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Introduction 

Happel [6] and Cline, Parshall and Scott [4] showed that the tilting functors of 

Happel and Ringel [8] can be interpreted in terms of an equivalence of derived 

categories of the module categories involved. In [lo] we generalised this result to 

give necessary and sufficient conditions for such an equivalence; in this more 

general case tilting modules must be replaced by ‘tilting complexes’, which are chain 

complexes of projective modules that satisfy conditions analogous to those satisfied 

by tilting modules (see Theorem 1.1 below). 

The aim of this paper is to show that this generalisation has interesting applica- 

tions that do not arise for the more restrictive tilting modules. In particular, if /I 

is a self-injective algebra (for example, a modular group algebra for a finite group) 

then it is easy to see that any tilting module for /1 is projective - in fact, any 

/l-module of finite projective dimension is projective. Therefore in this case classical 

tilting theory reduces to Morita equivalence. In the more general case of tilting com- 

plexes we shall show that there are many applications of the theory to self-injective 

algebras and in Section 2 we shall show that ‘derived equivalence’ for self-injective 

algebras is closely connected with stable equivalence. 

There has been work connecting tilting theory and self-injective algebras via 

‘trivial extension algebras’; for example, Tachikawa and Wakamatsu [l l] showed 

that if r is a finite-dimensional algebra that is tilted from /1, then the trivial exten- 

sion algebras T/1 and TTare stably equivalent. In Section 3 we generalise their result 

and show that it has a very natural proof in terms of derived equivalence. In fact 

a tilting complex for A with endomorphism ring rgives rise, by tensoring with T/1, 
to a tilting complex for TA with endomorphism ring TT 

We hope that derived equivalence may have useful applications to modular 

representation theory and in Section 4 we start with the simplest case, blocks with 

cyclic defect group, and show that the Brauer tree algebras that are stably equivalent 
are in fact derived equivalent. 

One fact that follows from the results of this paper is that derived equivalence 
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is more general than tilting in the sense that there are many examples of derived 

equivalent algebras /1 and r where r cannot be obtained from /1 by a sequence of 

tilting or cotilting steps. Most of the examples in this paper are of self-injective 

algebras, but in Section 5 we give an example involving algebras of finite global 

dimension. 

1. Preliminaries 

Throughout this paper all algebras will be finite-dimensional algebras with 1 over 

a fixed field k. All modules will be finitely generated unitary right modules unless 

we specify otherwise, and we shall compose endomorphisms as though written on 

the left. The category of such modules for an algebra /1 will be denoted by mod-/l; 

the full subcategory consisting of projective modules will be denoted by PA. 
For basic results on triangulated categories we refer to [9] or [12], but our nota- 

tion will be that of [2]. In particular, we shall denote by X[n] rather than by T”X 
the object obtained from X by applying the ‘shift’ functor n times. By Db(mod-/l) 

we mean the derived category of bounded complexes over mod-/l, and by Kb(PA) 
we mean the homotopy category of bounded complexes over PA. 

The following theorem summarises the results of [lo] that we shall need: 

Theorem 1.1. Let A and T be two finite-dimensional algebras. The following are 
equivalent : 

(a) Db(mod-A) and Db(mod-T) are equivalent as triangulated categories. 
(b) Kb(PA) and Kb(P,-) are equivalent as triangulated categories. 
(c) r is isomorphic to the endomorphism ring of an object P* of Kb(PA) such that 

(i) For n #O, 

Hom(P*, P* [n]) = 0. 

(ii) add(P*), the full subcategory of Kb(P,,) consisting of direct summands of 
direct sums of copies of P*, generates Kb(PA) as a triangulated category. 

Moreover, any equivalence as in (a) restricts to an equivalence between the full 
subcategories consisting of objects isomorphic to bounded complexes of projectives 
(which are equivalent to Kb(PA) and Kb(Pr) respectively). 0 

If II and rsatisfy the conditions of the theorem then we say that they are ‘derived 

equivalent’ and we call the object P* of (c) a ‘tilting complex’ for /1. 

For an algebra /1 of finite global dimension, Happel defined ‘Auslander-Reiten 

triangles’ in [6]. He showed that for any indecomposable object X of the derived 

category there is a sink map a : Y-+X; that is, a map (Y such that 

(i) o is not a split epimorphism. 

(ii) Any map /I: Z--+X that is not a split epimorphism factors through Q. 

(iii) Any endomorphism y of Y satisfying cuy=cw is an automorphism. 
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He also showed that a map with these properties is determined uniquely up to iso- 

morphism by X and fits into a distinguished triangle: 

Y+X+vX+ 

where VX is the complex of injective modules obtained by applying the Nakayama 

functor 

v=DHom,(-,A) = --OADA 

to a projective resolution of X, D - denoting the duality functor Hom,(-, k). The 

proof carries through word for word even for algebras of infinite global dimension 

so long as X is isomorphic to a bounded complex of projective modules. Thus the 

Nakayama functor determines an equivalence v of triangulated categories between 

the two full subcategories of Db(mod-A) consisting of objects that are isomorphic 

to bounded complexes of projectives and injectives respectively, and for any X that 

is isomorphic to a bounded complex of projectives, VX is characterised by a univer- 

sal property. The next result now follows easily - recall that an algebra A is said 

to be ‘symmetric’ if A and DA are isomorphic as A-bimodules and that A is said 

to be ‘weakly symmetric’ if every simple A-module has a projective cover iso- 

morphic to its injective hull. 

Proposition 1.2. If A and rare derived equivalent algebras and if A is symmetric, 
then I- is weakly symmetric. 

Proof. If A is symmetric, then the Nakayama functor v = - @,, DA is isomorphic 

to the identity functor, so XGVX for all objects X of Kb(PA). 

r is weakly symmetric precisely when Pg VP for all projective r-modules P. 0 

Recall from [ 121 that a full triangulated subcategory E of a triangulated category 

C is called an Cpaisse subcategory if the following condition is satisfied: 

If X-+ Y is a map in C which is contained in a distinguished triangle 

where Z is in E, and if the map also factors through an object W of E, then X and 

Y are objects of E. 
We refer to [12] for the theory of taking quotients by Cpaisse subcategories. Our 

next result gives an alternative formulation of the definition. 

Proposition 1.3. A full triangulated subcategory E of a triangulated category C is 
kpaisse if and only if every object of C that is a direct summand of an object of E 
is itself an object of E. 

Proof. Suppose first that E is epaisse and that XrX, @X, is in E. Then the zero 

map X+1] -‘Xi is contained in a distinguished triangle 

X,[-1] +x,+x-+ 
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and any zero map factors through an object of E, so X, and X2 are objects of E. 

Suppose now that E is closed under taking direct summands, and let X-t Y be 

a map in C that factors through an object W of E and that is contained in a 

distinguished triangle 

with Z in E. By the octahedral axiom we have the following commutative diagram 

where the rows and columns are distinguished triangles and L andMare objects of C: 

M[-11 MI-11 

I 1 
x-w ’ L -X[l] 

1 1 

Consider the composition of maps 

Z+X[l] + W[l] 

coming from this diagram. It gives us the following octahedral diagram, where N 

is another object of E: 

L L 

I 1 
z- X[l] - Ull -zt11 

1 I 
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The map L --) Y[l] in this diagram factors as 

L +X[l] -+ W[l] -+ Y[l], 

but the composition 

L+X[l] -+ W[l] 

is zero, since it is the composition of two maps in a distinguished triangle. Thus N 

is isomorphic to Y[l] @ L[l], so Y (and therefore also X) is an object of E, and so 

E is an Cpaisse subcategory of C. 0 

2. The stable module category 

We shall start by recalling the definition of the stable module category mod-A of 

a finite-dimensional algebra A. It is the k-additive category whose objects are the 

same as the objects of mod-A and where the morphisms are equivalence classes of 

module maps under the equivalence relation of differing by a map that factors 

through a projective A-module, so 

HomAW, Y) = Hom,,d_n (X, Y) 

is a quotient space of Hom,(X, Y) for A-modules X and Y. If two algebras have 

equivalent stable module categories, then we say that they are ‘stably equivalent’. 

In [6] Happel showed that the stable module category of a self-injective algebra 

carries the structure of a triangulated category in a natural way. In this section we 

shall give a new description of this structure, linking it to the triangulated structure 

on the derived category of the algebra. 

Theorem 2.1. Let A be a self-injective algebra. The essential image of the natural 
em bedding 

Kb(P,,) + D b(mod-A) 

(that is, the full subcategory of Db(mod-A) consisting of all objects isomorphic to 
objects of Kb(PA)) is an epaisse subcategory. The quotient category 

Db(mod-A)/Kb(PA) 

is equivalent as a triangulated category to the stable module category of A. 

Proof. The first assertion is easy, especially using the characterisation of Cpaisse 

subcategories in Proposition 1.3. 

Consider the additive functor 

F’ : mod-A + Db(mod-A)/Kb(PA) 

obtained by composing the natural embedding of mod-A into Db(mod-A) with the 
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quotient functor. Clearly F’(P) is zero for any projective module P, so F’ factors 

through the natural functor 

mod-/l -+ mod-A 

to give a functor 

F: mod-A -+Db(mod-n)/Kb(P,). 

We shall show that F is in fact an equivalence of categories. 

First we shall show that F is an exact functor. A distinguished triangle in mod-A 
is a triangle 

X+ Y-+Z+X[l] =K’X 

coming from a pushout diagram of modules 

O-X-Z- K’X---+ 0 

O-Y-Z- R-lx- 0, 

where X+ I is the embedding of X into its injective hull [6]. Since short exact 

sequences of modules give distinguished triangles in the derived category, and since 

F’I=O, 

FX+FY-+FZ+FX[l] 

is a distinguished triangle. 

Next we note that F is full, since F’ is clearly full, and that for no non-zero object 

X of mod-A is FXsO, since no non-projective /l-module is isomorphic in the 

derived category to an object of Kb(&). These properties of Fare enough to prove 

that F is also faithful, for suppose (Y: X --, Y is a map in mod-A for which Fa = 0, 

and suppose that a sits in a distinguished triangle 

x+ Y+Z--+; 

then the identity map of FY factors through FY+ FZ, so, since F is full, there is 

a map /I : Y--t Y, factoring through Y + Z, such that F/3 is an isomorphism. But then 

the mapping cone of p is sent to zero by F, so p is an isomorphism, so Y+ Z is a 

split monomorphism and a is zero. 

To complete the proof that F is an equivalence, we just need to show that every 

object X of Db(mod-/l)/Kb(P,) is isomorphic to F’A4 for some module M. As an 

object of Db(mod-A), X is isomorphic to a complex of projectives 

p*= . . . --+pr+pr+r+ . . . +ps+o, 

where r<O and P* has zero homology in degrees less than r. 
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The natural map from P* to 

p* =... +p’-‘+P’_,O+ . . . 

is an isomorphism in Db(mod-A)/Kb(PA), since its mapping cone is 

complex of projectives, and there is a complex 

a bounded 

Q*=... ,pr-‘,pr,Qr+‘, . . . -+Q”,O 

which is the projective resolution of some module A4 and whose natura 

is an isomorphism in Db(mod-A)/Kb(PA). Thus P*=F”M. q 

.l map to P* 

Corollary 2.2. Let A and r be self-injective algebras. If A and r are derive1 
equivalent then they are stably equivalent. 

Proof. By the last part of Theorem 1.1, an equivalence 

Db(mod-A) --t Db(mod-T) 

induces an equivalence of triangulated categories 

Db(mod-A)/Kb(PA) + Db(mod-r)/Kb(P,), 

and so, by Theorem 2.1, an equivalence of triangulated categories 

mod-A + mod-r. 0 

3. Trivial extension algebras 

In this section we shall give our first examples of derived equivalent self-injective 

algebras. First we must recall some properties of trivial extension algebras; further 

details can be found in [l 11. 
Let A be any finite-dimensional algebra. We can define a new algebra TA as the 

vector space A @DA with multiplication defined by 

(X, y) . (x: Y’) = (xx: XY’ + YX’) 

using the A-bimodule structure of DA. We call TA the ‘trivial extension algebra’ 

of/l. 

The algebra TA is a symmetric algebra and the natural map A + TA is an 

embedding of rings. 

There are many results linking tilting theory with trivial extension algebras; in 

particular it has been shown by Tachikawa and Wakamatsu [ 1 l] that if an algebra 

Tis obtained by tilting another algebra A then the trivial extension algebras TA and 

TT are stably equivalent. Wakamatsu has extended this result to the case of 

‘generalised’ tilting modules (that is, allowing finite projective dimension larger 

than 1). In the light of Corollary 2.2, the next theorem can be regarded as a 

generalisation of this result and also provides a new proof. 
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Theorem 3.1. Let A and f be derived equivalent algebras. The trivial extension 
algebras TA and Tr are also derived equivalent. 

Proof. By Theorem 1.1, r is isomorphic to the endomorphism ring of a tilting 

complex P* for A. We shall show that P*@, TA is a tilting complex for TA with 

endomorphism ring isomorphic to TT. The theorem will then follow by another 

application of Theorem 1.1. 

We recall from [9] the following way of calculating homomorphism groups in 

homotopy categories: 

Let A be an additive category and let X* and Y* be objects of K(A). There is a 

double complex of abelian groups obtained by applying the bifunctor Horn, (-, -), 

whose (i, j) term is Hom,(X-‘, Yj). We obtain a single complex by taking the 

‘completed’ total complex (i.e. by taking the direct product rather than the direct 

sum of terms along each diagonal). The homology in degree n of this single complex 

is naturally isomorphic to Horn KCA)(X*, Y*[n]). If X* and Y* are bounded com- 

plexes, then we are only taking finite direct products, so this is just the ordinary total 

complex. 

Since P* is a tilting complex, we therefore know that the homology of the total 

complex of Hom,,(P*, P*) is isomorphic to r concentrated in degree zero. 

To calculate 

Hom(P* @,, TA, P* @A TA[n]) 

we need to consider the double complex 

Hom,(P* OA TA, P” 0~ TA). 

This is naturally isomorphic to the direct sum of double complexes 

Horn, (P*, P*) @ Horn, (P*, VP*), 

where v is the Nakayama functor. We know the homology of the first term. 

The second term is isomorphic to the double complex D Hom,(P*, P*), since 

Hom,(-, v-) and D Hom,(-, -) are isomorphic as bifunctors on PA, and this has 

homology DT concentrated in degree zero. Thus 

Hom(P* @,, TA, P* @,, TA [n]) = 0 

for n#O, and 

Hom(P*@,, TA,P*@,, TA)=:T@DT 

as a vector space. 

We now want to check that End(P*@, TA) and TTare isomorphic as rings. As 

a complex of A-modules P* @,, TA is isomorphic to P* 0 VP*. Since 

Hom(P*, VP*) ED Hom(P*, P*), 

the isomorphism of vector spaces gives a map 

B : TT= End(P*) @ Hom(P*, VP*) -+ End(P* @ VP*) 
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such that, for cr in End(P*) and p in Hom(P*, VP*), O(cr + p) is given by the follow- 

ing matrix (remember that we are writing endomorphisms on the left): 

a 0 ( > P 
:P*@vP*-tP*@vP*, 

VCl 

We want to check that 6’ is a map of rings, so let a,a’ be elements of End(P*) and 

let p, /7’ be elements of Hom(P*, VP*). Since 

D Hom(P*, P*) G Hom(P*, VP*) 

is an isomorphism of End(P*)-bimodules, Q +p and o/+/3’ multiply in TT to give 

aa’+(v(a)/3’+@‘), which is sent by 0 to 

( 

aa’ 

(vcr)p’+pa’ v(:a)) = (; e,> (;;I v:Jv 

which is just O(a+/3). &a’+/?‘) as required. 

All that remains to be checked is that add(P*@, T/1) generates Kb(PrA) as a 

triangulated category. The functor 

induces an exact functor 

b F: K (PA) -tK b (PTA). 

Let C be the full triangulated subcategory of Kb(PT,,) generated by add(P* @,, T/I), 
and let D be the full triangulated subcategory of Kb(PA) consisting of those X* for 

which FX* is in C. Then D is a full triangulated subcategory of Kb(PA) containing 

add(P*), and so 

D=K”(P,). 

Therefore P, is contained in C, so 

C=Kb(P,). 

This completes the proof of the theorem. 0 

Corollary 3.2. If A and rare derived equivalent algebras, for example if r is tilted 
from A, then TA and TT are stably equivalent. 

Proof. Immediate by Theorem 3.1 and Corollary 2.2. 0 

4. Brauer tree algebras 

We recall that a Brauer tree consists of a finite tree T together with: 
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(a) a cyclic ordering of the edges adjacent to each vertex, usually described by the 

anticlockwise ordering given by a fixed planar representation of T. 

(b) a specified vertex u of T, called the ‘exceptional vertex’. 

(c) a positive integer m, called the ‘multiplicity of the exceptional vertex’. 

A Brauer tree (z u, m) determines up to Morita equivalence a symmetric algebra 

called a ‘Brauer tree algebra’. This algebra has one isomorphism class of simple 

modules for each edge of T. Let the edges of T be labelled 1,2, . . . , e and let 

S(l), . . . . S(e) be the corresponding simple modules. The projective cover P(i) of S(i) 

has 
soc(P(i)) s P(i)/rad(P(i)) E S(i) 

and rad(P(i))/soc(P(i)) is the direct sum of two uniserial modules, one associated 

with each vertex adjacent to the edge i. Suppose the cyclic ordering of the edges 

adjacent to such a vertex is 

(i = iO, i, ,..., i,,&). 

When the vertex is not the exceptional vertex, the composition factors of the cor- 

responding uniserial module are given in order, from top to socle, by 

S(i,), . . ..S(i.). 

When the vertex is the exceptional vertex u, the composition factors are given in 

order by 

S(4), . . . , W, ), Wo), WI ), . . . , W, 1, 

where we read through the cyclic ordering m times. Thus when m = 1, this is no 

different from the case of an ordinary vertex. 

These Brauer tree algebras are of interest because any block with cyclic defect 

group of a finite modular group algebra is of this form. For further details we refer 

to [l] and [5]. 

One type of Brauer tree that will be of particular interest is the ‘star’ with e edges 

and multiplicity m, where all the edges are adjacent to the exceptional vertex. We 

shall call the corresponding basic Brauer tree algebra B(e, m). Note that all the pro- 

jective indecomposable modules for B(e, m) are uniserial, since for each edge i one 

of the two direct summands of rad(P(i))/soc(P(i)) is the zero module. 

Before we state the main result of this section, we shall point out the following 

trivial but important facts: 

Remark 4.1. Given a Brauer tree algebra associated with a Brauer tree (T, v, m), 

Hom(P(i), P(j)) = 0 

unless the edges i and j have a vertex in common. If i and j have a vertex in common 

and i#j, then Hom(P(i), P(j)) is one-dimensional unless this is the exceptional 

vertex, in which case Hom(P(i), P( j)) is m-dimensional. 
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If the edge i is adjacent to the exceptional vertex, then End(P(i)) is (m + l)- 
dimensional, otherwise End(P(i)) is two-dimensional. Cl 

We are now ready to state our result on derived categories of Brauer tree algebras. 

Theorem 4.2. Up to derived equivalence, a Brauer tree algebra is determined by the 
number of edges of the Brauer tree and the multiplicity of the exceptional vertex. 

Proof. Let A be a Brauer tree algebra associated with the Brauer tree (T, u, m), where 

T has e edges. We shall construct a tilting complex for A with endomorphism ring 

isomorphic to B(e, m). 
For each edge i of T there is a unique path in T from u to the furthest end of i; 

this defines a sequence 

i,,i,,...,i,=i 

of edges. By Remark 4.1, there is a unique, up to isomorphism, complex of projec- 

tive /l-modules 

. . . + 0 --t P(&) + P(i,) + . . . + P(i,) --f 0 -9 . . . 

where all the maps are non-zero and where P(i,) is the degree zero term. Let Q(i) 
denote this complex considered as an object of Kb(P,,) and let Q be the direct sum 

of the Q(i), one for each edge i. We shall show that Q is the tilting complex that 

we require. 

First, it is clear that add(Q) generates Kb(PA) as a triangulated category, since 

P(i) is the mapping cone of the obvious map from Q(i)[r- l] to Q(i,._,)[r- 11. 

By Remark 4.1, it is also clear that Hom(Q, Q[n]) =0 unless n is -1, 0 or 1. 

Consider a map cr of complexes from Q(i) to Q( j)[l]. This consists of maps 

o,:P(i,)+P(j,+i) 

making the following diagram commute: 

P(i0) - P(il) - ... 

P(h) - WI) - W2> - . . . . 

If a#O, then we can choose s as large as possible so that a,#O. We may assume 

that we have chosen a from its homotopy class so as to minimise this value of s. 

By Remark 4.1, i,=j, and a3 factors through P(j,) --f P(j,+ ,). But this factoring 

map P(i,) + P(j,) gives a homotopy from a to a map fi for which pf = 0 for t 2s. 
Thus (Y must be zero, so 

Hom(Q, QIll) =O. 
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Consider next a map a of complexes from Q(i) to Q(j)[- 11. This consists of maps 

%z:P(L+*)+P(j,) 

making the following diagram commute: 

W0) - P(il> - P(i*) - ... 

O - Wo) - PC& 1 - . . . . 

If a is non-zero, then choose s as small as possible so that a,#O. By Remark 4.1, 

i,=j, and the composition 

fli 
P(G) + P(i,+ 1) - P(j,) 

has image soc(P(j,)) and in particular is non-zero, contradicting the fact that the 

diagram commutes. Thus a = 0 and so 

Hom(Q,Q[-l])=O. 

We have now proved that Q is a tilting complex and must show that End(Q) is iso- 

morphic to B(e, m). By Proposition 1.2, End(Q) is a weakly symmetric algebra, and 

by Corollary 2.2 it is stably equivalent to A. The results of [5] then show that 

End(Q) is a Brauer tree algebra for some Brauer tree with e edges and multiplicity m. 

It is easy to calculate the Cartan invariants 

ciJ = dim, Hom(Q(iX Q(j)> 

of End(Q), since for any objects P,* and P$ of Kb(P,,) we have the formula 

; (- 1)” dim, Hom(P,*, P$[n]) = z (- l)‘~‘dim, Hom(PL, Pg), 

and for Q(i) and Q(j) the left-hand side reduces to Cij and the right-hand side is 

easy to calculate using Remark 4.1. 

This calculation tells us that 

cjj= 
1 

m+l ifi=j, 

m otherwise 

and the only basic Brauer tree algebra with these Cartan invariants is B(e,m). 

Since K,(B(e, m)) has rank e and the Cartan matrix of B(e, m) has determinant 

em + 1, and since both of these quantities are invariants of the derived category, 

different values of e and m give algebras B(e, m) that are not derived equivalent. 0 

One could calculate End(Q) explicitly without using the results of [5]. This is not 

very hard but requires more lengthy calculations than the method of proof that we 

have used. 
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5. Concluding remarks 

In [7], it was proved that if /1 and r are derived equivalent algebras and /1 is 

hereditary, then r can be obtained from /1 by a sequence of tilting steps. As was 

pointed out in the introduction, the examples in Sections 3 and 4 of this paper show 

that some restriction on A is necessary. However, all these examples involve 

algebras of infinite global dimension. We shall give here an example where the 

algebras involved have finite global dimension. 

Let ,4 be the 20-dimensional algebra given by the quiver 

with relations 

a/3ysa = 0, ScY@y = 0. 

The global dimension of /1 is four, and it has a tilting complex 

0 + P(2) @P(2) @ P(3) @P(4) -+ P( 1) -+ 0, 

where P(i) denotes the projective module associated with vertex i and the map is 

given by the unique (up to scalar multiplication) map P(2) + P(1) on the first factor 

and by zero on the other three factors. The endomorphism ring Tof this tilting com- 

plex is the 17-dimensional algebra given by the following quiver, where the projec- 

tive modules at the vertices 1’, 2’, 3’, and 4’ correspond respectively to the direct 

summands P(2) + P(l), P(2) + 0, P(3) -+ 0 and P(4) --+ 0 of the tilting complex: 

1’ .&. 2’ 
6 

A Y a 

4’. -. 3’ 
P 

with relations 

yelp= 0, y6=0, Ec@=O, C5& = olpy. 

We shall not give the details of the computation of this endomorphism ring, but 

as a sample of the kind of calculations needed we shall work out the dimension of 

the endomorphism ring of P(2) + P(1). 

Both P(1) and P(2) have 2-dimensional endomorphism rings, and we can choose 

bases {l,(9) and {l,@}, where 19 and 0 are non-zero non-isomorphisms normalised 

so that, for a map v : P(2) + P(l), t,u@ = 0~. The diagram 
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P(2) -P(l) 

P(2) - P(1) 

commutes if and only if A, =A,, and there is a map from P(1) to P(2) giving a 

homotopy to zero if and only if AI = A3 = 0 and A2 = A4. Thus the endomorphism 

ring in the homotopy category is a 3-dimensional ring of endomorphisms in the 

category of complexes modulo a l-dimensional ideal of endomorphisms that are 

homotopic to zero, and so it is %-dimensional. 

Note that n has one projective indecomposable module P(1) that is isomorphic 

to its image under the Nakayama functor, but I- has none. We shall show that the 

number of such projectives is an invariant under tilting and cotilting, so /1 and r 

are not tilting-cotilting equivalent. 

Every projective-injective indecomposable module P for an algebra must be a 

direct summand of every tilting or cotilting module for that algebra by a remark of 

Bongartz [3]. In general, the image of P under the induced equivalence of derived 

categories is not both projective and injective. However, if vPzP, then by the 

remarks preceding Proposition 1.2 this is also true of the image of P. In the case 

of tilting, the image of P is thus a projective that is isomorphic to its image under 

v, and so is injective as well. A dual argument works for cotilting. 
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