonpolar residues are preferentially buried in the interior while polar

residues are exposed to the solvent. The patterning of the sequence may also be

influenced by the secondary structure propensities among amino acids, i.e.,

preferences for a-helix [20–22] and b-sheet [23–25].

2.5. Search methods

Sequence search methods based on Monte Carlo (MC) algorithms are intuitive

and straightforward to implement [26–28]. A random search through the

sequence space may be computationally inefficient. Several MC-based

algorithms have been developed to bias the trial moves and increase the

acceptance probability, including MC with quenching, biased MC [29], and mean

field biased MC [30]. Simulated annealing (SA) allows a rapid convergence to low

energy states [31], though these need not be global optima [32].

Genetic algorithms (GAs) are inherently parallel algorithms that use a

population of candidate solutions to arrive at optimal solutions through mutations,

crossovers and natural selection [33]. Being a stochastic algorithm, GAs are able

to optimize a solution on a rugged fitness landscape such as the free energy

landscapes encountered during protein design.

Pruning and elimination methods such as dead-end elimination (DEE) identify

the global minimum energy sequence for pairwise potentials [34]. The algorithm

systematically compares rotamer pairs at each residue position and discards one
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when its lowest energy state is higher than the highest energy state attainable with

the other rotamer. This leads to a narrowing of the search space during the

computation. While significant challenges remain due to the exponentially growing

computation time with protein size and diversity, the method has been

instrumental in many CPD projects.

Rather than identify particular sequences directly, statistical methods

estimate the site-specific amino acid probabilities for sequences folding to a

target structure [35,36]. Modeled on the concept of entropy maximization in

statistical mechanics, the algorithm defines an effective entropy as a function of

the individual amino acid probabilities. Maximization subject to desired energetic

and functional constraints yields the site-specific probabilities of the amino

acids. Since the entire sequence space can be characterized using this method,

the probabilistic approach to protein design can easily address large systems

that are too large for direct sequence search. Furthermore, the method is

versatile enough to identify optimal and suboptimal sequences, and provides

information that may be readily used to guide the construction of combinatorial

experiments [35,36].

3. COMPUTATIONALLY DESIGNED PROTEINS

An increasing number of computationally designed proteins have been reported in

the literature, and here we mention a few successes. Broadly classified into two

types, design efforts have emphasized (a) achieving well-structured folded states

using large-scale sequence variability or (b) engineering novel functional

properties, in some cases achieving both.

The early efforts in CPD mainly focused on hydrophobic core packing and

developing algorithms to allow multiple mutations to be simultaneously introduced

within the protein interior [37–40]. The quality of the designed core was then

tested using biochemical, structural, and functional assays. Later algorithms

extended the scope of design to include nonglobular proteins. Proteins with

repeating a-helical secondary structural elements were among the favorite design

targets, and several authors reported the design of helix bundles including two

or more helices [41,42]. Backbone degrees of freedom were also introduced in

some cases to relax the structure as different side chains are tested [43,44].

Energy landscape methods have also been applied to the design of a 47-residue

three-helix bundle [16].

Computational design helped construct model b proteins containing two or

three strand antiparallel b-sheets. For example, one computational design,

Betanova, features a three-stranded b-sheet with four residues per strand and

exhibits cooperative folding and unfolding [45]. The protein was designed in an

iterative process from which a sequence compatible with the target backbone
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structure was selected based on b-hairpin stability, amino acid b-sheet

propensities, statistical preferences for interstrand residue pairs, and side chain

rotamer conformations. More recently, the WW-domain, a 35-residue b protein,

has been computationally redesigned [44].

Mayo and coworkers have used a design scheme that applies DEE to find

globally optimal sequences for a given structure. A designed bba-motif protein,

resembling the tertiary structure of a zinc finger DNA binding module, folds stably

without the requisite Zn2þ metal ion [46]. The same algorithm was also used to

redesign rubredoxin so that the molecule can stably fold without iron [47].

Recognizing the importance of binary patterning, the Mayo group automated the

patterning of hydrophobicity in a structure, and used the method to design a

thermophilic variant of the engrailed homeodomain [48].

Recently, a 97-residue a/b protein Top7 with a novel fold was successfully

designed and its structure determined [10]. Thus, a globular protein fold not found

in nature is physically possible, and the design extends the realization of

nonnatural protein structures beyond a previously designed right-handed helical

coiled coil [49]. The iterative cycle of sequence design and backbone optimization

using MCminimization algorithms was critical to the success. The crystal structure

of Top7 at 2.5 Å resolution has the designed topology with 1.17 Å RMSD over all

backbone atoms. The similarity between the designed and predicted structure

validates the energy function used, which had been partially parameterized using

known protein structures and sequences.

CPD has been used to engineer new functionalities into proteins, e.g., metal

or ligand affinity. The protein design algorithm DEZYMER was used to

introduce targeted mutations in thioredoxin, thereby evolving a tetrahedral

tetrathiolate iron center [50]. The designed protein, which forms a 1:1

monomeric complex with Fe(III), supports multiple cycles of oxidation and

reduction. Working with five periplasmic binding proteins from E. coli, a series of

new proteins with designed binding sites were engineered to recognize ligands

with a wide range of chemical properties in terms of molecular shape (polar,

aliphatic, and aromatic), chirality, functional groups (nitro, hydroxyl, and

carboxylate), internal flexibility, charge, and water solubility [51]. When some of

the receptors were tested for ligand specificity, the designed receptors exhibited

chiral stereospecificity as well as sensitivity to the presence of various

functional groups on the ligand.

Probabilistic protein design has been used to arrive at the sequence of a 114-

residue four helix bundle with a diiron center (DFsc), where the structure,

sequence, and function were designed de novo. The protein possesses a well-

ordered interior as evident in the 1D and 2D NMR spectra (Fig. 1) [1]. Modeled

after a previously designed antiparallel dimer, the target template was generated

by redesigning the loops to connect the helices. During the sequence calculation,

the amino acid identities of a subset of 26 residues were constrained, where these
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residues participate in metal binding, facilitate access to the active site, initiate a

helix, or form a turn sequence. The remaining 88 residues were identified using

a statistical computational assisted design strategy (scads). The parallel

calculation of the site-specific amino acid probabilities at all positions allowed a

large sequence space to be efficiently searched. The designed protein exhibits

catalytic activity against known peroxidase substrates.

Scads has also been used to redesign an integral membrane protein to make it

water soluble. To that end, 28% of the residues from the highly hydrophobic

transmembrane region of KcsA were simultaneously mutated to hydrophilic

residues [52]. The water-soluble variant was expressed in high yield and

possessed the expected helical content, tetrameric oligomerization state, and

toxin binding properties of the wild-type membrane soluble form. Such methods

open a new route to better understanding membrane proteins, which are

notoriously difficult to express and structurally characterize.

4. CONCLUSION

The many degrees of freedom involving both sequence and local (side chain)

structure lead to the combinatorial complexity of protein sequence design.

Through quantitative analysis of the sequence–structure relationship, CPD

promises to play a critical role in furthering our understanding of proteins and in

discovering de novo proteins with novel properties.

Fig. 1. Design of 114-residue metalloprotein. (a) Target four-helix backbone with
dinuclear metal center. (b) Structure with fixed residues that provide metal binding,
helix initiation, active site accessibility, and an interhelical turn. (c) Computation-
ally determine the identities of the remaining 88 amino acids [1].
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