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Preface

 

his book is intended to provide a modern, up-to-date presentation of
financial econometrics. It was written for students in finance and prac-

titioners in the financial services sector. 
Initially and primarily used in the derivative business, mathematical

models have progressively conquered all areas of risk management and
are now widely used also in portfolio construction. The choice of topics
and walk-through examples in this book reflect the current use of mod-
eling in all areas of investment management.

Financial econometrics is the science of modeling and forecasting
financial time series. The development of financial econometrics was
made possible by three fundamental enabling factors: (1) the availability
of data at any desired frequency, including at the transaction level; (2)
the availability of powerful desktop computers and the requisite IT
infrastructure at an affordable cost; and (3) the availability of off-the-
shelf econometric software. The combination of these three factors put
advanced econometrics within the reach of most financial firms.

But purely theoretical developments have also greatly increased the
power of financial econometrics. The theory of autoregressive and mov-
ing average processes reached maturity in the 1970s with the develop-
ment of a complete analytical toolbox by Box and Jenkins. Multivariate
extensions followed soon after; and the fundamental concepts of cointe-
gration and of ARCH/GARCH modeling were introduced by Engle and
Granger in the 1980s. Starting with the fundamental work of Benoit
Mandelbrot in the 1960s, empirical studies established firmly that
returns are not normally distributed and might exhibit “fat tails,” lead-
ing to a renewed interest in distributional aspects and in models that
might generate fat tails and stable distributions. 

This book updates the presentation of these topics. It begins with
the basics of econometrics and works its way through the most recent
theoretical results as regards the properties of models and their estima-
tion procedures. It discusses tests and estimation methods from the
point of view of a user of modern econometric software—although we
have not endorsed any software.

T
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Preface

 

A distinguishing feature of this book is the wide use of walk-
through examples in finance to explain the concepts that modelers and
those that use model results encounter in their professional life. In par-
ticular, our objective is to show how to interpret the results obtained
through econometric packages. The reader will find all the important
concepts in this book—from stepwise regression to cointegration and
the econometrics of stable distributions—illustrated with examples
based on real-world data. The walk-through examples provided can be
repeated by the reader, using any of the more popular econometric
packages available and data of the reader’s choice.

Here is a roadmap to the book. In Chapter 1, we informally intro-
duce the concepts and methods of financial econometrics and outline
how modeling fits into the investment management process. In Chapter
2, we summarize the basic statistical concepts that are used throughout
the book. 

Chapters 3 to 5 are devoted to regression analysis. We present differ-
ent regression models and their estimation methods. In particular, we dis-
cuss a number of real-world applications of regression analysis as walk-
through examples. Among the walk-through examples presented are: 

 

 ■ 

 

Computing and analyzing the characteristic line of common stocks and
mutual funds

 

 ■ 

 

Computing the empirical duration of common stocks

 

 ■ 

 

Predicting the Treasury yield

 

 ■ 

 

Predicting corporate bond yield spread

 

 ■ 

 

Testing the characteristic line in different market environments

 

 ■ 

 

Curve fitting to obtain the spot rate curve with the spline method

 

 ■ 

 

Tests of market efficiency and tests of CAPM

 

 ■ 

 

Evaluating manager performance

 

 ■ 

 

Selecting benchmarks

 

 ■ 

 

Style analysis of hedge-funds

 

 ■ 

 

Rich-cheap analysis of bonds

Chapter 6 introduces the basic concepts of time series analysis.
Chapter 7 discusses the properties and estimation methods of univariate
autoregressive moving average models. Chapter 8 is an up-to-date pre-
sentation of ARCH/GARCH modeling with walk-through examples. We
illustrate the concepts discussed, analyzing the properties of returns of
the DAX stock index and of selected stock return processes. 

Chapters 9 through 11 introduce autoregressive vector processes
and cointegrated processes, including advanced estimation methods for
cointegrated systems. Both processes are illustrated with real-world
examples. Vector autoregressive (VAR) analysis is illustrated by fitting a
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xii

 

VAR model to three real-world stock indexes; a cointegration analysis is
also performed on the same three indexes.

Chapter 12 covers robust estimation. With the broad diffusion of
modeling, interest in robust estimation methods has grown: Robust esti-
mation is used to make results more robust. The concepts of robust sta-
tistics are introduced and a detailed analysis of robust regressions is
performed and illustrated with many examples. We provide a robust
analysis of the returns of a Japanese stock and show the results of
applying robust methods to some of the regression examples discussed
in previous chapters.

Chapter 13 discusses Principal Components Analysis (PCA) and Fac-
tor Analysis, both now widely used in risk management and in equity and
bond portfolio construction. We illustrate the application of both tech-
niques on a portfolio of selected U.S. stocks and show an application of
PCA to bond portfolio management, to control interest rate risk.

Chapters 14 and 15 introduce stable processes and autoregressive
moving average (ARMA) and GARCH models with fat-tailed errors. We
illustrate the concepts discussed with an example in currency modeling
and equity return modeling.

We thank several individuals for  their assistance in various aspects
of this project:

 

 ■ 

 

Christian Menn for allowing us to use material from the book he coau-
thored with Svetlozar Rachev and Frank Fabozzi to create the appen-
dix to Chapter 14.

 

 ■ 

 

Robert Scott of the Bank for International Settlements for providing
data for the illustration on predicting the 10-year Treasury yield in
Chapter 3 and the data and regression results for the illustration on the
use of the spline method in Chapter 4. 

 

 ■ 

 

Raman Vardharaj of The Guardian for the mutual fund data and
regression results for the characteristic line in Chapter 3. 

 

 ■ 

 

Katharina Schüller for proofreading several chapters.

 

 ■ 

 

Anna Chernobai of Syracuse University and Douglas Martin of the
University of Washington and 

 

Finanalytica

 

 for their review of Chapter
12 (Robust Estimation).

 

 ■ 

 

Stoyan Stoyanov for reviewing several chapters.

 

 ■ 

 

Markus Hoechstoetter for the illustration in Chapter 14.

 

 ■ 

 

Martin Fridson and Greg Braylovskiy for the corporate bond spread
data used for the illustration in Chapter 4. 

 

 ■ 

 

David Wright of Northern Illinois University for the data to compute
the equity durations in Chapter 3.
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1

 

1

 

Financial Econometrics:
Scope and Methods

 

inancial econometrics is the econometrics of financial markets. It is a
quest for models that describe financial time series such as prices,

returns, interest rates, financial ratios, defaults, and so on. The eco-
nomic equivalent of the laws of physics, econometrics represents the
quantitative, mathematical laws of economics. The development of a
quantitative, mathematical approach to economics started at the end of
the 19th century, in a period of great enthusiasm for the achievements of
science and technology.

The World Exhibition held in Paris in 1889 testifies to the faith of
that period in science and technology. The key attraction of the exhibi-
tion—the Eiffel Tower—was conceived by Gustave Eiffel, an architect
and engineer who had already earned a reputation building large metal
structures such as the 94-foot-high wrought-iron square skeleton that
supports the Statue of Liberty.

 

1

 

 With its 300-meter-high iron structure,
Eiffel’s tower was not only the tallest building of its time but also a

 

1 

 

Eiffel was a shrewd businessman as well as an accomplished engineer. When he
learned that the funding for the 1889 World Exhibition tower would cover only
one fourth of the cost, he struck a deal with the French government: He would raise
the requisite funds in return for the right to exploit the tower commercially for 20
years. The deal made him wealthy. In the first year alone, revenues covered the en-
tire cost of the project! Despite his sense of business, Eiffel’s career was destroyed
by the financial scandal surrounding the building of the Panama Canal, for which
his firm was a major contractor. Though later cleared of accusations of corruption,
Eiffel abandoned his business activities and devoted the last 30 years of his life to
research.

F

 

c01-FinEconoScope  Page 1  Thursday, October 26, 2006  1:57 PM



 

2

 

FINANCIAL ECONOMETRICS

 

monument to applied mathematics. To ensure that the tower would
withstand strong winds, Eiffel wrote an integral equation to determine
the tower’s shape.

 

2

 

 
The notion that mathematics is the language of nature dates back

2,000 years to the ancient Greeks and was forcefully expressed by Gali-
leo. In his book 

 

Il saggiatore

 

 (

 

The Assayer

 

), published in 1623, Galileo
wrote (translation by one of the authors of this book):

[The universe] cannot be read until we have learnt the lan-
guage and become familiar with the characters in which it
is written. It is written in the language of mathematics; the
letters are triangles, circles, and other geometrical figures,
without which it is humanly impossible to comprehend a
single word. 

It was only when Newton published his 

 

Principia

 

 some 60 years later
(1687) that this idea took its modern form. In introducing the concept
of 

 

instantaneous rate of change

 

3

 

 and formulating mechanics as laws that
link variables and their rates of change, Newton made the basic leap
forward on which all modern physical sciences are based. Linking vari-
ables to their rate of change is the principle of differential equations. Its
importance can hardly be overestimated. Since Newton, differential
equations have progressively conquered basically all the fields of the
physical sciences, including mechanics, thermodynamics, electromagne-
tism, relativity, and quantum mechanics.

During the 19th century, physics based on differential equations
revolutionized technology. It was translated into steam and electrical
engines, the production and transmission of electrical power, the trans-
mission of electrical signals, the chemical transformation of substances,
and the ability to build ships, trains, and large buildings and bridges. It

 

2 

 

The design principles employed by Eiffel have been used in virtually every subse-
quent tall building. Eiffel’s equation,

states that the torque from the wind on any part of the Tower from a given height to
the top is equal to the torque of the weight of this same part.

 

3 

 

The instantaneous rate of change, “derivative” in mathematical terminology, is one
of the basic concepts of calculus. Calculus was discovered independently by Newton
and Leibniz, who were to clash bitterly in claiming priority in the discovery.

1
2
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changed every aspect of the manufacture of goods and transportation.
Faith in the power of science and technology reached a peak.

 

4

 

 
Enthusiasm for science led to attempts to adopt the principles of the

physical sciences to domains as varied as linguistics, the behavioral sci-
ences, and economics. The notion of economic equilibrium had already
been introduced by Stanley Jevons

 

5

 

 and Carl Menger

 

6

 

 when Leon Wal-
ras

 

7

 

 and Vilfredo Pareto

 

8

 

 made the first attempts to write comprehensive
mathematical laws of the economy. Engineers by training, Walras and
Pareto set themselves the task of explicitly writing down the equation of
economic equilibrium. Their objective was well in advance on their
time. A reasonable theoretical quantitative description of economic sys-
tems had to wait the full development of probability theory and statis-
tics during the first half of the 20th century. And its practical
application had to wait the development of fast computers. It was only
in the second half of the 20th century that a quantitative description of
economics became a mainstream discipline: econometrics (i.e., the quan-
titative science of economics) was born. 

 

THE DATA GENERATING PROCESS

 

The basic principles for formulating quantitative laws in financial econo-
metrics are the same as those that have characterized the development of
quantitative science over the last four centuries. We write mathematical
models, that is, relationships between different variables and/or variables
in different moments and different places. The basic tenet of quantitative
science is that there are relationships that do not change regardless of the

 

4 

 

The 19th century had a more enthusiastic and naive view of science and the linear-
ity of its progress than we now have. There are two major differences. First, 19th
century science believed in unlimited possibilities of future progress; modern science
is profoundly influenced by the notion that uncertainty is not eliminable. Second,
modern science is not even certain about its object. According to the standard inter-
pretation of quantum mechanics, the laws of physics are considered mere recipes to
predict experiments, void of any descriptive power.

 

5 

 

Stanley Jevons, 

 

Theory of Political Economy 

 

(London: Macmillan, 1871).

 

6 

 

Carl Menger, 

 

Principles of Economics

 

 (available online at http://www.mises.org/
etexts/menger/Mengerprinciples.pdf). Translated by James Dingwall and Bert
F. Hoselitz from 

 

Grundsätze der Volkswirtschaftslehre

 

 published in 1871.

 

7 

 

Léon Walras. 

 

Eléments d’économie politique pure; ou, Théorie de la richesse sociale

 

(Elements of Pure Economics or The Theory of Social Wealth) (Lausanne: Rouge,
1874).

 

8 

 

Vilfredo Pareto, 

 

Manuel d’économie Politique

 

 (Manual of Political Economy),
translated by Ann S. Schwier from the 1906 edition (New York: A.M. Kelley, 1906).
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moment or the place under consideration. For example, while sea waves
might look like an almost random movement, in every moment and loca-
tion the basic laws of hydrodynamics hold without change. Similarly,
asset price behavior might appear to be random, but econometric laws
should hold in every moment and for every set of assets.

There are similarities between financial econometric models and
models of the physical sciences but there are also important differences.
The physical sciences aim at finding immutable laws of nature; econo-
metric models model the economy or financial markets—artifacts sub-
ject to change. For example, financial markets in the form of stock
exchanges have been in operation for two centuries. During this period,
they have changed significantly both in the number of stocks listed and
the type of trading. And the information available on transactions has
also changed. Consider that in the 1950s, we had access only to daily
closing prices and this typically the day after; now we have instanta-
neous information on every single transaction. Because the economy
and financial markets are artifacts subject to change, econometric mod-
els are not unique representations valid throughout time; they must
adapt to the changing environment.

While basic physical laws are expressed as differential equations,
financial econometrics uses both continuous time and discrete time mod-
els. For example, continuous time models are used in modeling deriva-
tives where both the underlying and the derivative price are represented
by stochastic (i.e., random) differential equations. In order to solve sto-
chastic differential equations with computerized numerical methods,
derivatives are replaced with finite differences.

 

9

 

 This process of discretiza-
tion of time yields discrete time models. However, discrete time models
used in financial econometrics are not necessarily the result of a process
of discretization of continuous time models. 

Let’s focus on models in discrete time, the bread-and-butter of econo-
metric models used in asset management. There are two types of discrete-
time models: static and dynamic. Static models involve different variables
at the same time. The well-known 

 

capital asset pricing model

 

 (CAPM),
for example, is a static model. Dynamic models involve one or more vari-

 

9 

 

The stochastic nature of differential equations introduces fundamental mathematical
complications. The definition of stochastic differential equations is a delicate mathe-
matical process invented, independently, by the mathematicians Ito and Stratonovich.
In the Ito-Stratonovich definition, the path of a stochastic differential equation is not
the solution of a corresponding differential equation. However, the numerical solu-
tion procedure yields a discrete model that holds pathwise. See Sergio M. Focardi and
Frank J. Fabozzi,  

 

The Mathematics of Financial Modeling and Investment Manage-
ment

 

 (Hoboken, NJ: John Wiley & Sons, 2004) and the references therein for details.
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ables at two or more moments.

 

10

 

 Momentum models, for example, are
dynamic models.

In a dynamic model, the mathematical relationship between variables
at different times is called the 

 

data generating process

 

 (DGP). This termi-
nology reflects the fact that, if we know the DGP of a process, we can sim-
ulate the process recursively, starting from initial conditions. Consider the
time series of a stock price 

 

p

 

t

 

, that is, the series formed with the prices of
that stock taken at fixed points in time, say daily. Let’s now write a simple
econometric model of the prices of a stock as follows:

 

11

 

This model tells us that if we consider any time 

 

t 

 

+ 1, the price of that
stock at time 

 

t 

 

+ 1 is equal to a constant plus the price in the previous
moment 

 

t

 

 multiplied by 

 

ρ

 

 plus a zero-mean random disturbance inde-
pendent from the past, which always has the same statistical character-
istics.

 

12

 

 A random disturbance of this type is called a 

 

white noise

 

.

 

13

 

If we know the initial price 

 

p

 

0

 

 at time 

 

t

 

 = 0, using a computer pro-
gram to generate random numbers, we can simulate a path of the price
process with the following recursive equations:

That is, we can compute the price at time 

 

t

 

 = 1 from the initial price 

 

p

 

0

 

and a computer-generated random number 

 

ε

 

1

 

 and then use this new
price to compute the price at time 

 

t

 

 = 2, and so on.

 

14

 

 It is clear that we

 

10 

 

This is true in discrete time. In continuous time, a dynamic model might involve
variables and their derivatives at the same time.

 

11 

 

In this example, we denote prices with lower case 

 

p

 

 and assume that they follow a
simple linear model. In the following chapters, we will make a distinction between
prices, represented with upper case letter 

 

P

 

 and the logarithms of prices, represented
by lower case letters. Due to the geometric compounding of returns, prices are as-
sumed to follow nonlinear processes.

 

12 

 

If we want to apply this model to real-world price processes, the constants 

 

µ

 

 and

 

ρ

 

 must be estimated. 

 

µ

 

 determines the trend and 

 

ρ

 

 defines the dependence between
the prices. Typically 

 

ρ

 

 is less than but close to 1.

 

13 

 

The concept of white noise will be made precise in the following chapters where
different types of white noise will be introduced. 

 

14 

 

The 

 

ε

 

i

 

 are independent and identically distributed random variables with zero
mean. Typical choices for the distribution of 

 

ε

 

 are normal distribution, 

 

t

 

-distribu-
tion, and stable non-Gaussian distribution. The distribution parameters are estimat-
ed from the sample (see Chapter 3).

pt 1+ µ ρpt εt 1++ +=

p1 µ ρp0 ε1+ +=

p2 µ ρp1 ε2+ +=

�
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have a DGP as we can generate any path. An econometric model that
involves two or more different times can be regarded as a DGP. 

However, there is a more general way of looking at econometric
models that encompasses both static and dynamic models. That is, we
can look at econometric models from a perspective other than that of
the recursive generation of stochastic paths. In fact, we can rewrite our
previous model as follows:

This formulation shows that, if we consider any two consecutive
instants of time, there is a combination of prices that behave as random
noise. More in general, an econometric model can be regarded as a
mathematical device that reconstructs a noise sequence from empirical
data. This concept is visualized in Exhibit 1.1, which shows a time series
of numbers 

 

p

 

t

 

 generated by a computer program according to the previ-
ous rule with 

 

ρ

 

 = 0.9 and 

 

µ

 

 = 1 and the corresponding time series 

 

ε

 

t

 

. If
we choose any pair of consecutive points in time, say 

 

t 

 

+ 1,

 

t

 

, the differ-

pt 1+ µ ρpt–– εt 1+=

EXHIBIT 1.1  DGP and Noise Terms

p(t)

ε(t)
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ence 

 

p

 

t 

 

+ 1

 

 – 

 

µ

 

 –

 

ρ

 

p

 

t

 

 is always equal to the series 

 

ε

 

t 

 

+ 1. For example, con-
sider the points p13 = 10.2918, p14 = 12.4065. The difference p14 –
0.9p13 – 1 = 2.1439 has the same value as ε14. If we move to a different
pair we obtain the same result, that is, if we compute pt + 1 – 1 – 0.9pt,
the result will always be the noise sequence εt + 1.

To help intuition, imagine that our model is a test instrument: probing
our time series with our test instrument, we always obtain the same read-
ing. Actually, what we obtain is not a constant reading but a random read-
ing with mean zero and fixed statistical characteristics. The objective of
financial econometrics is to find possibly simple expressions of different
financial variables such as prices, returns, or financial ratios in different
moments that always yield, as a result, a zero-mean random disturbance.

Static models (i.e., models that involve only one instant) are used to
express relationships between different variables at any given time.
Static models are used, for example, to determine exposure to different
risk factors. However, because they involve only one instant, static mod-
els cannot be used to make forecasts; forecasting requires models that
link variables in two or more instants in time.

FINANCIAL ECONOMETRICS AT WORK

Applying financial econometrics involves three key steps:

1. Model selection
2. Model estimation
3. Model testing

In the first step, model selection, the modeler chooses (or might
write ex novo) a family of models with given statistical properties. This
entails the mathematical analysis of the model properties as well as eco-
nomic theory to justify the model choice. It is in this step that the mod-
eler decides to use, for example, regression on financial ratios or other
variables to model returns.

In general, models include a number of free parameters that have to be
estimated from sample data, the second step in applying financial econo-
metrics. Suppose that we have decided to model returns with a regression
model, a technique that we discuss in later chapters. This requires the esti-
mation of the regression coefficients, performed using historical data. Esti-
mation provides the link between reality and models. As econometric
models are probabilistic models, any model can in principle describe our
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empirical data. We choose a family of models in the model selection phase
and then determine the optimal model in the estimation phase.

As mentioned, model selection and estimation are performed on his-
torical data. As models are adapted (or fitted) to historical data there is
always the risk that the fitting process captures ephemeral features of
the data. Thus there is the need to test the models on data different from
the data on which the models were estimated. This is the third step in
applying financial econometrics, model testing. We assess the perfor-
mance of models on fresh data.

We can take a different approach to model selection and estimation,
namely statistical learning. Statistical learning combines the two steps—
model selection and model estimation—insofar as it makes use of a class
of universal models that can fit any data. Neural networks are an exam-
ple of universal models. The critical step in the statistical learning
approach is estimation. This calls for methods to restrict model com-
plexity (i.e., the number of parameters used in a model). 

Within this basic scheme for applying financial econometrics, we
can now identify a number of modeling issues, such as:

 ■ How do we apply statistics given that there is only one realization of
financial series?

 ■ Given a sample of historical data, how do we choose between linear
and nonlinear models, or the different distributional assumptions or
different levels of model complexity?

 ■ Can we exploit more data using, for example, high-frequency data?
 ■ How can we make our models more robust, reducing model risk?
 ■ How do we measure not only model performance but also the ability

to realize profits?

Implications of Empirical Series with Only One Realization
As mentioned, econometric models are probabilistic models: Variables are
random variables characterized by a probability distribution. Generally
speaking, probability concepts cannot be applied to single “individu-
als.”15 Probabilistic models describe “populations” formed by many indi-
viduals. However, empirical financial time series have only one realization.
For example, there is only one historical series of prices for each stock—
and we have only one price at each instant of time. This makes problem-
atic the application of probability concepts. How, for example, can we
meaningfully discuss the distribution of prices at a specific time given that
there is only one price observation? Applying probability concepts to per-
form estimation and testing would require populations made up of multi-

15 At least, not if we use a frequentist concept of probability. See Chapter 2.
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ple time series and samples made up of different time series that can be
considered a random draw from some distribution.

As each financial time series is unique, the solution is to look at the
single elements of the time series as the individuals of our population.
For example, because there is only one realization of each stock’s price
time series, we have to look at the price of each stock at different
moments. However, the price of a stock (or of any other asset) at differ-
ent moments is not a random independent sample. For example, it
makes little sense to consider the distribution of the prices of a single
stock in different moments because the level of prices typically changes
over time. Our initial time series of financial quantities must be trans-
formed; that is, a unique time series must be transformed into popula-
tions of individuals to which statistical methods can be applied. This
holds not only for prices but for any other financial variable.

Econometrics includes transformations of the above type as well as
tests to verify that the transformation has obtained the desired result. The
DGP is the most important of these transformations. Recall that we can
interpret a DGP as a method for transforming a time series into a sequence
of noise terms. The DGP, as we have seen, constructs a sequence of random
disturbances starting from the original series; it allows one to go back-
wards and infer the statistical properties of the series from the noise terms
and the DGP. However, these properties cannot be tested independently.

The DGP is not the only transformation that allows statistical esti-
mates. Differencing time series, for example, is a process that, as we will
see in Chapter 6, may transform nonstationary time series into station-
ary time series. A stationary time series has a constant mean that, under
specific assumptions, can be estimated as an empirical average.

Determining the Model
As we have seen, econometric models are mathematical relationships
between different variables at different times. An important question is
whether these relationships are linear or nonlinear. Consider that every
econometric model is an approximation. Thus the question is: Which
approximation—linear or nonlinear—is better? 

To answer this, it is generally necessary to consider jointly the lin-
earity of models, the distributional assumptions, and the number of
time lags to introduce. The simplest models are linear models with a
small number of lags under the assumption that variables are normal
variables. A widely used example of normal linear models are regression
models where returns are linearly regressed on lagged factors under the
assumption that noise terms are normally distributed. A model of this
type can be written as:
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where rt are the returns at time t and ft are factors, that is economic or
financial variables. Given the linearity of the model, if factors and noise
are jointly normally distributed, returns are also normally distributed.

However, the distribution of returns, at least at some time horizons,
is not normal. If we postulate a nonlinear relationship between factors
and returns, normally distributed factors yield a nonnormal return distri-
bution. However, we can maintain the linearity of the regression rela-
tionship but assume a nonnormal distribution of noise terms and factors.
Thus a nonlinear models transforms normally distributed noise into non-
normal variables but it is not true that nonnormal distributions of vari-
ables implies nonlinear models.

If we add lags (i.e., a time space backwards), the above model
becomes sensitive to the shape of the factor paths. For example, a regres-
sion model with two lags will behave differently if the factor is going up
or down. Adding lags makes models more flexible but more brittle. In
general, the optimal number of lags is dictated not only by the complexity
of the patterns that we want to model but also by the number of points in
our sample. If sample data are abundant, we can estimate a rich model.

Typically there is a trade-off between model flexibility and the size
of the data sample. By adding time lags and nonlinearities, we make our
models more flexible, but the demands in terms of estimation data are
greater. An optimal compromise has to be made between the flexibility
given by nonlinear models and/or multiple lags and the limitations due
to the size of the data sample.

TIME HORIZON OF MODELS

There are trade-offs between model flexibility and precision that depend
on the size of sample data. To expand our sample data, we would like to
use data with small time spacing in order to multiply the number of
available samples. High-frequency data or HFD (i.e., data on individual
transactions) have the highest possible frequency (i.e., each individual
transaction) and are irregularly spaced. To give an idea of the ratio in
terms of numbers, consider that there are approximately 2,100 ticks per
day for the median stock in the Russell 3000.16 Thus the size of the
HDF data set of one day for a typical stock in the Russell 3000 is 2,100
times larger than the size of closing data for the same day!

16 Thomas Neal Falkenberry, “High Frequency Data Filtering,” Tick Data Inc., 2002.

rt 1+ βft εt 1++=
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In order to exploit all available data, we would like to adopt models
that work over time intervals of the order of minutes and, from these
models, compute the behavior of financial quantities over longer peri-
ods. Given the number of available sample data at high frequency, we
could write much more precise laws than those established using longer
time intervals. Note that the need to compute solutions over forecasting
horizons much longer than the time spacing is a general problem which
applies at any time interval. For example, as will be discussed in Chap-
ter 5, in asset allocation we need to understand the behavior of financial
quantities over long time horizons. The question we need to ask is if
models estimated using daily intervals can correctly capture the process
dynamics over longer periods, such as years.

It is not necessarily true that models estimated on short time inter-
vals, say minutes, offer better forecasts at longer time horizons than
models estimated on longer time intervals, say days. This is because
financial variables might have a complex short-term dynamics superim-
posed on a long-term dynamics. It might be that using high-frequency
data one captures the short-term dynamics without any improvement in
the estimation of the long-term dynamics. That is, with high-frequency
data it might be that models get more complex (and thus more data-hun-
gry) because they describe short-term behavior superimposed on long-
term behavior. This possibility must be resolved for each class of models. 

Another question is if it is possible to use the same model at differ-
ent time horizons. To do so is to imply that the behavior of financial
quantities is similar at different time horizons. This conjecture was first
made by Benoit Mandelbrot who observed that long series of cotton
prices were very similar at different time aggregations.17 This issue will
be discussed in Chapter 14 where we review families of variables and
processes that exhibit self-similarity.

Model Risk and Model Robustness
Not only are econometric models probabilistic models, as we have
already noted; they are only approximate models. That is, the probabil-
ity distributions themselves are only approximate and uncertain. The
theory of model risk and model robustness assumes that all parameters
of a model are subject to uncertainty, and attempts to determine the
consequence of model uncertainty and strategies for mitigating errors.

The growing use of models in finance over the last decade has
heightened the attention to model risk and model-risk mitigation tech-
niques. Asset management firms are beginning to address the need to

17 Benoit Mandelbrot, “The Variation of Certain Speculative Prices,” Journal of
Business 36 (1963), pp. 394–419.
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implement methodologies that allow both robust estimation and robust
optimization in the portfolio management process. 

Performance Measurement of Models
It is not always easy to understand ex ante just how well (or how
poorly) a forecasting model will perform. Because performance evalua-
tions made on training data are not reliable, the evaluation of model
performance requires separate data sets for training and for testing.
Models are estimated on training data and tested on the test data. Poor
performance might be due to model misspecification, that is, models
might not reflect the true DGP of the data (assuming one exists), or
there might simply be no DGP.

Various measures of model performance have been proposed. For
example, one can compute the correlation coefficient between the fore-
casted variables and their actual realizations. Each performance mea-
sure is a single number and therefore conveys only one aspect of the
forecasting performance. Often it is crucial to understand if errors can
become individually very large or if they might be correlated. Note that
a simple measure of model performance does not ensure the profitability
of strategies. This can be due to a number of reasons, including, for
example, the risk inherent in apparently profitable forecasts, market
impact, and transaction costs. 

APPLICATIONS

There has been a greater use of econometric models in investment man-
agement since the turn of the century. Application areas include:

 ■ Portfolio construction and optimization
 ■ Risk management
 ■ Asset and liability management

Each type of application requires different modeling approaches. In the
appendix to this chapter, we provide a more detailed description of the
investment management process and some investment concepts that will
be used in this book.

Portfolio Construction and Optimization 
Portfolio construction and optimization require models to forecast
returns: There is no way to escape the need to predict future returns. Pas-
sive strategies apparently eschew the need to forecast future returns of
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individual stocks by investing in broad indexes. They effectively shift the
need to forecast to a higher level of analysis and to longer time horizons.

Until recently, the mainstream view was that financial econometric
models could perform dynamic forecasts of volatility but not of expected
returns. However, volatility forecasts are rarely used in portfolio man-
agement. With the exception of some proprietary applications, the most
sophisticated models used in portfolio construction until recently were
factor models where forecasts are not dynamic but consist in estimating
a drift (i.e., a constant trend) plus a variance-covariance matrix.

Since the late 1990s, the possibility of making dynamic forecasts of
both volatility and expected returns has gained broad acceptance. Dur-
ing the same period, it became more widely recognized that returns are
not normally distributed, evidence that had been reported by Mandel-
brot in the 1960s. Higher moments of distributions are therefore impor-
tant in portfolio management. We discuss the representation and
estimation of nonnormal distributions in Chapter 14.

As observed above, the ability to correctly forecast expected returns
does not imply, per se, that there are profit opportunities. In fact, we have
to take into consideration the interplay between expected returns, higher
moments, and transaction costs. As dynamic forecasts typically involve
higher portfolio turnover, transaction costs might wipe out profits. As a
general comment, portfolio management based on dynamic forecasts calls
for a more sophisticated framework for optimization and risk manage-
ment with respect to portfolio management based on static forecasts.

At the writing of this book, regression models form the core of the
modeling efforts to predict future returns at many asset management
firms. Regression models regress returns on a number of predictors.
Stated otherwise, future returns are a function of the value of present
and past predictors. Predictors include financial ratios such as earning-
to-price ratio or book-to-price ratio and other fundamental quantities;
predictors might also include behavioral variables such as market senti-
ment. A typical formula of a regressive model is the following:

where

ri t 1+, αi βijfj t,
j 1=

s

∑ εi t 1+,+ +=

ri t 1+,
Pi t 1+, Pi t,–

Pi t,
-------------------------------=
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is the return at time t + 1 of the i-th asset and the fj,t are factors observed at
time t. While regressions are generally linear, nonlinear models are also used. 

In general, the forecasting horizon in asset management varies from a
few days for actively managed or hedge funds to several weeks for more
traditionally managed funds. Dynamic models typically have a short fore-
casting horizon as they capture a short-term dynamics. This contrasts
with static models, such as the widely used multifactor models, which
tend to capture long-term trends and ignore short-term dynamics.

The evolution of forecasting models over the last two decades has
also changed the way forecasts are used. A basic utilization of forecasts
is in stock picking/ranking systems, which have been widely imple-
mented at asset management firms. The portfolio manager builds his or
her portfolio combining the model ranking with his or her personal
views and within the constraints established by the firm. A drawback in
using such an approach is the difficulty in properly considering the
structure of correlations and the role of higher moments.

Alternatively, forecasts can be fed to an optimizer that automati-
cally computes the portfolio weights. But because an optimizer imple-
ments an optimal trade-off between returns and some measure of risk,
the forecasting model must produce not only returns forecasts but also
measures of risk. If risk is measured by portfolio variance or standard
deviation, the forecasting model must be able to provide an estimated
variance-covariance matrix.

Estimating the variance-covariance matrix is the most delicate of the
estimation tasks. Here is why. The number of entries of a variance-cova-
riance matrix grows with the square of the number of stocks. As a conse-
quence, the number of entries in a variance-covariance matrix rapidly
becomes very large. For example, the variance-covariance matrix of the
stocks in the S&P 500 is a symmetric matrix that includes some 125,000
entries. If our universe were the Russell 5000, the variance-covariance
matrix would include more than 12,000,000 entries. The problem with
estimating matrices of this size is that estimates are very noisy because
the number of sample data is close to the number of parameters to esti-
mate. For example, if we use three years of data for estimation, we have,
on average, less than three data points per estimated entry in the case of
the S&P 500; in the case of the Russell 5000, the number of data points
would be one fourth of the number of entries to estimate! Robust estima-
tion methods are called for.

Note that if we use forecasting models we typically have (1) an equi-
librium variance-covariance matrix that represents the covariances of
the long-run relationships between variables plus (2) a short-term, time-
dependent, variance-covariance matrix. If returns are not normally dis-
tributed, optimizers might require the matrix of higher moments.
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A third utilization of forecasting models and optimizers is to con-
struct model portfolios. In other words, the output of the optimizer is
used to construct not an actual but a model portfolio. This model port-
folio is used as input by portfolio managers.

Risk Management
Risk management has different meanings in different contexts. In particu-
lar, when optimization is used, risk management is intrinsic to the optimi-
zation process, itself a risk-return trade-off optimization. In this case, risk
management is an integral part of the portfolio construction process.

However, in most cases, the process of constructing portfolios is
entrusted to human portfolio managers who might use various inputs
including, as noted above, ranking systems or model portfolios. In these
cases, portfolios might not be optimal from the point of view of risk
management and it is therefore necessary to ensure independent risk
oversight. This oversight might take various forms. One form is similar
to the type of risk oversight adopted by banks. The objective is to assess
potential deviations from expectations. In order to perform this task,
the risk manager receives as input the composition of portfolios and
makes return projections using static forecasting models.

Another form of risk oversight, perhaps the most diffused in portfo-
lio management, assesses portfolio exposures to specific risk factors. As
portfolio management is often performed relative to a benchmark and
risk is defined as underperformance relative to the benchmark, it is
important to understand the sensitivity of portfolios to different risk fac-
tors. This type of risk oversight does not entail the forecasting of returns.
The risk manager uses various statistical techniques to estimate how
portfolios move in function of different risk factors. In most cases, linear
regressions are used. A typical model will have the following form:

where

is the return observed at time t of the i-th asset and the fj,t are factors
observed at time t. Note that this model is fundamentally different from
a regressive model with time lags as written in the previous section.

ri t, αi βijfj t,
j 1=

s

∑ εi t,+ +=

ri t,
Pi t, Pi t 1–,–

Pi t 1–,
------------------------------=
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Asset-Liability Management
Asset-liability management (ALM) is typical of those asset management
applications that require the optimization of portfolio returns at some
fixed time horizon plus a stream of consumption throughout the entire
life of the portfolio. ALM is important for managing portfolios of insti-
tutional investors such as pension funds or foundations. It is also impor-
tant for wealth management, where the objective is to cover the
investor’s financial needs over an extended period.

ALM requires forecasting models able to capture the asset behavior
at short-, medium-, and long-term time horizons. Models of the long-
term behavior of assets exist but are clearly difficult to test. Important
questions related to these long-term forecasting models include:

 ■ Do asset prices periodically revert to one or many common trends in
the long run?

 ■ Can we assume that the common trends (if they exist) are deterministic
trends such as exponentials or are common trends stochastic (i.e., ran-
dom) processes?

 ■ Can we recognize regime shifts over long periods of time?

APPENDIX: INVESTMENT MANAGEMENT PROCESS

Finance is classified into two broad areas: investment management (or
portfolio management) and corporate finance. While financial econo-
metrics has been used in corporate finance primarily to test various the-
ories having to do with the corporate policy, the major use has been in
investment management. Accordingly, our primary focus in this book is
on applications to investment management.

The investment management process involves the following five steps: 

Step 1: Setting investment objectives
Step 2: Establishing an investment policy
Step 3: Selecting an investment strategy 
Step 4: Selecting the specific assets
Step 5: Measuring and evaluating investment performance 

The overview of the investment management process described below
should help understand how the econometric tools presented in this
book are employed by portfolio managers, analysts, plan sponsors, and
researchers. In addition, we introduce concepts and investment terms
that are used in the investment management area throughout this book.
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Step 1: Setting Investment Objectives
The first step in the investment management process, setting investment
objectives, begins with a thorough analysis of the investment objectives of
the entity whose funds are being managed. These entities can be classified
as individual investors and institutional investors. Within each of these
broad classifications, there is a wide range of investment objectives.

The objectives of an individual investor may be to accumulate funds to
purchase a home or other major acquisitions, to have sufficient funds to be
able to retire at a specified age, or to accumulate funds to pay for college
tuition for children. An individual investor may engage the services of a
financial advisor/consultant in establishing investment objectives. 

In general, we can classify institutional investors into two broad
categories—those that have to meet contractually specified liabilities
and those that do not. We can classify those in the first category as insti-
tutions with “liability-driven objectives” and those in the second cate-
gory as institutions with “nonliability-driven objectives.” Many firms
have a wide range of investment products that they offer investors, some
of which are liability-driven and others that are nonliability-driven.
Once the investment objective is understood, it will then be possible to
(1) establish a benchmark by which to evaluate the performance of the
investment manager and (2) evaluate alternative investment strategies to
assess the potential for realizing the specified investment objective. 

Step 2: Establishing an Investment Policy
The second step in the investment management process is establishing
policy guidelines to satisfy the investment objectives. Setting policy
begins with the asset allocation decision. That is, a decision must be
made as to how the funds to be invested should be distributed among
the major classes of assets. 

Asset Classes
Throughout this book we refer to certain categories of investment prod-
ucts as an “asset class.” From the perspective of a U.S. investor, the con-
vention is to refer the following as traditional asset classes:

 ■ U.S. common stocks
 ■ Non-U.S. (or foreign) common stocks
 ■ U.S. bonds
 ■ Non-U.S. (or foreign) bonds
 ■ Cash equivalents
 ■ Real estate
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Cash equivalents are defined as short-term debt obligations that have
little price volatility. Common stocks and bonds are further divided into
asset classes. For U.S. common stocks (also referred to as U.S. equities),
the following are classified as asset classes: 

 ■ Large capitalization stocks
 ■ Mid-capitalization stocks
 ■ Small capitalization stocks
 ■ Growth stocks
 ■ Value stocks

By “capitalization,” it is meant the market capitalization of the com-
pany’s common stock. This is equal to the total market value of all of
the common stock outstanding for that company. For example, suppose
that a company has 100 million shares of common stock outstanding
and each share has a market value of $10. Then the capitalization of
this company is $1 billion (100 million shares times $10 per share). The
market capitalization of a company is commonly referred to as the
“market cap” or simply “cap.” 

For U.S. bonds, also referred to as fixed-income securities, the fol-
lowing are classified as asset classes:

 ■ U.S. government bonds
 ■ Investment-grade corporate bonds
 ■ High-yield corporate bonds
 ■ U.S. municipal bonds (i.e., state and local bonds)
 ■ Mortgage-backed securities
 ■ Asset-backed securities

Corporate bonds are classified by the type of issuer. The four gen-
eral classifications are (1) public utilities, (2) transportations, (3) banks/
finance, and (4) industrials. Finer breakdowns are often made to create
more homogeneous groupings. For example, public utilities are subdi-
vided into electric power companies, gas distribution companies, water
companies, and communication companies. Transportations are divided
further into airlines, railroads, and trucking companies. Banks/finance
include both money center banks and regional banks, savings and loans,
brokerage firms, insurance companies, and finance companies. Industri-
als are the catchall class and the most heterogeneous of the groupings
with respect to investment characteristics. Industrials include manufac-
turers, mining companies, merchandising, retailers, energy companies,
and service-related industries.
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Corporate bonds expose investors to credit risk. There are private
companies that rate bonds with respect to their likelihood to default.
They are Moody’s, Standard & Poor’s, and Fitch. These firms perform
credit analysis and issue their conclusions about the credit risk of a com-
pany in the form of a rating. The rating systems use similar symbols. In
all three systems, the term “high grade” means low credit risk, or con-
versely, high probability of future payments. The highest-grade bonds
are designated by Moody’s by the letters Aaa, and by the other two rat-
ing agencies by AAA. The next highest grade is Aa or AA; for the third
grade all rating agencies use A. The next three grades are Baa or BBB, Ba
or BB, and B, respectively. There are also C grades. Standard & Poor’s
and Fitch uses plus or minus signs to provide a narrower credit quality
breakdown within each class, and Moody’s uses 1, 2, or 3 for the same
purpose. Bonds rated triple A (AAA or Aaa) are said to be prime; double
A (AA or Aa) are of high quality; single A issues are called upper medium
grade, and triple B are medium grade. Lower-rated bonds are said to
have speculative elements or to be distinctly speculative.

Bond issues that are assigned a rating in the top four categories are
referred to as investment-grade bonds. Issues that carry a rating below
the top four categories are referred to as noninvestment-grade bonds, or
more popularly as high-yield bonds or junk bonds. Thus, the corporate
bond market can be divided into two sectors: the investment-grade and
noninvestment-grade markets.

Mortgage-backed and asset-backed securities are referred to as
securitized products. Agency mortgage-backed securities carry little
credit risk and represent the largest spread sector in the bond market.
By spread sector it is meant sectors of the bond market that offer a
spread to U.S. Treasuries. The key use of econometric tools in analyzing
mortgage-backed securities is to forecast prepayments. In the case of
nonagency and asset-backed securities, econometric tools are used to
forecast defaults and recoveries in addition to prepayments.

For non-U.S. stocks and bonds, the following are classified as asset
classes: 

 ■ Developed market foreign stocks
 ■ Emerging market foreign stocks
 ■ Developed market foreign bonds
 ■ Emerging market foreign bonds

In addition to the traditional asset classes, there are asset classes
commonly referred to as alternative investments. Two of the more pop-
ular ones are hedge funds and private equity. 
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Constraints
There are some institutional investors that make the asset allocation deci-
sion based purely on their understanding of the risk-return characteristics
of the various asset classes and expected returns. The asset allocation
will take into consideration any investment constraints or restrictions.
Asset allocation models are commercially available for assisting those
individuals responsible for making this decision. 

In the development of an investment policy, the following factors
must be considered: client constraints, regulatory constraints, and tax
and accounting issues.

Examples of client-imposed constraints would be restrictions that
specify the types of securities in which a manager may invest and con-
centration limits on how much or little may be invested in a particular
asset class or in a particular issuer. Where the objective is to meet the
performance of a particular market or customized benchmark, there
may be a restriction as to the degree to which the manager may deviate
from some key characteristics of the benchmark. 

There are many types of regulatory constraints. These involve con-
straints on the asset classes that are permissible and concentration limits
on investments. Moreover, in making the asset allocation decision, con-
sideration must be given to any risk-based capital requirements. 

Step 3: Selecting a Portfolio Strategy
Selecting a portfolio strategy that is consistent with the investment
objectives and investment policy guidelines of the client or institution is
the third step in the investment management process. Portfolio strate-
gies can be classified as either active or passive. 

An active portfolio strategy uses available information and forecast-
ing techniques to seek a better performance than a portfolio that is sim-
ply diversified broadly. Essential to all active strategies are expectations
about the factors that have been found to influence the performance of
an asset class. For example, with active common stock strategies this
may include forecasts of future earnings, dividends, or price-earnings
ratios. With bond portfolios that are actively managed, expectations
may involve forecasts of future interest rates and sector spreads. Active
portfolio strategies involving foreign securities may require forecasts of
local interest rates and exchange rates.

A passive portfolio strategy involves minimal expectational input,
and instead relies on diversification to match the performance of some
market index. In effect, a passive strategy assumes that the marketplace
will reflect all available information in the price paid for securities.
Between these extremes of active and passive strategies, several strategies
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have sprung up that have elements of both. For example, the core of a
portfolio may be passively managed with the balance actively managed. 

In the bond area, several strategies classified as structured portfolio
strategies have been commonly used. A structured portfolio strategy is
one in which a portfolio is designed to achieve the performance of some
predetermined liabilities that must be paid out. These strategies are fre-
quently used when trying to match the funds received from an invest-
ment portfolio to the future liabilities that must be paid. 

Given the choice among active and passive management, which
should be selected? The answer depends on (1) the client’s or money
manager’s view of how “price-efficient” the market is; (2) the client’s
risk tolerance; and (3) the nature of the client’s liabilities. By market-
place price efficiency we mean how difficult it would be to earn a greater
return than passive management after adjusting for the risk associated
with a strategy and the transaction costs associated with implementing
that strategy. Market efficiency is explained in Chapter 5. Econometric
tools are used to test theories about market efficiency.

Step 4: Selecting the Specific Assets
Once a portfolio strategy is selected, the next step is to select the specific
assets to be included in the portfolio. It is in this phase of the investment
management process that the investor attempts to construct an efficient
portfolio. An efficient portfolio is one that provides the greatest
expected return for a given level of risk or, equivalently, the lowest risk
for a given expected return.

Inputs Required
To construct an efficient portfolio, the investor must be able to quantify
risk and provide the necessary inputs. As will be explained in the next
chapter, there are three key inputs that are needed: future expected
return (or simply expected return), variance of asset returns, and corre-
lation (or covariance) of asset returns. Many of the financial economet-
ric tools described in this book are intended to provide the investor with
information with which to estimate these three inputs.

There are a wide range of approaches to obtain the expected return
of assets. Investors can employ various econometric tools discussed in
this book to derive the future expected return of an asset.

Approaches to Portfolio Construction
Based on the expected return for a portfolio (which depends on the
expected returns of all the asset returns in the portfolio) and some risk
measure of the portfolio’s return (which depends on the covariance of
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returns between all pairs of assets in the portfolio) an efficient portfolio
can be constructed. This approach also allows for the inclusion of con-
straints such as lower and upper bounds on particular assets or assets in
particular industries or sectors. The end result of the analysis is a set of
efficient portfolios—alternative portfolios from which the investor can
select—that offer the maximum expected portfolio return for a given
level of portfolio risk.

There are variations on this approach to portfolio construction. The
analysis can be employed by estimating risk factors that historically have
explained the variance of asset returns. The basic principle is that the
value of an asset is driven by a number of systematic factors (or, equiva-
lently, risk exposures) plus a component unique to a particular company
or industry. A set of efficient portfolios can be identified based on the risk
factors and the sensitivity of assets to these risk factors. This approach is
referred to the “multifactor risk approach” to portfolio construction.

Step 5: Measuring and Evaluating Performance
The measurement and evaluation of investment performance is the last step
in the investment management process. This step involves measuring the
performance of the portfolio and then evaluating that performance relative
to some benchmark. Econometric tools are used to construct models that
can be employed to evaluate the performance of managers. We discuss this
in Chapter 5. 

CONCEPTS EXPLAINED IN THIS CHAPTER
(IN ORDER OF PRESENTATION)

Data generating process
White noise
High frequency data
Models

Mathematical model
Model estimation
Model selection
Model testing
Static models
Dynamic models
Models as probes that recover IID sequences
Linear and nonlinear models
Model risk
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Model robustness
Exact and approximate models
Model performance

Statistical learning
Stationary time series
Nonstationary time series
Differencing
Portfolio construction and optimizaiton
Risk management
Asset-liability management
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Review of Probability and
Statistics

 

inancial econometrics draws on the fields of probability theory and
statistics. Probability is the standard mathematical representation of

uncertainty in finance. Probabilistic models have to be estimated from
empirical data and this is where the concepts and methods of statistics
come in. In this chapter, we provide a review of concepts of both proba-
bility and statistics. 

 

CONCEPTS OF PROBABILITY

 

Because we cannot build purely deterministic models of the economy, we
need a mathematical representation of uncertainty. 

 

Probability theory

 

 is
the mathematical description of uncertainty that presently enjoys the
broadest diffusion. It is the paradigm of choice for mainstream finance
theory. But it is by no means the only way to describe uncertainty. Other
mathematical paradigms for uncertainty include, for example, fuzzy
measures.

 

1

 

Though probability as a mathematical axiomatic theory is well
known, its interpretation is still the subject of debate. There are three
basic interpretations of probability:

 

 ■ 

 

Probability as “intensity of belief” as suggested by John Maynard
Keynes.

 

2
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Treatise on Probability 

 

(London: McMillan, 1921).
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 ■ 

 

Probability as “relative frequency” as formulated by Richard von Mises.

 

3

 

 ■ 

 

Probability as an axiomatic system as formulated by Andrei N. Kol-
mogorov.

 

4

 

The idea of probability as intensity of belief was introduced by John
Maynard Keynes in his 

 

Treatise on Probability

 

. In science, as in our daily
lives, we have beliefs that we cannot strictly prove but to which we
attribute various degrees of likelihood. We judge not only the likelihood
of individual events but also the plausibility of explanations. If we espouse
probability as intensity of belief, probability theory is then a set of rules
for making consistent probability statements. The obvious difficulty here
is that one can judge only the consistency of probability reasoning, not its
truth. Bayesian probability theory (which we will discuss later in the chap-
ter) is based on the interpretation of probability as intensity of belief.

Probability as relative frequency is the standard interpretation of
probability in the physical sciences. Introduced by Richard Von Mises in
1928, probability as relative frequency was subsequently extended by
Hans Reichenbach.

 

5

 

 Essentially, it equates probability statements with
statements about the frequency of events in large samples; an unlikely
event is an event that occurs only a small number of times. The difficulty
with this interpretation is that relative frequencies are themselves uncer-
tain. If we accept a probability interpretation of reality, there is no way
to leap to certainty. In practice, in the physical sciences we usually deal
with very large numbers—so large that nobody expects probabilities to
deviate from their relative frequency. Nevertheless, the conceptual diffi-
culty exists. As the present state of affairs might be a very unlikely one,
probability statements can never be proved empirically.

The two interpretations of probability—as intensity of belief and as
relative frequency—are therefore complementary. We make probability
statements such as statements of relative frequency that are, ultimately,
based on an 

 

a priori

 

 evaluation of probability insofar as we rule out, in
practice, highly unlikely events. This is evident in most procedures of
statistical estimation. A statistical estimate is a rule to choose the proba-
bility scheme in which one has the greatest faith. In performing statisti-
cal estimation, one chooses the probabilistic model that yields the
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Richard von Mises, 

 

Wahrscheinlichkeitsrechnung, Statistik unt Wahrheit 

 

(Vienna:
Verlag von Julius Spring, 1928). English edition published in 1939, 

 

Probability, Sta-
tistics and Truth.
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Andrei N. Kolmogorov, 

 

Grundbegriffe der Wahrscheinlichkeitsrechnung 

 

(Berlin:
Springer, 1933). English edition published in 1950, 

 

Foundations of the Theory of
Probability

 

.
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At the time, both were German professors working in Constantinople. 
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highest probability on the observed sample. This is strictly evident in
maximum likelihood estimates but it is implicit in every statistical esti-
mate. Bayesian statistics allow one to complement such estimates with
additional 

 

a priori

 

 probabilistic judgment.
The axiomatic theory of probability avoids the above problems by

interpreting probability as an abstract mathematical quantity. Devel-
oped primarily by the Russian mathematician Andrei Kolmogorov, the
axiomatic theory of probability eliminated the logical ambiguities that
had plagued probabilistic reasoning prior to his work. The application
of the axiomatic theory is, however, a matter of interpretation.

In economic and finance theory, probability might have two differ-
ent meanings: (1) as a descriptive concept and (2) as a determinant of
the agent decision-making process. As a descriptive concept, probability
is used in the sense of relative frequency, similar to its use in the physical
sciences: the probability of an event is assumed to be approximately
equal to the relative frequency of its occurrence in a large number of
experiments. There is one difficulty with this interpretation, which is
peculiar to economics: empirical data (i.e., financial and economic time
series) have only one realization. Every estimate is made on a single
time-evolving series. If stationarity (or a well-defined time process) is
not assumed, performing statistical estimation is impossible.

 

6

 

Probability in a Nutshell

 

In making probability statements we must distinguish between outcomes
and events. 

 

Outcomes

 

 are the possible results of an experiment or an obser-
vation, such as the price of a security at a given moment. However, proba-
bility statements are not made on outcomes but on 

 

events

 

, which are sets of
possible outcomes. Consider, for example, the probability that the price of
a security be in a given range, say from $10 to $12 in a given period. 

In a discrete probability model (i.e., a model based on a finite or at
most a countable number of individual events), the distinction between
outcomes and events is not essential as the probability of an event is the
sum of the probabilities of its outcomes. If, as happens in practice,
prices can vary by only one-hundredth of a dollar, there are only a
countable number of possible prices and the probability of each event
will be the sum of the individual probabilities of each admissible price.

However, the distinction between outcomes and events is essential
when dealing with continuous probability models. In a continuous

 

6 

 

Actually the stronger requirement of ergodicity is needed. An ergodic process is a
process where we can interchange time averages with expectations. However, we
cannot assume that financial processes themselves are ergodic; for the most part we
assume that the residuals in the fitted financial time series model are ergodic.
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probability model, the probability of each individual outcome is zero
though the probability of an event might be a finite number. For exam-
ple, if we represent prices as continuous functions, the probability that a
price assumes any particular real number is strictly zero, though the
probability that prices fall in a given interval might be other than zero.

Probability theory is a set of rules for inferring the probability of an
event from the probability of other events. The basic rules are surprisingly
simple. The entire theory is based on a few simple assumptions. First, the
universe of possible outcomes or measurements must be fixed. This is a
conceptually important point. If we are dealing with the prices of an
asset, the universe is all possible prices; if we are dealing with 

 

n

 

 assets, the
universe is the set of all possible 

 

n

 

-tuples of prices. If we want to link 

 

n

 

asset prices with 

 

k 

 

economic quantities, the universe is all possible (

 

n +
k)

 

-tuples made up of asset prices and values of economic quantities. 
Second, as our objective is to interpret probability as relative fre-

quencies (i.e., percentages), the scale of probability is set to the interval
[0,1]. The maximum possible probability is one, which is the probabil-
ity that any of the possible outcomes occurs. The probability that none
of the outcomes occurs is 0. In continuous probability models, the con-
verse is not true as there are nonempty sets of measure zero.

Third, and last, the probability of the union of countably many dis-
joint events is the sum of the probabilities of individual events. 

All statements of probability theory are logical consequences of these
basic rules. The simplicity of the logical structure of probability theory
might be deceptive. In fact, the practical difficulty of probability theory
consists in the description of events. For instance, derivative contracts
link in possibly complex ways the events of the underlying with the events
of the derivative contract. Though the probabilistic “dynamics” of the
underlying phenomena can be simple, expressing the links between all
possible contingencies renders the subject mathematically complex.

Probability theory is based on the possibility of assigning a precise
uncertainty index to each event. This is a stringent requirement that
might be too strong in many instances. In a number of cases we are sim-
ply uncertain without being able to quantify uncertainty. It might also
happen that we can quantify uncertainty for some but not all events.
There are representations of uncertainty that drop the strict requirement
of a precise uncertainty index assigned to each event. Examples include
fuzzy measures and the Dempster-Schafer theory of uncertainty.
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See G. Schafer, 
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 (Princeton, NJ: Princeton Uni-
versity Press, 1976); Judea Pearl, 

 

Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Beliefs

 

 (San Mateo, CA: Morgan Kaufmann, 1988); and, Zadeh,
“Fuzzy Sets.”
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latter representations of uncertainty have been widely used in Artificial
Intelligence and engineering applications, but their use in economics
and finance has so far been limited.

Let’s now examine probability as the key representation of uncer-
tainty, starting with a more formal account of probability theory.

 

Outcomes and Events

 

The axiomatic theory of probability is based on three fundamental con-
cepts: (1) outcomes, (2) events, and (3) measure. The outcomes are the set
of all possible results of an experiment or an observation. The set of all
possible outcomes is often written as the set 

 

Ω

 

. For instance, in the dice
game a possible outcome is a pair of numbers, one for each face, such as 6
+ 6 or 3 + 2. The space 

 

Ω

 

 is the set of all 36 possible outcomes.
Events are sets of outcomes. Continuing with the example of the

dice game, a possible event is the set of all outcomes such that the sum
of the numbers is 10. Probabilities are defined on events. To render defi-
nitions consistent, events must be a class 

 

ℑ

 

 of subsets of 

 

Ω

 

 with the fol-
lowing properties: 

 

 ■ 

 

Property 1.

 

 ℑ

 

 is not empty, 

 

Ω

 

 

 

∈ ℑ

 

 ■ 

 

Property 2.

 

 If 

 

A

 

 

 

∈ ℑ

 

 then 

 

A

 

C

 

 

 

∈ ℑ

 

; 

 

A

 

C

 

 is the complement of 

 

A

 

 with
respect to 

 

Ω

 

,

 

 made up of all those elements of 

 

Ω

 

 

 

that do not belong to

 

A

 

 ■ 

 

Property 3.

 

 If 

 

A

 

i

 

 

 

∈ ℑ

 

 for 

 

i 

 

= 1,2,… then 

Every such class is called a 

 

σ

 

-algebra (sometimes also called, sigma-filed,
or a tribe). Any class for which Property 3 is valid only for a finite num-
ber of sets is called an 

 

algebra

 

.
Given a set 

 

Ω

 

 and a 

 

σ

 

-algebra 

 

G

 

 

 

of subsets of 

 

Ω

 

, any set 

 

A

 

 

 

∈

 

 

 

G

 

 is said
to be 

 

measurable

 

 with respect to 

 

G

 

. The pair (

 

Ω

 

,

 

G

 

) is said to be a 

 

mea-
surable space

 

. Consider a class 

 

G

 

 of subsets of 

 

Ω

 

 

 

and consider the small-
est 

 

σ

 

-algebra that contains 

 

G

 

, defined as the intersection of all the 

 

σ

 

-

 

algebras

 

 that contain 

 

G

 

. That 

 

σ

 

-

 

algebra is denoted by 

 

σ

 

{

 

G

 

} and is said
to be the 

 

σ

 

-algebra generated by 

 

G

 

.
A particularly important space in probability is the 

 

Euclidean space

 

.
Consider first the real axis 

 

R

 

 (i.e., the Euclidean space 

 

R

 

1

 

 in one dimen-
sion). Consider the collection formed by all intervals open to the left 

 

and

 

closed to the right, for example, (

 

a

 

,

 

b

 

]. The 

 

σ

 

-algebra generated by this
set is called the 1-dimensional Borel 

 

σ

 

-algebra and is denoted by 

 

B

 

. The
sets that belong to 

 

B

 

 are called 

 

Borel sets

 

.

Ai
i 1=

∞
∪ ℑ∈
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Now consider the 

 

n

 

-dimensional Euclidean space 

 

R

 

n, formed by n-
tuples of real numbers. Consider the collection of all generalized rectan-
gles open to the left and closed to the right, for example, ((a1,b1] × ... ×
(an,bn]). The σ-algebra generated by this collection is called the n-
dimensional Borel σ-algebra and is denoted by Bn. The sets that belong
to Bn are called n-dimensional Borel sets.

The above construction is not the only possible one. The Bn, for any
value of n, can also be generated by open or closed sets. As we will see
later in this chapter, Bn is fundamental to defining random variables and
random vectors. It defines a class of subsets of the Euclidean space on
which it is reasonable to impose a probability structure: the class of
every subset would be too big while the class of, say, generalized rectan-
gles would be too small. The Bn is a sufficiently rich class.

Probability
Intuitively speaking, probability is a set function that associates to every
event a number between 0 and 1. Probability is formally defined by a triple
(Ω,ℑ,P) called a probability space, where Ω is the set of all possible out-
comes, ℑ the event σ-algebra or algebra, and P a probability measure.

A probability measure P is a set function from ℑ to R (the set of real
numbers) that satisfies three conditions: 

 ■ Condition 1. 0 ≤ P(A), for all A ∈ ℑ

 ■ Condition 2. P(Ω) = 1

 ■ Condition 3. P(∪ Ai) = ∑P(Ai) for every finite or countable collection of
disjoint events {Ai} such that Ai ∈ ℑ

ℑ does not have to be a σ-algebra but can be an algebra. Here and in the
rest of this book C = A ∪ B is the union of two sets that is the set
formed by all elements that belong to A or B nonexclusively, while C =
A ∩ B is the intersection of two sets, that is, the set formed by all ele-
ments that belong to A and B. The definition of a probability space can
be limited to algebras of events. However it is possible to demonstrate
that a probability defined over an algebra of events ℵ can be extended
in a unique way to the σ-algebra generated by ℵ.

Two events are said to be independent if

P(A ∩ B) = P(A)P(B)

The (conditional) probability of event A given event B with P(B) > 0,
written as P(A|B), is defined as follows:
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It is possible to deduct from simple properties of set theory and from the
disjoint additivity of probability that

P(A ∪ B) = P(A) + P(B) – P(A ∩ B) ≤ P(A) + P(B)

P(A) = 1 – P(AC)

Bayes theorem8 is a rule that links conditional probabilities. It can
be stated in the following way:

Bayes theorem allows one to recover the probability of the event A
given B from the probability of the individual events A, B, and the prob-
ability of B given A assuming that P(A) > 0, P(B) > 0.

Discrete probabilities are a special instance of probabilities. Defined
over a finite or countable set of outcomes, discrete probabilities are non-
zero over each outcome. The probability of an event is the sum of the
probabilities of its outcomes. In the finite case, discrete probabilities are
the usual combinatorial probabilities.

Random Variables
Probability is a set function defined over a space of events; random vari-
ables transfer probability from the original space Ω into the space of
real numbers. Given a probability space (Ω,ℑ,P), a random variable X is
a function X(ω) defined over the set Ω that takes values in the set R of
real numbers such that

(ω: X(ω) ≤ x) ∈ ℑ

for every real number x. In other words, the inverse image of any inter-
val (–∞,x] is an event. It can be demonstrated that the inverse image of
any Borel set is also an event.

8 In this formulation, Bayes theorem is a simple theorem of elementary probability.
Bayes theorem can be given a different interpretation as we will see later in this chap-
ter in the section on Bayesian statistics.

P A B( ) P A B∩( )
P B( )

------------------------=

P A B( ) P A B∩( )
P B( )

------------------------
P A B∩( )P A( )

P B( )P A( )
-------------------------------------- P B A( )P A( )

P B( )
-------------= = =
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A real-valued set function defined over Ω is said to be measurable
with respect to a σ-algebra ℑ if the inverse image of any Borel set
belongs to ℑ. Random variables are real-valued measurable functions. A
random variable that is measurable with respect to a σ-algebra cannot
discriminate between events that are not in that σ-algebra. This is the
primary reason why the abstract and rather difficult concept of measur-
ability is important in probability theory. By restricting the set of events
that can be identified by a random variable, measurability defines the
“coarse graining” of information relative to that variable. A random
variable X is said to generate G if G is the smallest σ-algebra in which it
is measurable.

Distributions and Distribution Functions
Given a probability space (Ω,ℑ,P) and a random variable X, consider a set
A ∈ B1. Recall that a random variable is a real-valued measurable func-
tion defined over the set of outcomes. Therefore, the inverse image of A,
X–1(A) belongs to ℑ and has a well-defined probability P(X–1(A)).

The measure P thus induces another measure on the real axis called
distribution or distribution law of the random variable X given by:
µX(A) = P(X–1(A)). It is easy to see that this measure is a probability
measure on the Borel sets. A random variable therefore transfers the
probability originally defined over the space Ω to the set of real numbers.

The function F defined by: F(x) = P(X ≤ x) for x ∈ R is the cumula-
tive distribution function (c.d.f.), or simply distribution function (d.f.),
of the random variable X. Suppose that there is a function f such that

or F′(x) = f(x), then the function f is called the probability density func-
tion (p.d.f.), or simply density function, of the random variable X.

Random Vectors
After considering a single random variable, the next step is to consider
not only one but a set of random variables referred to as random vectors.
Random vectors are formed by n-tuples of random variables. Consider a
probability space (Ω,ℑ,P). A random variable is a measurable function
from Ω to R1; a random vector is a measurable function from Ω to Rn. 

We can therefore write a random vector X as a vector-valued function

 X(ω) = [X1(ω), …, Xn(ω)]

F x( ) f y( ) yd
∞–

x

∫=
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Measurability is defined with respect to the Borel σ-algebra Bn. It can be
demonstrated that the function X is measurable ℑ if and only if each
component function Xi(ω) is measurable ℑ.

Conceptually, the key issue is to define joint probabilities (i.e., the
probabilities that the n variables are in a given set). For example, con-
sider the joint probability that the inflation rate is in a given interval
and the economic growth rate in another given interval.

Consider the Borel σ-algebra Bn on the real n-dimensional space Rn.
It can be demonstrated that a random vector formed by n random vari-
ables Xi, i = 1,2,...,n induces a probability measure over Bn. In fact, the
inverse image of every set of the σ-algebra Bn belongs to the σ-algebra
ℑ: (ω ∈ Ω, (X1(ω),X2(ω),...,Xn(ω)) ∈ H; H ∈ Bn) ∈ ℑ (i.e., ). It is therefore
possible to induce over every set H that belongs to Bn a probability
measure, which is the joint probability of the n random variables Xi.
The function

where xi ∈ R is called the n-dimensional cumulative distribution function
or simply n-dimensional distribution function (c.d.f., d.f.). Suppose there
exists a function f(x1,...,xn) for which the following relationship holds:

The function f(x1,...,xn) is called the n-dimensional probability density
function (p.d.f.) of the random vector X. Given a n-dimensional probabil-
ity density function f(x1,...,xn), if we integrate with respect to all variables
except the j-th variable, we obtain the marginal density of that variable:

Given a n-dimensional d.f., we define the marginal distribution func-
tion with respect to the j-th variable,  as follows:

If the distribution admits a density (short for “probability density”),
we can also write

F x1 … xn, ,( ) P X1 x1≤ … Xn xn≤, ,( )=

F x1 … xn, ,( ) … f u1 uj 1– y uj 1+ … un, , , , ,( ) u1d … und
∞–

xn

∫
∞–

x1

∫=

fXj
y( ) … f u1 … un, ,( ) u1d uj 1–d uj 1+d und⋅ ⋅

∞–

∞

∫
∞–

∞

∫=

FXj
y( ) P Xj y≤( )=

Fxj
y( ) F x1 … xj 1– y xj 1+ … xn, , , , , ,( )

xi ∞→
i j≠

lim=
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These definitions can be extended to any number of variables. Given
a n-dimensional p.d.f., if we integrate with respect to k variables

 over Rk, we obtain the marginal density functions with
respect to the remaining variables. Marginal distribution functions with
respect to any subset of variables can be defined taking the infinite limit
with respect to all other variables.

If the d.f.  has a density , then we can define
the expectation of X (also called the  mean of X) as follows:

where the last integral is intended in the sense of Riemann. More in gen-
eral, given a measurable function g the following relationship holds:

This latter expression of expectation of g(x) is the most widely used in
practice.

In general, however, knowledge of the distributions and of distribution
functions of each random variable of a random vector X = (X1, …, Xn) is
not sufficient to determine the joint probability distribution function. 

Two random variables X,Y are said to be independent if

P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B)

for all A ∈ B, B ∈ B. This definition generalizes in obvious ways to any
number of variables and therefore to the components of a random vec-
tor. It can be shown that if the components of a random vector are inde-
pendent, the joint probability distribution is the product of the marginal
distributions. Therefore, if the variables (X1,...,Xn) are all mutually inde-
pendent, we can write the joint d.f. as a product of marginal distribution
functions:

FXj
y( ) fXj

u( ) ud
∞–

y

∫=

xi1
… xik

, ,( )

FX u( ) fX u( ) FX
′ u( )=

E X[ ] uf u( ) ud
∞–

∞

∫=

E g X( )[ ] g u( )f u( ) ud
∞–

∞

∫=
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It can also be demonstrated that if a d.f. admits a joint p.d.f., the
joint p.d.f. factorizes as follows:

Given the marginal p.d.f.s the joint d.f. can be recovered as follows:

Stochastic Processes
Given a probability space (Ω,ℑ,P) a stochastic process is a parameterized col-
lection of random variables {Xt}, t ∈ [0,T] that are measurable with respect
to ℑ. (This is the naive definition, the exact definition is given below.) The
parameter t is often interpreted as time. The interval in which a stochastic
process is defined might extend to infinity in both directions.

When it is necessary to emphasize the dependence of the random
variable on both time t and the element ω, a stochastic process is explic-
itly written as a function of two variables: X = X(t,ω). Given ω, the
function X = Xt(ω) is a function of time that is referred to as a path of
the stochastic process.

The variable X might be a single random variable or a multidimen-
sional random vector. We define an n-dimensional stochastic process as a
function X = X(t,ω) from the product space [0,T] × Ω into the n-dimen-
sional real space Rn. Because to each ω corresponds a time path of the

F x1 … xn, ,( ) FXj
xj( )

j 1=

n

∏=

f x1 … xn, ,( ) fXj
xj( )

j 1=

n

∏=

F x1 … xn, ,( ) … f u1 … un, ,( ) u1d … und
∞–

xn

∫
∞–

x1

∫=

… fXj
uj( )

j 1=

n

∏ u1d … und
∞–

xn

∫
∞–

x1

∫=

fXj
uj( ) ujd

∞–

xj

∫
j 1=

n

∏=

FXj
xj( )

j 1=

n

∏=
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process—in general formed by a set of functions X = Xt(ω)—it is possible
to identify the space Ω with a subset of the real functions defined over an
interval [0,T].

Let’s now discuss how to represent a stochastic process X = X(t,ω)
and the conditions of identity of two stochastic processes. As a stochas-
tic process is a function of two variables, we can define equality as
pointwise identity for each couple (t,ω). However, as processes are
defined over probability spaces, pointwise identity is seldom used. It is
more fruitful to define equality modulo sets of measure zero or equality
with respect to probability distributions. In general, two random vari-
ables X,Y will be considered equal if the equality X(ω) = Y(ω) holds for
every ω with the exception of a set of probability zero. In this case, it is
said that the equality holds almost everywhere (denoted a.e.) or almost
surely, a.s.

A rather general (but not complete) representation is given by the
finite dimensional probability distributions. Given any set of indices
t1,...,tm, consider the distributions

These probability measures are, for any choice of the ti, the finite-
dimensional joint probabilities of the process. They determine many,
but not all, properties of a stochastic process. For example, the finite
dimensional distributions of a Brownian motion do not determine
whether or not the process paths are continuous.

Probabilistic Representation of Financial Markets
We are now in the position to summarize the probabilistic representation
of financial markets. From a financial point of view, an asset is a contract
which gives the right to receive a distribution of future cash flows. In the
case of a common stock, the stream of cash flows will be uncertain. It
includes the common stock dividends and the proceeds of the eventual
liquidation of the firm. A debt instrument is a contract that gives its
owner the right to receive periodic interest payments and the repayment
of the principal by the maturity date. Except in the case of debt instru-
ments of governments whose risk of default is perceived to be extremely
low, payments are uncertain as the issuing entity might default. 

Suppose that all payments are made at the trading dates and that no
transactions take place between trading dates. Let’s assume that all
assets are traded (i.e., exchanged on the market) at either discrete fixed
dates, variable dates, or continuously. At each trading date there is a
market price for each asset. Each asset is therefore modeled with two

µt1 … tm, , H( ) P Xt1
… Xtm

, ,( ) H∈ H Bn∈,[ ]=
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time series, a series of market prices and a series of cash flows. As both
series are subject to uncertainty, cash flows and prices are time-depen-
dent random variables (i.e., they are stochastic processes). The time
dependence of random variables in this probabilistic setting is a delicate
question and will be examined shortly.

Following Kenneth Arrow9 and using a framework now standard,
the economy and the financial markets in a situation of uncertainty are
described with the following basic concepts:

 ■ It is assumed that the economy is in one of the states of a probability
space (Ω,ℑ,P). 

 ■ Every security is described by two stochastic processes formed by two
time-dependent random variables St(ω) and dt(ω) representing prices
and cash flows of the asset. 

This representation is completely general and is not linked to the
assumption that the space of states is finite.

Conditional Probability and Conditional Expectation
Conditional probabilities and conditional averages are fundamental in
the stochastic description of financial markets. For instance, one is gen-
erally interested in the probability distribution of the price of an asset at
some date given its price at an earlier date. The widely used regression
models are an example of conditional expectation models.

The conditional probability of event A given event B was defined
earlier as 

This simple definition cannot be used in the context of continuous ran-
dom variables because the conditioning event (i.e., one variable assum-
ing a given value) has probability zero. To avoid this problem, we
condition on σ-algebras and not on single zero-probability events. In
general, as each instant is characterized by a σ-algebra ℑt, the condi-
tioning elements are the ℑt.

It is possible to demonstrate that given two random variables X and
Y with joint density f(x,y), the conditional density of X given Y is

9 Kenneth Arrow, “The Role of Securities in the Optimal Allocation of Risk Bear-
ing,” Review of Economic Studies 31 (April 1964), pp. 91–96.

P A B( ) P A B∩( )
P B( )

------------------------=
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where the marginal density, defined as

is assumed to be strictly positive. 
The conditional expectation E[Y⎪X = x] is the expectation of the

variable (Y⎪X = x). It is another random variable defined on Ω:

The law of iterated expectations states that

In fact, we can write

We can also prove that

In fact, we can write

f x y( ) f x y,( )
fY y( )

----------------=

fY y( ) f x y,( ) xd
∞–

∞

∫=

E Y X x=[ ] yf y x( ) yd
∞–

+∞

∫=

E E Y X[ ][ ] E Y[ ]=

E Y[ ] yf x y,( ) xd yd

R2
∫ y

f x y,( )
fX x( )
---------------- yd

∞–

+∞

∫⎝ ⎠
⎜ ⎟
⎛ ⎞

fX x( ) xd
∞–

+∞

∫= =

E Y X x=[ ]fX x( ) xd
∞–

+∞

∫ E E Y X[ ][ ]==

E XY[ ] E XE Y X[ ][ ]=

E XY[ ] xyf x y,( ) xd yd

R2
∫ x y

f x y,( )
fX x( )
---------------- yd

∞–

+∞

∫⎝ ⎠
⎜ ⎟
⎛ ⎞

fX x( ) xd
∞–

+∞

∫= =

xE Y X x=[ ]fX x( ) xd
∞–

+∞

∫ E XE Y X[ ][ ]==
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In the discrete case, the conditional expectation is a random variable
that takes a constant value over the sets of the finite partition associated
(see Appendix A for a definition of Information structures). Its value for
each element of Ω is defined by the classical concept of conditional prob-
ability. Conditional expectation is simply the average over a partition
assuming the classical conditional probabilities.

An important econometric concept related to conditional expecta-
tions is that of a martingale. Given a probability space (Ω,ℑ,P) and a fil-
itration It desribing the information flow (see Appendix B for an
explanation of the concept of  filtration) a sequence of random variables
Xi with E|Xi| < ∞, is called a martingale with respect to the filtration Ii if
the following condition holds:

where It is the information set known at time t. The information set is
usually embodied by the value of all variables known at time t. A mar-
tingale translates the idea of a “fair game” as the expected return of a
fair game at the next  trial should be zero given the current information,
as the martingale property is equivalent to

E(Xi+1 – Xi|Ii) = 0

Describing a Probability Distribution Function: 
Statistical Moments and Quantiles10

In describing a probability distribution function, it is common to sum-
marize it by using various measures. The five most commonly used mea-
sures are: location, dispersion, asymmetry, concentration in tails, and
quantiles. We will now describe each of these measures.

Location
The first way to describe a probability distribution function is by some
measure of central value or location. The various measures that can be used
are the mean or average value, the median, or the mode. The relationship
among these three measures of location depends on the skewness of a prob-
ability distribution function that we will describe later. The most commonly
used measure of location is the mean and is denoted by µ or EX or E(X). 

10 The discussion in this section is adapted from Chapter 4 in Svetlozar T. Rachev,
Christian Menn, and Frank J. Fabozzi, Fat-Tailed and Skewed Asset Return Distri-
butions: Implications for Risk Management, Portfolio Selection, and Option Pricing
(Hoboken, NJ: John Wiley & Sons, 2005).

E Xi 1+ Ii[ ] Xi=
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Dispersion
Another measure that can help us to describe a probability distribution
function is the dispersion or how spread out the values of the random vari-
able can realize. Various measures of dispersion are range, variance, and
mean absolute deviation. The most commonly used measure is the vari-
ance. The variance measures the dispersion of the values that the random
variable can realize relative to the mean. It is the average of the squared
deviations from the mean. The variance is in squared units. Taking the
square root of the variance one obtains the standard deviation. In contrast
to the variance, the mean absolute deviation takes the average of the abso-
lute deviations from the mean.11 In practice, the variance is used and is
denoted by σ2 or VX or V(X) and the standard deviation by σ or .

Asymmetry
A probability distribution may be symmetric or asymmetric around its
mean. A popular measure for the asymmetry of a distribution is called its
skewness. A negative skewness measure indicates that the distribution is
skewed to the left; that is, compared to the right tail, the left tail is elon-
gated. A positive skewness measure indicates that the distribution is skewed
to the right; that is, compared to the left tail, the right tail is elongated.

Concentration in Tails
Additional information about a probability distribution function is pro-
vided by measuring the concentration (mass) of potential outcomes in
its tails. The tails of a probability distribution function contain the
extreme values. In financial applications, it is these tails that provide
information about the potential for a financial fiasco or financial ruin.
As we will see, the fatness of the tails of the distribution is related to the
peakedness of the distribution around its mean or center. The joint mea-
sure of peakedness and tail fatness is called kurtosis.

Statistical Moments
In the parlance of the statistician, the four measures described above are
called statistical moments or simply moments. The mean is the first
moment and is also referred to as the expected value. The variance is the
second central moment, skewness is a rescaled third central moment, and
kurtosis is a rescaled fourth central moment. The general mathematical for-
mula for the calculation of the four parameters is shown in Exhibit 2.1. 

11 It is also common to define the mean absolute deviation from the median because
it minimizes the average absolute distance from an arbitrary point x.

VX
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Exhibit 2.2 shows the mean, variance, and skewness for several
probability distribution functions that have been used in financial model-
ing and risk management. 

The definition of skewness and kurtosis is not as unified as for the
mean and the variance. The skewness measure reported in Exhibit 2.2 is
the so-called Fisher’s skewness. Another possible way to define the mea-
sure is Pearson’s skewness, which equals the square of Fisher’s skewness.
The same holds true for the kurtosis, where we have reported Pearson’s
kurtosis. Fishers’ kurtosis (sometimes denoted as excess kurtosis) can be
obtained by subtracting three from Pearson’s kurtosis.

Quantiles
Sometimes not only are the four statistical moments described above
used to summarize a probability distribution but a concept called α-
quantile. The α-quantile gives us information where the first α% of the
distribution are located. Given an arbitrary observation of the consid-
ered probability distribution, this observation will be smaller than the
α-quantile qα in α% of the cases and larger in (100 – α)% of the cases.12

For example, for the normal distribution with mean 7% and standard
deviation 2.6%, the value 0% represents the 0.35% quantile.

12 Formally, the α-quantile for a continuous probability distribution P with strictly
increasing cumulative distribution function F is obtained as .

EXHIBIT 2.1  General Formula for Parameters 

Parameter
Discrete Probability

Distribution
Continuous Probability

Distribution

Mean

Variance

Skewness

Kurtosis

EX xiP X xi=( )
i

∑= EX x f x( )⋅ xd

∞–

∞

∫=

VX xi EX–( )2P X xi=( )
i

∑= VX x EX–( )2f x( ) xd

∞–

∞

∫=

ς
E X EX–( )3

VX( )

3
2
---

-------------------------------= ς
E X EX–( )3

VX( )

3
2
---

-------------------------------=

κ
E X EX–( )4

VX( )2
-------------------------------= κ

E X EX–( )4

VX( )2
-------------------------------=

qα F 1– α( )=
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Some quantiles have special names. The 25%, 50%, and 75% quantile
are referred to as the first quartile, second quartile, and third quartile,
respectively. The 1%, 2%, …, 98%, 99% quantiles are called percentiles.

Sample Moments 
Above we introduced the four statistical moments mean, variance, skew-
ness, and kurtosis. Given a probability density function f or a probability
distribution P, we are able to calculate these statistical moments accord-
ing to the formulae given in Exhibit 2.1. In practical applications how-
ever, we are faced with the situation that we observe realizations of a
probability distribution (e.g., the daily return of the S&P 500 index over

EXHIBIT 2.2     (Continued)
Panel B. Domain and Symmetry

Source: Adapted from Exhibit 1 in Haim Levy and R. Duchin, “Asset Return Dis-
tributions and the Investment Horizon Explaining Contradictions,” Journal of
Portfolio Management 30 (Summer 2004), pp. 47–62. For the sake of exposition
and consistency we have sometimes used a slightly different notation and omitted
some entries. 

Domain Skewness

Normal –∞ < x < +∞ 0
Beta 0 < x < 1

Exponential 0 < x < +∞ 2
Extreme Value –∞ < x < +∞ 1.139547
Gamma 0 < x < +∞

Logistic –∞ < x < +∞ 0
Lognormal 0 < x < +∞

 where 

Student’s-t –∞ < x < +∞ 0
Skewed Normal –∞ < x < +∞ a
Weibull 0 < x < +∞
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the last two years), but we do not know the distribution that generates
these returns. Consequently we are not able to apply our knowledge
about the calculation of statistical moments. But, having the observa-
tions x1, …, xn, we can try to estimate the “true moments” out of the
sample. The estimates are sometimes called sample moments to stress the
fact that they are obtained out of a sample of observations. 

The idea is quite simple: The empirical analogue for the mean of a
random variable is the average of the observations:

For large n it is reasonable to expect that the average of the observations
will not be far from the mean of the probability distribution. Now, we
observe that all theoretical formulae for the calculation of the four statis-
tical moments are expressed as “means of something.” This insight leads
to the expression for the sample moments, summarized in Exhibit 2.3.13

13 A “hat” on a parameter (like ) symbolizes the fact that the true parameter (in
this case the kurtosis κ) is estimated.

EX
1

n
--- xi

i 1=

n

∑≈

EXHIBIT 2.3  Calculation of Sample Moments

Moment Sample Moment

Mean EX

Variance VX

Skewness

Kurtosis

x
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n
--- xi

i 1=

n

∑=

s2 1
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n
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Moments and Correlation
If X is a random variable on a probability space (Ω,ℑ,P), the quantity

, p > 0 is called the p-th absolute moment of X. If k is any posi-
tive integer, E[Xk], if it exists (E(Y) exists if  is finite), is called the
k-th moment. In the general case of a probability measure P, we can
therefore write

 ■ , p > 0, is the p-th absolute moment.

 ■ , if it exists for k positive integer, is the k-th moment.

In the case of discrete probabilities pi, Σpi = 1 the above expressions
become

and

respectively. If the variable X is continuous and has a density p(x) such that

we can write

and

respectively.

E X p[ ]
E Y( )

E X p[ ] X p Pd
Ω
∫=

E Xk[ ] Xk Pd
Ω
∫=

E X p[ ] xi
ppi∑=

E Xk[ ] xi
kpi∑=

p x( ) xd
∞–

∞

∫ 1=

E X p[ ] x pp x( ) xd
∞–

∞

∫=

E Xk[ ] xkp x( ) xd
∞–

∞

∫=
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The centered moments are the moments of the fluctuations of the
variables around its mean. For example, the variance of a variable X is
defined as the centered moment of second order:

where .
The positive square root of the variance, σx is called the standard

deviation of the variable.
We can now define the covariance and the correlation coefficient of

a variable. Correlation is a quantitative measure of the strength of the
dependence between two variables. Intuitively, two variables are depen-
dent if they move together. If they move together, they will be above or
below their respective means in the same state. Therefore, in this case,
the product of their respective deviations from the means will have a
positive mean. We call this mean the covariance of the two variables.
The covariance divided by the product of the standard deviations is a
dimensionless number called the correlation coefficient. 

Given two random variables X,Y with finite variances, we can write
the following definitions:

 ■  is the covariance of X,Y.

 ■  is the correlation coefficient of X,Y.

The correlation coefficient can assume values in the interval [–1,1].
If two variables X,Y are independent, their correlation coefficient van-
ishes. However, uncorrelated variables (i.e., variables whose correlation
coefficient is zero) are not necessarily independent. 

It can be demonstrated that the following property of variances holds:

Further, it can be demonstrated that the following properties hold:

var X( ) σx
2 σ2 X( ) E X X–( )2[ ]= = =

x X–( )2
p x( ) xd

∞–

∞

∫ x2p x( ) xd
∞–

∞

∫ xp x( ) xd
∞–

∞

∫
2

–==

X E X[ ]=

cov X Y,( ) σX Y, E X X–( ) Y Y–( )[ ]= =

ρX Y,
σX Y,

σXσY

--------------=

var Xi
i

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

var Xi( )
i

∑ cov Xi Xj,( )
i j≠
∑+=

σX Y, E XY[ ] E X[ ]E Y[ ]–=

c02-RevProbabStats  Page 47  Thursday, October 26, 2006  1:59 PM



48 FINANCIAL ECONOMETRICS

Sequences of Random Variables
Consider a probability space (Ω,ℑ,P). A sequence of random variables is an
infinite family of random variables Xi on (Ω,ℑ,P) indexed by integer num-
bers: i = 0,1,2,...,n... If the sequence extends to infinity in both directions, it
is indexed by positive and negative integers: i = ...,–n,..., 0,1,2,...,n.... 

A sequence of random variables can converge to a limit random vari-
able. Several different notions of the limit of a sequence of random vari-
ables can be defined. The simplest definition of convergence is that of
pointwise convergence. A sequence of random variables Xi, i ≥ 1 on
(Ω,ℑ,P), is said to converge almost surely to a random variable X, denoted

if the following relationship holds:

In other words, a sequence of random variables converges almost surely
to a random variable X if the sequence of real numbers Xi(ω) converges
to X(ω) for all ω except a set of measure zero. 

A sequence of random variables Xi, i ≥ 1 on (Ω,ℑ,P), is said to con-
verge in mean of order p to a random variable X if

provided that all expectations exist. Convergence in mean of order one
and two are called convergence in mean and convergence in mean
square, respectively.

A weaker concept of convergence is that of convergence in probabil-
ity. A sequence of random variables Xi, i ≥ 1 on (Ω,ℑ,P) is said to con-
verge in probability to a random variable X, denoted

σX Y, σY X,=

σaX bY, abσY X,=

σX Y+ Z, σX Z, σY Z,+=

cov aiXi

i

∑ bjYj

i

∑,
⎝ ⎠
⎜ ⎟
⎛ ⎞

aibjcov Xi Yj,( )
j

∑
i

∑=

Xi
a.s.

X→

P ω: Xi ω( )
i ∞→
lim X ω( )={ } 1=

E Xi ω( ) X ω( )– p[ ]
i ∞→
lim 0=
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if the following relationship holds:

, for all ε > 0

It can be demonstrated that if a sequence converges almost surely,
then it also convergences in probability while the converse is not gener-
ally true. It can also be demonstrated that if a sequence converges in
mean of order p > 0, then it also convergences in probability while the
converse is not generally true.

A sequence of random variables Xi, i ≥ 1 on (Ω,ℑ,P) with distribution
functions  is said to converge in distribution to a random variable X
with distribution function FX, denoted

if

It can be demonstrated that if a sequence converges almost surely
(and thus converges in probability) it also converges in distribution
while the converse is not true in general. More precisely, convergence in
distribution does not imply convergence in probability in general, how-
ever if X is a constant, then convergence in distribution is equivalent to
convergence in probability. 

Independent and Identically Distributed Sequences
Consider a probability space (Ω,ℑ,P). A sequence of random variables Xi
on (Ω,ℑ,P) is called an independent and identically distributed (IID)
sequence if the variables Xi have all the same distribution and are all
mutually independent. An IID sequence is the strongest form of white
noise. Note that in many applications white noise is defined as a
sequence of uncorrelated variables. 

An IID sequence is completely unforecastable in the sense that the
past does not influence the present or the future in any possible sense. In
an IID sequence all conditional distributions are identical to uncondi-
tional distributions. Note, however, that an IID sequence presents a sim-
ple form of reversion to the mean. In fact, suppose that a sequence Xi

Xi
P

X→

P ω: Xi ω( ) X ω( )– ε≤{ } 1=
i ∞→
lim

FXi

Xi
d

X→

FXi
x( )

i ∞→
lim FX x( )= x C∈,
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assumes at a given time t a value larger than the common mean of all
variables: Xt > E[X]. By definition of mean, it is more likely that Xt be
followed by a smaller value: P(Xt+1 < Xt) > P(Xt+1 > Xt). 

Note that this type of mean reversion does not imply forecastability
as the probability distribution of asset returns at time t + 1 is indepen-
dent of the distribution at time t. 

Sum of Variables
Given two random variables X(ω), Y(ω) on the same probability space
(Ω,ℑ,P), the sum of variables Z(ω) = X(ω) + Y(ω) is another random
variable. The sum associates to each state ω a value Z(ω) equal to the
sum of the values taken by the two variables X,Y. Let’s suppose that the
two variables X(ω), Y(ω) have a joint density p(x,y) and marginal densi-
ties pX(x) and pY(x), respectively. Let’s call H the cumulative distribu-
tion of the variable Z. The following relationship holds

A = {y ≤ –x + u}

In other words, the probability that the sum X + Y be less than or equal
to a real number u is given by the integral of the joint probability distri-
bution function in the region A. The region A can be described as the
region of the x,y plane below the straight line y = –x + u.

If we assume that the two variables are independent, then the distri-
bution of the sum admits a simple representation. In fact, under the
assumption of independence, the joint density is the product of the mar-
ginal densities: p(x,y) = pX(x)pY(x). Therefore, we can write

We can now use a property of integrals called the Leibnitz rule,
which allows one to write the following relationship:

H u( ) P Z ω( ) u≤[ ] p x y,( ) xd yd
A
∫∫= =

H u( ) P Z ω( ) u≤[ ] p x y,( ) xd yd
A
∫∫ pX x( ) xd

∞–

u y–

∫⎩ ⎭
⎨ ⎬
⎧ ⎫

pY y( ) yd
∞–

∞

∫= = =

dH

du
-------- pZ u( ) pX u y–( )pY y( ) yd

∞–

∞

∫= =
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The above formula is a convolution of the two marginal distributions.
This formula can be reiterated for any number of summands: the density
of the sum of n random variables is the convolution of their densities.

Computing directly the convolution of a number of functions might
be very difficult or impossible. Given a function f(x) the integral

is called the Fourier transform of the function f. Fourier transforms
admit inversion formulas as one can completely recover the function f
from its transform with the inversion formula

If we take the Fourier transforms of the densities, PZ(s), PX(s), PY(s)
computations are substantially simplified as the transform of the convo-
lution is the product of the transforms

This relationship can be extended to any number of variables. 
In probability theory, given a random variable X, the following

expectation is called the characteristic function (c.f.) of the variable X

If the variable X admits a d.f. FX(y), it can be demonstrated that the
following relationship holds:

In this case, the characteristic function therefore coincides with the Fou-
rier-Stieltjes transform. It can be demonstrated that there is a one-to-one

F s( )
1

2 π
----------- f x( )e isx– xd

∞–

∞

∫=

f x( )
1

2 π
----------- F s( )eisx sd

∞–

∞

∫=

pZ u( ) pX u y–( )pY y( ) yd
∞–

∞

∫= PZ s( )⇒ PX s( ) PY s( )×=

ϕX t( ) E eitX[ ] E tXcos[ ] iE tXsin[ ]+= =

ϕX t( ) E eitX[ ] eitX FXd x( )
∞–

∞

∫ tx FXd x( )cos

∞–

∞

∫ i txsin FXd x( )
∞–

∞

∫+= = =
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correspondence between c.f and d.f.s. In fact, it is well known that the
Fourier-Stieltjes transform can be uniquely inverted.

In probability theory convolution is defined, in a more general way, as
follows. Given two d.f.s FX(y) and FY(y), their convolution is defined as

It can be demonstrated that the d.f. of the sum of two variables X,Y
with d.f.s FX(y) and FY(y) is the convolution of their respective d.f.s:

If a d.f. admits a p.d.f., then the inversion formulas are those established
earlier. Inversion formulas also exist in the case that a d.f. does not admit
a density but these are more complex and will not be given here.14

We can therefore establish the following property: the characteristic
function of the sum of n independent random variables is the product of
the characteristic functions of each of the summands.

Gaussian Variables
Gaussian random variables are extremely important in probability theory
and statistics. Their importance stems from the fact that any phenomenon
made up of a large number of independent or weakly dependent vari-
ables has a Gaussian distribution. Gaussian distributions are also known
as normal distributions. The name Gaussian derives from the German
mathematician Gauss who introduced them. 

Let’s start with univariate variables. A normal variable is a variable
whose probability distribution function has the following form: 

The univariate normal distribution is a distribution characterized by
only two parameters, (µ,σ2), which represent, respectively, the mean and

14 See Y.S. Chow and H. Teicher, Probability Theory (New York: Springer, 1997).

F* u( ) FX*FY( ) u( ) FX u y–( ) FY y( )d
∞–

∞

∫= =

P X Y+ u≤( ) FX Y+ u( ) FX*FY( ) u( ) FX u y–( ) FY y( )d
∞–

∞

∫= = =

f x µ σ2,( )
1

σ 2π
---------------exp

x µ–( )2

2σ2
--------------------–

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=
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the variance of the distribution. We write X ∼ N(µ,σ2) to indicate that
the variable X has a normal distribution with parameters (µ,σ2). We
define the standard normal distribution as the normal distribution with
zero mean and unit variance. It can be demonstrated by direct calcula-
tion that if X ∼ N(µ,σ2) then the variable

is standard normal. The variable Z is called the score or Z-score. The
cumulative distribution of a normal variable is generally indicated as

where Φ(x) is the cumulative distribution of the standard normal.
It can be demonstrated that the sum of n independent normal distribu-

tions is another normal distribution whose expected value is the sum of
the expected values of the summands and whose variance is the sum of the
variances of the summands. 

The normal distribution has a typical bell-shaped graph symmetrical
around the mean. Exhibit 2.4 shows the graph of a normal distribution. 

Multivariate normal distributions are characterized by the same
exponential functional form. However, a multivariate normal distribution
in n variables is identified by n means, one for each axis, and by a n × n
symmetrical variance-covariance matrix. For instance, a bivariate nor-
mal distribution is characterized by two expected values, two variances
and one covariance. We can write the general expression of a bivariate
normal distribution as follows:

where ρ is the correlation coefficient. 

Z X µ–

σ
--------------=

F x( ) Φ x µ–

σ
------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

f x y,( )
exp 1

2
---Q–

⎩ ⎭
⎨ ⎬
⎧ ⎫

2πσXσY 1 ρ2–
-----------------------------------------=

Q
1

1 ρ2–
---------------

x µX–

σX

----------------
⎝ ⎠
⎜ ⎟
⎛ ⎞ 2

2ρ
x µX–

σX

----------------
⎝ ⎠
⎜ ⎟
⎛ ⎞ y µY–

σY

---------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

–
y µY–

σY

---------------
⎝ ⎠
⎜ ⎟
⎛ ⎞ 2

+
⎩ ⎭
⎨ ⎬
⎧ ⎫

=
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This expression generalizes to the case of n random variables. Using
matrix notation, the joint normal probability distributions of the random
n vector V = {Xi}, i = 1,2,...,n has the following expression:

where

and ΣΣΣΣ is the variance-covariance matrix of the {Xi},

where , the determinant of ΣΣΣΣ. Here we assume that V has
nondegenerated normal distribution, that is the covariance matrix is

EXHIBIT 2.4  Graph of a Normal Variable with Zero Mean and σ = 100

V Xi{ } Nn µµµµ ΣΣΣΣ,( )∼=

µi E Xi[ ]=

ΣΣΣΣ E V µµµµ–( ) V µµµµ–( )T[ ]=

f v( ) 2π( )n ΣΣΣΣ[ ]
¹�₂–

exp ¹�₂–( ) v µµµµ–( )TΣΣΣΣ 1– v µµµµ–( )[ ]=

ΣΣΣΣ detΣΣΣΣ=
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strictly positive definite. If this is not the case we define the Gaussian
distribution with the characteristic function.

For n = 2 we find the previous expression for bivariate normal, taking
into account that variances and correlation coefficients have the follow-
ing relationship

It can be demonstrated that a linear combination 

of n jointly normal random variables  with cov(Xi,Xj) =
σij is a normal random variable  where

Normal Distribution Revisited
Let’s take another look at the normal distribution, especially at the four
statistical moments for the normal distribution. The previously called
location parameter µ actually equals the mean of the normal distribu-
tion; the parameter σ represents the standard deviation and conse-
quently the variance coincides with the value of σ2. This is consistent
with our observations that the density is located and symmetric around
µ and that the variation of the distribution increases with increasing val-
ues of σ. Because a normal distribution is symmetric, its skewness mea-
sure is zero. The kurtosis measure of all normal distributions is 3. 

Exhibit 2.5 shows a normal distribution and a symmetric nonnormal
distribution with a mean of zero. The symmetric nonnormal distribution
has a higher peak at the mean (zero) than the normal distribution. A dis-
tribution that has this characteristic is said to be a leptokurtic distribu-
tion with the same mean of zero. Look at the result of the greater
peakedness. The tails of the symmetric nonnormal distribution are
“thicker” or “heavier” than the normal distribution. A probability dis-
tribution with this characteristics is said to be a “heavy-tailed distribu-

σij ρijσiσj=

W αiXi
i 1=

n

∑=

Xi N µi σi
2,( )∼

W N µW σW
2,( )∼

µW αiµi
i 1=

n

∑=

σW
2 αiαjσij

j 1=

n

∑
i 1=

n

∑=
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tion” or “fat tailed.” The kurtosis measure for such a heavy-tailed
distribution will exceed 3. Statistical programs commonly report a mea-
sure called “excess kurtosis” or “Fisher’s kurtosis.” This is simply the
kurtosis for the distribution minus 3 (the kurtosis for the normal distri-
bution) and will be a positive value for a heavy-tailed distribution. When
a distribution is less peaked than the normal distribution, it is said to be
platykurtic. This distribution is characterized by less probability in the
tails than the normal distribution. It will have a kurtosis that is less than
3 or, equivalently, an excess kurtosis that is negative.

Exponential, Chi-Square, t, and F distributions
In this section we briefly describe three distributions that play a basic
role in econometrics: exponential, Chi-square, t, and F distributions.

Exponential Distribution
The exponential distribution has the following form:

EXHIBIT 2.5  Illustration of Kurtosis: Difference Between a Standard Normal 
Distribution and a Distribution with High Excess Kurtosis
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,   x > 0

,   x > 0

If a positive variable is exponentially distributed, then its first four
moments can be written as follows:

The exponential distribution is called memoryless because if a wait-
ing time for some event is exponentially distributed, the expected waiting
time to the next event does not depend on the time elapsed since the last
occurrence of the event. For example, if waiting times for a bus arrival
were exponentially distributed, the expected time for the next arrival
would be independent of how long we have been waiting for the bus.

Chi-Square Distribution
The Chi-square (χ2) distribution is basic to the study of variance distri-
butions. The Chi-square distribution with k degrees of freedom is
defined as the distribution of the sum of the squares of k independent
standard normal variables (i.e., normal variables with mean 0 and uni-
tary standard deviation). It can be demonstrated that the Chi-square
distribution has the following form:
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where Γ is the Γ-function. The Gamma function is defined as follows:

The mean and variance of the Chi-square distribution are the following:

The cumulative density function of the Chi-square distribution cannot
be expressed as an elementary function.

F and t Distributions
The probability distribution function of a Student’s t-distribution with
m degrees of freedom is the following:

When m → ∞ the t-distribution tends to a normal distribution. 
The F distribution is indexed with two parameters. The probability

density function is the following:

It can be demonstrated that the F distribution is the distribution of the
ratio of independent Chi-square variables.

PRINCIPLES OF ESTIMATION

In making financial predictions, the interest is not in the raw distribution of
financial quantities such as prices or returns but in the idealized, underly-
ing mechanism that is supposed to generate the data, that is, the data gen-
erating process or data generating process (DGP). This means that a typical
population in financial modeling is formed taking n-tuples of consecutive
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data, say n-tuples of consecutive prices or returns. The distribution of
interest is the joint distribution of these data, or, better, the conditional dis-
tribution of present data given past data. Distributions of this type are
assumed to be sufficiently time-invariant to be learnable from past data.

Whether or not there is indeed a true DGP impinges on whether the
future repeats the past. This question is ever-present in the context of our
ability to forecast financial values: Is past performance a guarantee of
future performance? It should be remarked that, to make any knowledge
possible, the future must somehow repeat the past. If the future does not
repeat the past, at least at the level of DGP, no knowledge is possible.
However, we cannot take a naive view that would have the future repeat
the past in a simple sense. For example, we cannot assume that a stock
price will keep going up because it has been going up for some time. What
eventually remains stable is the generating mechanism, that is, the DGP.
The problem with financial modeling is that we do not know what
repeats what, that is, we do not know what the correct DGP is. In addi-
tion, any DGP is subject to possibly abrupt and unpredictable changes.

The starting point of financial modeling is generally a tentative
DGP. The objective of the estimation process is (1) to estimate the
model parameters and (2) to estimate the parameters of the distribu-
tions and of the noise term. One might or might not assume a specific
form for the distributions. 

This calls for the discussion of the following key statistical concepts:
Estimators, sample distribution, and critical values and confidence inter-
vals. Let us start with estimators.

Estimators
To estimate a statistical model is to estimate its parameters from sample data.
For example, given a sample of historical stock returns Rt, t = 1, 2, …, T, a
portfolio manager might want to estimate the standard deviation of their
distribution. The process of estimation can be described as follows. Sup-
pose that a distribution f is given and that µ is a constant parameter or a
vector of constant parameters of the distribution f. Now consider a sample
of T observations Xt, t = 1, 2, …, T extracted from a population with distribu-
tion f. An estimator  of the parameter µ is a function  of
the sample which produces numbers close to the parameter µ. 

When we estimate the parameters of a model, we apply a slightly dif-
ferent concept of estimation. In fact, our estimators are those parameters
that obtain the best fit to empirical data. See the discussion on estimation of
regressions in Chapter 3.

Any estimator is characterized by several important properties,
among which the following two are fundamental:

µ̂ µ̂ g X1 … XT, ,( )=
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 ■ An estimator  is called unbiased if the mean of the estimator equals
the true parameter µ:  for any sample size. 

 ■ An estimator  is called consistent if the limit in probability of the esti-
mator equals the true parameter µ: plim  = µ.

Sampling Distributions
Any estimation process yields results that depend on the specific sample
data. As sample data are random variables, estimated parameters that
are functions of the sample data are also random variables. Consider,
for example, the estimation of the following model:

from empirical time series data. (Models of this type, called vector
autoregressive models, will be discussed in Chapter 6.) The empirical
data that form the empirical time series must be considered a sample
extracted from a population. As a consequence, the model parameters
estimated on the sample (i.e., the aij) are random variables characterized
by a probability distribution. 

Sampling distributions are critical for testing and choosing hypothe-
ses because, in general, we do not know if the model we are estimating is
the correct model: Any model is only a scientific hypothesis. Often two
competing models explain the same data. We have to choose which of
the models is more faithful. We therefore formulate a hypothesis and
decide on the basis of observations. For example, we formulate the
hypothesis that a given time series is integrated. If a series is integrated,
its autocorrelation coefficient is unity, that is, the correlation coefficient
between the time series at time t and at time t – 1 is 1. But because sam-
ples vary, no observation will yield exactly unity, even if the series is
indeed integrated. However, if we know the sampling distribution, we
can formulate a decision rule which allows us to determine if a series is
integrated even if the estimated autocorrelation parameter has a value
other than one with predescribed probability (confidence).

The probability distributions of a model’s parameters depend on the
estimation method. In some cases, they can be expressed as explicit func-
tions of the sample data. For example, as we will see in the section on
regression, the regression parameters are algebraic functions of sample
data. In other cases, however, it might be impossible to express estima-
tors as explicit functions of sample data. 

µ̂
E µ̂( ) µ=

µ̂
µ̂( )

Xt a11Xt 1– a12Yt 1– ε1 t,+ +=

Yt a21Xt 1– a22Yt 1– ε2 t,+ +=

t 1 2 … T, , ,=
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The probability distribution of estimators clearly depends on the
probability distribution of sample data. Determining the distribution of
parameters is a rather difficult task. In cases such as simple regressions,
one might assume that variables have given distributions, for example
normal distributions. However, in complex models, one cannot assume an
arbitrary distribution for sample data. 

We illustrate the problem of sampling distributions with the simple
case of determining the parameters of a normal distribution. Consider a
sample of T observations Xt, t = 1, 2, …, T extracted independently
from a normally distributed population with distribution N(µ, σ2). In
this case, it is known that the empirical mean 

and the empirical variance

are unbiased estimators of µ and σ2 respectively.15

If we assume that the sample data are independent random draws
from the sample population, then the empirical mean is the rescaled sum
of normally distributed data and is therefore normally distributed. The
empirical variance is the sum of the square of independent, normally
distributed variables. As discussed earlier in this chapter, the distribu-
tion of the sum of the square of k independent normal variables is a
Chi-square distribution with k degrees of freedom (or χ2-distribution
with k degrees of freedom). For large values of k, the χ2 distribution is
approximated by a normal distribution. Therefore, for large samples,
both the empirical mean and the empirical variance are normally dis-
tributed. 

To illustrate the above, we generated 2 million random numbers
extracted from a normal distribution with mean 0 and unitary variance.
We then computed the mean and variance on 100,000 samples of 20
points, each selected from the given population. Mean and variance
change from sample to sample as shown in Exhibit 2.6. The distribution

15 The empirical mean and the empirical variance are unbiased estimators of the true
mean and variance not only for the normal distribution but also for any distribution
with finite second moments.
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EXHIBIT 2.6  Sampling Distribution of the Mean and Variance for a Sample of 20 
Elements Each
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of sample variance is not normal but is approximated by a χ2 distribu-
tion. If we repeat the same calculations on samples of 100 points each,
we see that both empirical mean and variance are normally distributed
as shown in Exhibit 2.7.

Though sampling distributions can be very complex, they typically
simplify in the limit of very large samples. The asymptotic theory of
estimators studies the distribution of estimators in large samples. We
consider sample distributions for different models in our discussion of
the models themselves.

Critical Values and Confidence Intervals
An estimator is a random variable characterized by a distribution that
depends on the population distribution. If the estimator distribution is
known, it is possible to determine critical values, that is, the numbers
that allow one to reject or accept any hypothesis that bears on that esti-
mator. The reasoning is the following. Suppose a statistical hypothesis
on a given population depends on a parameter. In general, the parame-
ter will vary with the sample.

For example, even if a process is truly integrated, its autoregressive
parameter estimated from any given sample will be slightly different
from 1. However, if we know the distribution of the autoregressive
parameter, we can establish the interval within which any estimate of the
autoregressive parameter falls with a given probability. For example, we
can estimate in what interval around 1 the autoregressive parameter will
fall with a 99% probability. If the autoregressive parameter falls outside
of the critical value at 99%, we can conclude that the process is not inte-
grated at a 99% confidence interval. If the estimated autoregressive
parameter is less than the critical value, we cannot say that the process is
integrated with 99% confidence. The process might in fact, follow a dif-
ferent dynamics that could produce the same result by chance.

Each estimated parameter is associated with a confidence interval,
defined as the interval in which the estimated parameter will be within
with a given probability. The confidence interval can be established a pri-
ori as in the case of testing if a series is integrated where, in fact, we were
interested in the special value 1 for the autoregressive parameter. If we
know the sample distribution of an estimated parameter, we can deter-
mine a confidence interval such that, if the model is correctly specified,
the true parameter falls within that interval with a given probability.
For example, suppose the estimated autoregressive parameter is 0.9.
Given the sample distribution, we can determine the probability that the
true autoregressive parameter falls between, say, 0.85 and 0.95. The
assumption that the model is correctly specified is critical.
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EXHIBIT 2.7  Sampling Distribution of the Mean and Variance for a Sample of 100 
Elements Each
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Significance Test
A common statistical procedure is to run a test to check whether a given
hypothesis can be considered true or has to be rejected. A test statistic is
a function of the sample and is therefore a random variable. Suppose we
want to test an hypothesis H0. The hypothesis to be tested is called the
null hypothesis or simply the null. Consider a test statistic k relative to
the hypothesis H0. For example, suppose we want to test the null
hypothesis that a regression parameter is zero. 

Intuitively, we can reject the null that the regression coefficient is
zero if the estimation yields a value of the parameter sufficiently distant
from zero. In other words, how can we decide if the test is significant?
Fisher introduced a method based on the p values.

Suppose we know the sampling distribution of a test statistic. For
example, suppose we know the distribution of an estimated regression
parameter. Given a sampling distribution and an observed value of a
statistic, the p-value is the probability of the tail beyond the observed
value. A small p-value is evidence against the null hypothesis. As a rule
of thumb, a test is considered highly significant if its p-value is less than
0.01. A t-statistic to test the null hypothesis that regression parameter is
zero is obtained by dividing the estimated parameter by its own stan-
dard deviation.

Maximum Likelihood, Ordinary Least Squares, and Regressions
We now discuss a fundamental principle, the maximum likelihood (ML)
principle of estimation. In Chapter 3 on Regression we shall see its links
with ordinary least squares (OLS) estimation. The ML principle is very
intuitive. Suppose you flip a coin 1,000 times and you get 700 heads.
Would you draw the conclusion that the coin is biased or that the coin is
fair and that you have experienced a particularly unlikely stream of out-
comes? It is reasonable to expect that you conclude that the coin is
biased with a 70% probability of heads. In other words you rule out the
possibility that very unlikely things occur in practice.

The ML principle generalizes the above idea. Suppose that a sample
is randomly and independently extracted from a distribution which con-
tains a number of parameters, for example a binomial distribution with
an unknown probability parameter. The ML principle prescribes that
the estimate of the distribution parameters should maximize the (a pri-
ori) probability of the sample given the distribution. In the previous
example of the coin, it is easy to see that 0.7 is the binomial probability
value that maximizes the probability of a sample with 700 heads and
300 tails.
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It should be clear that the ML principle is a decision rule; it is not pos-
sible to demonstrate the ML principle. There is no theoretical reason why
the sample we are considering should not be a low-probability sample.
There is no way to go from a decision rule to a factual demonstration or, as
stated in the preface of the book by Chow and Teicher: “Once one is in the
world of probability, there is no way to get out of it.”16 One might be
tempted to think that the systematic adoption of the ML principle reduces
the number of mistakes in estimation over repeated estimation processes.
However, it is easy to see that this reasoning is circular, as it simply assumes
that sequences of unlikely events do not occur. Ultimately there is no way
to demonstrate that we are not experiencing a very unlikely event.17

We now formally state the ML principle. Suppose that a sample of T
observations Xt = (X1,t, …, Xp,t)′, t = 1, 2, …, T is given. Suppose that
the sample is characterized by a global multivariate probability distribu-
tion density f(X1, …, XT; α1, …, αq) which contains q parameters α1,
…, αq. The distribution parameters have to be estimated. 

The likelihood function L is any function proportional to f:

In the sequel, we will choose the constant of proportionality equal to 1.
If the sample is formed by random independent extractions from a pop-
ulation with a density f, then the likelihood function L is the product of
f computed on the different elements of the sample:

16 Chow and Teicher, Probability Theory, p. X.
17 The ML principle touches upon questions of scientific methodology. The notion
of uncertainty and estimation is different in economics and in the physical sciences.
In general, the physical sciences tend to have a “deterministic” view of uncertainty
in the sense that individual events are uncertain, but aggregates are certain and prob-
ability distributions are empirically ascertained with great precision given the astro-
nomical size of the samples involved. In economics, uncertainty is more fundamental
as the entire theory of economics is uncertain. However, there are theoretical subtle-
ties in the physical sciences that we cannot discuss here. The interested reader can
consult, for example, David Ruelle, Hasard et Chaos (Paris: Odile Jacob, 1991),
Lawrence Sklar, Physics and Chance: Philosophical Issues in the Foundations of Sta-
tistical Mechanics (Cambridge: Cambridge University Press, 1993), or more techni-
cal treatises such as R. F. Streater, Statistical Dynamics (London: Imperial College
Press, 1995).

L α1 … αq, , X1 … XT, ,( ) f X1 … XT, , α1 … αq, ,( )∝

L α1 … αq, , X1 … XT, ,( ) f Xi ; α1 … αq, ,( )
t 1=

T

∏=
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The ML principle states that the optimal estimate of parameters α1, …, αq
maximizes L:

As the log function is strictly monotone, we can replace the likeli-
hood function with the log-likelihood defined as the logarithm of L. The
ML principle states equivalently that the optimal estimate of parameters
α1, …, αq maximizes the log-likelihood log L:

In the case of independent samples, the transformation to the loga-
rithms has the advantage of replacing a product with a sum, which is
easier to compute.

Observe that if the distribution is continuous, the probability of an
individual sample is zero. Maximizing the probability of an individual
sample is thus meaningless. However, we can approximate the probabil-
ity of a small interval around any observed value with the product of
the density times the size of the interval. We can now maximize the
probability of small fixed intervals, which entails the likelihood maximi-
zation as stated above. 

The Fisher Information Matrix and the Cramer-Rao Bound
ML estimators are usually biased. This is a consequence of the equivari-
ance property of ML estimators: a function of an estimator is the esti-
mator of the function. An interesting aspect of unbiased ML estimators
is the possibility to estimate, in advance, bounds to the precision of esti-
mates. Consider the q-vector αααα = (α1, …, αq)′ of parameters that deter-
mine the population distribution f(X1, …, XN; α1, …, αq). Suppose that

 is an unbiased ML estimator of αααα. Then it can be demonstrated that
the variance of the sampling distribution of  has a lower limit given by
the Cramer-Rao bound,

α̂1 … α̂q, ,( ) argmax L α1 … αq, ,( )( )=

α̂1 … α̂q, ,( ) argmax log L α1 … αq, ,( )( )=

log L α1 … αq, ,( )( ) f X1 i, … Xp i,, ,  ; α1 … αq, ,( )
i 1=

N

∏log=

f X1 i, … Xp i,, ,  ; α1 … αq, ,( )log
i 1=

N

∑=

αααα̂
αααα̂
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where  are the diagonal elements of the inverse J–1(αααα) of the
Fisher information matrix J(αααα). 

To define the Fisher information matrix, let’s first define the score.
The score q is defined as the vector formed by the first derivatives of the
log-likelihood with respect to the parameters αααα, that is,

The score is a random vector. It can be demonstrated that the expec-
tation of the score is zero:

The covariance matrix of the score is the Fisher information matrix
(also called the Fisher information):

It can be demonstrated that the Fisher information matrix is also the
expected value of the Hessian of the log-likelihood:

Intuitively, Fisher information is the amount of information that an
observable random variable carries about a nonobservable parameter.
There is a deep connection between Fisher information and Shannon
information.18

18 See Chapter 17 in Sergio M. Focardi and Frank J. Fabozzi, The Mathematics of
Financial Modeling and Investment Management (Hoboken, NJ: John Wiley &
Sons, 2004).
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BAYESIAN MODELING

The Bayesian approach to dynamic modeling is based on Bayesian sta-
tistics. Therefore, we will begin our discussion of Bayesian modeling
with a brief introduction to Bayesian statistics.

Bayesian Statistics
Bayesian statistics is perhaps the most difficult area in the science of sta-
tistics. The difficulty is not mathematical but conceptual: it resides in the
Bayesian interpretation of probability. Classical statistics adopts a fre-
quentist interpretation of probability; that is to say, the probability of an
event is essentially the relative frequency of its appearance in large sam-
ples. However, it is well known that pure relative frequency is not a ten-
able basis for probability: One cannot strictly identify probability with
relative frequency. What is needed is some bridging principle that links
probability, which is an abstract concept, to empirical relative frequency.
Bridging principles have been widely discussed in the literature, espe-
cially in the philosophical strain of statistical literature but, in practice,
classical statistics identifies probability with relative frequency in large
samples. When large samples are not available, for example in analyzing
tail events, classical statistics adopts theoretical considerations.

The frequentist interpretation is behind most of today’s estimation
methods. When statisticians compute empirical probability distributions,
they effectively equate probability and relative frequency. The concept is
also implicit in estimation methods based on likelihood. In fact, maxi-
mum likelihood estimates of distribution parameters can be interpreted
as those parameters that align the distribution as close as possible to the
empirical distribution. When we compute empirical moments, we also
adhere to a frequentist interpretation of probability.

In classical statistics, the probability distributions that embody a given
statistical model are not subject to uncertainty. The perspective of classical
statistics is that a given population has a true distribution: the objective of
statistics is to infer the true distribution from a population sample.

Although most mathematical methods are similar to those of classical
statistics, Bayesian statistics is based on a different set of concepts.19 In
particular, the following three concepts characterize Bayesian statistics:

19 For a complete exposition of Bayesian statistics, see: D. A. Berry, Statistics: A
Bayesian Perspective (Belmont, CA: Wadsworth, 1996); Thomas Leonard and John
Hsu, Bayesian Methods: An Analysis for Statisticians and Interdisciplinary Re-
searchers (Cambridge: Cambridge University Press, 1999) for a basic discussion; and
J. M. Bernardo and A. F. M Smith, Bayesian Theory (Chichester: John Wiley &
Sons, 2000) for a more advanced discussion.

c02-RevProbabStats  Page 69  Thursday, October 26, 2006  1:59 PM



70 FINANCIAL ECONOMETRICS

 ■ Statistical models are uncertain and subject to modification when new
information is acquired.

 ■ There is a distinction between prior probability (or prior distribution),
which conveys the best estimate of probabilities given initial available
information, and the posterior probability, which is the modification of
the prior probability consequent to the acquisition of new information.

 ■ The mathematical link between prior and posterior probabilities is
given by Bayes’ theorem.

The main difficulty is in grasping the meaning of these statements.
On one side, the first two statements seem mere educated common
sense, while the third is a rather simple mathematical statement that we
illustrate in the following paragraphs. However, common sense does not
make science. The usual scientific interpretation is that Bayesian statis-
tics is essentially a rigorous method for making decisions based on the
subjectivistic interpretation of probability. 

In Bayesian statistics, probability is intended as subjective judgment
guided by data. While a full exposé of Bayesian statistics is beyond the
scope of this book, the crux of the problem can be summarized as fol-
lows. Bayesian statistics is rooted in data as probability judgments are
updated with new data or information. However, according to Bayesian
statistics there is an ineliminable subjective element; the subjective ele-
ment is given by the initial prior probabilities that cannot be justified
within the Bayesian theory.

It would be a mistake to think that Bayesian statistics is only a rig-
orous way to perform subjective uncertain reasoning while classical sta-
tistics is about real data.20 Bayesian statistics explicitly recognizes that
there is some ineliminable subjectivity in probability statements and
attempts to reduce such subjectivity by updating probabilities. Classical
statistics implicitly recognizes the same subjectivity when setting rules
that bridge from data to probabilities.

In a nutshell, the conceptual problem of both classical and Bayesian
statistics is that a probability statement does not per se correspond to
any empirical reality. One cannot observe probabilities, only events that
are interpreted in a probabilistic sense. The real problem, both in classi-
cal and Bayesian statistics, is how to link probability statements to
empirical data. If mathematically sound and interpretable probability
statements are to be constructed, bridging principles are required.

20 Bayesian theories of uncertain reasoning are important in machine learning and ar-
tificial intelligence. See, for example, J. Pearl, Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference (San Francisco: Morgan Kaufmann,
1988).
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Before leaving the subject of Bayesian statistics, note that in financial
econometrics there is a strain of literature and related methodologies based
on Empirical Bayesian Statistics. In Empirical Bayesian Statistics, priors are
estimated with the usual classical methods and then updated with new
information. We will come back to this subject later in this chapter.

Bayes’ Theorem
Let’s now discuss Bayes’ theorem, for which there are two interpreta-
tions. One interpretation is a simple accounting of probabilities in the
classical sense. Given two events A and B, the following properties,
called Bayes’ theorem, hold:

These properties are an elementary consequence of the definitions of
conditional probabilities:

In the second interpretation of Bayes’ theorem, we replace the event A
with a statistical hypothesis H and the event B with the data and write

This form of Bayes’ theorem is the mathematical basis of Bayesian sta-
tistics. Given that P(data) is unconditional and does not depend on H,
we can write the previous equation as

The probability P(H) is called the prior probability, while the probability
P(H|data) is called the posterior probability. The probability P(data|H)
of the data given H is called the likelihood. 

Bayes’ theorem can be expressed in a different form in terms of
odds. The odds of H is the probability that H is false, written as P(HC).
Bayes’ theorem is written in terms of odds as follows:

P A B( )
P B A( )P A( )

P B( )
---------------------------------=

P B A( )
P A B( )P B( )

P A( )
--------------------------------=

P AB( ) P A B( )P B( ) P B A( )P A( )= =

P H data( )
P data H( )P H( )

P data( )
-----------------------------------------=

P H data( ) P data H( )P H( )∝
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The second interpretation of Bayes’ theorem is not a logical conse-
quence of Bayes’ theorem in the first interpretation; it is an independent
principle that assigns probabilities to statistical assumptions.

When applied to modeling, Bayes’ theorem is expressed in terms of
distributions, not probabilities. Bayes’ theorem can be stated in terms of
distributions as follows:

In this formulation, y represents the data, ϑ is the parameter set, 
is the posterior distribution,  is the likelihood function, and π(ϑ)
is the prior distribution. 

A key issue in Bayesian statistics is how to determine the prior.
Though considered subjective, the prior is not arbitrary. If it were, the
estimation exercise would be futile. The prior represents the basic
knowledge before specific measurements are taken into account. Two
types of priors are often used: diffuse priors and conjugate priors. The
diffuse prior assumes that we do not have any prior knowledge of the
phenomena. A diffuse prior is a uniform distribution over an unspecified
range. The conjugate prior is a prior such that, for a given likelihood,
the prior and the posterior distribution type coincide. 

APPENDIX A: INFORMATION STRUCTURES

Let’s now turn our attention to the question of time. The previous dis-
cussion considered a space formed by states in an abstract sense. We
must now introduce an appropriate representation of time as well as
rules that describe the evolution of information, that is, information
propagation, over time. The concepts of information and information
propagation are fundamental in economics and finance theory.

The concept of information in finance is different from both the
intuitive notion of information and that of information theory in which
information is a quantitative measure related to the a priori probability
of messages. In our context, information means the (progressive) revela-
tion of the set of events to which the current state of the economy
belongs. Though somewhat technical, this concept of information sheds
light on the probabilistic structure of finance theory. The point is the

P H data( )

P HC data( )
-------------------------------

P data H( )P H( )

P data HC( )P HC( )
------------------------------------------------=

p ϑ y( ) L y ϑ( )π ϑ( )∝

p ϑ y( )
L y ϑ( )
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following. Assets prices and returns are represented by stochastic pro-
cesses, that is, time-dependent random variables. But the probabilistic
states on which these random variables are defined represent entire his-
tories of the economy. To embed time into the probabilistic structure of
states in a coherent way calls for information structures and filtrations
(a concept we explain in Appendix B of this chapter).

Recall that it is assumed that the economy is in one of many possible
states and that there is uncertainty on the state that has been realized.
Consider a time period of the economy. At the beginning of the period,
there is complete uncertainty on the state of the economy (i.e., there is
complete uncertainty on what path the economy will take). Different
events have different probabilities, but there is no certainty. As time
passes, uncertainty is reduced as the number of states to which the econ-
omy can belong is progressively reduced. Intuitively, revelation of infor-
mation means the progressive reduction of the number of possible states;
at the end of the period, the realized state is fully revealed. In continuous
time and continuous states, the number of events is infinite at each
instant. Thus its cardinality remains the same. We cannot properly say
that the number of events shrinks. A more formal definition is required.

The progressive reduction of the set of possible states is formally
expressed in the concepts of information structure and filtration. Let’s
start with information structures. Information structures apply only to dis-
crete probabilities defined over a discrete set of states. At the initial instant
T0, there is complete uncertainty on the state of the economy; the actual
state is known only to belong to the largest possible event (that is, the
entire space Ω). At the following instant T1, assuming that instants are dis-
crete, the states are separated into a partition, a partition being a denumer-
able class of disjoint sets whose union is the space itself. The actual state
belongs to one of the sets of the partitions. The revelation of information
consists in ruling out all sets but one. For all the states of each partition,
and only for these, random variables assume the same values.

Suppose, to exemplify, that only two assets exist in the economy and
that each can assume only two possible prices and pay only two possible
cash flows. At every moment there are 16 possible price-cash flow combi-
nations. We can thus see that at the moment T1 all the states are parti-
tioned into 16 sets, each containing only one state. Each partition includes
all the states that have a given set of prices and cash distributions at the
moment T1. The same reasoning can be applied to each instant. The evolu-
tion of information can thus be represented by a tree structure in which
every path represents a state and every point a partition. Obviously the
tree structure does not have to develop as symmetrically as in the above
example; the tree might have a very generic structure of branches.
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APPENDIX B: FILTRATION

The concept of information structure based on partitions provides a
rather intuitive representation of the propagation of information through
a tree of progressively finer partitions. However, this structure is not suffi-
cient to describe the propagation of information in a general probabilistic
context. In fact, the set of possible events is much richer than the set of
partitions. It is therefore necessary to identify not only partitions but also
a structure of events. The structure of events used to define the propaga-
tion of information is called a filtration. In the discrete case, however, the
two concepts—information structure and filtration—are equivalent.

The concept of filtration is based on identifying all events that are
known at any given instant. It is assumed that it is possible to associate
to each trading moment t a σ-algebra of events ℑt ⊂ ℑ formed by all
events that are known prior to or at time t. It is assumed that events are
never “forgotten,” that is, that ℑt ⊂ ℑs, if t < s. An ordering of time is
thus created. This ordering is formed by an increasing sequence of σ-
algebras, each associated to the time at which all its events are known.
This sequence is a filtration. Indicated as {ℑt}, a filtration is therefore an
increasing sequence of all σ-algebras ℑt, each associated to an instant t.

In the finite case, it is possible to create a mutual correspondence
between filtrations and information structures. In fact, given an infor-
mation structure, it is possible to associate to each partition the algebra
generated by the same partition. Observe that a tree information struc-
ture is formed by partitions that create increasing refinement: By going
from one instant to the next, every set of the partition is decomposed.
One can then conclude that the algebras generated by an information
structure form a filtration.

On the other hand, given a filtration {ℑt}, it is possible to associate a
partition to each ℑt. In fact, given any element that belongs to Ω, con-
sider any other element that belongs to Ω such that, for each set of ℑt,
both either belong to or are outside this set. It is easy to see that classes
of equivalence are thus formed, that these create a partition, and that
the σ-algebra generated by each such partition is precisely the ℑt that
has generated the partition.

A stochastic process is said to be adapted to the filtration {ℑt} if the
variable Xt is measurable with respect to the σ-algebra ℑt. It is assumed
that the price and cash distribution processes St(ω) and dt(ω) of every
asset are adapted to {ℑt}. This means that, for each t, no measurement
of any price or cash distribution variable can identify events not
included in the respective algebra or σ-algebra. Every random variable
is a partial image of the set of states seen from a given point of view and
at a given moment.
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The concepts of filtration and of processes adapted to a filtration
are fundamental. They ensure that information is revealed without
anticipation. Consider the economy and associate at every instant a par-
tition and an algebra generated by the partition. Every random variable
defined at that moment assumes a value constant on each set of the par-
tition. The knowledge of the realized values of the random variables
does not allow identifying sets of events finer than partitions.

One might well ask: Why introduce the complex structure of σ-alge-
bras as opposed to simply defining random variables? The point is that,
from a logical point of view, the primitive concept is that of states and
events. The evolution of time has to be defined on the primitive struc-
ture—it cannot simply be imposed on random variables. In practice, fil-
trations become an important concept when dealing with conditional
probabilities in a continuous environment. As the probability that a
continuous random variable assumes a specific value is zero, the defini-
tion of conditional probabilities requires the machinery of filtration.  

CONCEPTS EXPLAINED IN THIS CHAPTER
(IN ORDER OF PRESENTATION)

Probability
Relative frequency
Outcomes and events
Algebras and sigma-algebras
Measurable spaces
Borel sets
Probability space
Probability measure

Independent events
Bayes theorem
Discrete probabilities
Random variables
Measurable functions
Cumulative distribution function
Probability density function
Random vectors
N-dimensional distribution functions and density functions
Marginal density and marginal distribution
Expectation
Independent random variables
Stochastic processes
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Stochastic representation of financial markets
Conditional expectations
Law of iterated expectations
Martingale
Location
Dispersion
Skewness
Concentration in the tails
Kurtosis
Moments
Alpha quantiles
Sample moments
Correlation and covariance
Sequences of random variables
Limit
Concepts of convergence
Independent and identically distributed (IID)  sequences
Sum of random variables
Convolution
Fourier transform
Characteristic function
Normal distribution
Score
Chi square distribution
t distribution
F distributions
Estimators
Sampling distributions
Critical values
Confidence intervals
Significance test
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Null hypothesis
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Maximum likelihood estimation
Likelihood function
Log-likelihood function
Cramer-Rao bound
Score
Fisher information matrix
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Bayesian statistics
Frequentist interpretation of probability
Subjectivistic interpretation of probability
Bayes’ Theorem
Prior probability
Posterior probability
Likelihood
Diffuse priors
Conjugate priors

Information propagation
Information structure
Filtration
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Regression Analysis:
Theory and Estimation

 

aving covered the background information in the previous chapter,
we are ready to turn to our first basic tool in econometrics: regression

analysis. In regression analysis, we estimate the relationship between a
random variable 

 

Y

 

 and one or more variables 

 

X

 

i

 

. The variables 

 

X

 

i

 

 can be
either deterministic variables or random variables. The variable 

 

Y

 

 is said
to be the 

 

dependent variable 

 

because its value is assumed to be depen-
dent on the value of the 

 

X

 

i

 

’s. The 

 

X

 

i

 

’s are referred to as the 

 

independent
variables, regressor variables, 

 

or 

 

explanatory variables

 

. Our primary
focus in this book is on the 

 

linear regression model

 

. We will be more pre-
cise about what we mean by a “linear” regression model later in this
chapter. Let’s begin with a discussion of the concept of dependence.

 

THE CONCEPT OF DEPENDENCE

 

Regressions are about 

 

dependence

 

 between variables. In this section we
provide a brief discussion of how dependence is represented in both a
deterministic setting and a probabilistic setting. In a deterministic set-
ting, the concept of dependence is embodied in the mathematical notion
of 

 

function

 

. A function is a correspondence between the individuals of a
given 

 

domain

 

 

 

A

 

 and the individuals of a given 

 

range

 

 

 

B

 

. In particular,
numerical functions establish a correspondence between numbers in a
domain 

 

A

 

 and numbers in a range 

 

B

 

. 
In quantitative science, we work with variables obtained through a

process of observation or measurement. For example, price is the obser-
vation of a transaction, time is the reading of a clock, position is deter-

H
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mined with measurements of the coordinates, and so on. In quantitative
science, we are interested in numerical functions 

 

y

 

 = 

 

f

 

(

 

x

 

1

 

,…, 

 

x

 

n

 

) that link
the results of measurements so that by measuring the independent vari-
ables (

 

x

 

1

 

,…, 

 

x

 

n

 

) we can predict the value of the dependent variable 

 

y

 

.
Being the results of measurements, variables are themselves functions that
link a set 

 

Ω

 

 of unobserved “states of the world” to observations. Differ-
ent states of the world result in different values for the variables but the
link among the variables remains constant. For example, a column of
mercury in a thermometer is a physical object that can be in different
“states.” If we measure the length and the temperature of the column (in
steady conditions), we observe that the two measurements are linked by a
well-defined (approximately linear) function. Thus, by measuring the
length, we can predict the temperature.

 

1

 

In order to model uncertainty, we keep the logical structure of vari-
ables as real-valued functions defined on a set 

 

Ω

 

 of unknown states of the
world. However, we add to the set 

 

Ω

 

 the structure of a probability space
as we have seen in Chapter 2. A probability space is a triple formed by a
set of individuals (the states of the world), a structure of events, and a
probability function: (

 

Ω

 

,

 

 ℑ

 

, 

 

P

 

). Random variables represent measurements
as in the deterministic case, but with the addition of a probability struc-
ture that represents uncertainty. In financial econometrics, a “state of the
world” should be intended as a complete history of the underlying econ-
omy, not as an instantaneous state. 

Our objective is to represent dependence between random variables, as
we did in the deterministic case, so that we can infer the value of one vari-
able from the measurement of the other. In particular, we want to infer the
future values of variables from present and past observations. The probabi-
listic structure offers different possibilities. For simplicity, let’s consider only
two variables 

 

X 

 

and 

 

Y

 

; our reasoning extends immediately to multiple vari-
ables. The first case of interest is the case when the dependent variable 

 

Y

 

 is a
random variable while the independent variable 

 

X

 

 is deterministic. This sit-
uation is typical of an experimental setting where we can fix the conditions
of the experiment while the outcome of the experiment is uncertain. 

 

1 

 

The nature of the relationship between variables and the underlying reality has
been (and still is) the subject of philosophical and scientific debate. In the classical
view of science, variables represent an objective material reality. At the turn of the
19th century, logical positivists, in particular Michael Ayers and Rudolph Carnap,
introduced the concept that the meaning of our assertions on the external world
resides in the process of observation. This notion, introduced by Percy Bridgman,
became the operational point of view of physics. The School of Copenhagen
formed around Niels Bohr introduced the standard interpretation of quantum me-
chanics that follows the operational point of view. 
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In this case, the dependent variable 

 

Y

 

 has to be thought of as a family
of random variables 

 

Y

 

x

 

, all defined on the same probability space (

 

Ω

 

, 

 

ℑ

 

,

 

P

 

), indexed with the independent variable 

 

x

 

. Dependence means that 

 

the
probability distribution of the dependent random variable depends on the
value of the deterministic independent value

 

. To represent this depen-
dence we use the notation  to emphasize the fact that 

 

x

 

 enters as a
parameter in the distribution. An obvious example is the dependence of a
price random variable on a time variable in a stochastic price process. 

In this setting, where the independent variable is deterministic, the
distributions  can be arbitrarily defined. Important for the dis-
cussion of linear regressions in this chapter is the case when the shape of
the distribution  remains constant and only the mean of the dis-
tribution changes as a function of 

 

x

 

. 
Consider now the case where both 

 

X

 

 and 

 

Y 

 

are random variables. For
example, 

 

Y

 

 might be the uncertain price of IBM stock tomorrow and 

 

X

 

 the
uncertain level of the S&P 500 tomorrow. One way to express the link
between these two variables is through their joint distribution 

 

F

 

(

 

x

 

,

 

y

 

) and,
if it exists, their joint density 

 

f

 

(

 

x

 

,

 

y

 

). We define the joint and marginal distri-
butions as follows:

, , 

, 

We will also use the short notation:

, , , 

Given a joint density 

 

f

 

(

 

x

 

,

 

y

 

), we can also represent the functional
link between the two variables as the dependence of the distribution of
one variable on the value assumed by the other variable. In fact, we can

F y x( )

F y x( )

F y x( )

FXY x y,( ) P X x≤ Y y≤,( )= FX x( ) P X x≤( )= FY y( ) P Y y≤( )=

FXY x y,( ) f x y,( ) xd yd
∞–

+∞

∫
∞–

+∞

∫=

FX x( ) f u y,( ) ud yd
∞–

∞–

∫
∞–

x

∫ f u y,( ) yd
∞–

∞–

∫⎝ ⎠
⎜ ⎟
⎛ ⎞

ud
∞–

x

∫ fX u( ) ud
∞–

x

∫= = =

FY y( ) f x v,( ) xd vd
∞–

y

∫
∞–

∞–

∫ f x v,( ) xd
∞–

∞–

∫⎝ ⎠
⎜ ⎟
⎛ ⎞

vd
∞–

y

∫ fY v( ) vd
∞–

x

∫= = =

f x y( )
f x y,( )
fY y( )

----------------= f y x( )
f x y,( )
fX x( )
----------------=

fX x( ) f x( )= fY y( ) f y( )= fX Y x y( ) f x y( )= fY X y x( ) f y x( )=
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write the joint density f(x,y) as the product of two factors, the condi-
tional density  and the marginal density fX(x): 

(3.1)

This factorization—that is, expressing a joint density as a product of
a marginal density and a conditional density—is the conceptual basis of
financial econometrics (see Chapter 1). There are significant differences in
cases where both variables X and Y are random variables, compared to
the case where the variable X is deterministic. First, as both variables are
uncertain, we cannot fix the value of one variable as if it were indepen-
dent. We have to adopt a framework of conditioning where our knowl-
edge of one variable influences our knowledge of the other variable.

The impossibility of making experiments is a major issue in econo-
metrics. In the physical sciences, the ability to create the desired experi-
mental setting allows the scientist to isolate the effects of single variables.
The experimenter tries to create an environment where the effects of vari-
ables other than those under study are minimized. In economics, how-
ever, all the variables change together and cannot be controlled. Back in
the 1950s, there were serious doubts that econometrics was possible. In
fact, it was believed that estimation required the independence of samples
while economic samples are never independent. 

However, the framework of conditioning addresses this problem.
After conditioning, the joint densities of a process are factorized into
initial and conditional densities that behave as independent distribu-
tions. This notion was anticipated in Chapter 1: An econometric model
is a probe that extracts independent samples—the noise terms—from
highly dependent variables.

Let’s briefly see, at the heuristic level, how conditioning works. Sup-
pose we learn that the random variable X has the value x, that is, X = x.
Recall that X is a random variable that is a real-valued function defined
over the set Ω. If we know that X = x, we do not know the present state
of the world but we do know that it must be in the subspace (ω ∈ Ω :
X(ω) = x). We call (Y|X = x) the variable Y defined on this subspace. If
we let x vary, we create a family of random variables defined on the
family of subspaces (ω ∈ Ω : X(ω) = x) and indexed by the value assumed
by the variable X. 

It can be demonstrated that the sets (ω ∈ Ω : X(ω) = x) can be given a
structure of probability space, that the variables (Y|X = x) are indeed
random variables on these probability spaces, and that they have (if
they exist) the conditional densities:

f y x( )

f x y,( ) f y x( )fX x( )=
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(3.2)

for fX(x) > 0. In the discrete setting we can write

f(y|x) = P(Y = y|X = x)

f(x,y) = P(X = x, Y = y)

The conditional expectation  is the expectation of the
variable . Consider the previous example of the IBM stock
price tomorrow and of the S&P 500 level tomorrow. Both variables
have unconditional expectations. These are the expectations of IBM’s
stock tomorrow and of S&P 500’s level tomorrow considering every
possible state of the world. However, we might be interested in comput-
ing the expected value of IBM’s stock price tomorrow if we know S&P
500’s value tomorrow. This is the case if, for example, we are creating
scenarios based on S&P 500’s value. 

If we know the level of the S&P 500, we do not know the present
state of the world but we do know the subset of states of the world in
which the present state of the world is. If we only know the value of the
S&P 500, IBM’s stock price is not known because it is different in each
state that belongs to this restricted set. IBM’s stock price is a random
variable on this restricted space and we can compute its expected value.

If we consider a discrete setting, that is, if we consider only a discrete
set of possible IBM stock prices and S&P 500 values, then the computa-
tion of the conditional expectation can be performed using the standard
definition of conditional probability. In particular, the conditional expecta-
tion of a random variable Y given the event B is equal to the unconditional
expectation of the variable Y set to zero outside of B and divided by the
probability of B: , where 1B is the indicator func-
tion of the set B, equal to 1 for all elements of B, zero elsewhere. Thus, in
this example, 

However, in a continuous-state setting there is a fundamental difficulty:
The set of states of the world corresponding to any given value of the
S&P 500 has probability zero; therefore we cannot normalize dividing
by P(B). As a consequence we cannot use the standard definition of con-
ditional probability to compute directly the conditional expectation.

f y x( )
f x y,( )
fX x( )
----------------=

E Y X x=[ ]
Y X x=( )

E Y B[ ] E 1BY[ ] P B( )⁄=

E IBM stock price S&P 500 value s=[ ]
E 1 S&P 500 value s=( ) IBM stock price( )[ ] P S&P 500 value s=( )⁄=
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To overcome this difficulty, we define the conditional expectation
indirectly, using only unconditional expectations. We define the condi-
tional expectation of IBM’s stock price given the S&P 500 level as that
variable that has the same unconditional expectation as IBM’s stock
price on each set that can be identified by for the value of the S&P 500.
This is a random variable which is uniquely defined for each state of the
world up to a set of probability zero.2

If the conditional density exists, conditional expectation is com-
puted as follows:

(3.3)

We know from Chapter 2 that the law of iterated expectations holds

(3.4)

and that the following relationship also holds

(3.5)

Rigorously proving all these results requires a considerable body of
mathematics and the rather difficult language and notation of σ-alge-
bras. However, the key ideas should be sufficiently clear. 

What is the bearing of the above on the discussion of regressions in
this chapter? Regressions have a twofold nature: they can be either (1)
the representation of dependence in terms of conditional expectations
and conditional distributions or (2) the representation of dependence of

2 In rigorous terms, conditioning is defined with respect to a σ-algebra. Consider a
random variable X defined on the probability space . Suppose that 
is a sub-σ-algebra of ℑ and that PG is the probability measure P restricted to G. Then
we define the conditional expectation of X given G as that random variable

, measurable G, such that, for every A ∈ G:

It can be demonstrated that the conditional expectation exists for any integrable ran-
dom variable. The conditional expectation is not uniquely defined. For each integra-
ble random variable, there are infinite conditional expectations defined up to PG
only almost surely (a.s.). Conditioning with respect to another variable is therefore
conditioning with respect to the σ-algebra generated by that variable.

Ω ℑ P, ,( ) G ℑ⊂

E X G[ ]

E 1AX[ ] 1AE X G[ ] PGd
Ω
∫ E 1AE X G[ ][ ]= =

E Y X x=[ ] yf y x( ) yd
∞–

+∞

∫=

E E Y X x=[ ][ ] E Y[ ]=

E XY[ ] E XE Y X[ ][ ]=
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random variables on deterministic parameters. The above discussion
clarifies the probabilistic meaning of both.

REGRESSIONS AND LINEAR MODELS

In this section we discuss regressions and, in particular, linear regres-
sions.

Case Where All Regressors Are Random Variables
Let’s start our discussion of regression with the case where all regressors
are random variables. Given a set of random variables X = (Y, X1,…, XN)′,
with a joint probability density f(y, x1,…, xN), consider the conditional
expectation of Y given the other variables (X1,…, XN)′:

As we saw in the previous section, the conditional expectation is a
random variable. We can therefore consider the residual:

The residual is another random variable defined over the set Ω. We can
rewrite the above equation as a regression equation:

(3.6)

The deterministic function y = ϕ(z) where 

(3.7)

is called the regression function. 
The following properties of regression equations hold. 

Property 1. The conditional mean of the residual is zero: E[ε|X1,…, XN]
= 0. In fact, taking conditional expectations on both sides of equation
(3.7), we can write

Because

Y E Y X1 … XN, ,[ ]=

ε Y E Y X1 … XN, ,[ ]–=

Y E Y X1 … XN, ,[ ] ε+=

y ϕ z( ) E Y X1 z1 … XN, , zN= =[ ]= =

E Y X1 … XN, ,[ ] E E Y X1 … XN, ,[ ] X1 … XN, ,[ ] E ε X1 … XN, ,[ ]+=
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is a property that follows from the law of iterated expectations, we can
conclude that .

Property 2. The unconditional mean of the residual is zero: E[ε] = 0. This
property follows immediately from the multivariate formulation of the
law of iterated expectations (3.4): . In fact,
taking expectation of both sides of equation (3.7) we can write

hence E[ε] = 0.

Property 3: The residuals are uncorrelated with the variables X1,…, XN:
E[εX] = 0. This follows from equation (3.6) by multiplying both sides of
equation (3.7) by X1,…, XN and taking expectations. Note however, that
the residuals are not necessarily independent of the regressor X.

If the regression function is linear, we can write the following linear
regression equation:

(3.8)

and the following linear regression function:

(3.9)

The rest of this chapter deals with linear regressions. If the vector Z
= (Y, X1,…, XN)′ is jointly normally distributed, then the regression
function is linear. To see this, partition z, the vector of means µµµµ, and the
covariance matrix Σ conformably in the following way:

, , , 

E E Y X1 … XN, ,[ ] X1 … XN, ,[ ] E Y X1 … XN, ,[ ]=

E ε X1 … XN, ,[ ] 0=

E E Y X1 … XN, ,[ ][ ] E Y[ ]=

E Y[ ] E E Y X1 … XN, ,[ ][ ] E ε[ ]+=

Y a biXi ε+
i 1=

N

∑+=

y a bixi
i 1=

N

∑+=

Z Y
X⎝ ⎠

⎛ ⎞= z y
x⎝ ⎠

⎛ ⎞= µµµµ
µy

µµµµx⎝ ⎠
⎜ ⎟
⎛ ⎞

= ΣΣΣΣ
σyy σxy

σyx ΣΣΣΣxx⎝ ⎠
⎜ ⎟
⎛ ⎞

=
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where µ is the vector of means and Σ is the covariance matrix. It can be
demonstrated that the conditional density (Y|X = x) has the following
expression:

(3.10)

where

(3.11)

The regression function can be written as follows:

, or explicitly: (3.12)

The normal distribution is not the only joint distribution that yields
linear regressions. Spherical and elliptical distributions also yield linear
regressions. Spherical distributions extend the multivariate normal distri-
bution N(0,I) (i.e., the joint distribution of independent normal variables).
Spherical distributions are characterized by the property that their density
is constant on a sphere, so that their joint density can be written as

for some function g. 
Spherical distributions have the property that their marginal distri-

butions are uncorrelated but not independent, and can be viewed as
multivariate normal random variables, with a random covariance
matrix. An example of a spherical distribution used in financial econo-
metrics is the multivariate t-distribution with m degrees of freedom,
whose density has the following form:

The multivariate t-distribution is important in econometrics for several
reasons. First, some sampling distributions are actually a t-distribution (we
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will see this in the following chapters). Second, the t-distribution proved to
be an adequate description of fat-tailed error terms in some econometrics
models, as we will see in Chapter 14 (although not as good as the stable
Paretian distribution described in Chapter 14).

Elliptical distributions generalize the multivariate normal distribu-
tion N(0,Σ).3 Because they are constant on an ellipsoid, their joint den-
sity can be written as

, 

where µµµµ is a vector of constants and ΣΣΣΣ is a strictly positive-definite
matrix. Spherical distributions are a subset of elliptical distributions.
Conditional distributions and linear combinations of elliptical distribu-
tions are also elliptical. 

The fact that elliptical distributions yield linear regressions is closely
related to the fact that the linear correlation coefficient is a meaningful
measure of dependence only for elliptical distributions. There are distri-
butions that do not factorize as linear regressions. The linear correlation
coefficient is not a meaningful measure of dependence for these distribu-
tions. The copula function of a given random vector X = (X1,…,XN)′
completely describes the dependence structure of the  joint distribution
of random variables Xi, i = 1,…,N.4

Linear Models and Linear Regressions
Let’s now discuss the relationship between linear regressions and linear
models. In applied work, we are given a set of multivariate data that we
want to explain through a model of their dependence. Suppose we want
to explain the data through a linear model of the type:

We might know from theoretical reasoning that linear models are
appropriate or we might want to try a linear approximation to nonlin-

3 Brendan O. Bradley and Murad S. Taqqu, “Financial Risk and Heavy Tails,” in
Svetlozar T. Rachev (ed.), Handbook of Heavy Tailed Distributions in Finance (Am-
sterdam: Elsevier/North Holland, 2003), pp. 35–103. 
4 Paul Embrechts, Alexander McNeil, and Daniel Straumann, “Correlation and De-
pendence in Risk Management: Properties and Pitfalls,” in Michael Dempster (ed.),
Risk Management: Value at Risk and Beyond (Cambridge: Cambridge University
Press, 2002), pp. 176–223.

f x( ) g x µµµµ–( )′ΣΣΣΣ x µµµµ–( )( )= x′ x1 … xN, ,( )=

Y α βiXi
i 1=

N
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ear models. A linear model such as the above is not, per se, a linear
regression unless we apply appropriate constraints. In fact, linear
regressions must satisfy the three properties mentioned above. We call
linear regressions linear models of the above type that satisfy the follow-
ing set of assumptions such that 

is the conditional expectation of Y. 

Assumption 1. The conditional mean of the residual is zero: E[ε|X1,…, XN]. 

Assumption 2. The unconditional mean of the residual is zero: E[ε] = 0. 

Assumption 3: The correlation between the residuals and the variables
X1,…, XN is zero: E[εX] = 0.

The above set of assumptions is not the full set of assumptions used
when estimating a linear model as a regression but only consistency con-
ditions to interpret a linear model as a regression. We will introduce
additional assumptions relative to how the model is sampled in the sec-
tion on estimation. Note that the linear regression equation does not
fully specify the joint conditional distribution of the dependent variables
and the regressors.5

Case Where Regressors Are Deterministic Variables
In many applications of interest to the financial modeler, the regressors
are deterministic variables. Conceptually, regressions with deterministic
regressors are different from cases where regressors are random vari-
ables. In particular, as we have seen in a previous section, one cannot
consider the regression as a conditional expectation. However, we can
write a linear regression equation:

(3.13)

5 This point is a rather subtle point related to concept of exogeneity of variables. See
David F. Hendry, Dynamic Econometrics (Oxford: Oxford University Press, 1995)
for a discussion of these questions. 
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and the following linear regression function:

(3.14)

where the regressors are deterministic variables. As we will see in the
following section, in both cases the least squares estimators are the same
though the variances of the regression parameters as functions of the
samples are different.

ESTIMATION OF LINEAR REGRESSIONS

In this section, we discuss how to estimate the linear regression parame-
ters. We consider two main estimation techniques: maximum likelihood and
least squares methods. A discussion of the sampling distributions of lin-
ear regression parameters follow. The method of moments and the instru-
mental variables method are discussed in Chapter 4. 

Maximum Likelihood Estimates 
Let’s reformulate the regression problem in a matrix form that is stan-
dard in regression analysis and that we will use in the following sections.
Let’s start with the case of a dependent variable Y and one independent
regressor X. This case is referred to as the bivariate case or the simple
linear regression. Suppose that we are empirically given T pairs of obser-
vations of the regressor and the independent variable. In financial
econometrics these observations could represent, for example, the
returns Y of a stock and the returns X of a factor taken at fixed intervals
of time t = 1, 2,…, T. Using a notation that is standard in regression esti-
mation, we place the given data in a vector Y and a matrix X:

, (3.15)

The column of 1s represents constant terms. The regression equation
can be written as a set of T samples from the same regression equation,
one for each moment:
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that we can rewrite in matrix form,

where ββββ is the vector of regression coefficients,

and εεεε are the residuals. 
We now make a set of assumptions that are standard in regression

analysis and that we will progressively relax. The assumptions for the
linear regression model with normally distributed residuals are:

(3.16)

The regression equation can then be written: . The
residuals form a sequence of independent variables. They can therefore
be regarded as a strict white-noise sequence (see Chapter 6 for a discus-
sion of strict white noise). As the residuals are independent draws from
the same normal distribution, we can compute the log-likelihood func-
tion as follows:

(3.17)

The Maximum Likelihood (ML) principle requires maximization of
the log-likelihood function. Maximizing the log-likelihood function entails
first solving the equations:

Y1 β0 β+ 1X1 ε1+=
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common variance of the residuals and I is the identity matrix.
2. X is distributed independently of the residuals εεεε. ⎭
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, , 

These equations can be explicitly written as follows:

A little algebra shows that solving the first two equations yields

(3.18)

where

, 

and where  are the empirical standard deviations of the sample
variables X,Y respectively. Substituting these expressions in the third
equation

yields the variance of the residuals:

(3.19)
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In the matrix notation established above, we can write the estima-
tors as follows:

For parameters: (3.20)

For the variance of the regression: (3.21)

A comment is in order. We started with T pairs of given data (Xi,Yi),
i = 1,…, T and then attempted to explain these data as a linear regres-
sion Y = β1X + β0 + ε. We estimated the coefficients (β1,β2) with Maxi-
mum Likelihood Estimation (MLE) methods. Given this estimate of the
regression coefficients, the estimated variance of the residuals is given
by equation (3.22). Note that equation (3.22) is the empirical variance
of residuals computed using the estimated regression parameters. A
large variance of the residuals indicates that the level of noise in the pro-
cess (i.e., the size of the unexplained fluctuations of the process) is high.

Generalization to Multiple Independent Variables
The above discussion of the MLE method generalizes to multiple inde-
pendent variables, N. We are empirically given a set of T observations
that we organize in matrix form,

, (3.22)

and the regression coefficients and error terms in the vectors,

, (3.23)

The matrix X which contains all the regressors is called the design
matrix. The regressors X can be deterministic, the important condition
being that the residuals are independent. One of the columns can be
formed by 1s to allow for a constant term (intercept). Our objective is
to explain the data as a linear regression: 
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We make the same set of assumptions given by equation (3.17) as
we made in the case of a single regressor. Using the above notation, the
loglikelihood function will have the form

(3.24)

The maximum likelihood conditions are written as

, (3.25)

These equations are called normal equations. Solving the system of normal
equations gives the same form for the estimators as in the univariate case:

(3.26)

The variance estimator is not unbiased.6 It can be demonstrated that
to obtain an unbiased estimator we have to apply a correction that takes
into account the number of variables by replacing T with T – N, assum-
ing T > N:

(3.27)

The MLE method requires that we know the functional form of the dis-
tribution. If the distribution is known but not normal, we can still apply the
MLE method but the estimators will be different. We will not here discuss
further MLE for nonnormal distributions.

Ordinary Least Squares Method
We now establish the relationship between the MLE principle and the ordi-
nary least squares (OLS) method. OLS is a general method to approximate
a relationship between two or more variables. We use the matrix notation

6 See Chapter 2 for an explanation of properties of estimators.
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defined above for MLE method; that is, we assume that observations are
described by the equation (3.23) while the regression coefficients and the
residuals are described by equation (3.24). 

If we use the OLS method, the assumptions of linear regressions can
be weakened. In particular, we need not assume that the residuals are
normally distributed but only assume that they are uncorrelated and
have finite variance. The residuals can therefore be regarded as a white-
noise sequence (and not a strict white-noise sequence as in the previous
section). We summarize the linear regression assumptions as follows:

(3.28)

In the general case of a multivariate regression, the OLS method
requires minimization of the sum of the squared residuals. Consider the
vector of residuals: 

The sum of the squared residuals  can be written
as SSR = εεεε′εεεε. As εεεε = Y – Xββββ, we can also write

The OLS method requires that we minimize the SSR. To do so, we
equate to zero the first derivatives of the SSR:

This is a system of N equations. Solving this system, we obtain the esti-
mators:

Assumptions for the linear regression model:
1. The mean of the residuals is zero: E εεεε( ) 0=
2. The residuals are mutually uncorrelated:

E εεεεεεεε′( ) σ2I=( ), where σ2 is the variance of the residuals
and I is the identity matrix.
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These estimators are the same estimators obtained with the MLE
method; they have an optimality property. In fact, the Gauss-Markov
theorem states that the above OLS estimators are the best linear unbi-
ased estimators (BLUE). “Best” means that no other linear unbiased
estimator has a lower variance. It should be noted explicitly that OLS
and MLE are conceptually different methodologies: MLE seeks the opti-
mal parameters of the distribution of the error terms, while OLS seeks
to minimize the variance of error terms. The fact that the two estimators
coincide was an important discovery.

SAMPLING DISTRIBUTIONS OF REGRESSIONS

Estimated regression parameters depend on the sample. They are random
variables whose distribution is to be determined. As we will see in this sec-
tion, the sampling distributions differ depending on whether the regressors
are assumed to be fixed deterministic variables or random variables. 

Let’s first assume that the regressors are fixed deterministic vari-
ables. Thus only the error terms and the dependent variable change
from sample to sample. The  are unbiased estimators and 
therefore holds. It can also be demonstrated that the following expres-
sion for the variance of  holds

(3.29)

where an estimate  of  is given by 3.27.
Under the additional assumption that the residuals are normally dis-

tributed, it can be demonstrated that the regression coefficients are
jointly normally distributed as follows:

(3.30)

These expressions are important because they allow to compute confi-
dence intervals for the regression parameters. 

Let’s now suppose that the regressors are random variables. Under
the assumptions set forth in (3.29), it can be demonstrated that the vari-
ance of the estimators  can be written as follows:
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(3.31)

where the terms  and V(X′εεεε) are the empirical expectation
of (X′X)–1 and the empirical variance of (X′εεεε), respectively. 

The following terms are used to describe this estimator of the vari-
ance: sandwich estimator, robust estimator, and White estimator. (These
concepts will be expanded in Chapter 12 on robust methods.) The term
sandwich estimator is due to the fact that the term V(X′εεεε) is sandwiched
between the terms . These estimators are robust because
they take into account not only the variability of the dependent vari-
ables but also that of the independent variables. Consider that if the
regressors are a large sample, the sandwich and the classical estimators
are close to each other.

DETERMINING THE EXPLANATORY POWER OF A REGRESSION

The above computations to estimate regression parameters were carried
out under the assumption that the data were generated by a linear
regression function with uncorrelated and normally distributed noise. In
general, we do not know if this is indeed the case. Though we can
always estimate a linear regression model on any data sample by apply-
ing the estimators discussed above, we must now ask the question:
When is a linear regression applicable and how can one establish the
goodness (i.e., explanatory power) of a linear regression? 

Quite obviously, a linear regression model is applicable if the rela-
tionship between the variables is approximately linear. How can we
check if this is indeed the case? What happens if we fit a linear model to
variables that have non-linear relationships, or if distributions are not
normal? A number of tests have been devised to help answer these ques-
tions. 

Intuitively, a measure of the quality of approximation offered by a
linear regression is given by the variance of the residuals. Squared resid-
uals are used because a property of the estimated relationship is that the
sum of the residuals is zero. If residuals are large, the regression model
has little explanatory power. However, the size of the average residual in
itself is meaningless as it has to be compared with the range of the vari-
ables. For example, if we regress stock prices over a broad-based stock
index, other things being equal, the residuals will be numerically differ-
ent if the price is in the range of dollars or in the range of hundreds of
dollars.

V ββββ̂( ) E X′X( ) 1–[ ]V X′εεεε( )E X′X( ) 1–[ ]=
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Coefficient of Determination
A widely used measure of the quality and usefulness of a regression model
is given by the coefficient of determination denoted by R2 or R-squared.
The idea behind R2 is the following. The dependent variable Y has a total
variation given by the following expression:

(3.32)

where

This total variation is the sum of the variation of the variable Y due
to the variation of the regressors plus the variation of residuals

. We can therefore define the coefficient of determination:

(3.33)

as the portion of the total fluctuation of the dependent variable, Y,
explained by the regression relation. R2 is a number between 0 and 1:
R2 = 0 means that the regression has no explanatory power, R2 = 1
means that the regression has perfect explanatory power. The quantity
R2 is computed by software packages that perform linear regressions.

It can be demonstrated that the coefficient of determination R2 is
distributed as the well known Student F distribution. This fact allows
one to determine intervals of confidence around a measure of the signif-
icance of a regression. 

Adjusted R 2

The quantity R2 as a measure of the usefulness of a regression model
suffers from the problem that a regression might fit data very well in-
sample but have no explanatory power out-of-sample. This occurs if the
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number of regressors is too high. Therefore an adjusted R2 is sometimes
used. The adjusted R2 is defined as R2 corrected by a penalty function
that takes into account the number p of regressors in the model:

(3.34)

Relation of R 2 to Correlation Coefficient
The R2 is the squared correlation coefficient. The correlation coefficient
is a number between –1 and +1 that measures the strength of the depen-
dence between two variables. If a linear relationship is assumed, the cor-
relation coefficient has the usual product-moment expression: 

(3.35)

USING REGRESSION ANALYSIS IN FINANCE

This section provides several illustrations of regression analysis in
finance as well as the data for each illustration. However, in order to
present the data, we limit our sample size. The first two illustrations
show how to use simple linear regressions (i.e., bivariate regressions) to
calculate the characteristic line for common stocks and for mutual
funds; the following examples show how to use multiple regressions to
estimate empirical duration of common stocks. Further applications are
provided in Chapter 5.

Characteristic Line for Common Stocks
The characteristic line of a security is the regression of the excess
returns of that security on the market excess returns:

where 

The characteristic line is discussed in more detail in Chapter 5.

ri = the security excess return of a security over the risk-free rate
rM = the market excess return of the market over the risk-free rate
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We computed the characteristic lines of two common stocks, Oracle
and General Motors (GM), and a randomly created portfolio consisting
of 20 stocks equally weighted. We used the S&P 500 Index as a proxy
for the market returns and the 90-day Treasury rate as a proxy for the
risk-free rate. The return and excess return data are shown in Exhibit
3.1. Note that there are 60 monthly observations used to estimate the
characteristic line from December 2000 to November 2005. The 20
stocks comprising the portfolio are shown at the bottom of Exhibit 3.1.

The estimated parameters for the two stocks and the portfolios are
reported in Exhibit 3.2. As can be seen from the exhibit, the intercept term
is not statistically significant; however, the slope, referred to as the beta of
the characteristic line, is statistically significant. Typically for individual
stocks, the R2 ranges from 0.15 to 0.65. For Oracle and GM the R2 is 0.23
and 0.26, respectively. In contrast, for a randomly created portfolio, the
R2 is considerably higher. For our 20-stock portfolio, the R2 is 0.79.

Note that some researchers estimate a stock’s beta by using returns
rather than excess returns. The regression estimated is referred to as the
single-index market model. This model was first suggested by Markow-
itz7 as a proxy measure of the covariance of a stock with an index so
that the full mean-variance analysis need not be performed. While the
approach was mentioned by Markowitz in a footnote in his book, it was
Sharpe who investigated this further.8 It turns out that the beta esti-
mated using both the characteristic line and the single-index market
model do not differ materially. For example, for our 20-stock portfolio,
the betas differed only because of rounding off.

Characteristic Line For Mutual Funds9

In the previous illustration, we showed how to calculate the characteris-
tic line for two stocks and a portfolio. The same regression model can
be estimated for mutual funds. We estimate the characteristic line for
two large-cap mutual funds. Since we would prefer not to disclose the
name of each fund, we simply refer to them as A and B.10 Ten years of
monthly data were used from January 1, 1995 to December 31, 2004.
The data are reported in Exhibit 3.3. Because the two mutual funds are

7 Harry M. Markowitz, Portfolio Selection: Efficient Diversification of Investments
(New Haven, CT: Cowles Foundation for Research in Economics, 1959). 
8 William F. Sharpe, “A Simplified Model for Portfolio Analysis,” Management Sci-
ence 9 (January 1963), pp. 277–293.
9 The data and the regression results in this section were provided by Raman Vard-
haraj of the Guardian. Note that neither of the mutual funds used in the illustrations
in this section are managed by the Guardian.
10 Neither fund selected is an index fund and the class A shares were selected.
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EXHIBIT 3.1  Return and Excess Return Data for S&P 500, Oracle, GM, and 
Portfolioa: 12/1/2000–11/1/2005

Date

S&P 
500

Return

Risk-
Free
Rate

S&P – 
Risk

Free Rate
Oracle
Return

Oracle
Excess
Return

GM 
Return

GM
Excess
Return

Portfolio 
Return

Portfolio
Excess
Return

12/1/2000 0.03464 0.00473 0.02990   0.00206 –0.00267 0.05418 0.04945 0.01446 0.00973

1/1/2001 –0.09229 0.00413 –0.09642 –0.34753 –0.35165 –0.00708 –0.01120 –0.07324 –0.07736

2/1/2001 –0.06420 0.00393 –0.06813 –0.21158 –0.21550 –0.02757 –0.03149 –0.07029 –0.07421

3/1/2001 0.07681 0.00357 0.07325 0.07877 0.07521 0.05709 0.05352 0.11492 0.11135

4/1/2001 0.00509 0.00321 0.00188 –0.05322 –0.05643 0.03813 0.03492 0.01942 0.01621

5/1/2001 –0.02504 0.00302 –0.02805 0.24183 0.23881 0.13093 0.12791 –0.03050 –0.03351

6/1/2001 –0.01074 0.00288 –0.01362 –0.04842 –0.05130 –0.01166 –0.01453 –0.03901 –0.04189

7/1/2001 –0.06411 0.00288 –0.06698 –0.32467 –0.32754 –0.13915 –0.14203 –0.08264 –0.08552

8/1/2001 –0.08172 0.00274 –0.08447 0.03030 0.02756 –0.21644 –0.21918 –0.13019 –0.13293

9/1/2001 0.01810 0.00219 0.01591 0.07790 0.07571 –0.03683 –0.03902 0.05969 0.05749

10/1/2001 0.07518 0.00177 0.07341 0.03466 0.03289 0.20281 0.20104 0.11993 0.11816

11/1/2001 0.00757 0.00157 0.00601 –0.01568 –0.01725 –0.02213 –0.02370 0.02346 0.02190

12/1/2001 –0.01557 0.00148 –0.01706 0.24982 0.24834 0.05226 0.05078 0.05125 0.04976

1/1/2002 –0.02077 0.00144 –0.02221 –0.03708 –0.03852 0.03598 0.03454 0.02058 0.01914

2/1/2002 0.03674 0.00152 0.03522 –0.22984 –0.23136 0.14100 0.13948 0.02818 0.02667

3/1/2002 –0.06142 0.00168 –0.06309 –0.21563 –0.21730 0.06121 0.05953 –0.00517 –0.00684

4/1/2002 –0.00908 0.00161 –0.01069 –0.21116 –0.21276 –0.03118 –0.03279 –0.02664 –0.02825

5/1/2002 –0.07246 0.00155 –0.07401 0.19571 0.19416 –0.13998 –0.14153 –0.04080 –0.04235

6/1/2002 –0.07900 0.00149 –0.08050 0.05702 0.05553 –0.12909 –0.13058 –0.05655 –0.05804

7/1/2002 0.00488 0.00142 0.00346 –0.04196 –0.04337 0.02814 0.02673 –0.01411 –0.01553

8/1/2002 –0.11002 0.00133 –0.11136 –0.18040 –0.18173 –0.18721 –0.18855 –0.09664 –0.09797

9/1/2002 0.08645 0.00133 0.08512 0.29644 0.29510 –0.14524 –0.14658 0.06920 0.06787

10/1/2002 0.05707 0.00130 0.05577 0.19235 0.19105 0.19398 0.19268 0.08947 0.08817

11/1/2002 –0.06033 0.00106 –0.06139 –0.11111 –0.11217 –0.07154 –0.07259 –0.04623 –0.04729

12/1/2002 –0.02741 0.00103 –0.02845 0.11389 0.11286 –0.01438 –0.01541 –0.00030 –0.00134

1/1/2003 –0.01700 0.00100 –0.01800 –0.00582 –0.00682 –0.07047 –0.07147 –0.03087 –0.03187

2/1/2003 0.00836 0.00098 0.00737 –0.09365 –0.09463 –0.00444 –0.00543 –0.00951 –0.01049

3/1/2003 0.08104 0.00094 0.08010 0.09594 0.09500 0.07228 0.07134 0.06932 0.06838

4/1/2003 0.05090 0.00095 0.04995 0.09512 0.09417 –0.01997 –0.02092 0.06898 0.06803

5/1/2003 0.01132 0.00090 0.01042 –0.07686 –0.07776 0.01896 0.01806 0.00567 0.00477

6/1/2003 0.01622 0.00077 0.01546 –0.00167 –0.00243 0.03972 0.03896 0.03096 0.03019

7/1/2003 0.01787 0.00079 0.01708 0.07006 0.06927 0.09805 0.09726 0.03756 0.03677

8/1/2003 –0.01194 0.00086 –0.01280 –0.12315 –0.12401 –0.00414 –0.00499 –0.03145 –0.03231

9/1/2003 0.05496 0.00084 0.05412 0.06400 0.06316 0.04251 0.04167 0.07166 0.07082

10/1/2003 0.00713 0.00083 0.00630 0.00418 0.00334 0.00258 0.00174 0.00832 0.00749

11/1/2003 0.05077 0.00085 0.04992 0.10067 0.09982 0.24825 0.24740 0.06934 0.06849

12/1/2003 0.01728 0.00083 0.01645 0.04762 0.04679 –0.06966 –0.07049 0.00012 –0.00070

1/1/2004 0.01221 0.00081 0.01140 –0.07143 –0.07224 –0.03140 –0.03221 0.01279 0.01198

2/1/2004 –0.01636 0.00083 –0.01718 –0.06760 –0.06842 –0.01808 –0.01890 –0.03456 –0.03538

3/1/2004 –0.01679 0.00083 –0.01762 –0.06250 –0.06333 0.00360 0.00277 –0.00890 –0.00972

4/1/2004 0.01208 0.00091 0.01118 0.01333 0.01243 –0.04281 –0.04372 0.02303 0.02212

5/1/2004 0.01799 0.00109 0.01690 0.04649 0.04540 0.02644 0.02535 –0.00927 –0.01036

6/1/2004 –0.03429 0.00133 –0.03562 –0.11903 –0.12036 –0.07405 –0.07538 –0.05173 –0.05307

7/1/2004 0.00229 0.00138 0.00090 –0.05138 –0.05276 –0.04242 –0.04380 –0.00826 –0.00965

8/1/2004 0.00936 0.00143 0.00793 0.13139 0.12996 0.02832 0.02689 0.01632 0.01488
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EXHIBIT 3.1     (Continued)

a Portfolio includes the following 20 stocks: Honeywell, Alcoa, Campbell Soup, Boe-
ing, General Dynamics, Oracle, Sun, General Motors, Procter & Gamble, Wal-Mart,
Exxon, ITT, Unilever, Hilton, Martin Marietta, Coca-Cola, Northrop Grumman,
Mercury Interact, Amazon, and United Technologies.

EXHIBIT 3.2  Characteristic Line of the Common Stock of General Motors, Oracle, 
and Portfolio: 12/1/2000–11/1/2005 

Date

S&P 
500

Return

Risk-
Free
Rate

S&P – 
Risk

Free Rate
Oracle
Return

Oracle
Excess
Return

GM 
Return

GM
Excess
Return

Portfolio 
Return

Portfolio
Excess
Return

9/1/2004 0.01401 0.00156 0.01246 0.12234 0.12078 –0.09251 –0.09407 0.00577 0.00421

10/1/2004 0.03859 0.00167 0.03693 0.00632 0.00465 0.00104 –0.00063 0.05326 0.05159

11/1/2004 0.03246 0.00189 0.03057 0.07692 0.07503 0.03809 0.03620 0.02507 0.02318

12/1/2004 –0.02529 0.00203 –0.02732 0.00364 0.00162 –0.08113 –0.08315 –0.03109 –0.03311

1/1/2005 0.01890 0.00218 0.01673 –0.05955 –0.06172 –0.03151 –0.03369 0.01225 0.01008

2/1/2005 –0.01912 0.00231 –0.02143 –0.03629 –0.03860 –0.17560 –0.17790 –0.01308 –0.01538

3/1/2005 –0.02011 0.00250 –0.02261 –0.07372 –0.07622 –0.09221 –0.09471 –0.03860 –0.04110

4/1/2005 0.02995 0.00254 0.02741 0.10727 0.10472 0.18178 0.17924 0.04730 0.04476

5/1/2005 –0.00014 0.00257 –0.00271 0.03125 0.02868 0.07834 0.07577 –0.02352 –0.02609

6/1/2005 0.03597 0.00261 0.03336 0.02803 0.02542 0.08294 0.08033 0.04905 0.04644

7/1/2005 –0.01122 0.00285 –0.01407 –0.04274 –0.04559 –0.07143 –0.07428 –0.02185 –0.02470

8/1/2005 0.00695 0.00305 0.00390 –0.04542 –0.04847 –0.10471 –0.10776 0.00880 0.00575

9/1/2005 –0.01774 0.00306 –0.02080 0.02258 0.01952 –0.10487 –0.10793 –0.04390 –0.04696

10/1/2005 0.03519 0.00333 0.03186 –0.00631 –0.00963 –0.20073 –0.20405 0.01649 0.01316

11/1/2005 0.01009 0.00346 0.00663 –0.00714 –0.01060 0.01050 0.00704 0.01812 0.01466

Coefficient Coefficient Estimate Standard Error t-statistic p-value

GM
α –0.005 0.015 –0.348 0.729
β   1.406 0.339   4.142 0.00  
R2   0.228
p-value 0.00

Oracle
α –0.009 0.011 –0.812 0.420
β   1.157 0.257   4.501 0.000
R2   0.259
p-value   0.000

Portfolio
α   0.003 0.003   1.027 0.309
β   1.026 0.070 14.711 0.000
R2   0.787
p-value   0.000

c03-RegressionAnalysisTheory  Page 102  Thursday, October 26, 2006  2:40 PM



Regression Analysis: Theory and Estimation 103

EXHIBIT 3.3  Data to Estimate the Characteristic Line of Two Large-Cap Mutual 
Funds

Month Market Excess Return Excess Return for Fund A Excess Return for Fund B

01/31/1995   2.18   0.23   0.86

02/28/1995   3.48   3.04   2.76

03/31/1995   2.50   2.43   2.12

04/30/1995   2.47   1.21   1.37

05/31/1995   3.41   2.12   2.42

06/30/1995   1.88   1.65   1.71

07/31/1995   2.88   3.19   2.83

08/31/1995 –0.20 –0.87   0.51

09/30/1995   3.76   2.63   3.04

10/31/1995 –0.82 –2.24 –1.10

11/30/1995   3.98   3.59   3.50

12/31/1995   1.36   0.80   1.24

01/31/1996   3.01   2.93   1.71

02/29/1996   0.57   1.14   1.49

03/31/1996   0.57   0.20   1.26

04/30/1996   1.01   1.00   1.37

05/31/1996   2.16   1.75   1.78

06/30/1996   0.01 –1.03 –0.40

07/31/1996 –4.90 –4.75 –4.18

08/31/1996   1.71   2.32   1.83

09/30/1996   5.18   4.87   4.05

10/31/1996   2.32   1.00   0.92

11/30/1996   7.18   5.68   4.89

12/31/1996 –2.42 –1.84 –1.36

01/31/1997   5.76   3.70   5.28

02/28/1997   0.42   1.26 –1.75

03/31/1997 –4.59 –4.99 –4.18

04/30/1997   5.54   4.20   2.95

05/31/1997   5.65   4.76   5.56

06/30/1997   4.09   2.61   2.53

07/31/1997   7.51   5.57   7.49

08/31/1997 –5.97 –4.81 –3.70

09/30/1997   5.04   5.26   4.53

10/31/1997 –3.76 –3.18 –3.00

11/30/1997   4.24   2.81   2.52

12/31/1997   1.24   1.23   1.93

01/31/1998   0.68 –0.44 –0.70

02/28/1998   6.82   5.11   6.45

03/31/1998   4.73   5.06   3.45

04/30/1998   0.58 –0.95   0.64

05/31/1998 –2.12 –1.65 –1.70

06/30/1998   3.65   2.96   3.65

07/31/1998 –1.46 –0.30 –2.15

08/31/1998 –14.89  –16.22  –13.87  

09/30/1998   5.95   4.54   4.40
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EXHIBIT 3.3     (Continued)  

Month Market Excess Return Excess Return for Fund A Excess Return for Fund B

10/31/1998   7.81   5.09   4.24

11/30/1998   5.75   4.88   5.25

12/31/1998   5.38   7.21   6.80

01/31/1999   3.83   2.25   2.76

02/28/1999 –3.46 –4.48 –3.36

03/31/1999   3.57   2.66   2.84

04/30/1999   3.50   1.89   1.85

05/31/1999 –2.70 –2.46 –1.66

06/30/1999   5.15   4.03   4.96

07/31/1999 –3.50 –3.53 –2.10

08/31/1999 –0.89 –1.44 –2.45

09/30/1999 –3.13 –3.25 –1.72

10/31/1999   5.94   5.16   1.90

11/30/1999   1.67   2.87   3.27

12/31/1999   5.45   8.04   6.65

01/31/2000 –5.43 –4.50 –1.24

02/29/2000 –2.32   1.00   2.54

03/31/2000   9.31   6.37   5.39

04/30/2000 –3.47 –4.50 –5.01

05/31/2000 –2.55 –3.37 –4.97

06/30/2000   2.06   0.14   5.66

07/31/2000 –2.04 –1.41   1.41

08/31/2000   5.71   6.80   5.51

09/30/2000 –5.79 –5.24 –5.32

10/31/2000 –0.98 –2.48 –5.40

11/30/2000 –8.39 –7.24 –11.51  

12/31/2000 –0.01   2.11   3.19

01/31/2001   3.01 –0.18   4.47

02/28/2001 –9.50 –5.79 –8.54

03/31/2001 –6.75 –5.56 –6.23

04/30/2001   7.38   4.86   4.28

05/31/2001   0.35   0.15   0.13

06/30/2001 –2.71 –3.76 –1.61

07/31/2001 –1.28 –2.54 –2.10

08/31/2001 –6.57 –5.09 –5.72

09/30/2001 –8.36 –6.74 –7.55

10/31/2001   1.69   0.79   2.08

11/30/2001   7.50   4.32   5.45

12/31/2001   0.73   1.78   1.99

01/31/2002 –1.60 –1.13 –3.41

02/28/2002 –2.06 –0.97 –2.81

03/31/2002   3.63   3.25   4.57

04/30/2002 –6.21 –4.53 –3.47

05/31/2002 –0.88 –1.92 –0.95

06/30/2002 –7.25 –6.05 –5.42

07/31/2002 –7.95 –6.52 –7.67
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large cap funds, the S&P 500 was used as the benchmark. The risk-free
rate used was the 90-day Treasury bill rate. 

The results of the regression for both mutual funds are shown in
Exhibit 3.4. The estimated β for both mutual funds is statistically signifi-
cantly different from zero. If a mutual fund had a β equal to the market,
its β would be 1. To test if the estimated β is statistically significantly dif-
ferent from 1, we compute the following t-statistic:

EXHIBIT 3.3     (Continued) 

Month Market Excess Return Excess Return for Fund A Excess Return for Fund B

08/31/2002   0.52 –0.20   1.72

09/30/2002 –11.01  –9.52 –6.18

10/31/2002   8.66   3.32   4.96

11/30/2002   5.77   3.69   1.61

12/31/2002 –5.99 –4.88 –3.07

01/31/2003 –2.72 –1.73 –2.44

02/28/2003 –1.59 –0.57 –2.37

03/31/2003   0.87   1.01   1.50

04/30/2003   8.14   6.57   5.34

05/31/2003   5.18   4.87   6.56

06/30/2003   1.18   0.59   1.08

07/31/2003   1.69   1.64   3.54

08/31/2003   1.88   1.25   1.06

09/30/2003 –1.14 –1.42 –1.20

10/31/2003   5.59   5.23   4.14

11/30/2003   0.81   0.67   1.11

12/31/2003   5.16   4.79   4.69

01/31/2004   1.77   0.80   2.44

02/29/2004   1.33   0.91   1.12

03/31/2004 –1.60 –0.98 –1.88

04/30/2004 –1.65 –2.67 –1.81

05/31/2004   1.31   0.60   0.77

06/30/2004   1.86   1.58   1.48

07/31/2004 –3.41 –2.92 –4.36

08/31/2004   0.29 –0.44 –0.11

09/30/2004   0.97   1.09   1.88

10/31/2004   1.42   0.22   1.10

11/30/2004   3.90   4.72   5.53

12/31/2004   3.24   2.46   3.27

β 1–
Standard error of β
--------------------------------------------------
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EXHIBIT 3.4  Characteristic Line for Mutual Funds A and B

a Null hypothesis is that β is equal to zero.

From the results in Exhibit 3.3, we compute the previous t-statistic:

From the t-statistics, it can be seen that both mutual funds have a β that
is statistically significantly different from 1.11

As explained in Chapter 5, if the CAPM is assumed to be a valid
description of asset pricing, then α in the characteristic is a measure of
the performance of the mutual fund manager after adjusting for market
risk. This α is referred to as the Jensen measure. The α for mutual fund
A is negative and statistically significant at the 5% level. This means
that if the CAPM is valid, the manager of mutual fund A underper-
formed the market over the period after adjusting for market risk. The α
for mutual fund B is positive but not statistically significant. Hence, the
manger of this mutual fund neither outperformed nor underperformed
the market over the period after adjusting for market risk. 

Coefficient Coefficient Estimate Standard Error t-statistica p-value

Fund A

α –0.206 0.102 –2.014 0.046
β   0.836 0.022 37.176 0.000
R2 0.92
p-value 0.00

Fund B

α   0.010 0.140   0.073 0.942
β   0.816 0.031 26.569 0.000
R2 0.86
p-value   0.000

A B

Estimated β 0.836 0.816
Standard error of β 0.022 0.031
t-statistic –7.45    –5.94    

11 The concepts of p values, t-statistics, and statistical significance are explained in
Chapter 2.
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Empirical Duration of Common Stock
A commonly used measure of the interest-rate sensitivity of an asset’s
value is its duration.12 (See Chapter 5 for a discussion of duration.)
Duration can be estimated by using a valuation model or empirically by
estimating from historical returns the sensitivity of the asset’s value to
changes in interest rates. When duration is measured in the latter way, it
is called empirical duration. Since it is estimated using regression analy-
sis, it is sometimes referred to as regression-based duration.

A simple linear regression for computing empirical duration using
monthly historical data is13

where 

The estimated βi is the empirical duration for asset i.
We will apply this linear regression to monthly data from October

1989 to October 2003 shown in Exhibit 3.514 for the following asset
indexes:

 ■ Electric Utility sector of the S&P 500
 ■ Commercial Bank sector of the S&P 500
 ■ Lehman U.S. Aggregate Bond Index

The yield change (xt) is measured by the Lehman Treasury Index. The
regression results are shown in Exhibit 3.6. We report the empirical dura-
tion (βi), the t-statistic, the p-value, the R2, and the intercept term. Nega-
tive values are reported for the empirical duration. In practice, however,
the duration is quoted as a positive value. For the Electric Utility sector
and the Lehman U.S. Aggregate Bond Index, the empirical duration is sta-
tistically significant at any reasonable level of significance.

12 Duration is interpreted as the approximate percentage change in the value of an
asset for a 100-basis-point change in interest. The concept of duration in financial
econometrics is used in another sense, having nothing to do with a measure of inter-
est rate risk. In market microstructure theory, “trade” duration is the time span be-
tween two consecutive trades.
13 See Frank K. Reilly, David J. Wright, and Robert R. Johnson “An Analysis of
the Interest Rate Sensitivity of Common Stocks,” forthcoming Journal of Portfolio
Management.

yit = the percentage change in the value of asset i for month t
xt = the change in the Treasury yield for month t 

14 The data were supplied by David Wright of Northern Illinois University. 

yit αi βixt eit+ +=
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EXHIBIT 3.5  Data for Empirical Duration Illustration

Month

Change in
Lehman Bros

Treasury
Yield

S&P500
Return

Monthly Returns for

Electric
Utility Sector

Commercial
Bank Sector

Lehman U.S. 
Aggregate Bond Index

Oct-89 –0.46 –2.33   2.350 –11.043    2.4600

Nov-89 –0.10   2.08   2.236 –3.187   0.9500

Dec-89   0.12   2.36   3.794 –1.887   0.2700

Jan–90   0.43 –6.71 –4.641 –10.795  –1.1900

Feb-90   0.09   1.29   0.193   4.782   0.3200

Mar-90   0.20   2.63 –1.406 –4.419   0.0700

Apr-90   0.34 –2.47 –5.175 –4.265 –0.9200

May-90 –0.46   9.75   5.455 12.209   2.9600

Jun-90 –0.20 –0.70   0.966 –5.399   1.6100

Jul-90 –0.21 –0.32   1.351 –8.328   1.3800

Aug-90   0.37 –9.03 –7.644 –10.943  –1.3400

Sep-90 –0.06 –4.92   0.435 –15.039    0.8300

Oct-90 –0.23 –0.37 10.704 –10.666    1.2700

Nov-90 –0.28   6.44   2.006 18.892   2.1500

Dec-90 –0.23   2.74   1.643   6.620   1.5600

Jan-91 –0.13   4.42 –1.401   8.018   1.2400

Feb-91   0.01   7.16   4.468 12.568   0.8500

Mar-91   0.03   2.38   2.445   5.004   0.6900

Apr-91 –0.15   0.28 –0.140   7.226   1.0800

May-91   0.06   4.28 –0.609   7.501   0.5800

Jun-91   0.15 –4.57 –0.615 –7.865 –0.0500

Jul-91 –0.13   4.68   4.743   7.983   1.3900

Aug-91 –0.37   2.35   3.226   9.058   2.1600

Sep-91 –0.33 –1.64   4.736 –2.033   2.0300

Oct-91 –0.17   1.34   1.455   0.638   1.1100

Nov-91 –0.15 –4.04   2.960 –9.814   0.9200

Dec-91 –0.59 11.43   5.821 14.773   2.9700

Jan-92   0.42 –1.86 –5.515   2.843 –1.3600

Feb-92   0.10   1.28 –1.684   8.834   0.6506

Mar-92   0.27 –1.96 –0.296 –3.244 –0.5634

Apr-92 –0.10   2.91   3.058   4.273   0.7215

May-92 –0.23   0.54   2.405   2.483   1.8871

Jun-92 –0.26 –1.45   0.492   1.221   1.3760

Jul-92 –0.41   4.03   6.394 –0.540   2.0411

Aug-92 –0.13 –2.02 –1.746 –5.407   1.0122

Sep-92 –0.26   1.15   0.718   1.960   1.1864

Oct-92   0.49   0.36 –0.778   2.631 –1.3266

Nov-92   0.26   3.37 –0.025   7.539   0.0228

Dec-92 –0.24   1.31   3.247   5.010   1.5903

Jan-93 –0.36   0.73   3.096   4.203   1.9177

Feb-93 –0.29   1.35   6.000   3.406   1.7492

Mar-93   0.02   2.15   0.622   3.586   0.4183

Apr-93 –0.10 –2.45 –0.026 –5.441   0.6955
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EXHIBIT 3.5     (Continued) 

Month

Change in
Lehman Bros

Treasury
Yield

S&P500
Return

Monthly Returns for

Electric
Utility Sector

Commercial
Bank Sector

Lehman U.S. 
Aggregate Bond Index

May-93   0.25   2.70 –0.607 –0.647   0.1268

Jun-93 –0.30   0.33   2.708   4.991   1.8121

Jul-93   0.05 –0.47   2.921   0.741   0.5655

Aug-93 –0.31   3.81   3.354   0.851   1.7539

Sep-93   0.00 –0.74 –1.099   3.790   0.2746

Oct-93   0.05   2.03 –1.499 –7.411   0.3732

Nov-93   0.26 –0.94 –5.091 –1.396 –0.8502

Dec-93   0.01   1.23   2.073   3.828   0.5420

Jan-94 –0.17   3.35 –2.577   4.376   1.3502

Feb-94   0.55 –2.70 –5.683 –4.369 –1.7374

Mar-94   0.55 –4.35 –4.656 –3.031 –2.4657

Apr-94   0.37   1.30   0.890   3.970 –0.7985

May-94   0.18   1.63 –5.675   6.419 –0.0138

Jun-94   0.16 –2.47 –3.989 –2.662 –0.2213

Jul-94 –0.23   3.31   5.555   2.010   1.9868

Aug-94   0.12   4.07   0.851   3.783   0.1234

Sep-94   0.43 –2.41 –2.388 –7.625 –1.4717

Oct-94   0.18   2.29   1.753   1.235 –0.0896

Nov-94   0.37 –3.67   2.454 –7.595 –0.2217

Dec-94   0.11   1.46   0.209 –0.866   0.6915

Jan-95 –0.33   2.60   7.749   6.861   1.9791

Feb-95 –0.41   3.88 –0.750   6.814   2.3773

Mar-95   0.01   2.96 –2.556 –1.434   0.6131

Apr-95 –0.18   2.91   3.038   4.485   1.3974

May-95 –0.72   3.95   7.590   9.981   3.8697

Jun-95 –0.05   2.35 –0.707   0.258   0.7329

Jul-95   0.14   3.33 –0.395   4.129 –0.2231

Aug-95 –0.10   0.27 –0.632   5.731   1.2056

Sep-95 –0.05   4.19 v6.987   5.491   0.9735

Oct-95 –0.21 –0.35   2.215 –1.906   1.3002

Nov-95 –0.23   4.40 –0.627   7.664   1.4982

Dec-95 –0.18   1.85   6.333   0.387   1.4040

Jan-96 –0.13   3.44   2.420   3.361   0.6633

Feb-96   0.49   0.96 –3.590   4.673 –1.7378

Mar-96   0.31   0.96 –1.697   2.346 –0.6954

Apr-96   0.25   1.47 –4.304 –1.292 –0.5621

May-96   0.18   2.58   1.864   2.529 –0.2025

Jun-96 –0.14   0.41   5.991 –0.859   1.3433

Jul-96   0.08 –4.45 –7.150   0.466   0.2736
Aug-96   0.15   2.12   1.154   4.880 –0.1675

Sep-96 –0.23   5.62   0.682   6.415   1.7414

Oct-96 –0.35   2.74   4.356   8.004   2.2162

Nov-96 –0.21   7.59   1.196 10.097   1.7129
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EXHIBIT 3.5     (Continued)  

Month

Change in
Lehman Bros

Treasury
Yield

S&P500
Return

Monthly Returns for

Electric
Utility Sector

Commercial
Bank Sector

Lehman U.S. 
Aggregate Bond Index

Dec-96   0.30 –1.96 –0.323 –4.887 –0.9299

Jan-97   0.06   6.21   0.443   8.392   0.3058

Feb-97   0.11   0.81   0.235   5.151   0.2485

Mar-97   0.36 –4.16 –4.216 –7.291 –1.1083

Apr-97 –0.18   5.97 –2.698   5.477   1.4980

May-97 –0.07   6.14   4.240   3.067   0.9451

Jun-97 –0.11   4.46   3.795   4.834   1.1873

Jul-97 –0.43   7.94   2.627 12.946   2.6954

Aug-97   0.30 –5.56 –2.423 –6.205 –0.8521

Sep-97 –0.19   5.48   5.010   7.956   1.4752

Oct-97 –0.21 –3.34   1.244 –2.105   1.4506

Nov-97   0.06   4.63   8.323   3.580   0.4603

Dec-97 –0.11   1.72   7.902   3.991   1.0063

Jan-98 –0.25   1.11 –4.273 –4.404   1.2837

Feb-98   0.17   7.21   2.338   9.763 –0.0753

Mar-98   0.05   5.12   7.850   7.205   0.3441

Apr-98   0.00   1.01 –3.234   2.135   0.5223

May-98 –0.08 –1.72 –0.442 –3.200   0.9481

Jun-98 –0.09   4.06   3.717   2.444   0.8483

Jul-98   0.03 –1.06 –4.566   0.918   0.2122

Aug-98 –0.46 –14.46    7.149 –24.907    1.6277

Sep-98 –0.53   6.41   5.613   2.718   2.3412

Oct-98   0.05   8.13 –2.061   9.999 –0.5276

Nov-98   0.17   6.06   1.631   5.981   0.5664

Dec-98   0.02   5.76   2.608   2.567   0.3007

Jan-99 –0.01   4.18 –6.072 –0.798   0.7143

Feb-99   0.55 –3.11 –5.263   0.524 –1.7460

Mar-99 –0.05   4.00 –2.183   1.370   0.5548

Apr-99   0.05   3.87   6.668   7.407   0.3170

May-99   0.31 –2.36   7.613 –6.782 –0.8763

Jun-99   0.11   5.55 –4.911   5.544 –0.3194

Jul-99   0.11 –3.12 –2.061 –7.351 –0.4248

Aug-99   0.10 –0.50   1.508 –4.507 –0.0508

Sep-99 –0.08 –2.74 –5.267 –6.093   1.1604

Oct-99   0.11   6.33   1.800 15.752   0.3689

Nov-99   0.16   2.03 –8.050 –7.634 –0.0069

Dec-99   0.24   5.89 –0.187 –9.158 –0.4822

Jan-00   0.19 –5.02   5.112 –2.293 –0.3272

Feb-00 –0.13 –1.89 –10.030 –12.114    1.2092

Mar-00 –0.20   9.78   1.671 18.770   1.3166

Apr-00   0.17 –3.01 14.456 –5.885 –0.2854

May-00   0.07 –2.05   2.985 11.064 –0.0459

Jun-00 –0.26   2.47 –5.594 –14.389    2.0803
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EXHIBIT 3.5     (Continued) 

Month

Change in
Lehman Bros

Treasury
Yield

S&P500
Return

Monthly Returns for

Electric
Utility Sector

Commercial
Bank Sector

Lehman U.S. 
Aggregate Bond Index

Jul-00 –0.08 –1.56   6.937   6.953   0.9077

Aug-00 –0.17   6.21 13.842 12.309   1.4497

Sep-00 –0.03 –5.28 12.413   1.812   0.6286

Oct-00 –0.06 –0.42 –3.386 –1.380   0.6608

Nov-00 –0.31 –7.88   3.957 –3.582   1.6355

Dec-00 –0.33   0.49   4.607 12.182   1.8554

Jan-01 –0.22   3.55 –11.234    3.169   1.6346

Feb-01 –0.16 –9.12   6.747 –3.740   0.8713

Mar-01 –0.08 –6.33   1.769   0.017   0.5018

Apr-01   0.22   7.77   5.025 –1.538 –0.4151

May-01   0.00   0.67   0.205   5.934   0.6041

Jun-01   0.01 –2.43 –7.248   0.004   0.3773

Jul-01 –0.40 –0.98 –5.092   2.065   2.2357

Aug-01 –0.14 –6.26 –0.149 –3.940   1.1458

Sep-01 –0.41 –8.08 –10.275  –4.425   1.1647

Oct-01 –0.39   1.91   1.479 –7.773   2.0930

Nov-01   0.41   7.67 –0.833   7.946 –1.3789

Dec-01   0.21   0.88   3.328   3.483 –0.6357

Jan-02   0.00 –1.46 –3.673   1.407   0.8096

Feb-02 –0.08 –1.93 –2.214 –0.096   0.9690

Mar-02   0.56   3.76 10.623   7.374 –1.6632

Apr-02 –0.44 –6.06   1.652   2.035   1.9393

May-02 –0.06 –0.74 –3.988   1.247   0.8495

Jun-02 –0.23 –7.12 –4.194 –3.767   0.8651

Jul-02 –0.50 –7.80 –10.827  –4.957   1.2062

Aug-02 –0.17   0.66   2.792   3.628   1.6882

Sep-02 –0.45 –10.87  –8.677 –10.142    1.6199

Oct-02   0.11   8.80 –2.802   5.143 –0.4559

Nov-02   0.34   5.89   1.620   0.827 –0.0264

Dec-02 –0.45 –5.88   5.434 –2.454   2.0654

Jan-03   0.11 –2.62 –3.395 –0.111   0.0855

Feb-03 –0.21 –1.50 –2.712 –1.514   1.3843

Mar-03   0.05   0.97   4.150 –3.296 –0.0773

Apr-03 –0.03   8.24   5.438   9.806   0.8254

May-03 –0.33   5.27 10.519   5.271   1.8645

Jun-03   0.08   1.28   1.470   1.988 –0.1986

Jul-03   0.66   1.76 –5.649   3.331 –3.3620

Aug-03   0.05   1.95   1.342 –1.218   0.6637

Sep-03 –0.46 –1.06   4.993 –0.567   2.6469

Oct-03   0.33   5.66   0.620   8.717 –0.9320

Nov-03   0.13   0.88   0.136   1.428   0.2391

Dec-03 –0.14   5.24 NA NA
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A multiple regression model to estimate the empirical duration that
has been suggested is

EXHIBIT 3.6  Estimation of Regression Parameters for Empirical Duration

Electric
Utility Sector

Commercial
Bank Sector

Lehman U.S.
Aggregate Bond Index

a. Simple Linear Regression
Intercept

αi    0.6376   1.1925     0.5308
t-statistic   1.8251   2.3347   21.1592
p-value   0.0698   0.0207     0.0000

Change in the Treasury yield
βi –4.5329 –2.5269   –4.1062
t-statistic –3.4310 –1.3083 –43.2873
p-value   0.0008   0.1926     0.0000
R2   0.0655   0.0101     0.9177
F-value 11.7717   1.7116 1873.8000  
p-value   0.0007   0.1926     0.0000

b. Multiple Linear Regression

Intercept
αi   0.3937   0.2199     0.5029
t-statistic   1.1365   0.5835   21.3885
p-value   0.2574   0.5604      0.0000

Change in the Treasury yield
β1i –4.3780 –1.9096   –4.0885
t-statistic –3.4143 –1.3686 –46.9711
p-value   0.0008   0.1730     0.0000

Return on the S&P 500
β2i   0.2664   1.0620     0.0304
t-statistic   3.4020 12.4631     5.7252
p-value   0.0008   0.0000     0.0000
R2   0.1260   0.4871     0.9312
F-value 12.0430 79.3060 1130.5000  
p-value     0.00001     0.00000       0.00000

yit αi β1ix1t β2ix2t eit+ + +=
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where yit and x1t are the same as for the simple linear regression and x2t
is the return on the S&P 500. The results for this model are also shown
in Exhibit 3.6.

The results of the multiple regression indicate that the returns for
the Electric Utility sector are affected by both the change in Treasury
rates and the return on the stock market as proxied by the S&P 500. For
the Commercial Bank sector, the coefficient of the changes in Treasury
rates is not statistically significant, however the coefficient of the return
on the S&P 500 is statistically significant. The opposite is the case for
the Lehman U.S. Aggregate Bond Index. It is interesting to note that the
duration for the Lehman U.S. Aggregate Bond Index as reported by Leh-
man Brothers was about 4.55 in November 2003. The empirical dura-
tion is 4.1.15

Predicting the 10-Year Treasury Yield16

The U.S. Treasury securities market is the world’s most liquid bond market.
The U.S. Department of the Treasury issues two types of securities: zero-
coupon securities and coupon securities. Securities issued with one year or
less to maturity are called Treasury bills; they are issued as zero-coupon
instruments. Treasury securities with more than one year to maturity are
issued as coupon-bearing securities. Treasury securities from more than one
year up to 10 years of maturity are called Treasury notes; Treasury securi-
ties with a maturity in excess of 10 years are called Treasury bonds. The
U.S. Treasury auctions securities of specified maturities on a regular calen-
dar basis. The Treasury currently issues 30-year Treasury bonds but had
stopped issuance of them from October 2001 to January 2006.

An important Treasury coupon bond is the 10-year Treasury note. In
this illustration we will try to forecast this rate based on two independent
variables suggested by economic theory. A well-known theory of interest
rates is that the interest rate in any economy consists of two compo-
nents.17 The first is the expected rate of inflation. The second is the real
rate of interest. We use regression analysis to produce a model to forecast
the yield on the 10-year Treasury note (simply, the 10-year Treasury
yield)—the dependent variable—and the expected rate of inflation (sim-
ply, expected inflation) and the real rate of interest (simply, real rate).

15 While the sign of the coefficient that is an estimate of duration is negative (which
means the price moves in the opposite direction to the change in interest rates), mar-
ket participants talk in terms of the positive value of duration for a bond that has
this characteristic.
16 We are grateful to Robert Scott of the Bank for International Settlement for sug-
gesting this illustration and for providing the data.
17 This relationship is known as Fisher’s Law.

c03-RegressionAnalysisTheory  Page 113  Thursday, October 26, 2006  2:40 PM



114 FINANCIAL ECONOMETRICS

The 10-year Treasury yield is observable, but we need a proxy for
the two independent variables (i.e., the expected rate of inflation and
the real rate of interest at the time) as they are not observable at the
time of the forecast. Keep in mind that since we are forecasting, we do
not use as our independent variable information that is unavailable at
the time of the forecast. Consequently, we need a proxy available at the
time of the forecast.

The inflation rate is available from the U.S. Department of Com-
merce. However, we need a proxy for expected inflation. We can use
some type of average of past inflation as a proxy. In our model, we use a
5-year moving average. There are more sophisticated methodologies for
calculating expected inflation, but the 5-year moving average is suffi-
cient for our illustration.18 For the real rate, we use the rate on 3-month
certificates of deposit (CDs). Again, we use a 5-year moving average. 

The monthly data for the three variables from November 1965 to
December 2005 (482 observations) are provided in Exhibit 3.7. The
regression results are reported in Exhibit 3.8. As can be seen, the coeffi-
cients of both independent variables are positive (as would be predicted
by economic theory) and highly significant. 

STEPWISE REGRESSION 

Stepwise regression is a model-building technique for regression designs.
The stepwise regression methodology is based on identifying an initial
model and iteratively “stepping,” that is, repeatedly altering the model
at the previous step by adding or removing a regressor. Addition or
removal of regressors is performed in accordance with the “stepping cri-
teria,” and terminates when stepping is no longer possible given the
stepping criteria, or when a specified maximum number of steps has
been reached.     

Stepwise regression critically depends on the stepping criteria that
must avoid overfitting. We choose the initial model at Step 0. There are
two different methodologies for stepwise regression, the backward step-
wise method and backward removal method. Both methods start with a
rich model that includes all regressors specified to be included in the
design for the analysis. The initial model for these methods is therefore
the whole model. 

18 For example, one can use an exponential smoothing of actual inflation, a method-
ology used by the OECD.

c03-RegressionAnalysisTheory  Page 114  Thursday, October 26, 2006  2:40 PM



Regression Analysis: Theory and Estimation 115

EXHIBIT 3.7  Monthly Data for 10-Year Treasury Yield, Expected Inflation, and 
Real Rate: November 1965–December 2005

Date

10-Yr.
Trea.
Yield

Exp.
Infl.

Real
Rate Date

10-Yr.
Trea.
Yield

Exp.
Infl.

Real
Rate Date

10-Yr.
Trea.
Yield

Exp.
Infl.

Real
Rate

1965

Nov 4.45 1.326 2.739

Dec 4.62 1.330 2.757

1966 1969 1972

Jan 4.61 1.334 2.780 Jan 6.04 2.745 2.811 Jan 5.95 4.959 2.401

Feb 4.83 1.348 2.794 Feb 6.19 2.802 2.826 Feb 6.08 4.959 2.389

Mar 4.87 1.358 2.820 Mar 6.3 2.869 2.830 Mar 6.07 4.953 2.397

Apr 4.75 1.372 2.842 Apr 6.17 2.945 2.827 Apr 6.19 4.953 2.403

May 4.78 1.391 2.861 May 6.32 3.016 2.862 May 6.13 4.949 2.398

June 4.81 1.416 2.883 June 6.57 3.086 2.895 June 6.11 4.941 2.405

July 5.02 1.440 2.910 July 6.72 3.156 2.929 July 6.11 4.933 2.422

Aug 5.22 1.464 2.945 Aug 6.69 3.236 2.967 Aug 6.21 4.924 2.439

Sept 5.18 1.487 2.982 Sept 7.16 3.315 3.001 Sept 6.55 4.916 2.450

Oct 5.01 1.532 2.997 Oct 7.1 3.393 3.014 Oct 6.48 4.912 2.458

Nov 5.16 1.566 3.022 Nov 7.14 3.461 3.045 Nov 6.28 4.899 2.461

Dec 4.84 1.594 3.050 Dec 7.65 3.539 3.059 Dec 6.36 4.886 2.468

1967 1970 1973

Jan 4.58 1.633 3.047 Jan 7.80 3.621 3.061 Jan 6.46 4.865 2.509

Feb 4.63 1.667 3.050 Feb 7.24 3.698 3.064 Feb 6.64 4.838 2.583

Mar 4.54 1.706 3.039 Mar 7.07 3.779 3.046 Mar 6.71 4.818 2.641

Apr 4.59 1.739 3.027 Apr 7.39 3.854 3.035 Apr 6.67 4.795 2.690

May 4.85 1.767 3.021 May 7.91 3.933 3.021 May 6.85 4.776 2.734

June 5.02 1.801 3.015 June 7.84 4.021 3.001 June 6.90 4.752 2.795

July 5.16 1.834 3.004 July 7.46 4.104 2.981 July 7.13 4.723 2.909

Aug 5.28 1.871 2.987 Aug 7.53 4.187 2.956 Aug 7.40 4.699 3.023

Sept 5.3 1.909 2.980 Sept 7.39 4.264 2.938 Sept 7.09 4.682 3.110

Oct 5.48 1.942 2.975 Oct 7.33 4.345 2.901 Oct 6.79 4.668 3.185

Nov 5.75 1.985 2.974 Nov 6.84 4.436 2.843 Nov 6.73 4.657 3.254

Dec 5.7 2.027 2.972 Dec 6.39 4.520 2.780 Dec 6.74 4.651 3.312

1968 1971 1974

Jan 5.53 2.074 2.959 Jan 6.24 4.605 2.703 Jan 6.99 4.652 3.330

Feb 5.56 2.126 2.943 Feb 6.11 4.680 2.627 Feb 6.96 4.653 3.332

Mar 5.74 2.177 2.937 Mar 5.70 4.741 2.565 Mar 7.21 4.656 3.353

Apr 5.64 2.229 2.935 Apr 5.83 4.793 2.522 Apr 7.51 4.657 3.404

May 5.87 2.285 2.934 May 6.39 4.844 2.501 May 7.58 4.678 3.405

June 5.72 2.341 2.928 June 6.52 4.885 2.467 June 7.54 4.713 3.419

July 5.5 2.402 2.906 July 6.73 4.921 2.436 July 7.81 4.763 3.421

Aug 5.42 2.457 2.887 Aug 6.58 4.947 2.450 Aug 8.04 4.827 3.401

Sept 5.46 2.517 2.862 Sept 6.14 4.964 2.442 Sept 8.04 4.898 3.346

Oct 5.58 2.576 2.827 Oct 5.93 4.968 2.422 Oct 7.9 4.975 3.271

Nov 5.7 2.639 2.808 Nov 5.81 4.968 2.411 Nov 7.68 5.063 3.176

Dec 6.03 2.697 2.798 Dec 5.93 4.964 2.404 Dec 7.43 5.154 3.086
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EXHIBIT 3.7     (Continued)

Date

10-Yr.
Trea.
Yield

Exp.
Infl.

Real
Rate Date

10-Yr.
Trea.
Yield

Exp.
Infl.

Real
Rate Date

10-Yr.
Trea.
Yield

Exp.
Infl.

Real
Rate

1975 1978 1981

Jan 7.5 5.243 2.962 Jan 7.96 6.832 1.068 Jan 12.57 8.520 1.132

Feb 7.39 5.343 2.827 Feb 8.03 6.890 0.995 Feb 13.19 8.594 1.242

Mar 7.73 5.431 2.710 Mar 8.04 6.942 0.923 Mar 13.12 8.649 1.336

Apr 8.23 5.518 2.595 Apr 8.15 7.003 0.854 Apr 13.68 8.700 1.477

May 8.06 5.585 2.477 May 8.35 7.063 0.784 May 14.1 8.751 1.619

June 7.86 5.639 2.384 June 8.46 7.124 0.716 June 13.47 8.802 1.755

July 8.06 5.687 2.311 July 8.64 7.191 0.598 July 14.28 8.877 1.897

Aug 8.4 5.716 2.271 Aug 8.41 7.263 0.482 Aug 14.94 8.956 2.037

Sept 8.43 5.738 2.241 Sept 8.42 7.331 0.397 Sept 15.32 9.039 2.155

Oct 8.15 5.753 2.210 Oct 8.64 7.400 0.365 Oct 15.15 9.110 2.256

Nov 8.05 5.759 2.200 Nov 8.81 7.463 0.322 Nov 13.39 9.175 2.305

Dec 8 5.761 2.186 Dec 9.01 7.525 0.284 Dec 13.72 9.232 2.392

1976 1979 1982

Jan 7.74 5.771 2.166 Jan 9.1 7.582 0.254 Jan 14.59 9.285 2.497

Feb 7.79 5.777 2.164 Feb 9.1 7.645 0.224 Feb 14.43 9.334 2.612

Mar 7.73 5.800 2.138 Mar 9.12 7.706 0.174 Mar 13.86 9.375 2.741

Apr 7.56 5.824 2.101 Apr 9.18 7.758 0.108 Apr 13.87 9.417 2.860

May 7.9 5.847 2.060 May 9.25 7.797 0.047 May 13.62 9.456 2.958

June 7.86 5.870 2.034 June 8.91 7.821 -0.025 June 14.3 9.487 3.095

July 7.83 5.900 1.988 July 8.95 7.834 -0.075 July 13.95 9.510 3.183

Aug 7.77 5.937 1.889 Aug 9.03 7.837 -0.101 Aug 13.06 9.524 3.259

Sept 7.59 5.981 1.813 Sept 9.33 7.831 -0.085 Sept 12.34 9.519 3.321

Oct 7.41 6.029 1.753 Oct 10.3 7.823 0.011 Oct 10.91 9.517 3.363

Nov 7.29 6.079 1.681 Nov 10.65 7.818 0.079 Nov 10.55 9.502 3.427

Dec 6.87 6.130 1.615 Dec 10.39 7.818 0.154 Dec 10.54 9.469 3.492

1977 1980 1983

Jan 7.21 6.176 1.573 Jan 10.8 7.825 0.261 Jan 10.46 9.439 3.553

Feb 7.39 6.224 1.527 Feb 12.41 7.828 0.418 Feb 10.72 9.411 3.604

Mar 7.46 6.272 1.474 Mar 12.75 7.849 0.615 Mar 10.51 9.381 3.670

Apr 7.37 6.323 1.427 Apr 11.47 7.879 0.701 Apr 10.4 9.340 3.730

May 7.46 6.377 1.397 May 10.18 7.926 0.716 May 10.38 9.288 3.806

June 7.28 6.441 1.340 June 9.78 7.989 0.702 June 10.85 9.227 3.883

July 7.33 6.499 1.293 July 10.25 8.044 0.695 July 11.38 9.161 3.981

Aug 7.4 6.552 1.252 Aug 11.1 8.109 0.716 Aug 11.85 9.087 4.076

Sept 7.34 6.605 1.217 Sept 11.51 8.184 0.740 Sept 11.65 9.012 4.152

Oct 7.52 6.654 1.193 Oct 11.75 8.269 0.795 Oct 11.54 8.932 4.204

Nov 7.58 6.710 1.154 Nov 12.68 8.356 0.895 Nov 11.69 8.862 4.243

Dec 7.69 6.768 1.119 Dec 12.84 8.446 1.004 Dec 11.83 8.800 4.276
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EXHIBIT 3.7     (Continued)

Date

10-Yr.
Trea.
Yield

Exp.
Infl.

Real
Rate Date

10-Yr.
Trea.
Yield

Exp.
Infl.

Real
Rate Date

10-Yr.
Trea.
Yield

Exp.
Infl.

Real
Rate

1984 1987 1990

Jan 11.67 8.741 4.324 Jan 7.08 4.887 4.607 Jan 8.418 4.257 3.610

Feb 11.84 8.670 4.386 Feb 7.25 4.793 4.558 Feb 8.515 4.254 3.595

Mar 12.32 8.598 4.459 Mar 7.25 4.710 4.493 Mar 8.628 4.254 3.585

Apr 12.63 8.529 4.530 Apr 8.02 4.627 4.445 Apr 9.022 4.260 3.580

May 13.41 8.460 4.620 May 8.61 4.551 4.404 May 8.599 4.264 3.586

June 13.56 8.393 4.713 June 8.4 4.476 4.335 June 8.412 4.272 3.589

July 13.36 8.319 4.793 July 8.45 4.413 4.296 July 8.341 4.287 3.568

Aug 12.72 8.241 4.862 Aug 8.76 4.361 4.273 Aug 8.846 4.309 3.546

Sept 12.52 8.164 4.915 Sept 9.42 4.330 4.269 Sept 8.795 4.335 3.523

Oct 12.16 8.081 4.908 Oct 9.52 4.302 4.259 Oct 8.617 4.357 3.503

Nov 11.57 7.984 4.919 Nov 8.86 4.285 4.243 Nov 8.252 4.371 3.493

Dec 12.5 7.877 4.928 Dec 8.99 4.279 4.218 Dec 8.067 4.388 3.471

1985 1988 1991

Jan 11.38 7.753 4.955 Jan 8.67 4.274 4.180 Jan 8.007 4.407 3.436

Feb 11.51 7.632 4.950 Feb 8.21 4.271 4.149 Feb 8.033 4.431 3.396

Mar 11.86 7.501 4.900 Mar 8.37 4.268 4.104 Mar 8.061 4.451 3.360

Apr 11.43 7.359 4.954 Apr 8.72 4.270 4.075 Apr 8.013 4.467 3.331

May 10.85 7.215 5.063 May 9.09 4.280 4.036 May 8.059 4.487 3.294

June 10.16 7.062 5.183 June 8.92 4.301 3.985 June 8.227 4.504 3.267

July 10.31 6.925 5.293 July 9.06 4.322 3.931 July 8.147 4.517 3.247

Aug 10.33 6.798 5.346 Aug 9.26 4.345 3.879 Aug 7.816 4.527 3.237

Sept 10.37 6.664 5.383 Sept 8.98 4.365 3.844 Sept 7.445 4.534 3.223

Oct 10.24 6.528 5.399 Oct 8.8 4.381 3.810 Oct 7.46 4.540 3.207

Nov 9.78 6.399 5.360 Nov 8.96 4.385 3.797 Nov 7.376 4.552 3.177

Dec 9.26 6.269 5.326 Dec 9.11 4.384 3.787 Dec 6.699 4.562 3.133

1986 1989 1992

Jan 9.19 6.154 5.284 Jan 9.09 4.377 3.786 Jan 7.274 4.569 3.092

Feb 8.7 6.043 5.249 Feb 9.17 4.374 3.792 Feb 7.25 4.572 3.054

Mar 7.78 5.946 5.225 Mar 9.36 4.367 3.791 Mar 7.528 4.575 3.014

Apr 7.3 5.858 5.143 Apr 9.18 4.356 3.784 Apr 7.583 4.574 2.965

May 7.71 5.763 5.055 May 8.86 4.344 3.758 May 7.318 4.571 2.913

June 7.8 5.673 4.965 June 8.28 4.331 3.723 June 7.121 4.567 2.864

July 7.3 5.554 4.878 July 8.02 4.320 3.679 July 6.709 4.563 2.810

Aug 7.17 5.428 4.789 Aug 8.11 4.306 3.644 Aug 6.604 4.556 2.757

Sept 7.45 5.301 4.719 Sept 8.19 4.287 3.623 Sept 6.354 4.544 2.682

Oct 7.43 5.186 4.671 Oct 8.01 4.273 3.614 Oct 6.789 4.533 2.624

Nov 7.25 5.078 4.680 Nov 7.87 4.266 3.609 Nov 6.937 4.522 2.571

Dec 7.11 4.982 4.655 Dec 7.84 4.258 3.611 Dec 6.686 4.509 2.518
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EXHIBIT 3.7     (Continued)

Date

10-Yr.
Trea.
Yield

Exp.
Infl.

Real
Rate Date

10-Yr.
Trea.
Yield

Exp.
Infl.

Real
Rate Date

10-Yr.
Trea.
Yield

Exp.
Infl.

1993 1996 1999

Jan 6.359 4.495 2.474 Jan 5.58 3.505 1.250 Jan 4.651 2.631

Feb 6.02 4.482 2.427 Feb 6.098 3.458 1.270 Feb 5.287 2.621

Mar 6.024 4.466 2.385 Mar 6.327 3.418 1.295 Mar 5.242 2.605

Apr 6.009 4.453 2.330 Apr 6.67 3.376 1.328 Apr 5.348 2.596

May 6.149 4.439 2.272 May 6.852 3.335 1.359 May 5.622 2.586

June 5.776 4.420 2.214 June 6.711 3.297 1.387 June 5.78 2.572

July 5.807 4.399 2.152 July 6.794 3.261 1.417 July 5.903 2.558

Aug 5.448 4.380 2.084 Aug 6.943 3.228 1.449 Aug 5.97 2.543

Sept 5.382 4.357 2.020 Sept 6.703 3.195 1.481 Sept 5.877 2.527

Oct 5.427 4.333 1.958 Oct 6.339 3.163 1.516 Oct 6.024 2.515

Nov 5.819 4.309 1.885 Nov 6.044 3.131 1.558 Nov 6.191 2.502

Dec 5.794 4.284 1.812 Dec 6.418 3.102 1.608 Dec 6.442 2.490

1994 1997 2000

Jan 5.642 4.256 1.739 Jan 6.494 3.077 1.656 Jan 6.665 2.477

Feb 6.129 4.224 1.663 Feb 6.552 3.057 1.698 Feb 6.409 2.464

Mar 6.738 4.195 1.586 Mar 6.903 3.033 1.746 Mar 6.004 2.455

Apr 7.042 4.166 1.523 Apr 6.718 3.013 1.795 Apr 6.212 2.440

May 7.147 4.135 1.473 May 6.659 2.990 1.847 May 6.272 2.429

June 7.32 4.106 1.427 June 6.5 2.968 1.899 June 6.031 2.421

July 7.111 4.079 1.394 July 6.011 2.947 1.959 July 6.031 2.412

Aug 7.173 4.052 1.356 Aug 6.339 2.926 2.016 Aug 5.725 2.406

Sept 7.603 4.032 1.315 Sept 6.103 2.909 2.078 Sept 5.802 2.398

Oct 7.807 4.008 1.289 Oct 5.831 2.888 2.136 Oct 5.751 2.389

Nov 7.906 3.982 1.278 Nov 5.874 2.866 2.189 Nov 5.468 2.382

Dec 7.822 3.951 1.278 Dec 5.742 2.847 2.247 Dec 5.112 2.374

1995 1998 2001

Jan 7.581 3.926 1.269 Jan 5.505 2.828 Jan 5.114 2.368

Feb 7.201 3.899 1.261 Feb 5.622 2.806 Feb 4.896 2.366

Mar 7.196 3.869 1.253 Mar 5.654 2.787 Mar 4.917 2.364

Apr 7.055 3.840 1.240 Apr 5.671 2.765 Apr 5.338 2.364

May 6.284 3.812 1.230 May 5.552 2.744 May 5.381 2.362

June 6.203 3.781 1.222 June 5.446 2.725 June 5.412 2.363

July 6.426 3.746 1.223 July 5.494 2.709 July 5.054 2.363

Aug 6.284 3.704 1.228 Aug 4.976 2.695 Aug 4.832 2.365

Sept 6.182 3.662 1.232 Sept 4.42 2.680 Sept 4.588 2.365

Oct 6.02 3.624 1.234 Oct 4.605 2.666 Oct 4.232 2.366

Nov 5.741 3.587 1.229 Nov 4.714 2.653 Nov 4.752 2.368

Dec 5.572 3.549 1.234 Dec 4.648 2.641 Dec 5.051 2.370
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The forward stepwise method and forward entry method begin with
a minimal model that typically includes the regression intercept and one
or more regressors specified to be forced into the model. Any such effect
is not eligible to be removed from the model during subsequent steps.
Regressors may also be forced into the model when the backward step-
wise and backward removal methods are used. Any such regressors are
not eligible to be removed from the model during subsequent steps. 

EXHIBIT 3.7     (Continued)

Note:  
Expected Infl. (%) = expected rate of inflation as proxied by the 5-year moving av-
erage of the actual inflation rate.
Real Rate (%) = real rate of interest as proxied by the 5-year moving average of the
interest rate on 3-month certificates of deposit.

Date

10-Yr.
Trea.
Yield

Exp.
Infl.

Real
Rate Date

10-Yr.
Trea.
Yield

Exp.
Infl.

Real
Rate

2002 2004

Jan 5.033 2.372 2.950 Jan 4.134 2.172 1.492

Feb 4.877 2.372 2.888 Feb 3.973 2.157 1.442

Mar 5.396 2.371 2.827 Mar 3.837 2.149 1.385

Apr 5.087 2.369 2.764 Apr 4.507 2.142 1.329

May 5.045 2.369 2.699 May 4.649 2.136 1.273

June 4.799 2.367 2.636 June 4.583 2.134 1.212

July 4.461 2.363 2.575 July 4.477 2.129 1.156

Aug 4.143 2.364 2.509 Aug 4.119 2.126 1.097

Sept 3.596 2.365 2.441 Sept 4.121 2.124 1.031

Oct 3.894 2.365 2.374 Oct 4.025 2.122 0.966

Nov 4.207 2.362 2.302 Nov 4.351 2.124 0.903

Dec 3.816 2.357 2.234 Dec 4.22 2.129 0.840

2003 2005

Jan 3.964 2.351 2.168 Jan 4.13 2.131 0.783

Feb 3.692 2.343 2.104 Feb 4.379 2.133 0.727

Mar 3.798 2.334 2.038 Mar 4.483 2.132 0.676

Apr 3.838 2.323 1.976 Apr 4.2 2.131 0.622

May 3.372 2.312 1.913 May 3.983 2.127 0.567

June 3.515 2.300 1.850 June 3.915 2.120 0.520

July 4.408 2.288 1.786 July 4.278 2.114 0.476

Aug 4.466 2.267 1.731 Aug 4.016 2.107 0.436

Sept 3.939 2.248 1.681 Sept 4.326 2.098 0.399

Oct 4.295 2.233 1.629 Oct 4.553 2.089 0.366

Nov 4.334 2.213 1.581 Nov 4.486 2.081 0.336

Dec 4.248 2.191 1.537 Dec 4.393 2.075 0.311
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With the forward entry method, at each step after Step 0, the entry
statistic is computed for each regressor eligible for entry in the model.
The regressor with the largest value on the entry statistic is entered into
the model provided that the entry statistic exceeds the specified critical
value for model entry. If the maximum number of steps is reached or if
no statistic exceeds the specified threshold, the process is terminated. 

The backward removal method is a strategy which starts from a rich
model and progressively removes regressors. At each step after Step 0, the
removal statistic is computed for each regressor eligible to be removed from
the model. If no regressor has a value on the removal statistic that is less
than the critical value for removal from the model, then stepping is termi-
nated; otherwise the effect with the smallest value on the removal statistic is
removed from the model. Stepping is also terminated when the maximum
number of steps is reached. Mixed strategies are also possible.

Entry or removal criteria are critical. Simplistic criteria based on the
average error would lead to overfitting. In general, critical F-values or
critical p-values can be specified to control entry and removal of effects
from the model. Statistical packages such as Matlab and SAS, for exam-

EXHIBIT 3.8  Results of Regression for Forecasting 10-Year Treasury Yield 

Regression Statistics

Multiple R2 0.908318
R2 0.825042
Adjusted R2 0.824312
Standard Error 1.033764
Observations 482

Analysis of Variance

df SS MS F Significance F

Regression     2 2413.914 1206.957 1129.404 4.8E-182
Residual 479     511.8918 1.068668
Total 481 2925.806   

Coefficients
Standard

Error t
Statistics
p-value

Intercept 1.89674  0.147593 12.85118 1.1E-32  
Expected Inflation 0.996937 0.021558 46.24522 9.1E-179
Real Rate 0.352416 0.039058     9.022903 4.45E-18
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ple, offer interactive tools to perform stepwise regressions. At each step,
the tool computes all the needed statistics. Alternatively, statistical
packages offer tools that perform stepwise regression automatically
based on prespecified criteria.

NONNORMALITY AND AUTOCORRELATION OF THE RESIDUALS

In the above discussion we assumed that there is no correlation between
the residual terms. Let’s now relax these assumptions. The correlation
of the residuals is critical from the point of view of estimation. Autocor-
relation of residuals is quite common in financial estimation where we
regress quantities that are time series. 

A time series is said to be autocorrelated if each term is correlated
with its predecessor so that the variance of each term is partially
explained by regressing each term on its predecessor. These concepts
will be explained in Chapter 6. 

Recall from the previous section that we organized regressor data in a
matrix called the design matrix. Suppose that both regressors and the vari-
able Y are time series data, that is, every row of the design matrix corre-
sponds to a moment in time. The regression equation is written as follows:

Suppose that residuals are correlated. This means that in general
E[εiεj] = σij ≠ 0. Thus the variance-covariance matrix of the residuals {σij}
will not be a diagonal matrix as in the case of uncorrelated residuals, but
will exhibit nonzero off-diagonal terms. We assume that we can write

where Ω is a positive definite symmetric matrix and σ is a parameter to
be estimated.

If residuals are correlated, the regression parameters can still be esti-
mated without biases using the formula given by (3.26). However, this
estimate will not be optimal in the sense that there are other estimators
with lower variance of the sampling distribution. An optimal linear
unbiased estimator has been derived. It is called the Aitken’s generalized
least squares (GLS) estimator and is given by

(3.36)

Y Xββββ εεεε+=

σij{ } σ2ΩΩΩΩ=

ββββ̂ X′ΩΩΩΩ 1– X( )
1–
X′ΩΩΩΩ 1– Y=
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where ΩΩΩΩ is the residual correlation matrix. 
The GLS estimators vary with the sampling distribution. It can also

be demonstrated that the variance of the GLS estimator is also given by
the following “sandwich” formula:

(3.37)

This expression is similar to equation (3.28) with the exception of
the sandwiched term ΩΩΩΩ–1. Unfortunately, (3.38) cannot be estimated
without first knowing the regression coefficients. For this reason, in the
presence of correlation of residuals, it is common practice to replace
static regression models with models that explicitly capture autocorrela-
tions and produce uncorrelated residuals.

The key idea here is that autocorrelated residuals signal that the
modeling exercise has not been completed. Anticipating what will be
discussed in Chapter 6, if residuals are autocorrelated, this signifies that
the residuals at a generic time t can be predicted from residuals at an
earlier time. For example, suppose that we are linearly regressing a time
series of returns rt on N factors:

Suppose that the residual terms εt are autocorrelated and that we
can write regressions of the type

where ηt are now uncorrelated variables. If we ignore this autocorrela-
tion, valuable forecasting information is lost. Our initial model has to
be replaced with the following model:

with the initial conditions ε0.

Detecting Autocorrelation
How do we detect the autocorrelation of residuals? Suppose that we
believe that there is a reasonable linear relationship between two vari-
ables, for instance stock returns and some fundamental variable. We then

V ββββ̂( ) E ββββ ββββ̂–( ) ββββ ββββ̂–( )′( ) σ2 X′ΩΩΩΩ 1– X( )
1–

= =

rt α1f1 t 1–, � αNfN t 1–, εt+ + +=

εt ϕεt 1– ηt+=

rt α1f1 t 1–, � αNfN t 1–, εt+ + +=

εt ϕεt 1– ηt+=
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perform a linear regression between the two variables and estimate
regression parameters using the OLS method. After estimating the
regression parameters, we can compute the sequence of residuals. At this
point, we can apply tests such as the Durbin-Watson test or the Dickey-
Fuller test to gauge the autocorrelation of residuals. If residuals are auto-
correlated, we should modify the model. 

PITFALLS OF REGRESSIONS

It is important to understand when regressions are correctly applicable
and when they are not. In addition to the autocorrelation of residuals,
there are other situations where it would be inappropriate to use regres-
sions. In particular, we analyze the following cases which represent pos-
sible pitfalls of regressions:

 ■ Spurious regressions with integrated variables
 ■ Collinearity
 ■ Increasing the number of regressors

Spurious Regressions
The phenomenon of spurious regressions, observed by Yule in 1927, led
to the study of cointegration, an econometric tool discussed in Chapter
11. We encounter spurious regressions when we perform an apparently
meaningful regression between variables that are independent. A typical
case is a regression between two independent random walks. Regressing
two independent random walks, one might find very high values of R2

even if the two processes are independent. More in general, one might
find high values of R2 in the regression of two or more integrated vari-
ables, even if residuals are highly correlated.

As we will see in Chapter 11, testing for regressions implies testing
for cointegration. Anticipating what will be discussed there, it is always
meaningful to perform regressions between stationary variables. When
variables are integrated, regressions are possible only if variables are
cointegrated. This means that residuals are a stationary (though possi-
bly autocorrelated) process. As a rule of thumb, Granger and Newbold
observe that if the R2 is greater than the Durbin-Watson statistics, it is
appropriate to investigate if correlations are spurious.19

19 Clive W.J. Granger and P. Newbold, “Spurious Regression in Econometrics,”
Journal of Econometrics 2 (July 1974), pp. 111–120.
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Collinearity
Collinearity, also referred to as multicollinearity, occurs when two or
more regressors have a linear deterministic relationship. For example,
there is collinearity if the design matrix

exhibits two or more columns that are perfectly proportional. Collinear-
ity is essentially a numerical problem. Intuitively, it is clear that it cre-
ates indeterminacy as we are regressing twice on the same variable. In
particular, the standard estimators given by (3.26) and (3.27) cannot be
used because the relative formulas become meaningless. 

In principle, collinearity can be easily resolved by eliminating one or
more regressors. The problem with collinearity is that some variables
might be very close to collinearity, thus leading to numerical problems
and indeterminacy of results. In practice, this might happen for many
different numerical artifacts. Detecting and analyzing collinearity is a
rather delicate problem. In principle one could detect collinearity by
computing the determinant of X′X. The difficulty resides in analyzing sit-
uations where this determinant is very small but not zero. One possible
strategy for detecting and removing collinearity is to go through a pro-
cess of orthogonalization of variables.20 

Increasing the Number of Regressors
Increasing the number of regressors does not always improve regressions.
The econometric theorem known as Pyrrho’s lemma relates to the number
of regressors.21 Pyrrho’s lemma states that by adding one special regressor
to a linear regression, it is possible to arbitrarily change the size and sign
of regression coefficients as well as to obtain an arbitrary goodness of fit.
This result, rather technical, seems artificial as the regressor is an artifi-
cially constructed variable. It is, however, a perfectly rigorous result; it
tells us that, if we add regressors without a proper design and testing
methodology, we risk obtaining spurious results.

Pyrrho’s lemma is the proof that modeling results can be arbitrarily
manipulated in-sample even in the simple context of linear regressions.
In fact, by adding regressors one might obtain an excellent fit in-sample

20 See Hendry, Dynamic Econometrics.
21 T.K. Dijkstra, “Pyrrho’s Lemma, or Have it Your Way,” Metrica 42 (1995), pp.
119–225.

X
X11 � XN1
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=
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though these regressors might have no predictive power out-of-sample.
In addition, the size and even the sign of the regression relationships can
be artificially altered in-sample. 

The above observations are especially important for those financial
models that seek to forecast prices, returns, or rates based on regres-
sions over economic or fundamental variables. With modern computers,
by trial and error, one might find a complex structure of regressions that
give very good results in-sample but have no real forecasting power. 

CONCEPTS EXPLAINED IN THIS CHAPTER
(IN ORDER OF PRESENTATION)

Dependence
Function
Factorization
Conditioning
Conditional expectation
Linear regression
Regression equation
Regression function
Properties of regression
Spherical and elliptical distributions
t-distribution
Standard assumptions of linear regressions
Linear regression with deterministic regressors
Estimation of linear regressions
Multiple regressions
Design matrix
MLE estimation of regressions
OLS estimation of regressions
Sandwich estimators
Robust estimators
Coefficient of determination (R2)
Adjusted R2

Characteristic line of a security
Single-index market model
Jensen measure
Duration
Empirical duration
Stepwise regression
Backward stepwise method
Backward removal method
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Forward stepwise method
Forward entry method
Nonnormality of residuals
Autocorrelation of residuals
Aitken’s generalized least squares
Spurious regressions
Collinearity
Pyrrho’s lemma
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127

 

Selected Topics in
Regression Analysis

 

n the previous chapter we provided the basics of regression analysis—
theory and estimation. There are numerous specialized topics within

the area of regression analysis. While we cannot cover all of the special-
ized topics in this book, in this chapter we cover the following: using cat-
egorical and dummy variables in regression models, constrained least
squares, and estimation using the method of moments and its generaliza-
tion. In Chapter 12, we discuss robust estimation of regressions.

 

CATEGORICAL AND DUMMY VARIABLES IN REGRESSION 

 

MODELS

 

Categorical variables

 

 are variables that represent group membership.
For example, given a set of bonds, the rating is a categorical variable
that indicates to what category—AA, BB, and so on—each bond
belongs. A categorical variable does not have a numerical value or a
numerical interpretation in itself. Thus the fact that a bond is in cate-
gory AA or BB does not, in itself, measure any quantitative characteris-
tic of the bond; though quantitative attributes such as a bond’s yield
spread can be associated with each category. 

Making a regression on categorical variables does not make sense
per se. For example, it does not make sense to multiply a coefficient
times AA or times BB. However, in a number of cases the standard tools
of regression analysis can be applied to categorical variables after
appropriate transformations. Let’s first discuss the case when categori-

I
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cal variables are independent variables and then proceed to discuss
models where categorical variables are dependent variables.

 

Independent Categorical Variables

 

Categorical input variables are used to cluster input data into different
groups.

 

1

 

 That is, suppose we are given a set of input-output data and a
partition of the data set in a number of subsets 

 

A

 

i

 

 so that each data
point belongs to one and only one set. The 

 

A

 

i

 

 represent a categorical
input variable. In financial econometrics categories might represent, for
example, different market regimes, economic states, ratings, countries,
industries, or sectors. 

We cannot, per se, mix quantitative input variables and categorical
variables. For example, we cannot sum yield spreads and their ratings.
However, we can perform a transformation that allows the mixing of
categorical and quantitative variables. Let’s see how. Suppose first that
there is only one categorical input variable 

 

D

 

, one quantitative input
variable 

 

X

 

, and one quantitative output variable 

 

Y

 

. Consider our set of
quantitative data, that is quantitative observations. We organize data in
a matrix form as usual:

, 

Suppose data belong to two categories. An explanatory variable
that distinguishes only two categories is called a 

 

dichotomous variable

 

.
The key is to represent a dichotomous categorical variable as a numeri-
cal variable 

 

D

 

, called a 

 

dummy variable

 

, that can assume the two values
0,1. We can now add the variable 

 

D

 

 to the input variables to represent
membership in one or the other group:

 

1 

 

We can also say that categorical input variables represent 

 

qualitative

 

 inputs. This
last expression, however, can be misleading, insofar as categorical variables repre-
sent only the final coding of qualitative inputs in different categories. For example,
suppose we want to represent some aspect of market psychology, say confidence
level. We can categorize confidence in a number of categories, for example eupho-
ria, optimism, neutrality, fear, panic. The crucial question is how we can opera-
tionally determine the applicable category and if this categorization makes sense.
A categorical variable entails the ability to categorize, that is, to determine mem-
bership in different categories. If and how categorization is useful is a crucial prob-
lem in many sciences, especially economics and the social sciences.

Y
Y1

�
YT

= X
1 X11

� �
1 XT1

=
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If 

 

D

 

i

 

 = 0, the data 

 

X

 

i

 

 belong to the first category; if 

 

D

 

i

 

 = 1, the data 

 

X

 

i

 

belong to the second category. 
Consider now the regression equation

 

Y

 

i

 

 = 

 

β

 

0

 

 + 

 

β

 

1

 

X

 

i

 

 + 

 

ε

 

i

 

In financial econometric applications, the index 

 

i

 

 will be time or a vari-
able that identifies a cross section of assets, such as bond issues. Con-
sider that we can write three separate regression equations, one for
those data that correspond to 

 

D

 

 = 1, one for those data that correspond
to 

 

D

 

 = 0, and one for the fully pooled data. Suppose now that the three
equations differ by the intercept term but have the same slope. Let’s
explicitly write the two equations for those data that correspond to 

 

D

 

 =
1 and for those data that correspond to 

 

D

 

 = 0:

where 

 

i

 

 defines the observations that belong to the first category when the
dummy variable 

 

D

 

 assumes value 0 and also defines the observations that
belong to the second category when the dummy variable 

 

D

 

 assumes value
1. If the two categories are recession and expansion, the first equation
might hold in periods of expansion and the second in periods of recession.
If the two categories are investment-grade bonds and noninvestment-
grade bonds, the two equations apply to different cross sections of bonds,
as will be illustrated in an example later in this chapter. 

Observe now that, under the assumption that only the intercept
term differs in the two equations, the two equations can be combined
into a single equation in the following way:

where  represents the difference of the intercept for the two
categories. In this way we have defined a single regression equation with
two independent quantitative variables, 

 

X

 

, 

 

D,

 

 to which we can apply all
the usual tools of regression analysis, including the least squares (LS) esti-

X
D1 1 X11

� � �
DT 1 XT1

=

yi

β00 β1Xi
εi+ +    if Di 0=,

β01 β1Xi
εi+ +    if Di 1=,⎩

⎨
⎧

=

Yi β00 γD i( ) β1Xi εi+ + +=

γ β01 β00–=
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mation method and all the tests. By estimating the coefficients of this
regression, we obtain the common slope and two intercepts. Observe that
we would obtain the same result if the categories were inverted. 

Thus far we have assumed that there is no interaction between the cat-
egorical and the quantitative variable, that is, the slope of the regression is
the same for the two categories. This means that the effects of variables are
additive; that is, the effect of one variable is added regardless of the value
taken by the other variable. In many applications, this is an unrealistic
assumption. An example will be given in the next chapter where we pro-
vide applications of regressions. 

Using dummy variables, the treatment is the same as that applied to
intercepts. Consider the regression equation  and write
two regression equations for the two categories as we did above:

We can couple these two equations in a single equation as follows:

where . In fact, the above equation is identical to the first
equation for 

 

D

 

i

 

 = 0 and to the second for 

 

D

 

i

 

 = 1. This regression can be
estimated with the usual LS methods. 

In practice, it is rarely appropriate to consider only interactions and
not the intercept, which is the main effect. We call 

 

marginalization

 

 the
fact that the interaction effect is marginal with respect to the main
effect. However, we can easily construct a model that combines both
effects. In fact we can write the following regression adding two vari-
ables, the dummy 

 

D

 

 and the interaction 

 

DX

 

:

This regression equation, which now includes three regressors, com-
bines both effects.

The above process of introducing dummy variables can be generalized
to regressions with multiple variables. Consider the following regression:

Yi β0 β1Xi εi+ +=

yi

β0 β10Xi
εi+ +    if Di 0=,

β0 β11Xi
εi+ +    if Di 1=,⎩

⎨
⎧

=

Yi β0 β10Xi δ DiXi( ) εi+ + +=

δ β11 β10–=

Yi β0 γDi β1Xi δ DiXi( ) εi+ + + +=

Yi β0 βjXij
j 1=

N

∑ εi+ +=
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where data can be partitioned in two categories with the use of a dummy
variable:

We can introduce the dummy D as well as its interaction with the N
quantitative variable and thus write the following equation:

The above discussion depends critically on the fact that there are
only two categories, a fact that allows one to use the numerical variable
0,1 to identify the two categories. However, the process can be easily
extended to multiple categories by adding dummy variables. Suppose
there are K > 2 categories. An explanatory variable that distinguishes
between more than two categories is called a polytomous variable. 

Suppose there are three categories, A, B, and C. Consider a dummy
variable D1 that assumes a value one on the elements of A and zero on
all the others. Let’s now add a second dummy variable D2 that assumes
the value one on the elements of the category B and zero on all the oth-
ers. The three categories are now completely identified: A is identified
by the values 1,0 of the two dummy variables, B by the values 0,1, and
C by the values 0,0. Note that the values 1,1 do not identify any cate-
gory. This process can be extended to any number of categories. If there
are K categories, we need K – 1 dummy variables.

How can we determine if a given categorization is useful? It is quite
obvious that many categorizations will be totally useless for the purpose
of any econometric regression. If we categorize bonds in function of the
color of the logo of the issuer, it is quite obvious that we obtain mean-
ingless results. In other cases, however, distinctions can be subtle and
important. Consider the question of market regime shifts or structural
breaks. These are delicate questions that can be addressed only with
appropriate statistical tests.

A word of caution about statistical tests is in order. As observed in
Chapter 2, statistical tests typically work under the assumptions of the
model and might be misleading if these assumptions are violated. If we
try to fit a linear model to a process that is inherently nonlinear, tests
might be misleading. It is good practice to use several tests and to be

X
D1 1 X11 � X1N

� � � � �
DT 1 XT1 � XTN

=

Yi β0 γ iDi βjXij
j 1=

N

∑ δij DiXij( )
j 1=

N

∑ εi+ + + +=
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particularly attentive to inconsistencies between test results. Inconsis-
tencies signal potential problems in applying tests, typically model mis-
specification.

The t-statistic applied to the regression coefficients of dummy variables
offer a set of important tests to judge which regressors are significant.
Recall from Chapter 2 that the t-statistics are the coefficients divided by
their respective squared errors. The p-values associated with each coeffi-
cient estimate is the probability of the hypothesis that the corresponding
coefficient is zero, that is, that the corresponding variable is irrelevant. 

We can also use the F-test to test the significance of each specific
dummy variable. To do so we can run the regression with and without
that variable and form the corresponding F-test. The Chow test2 is the
F-test to gauge if all the dummy variables are collectively irrelevant. The
Chow test is an F-test of mutual exclusion, written as follows:

where 

Observe that SSR1 + SSR2 is equal to the squared sum of residuals of the
regression run on fully pooled data but with dummy variables. Thus the
Chow test is the F-test of the unrestricted regressions with and without
dummy variables.

Illustration: Predicting Corporate Bond Yield Spreads
To illustrate the use of dummy variables, we will estimate a model to
predict corporate bond spreads.3 The regression is relative to a cross
section of bonds. The regression equation is the following:

2 Gregory C. Chow, “Tests of Equality Between Sets of Coefficients in Two Linear
Regressions,” Econometrica 28 (1960), pp, 591–605.

SSR1 = the squared sum of residuals of the regression run with
data in the first category without dummy variables

SSR2 = the squared sum of residuals of the regression run with
data in the second category without dummy variables

SSR = the squared sum of residuals of the regression run with
fully pooled data without dummy variables

3 The model presented in this illustration was developed by FridsonVision and is de-
scribed in “Focus Issues Methodology,” Leverage World (May 30, 2003). The data
for this illustration were provided by Greg Braylovskiy of FridsonVision. The firm
uses about 650 companies in its analysis. Only 100 observations were used in this
illustration.

F
SSR SSR1 SSR2+( )–[ ]

SSR1 SSR2+
----------------------------------------------------------

n 2 k 1+( )–[ ] 
k 1+

-------------------------------------=
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Spreadi = β0 + β1Couponi + β2CoverageRatioi + β3LoggedEBITi + εi

where 

The dependent variable, Spread, is not measured by the typically
nominal spread but by the option-adjusted spread. This spread measure
adjusts for any embedded options in a bond.4

Theory would suggest the following properties for the estimated
coefficients:

 ■ The higher the coupon rate, the greater the issuer’s default risk and
hence the larger the spread. Therefore, a positive coefficient for the
coupon rate is expected.

 ■ A coverage ratio is a measure of a company’s ability to satisfy fixed
obligations, such as interest, principal repayment, or lease payments.
There are various coverage ratios. The one used in this illustration is
the ratio of the earnings before interest, taxes, depreciation, and amor-
tization (EBITDA) divided by interest expense. Since the higher the
coverage ratio the lower the default risk, an inverse relationship is
expected between the spread and the coverage ratio; that is, the esti-
mated coefficient for the coverage ratio is expected to be negative. 

 ■ There are various measures of earnings reported in financial state-
ments. Earnings in this illustration is defined as the trailing 12-months
earnings before interest and taxes (EBIT). Holding other factors con-
stant, it is expected that the larger the EBIT, the lower the default risk
and therefore an inverse relationship (negative coefficient) is expected.

We used 100 observations at two different dates, 6/6/05 and 11/28/05;
thus there are 200 observations in total. This will allow us to test if
there is a difference in the spread regression for investment-grade and

Spreadi = option-adjusted spread (in basis points) for the
bond issue of company i

Couponi = coupon rate for the bond of company i, expressed
without considering percentage sign (i.e., 7.5% = 7.5)

CoverageRatioi = earnings before interest, taxes, depreciation and
amortization (EBITDA) divided by interest expense
for company i

LoggedEBITi = logarithm of earnings (earnings before interest and
taxes, EBIT, in millions of dollars) for company i

4 See Chapter 17 in Frank J. Fabozzi, Bond Markets, Analysis, and Strategies, 6th ed.
(Upper Saddle River, NJ: Prentice-Hall, 2006).
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noninvestment grade bonds using all observations. We will then test to
see if there is any structural break between the two dates. We organize
the data in matrix form as usual. Data are shown in Exhibit 4.1. The
second column indicates that data belong to two categories and suggests
the use of one dummy variable. Another dummy variable is used later to
distinguish between the two dates. Let’s first estimate the regression
equation for the fully pooled data, that is, all data without any distinc-
tion in categories. The estimated coefficients for the model and their
corresponding t-statistics are shown below:

Other regression results are:

SSR: 2.3666e+006
F-statistic: 89.38
p-value: 0
R2: 0.57

Given the high value of the F-statistic and the p-value close to zero,
the regression is significant. The coefficient for the three regressors is
statistically significant and has the expected sign. However, the intercept
term is not statistically significant. The residuals are given in the first
column of Exhibit 4.2. 

Let’s now analyze if we obtain a better fit if we consider the two cat-
egories of investment-grade and below investment-grade bonds. It should
be emphasized that this is only an exercise to show the application of
regression analysis. The conclusions we reach are not meaningful from
an econometric point of view given the small size of the database. The
new equation is written as follows:

Spreadi = β0 + β1D1i + β2Couponi + β3D1iCouponi + β4CoverageRatioi 
                + β5D1iCoverageRatioi + β6LoggedEBITi                                 

+ β7D1iLoggedEBITi + εi                                                              

Coefficient
Estimated
Coefficient

Standard
Error t-statistic p-value

β0 157.01 89.56   1.753 0.081     
β1   61.27   8.03   7.630 9.98E-13
β2 –13.20   2.27 –5.800 2.61E-08
β3 –90.88 16.32 –5.568 8.41E-08
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EXHIBIT 4.1  Regression Data for the Bond Spread Application: 11/28/2005 and 
06/06/2005

Issue #
Spread, 

11/28/05

CCC+ 
and 

Below Coupon
Coverage

Ratio
Logged 
EBIT

Spread, 
6/6/05

CCC+ 
and 

Below Coupon
Coverage 

Ratio
Logged 
EBIT

  1 509 0 7.400   2.085 2.121 473 0 7.400   2.087 2.111

  2 584 0 8.500   2.085 2.121 529 0 8.500   2.087 2.111

  3 247 0 8.375   9.603 2.507 377 0 8.375   5.424 2.234

  4   73 0 6.650 11.507 3.326 130 0 6.650   9.804 3.263

  5 156 0 7.125 11.507 3.326 181 0 7.125   9.804 3.263

  6 240 0 7.250   2.819 2.149 312 0 7.250   2.757 2.227

  7 866 1 9.000   1.530 2.297 852 1 9.000   1.409 1.716

  8 275 0 5.950   8.761 2.250 227 0 5.950 11.031 2.166

  9 515 0 8.000   2.694 2.210 480 0 8.000   2.651 2.163

10 251 0 7.875   8.289 1.698 339 0 7.875   8.231 1.951

11 507 0 9.375   2.131 2.113 452 0 9.375   2.039 2.042

12 223 0 7.750   4.040 2.618 237 0 7.750   3.715 2.557

13   71 0 7.250   7.064 2.348   90 0 7.250   7.083 2.296

14 507 0 8.000   2.656 1.753 556 0 8.000   2.681 1.797

15 566 1 9.875   1.030 1.685 634 1 9.875   1.316 1.677

16 213 0 7.500 11.219 3.116 216 0 7.500 10.298 2.996

17 226 0 6.875 11.219 3.116 204 0 6.875 10.298 2.996

18 192 0 7.750 11.219 3.116 201 0 7.750 10.298 2.996

19 266 0 6.250   3.276 2.744 298 0 6.250   3.107 2.653

20 308 0 9.250   3.276 2.744 299 0 9.250   3.107 2.653

21 263 0 7.750   2.096 1.756 266 0 7.750   2.006 3.038

22 215 0 7.190   7.096 3.469 259 0 7.190   6.552 3.453

23 291 0 7.690   7.096 3.469 315 0 7.690   6.552 3.453

24 324 0 8.360   7.096 3.469 331 0 8.360   6.552 3.453

25 272 0 6.875   8.612 1.865 318 0 6.875   9.093 2.074

26 189 0 8.000   4.444 2.790 209 0 8.000   5.002 2.756

27 383 0 7.375   2.366 2.733 417 0 7.375   2.375 2.727

28 207 0 7.000   2.366 2.733 200 0 7.000   2.375 2.727

29 212 0 6.900   4.751 2.847 235 0 6.900   4.528 2.822

30 246 0 7.500 19.454 2.332 307 0 7.500 16.656 2.181

31 327 0 6.625   3.266 2.475 365 0 6.625   2.595 2.510

32 160 0 7.150   3.266 2.475 237 0 7.150   2.595 2.510

33 148 0 6.300   3.266 2.475 253 0 6.300   2.595 2.510

34 231 0 6.625   3.266 2.475 281 0 6.625   2.595 2.510

35 213 0 6.690   3.266 2.475 185 0 6.690   2.595 2.510

36 350 0 7.130   3.266 2.475 379 0 7.130   2.595 2.510

37 334 0 6.875   4.310 2.203 254 0 6.875   5.036 2.155

38 817 1 8.625   1.780 1.965 635 0 8.625   1.851 1.935

39 359 0 7.550   2.951 3.078 410 0 7.550   2.035 3.008

40 189 0 6.500   8.518 2.582 213 0 6.500 13.077 2.479
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EXHIBIT 4.1     (Continued)

Issue #
Spread, 

11/28/05

CCC+ 
and 

Below Coupon
Coverage

Ratio
Logged 
EBIT

Spread, 
6/6/05

CCC+ 
and 

Below Coupon
Coverage 

Ratio
Logged 
EBIT

41 138 0   6.950 25.313 2.520 161 0   6.950 24.388 2.488

42 351 0   9.500   3.242 1.935 424 0   9.500   2.787 1.876

43 439 0   8.250   2.502 1.670 483 0   8.250   2.494 1.697

44 347 0   7.700   4.327 3.165 214 0   7.700   4.276 3.226

45 390 0   7.750   4.327 3.165 260 0   7.750   4.276 3.226

46 149 0   8.000   4.327 3.165 189 0   8.000   4.276 3.226

47 194 0   6.625   4.430 3.077 257 0   6.625   4.285 2.972

48 244 0   8.500   4.430 3.077 263 0   8.500   4.285 2.972

49 566 1 10.375   2.036 1.081 839 1 10.375   2.032 1.014

50 185 0   6.300   7.096 3.469 236 0   6.300   6.552 3.453

51 196 0   6.375   7.096 3.469 221 0   6.375   6.552 3.453

52 317 0   6.625   3.075 2.587 389 0   6.625   2.785 2.551

53 330 0   8.250   3.075 2.587 331 0   8.250   2.785 2.551

54 159 0   6.875   8.286 3.146 216 0   6.875   7.210 3.098

55 191 0   7.125   8.286 3.146 257 0   7.125   7.210 3.098

56 148 0   7.375   8.286 3.146 117 0   7.375   7.210 3.098

57 112 0   7.600   8.286 3.146 151 0   7.600   7.210 3.098

58 171 0   7.650   8.286 3.146 221 0   7.650   7.210 3.098

59 319 0   7.375   3.847 1.869 273 0   7.375   4.299 1.860

60 250 0   7.375 12.656 2.286 289 0   7.375   8.713 2.364

61 146 0   5.500   5.365 3.175 226 0   5.500   5.147 3.190

62 332 0   6.450   5.365 3.175 345 0   6.450   5.147 3.190

63 354 0   6.500   5.365 3.175 348 0   6.500   5.147 3.190

64 206 0   6.625   7.140 2.266 261 0   6.625   5.596 2.091

65 558 0   7.875   2.050 2.290 455 0   7.875   2.120 2.333

66 190 0   6.000   2.925 3.085 204 0   6.000   3.380 2.986

67 232 0   6.750   2.925 3.085 244 0   6.750   3.380 2.986

68 913 1 11.250   2.174 1.256 733 0 11.250   2.262 1.313

69 380 0   9.750   4.216 1.465 340 0   9.750   4.388 1.554

70 174 0   6.500   4.281 2.566 208 0   6.500   4.122 2.563

71 190 0   7.450 10.547 2.725 173 0   7.450   8.607 2.775

72 208 0   7.125   2.835 3.109 259 0   7.125   2.813 3.122

73 272 0   6.500   5.885 2.695 282 0   6.500   5.927 2.644

74 249 0   6.125   5.133 2.682 235 0   6.125   6.619 2.645

75 278 0   8.750   6.562 2.802 274 0   8.750   7.433 2.785

76 252 0   7.750   2.822 2.905 197 0   7.750   2.691 2.908

77 321 0   7.500   2.822 2.905 226 0   7.500   2.691 2.908

78 379 0   7.750   4.093 2.068 362 0   7.750   4.296 2.030

79 185 0   6.875   6.074 2.657 181 0   6.875   5.294 2.469

  80 307 0   7.250   5.996 2.247 272 0   7.250 3.610 2.119

  81 533 0 10.625   1.487 1.950 419 0 10.625 1.717 2.081

  82 627 0   8.875   1.487 1.950 446 0   8.875 1.717 2.081
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There are now seven variables and eight parameters to estimate. The
estimated model coefficients and the t-statistics are shown below:

Coefficient
Estimated
Coefficient

Standard
Error t-statistic p-value

β0 284.52   73.63   3.86 0.00
β1 597.88 478.74   1.25 0.21
β2   37.12     7.07   5.25 3.96E-07 
β3 –45.54   38.77 –1.17 0.24
β4 –10.33     1.84 –5.60 7.24E-08 
β5   50.13   40.42   1.24 0.22
β6 –83.76   13.63 –6.15 4.52E-09 
β7   –0.24   62.50 –0.00 1.00

EXHIBIT 4.1     (Continued)

Notes:
Spread = option-adjusted spread (in basis points) 
Coupon = coupon rate, expressed without considering percentage sign (i.e., 7.5% =
7.5)
Coverage Ratio = EBITDA divided by interest expense for company
Logged EBIT = logarithm of earnings (EBIT in millions of dollars)

Issue #
Spread, 

11/28/05

CCC+ 
and 

Below Coupon
Coverage

Ratio
Logged 
EBIT

Spread, 
6/6/05

CCC+ 
and 

Below Coupon
Coverage 

Ratio
Logged 
EBIT

  83 239 0   8.875   2.994 2.186 241 0   8.875 3.858 2.161

  84 240 0   7.375   8.160 2.225 274 0   7.375 8.187 2.075

  85 634 0   8.500   2.663 2.337 371 0   8.500 2.674 2.253

  86 631 1   7.700   2.389 2.577 654 1   7.700 2.364 2.632

  87 679 1   9.250   2.389 2.577 630 1   9.250 2.364 2.632

  88 556 1   9.750   1.339 1.850 883 1   9.750 1.422 1.945

  89 564 1   9.750   1.861 2.176 775 1   9.750 1.630 1.979

  90 209 0   6.750   8.048 2.220 223 0   6.750 7.505 2.092

  91 190 0   6.500   4.932 2.524 232 0   6.500 4.626 2.468

  92 390 0   6.875   6.366 1.413 403 0   6.875 5.033 1.790

  93 377 0 10.250   2.157 2.292 386 0 10.250 2.057 2.262

  94 143 0   5.750 11.306 2.580 110 0   5.750 9.777 2.473

  95 207 0   7.250   2.835 3.109 250 0   7.250 2.813 3.122

  96 253 0   6.500   4.918 2.142 317 0   6.500 2.884 1.733

  97 530 1   8.500   0.527 2.807 654 1   8.500 1.327 2.904

  98 481 0   6.750   2.677 1.858 439 0   6.750 3.106 1.991

  99 270 0   7.625   2.835 3.109 242 0   7.625 2.813 3.122

100 190 0   7.125   9.244 3.021 178 0   7.125 7.583 3.138
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EXHIBIT 4.2  Illustration of Residuals and Leverage for Corporate Bond Spread

Issue # Residuals Residuals Dummy 1 Residuals Dummy 2 Leverage Point

  1   118.79930   148.931400   162.198700 0.013702
  2   126.39350   183.097400   200.622000 0.010794
  3   –68.57770   –39.278100   –26.716500 0.019632
  4   –37.26080   –60.947500   –71.034400 0.025846
  5     16.63214       4.419645     –3.828890 0.028057
  6 –128.76600 –104.569000   –92.122000 0.012836
  7   386.42330   191.377200   217.840000 0.014437
  8     73.53972     48.516800       56.58778 0.027183
  9   104.15990   146.400600   160.438900 0.008394
10 –124.78700   –98.020100   –71.374300 0.026077
11     –4.28874     73.473220     94.555400 0.017687
12 –117.58200   –88.168700   –82.883100 0.005725
13 –223.61800 –213.055000 –202.748000 0.008469
14     54.13075     99.735710   123.153000 0.017604
15   –29.42160 –132.755000 –179.955000 0.028824
16     27.74192     26.913670     24.308960 0.024891
17     79.04072     63.114850     58.091160 0.021291
18     –8.57759     –3.366800     –5.003930 0.027499
19     18.62462     13.109110       9.664499 0.017078
20 –123.21000   –56.256500   –48.090100 0.022274
21 –181.64800 –140.494000 –118.369000 0.020021
22     26.43157     27.457990     14.487850 0.021077
23     71.79254     84.897050     73.862080 0.025114
24     63.73623     93.025400     84.583560 0.034711
25   –23.09740   –22.603200     –3.106990 0.027129
26 –146.00700 –112.938000 –110.018000 0.008034
27     53.72288     78.075810     78.781050 0.009757
28   –99.29780   –84.003500   –84.749600 0.011686
29   –46.31030   –41.105600   –43.489200 0.008090
30     98.22006     79.285040     96.588250 0.095189
31     32.05062     37.541930     41.075430 0.013795
32 –167.12000 –148.947000 –143.382000 0.008615
33 –127.03400 –129.393000 –127.118000 0.018478
34   –63.94940   –58.458100   –54.924600 0.013795
35   –85.93250   –78.871000   –75.085900 0.012994
36     24.10520     41.795380     47.283410 0.008759
37     12.86740     23.326060     33.884440 0.013293
38   333.53890   101.376800   173.584400 0.013522
39     58.02881     82.472150     77.040360 0.013767
40   –19.14100   –32.550700   –29.298900 0.012888
41   118.41190     67.990200     81.986050 0.171633
42 –169.48100   –90.625700   –64.883800 0.020050
43   –38.74030     13.936980     39.950520 0.019344
44     62.91014     86.397490     80.392250 0.014446
45   102.84620   127.541400   121.729700 0.014750
46 –153.47300 –122.739000 –127.583000 0.016669
47   –30.81510   –32.968700   –41.285200 0.012692

c04-Selected Topics  Page 138  Thursday, October 26, 2006  2:02 PM



Selected Topics in Regression Analysis 139

EXHIBIT 4.2     (Continued) 

Issue # Residuals Residuals Dummy 1 Residuals Dummy 2 Leverage Point

48   –95.711400   –52.572300   –53.631800 0.019541
49 –101.678000 –219.347000 –237.977000 0.051719
50     50.969050     30.496460     14.081700 0.020500
51     57.373200     38.712320     22.587840 0.020222
52     29.717770     34.958870     36.101100 0.013348
53   –56.859100   –12.364200     –4.932630 0.008207
54   –23.959100   –31.659900   –38.650000 0.013002
55     –7.278620     –8.940330   –14.962800 0.013384
56   –65.598100   –61.220800   –66.275700 0.014434
57 –115.386000 –105.573000 –109.757000 0.015949
58   –59.449600   –48.429300   –52.419900 0.016360
59   –69.299000   –43.044000   –23.885700 0.017263
60     15.946800     13.880220     28.513500 0.031493
61     11.362190   –21.353800   –35.607900 0.025113
62   139.148000   129.380400   118.803100 0.014047
63   158.084100   149.524300   139.140600 0.013732
64   –56.785300   –60.952000   –51.339900 0.014753
65   153.651800   194.149900   205.750200 0.009094
66   –15.653600   –28.630900   –40.227500 0.023258
67   –19.612200   –14.472300   –23.166100 0.015577
68   209.488200   144.261600     67.891100 0.063569
69 –185.659000 –100.217000   –63.396000 0.033131
70   –91.541800   –92.646100   –91.015000 0.012423
71   –36.623800   –33.937000   –29.003400 0.016903
72   –65.586300   –51.301800   –59.080100 0.014743
73     39.294110     32.661770     32.391920 0.010000
74     28.197460     14.759650     12.952710 0.015290
75   –73.910000   –28.902200   –22.353300 0.018074
76   –78.608000   –47.733800   –48.902600 0.010866
77       5.711553     30.546620     28.410290 0.010507
78   –10.926100     22.258560     38.888810 0.009622
79   –71.611400   –69.462200   –67.416900 0.007122
80   –10.848000       3.505179     15.383910 0.008845
81   –78.195700     32.775440     61.748590 0.040731
82   123.041000   191.738700   213.938800 0.015223
83 –223.662000 –160.978000 –142.925000 0.011651
84   –58.977600   –47.671100   –33.850800 0.012244
85   203.727300   257.223800   270.556600 0.009014
86   267.904600   –65.208100     89.636310 0.008117
87   220.923600     –4.162260     42.473790 0.019357
88   –12.621600 –142.213000 –168.474000 0.024764
89     31.862060 –127.616000 –134.267000 0.023501
90   –53.593800   –57.028600   –45.579800 0.015906
91   –70.794900   –73.470000   –70.669700 0.011934
92     24.164780     34.342730     62.098550 0.044409
93 –171.291000   –73.744300   –52.943000 0.034539
94     17.439710   –22.092800   –20.420000 0.029392
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EXHIBIT 4.2     (Continued)

Issue # Residuals Residuals Dummy 1 Residuals Dummy 2 Leverage Point

  95   –74.246100   –56.942100   –64.236600 0.014565
  96   –42.690600   –42.602900   –31.958300 0.019263
  97   114.168900   –66.109500   –66.049500 0.019100
  98   114.578500   129.177300   145.600600 0.027901
  99   –34.225400     –7.862790   –13.705900 0.015033
100     –6.958960   –10.488100   –13.508000 0.013543
101     81.920940   112.117900   101.420600 0.013887
102     70.515070   127.283800   120.844000 0.010884
103   –18.587600     24.683610     20.132390 0.008541
104     –8.443100   –26.784100   –28.884400 0.018612
105     13.449820       6.582981       6.321103 0.019873
106   –50.430600   –26.617000   –36.781100 0.011579
107   318.056000   133.403000   130.828300 0.020055
108     47.876010     16.919350       5.068270 0.036536
109     64.341610   107.038200     99.281600 0.008974
110   –14.573200     10.557760       3.393970 0.017905
111   –66.995600     11.539420       7.987728 0.017995
112 –113.425000   –82.640800   –88.147800 0.005809
113 –209.054000 –198.177000 –205.892000 0.009238
114   107.522000   152.737700   142.464600 0.016268
115     41.638860   –76.825800 –145.458000 0.028688
116       7.647833     10.327540       9.887700 0.018651
117     33.946630     21.528710     18.669900 0.016205
118   –22.671700   –13.952900   –13.425200 0.020799
119     40.107630     35.729610     24.798540 0.017949
120 –142.727000   –74.636000   –73.956000 0.020301
121   –63.286100   –31.013100   –33.970100 0.015754
122     61.774140     64.481450     64.302480 0.020207
123     87.135110   101.920500   103.676700 0.023941
124     62.078800     93.048860     97.398200 0.033133
125     48.320900     45.935300     36.150130 0.021344
126 –121.736000   –90.029000   –92.609500 0.007491
127     87.253680   111.626800   105.229900 0.009683
128 –106.767000   –91.452500   –99.300700 0.011631
129   –28.566900   –22.540100   –29.135400 0.008184
130   108.560100     98.752280     95.570570 0.067155
131     64.418690     71.586810     60.886980 0.015243
132   –95.752300   –75.902200   –84.570100 0.009928
133   –27.665900   –28.348600   –40.306300 0.020009
134   –19.581300   –12.413200   –23.113000 0.015243
135 –119.564000 –110.826000 –121.274000 0.014425
136     47.473260     66.840260     58.094960 0.010076
137   –61.953700   –53.237800   –64.316600 0.013824
138   149.786400   211.505100   204.226300 0.013863
139     90.609530   118.184700   114.258300 0.014560
140     55.650810     29.860840     23.239180 0.032351
141   126.240500     78.712630     79.050720 0.157105
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EXHIBIT 4.2     (Continued)

Issue # Residuals Residuals Dummy 1 Residuals Dummy 2 Leverage Point

142 –107.826000   –27.243600   –31.116800 0.020563
143       7.614932     60.121850     50.036220 0.018518
144   –65.174500   –41.979400   –42.794500 0.016334
145   –22.238400       2.164489       1.542950 0.016663
146 –108.558000   –78.116000   –77.769900 0.018707
147     20.679750     19.696850     12.963030 0.011602
148   –88.216600   –43.906700   –43.383600 0.016474
149   165.253100     48.262590   –23.500200 0.054354
150     93.311620     74.519920     70.896340 0.020168
151     73.715770     56.735780     53.402470 0.019845
152     94.629570   100.961000     90.629950 0.014368
153   –62.947300   –17.362000   –21.403800 0.008312
154     14.480140     10.216950       6.659433 0.010802
155     40.160620     41.936480     39.346550 0.010850
156 –115.159000 –107.344000 –108.966000 0.011566
157   –94.946500   –81.696400   –82.447900 0.012781
158   –28.010400   –13.552500   –14.110500 0.013124
159 –110.127000   –85.111400   –96.632900 0.017243
160       9.959282     18.682370     12.662020 0.011670
161     89.889700     57.689740     48.509480 0.025706
162   150.675500   141.424000   135.920500 0.014594
163   150.611600   142.567900   137.258000 0.014276
164   –38.040900   –36.521000   –48.754100 0.018527
165     55.443990     95.437610     88.132530 0.008675
166     –4.652580   –18.233400   –27.698600 0.020882
167   –10.611100     –6.074840   –12.637200 0.012834
168     35.778970   164.163000   162.921500 0.062460
169 –215.328000 –131.013000 –135.422000 0.031092
170   –59.986400   –60.605400   –70.729300 0.012731
171   –74.693600   –66.782400   –69.716200 0.010213
172   –13.734800       0.523639     –3.905600 0.015083
173     45.295840     38.898770     30.164940 0.010233
174     30.476800     13.024800       3.159872 0.014593
175   –67.888500   –25.271900   –23.635500 0.019872
176 –135.061000 –103.830000 –107.375000 0.011204
177   –90.741200   –65.550000   –70.062300 0.010866
178   –28.683300       4.187387     –4.706060 0.010313
179 –103.027000   –97.290000 –106.078000 0.008397
180   –88.975000   –66.845700   –77.367900 0.012101
181 –177.281000   –67.904100   –66.493200 0.041400
182   –43.044700     24.059160     18.696920 0.013532
183 –212.505000 –152.131000 –155.963000 0.011638
184   –38.210800   –25.916400   –34.173800 0.015537
185   –66.764700   –12.702000   –17.886300 0.009148
186   295.611300   –36.578800   106.036400 0.008451
187   176.630300   –47.533000   –13.126100 0.020417
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Other regression results are:

SSR: 1.4744e + 006
F-statistic: 76.83
p-value: 0
R2 = 0.73

The Chow test has the value 16.60. The F-statistic and the Chow test sug-
gest that the use of dummy variables has greatly improved the goodness of fit
of the regression, even after compensating for the increase in the number of
parameters. The residuals of the model without and with dummy variable D1
are shown, respectively, in the second and third columns of Exhibit 4.2.

Now let’s use dummy variables to test if there is a regime shift
between the two dates. This is a common use for dummy variables in
practice. To this end we create a new dummy variable that has the value
0 for the first date 11/28/05 and 1 for the second date 6/6/05. The new
equation is written as follows:

Spreadi = β0 + β1D2i + β2Couponi + β3D2iCouponi + β4CoverageRatioi
+ β5D2iCoverageRatioi + β6LoggedEBITi                 
+ β7D2iLoggedEBITi + εi                                          

EXHIBIT 4.2     (Continued)

Notes: 
Residuals: residuals from the pooled regression without dummy variables for invest-
ment grade.
Residuals Dummy 1: inclusion of dummy variable for investment grade.
Residuals Dummy 2: inclusion of dummy variable to test for regime shift.
Leverage Point: in robust regressions, signals that the corresponding observations
might have a decisive influence on the estimation of the regression parameters.

Issue # Residuals Residuals Dummy 1 Residuals Dummy 2 Leverage Point

188   324.060100 189.413000 136.666400 0.023978
189   221.951100   76.029960   34.046210 0.023629
190   –58.422000 –59.380500 –70.254000 0.018335
191   –37.907200 –39.303500 –49.850800 0.012962
192     53.841660   65.166450   51.559780 0.025442
193 –166.323000 –68.275700 –66.904900 0.034161
194   –45.521100 –79.888400 –90.959200 0.026897
195   –30.394500 –13.116600 –17.062000 0.014917
196   –42.709500 –33.855500 –50.285700 0.037224
197   257.550200   34.224540   70.337910 0.019013
198     90.307160 102.727000   89.148700 0.022461
199   –61.373800 –35.037300 –37.531400 0.015419
200   –30.310400 –29.889500 –32.034600 0.012067
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as in the previous case but with a different dummy variable. There are
seven independent variables and eight parameters to estimate. The esti-
mated model coefficients and t-statistics are shown below:

Other regression statistics are:

SSR: 1.5399e + 006
F-statistic: 72.39
p-value: 0
R2: 0.71

The Chow test has the value 14.73. The F-statistics and the Chow test
suggest that there is indeed a regime shift and that the spread regressions
at the two different dates are different. Again, the use of dummy vari-
ables has greatly improved the goodness of fit of the regression, even after
compensating for the increase in the number of parameters. The residuals
of the model with dummy variables D2 are shown in the next-to-the-last
column of Exhibit 4.2. (We discuss the last column in the exhibit when
we cover the topic of robust regressions in Chapter 12.)

Illustration: Testing the Mutual Fund Characteristic Lines in 
Different Market Environments
In the previous chapter, we calculated the characteristic line of two
large-cap mutual funds. Let’s now perform a simple application of the
use of dummy variables by determining if the slope (beta) of the two
mutual funds is different in a rising stock market (“up market”) and a
declining stock market (“down market”). To test this, we can write the
following multiple regression model:

yit = αi + β1ixt + β2i(Dtxt) + eit

Coefficient
Estimated
Coefficient

Standard
Error t-statistic p-value

β0 257.26 79.71   3.28 0.00
β1   82.17 61.63   1.33 0.18
β2   33.25   7.11   4.67 5.53E-06 
β3   28.14   2.78 10.12 1.45E-19 
β4 –10.79   2.50 –4.32 2.49E-05 
β5     0.00   3.58   0.00 1.00
β6 –63.20 18.04 –3.50 0.00
β7 –27.48 24.34 –1.13 0.26
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where Dt is the dummy variable that can take on a value of 1 or 0. We
will let

Dt = 1 if period t is classified as an up market
Dt = 0 if period t is classified as a down market

The coefficient for the dummy variable is β2i. If that coefficient is
statistically significant, then for the mutual fund: 

In an up market: βi = β1i + β2i
In a down market: βi = β1i

If β2i is not statistically significant, then there is no difference in βi for
up and down markets.

In our illustration, we have to define what we mean by an up and a
down market. We will define an up market precisely as one where the
average excess return (market return over the risk-free rate or (rM – rft))
for the prior three months is greater than zero. Then

The regressor will then be

We use the S&P 500 Index as a proxy for the market returns and the
90-day Treasury rate as a proxy for the risk-free rate. The data are pre-
sented in Exhibit 4.3 which shows each observation for the variable Dtxt.
The regression results for the two mutual funds are as follows:

Dt = 1 if the average (rMt – rft) for the prior three months > 0
Dt = 0 otherwise

Dtxt = xt if (rM – rft) for the prior three months > 0
Dtxt = 0 otherwise

Coefficient Coefficient Estimate Standard Error t-statistic p-value

Fund A

α –0.23 0.10 –2.36 0.0198
β1   0.75 0.03 25.83 4E-50
β2   0.18 0.04   4.29 4E-05

Fund B

α   0.00 0.14 –0.03 0.9762
β1   0.75 0.04 18.02 2E-35
β2   0.13 0.06   2.14 0.0344
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EXHIBIT 4.3  Data for Estimating Mutual Fund Characteristic Line with a Dummy 
Variable

Mutual Fund

Month
Ended rM rft

Dummy
Dt

rM – rft
xt Dtxt

A
rt

B
rt

A
yt

B
yt

01/31/1995 2.60 0.42 0 2.18 0 0.65 1.28 0.23 0.86
02/28/1995 3.88 0.40 0 3.48 0 3.44 3.16 3.04 2.76
03/31/1995 2.96 0.46 1 2.50 2.5 2.89 2.58 2.43 2.12
04/30/1995 2.91 0.44 1 2.47 2.47 1.65 1.81 1.21 1.37
05/31/1995 3.95 0.54 1 3.41 3.41 2.66 2.96 2.12 2.42
06/30/1995 2.35 0.47 1 1.88 1.88 2.12 2.18 1.65 1.71
07/31/1995 3.33 0.45 1 2.88 2.88 3.64 3.28 3.19 2.83
08/31/1995 0.27 0.47 1 –0.20 –0.2 –0.40 0.98 –0.87 0.51
09/30/1995 4.19 0.43 1 3.76 3.76 3.06 3.47 2.63 3.04
10/31/1995 –0.35 0.47 1 –0.82 –0.82 –1.77 –0.63 –2.24 –1.10
11/30/1995 4.40 0.42 1 3.98 3.98 4.01 3.92 3.59 3.50
12/31/1995 1.85 0.49 1 1.36 1.36 1.29 1.73 0.80 1.24
01/31/1996 3.44 0.43 1 3.01 3.01 3.36 2.14 2.93 1.71
02/29/1996 0.96 0.39 1 0.57 0.57 1.53 1.88 1.14 1.49
03/31/1996 0.96 0.39 1 0.57 0.57 0.59 1.65 0.20 1.26
04/30/1996 1.47 0.46 1 1.01 1.01 1.46 1.83 1.00 1.37
05/31/1996 2.58 0.42 1 2.16 2.16 2.17 2.20 1.75 1.78
06/30/1996 0.41 0.40 1 0.01 0.01 –0.63 0.00 –1.03 –0.40
07/31/1996 –4.45 0.45 1 –4.90 –4.9 –4.30 –3.73 –4.75 –4.18
08/31/1996 2.12 0.41 0 1.71 0 2.73 2.24 2.32 1.83
09/30/1996 5.62 0.44 0 5.18 0 5.31 4.49 4.87 4.05
10/31/1996 2.74 0.42 1 2.32 2.32 1.42 1.34 1.00 0.92
11/30/1996 7.59 0.41 1 7.18 7.18 6.09 5.30 5.68 4.89
12/31/1996 –1.96 0.46 1 –2.42 –2.42 –1.38 –0.90 –1.84 –1.36
01/31/1997 6.21 0.45 1 5.76 5.76 4.15 5.73 3.70 5.28
02/28/1997 0.81 0.39 1 0.42 0.42 1.65 –1.36 1.26 –1.75
03/31/1997 –4.16 0.43 1 –4.59 –4.59 –4.56 –3.75 –4.99 –4.18
04/30/1997 5.97 0.43 1 5.54 5.54 4.63 3.38 4.20 2.95
05/31/1997 6.14 0.49 1 5.65 5.65 5.25 6.05 4.76 5.56
06/30/1997 4.46 0.37 1 4.09 4.09 2.98 2.90 2.61 2.53
07/31/1997 7.94 0.43 1 7.51 7.51 6.00 7.92 5.57 7.49
08/31/1997 –5.56 0.41 1 –5.97 –5.97 –4.40 –3.29 –4.81 –3.70
09/30/1997 5.48 0.44 1 5.04 5.04 5.70 4.97 5.26 4.53
10/31/1997 –3.34 0.42 1 –3.76 –3.76 –2.76 –2.58 –3.18 –3.00
11/30/1997 4.63 0.39 0 4.24 0 3.20 2.91 2.81 2.52
12/31/1997 1.72 0.48 1 1.24 1.24 1.71 2.41 1.23 1.93
01/31/1998 1.11 0.43 1 0.68 0.68 –0.01 –0.27 –0.44 –0.70
02/28/1998 7.21 0.39 1 6.82 6.82 5.50 6.84 5.11 6.45
03/31/1998 5.12 0.39 1 4.73 4.73 5.45 3.84 5.06 3.45
04/30/1998 1.01 0.43 1 0.58 0.58 –0.52 1.07 –0.95 0.64
05/31/1998 –1.72 0.40 1 –2.12 –2.12 –1.25 –1.30 –1.65 –1.70
06/30/1998 4.06 0.41 1 3.65 3.65 3.37 4.06 2.96 3.65
07/31/1998 –1.06 0.40 1 –1.46 –1.46 0.10 –1.75 –0.30 –2.15
08/31/1998 –14.46 0.43 1 –14.89 –14.89 –15.79 –13.44 –16.22 –13.87
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EXHIBIT 4.3     (Continued)

Mutual Fund

Month
Ended rM rft

Dummy
Dt

rM – rft
xt Dtxt

A
rt

B
rt

A
yt

B
yt

09/30/1998 6.41 0.46 0 5.95 0 5.00 4.86 4.54 4.40
10/31/1998 8.13 0.32 0 7.81 0 5.41 4.56 5.09 4.24
11/30/1998 6.06 0.31 0 5.75 0 5.19 5.56 4.88 5.25
12/31/1998 5.76 0.38 1 5.38 5.38 7.59 7.18 7.21 6.80
01/31/1999 4.18 0.35 1 3.83 3.83 2.60 3.11 2.25 2.76
02/28/1999 –3.11 0.35 1 –3.46 –3.46 –4.13 –3.01 –4.48 –3.36
03/31/1999 4.00 0.43 1 3.57 3.57 3.09 3.27 2.66 2.84
04/30/1999 3.87 0.37 1 3.50 3.5 2.26 2.22 1.89 1.85
05/31/1999 –2.36 0.34 1 –2.70 –2.7 –2.12 –1.32 –2.46 –1.66
06/30/1999 5.55 0.40 1 5.15 5.15 4.43 5.36 4.03 4.96
07/31/1999 –3.12 0.38 1 –3.50 –3.5 –3.15 –1.72 –3.53 –2.10
08/31/1999 –0.50 0.39 0 –0.89 0 –1.05 –2.06 –1.44 –2.45
09/30/1999 –2.74 0.39 1 –3.13 –3.13 –2.86 –1.33 –3.25 –1.72
10/31/1999 6.33 0.39 0 5.94 0 5.55 2.29 5.16 1.90
11/30/1999 2.03 0.36 1 1.67 1.67 3.23 3.63 2.87 3.27
12/31/1999 5.89 0.44 1 5.45 5.45 8.48 7.09 8.04 6.65
01/31/2000 –5.02 0.41 1 –5.43 –5.43 –4.09 –0.83 –4.50 –1.24
02/29/2000 –1.89 0.43 1 –2.32 –2.32 1.43 2.97 1.00 2.54
03/31/2000 9.78 0.47 0 9.31 0 6.84 5.86 6.37 5.39
04/30/2000 –3.01 0.46 1 –3.47 –3.47 –4.04 –4.55 –4.50 –5.01
05/31/2000 –2.05 0.50 1 –2.55 –2.55 –2.87 –4.47 –3.37 –4.97
06/30/2000 2.46 0.40 1 2.06 2.06 0.54 6.06 0.14 5.66
07/31/2000 –1.56 0.48 0 –2.04 0 –0.93 1.89 –1.41 1.41
08/31/2000 6.21 0.50 0 5.71 0 7.30 6.01 6.80 5.51
09/30/2000 –5.28 0.51 1 –5.79 –5.79 –4.73 –4.81 –5.24 –5.32
10/31/2000 –0.42 0.56 0 –0.98 0 –1.92 –4.84 –2.48 –5.40
11/30/2000 –7.88 0.51 0 –8.39 0 –6.73 –11.00 –7.24 –11.51
12/31/2000 0.49 0.50 0 –0.01 0 2.61 3.69 2.11 3.19
01/31/2001 3.55 0.54 0 3.01 0 0.36 5.01 –0.18 4.47
02/28/2001 –9.12 0.38 0 –9.50 0 –5.41 –8.16 –5.79 –8.54
03/31/2001 –6.33 0.42 0 –6.75 0 –5.14 –5.81 –5.56 –6.23
04/30/2001 7.77 0.39 0 7.38 0 5.25 4.67 4.86 4.28
05/31/2001 0.67 0.32 0 0.35 0 0.47 0.45 0.15 0.13
06/30/2001 –2.43 0.28 1 –2.71 –2.71 –3.48 –1.33 –3.76 –1.61
07/31/2001 –0.98 0.30 1 –1.28 –1.28 –2.24 –1.80 –2.54 –2.10
08/31/2001 –6.26 0.31 0 –6.57 0 –4.78 –5.41 –5.09 –5.72
09/30/2001 –8.08 0.28 0 –8.36 0 –6.46 –7.27 –6.74 –7.55
10/31/2001 1.91 0.22 0 1.69 0 1.01 2.30 0.79 2.08
11/30/2001 7.67 0.17 0 7.50 0 4.49 5.62 4.32 5.45
12/31/2001 0.88 0.15 1 0.73 0.73 1.93 2.14 1.78 1.99
01/31/2002 –1.46 0.14 1 –1.60 –1.6 –0.99 –3.27 –1.13 –3.41
02/28/2002 –1.93 0.13 1 –2.06 –2.06 –0.84 –2.68 –0.97 –2.81
03/31/2002 3.76 0.13 0 3.63 0 3.38 4.70 3.25 4.57
04/30/2002 –6.06 0.15 0 –6.21 0 –4.38 –3.32 –4.53 –3.47
05/31/2002 –0.74 0.14 0 –0.88 0 –1.78 –0.81 –1.92 –0.95
06/30/2002 –7.12 0.13 0 –7.25 0 –5.92 –5.29 –6.05 –5.42
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EXHIBIT 4.3     (Continued)

Notes:
1. The following information is used for determining the value of the dummy vari-
able for the first three months: 

2. The dummy variable is defined as follows:
Dt xt = xt if (rM – rft) for the prior three months > 0
Dt xt = 0 otherwise

Mutual Fund

Month
Ended rM rft

Dummy
Dt

rM – rft
xt Dtxt

A
rt

B
rt

A
yt

B
yt

07/31/2002 –7.80 0.15 0 –7.95 0 –6.37 –7.52 –6.52 –7.67
08/31/2002 0.66 0.14 0 0.52 0 –0.06 1.86 –0.20 1.72
09/30/2002 –10.87 0.14 0 –11.01 0 –9.38 –6.04 –9.52 –6.18
10/31/2002 8.80 0.14 0 8.66 0 3.46 5.10 3.32 4.96
11/30/2002 5.89 0.12 0 5.77 0 3.81 1.73 3.69 1.61
12/31/2002 –5.88 0.11 1 –5.99 –5.99 –4.77 –2.96 –4.88 –3.07
01/31/2003 –2.62 0.10 1 –2.72 –2.72 –1.63 –2.34 –1.73 –2.44
02/28/2003 –1.50 0.09 0 –1.59 0 –0.48 –2.28 –0.57 –2.37
03/31/2003 0.97 0.10 0 0.87 0 1.11 1.60 1.01 1.50
04/30/2003 8.24 0.10 0 8.14 0 6.67 5.44 6.57 5.34
05/31/2003 5.27 0.09 1 5.18 5.18 4.96 6.65 4.87 6.56
06/30/2003 1.28 0.10 1 1.18 1.18 0.69 1.18 0.59 1.08
07/31/2003 1.76 0.07 1 1.69 1.69 1.71 3.61 1.64 3.54
08/31/2003 1.95 0.07 1 1.88 1.88 1.32 1.13 1.25 1.06
09/30/2003 –1.06 0.08 1 –1.14 –1.14 –1.34 –1.12 –1.42 –1.20
10/31/2003 5.66 0.07 1 5.59 5.59 5.30 4.21 5.23 4.14
11/30/2003 0.88 0.07 1 0.81 0.81 0.74 1.18 0.67 1.11
12/31/2003 5.24 0.08 1 5.16 5.16 4.87 4.77 4.79 4.69
01/31/2004 1.84 0.07 1 1.77 1.77 0.87 2.51 0.80 2.44
02/29/2004 1.39 0.06 1 1.33 1.33 0.97 1.18 0.91 1.12
03/31/2004 –1.51 0.09 1 –1.60 –1.6 –0.89 –1.79 –0.98 –1.88
04/30/2004 –1.57 0.08 1 –1.65 –1.65 –2.59 –1.73 –2.67 –1.81
05/31/2004 1.37 0.06 0 1.31 0 0.66 0.83 0.60 0.77
06/30/2004 1.94 0.08 0 1.86 0 1.66 1.56 1.58 1.48
07/31/2004 –3.31 0.10 1 –3.41 –3.41 –2.82 –4.26 –2.92 –4.36
08/31/2004 0.40 0.11 0 0.29 0 –0.33 0.00 –0.44 –0.11
09/30/2004 1.08 0.11 0 0.97 0 1.20 1.99 1.09 1.88
10/31/2004 1.53 0.11 0 1.42 0 0.33 1.21 0.22 1.10
11/30/2004 4.05 0.15 1 3.90 3.9 4.87 5.68 4.72 5.53
12/31/2004 3.40 0.16 1 3.24 3.24 2.62 3.43 2.46 3.27

rm rf rm – rf

Sep–94 –2.41 0.37 –2.78
Oct-94   2.29 0.38   1.91
Nov-94 –3.67 0.37 –4.04
Dec-94   1.46 0.44   1.02
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The adjusted R2 is 0.93 and 0.83 for mutual funds A and B, respectively.
For both funds, β2i is statistically significantly different from zero.

Hence, for these two mutual funds, there is a difference in the βi for up
and down markets.5 From the results reported above, we would find that:

Dependent Categorical Variables
Thus far we have discussed models where the independent variables can be
either quantitative or categorical while the dependent variable is quantita-
tive. Let’s now discuss models where the dependent variable is categorical. 

Recall that a regression model can be interpreted as a conditional
probability distribution. Suppose that the dependent variable is a cate-
gorical variable Y that can assume two values, which we represent con-
ventionally as 0 and 1. The probability distribution of the dependent
variable is then a discrete function:

A regression model where the dependent variable is a categorical
variable is therefore a probability model; that is, it is a model of the
probability p given the values of the independent variables X:

In the following sections we will discuss three probability models: the
linear probability model, the logit regression model, and the probit
regression model. 

Linear Probability Model
The linear probability model assumes that the function f(X) is linear.
For example, a linear probability model of default assumes that there is
a linear relationship between the probability of default and the factors
that determine default. 

Mutual Fund A Mutual Fund B

Down market βi (= β1i) 0.75 0.75
Up market βi (=β1i + β2i) 0.93 (= 0.75 + 0.18) 0.88 (= 0.75 + 0.13)

5 We actually selected funds that had this characteristic so one should not infer that
all mutual funds exhibit this characteristic.

P Y 1=( ) p=
P Y 0=( ) q 1 p–= =⎩

⎨
⎧

P Y 1 X=( ) f X( )=
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The parameters of the model can be obtained by using ordinary
least squares applying the estimation methods of multiple regression
models discussed in the previous chapter. Once the parameters of the
model are estimated, the predicted value for P(Y) can be interpreted as
the event probability such as the probability of default in our previous
example. Note, however, that when using a linear probability model, the
R2 is used as described in the previous chapter only if all the indepen-
dent variables are also binary variables. 

A major drawback of the linear probability model is that the pre-
dicted value may be negative. In the probit regression and logit regres-
sion models described below, the predicted probability is forced to be
between 0 and 1.

Probit Regression Model
The probit regression model is a nonlinear regression model where the
dependent variable is a binary variable. Due to its nonlinearity, one can-
not estimate this model with least squares methods. We have to use
Maximum Likelihood (ML) methods as described below. Because what
is being predicted is the standard normal cumulative probability distri-
bution, the predicted values are between 0 and 1.

The general form for the probit regression model is

P(Y = 1⎮X1, X2, …, XK) = N(a + b1X1 + b2X2 + … + bKXK)

where N is the cumulative standard normal distribution function. 
To see how ML methods work, consider a model of the probability

of corporate bond defaults. Suppose that there are three factors that
have been found to historically explain corporate bond defaults. The
probit regression model is then

The likelihood function is formed from the products

P Y 1 X=( ) f X( )=

P Y 1 X1 X2 X3, ,=( ) N β0 β1X1 β2X2 β3X3+ + +( )=

P Y 0 X1 X2 X3, ,=( ) 1 N– β0 β1X1 β2X2 β3X3+ + +( )=⎩
⎨
⎧

N β0 β1X1i β2X2i β3X3i+ + +( )
Yi 1 N– β0 β1X1i β2X2i β3X3i+ + +( )( )

1 Yi–

i
∏
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extended to all the samples, where the variable Y assumes a value of 0
for defaulted companies and 1 for nondefaulted companies. Parameters
are estimated by maximizing the likelihood.

Suppose that the following parameters are estimated:

β = –2.1     β1 = 1.9     β2 = 0.3     β3 = 0.8

Then

N(a + b1X1 + b2X2 + b3X3) = N(–2.1 + 1.9X1 + 0.3X2 + 0.8X3)

Now suppose that the probability of default of a company with the
following values for the independent variables is sought:

X1 = 0.2     X2 = 0.9     X3 = 1.0

Substituting these values we get

N(–2.1 + 1.9(0.2) + 0.3(0.9) + 0.8(1.0)) = N(–0.65)

The standard normal cumulative probability for N(–0.65) is 25.8%.
Therefore, the probability of default for a company with this character-
istic is 25.8%. 

Logit Regression Model
As with the probit regression model, the logit regression model is a nonlin-
ear regression model where the dependent variable is a binary variable
and the predicted values are between 0 and 1. The predicted value is
also a cumulative probability distribution. However, rather than being a
standard normal cumulative probability distribution, it is standard
cumulative probability distribution of a distribution called the logistic
distribution. 

The general formula for the logit regression model is 

where W = a + b1X1 + b2X2 + … + bNXN. 
As with the probit regression model, the logit regression model is

estimated with ML methods. 
Using our previous illustration, W = –0.65. Therefore

P Y 1 X1 X2 … XN, , ,=( ) F a b1X1 b2X2 … bNXN+ + + +( )=

1 1 e W–+[ ]⁄=
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1/[1 + e–W] = 1/[1 + e–(–0.65)] = 34.3%

The probability of default for the company with these characteristics is
34.3%.

CONSTRAINED LEAST SQUARES

The constrained least squares (or restricted least squares) method uses
least squares estimation methods subject to constraints. Consider, for
simplicity, a linear model with only one independent variable:

Given N observations (yi, xi), i = 1, 2, …, N the constrained least squares
method seeks to minimize the sum of squared residuals

as in ordinary least squares method, but assumes that solutions must
respect some constraint that we can represent with the following equa-
tion: .

Constrained problems of this type can be solved with the technique of
Lagrange multipliers. This technique transforms a constrained problem
into an unconstrained problem by adding one variable, the Lagrange multi-
plier. To apply the method of Lagrange multipliers, let’s form the function:

Now we determine the unconstrained minimum of the function L by
setting its first derivatives to zero:

, , 

It can be demonstrated that the solutions of this unconstrained minimi-
zation problem also satisfy the original constrained problem.

y β0 β1x ε+ +=

yi β0– β1xi–( )2

i 1=

N

∑

ϕ β0 β1,( ) 0=

L β0 β1 λ, ,( ) yi β0– β1xi–( )2 λϕ β0 β1,( )–
i 1=

N

∑=

∂L
∂β0
--------- 0=

∂L
∂β1
--------- 0=

∂L
∂λ
------- 0=
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Illustration: Curve Fitting to Obtain the Spot Rate Curve
An important relationship in the valuation of fixed income securities
and option-type instruments on fixed income securities is the term struc-
ture of interest rates. The term structure of interest rates shows the rela-
tionship between zero-coupon interest rates on some benchmark security
and maturity. Unlike the yield curve which shows the relationship
between coupon and zero-coupon benchmark security and maturity, the
term structure of interest rates is based on zero-coupon rates. Another
term for a zero-coupon rate is a spot rate. Hence, the graphical depic-
tion of the term structure of interest rates is referred to as the spot rate
curve. The spot rate curve is not observable in the market and therefore
must be estimated.

Participants in the fixed income market typically want to estimate a
default-free spot rate curve. Consequently, the benchmark interest rates
used are U.S. Treasury securities because they are viewed as default-free
securities. The estimated spot rate curve is then used to value non-Trea-
sury securities such as corporate securities by adding an appropriate
credit spread to the spot rate curve. Models to value options on Trea-
sury securities begin with the spot rate curve because these models must
be calibrated to the market.6 Calibration to the market is also required
in models for valuing bonds with embedded options.7 Portfolio manag-
ers will also use the estimated spot rate curve for rich-cheap analysis.8

Within the U.S. Treasury market, there are several possible bench-
mark securities that can be used. These include (1) Treasury coupon
strips, (2) on-the-run Treasury issues, (3) on-the-run Treasury issues and
selected off-the-run Treasury issues, and (4) all Treasury coupon securi-
ties and bills.9

Once the benchmark securities that are to be included in the estima-
tion of the spot rate curve are selected, the methodology for estimating
the spot rate curve must be selected. The simplest technique using on-
the-run Treasury issues is called bootstrapping; this methodology is

6 Fischer Black, Emanuel Derman, and William Toy, “A One Factor Model of Inter-
est Rates and Its Application to the Treasury Bond Options,” Financial Analyst Jour-
nal 46 (January–February 1990), pp. 33–39.
7 Andrew Kalotay, George Williams, and Frank J. Fabozzi, “A Model for the Valu-
ation of Bonds and Embedded Options,” Financial Analyst Journal 49 (May–June
1993), pp. 35–46.
8 See H. Gifford Fong and Frank J. Fabozzi, Fixed Income Portfolio Management
(Homewood, IL: Dow Jones-Irwin, 1985).
9 For a discussion of the advantages and disadvantages of each benchmark, see Chap-
ter 5 in Frank J. Fabozzi, Bond Markets, Analysis, and Strategies (Upper Saddle Riv-
er, NJ: Prentice Hall, 2006).
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based purely on arbitrage arguments.10 The curve fitting methodology
we illustrate here employs restricted least squares regression analysis
and is called the spline method. 

A spline is a functional estimation of a curve using pieces that are
joined together to give more flexibility in fitting the curve. Ordinary
least squares can be used to estimate the curve. However, in joining
together the pieces of the spot rate curve, it is necessary to connect the
points where one part of the curve ends and another begins. This
requirement calls for the use of restricted least squares. 

The price of a bond is equal to the present value of its expected cash
flows. Let P denote the price of a bond with a par of $100, that matures
in T periods, and whose cash flow in period t is equal to CF(t). Let zt
denote the spot rate for the cash flow to be received at time t. Then the
price of the bond is 

We refer to the equation above as the “price equation.”
Let

Dt = 1/(1 + zt)
t 

The Dt’s are called discount functions and can be used to rewrite the
price equation as follows:

P = CF(1)D1 + CF(2)D2 + … + CF(T)DT

or equivalently, 

P = ΣCF(t)Dt

The discount function for each maturity can be approximated. A
simple functional form that can be used is the cubic spline given by 

Dt = b0 + b1t + b2t2 + b3t3

Substituting the above into the price equation, we have

10 For an illustration of the procedure, see Chapter 5 in Bond Markets, Analysis, and
Strategies.

P
CF 1( )

1 z1+( )1
----------------------

CF 2( )

1 z2+( )2
---------------------- …

CF T( )

1 zT+( )T
-----------------------+ + +=
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P = ΣCF(t)[b0 + b1t + b2t2 + b3t3]

P = b0[ΣCF(t)] + b1[ΣtCF(t)] + b2[Σt2CF(t)] + b3[Σt3CF(t)]

There are four parameters, b0, b1, b2, and b3. If there are five bonds, the
above equation can be estimated using OLS. Call εi the residual of the i-
th bond, that is the difference between the observed and estimated price
of the ith bond. Using OLS, we determine the minimum of the sum of
squared residuals:

Find: 

A spline can be estimated for arbitrarily selected segments of the
zero-coupon curve. In our illustration, we will use four segments. The
arbitrary points at which the segments are divided are called knot points.
When there are four segments, there will be five knot points—the first
point on the first segment (the shortest maturity), the last point on the
fourth segment (the longest maturity), and three points adjoining the seg-
ments. Exhibit 4.4 shows four hypothetical segments. Notice that the
curve is not continuous across the entire maturity spectrum—there are
jumps and discontinuities. To make the curve continuous and twice dif-
ferentiable with no visible jumps at the knot points, we require that, at
each knot point, not only that the level (i.e., the spot rate) match but also
that the first and second derivatives match.  

EXHIBIT 4.4  Four-Segment Spline without Restrictions 

Source: Graph provided by Robert Scott of the Bank for International Settlements.

min εi
2∑⎝ ⎠

⎛ ⎞
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We will denote the knot points by k. For the four segments there
will be five knot points k1, k2, k3, k4, and k5. The knot points are typi-
cally denominated in years. In our illustration, we use the following
knot points: k1 = 0, k2 = 1, k3 = 3, k4 = 5, and k5 = 10. The D(t) can be
estimated from the following set of equations for each segment where
we use CF instead of CF(t): 

The restrictions required for the estimated curve to be continuous
are the following:11 

Restriction 1: At each knot point, the level of the discount factors must
be equal; that is, j = 1, 2, and 3

Restriction 2: At each knot point, the first derivative must be equal; that
is, for j = 1, 2, and 3

Restriction 3: At each knot point, the second derivative must be equal;
that is, for j = 1, 2, and 3

 2b2,j kj + 6 b3,j k
 
j+1 = 2b2,j+1kj+1 + 6b3,j+1

b0,1CF + b1,1[tCF] + b2,1[t2CF] + b3,1[t3CF] for k1 < t, k2 Segment 1

b0,2CF + b1,2[tCF] + b2,2[t2CF] + b3,3[t3CF] for k2 < t, k3 Segment 2

b0,3CF + b1,3[tCF] + b2,3[t2CF] + b3,3[t3CF] for k3 < t, k4 Segment 3

b0,4CF + b1,4[tCF] + b2,4[t2CF] + b3,4[t3CF] for k4 < t, k5 Segment 4

11 The restrictions are provided in G. S. Shea, “Pitfalls in Smoothing Interest Rate
Term Structure Data: Equilibrium Models and Spline Approximations,” Journal of
Financial and Quantitative Analysis 19 (September 1984), pp. 253–269.

b0 j, b1 j, kj 1+ b2 j, kj 1+
2 b3 j, kj 1+

3+ + +

b0 j 1+, b1 j 1+, kj 1+ b2 j, kj 1+
2 b3 j 1+, kj 1+

3+ + +=

b1 j, 2b2 j, kj 1+ 3b3 j, kj 1+
2+ +

b1 j 1+, 2b2 j 1+, kj 1+ 3b3 j, kj 1+
2 b3 j 1+, kj 1+

3+ + +=
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Restriction 4: When t is equal to zero, the discount factor must be equal
to 1 because the present value of $1 today is $1; that is,

b01 = 1

Let’s call R the following matrix:

and let’s call b′ the vector of unknown parameters:

The constrained LS problem is then written as follows:

Find: 

subject to

Rb = 0

Let’s estimate the spot rate curve for April 19, 2005. The second
column in Exhibit 4.5 shows the Treasury coupon securities used (i.e.,
the benchmark securities). There were 110 Treasury issues.12 The price

12 We are grateful to Robert Scott of the BIS for providing the data and the regression
results.

R

1– k2– k2
2

– k2
3

– 1 k2 k2
2 k2

3 0 0 0 0 0 0 0 0

0 0 0 0 1– k3– k3
2

– k3
3

– 1 k3 k3
2 k3

3 0 0 0 0

0 0 0 0 0 0 0 0 1– k4– k4
2

– k4
3

– 1 k4 k4
2 k4

3

0 1– 2k2– 3k2
2

– 0 1 2k2 3k3
2 0 0 0 0 0 0 0 0

0 0 0 0 0 1– 2k3– 3k3
2

– 0 1 2k3 3k3
2 0 0 0 0

0 0 0 0 0 0 0 0 0 1– 2k4– 3k4
2

– 0 1 2k4 3k4
2

0 0 2– 6k2– 0 0 2 6k2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2– 6k3– 0 0 2 6k3 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2– 6k4– 0 0 2 6k4

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

=

b′ b0 1, b1 1, b2 1, b3 1, b0 2, b1 2, b2 1, b3 2, b0 3, b1 3, b2 2, b3 3, b0 4, b1 4, b2 3, b3 4,=

min εi
2∑⎝ ⎠

⎛ ⎞
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EXHIBIT 4.5  Treasury Issues and Worksheet for the Curve Fitting Illustration Using 
Constrained Least Squares 

Coupon
 (%) Years

Dirty
Price

Segment 1

Issue CUSIP CF tCF t2CF t3CF

1 US 4.625% 5YR May 2006 4.6250 1.07123 103.389 106.938 111.020 118.023 125.953

2 US 2.0000% Treas May 2006 2.0000 1.07123 99.516 103.000 108.767 116.079 124.093

3 US 6.875% 10YR Note May 06 6.8750 1.07123 106.692 110.313 112.951 119.690 127.548

4  US 2.500% May 2006 2.5000 1.11507 100.085 103.750 113.730 126.202 140.371

5 US 2.7500% Jun 2006 2.7500 1.19726 100.149 104.125 122.520 145.839 174.100

6 US 7.000% 10YR Note Jul 06 7.0000 1.23836 106.212 110.500 131.513 160.628 197.625

7 US 2.75% 2YR Treas Jul 2006 2.7500 1.28219 99.834 104.125 131.361 167.392 213.952

8 US 2.3750% Treas Aug 2006 2.3750 1.32329 99.131 103.563 135.174 177.882 234.701

9 US 2.3750% Treas Aug 2006 2.3750 1.36712 98.985 103.563 139.681 189.873 258.785

10 US 2.5000% Treas Sep 2006 2.5000 1.44932 98.858 103.750 148.385 213.753 308.770

11 US 6.500% 10YR Bond Oct 06 6.5000 1.49041 104.528 109.750 158.585 232.993 344.647

12 US 2.5000% Treas Oct 2006 2.5000 1.53425 99.812 105.000 157.221 239.675 366.439

13 US 3.50% 5YR Nov 2006 3.5000 1.57534 101.619 107.000 163.185 254.761 399.459

14 US 2.6250% Treas Nov 2006 2.6250 1.57534 99.899 105.250 161.746 253.028 397.132

15 US 2.8750% Treas Nov 2006 2.8750 1.61644 100.227 105.750 166.500 267.020 429.859

16 US 2.8750% Treas Dec 2006 3.0000 1.70137 100.146 106.000 175.704 296.329 501.906

17 US 3.1250% Treas Jan 2007 3.1250 1.78630 100.078 106.250 184.967 327.284 581.784

18 US 2.2500% Treas Feb 2007 2.2500 1.82740 98.246 104.500 187.450 340.087 619.112

19 US 6.250% 10YR Note Feb 07 6.2500 1.82740 106.033 112.500 196.047 351.830 637.114

20 US 3.3750% Treas Feb 2007 3.3750 1.86301 100.273 106.750 193.668 357.040 661.567

21 US 3.7500% 2YR Mar 2007 3.7500 1.94795 100.685 107.500 203.634 391.999 758.848

22 US 3.1250% May 2007 3.1250 2.07123 100.599 107.813 215.358 441.295 908.902

23 US 4.3750% Treas May 2007 4.3750 2.07123 103.606 110.938 218.708 446.447 917.769

24 US 6.625% 10YR Note May 07 6.6250 2.07123 109.031 116.563 224.739 455.722 933.728

25 US 2.7500% Treas Aug 2007 2.7500 2.32329 98.740 106.875 241.272 554.513 1281.044

26 US 3.2500% Treas Aug 2007 3.2500 2.32329 99.944 108.125 242.927 557.328 1286.423

27 US 6.125% 10YR Note Aug 07 6.1250 2.32329 106.819 115.313 252.444 573.517 1317.352

28 US 3.0000% Treas Nov 2007 3.0000 2.57534 99.906 109.000 269.259 684.632 1751.410

29 US 3.0000% Treas Feb 2008 3.0000 2.82740 98.882 109.000 296.715 827.191 2321.741

30 US 5.500% 10YR Note Feb 08 5.5000 2.82740 106.054 116.500 308.522 851.247 2376.831

31 US 3.3750% Treas Feb 2008 3.3750 2.82740 99.960 110.125 298.486 830.800 2330.005

32 US 5.625% 10YR Note May 08 5.6250 3.07397 108.115 119.688 338.142 1011.992 3068.097

33 US 2.6250% Treas May 2008 2.6250 3.07397 98.178 109.188 321.632 975.536 2977.768

34 US 3.2500% Treas Aug 2008 3.2500 3.32603 99.237 111.375 353.125 1153.957 3803.139

35 US 3.1250% Treas Sep 2008 3.1250 3.41096 98.488 110.938 361.709 1212.547 4098.721

36 US 3.1250% Treas Oct 2008 3.1250 3.49315 98.170 110.938 370.833 1272.765 4405.060

37 US 3.3750% Treas Nov 2008 3.3750 3.57808 100.333 113.500 382.170 1341.103 4750.265

38 US 4.750% 10YR Note Nov 2008 4.7500 3.57808 105.531 119.000 392.195 1366.601 4823.095

39 US 3.3750% Treas Dec 2008 3.3750 3.66027 99.990 113.500 391.511 1404.709 5088.740

40 US 3.2500% Treas Jan 2009 3.2500 3.74521 99.197 113.000 400.131 1469.284 5446.840

41 US 3.0000% Treas Feb 2009 3.0000 3.83014 97.909 112.000 407.647 1532.401 5812.557

42 US 2.6250% Treas Mar 2009 2.6250 3.90685 96.237 110.500 413.053 1586.832 6145.281

43 US 3.1250% Treas Apr 2009 3.1250 3.99178 97.734 112.500 426.895 1670.339 6598.187

44 US 3.8750% May 2009 3.8750 4.07397 102.088 15.500 28.252 71.860 205.247

45 US 05.500% 10YR Note May 09 5.5000 4.07397 108.975 22.000 40.100 101.994 291.319

46 US 4.7500% Jun 2009 4.0000 4.15890 102.252 16.000 30.500 79.149 231.007

47 US 3.6250% Treas Jul 2009 3.6250 4.24110 100.328 14.500 28.851 76.456 227.965
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EXHIBIT 4.5     (Continued) 

Coupon
 (%) Years

Dirty
Price

Segment 1

Issue CUSIP CF tCF t2CF t3CF

48 US 3.5000% Treas Aug 2009 3.5000 4.32603 99.531 14.000 29.044 78.649 239.511

49 US 6.000% 10YR Note Aug 2009 6.0000 4.32603 109.836 24.000 49.791 134.827 410.590

50 US 3.3750% Treas Sep 2009 3.3750 4.41096 98.615 13.500 29.102 80.451 249.826

51 US 3.3750% Treas Oct 2009 3.3750 4.49315 98.249 13.500 30.229 85.415 270.658

52 US 3.5000% Treas Nov 2009 3.5000 4.57808 100.219 14.000 25.518 64.906 185.385

53 US 3.5000% Treas Dec 2009 3.5000 4.66027 99.800 14.000 26.687 69.255 202.131

54 US 3.6250% Treas Jan 2010 3.6250 4.74521 100.021 14.500 28.851 76.456 227.965

55 US 3.5000% Treas Feb 2010 3.5000 4.83014 99.154 14.000 29.044 78.649 239.511

56 U.S. 6.5% 10 YR Note Feb 2010 6.5000 4.83014 112.772 26.000 53.940 146.062 444.806

57 US 4.0000% Treas Mar 2010 4.0000 4.90685 101.082 16.000 34.491 95.350 296.090

58 US 10YR 5.75% Aug 2010 5.7500 5.32603 109.939 23.000 47.716 129.209 393.482

59 US 5.0% 10YR Feb 2011 5.0000 5.83014 106.447 20.000 41.492 112.356 342.158

60 US 5.0% 10YR August 2011 5.0000 6.32603 106.575 20.000 41.492 112.356 342.158

61 US 4.875% 10YR Feb 2012 4.8750 6.83014 106.018 19.500 40.455 109.547 333.604

62 US 4.3750% Treas Aug 2012 4.3750 7.32877 102.996 17.500 36.306 98.311 299.389

63 US 4.0000% Treas Nov 2012 4.0000 7.58082 101.392 16.000 29.164 74.178 211.868

64 US 3.8750% Treas Feb 2013 3.8750 7.83288 99.267 15.500 32.156 87.076 265.173

65 US 3.6250% Treas May 2013 3.6250 8.07671 98.654 14.500 26.430 67.224 192.005

66 US 4.2500% Treas Aug 2013 4.2500 8.32877 101.524 17.000 35.268 95.502 290.835

67 US 4.2500% Treas Nov 2013 4.2500 8.58082 102.495 17.000 30.986 78.814 225.110

68 US 4.0000% Treas Feb 2014 4.0000 8.83288 99.455 16.000 33.194 89.884 273.727

69 US 4.7500% Treas May 2014 4.7500 9.07671 106.217 19.000 34.632 88.086 251.593

70 US 4.2500% Treas Aug 2014 4.2500 9.32877 101.095 17.000 35.268 95.502 290.835

71 US 4.2500% Treas Nov 2014 4.2500 9.58082 102.073 17.000 30.986 78.814 225.110

72 US 11.250% Bond Feb 15 11.2500 9.83288 158.069 45.000 93.357 252.800 769.856

73 US 4.0000% Treas Feb 2015 4.0000 9.83288 99.090 16.000 33.194 89.884 273.727

74 US 10.625% Bond Aug 15 10.6250 10.32877 154.718 42.500 88.171 238.756 727.087

75 US 9.875% Bond Nov 15 9.8750 10.58082 151.455 39.500 71.998 183.126 523.049

76 US 9.250% Bond Feb 16 9.2500 10.83288 144.158 37.000 76.760 207.858 632.993

77 US 7.250% Bond May 16 7.2500 11.07945 128.571 29.000 52.859 134.447 384.011

78 US 7.500% Bond Nov 16 7.5000 11.58356 131.533 30.000 54.682 139.083 397.253

79 US 8.750% Bond May 17 8.7500 12.07945 144.314 35.000 63.795 162.264 463.461

80 US 8.875% Bond Aug 17 8.8750 12.33151 143.801 35.500 73.649 199.431 607.331

81 US 9.125% Bond May 18 9.1250 13.07945 150.157 36.500 66.529 169.218 483.324

82 US 9.000% Bond Nov 18 9.0000 13.58356 149.730 36.000 65.618 166.900 476.703

83 US 8.875% Bond Feb 19 8.8750 13.83562 146.493 35.500 73.649 199.431 607.331

84 US 8.125% Bond Aug 19 8.1250 14.33151 139.325 32.500 67.425 182.578 556.007

85 US 8.500% Bond Feb 20 8.5000 14.83562 144.091 34.000 70.537 191.004 581.669

86 US 8.750% Bond May 20 8.7500 15.08219 149.484 35.000 63.795 162.264 463.461

87 US 8.750% Bond Aug 20 8.7500 15.33425 147.697 35.000 72.611 196.622 598.777

88 US 7.875% Bond Feb 21 7.8750 15.83836 138.390 31.500 65.350 176.960 538.899

89 US 8.125% Bond May 21 8.1250 16.08219 143.610 32.500 59.239 150.674 430.357

90 US 8.125% Bond Aug 21 8.1250 16.33425 141.881 32.500 67.425 182.578 556.007

91 US 8.000% Bond Nov 21 8.0000 16.58630 142.774 32.000 58.327 148.356 423.736

92 US 7.250% Bond Aug 22 7.2500 17.33425 132.587 29.000 60.164 162.916 496.130

93 US 7.625% Bond Nov 22 7.6250 17.58630 139.296 30.500 55.593 141.401 403.873

94 US 7.125% Bond Feb 23 7.1250 17.83836 131.405 28.500 59.126 160.107 487.576
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EXHIBIT 4.5     (Continued) 

Coupon
 (%) Years

Dirty
Price

Segment 1

Issue CUSIP CF tCF t2CF t3CF

95 US 6.250% Bond Aug 23 6.2500 18.33425 120.892 25.000 51.865 140.444 427.698

96 US 7.500% Bond Nov 24 7.5000 19.58904 139.855 30.000 54.682 139.083 397.253

97 US 7.625% 30YR Bond Feb 25 7.6250 19.84110 139.862 30.500 63.275 171.342 521.792

98 US 6.875% 30YR Bond Aug 25 6.8750 20.33699 130.356 27.500 57.052 154.489 470.468

99 US 6.000% 30YR Bond Feb 26 6.0000 20.84110 118.897 24.000 49.791 134.827 410.590

100 US 6.750% 30YR Bond Aug 26 6.7500 21.33699 129.388 27.000 56.014 151.680 461.914

101 US 6.500% 30YR Bond Nov 26 6.5000 21.58904 127.805 26.000 47.391 120.539 344.286

102 US 6.625% 30YR Bond Feb 27 6.6250 21.84110 128.021 26.500 54.977 148.871 453.360

103 US 6.375% 30YR Bond Aug 27 6.3750 22.33699 124.877 25.500 52.902 143.253 436.252

104 US 6.125% 30YR Bond Nov 27 6.1250 22.58904 123.101 24.500 44.657 113.585 324.423

105 US 5.50% 30YR Bond Aug 2028 5.5000 23.33973 113.052 22.000 45.641 123.591 376.374

106 US 5.25% 30YR Bond Nov 2028 5.2500 23.59178 110.811 21.000 38.277 97.358 278.077

107 US 5.250% 30YR Bond Feb 2029 5.2500 23.84384 109.584 21.000 43.567 117.973 359.266

108 US 6.125% 30YR Bond Aug 2029 6.1250 24.33973 122.528 24.500 50.828 137.636 419.144

109 US 6.25% 30 YR Bond May 2030 6.2500 25.08767 126.605 25.000 45.568 115.903 331.044

110 US 5.375% 30YR Feb 2031 5.3750 25.84384 113.573 21.500 44.604 120.782 367.820

Segment 2 Segment 3

Issue CF tCF t2CF t3CF CF tCF t2CF t3CF

1 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

3 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

5 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

7 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

9 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

11 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

12 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

13 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

14 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

15 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

16 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

17 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

18 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

19 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

20 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

21 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

22 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

23 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

24 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

25 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

26 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

27 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

28 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

29 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

30 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

31 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000
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EXHIBIT 4.5     (Continued)

Segment 2 Segment 3

Issue CF tCF t2CF t3CF CF tCF t2CF t3CF

32 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

33 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

34 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

35 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

36 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

37 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

38 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

39 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

40 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

41 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

42 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

43 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000

44 101.938 415.006 1689.567 6878.5391 0.0000 0.0000 0.0000 0.0000

45 102.750 418.314 1703.034 6933.3650 0.0000 0.0000 0.0000 0.0000

46 102.000 423.918 1761.827 7322.2544 0.0000 0.0000 0.0000 0.0000

47 101.813 431.501 1828.785 7750.7423 0.0000 0.0000 0.0000 0.0000

48 101.750 439.872 1901.596 8220.7253 0.0000 0.0000 0.0000 0.0000

49 103.000 445.276 1924.957 8321.7170 0.0000 0.0000 0.0000 0.0000

50 101.688 448.232 1975.781 8709.1250 0.0000 0.0000 0.0000 0.0000

51 101.688 456.585 2050.099 9205.0985 0.0000 0.0000 0.0000 0.0000

52 103.500 472.626 2158.649 9861.0953 0.0000 0.0000 0.0000 0.0000

53 103.500 481.131 2237.025 10402.8713 0.0000 0.0000 0.0000 0.0000

54 103.625 490.472 2321.929 10994.0877 0.0000 0.0000 0.0000 0.0000

55 103.500 498.695 2403.307 11583.8821 0.0000 0.0000 0.0000 0.0000

56 106.500 512.420 2466.288 11873.7575 0.0000 0.0000 0.0000 0.0000

57 104.000 508.972 2491.370 12197.1550 0.0000 0.0000 0.0000 0.0000

58 108.625 573.846 3034.930 16066.1717 0.0000 0.0000 0.0000 0.0000

59 110.000 633.361 3655.046 21130.7216 0.0000 0.0000 0.0000 0.0000

60 112.500 698.720 4356.943 27250.0012 0.0000 0.0000 0.0000 0.0000

61 114.625 764.070 5123.792 34509.2102 0.0000 0.0000 0.0000 0.0000

62 13.125 73.162 417.396 2433.3767 102.1875 748.3958 5481.0643 40141.9494

63 12.000 63.869 348.683 1948.9719 104.0000 786.8583 5953.8248 45053.6046

64 11.625 64.801 369.694 2155.2765 103.8750 812.1071 6349.6327 49649.4952

65 10.875 57.881 315.994 1766.2558 105.4375 848.2960 6827.1401 54960.9744

66 12.750 71.072 405.471 2363.8517 106.3750 882.1896 7318.7275 60735.8337

67 12.750 67.860 370.476 2070.7827 108.5000 923.9938 7875.8845 67183.9592

68 12.000 66.891 381.619 2224.8016 108.0000 947.2854 8315.4818 73045.8589

69 14.250 75.844 414.062 2314.4042 111.8750 1002.9148 9007.2259 81017.7446

70 12.750 71.072 405.471 2363.8517 110.6250 1020.6882 9432.3066 87279.9807

71 12.750 67.860 370.476 2070.7827 112.7500 1063.5455 10059.1871 95347.3426

72 33.750 188.131 1073.305 6257.2544 133.7500 1272.0192 12161.5548 116787.4847

73 12.000 66.891 381.619 2224.8016 112.0000 1085.5140 10546.4228 102665.8117

74 31.875 177.680 1013.677 5909.6292 137.1875 1360.3303 13586.7278 136502.1520

75 29.625 157.676 860.812 4811.5245 139.5000 1405.8556 14306.5706 146711.8667

76 27.750 154.686 882.495 5144.8536 137.0000 1418.3066 14814.4908 155834.9165

77 21.750 115.762 631.989 3532.5117 132.6250 1403.1814 14998.4163 161569.0154

78 22.500 119.754 653.781 3654.3224 137.5000 1507.1732 16736.2749 187658.8192

79 26.250 139.713 762.745 4263.3761 148.1250 1667.8080 19101.7163 221564.6986
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EXHIBIT 4.5     (Continued)

Segment 2 Segment 3

Issue CF tCF t2CF t3CF CF tCF t2CF t3CF

80 26.625 148.415 846.718 4936.2785 148.8125 1711.8725 20019.3751 237021.2729

81 27.375 145.700 795.434 4446.0923 159.3125 1904.4908 23309.2357 290182.5220

82 27.000 143.704 784.538 4385.1869 163.0000 2007.7673 25395.3973 327348.1710

83 26.625 148.415 846.718 4936.2785 162.1250 2039.5712 26315.7787 345775.3867

84 24.375 135.873 775.164 4519.1282 160.9375 2091.7907 27935.4991 380274.1773

85 25.500 142.144 810.941 4727.7033 168.0000 2235.6194 30680.6200 430217.7182

86 26.250 139.713 762.745 4263.3761 70.0000 757.5907 8571.0165 100809.9876

87 26.250 146.324 834.793 4866.7534 70.0000 775.2225 8957.1049 107431.9629

88 23.625 131.692 751.313 4380.0781 63.0000 697.7002 8061.3944 96688.7666

89 24.375 129.733 708.263 3958.8493 65.0000 703.4771 7958.8010 93609.2742

90 24.375 135.873 775.164 4519.1282 65.0000 719.8494 8317.3117 99758.2513

91 24.000 127.737 697.367 3897.9439 64.0000 692.6543 7836.3579 92169.1316

92 21.750 121.240 691.685 4032.4528 58.0000 642.3272 7421.6012 89015.0550

93 22.875 121.749 664.678 3715.2278 61.0000 660.1862 7469.0286 87848.7035

94 21.375 119.150 679.760 3962.9278 57.0000 631.2526 7293.6426 87480.3126

95 18.750 104.517 596.280 3476.2524 50.0000 553.7303 6397.9321 76737.1163

96 22.500 119.754 653.781 3654.3224 60.0000 649.3634 7346.5855 86408.5608

97 22.875 127.511 727.462 4241.0280 61.0000 675.5510 7805.4771 93619.2819

98 20.625 114.969 655.908 3823.8777 55.0000 609.1034 7037.7253 84410.8280

99 18.000 100.337 572.429 3337.2024 48.0000 531.5811 6142.0148 73667.6317

100 20.250 112.879 643.983 3754.3526 54.0000 598.0287 6909.7667 82876.0857

101 19.500 103.786 566.610 3167.0794 52.0000 562.7817 6367.0408 74887.4194

102 19.875 110.789 632.057 3684.8276 53.0000 586.9541 6781.8080 81341.3433

103 19.125 106.608 608.206 3545.7775 51.0000 564.8049 6525.8907 78271.8587

104 18.375 97.799 533.921 2984.3633 49.0000 530.3135 5999.7115 70566.9913

105 16.500 91.975 524.727 3059.1022 44.0000 487.2827 5630.1802 67528.6624

106 15.750 83.828 457.647 2558.0257 42.0000 454.5544 5142.6099 60485.9926

107 15.750 87.795 500.876 2920.0521 42.0000 465.1335 5374.2630 64459.1777

108 18.375 102.427 584.355 3406.7274 49.0000 542.6557 6269.9734 75202.3740

109 18.750 99.795 544.818 3045.2687 50.0000 541.1362 6122.1546 72007.1340

110 16.125 89.885 512.801 2989.5771 43.0000 476.2081 5502.2216 65993.9201

Segment 4 Segment 4

Issue CF tCF t2CF t3CF Issue CF tCF t2CF t3CF

1 0.0000 0.0000 0.0000 0.0000 14 0.0000 0.0000 0.0000 0.0000

2 0.0000 0.0000 0.0000 0.0000 15 0.0000 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.0000 0.0000 16 0.0000 0.0000 0.0000 0.0000

4 0.0000 0.0000 0.0000 0.0000 17 0.0000 0.0000 0.0000 0.0000

5 0.0000 0.0000 0.0000 0.0000 18 0.0000 0.0000 0.0000 0.0000

6 0.0000 0.0000 0.0000 0.0000 19 0.0000 0.0000 0.0000 0.0000

7 0.0000 0.0000 0.0000 0.0000 20 0.0000 0.0000 0.0000 0.0000

8 0.0000 0.0000 0.0000 0.0000 21 0.0000 0.0000 0.0000 0.0000

9 0.0000 0.0000 0.0000 0.0000 22 0.0000 0.0000 0.0000 0.0000

10 0.0000 0.0000 0.0000 0.0000 23 0.0000 0.0000 0.0000 0.0000

11 0.0000 0.0000 0.0000 0.0000 24 0.0000 0.0000 0.0000 0.0000

12 0.0000 0.0000 0.0000 0.0000 25 0.0000 0.0000 0.0000 0.0000

13 0.0000 0.0000 0.0000 0.0000 26 0.0000 0.0000 0.0000 0.0000
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EXHIBIT 4.5     (Continued)

Segment 4 Segment 4

Issue CF tCF t2CF t3CF Issue CF tCF t2CF t3CF

27 0.0000 0.0000 0.0000 0.0000 69 0.0000 0.0000 0.0000 0.0000

28 0.0000 0.0000 0.0000 0.0000 70 0.0000 0.0000 0.0000 0.0000

29 0.0000 0.0000 0.0000 0.0000 71 0.0000 0.0000 0.0000 0.0000

30 0.0000 0.0000 0.0000 0.0000 72 0.0000 0.0000 0.0000 0.0000

31 0.0000 0.0000 0.0000 0.0000 73 0.0000 0.0000 0.0000 0.0000

32 0.0000 0.0000 0.0000 0.0000 74 0.0000 0.0000 0.0000 0.0000

33 0.0000 0.0000 0.0000 0.0000 75 0.0000 0.0000 0.0000 0.0000

34 0.0000 0.0000 0.0000 0.0000 76 0.0000 0.0000 0.0000 0.0000

35 0.0000 0.0000 0.0000 0.0000 77 0.0000 0.0000 0.0000 0.0000

36 0.0000 0.0000 0.0000 0.0000 78 0.0000 0.0000 0.0000 0.0000

37 0.0000 0.0000 0.0000 0.0000 79 0.0000 0.0000 0.0000 0.0000

38 0.0000 0.0000 0.0000 0.0000 80 0.0000 0.0000 0.0000 0.0000

39 0.0000 0.0000 0.0000 0.0000 81 0.0000 0.0000 0.0000 0.0000

40 0.0000 0.0000 0.0000 0.0000 82 0.0000 0.0000 0.0000 0.0000

41 0.0000 0.0000 0.0000 0.0000 83 0.0000 0.0000 0.0000 0.0000

42 0.0000 0.0000 0.0000 0.0000 84 0.0000 0.0000 0.0000 0.0000

43 0.0000 0.0000 0.0000 0.0000 85 0.0000 0.0000 0.0000 0.0000

44 0.0000 0.0000 0.0000 0.0000 86 104.3750 1573.1263 23709.9526 357353.2898

45 0.0000 0.0000 0.0000 0.0000 87 104.3750 1599.4165 24509.0599 375570.7275

46 0.0000 0.0000 0.0000 0.0000 88 107.8750 1705.4097 26962.0017 426275.7204

47 0.0000 0.0000 0.0000 0.0000 89 112.1875 1796.9131 28785.9768 461214.1253

48 0.0000 0.0000 0.0000 0.0000 90 112.1875 1825.1711 29698.3156 483309.9636

49 0.0000 0.0000 0.0000 0.0000 91 116.0000 1910.6694 31483.9861 518989.4955

50 0.0000 0.0000 0.0000 0.0000 92 118.1250 2028.1235 34845.7841 599079.4100

51 0.0000 0.0000 0.0000 0.0000 93 122.8750 2130.8166 36997.0288 643093.3485

52 0.0000 0.0000 0.0000 0.0000 94 121.3750 2136.9042 37665.0672 664572.7504

53 0.0000 0.0000 0.0000 0.0000 95 121.8750 2200.2053 39782.3140 720311.0848

54 0.0000 0.0000 0.0000 0.0000 96 137.5000 2607.1732 49651.0456 949106.6662

55 0.0000 0.0000 0.0000 0.0000 97 138.1250 2652.7912 51167.5063 990584.4838

56 0.0000 0.0000 0.0000 0.0000 98 137.8125 2706.3013 53410.9393 1058592.1141

57 0.0000 0.0000 0.0000 0.0000 99 136.0000 2733.3771 55244.1476 1121776.5355

58 0.0000 0.0000 0.0000 0.0000 100 143.8750 2936.2320 60350.8368 1247825.0018

59 0.0000 0.0000 0.0000 0.0000 101 145.5000 2991.1170 62005.3443 1294225.7691

60 0.0000 0.0000 0.0000 0.0000 102 146.3750 3044.0188 63826.8429 1347457.2413

61 0.0000 0.0000 0.0000 0.0000 103 147.8125 3132.2185 66991.8944 1443738.5287

62 0.0000 0.0000 0.0000 0.0000 104 149.0000 3179.6715 68577.3775 1491742.2641

63 0.0000 0.0000 0.0000 0.0000 105 146.7500 3235.7981 72138.4313 1622437.2998

64 0.0000 0.0000 0.0000 0.0000 106 147.2500 3270.5674 73540.8474 1669681.0825

65 0.0000 0.0000 0.0000 0.0000 107 147.2500 3307.6571 75197.7856 1725876.8432

66 0.0000 0.0000 0.0000 0.0000 108 158.1875 3585.8525 82466.1589 1918296.0767

67 0.0000 0.0000 0.0000 0.0000 109 165.6250 3824.3241 89895.8341 2142728.7115

68 0.0000 0.0000 0.0000 0.0000 110 159.1250 3799.0938 92322.6340 2274259.0269
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used in the calculation is the issue’s dirty price which is the price includ-
ing accrued interest and is shown in the fifth column. Notice that the
maturity of each issue (shown in the fourth column) is the number of
years to maturity and is shown in whole years plus fraction of a year.

A time consuming aspect of the data preparation is the calculation for
each security of [ΣCF(t)], [Σ tCF(t)], [Σ t2CF(t)], and [Σ t3CF(t)]. For the
110 benchmark securities, these four values are shown in Exhibit 4.5.

There are 16 coefficients to be estimated. The computed coefficients
of the restricted least squares regression are reported in Exhibit 4.6.13

The resulting spot rate curve is shown in Exhibit 4.7.

THE METHOD OF MOMENTS AND ITS GENERALIZATIONS

In a number of cases, the OLS and MLE estimators cannot be used. This
occurs, for example, if the residuals are correlated with the independent
variables, that is, if the condition E(Zε) = 0 does not hold. The method of

13 Excel can be used to estimate the parameters for the regression model. See Robert
Scott, “A Real-Time Zero-Coupon Yield Curve Cubic Spline in Excel,” BIS Banking
Paper, October 2005.

EXHIBIT 4.6  Estimated Coefficients for the Spline Using Constrained Least Squares 
Regression

b0,1   1.00110432
b0,2 –0.032328308
b0,3 –0.001064404
b0,4   0.000104015
b1,1   1.005474867
b1,2 –0.034418089
b1,3 –0.000644522
b1,4   6.39845E-05
b2,1   0.977444303
b2,2 –0.024192565
b2,3 –0.001497796
b2,4   6.46978E-05
b3,1   0.819502692
b3,2 –0.012242924
b3,3 –0.001103864
b3,4   3.14722E-05

c04-Selected Topics  Page 163  Thursday, October 26, 2006  2:02 PM



164 FINANCIAL ECONOMETRICS

moments, the generalized method of moments, and its generalizations, the
linear instrumental variables method and the generalized method of
moments, are powerful estimation methods that are often used in financial
econometrics when the least squares and the maximum likelihood methods
are not applicable. Though the applications involve a number of technical
points, the general ideas are simple. We now discuss the method of
moments and the method of linear instrumental variables.

Method of Moments
Let’s start with the method of moments (MM). Suppose that 

1. n observations (Y1, …, YT) of a random variable Y are given.
2. These observations are extracted from a population with a distribu-

tion f(y; λ1, …, λN) that depends on a vector Λ of N parameters Λ =
(λ1, …, λN)′. 

3. The k parameters (λ1, …, λN) are functions of the first N moments of the
distribution: Λ = F(m1, …, mN), where the moments are defined as usual: 

EXHIBIT 4.7  Estimated Spot Rate Curve on April 19, 2005 using Constrained 
Least Squares
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(4.1)

The moments m1, …, mk can be estimated with the corresponding
empirical moments:

(4.2)

The idea of the method of moments is to estimate the parameters (λ1,
…, λk) using the function F of the corresponding estimates of moments:

. For example, consider n independent random sam-
ples from an exponential distribution with density f(y) = λe–λy, y > 0. The
mean of an exponentially distributed variable is the reciprocal of the dis-
tribution parameter: E(Y) = 1/λ. The method of moments computes the
parameters λ as follows:

Method of Linear Instrumental Variables
The method of linear instrumental variables is a generalization of the
method of moments. Suppose that: 

1. There is a linear relationship between a dependent variable Y and k
independent variables Xi, i = 1, …, k:

2. There are n observations given by

, j = 1, …, n (4.3)

The vector Λ = (λ1, …, λk)′ represents the true value of the parame-
ters. Equation (4.3) is a linear regression and could not be estimated with

m1 E Y( )= � mN E Yk( )=, ,

m1
1
n
--- Yi

i 1=

n

∑= � mk
1
n
--- Yi

k

i 1=

n

∑=, ,

ΛΛΛΛ F m1 … mk, ,( )=

λ
1

E Y( )
-------------

1

Y
----

n

Yi
i 1=

n

∑
---------------= = =

Y λiXi ε+
i 1=

k

∑=

Yj λiXj i, εj+
i 1=

k

∑=
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the estimators (HH.20) and (HH.21) because the regression assumptions
are not satisfied. However, suppose that T observations of other vari-
ables are available. In particular, suppose that we have h variables Zi, i =
1, …, h that might eventually include some of the variables Xi. 

To simplify, suppose that all the variables

(uj, Xj,1, …, Xj,k, Zi,1, …, Zj,h), j = 1, …, T

are (1) independent, (2) follow the same distribution, and (3) have finite
first- and second-order moments. A variable Zi is called an instrumental
variable or an instrument if E(Ziu) = 0, that is, if it is uncorrelated with
the noise terms. The system of variables Zi, i = 1, …, h is called a system
of instrumental variables if each variable is an instrument. In other
words, a system of instrumental variables is a system of variables
orthogonal to the noise terms.

We can now express the orthogonality condition in terms of the
observables. In fact, we can write the noise terms as 

(4.4)

and rewrite the orthogonality condition as

, j = 1, …, h

We have now to distinguish three cases. 
If h < k, that is, if the number of instruments Z is less than the num-

ber of explanatory variables X, then the estimation process is not feasible.
If h = k, then the number of instruments is equal to the number of explan-
atory variables and the above system will in general admit a unique solu-
tion. If we stack the observations and the instruments in matrix form as
we did in the case of regressions, it can be demonstrated that the linear
instrumental variables estimator can be written as follows:

(4.5)

Observe that if we choose Z = X, we find the same estimation formula
that we have determined in the case of regressions (equations (3.20) and

u Y λiXi
i 1=

k

∑–=

E ZjY( ) λiE ZjXi( )
i 1=

k

∑=

ΛΛΛΛ Z′X( ) 1– Z′Y=
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(3.21) in Chapter 3). In this case, the instrumental variables coincide
with the regressors.

In the case where h > k, the problem is in general impossible to solve
exactly because there are more equations than unknown variables. This
fact will in general result in incompatible equations if we replace theoretical
moments with estimated moments. The number of equations has to be
reduced by choosing a subset of instruments. Alternatively, one could try to
find an approximate solution by minimizing the following quadratic form:

where Wn is a weighting matrix that needs to be estimated. The solution
for  becomes

The rigorous justification of this procedure is quite technical.14

In order to study the asymptotic distribution of the instrumental vari-
ables estimators, additional conditions are required. If the conditional
mean of the residuals given the instruments is zero and if the residuals
have constant variance, that is, if E(u|Z) = 0, Var(u|Z) = , then the esti-
mator is asymptotically normally distributed with 

  

14 See Chapter 9 in Christian Gourieroux and Alain Monfort, Statistics and Econo-
metric Models, Volume 1: General Concepts, Estimation, Prediction, and Algo-
rithms (Cambridge: Cambridge University Press, 1995).

CONCEPTS EXPLAINED IN THIS CHAPTER
(IN ORDER OF PRESENTATION)

Categorical variables
Dummy variables
Marginalization
Chow test
Dependent categorical variables

1
n
---u′Z Wn

1
n
---u′Z ′

ΛΛΛΛ

ΛΛΛΛ X′HWnH′Z′X( ) 1– X′HWnH′Z′Y=

σ0
2

N 0 σ0
2E Z′X[ ] 1– E Z′Z( )E X′Z[ ] 1–,( )
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Linear probability models
Probit regression model
Logit regression model
Logistic distribution
Constrained least squares method
Spot rate
Spot rate curve
Spline
Discount function
Method of moments
Method of linear instrumental variables
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Regression Applications in
Finance

 

egression analysis is the econometric tool most commonly used by
asset managers in four of the five steps of the investment manage-

ment process described in the appendix to Chapter 1. It is used in set-
ting investment policy, selecting a portfolio strategy, selecting specific
assets, and measuring and evaluating performance. We begin this chap-
ter with an overview of the use of regression analysis in each of these
steps. We then provide illustrations of specific applications, namely (1) a
test of strong-form pricing efficiency; (2) tests of the capital asset pricing
model; (3) using the capital asset pricing model to evaluate manager
performance; (4) constructing Sharpe benchmarks for performance eval-
uation; and (5) various uses in bond portfolio management. Regression
analysis also plays an important role in the construction of multifactor
models. However, because the construction of multifactor models draws
on several additional econometric tools, the construction of these mod-
els is treated separately in Chapter 13.

 

APPLICATIONS TO THE INVESTMENT MANAGEMENT PROCESS

 

In this section we provide an overview of the use of regression analysis
in four steps of the investment management process.

 

Setting an Investment Policy

 

Setting an investment policy or policy guidelines begins with the asset
allocation decision: how the funds to be invested should be distributed
among the major classes of assets. An asset allocation model is used to

R
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provide guidance in making this decision. While there are many asset
allocation models proposed, the critical input in all of them is the
expected return for an asset class.

The expected return for an asset class is estimated using regression
analysis. The process begins with the selection of an asset pricing or asset
return model. As explained in Chapter 1, these models belong to three dif-
ferent families: (1) general equilibrium models, (2) econometric models,
and (3) arbitrage pricing models. The first two models rely on the econo-
metric tools discussed in this book. The most well-known general equilib-
rium model is the 

 

capital asset pricing model

 

 (CAPM). We discuss later
how regression analysis has been used to test the validity of this model. 

Econometric models of prices or returns establish links between
prices and returns and their lagged values and exogenous variables.
These variables are referred to as “factors.” When a factor is a measure
of risk, it is referred to as a “risk factor.” The justification of economet-
ric models is empirical, that is, they are valid insofar as they fit empirical
data. They are not derived from economic theory, although economic
theory might suggest econometric models. While preliminary work in
identifying the factors in these models is regression analysis, this book
also describes other econometric techniques used for identifying factors.
As will be seen, pricing models are also used in each step of the invest-
ment management process.

 

Selecting a Portfolio Strategy

 

Clients can request a money manager for a particular asset class to pur-
sue an active or passive strategy. An active portfolio strategy uses avail-
able information and forecasting techniques to seek a better performance
than a portfolio that is simply diversified broadly. A passive portfolio
strategy involves minimal expectational input, and instead relies on
diversification to match the performance of some market index. There
are also hybrid strategies.

 

1

 

Whether clients select an active or passive strategy depends on their
belief that the market is efficient for an asset class; if it is not efficient,
whether the manager engaged will be able to outperform the benchmark
for that asset class believed to be inefficient. In fact, in marketing its ser-
vices, a money management firm will point to its historical performance
in trying to convince a client that it can outperform the market as prox-
ied by a benchmark. 

 

1 

 

An example is where the portfolio manager minimizes the tracking error versus a
benchmark but at the same time in the constraint set bounds from above the volatil-
ity of the portfolio return. In this way, if the benchmark is volatile, the portfolio
manager requires that the portfolio’s volatility is bounded. 
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There is a long list starting in the 1960s of academic papers that
have examined the efficiency of capital markets. By far, most studies
have focused on the pricing efficiency of the equity markets. Pricing effi-
ciency refers to a market where prices at all times fully reflect all avail-
able information that is relevant to the valuation of securities. When a
market is price-efficient, strategies pursued to outperform a broad-based
market index will not consistently produce superior returns after adjust-
ing for both risk and transactions costs. 

In his seminal review article on pricing efficiency, Eugene Fama
points out that in order to test whether the stock market is price-effi-
cient, two definitions are necessary.

 

2

 

 First, it is necessary to define what
it means for prices to “fully reflect” information. Second, the “relevant”
set of information that is assumed to be “fully reflected” in prices must
be defined. Fama defines “fully reflect” in terms of the expected return
from holding a security. The expected return over some holding period
is equal to expected cash flow (e.g., dividends for a stock) plus the
expected price change all divided by the initial price. The price forma-
tion process defined by Fama (and others) is that the expected return
one period from now is a stochastic (i.e., random) variable that already
takes into account the “relevant” information set.

In defining the “relevant” information set that prices should reflect,
Fama classified the pricing efficiency of the stock market into three
forms: (1) weak form, (2) semistrong form, and (3) strong form. The
distinction among these forms lies in the relevant information that is
hypothesized to be impounded in the price of the security. 

 

Weak effi-
ciency

 

 means that the price of the security reflects the past price and
trading history of the security. 

 

Semistrong efficiency

 

 means that the
price of the security fully reflects all public information (which, of
course, includes but is not limited to historical price and trading pat-
terns). 

 

Strong efficiency

 

 exists in a market where the price of a security
reflects all information, whether or not it is publicly available.

Regression analysis is used in most tests of the pricing efficiency of
the market. These tests examine whether it is possible to generate
abnormal returns. An abnormal return is defined as the difference
between the actual return and the expected return from an investment
strategy. The expected return used in empirical tests is the return pre-
dicted from a pricing model after adjustment for transaction costs. The
pricing model itself adjusts for risk.

If a strategy can be shown to consistently outperform the market,
then the market is not price-efficient. To show price inefficiency, earning

 

2 

 

Eugene F. Fama, “Efficient Capital Markets: A Review of Theory and Empirical
Work,” 

 

Journal of Finance

 

 25 (May 1970), pp. 383–417.
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an abnormal return must be shown to be statistically significant. This is
not sufficient to conclude that the investment strategy that produced the
positive abnormal return can outperform the market in the future. The
reason is that the empirical test depends critically on the expected return
calculated from an assumed pricing model. However, this model may be
misspecified for two reasons. First, it may fail to consider the appropri-
ate measure of risk. Second, the risk measures may not be estimated
properly. In either instance, the results are questionable. Hence, tests of
market efficiency are 

 

joint tests

 

 of both the efficiency of the market and
the validity of the pricing model employed in the study. 

Studies of the semistrong form of pricing efficiency have tested
whether investors can outperform the market by selecting securities on
the basis of fundamental security analysis (i.e., analyzing financial state-
ments, the quality of management, and the economic environment of a
company). The key is the use of information that is publicly available
prior to the implementation of any strategy seeking to outperform the
market. It is from such studies that factors have been identified that
could potentially outperform the market—at least until these factors are
well known by other investors. Once they are well known, the market
will price these factors into the price of a security and the outperfor-
mance capability of the strategy will cease.

One of the main empirical tests of strong-form pricing efficiency has
been the study of the performance of professional money managers:
mutual fund managers and pension fund managers. The rationale is that
professional managers have access to better information than the gen-
eral public and therefore should outperform the market. How regres-
sion analysis is used to evaluate performance of mutual funds is
described later in this chapter. 

 

Selecting the Specific Assets

 

Given a portfolio strategy, portfolio construction involves the selection
of the specific assets to be included in the portfolio. As with the asset
allocation distribution among the major asset classes, this step in the
investment management process requires an estimate of expected
returns as well as the variance and correlation of returns. In construct-
ing a portfolio for a given asset class, a money manager can use these
inputs to construct Markowitz mean-variance efficient portfolios. While
economic theory tells us that this is the way investors should behave, in
practice portfolio managers will rely more on relative value analysis
(i.e., the ranking of securities by expected return after adjusting for risk)
in selecting securities. 
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As noted earlier, an asset pricing model can be an equilibrium model
such as the CAPM or an econometric model. Regression analysis is used
to identify the factors. Alternatively, factors can be derived from one of
two econometric techniques, principal components analysis or factor
analysis, both of which we discuss in Chapter 13. These factors, referred
to as 

 

statistical factors,

 

 are then linked to observable factors. 
In addition, regression analysis is used to estimate parameters to

control the risk of a portfolio. For example, a portfolio manager may
want to hedge a position in an individual security or hedge the entire
portfolio. In bond portfolio management, a key measure of the interest
rate exposure of a security or portfolio is duration, a measure discussed
in the previous chapter and discussed further later in this chapter. While
duration is typically estimated from a bond valuation model, regression-
based or empirical durations are calculated for some securities. Portfo-
lio managers who want an estimate of the interest rate sensitivity of a
portfolio consisting of both equity and bonds would have to estimate
the duration of the equity position in the portfolio. Regression-based or
empirical duration for equities can be estimated and we demonstrated
this in the previous chapter as one of calculation illustrations. The
importance of measuring duration for equity portfolios lies in the need
for sponsors of defined-benefit pension funds to match the duration of
their asset portfolio to the duration of their pension liabilities. 

 

Measuring and Evaluating Performance

 

In evaluating the performance of a money manager, one must adjust for
the risks accepted by the manager in generating return. Asset pricing
models such as the CAPM or a multifactor model provide the expected
return after adjusting for risk. Subtracting the portfolio’s actual return
from the expected return gives the 

 

excess return

 

 or the 

 

active return

 

.
From the excess return, various measures have been used to assess per-
formance, one of which is discussed later in this chapter. 

Today, the CAPM is not the typical asset pricing model used by pro-
fessional money manager. Rather, multifactor models are used. Money
management firms will either develop proprietary multifactor models or
use those vendors such as MSCI Barra and Northfield Information Ser-
vices. The multifactor models used to construct a portfolio are then
used to evaluate performance.

A multifactor model provides more than just the excess return. A
multifactor model can be used to show where a money manager took
risks relative to the benchmark and if those bets paid off. The process of
decomposing the performance of a money manager relative to each fac-
tor is called 

 

return attribution analysis

 

.
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A TEST OF STRONG-FORM PRICING EFFICIENCY

 

As support for the position of strong-form pricing efficiency, many stud-
ies have compared the performance of equity mutual fund managers
against a suitable stock market index to assess the performance of fund
managers in general. For example, it is common to compare the average
large-cap mutual fund’s performance to that of the S&P 500 Index. But
this is not a fair comparison because it ignores risk. Specifically, the risk
parameters of the average mutual fund may be different than that of the
benchmark, making a simple direct comparison of the mutual fund’s
performance and that of the benchmark inappropriate. 

Robert Jones analyzed the performance of the average large-cap
mutual fund adjusted for risk.

 

3

 

 As noted earlier, tests of market effi-
ciency are joint tests of the assumed asset pricing model. Jones used a
model similar to the three-factor model proposed by Eugene Fama and
Kenneth French that we will describe later in this chapter. The variables
in his regression model are

The dependent variable, (

 

Y

 

t

 

), is obtained from indexes published
by Lipper, a firm that constructs performance indexes for mutual funds
classified by investment category. Specifically, the dependent variable
in the study was the average of the return on the Lipper Growth Index
and the Lipper Growth and Income Index each month minus the
return on the S&P 500. 

 

Y

 

t

 

 is the active return.
The first independent variable (

 

X

 

1,t

 

) is a measure of the return of
the market over the risk-free rate and is therefore the excess return on
the market in general. The second independent variable (

 

X

 

2,t

 

) is a proxy
for the difference in performance of two “styles” that have been found
to be important in explaining stock returns: value and growth. (We
describe this further later in this chapter.) In the regression, the indepen-

 

3 

 

Robert C. Jones, “The Active versus Passive Debate: Perspectives of an Active
Quant,” Chapter 3 in Frank J. Fabozzi (ed.), 

 

Active Equity Portfolio Management

 

(Hoboken, NJ: John Wiley & Sons, 1998).

 

Y

 

t

 

= the difference between the returns on a composite mutual
fund index and the S&P 500 in month 

 

t
X

 

1,

 

t

 

= the difference between the S&P 500 return and the 90-day
Treasury rate for month 

 

t
X

 

2,

 

t

 

= the difference between the returns on the Russell 3000 Value
Index and the Russell 3000 Growth Index for month 

 

t
X

 

3,

 

t

 

= the difference between the returns on the Russell 1000
Index (large-cap stocks) and the Russell 2000 Index (small-
cap stocks) for month 

 

t
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dent variable 

 

X

 

2,t

 

 is the excess return of value style over growth style.
Market capitalization is another style factor. The last independent vari-
able (

 

X

 

3,t

 

) is the difference in size between large-cap and small-cap
stocks and therefore reflects size. 

The regression was run over 219 months from January 1979 through
March 1997. The results are reported below with the 

 

t

 

-statistic for each
parameter shown in parentheses:

Let’s interpret the results. The 

 

t

 

-statistics of the betas are statistically
significant for all levels of significance. The regression results suggest that
relative to the S&P 500, the average large-cap mutual fund makes statisti-
cally significant bets against the market, against value, and against size.
The adjusted 

 

R

 

2

 

 is 0.63. This means that 63% of the variation in the aver-
age large-cap mutual fund’s returns is explained by the regression model.
The intercept term, 

 

α

 

, is –0.007 (–7 basis points) and is interpreted as the
average active return after controlling for risk (i.e., net of market, value,
and size). Statistically, the intercept term is not significant. So, the average
active return is indistinguishable from zero. Given that the return indexes
constructed by Lipper are net of fees and expenses, the conclusion of this
simple regression model is that the average large-cap mutual funds covers
its costs on a risk-adjusted basis. 

 

TESTS OF THE CAPM

 

As noted earlier, the CAPM is an equilibrium model of asset pricing.
While portfolio managers do not devote time to testing the validity of
this model since few have to be convinced of its limitation, there has
been more than 35 years of empirical testing of the validity of this model
and the primary tool that has been used is regression analysis. While
there have been extensions of the CAPM first developed by William
Sharpe in 1964,

 

4

 

 we will only discuss the tests of the original model.

 

Review of the CAPM

 

The CAPM is derived from a set of assumptions. It is an abstraction of
the real-world capital markets. Although some of the assumptions are

 

4 

 

William F. Sharpe, “Capital Asset Prices,” 

 

Journal of Finance

 

 19 (September 1964),
pp. 425–442.

Ŷt 0.007–
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unrealistic, they simplify matters a great deal and make the CAPM more
tractable from a mathematical standpoint. The assumptions fall into two
general categories: (1) the way investors make decisions and (2) charac-
teristics of the capital market. With respect to investor decision-making,
it is assumed that investors are risk averse and make investment deci-
sions over a one-period horizon based on the expected return and the
variance of returns. With respect to capital markets, it is, among other
“technical” assumptions, assumed that is perfectly competitive and that
there is a risk-free asset at which investors can invest and borrow.

Based on the above assumptions, the CAPM is 

(5.1)

where 

The index of systematic risk of asset 

 

i

 

, 

 

β

 

i

 

, popularly referred to as

 

beta,

 

 is the degree to which an asset covaries with the market portfolio
and for this reason is referred to as the asset’s 

 

systematic risk

 

. More spe-
cifically, systematic risk is the portion of an asset’s variability that can
be attributed to a common factor. Systematic risk is the risk that results
from general market and economic conditions that cannot be diversified
away. The portion of an asset’s variability that can be diversified away is
the risk that is unique to an asset. This risk is called 

 

nonsystematic risk

 

,

 

diversifiable risk

 

, 

 

unique risk

 

, 

 

residual risk

 

, and 

 

company-specific risk

 

.
We calculated the beta for individual securities in the previous chapter.

The CAPM states that, given the assumptions, the expected return
on asset is a positive linear function of its index of systematic risk as
measured by beta. The higher the 
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 or beta is, the higher the expected
return. There are no other factors that should significantly affect an
asset’s expected return other than the index of systematic risk. 

 

Estimating Beta with Regression Analysis

 

The beta for an asset can be estimated using the following simple linear
regression:
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where

The regression equation (5.2) is called the characteristic line. Since there is
only one independent variable, rMt – rft, there is a simple linear regression.

Letting 

xt = rMt – rft

and

yt = rit – rft

the characteristic line can be rewritten as 

yt = αi + βi xt + εit

The parameters to be estimated are the coefficients αi and βi and the
standard deviation of the error term, εi. The parameter βi is the focus of
interest in this section. Later in this chapter, when we provide an illus-
tration of how regression analysis is used in performance measurement,
we will see the economic meaning of the intercept term, αi.

To estimate the characteristic line for an asset using regression analy-
sis, we consider three time series of returns for (1) the asset, (2) the market
portfolio, and (3) the risk-free rate. In our illustration, in the previous
chapter we estimated the characteristic line for Oracle, General Motors,
and a stock portfolio consisting of 20 stocks using 60 monthly returns
from 12/1/2000 to 11/1/2005. For the market portfolio we used the Stan-
dard & Poor’s 500 (S&P 500) and for risk-free rate we used the returns
for the one-month Treasury bill rate. 

Clearly, the beta estimates will vary with the particular market
index selected as well as with the sample period and frequency used.

Methodology for Testing the CAPM
Typically, a methodology referred to as a two-pass regression is used to
test the CAPM. The first pass involves the estimation of beta for each secu-
rity from its characteristic line. The betas from the first-pass regression are
then used to form portfolios of securities ranked by portfolio beta. 

rit = observed return on asset i for time t
rft = observed return on the risk-free asset for time t
rMt = observed return on the market portfolio for time t
eit = error term for time t
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The portfolio returns, the return on the risk-free asset, and the port-
folio betas are then used to estimate the second-pass regression. Then
the following second-pass regression which is the empirical analogue of
the CAPM is estimated: 

Rp – RF = b0 + b1 βp + ep (5.3)

where the parameters to be estimated are b0 and b1, and ep is the error
term for the regression. 

Unlike the estimation of the characteristic line which uses time series
data, the second-pass regression is a cross-sectional regression. The return
data are frequently aggregated into five-year periods for this regression.

According to the CAPM, the following should be found:

1. b0 should not be significantly different from zero. This can be seen by
comparing equations (5.1) and (5.3)

2. b1 should equal the observed risk premium (RM – RF) over which the
second-pass regression is estimated. Once again, this can be seen by
comparing equations (5.1) and (5.2).

3. The relationship between beta and return should be linear. That is, if,
for example, the following multiple regression is estimated, 

Rp – RF = b0 + b1 βp + b2 (βp)2 + ep

the parameters b0 and b2 should not be significantly different from
zero.

4. Beta should be the only factor that is priced by the market. That is,
other factors such as the variance or standard deviation of the returns,
and variables that we will discuss in later chapters such as the price-
earnings ratio, dividend yield, and firm size, should not add any signifi-
cant explanatory power to the equation.

Findings of CAPM Tests
The general results of the empirical tests of the CAPM are as follows:

1. The estimated intercept term b0, is significantly different from zero and
consequently different from what is hypothesized for this value.

2. The estimated coefficient for beta, b1, has been found to be less than
the observed risk premium (RM – RF). The combination of this and the
previous finding suggests that low-beta stocks have higher returns than
the CAPM predicts and high-beta stocks have lower returns than the
CAPM predicts.
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3. The relationship between beta and return appears to be linear; hence
the functional form of the CAPM is supported.

4. Beta is not the only factor priced by the market. Several studies have
discovered other factors that explain stock returns. These include a
price-earnings factor, a dividend factor, a firm-size factor, and both a
firm-size factor and a book-market factor. 

It is the last of these findings that has fostered the empirical search for
other factors using econometric models. 

It should be noted that in 1977 Richard Roll criticized the published
tests of the CAPM.5 He argued that while the CAPM is testable in prin-
ciple, no correct test of the theory had yet been presented. He also
argued that there was practically no possibility that a correct empirical
test would ever be accomplished in the future. We will not discuss these
arguments here. Basically, Roll argues that there is only one potentially
testable hypothesis associated with the CAPM, namely, that the true
market portfolio lies on the Markowitz efficient frontier (i.e., it is mean-
variance efficient). Furthermore, because the true market portfolio must
contain all worldwide assets, the value of most of which cannot be
observed (e.g., human capital), the hypothesis is in all probability
untestable. Empirical tests after 1977 have attempted to address Roll’s
criticisms in testing the CAPM.

USING THE CAPM TO EVALUATE MANAGER PERFORMANCE: 
THE JENSEN MEASURE

One of the early methodologies for evaluating manager performance
was proposed in 1968 by Michael Jensen. Jensen used a simple linear
regression model to analyze performance of mutual fund managers.6

Specifically, the Jensen measure (also called the Jensen index) is a risk-
adjusted performance measure that uses the CAPM to empirically deter-
mine whether a portfolio manager outperformed a market index. Using
time-series data for the return on the portfolio and the market index,
this is done by estimating the same regression as the characteristic line.
The intercept term, αi, is interpreted as the unique return realized by the
portfolio manager and is the estimated value of the Jensen measure. If

5 Richard Roll, “A Critique of the Asset Pricing Theory: Part I. On the Past and Po-
tential Testability of the Theory,” Journal of Financial Economics 5 (March 1977),
pp. 129–176.
6 Michael C. Jensen, “The Performance of Mutual Funds in the Period 1945–1964,”
Journal of Finance 23 (May 1968), pp. 389–416.
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the estimated intercept term is not statistically different from zero, there
is no unique return. A statistically significant intercept term that is posi-
tive means that the portfolio manager outperformed the market; a nega-
tive value means that the portfolio manager underperformed the
market. The Jensen measure is appropriate only when the portfolio is
diversified. Hence, there are limitations in applying this measure to
hedge funds, for example. In the previous chapter we estimated the
characteristic line for two large-cap mutual funds.

When Jensen proposed the model for measuring performance, in his
regression model the Greek letter alpha was used to represent the inter-
cept term in equation (5.3). Hence the Jensen measure is also called the
“Jensen alpha.” Consequently, the market often refers to the “alpha” of
a portfolio manager as a measure of performance. However, alpha as
the concept is used today is not the Jensen measure but rather the aver-
age active return over a period of time. The active return is the differ-
ence between the return of a portfolio and the benchmark index. Notice
that unlike the Jensen measure or Jensen alpha, measuring performance
by the average active return does not adjust for market risk.

EVIDENCE FOR MULTIFACTOR MODELS

Regression-based tests seeking to dispute the CAPM have helped identify
factors that have been found to be statistically significant in explaining the
variation in asset returns. Employing regression analysis, Robert Jones of
Goldman Sachs Asset Management has reported factors found in the U.S.
stock market.7 For the period 1979 through 1996, he regressed monthly
stock returns against the following factors: “value” factors, “momentum”
factors, and risk factors. The value factors included four ratios: book/mar-
ket ratio, earnings/price ratio, sales/price ratio, and cash flow/price ratio.
The three momentum factors included estimate revisions for earnings,
revisions ratio, and price momentum. Three risk factors were used. The
first is the systematic risk or beta from the CAPM.8 The second is the
residual risk from the CAPM; this is the risk not explained by the CAPM.
The third risk is an uncertainty estimate measure. The factors are begin-
ning-of-month values that are properly lagged where necessary.9 

7 Jones, “The Active versus Passive Debate: Perspectives on an Active Quant.” 
8 As explained later, in the calculation of the CAPM a proxy for the market portfolio
is needed. Jones used the Russell 1000 Index. This index includes large-cap stocks.
9 Lagging is required because certain financial information is reported with lag. For
example, year-end income and balance sheet information for a given year is not re-
ported until three months after the corporation’s year end. 
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EXHIBIT 5.1  Factors Found for U.S. Equity Market: Regression Results 

Source: Adapted from Exhibit 5 in Robert C. Jones, “The Active versus Passive
Debate: Perspectives on an Active Quant,” Chapter 3 in Frank J. Fabozzi (ed.),
Active Equity Portfolio Management (Hoboken, NJ: John Wiley & Sons, 1998).

Jones calculated the average monthly regression coefficient and t-
statistic for the series. Exhibit 5.1 shows the estimated coefficient for
each factor and the t-statistic. All of the factors are highly significant.
The lowest t-statistic is that of the CAPM beta. The conclusion from the
regression results reported in Exhibit 5.1 is that there are factors other
than the CAPM beta that explain returns. 

Application of Linear Regression to Factor Models
Consider a random vector X = (X1, . . ., XN)′, a vector of factors f = (f1,
. . ., fK)′, a random vector of errors εεεε = (ε1, . . ., εN)′, and a N × K matrix
of fixed real numbers ββββ = {βij}. Linear factor models are regression mod-
els of the following type:

The βij are the factor loadings that express the influence of the j-th fac-
tor on the i-th variable. We will describe in Chapter 13 how factors are
determined. 

U.S. Results (1979–1996)

Coefficient t-Statistic

Value Factors
     Book/market   0.24   2.96
     Earnings/price   0.40   5.46
     Sales/price   0.28   4.25
     Cash flow/price   0.38   5.28
Momentum Factors
     Estimate revisions   0.56 13.22
     Revisions ratio   0.55 14.72
     Price momentum   0.61   7.17
Risk Factors
     CAPM beta –0.17 –1.83
     Residual risk –0.42 –4.05
     Estimate uncertainty –0.33 –6.39

Xi αi βijfj
j 1=

K

∑ εi+ +=
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Using the notation established in Chapter 3, we can write the factor
model in matrix form as

X = ββββF + εεεε

Suppose that factors are known time series. A factor model is a multi-
ple regression where the Xi are regressed on the factors fj. The regression
coefficients are the factor loadings. If we assume the standard assump-
tions of factor models, we can also assume that the usual conditions of
regression models are verified. In fact, in a factor model, residuals are
assumed to be serially uncorrelated terms, uncorrelated with the factors,
and mutually uncorrelated (see Chapter 13). We also assume that the fac-
tors follow a multivariate normal distribution and that the residuals are
Gaussian as well. In addition, factor models assume that both the factors
and the variables are stationary so that regressions are meaningful.10

To estimate the regression equations, assuming that factors are
known, we can use the standard OLS estimators minimizing the sum of
squared residuals. Recall that the regression coefficients are estimated,
for each variable Xi through the formulas

where F is the design matrix of the regressors, that is the factors, that
includes a column of ones to allow for a nonzero intercept αi,

and the vector  includes both the intercept and the factor loadings,

In practice, it makes a considerable difference if the intercept term is
zero or not. The intercept term gives the excess return that a manager is
able to produce, the Jensen alpha discussed below, while the other regres-
sion coefficients represent the exposure to different factors (i.e., the sensi-
tivities to different factors). Suppose factors are portfolios and that there
is a risk-free rate. Let’s write a factor model in terms of the excess return

10 Dynamic factor models do not assume stationarity but assume that regressions are
meaningful.

ββββ F′F( ) 1– F′W=

F
1 f11 � f1K

� � � �
1 fT1 � fTK⎝ ⎠

⎜ ⎟
⎜ ⎟
⎛ ⎞

=

ββββi

ββββi α1 β11 � β1K=
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Z, defined as the difference between real returns and the risk-free asset,
and the factors f are excess risk-factor returns.

An exact factor pricing model is a factor model where the intercepts are
all zeros. The Arbitrage Pricing Theory (APT)11 prescribes that only a
finite number of assets might exhibit an α different from zero. That is,
according to the APT, it is impossible that all assets in a large economy
have nonzero intercept.

Let’s call µµµµf the f-vector of the factor means. Suppose that the factor
model is not constrained, that is, we estimate the intercepts from market
data. From the regression formulas, it can be demonstrated that we can
write the following estimates for the intercepts

where 

,   

In practice, estimates of the intercepts are very delicate as they require
very long time series.

Suppose now that we want to apply a strict factor structure; that is,
we impose the requirement that the intercepts are all zero. This restric-
tion might be imposed either to test the alternative hypothesis of no
intercept or because, in practice, we are primarily interested in evaluat-
ing factor exposure. In this case, to estimate the factor loadings, we
apply the general regression coefficients estimation formula

without demeaning factors and variables.
The general setting of factor models is such that in the model regres-

sion equation both the dependent variables and the factors are random

11 Stephen A. Ross, “The Arbitrage Theory of Capital Asset Pricing,” Journal of Eco-
nomic Theory 16 (December 1976), pp. 343–362.

Zi αi βijfj
j 1=

K

∑ εi+ +=

αααα̂ µµµµ̂ ββββ̂µµµµ̂f–=

µµµµ̂
1
T
---- Zt

t 1=

T

∑= µµµµ̂f
1
T
---- fft

t 1=

T

∑=

ββββ̂ ff′( ) 1– f′X=
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variables. If we want to compute the variance of the regression parame-
ters, we have to use the sandwich estimators introduced in Chapter 3
when regressors are random variables. These concepts also are discussed
when estimating a robust regression model in Chapter 12. 

Some well known factor models for the equity market are the models
developed by Chen, Roll, and Ross,12 Fama and French,13 MSCI Barra,
and Northfield. The MSCI Barra model is explained in Chapter 13.

BENCHMARK SELECTION: SHARPE BENCHMARKS 

Because of the difficulty of classifying a money manager into any one of
the generic investment styles for purposes of performance evaluation,
William Sharpe suggested that a benchmark can be constructed using
multiple regression analysis from various specialized market indexes.14

The rationale is that potential clients can buy a combination of special-
ized index funds to replicate a style of investing. A benchmark can be
created using regression analysis that adjusts for a manager’s index-like
tendencies. Such a benchmark is called a Sharpe benchmark.

The 10 mutually exclusive indexes suggested by Sharpe to provide
asset class diversification are (1) the Russell Price-drive Stock Index (an
index of large value stocks); (2) the Russell Earnings-growth Stock
Index (an index of large growth stocks); (3) the Russell 2000 Small
Stock Index; (4) a 90-Day Bill Index; (5) the Lehman Intermediate Gov-
ernment Bond Index; (6) the Lehman Long-Term Government Bond
Index; (7) the Lehman Corporate Bond Index; (8) the Lehman Mort-
gage-Backed Securities Index; (9) the Salomon Smith Barney Non-U.S.
Government Bond Index; and (10) the Financial Times Actuaries Euro-
Pacific Index.15

12 See the following articles by Eugene F. Fama and Kenneth French, “Common Risk
Factors in the Returns on Stocks and Bonds,” Journal of Financial Economics 33
(1993), pp. 3–56; “Size and Book-to-Market Factors in Earnings and Returns,” Jour-
nal of Finance 50 (1995), pp. 131–155; “Multifactor Explanations of Asset Pricing
Anomalies,” Journal of Finance 51 (1996), pp. 55–84, and; “Value versus Growth:
The International Evidence,” Journal of Finance 53 (1998), pp. 1975–1999.
13 Nai-fu Chen, Richard Roll, and Stephen A. Ross, “Economic Forces and the Stock
Market,” Journal of Business 59 (July1986), pp. 383–403.
14 William F. Sharpe, “Determining A Fund’s Effective Asset Mix,” Investment Man-
agement Review 9 (September–October 1988), pp. 16–29.
15 At the time that Sharpe introduced his model, the bond indexes were published by
Shearson-Lehman (now Lehman) and Salomon Brothers (now Salomon Smith Bar-
ney).
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Sharpe benchmarks are determined by regressing periodic returns (e.g.,
monthly returns) on various market indexes. The Sharpe benchmark was
reported for one portfolio management firm based on performance from
the period January 1981 through July 1988 using monthly returns.16 The
resulting Sharpe benchmark based on monthly observations was 

where FRC is an index produced by the Frank Russell Company.
The three indexes were selected because they were the only indexes

of the 10 that were statistically significant. Notice that the sum of the
three coefficients is equal to one. This is done by estimating a con-
strained regression as explained in the previous chapter. The coefficient
of determination for this regression was 97.6%. The intercept term for
this regression is 0.365%, which represents the average excess monthly
return and is a statistic similar to Jensen’s measure explained earlier. 

By subtracting the style benchmark’s monthly return from the man-
ager’s monthly portfolio return, performance can be measured. This dif-
ference, which we refer to as “added value residuals,” is what the
manager added over the return from three “index funds” in the appro-
priate proportions. For example, suppose that in some month the return
realized by this manager is 1.75%. In the same month, the return for the
three indexes were as follows: 0.7% for the FRC Price-driven index,
1.4% for the FRC Earnings-growth index, and 2.2% for the FRC 2000
index. The added value residual for this month would be calculated as
follows. First, calculate the value of the Sharpe benchmark:

The added value residual is then:

Added value residual = Actual return – Sharpe benchmark return

Since the actual return for the month is 1.75%, 

Added value residual = 1.75% – 1.45% = 0.3%.

16 See H. Russell Fogler, “Normal Style Indexes—An Alternative to Manager Uni-
verses?” in Performance Measurement: Setting the Standards, Interpreting the
Numbers, p. 102.

Sharpe benchmark 0.43 FRC Price-driven index( )×=
 0.13 FRC Earnings-growth index( )×+
 0.44 FRC 2000 index( )×+

Sharpe benchmark 0.43 0.7%( )× 0.13 1.4%( )× 0.44 2.2%( )×+ +=
1.45%=
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Notice that if this manager had been benchmarked against a single
investment style index such as the FRC Price-driven index, the manager
would have outperformed the benchmark by a wide margin (1.05%). In
contrast, if the FRC 2000 index is used as the benchmark, the manager
would have underperformed by 0.45%.

One interpretation of the results of a Sharpe benchmark that has
arisen in practice is that if the R2 is low, this is an indication that the
portfolio is actively managed because it is not associated with any partic-
ular style. However, this need not be the case as pointed out by Dor and
Jagannathan.17 One of the reasons could be due to inadequate asset class
indexes. Dor and Jagannathan illustrate the importance of including ade-
quate asset class indexes using the Putnam Utilities Growth and Income,
a mutual fund. Exhibit 5.2 reports the Sharpe benchmark based on
regression analysis of returns from January 1992 through August 2001.

There are two models reported. The first, denoted “Basic Model,”
uses 12 asset class indexes selected by Dor and Jagannathan. As can be
seen, the R2 is 66.9%. However, Putnam Utilities Growth and Income is a
sector-oriented fund. In creating a Sharpe benchmark for sector-oriented
funds, it is important to use relevant sector indexes. The “Extended
Model” reported in Exhibit 5.2 includes three sector indexes: Dow Jones
Utilities, Dow Jones Communications, and Dow Jones Energy. Notice
that not only does the R2 increase from 66.9%, the weights (regression
coefficients) change dramatically. For example, a 56.8% weight in the
basic model is assigned to Large-Cap Value but only 14.7% in the
extended model. Look also at the Treasury 10+ year asset class index.
This is the second largest weight in the basic model; however, in the
extended model it has no weight assigned to it.

RETURN-BASED STYLE ANALYSIS FOR HEDGE FUNDS

The use of the Sharpe benchmark is typical for evaluating nonhedge
fund managers. The difficulty with employing the Sharpe benchmark for
hedge funds is attributable to the wide range of assets in which they are
free to invest and the dynamic nature of their trading strategy (i.e., flex-
ibility of shifting among asset classes, the higher leverage permitted, and
the ability to short sell). 

17 Arik Ben Dor and Ravi Jagannathan, “Style Analysis: Asset Allocation and Perfor-
mance Evaluation,” Chapter 1 in T. Daniel Coggin and Frank J. Fabozzi (eds.), The
Handbook of Equity Style Management: Third Edition (Hoboken, NJ: John Wiley
& Sons, 2003).
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EXHIBIT 5.2  Sharpe Benchmark for Putnam Utilities Growth and Income (January 
1992–August 2001)

Source: Exhibit 1.10 in Arik Ben Dor and Ravi Jagannathan, “Style Analysis:
Asset Allocation and Performance Evaluation,” Chapter 1 in T. Daniel Coggin
and Frank J. Fabozzi (eds.), The Handbook of Equity Style Management: Third
Edition (Hoboken, NJ: John Wiley & Sons, 2003).

Dor and Jagannathan illustrate this difficulty using four hedge
funds.18 Two of the hedge funds are directional funds and two are non-
directional funds. The former employ strategies seeking to benefit from
broad market movements and the latter employ strategies seeking to
exploit short-term pricing discrepancies between related securities but at
the same time maintain market exposure to a minimum. Nondirectional
funds are referred to as market-neutral funds. The directional funds are
Hillsdale U.S. Market Neutral Fund (Hillside fund) and The Nippon
Performance Fund (Nippon fund); the nondirectional funds are Axiom
Balanced Growth Fund (Axiom fund) and John W. Henry & Com-
pany—Financial and Metals Portfolio (CTA fund).

Asset Class Basic Model Extended Model

Bills   0   3.4%
Treasury 1–10 yrs 11.9%   0
Treasury 10+ yrs 20.5%   0
Corporate Bonds   0   0
Large-Cap Value 56.8% 14.7%
Large-Cap Growth   0   0
Small-Cap Value   0   4.4%
Small-Cap Growth   0   0
Developed Countries   0   0
Japan   0   0
Emerging Markets   0   0
Foreign Bonds 10.8% 10.6%
Dow Jones Utilities — 44.6%
Dow Jones Communications — 16.5%
Dow Jones Energy —   5.9%

R2 0.669 0.929

18 Dor and Jagannathan, “Style Analysis: Asset Allocation and Performance Evalua-
tion.” 
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Exhibit 5.3 reports two regression results for the four hedge funds.
The first regression (referred to as the “Basic Model” in the exhibit) uses
12 asset classes. The explanatory power (R2) is lower for these hedge
funds than for mutual funds for the reason cited earlier regarding the
wide range of strategies available to hedge funds. Note, however, that
the R2 of the nondirectional funds (i.e., market-neutral funds) is higher
than that of the directional funds.

Theory and empirical evidence can help us identify factors to improve
upon the explanatory power of hedge fund returns. Several researchers
have argued that hedge funds pursue strategies that have option-like
(nonlinear) payoffs and this occurs even if an option strategy is not pur-
sued.19 Consequently, Dor and Jagannathan add four S&P 500 index
strategies to the 12 asset classes. This second regression, referred to as the
“Basic Strategy + Options Strategy,” shows that by adding the four
option indexes, the R2 increases significantly for each hedge fund. 

Dor and Jagannathan show how the style analysis can be further
improved by including peer-group performance as measured by hedge
fund indexes created by several organizations. Three examples of such
organizations are Hedge Fund Research Company (HFR), CSFB/Trem-
ont, and MAR Futures. The five hedge fund indexes that are used by
Dor and Jagannathan in their illustration are (1) Market Neutral, (2)
Emerging Markets, (3) Managed Futures, (4) Fixed Income, and (5)
Event Driven. A total of 21 explanatory variables then can be used in
the style analysis: 12 asset classes, five hedge fund indexes, and four of
the S&P 500 option strategies. Because of the large number of variables
and their high correlations, Dor and Jagannathan employ stepwise
regression analysis—the process of adding and deleting explanatory
variables sequentially depending on the F-value, as described in Chapter
4—to determine the explanatory variables that should be included. The
results are shown in Exhibit 5.4. In implementing the stepwise regres-
sion, Dor and Jagannathan specify a 10% significance level for deleting
or adding an explanatory variable in the stepwise regression procedure.

19 See, Lawrence A. Glosten and Ravi Jagannathan, “A Contingent Claim Approach
to Performance Evaluation,” Journal of Empirical Finance 1 (1994), pp. 133–160;
Mark Mitchell and Todd Pulvino, “Characteristics of Risk in Risk Arbitrage,” Jour-
nal of Finance 56 (December 2001), pp. 2135–2175; and William Fung and David
A. Hsieh, “The Risks in Hedge Fund Strategies: Theory and Evidence From Trend
Followers,” Review of Financial Studies 14 (2001), pp. 313–341; Philip H. Dybvig
and Stephen A. Ross, “Differential Information and Performance Measurement us-
ing a Security Market Line,” Journal of Finance 40 (1985), pp. 383–399; and Robert
C. Merton, “On Market Timing and Investment Performance I: An Equilibrium The-
ory of Values for Markets Forecasts,” Journal of Business 54 (1981), pp. 363–406.
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The results of the stepwise regression results show a higher ability to
track the returns of the two directional funds relative to the two nondi-
rectional funds by including the five hedge fund indexes (i.e., peer
groups).20

In Chapter 13 where we discuss principal component and factor
analysis, we will see an application of these tools to extract factors to
explain hedge fund returns.

HEDGE FUND SURVIVAL 

An illustration of probit regression is provided by Malkiel and Saha
who use it to calculate the probability of the demise of a hedge fund.21

The dependent variable in the regression is 1 if a fund is defunct (did
not survive) and 0 if it survived. The explanatory variables, their esti-
mated coefficient, and the standard error of the coefficient using hedge
fund data from 1994 to 2003 are given below:

20 Also note that the results suggest that each hedge fund appears to use option strat-
egies in different ways. We have not discussed these option strategies above. A dis-
cussion is provided in Dor and Jagannathan, “Style Analysis: Asset Allocation and
Performance Evaluation.” 
21 Burton G. Malkiel and Atanu Saha, “Hedge Funds: Risk and Return,” Financial
Analysts Journal 22 (November–December 2005), pp. 80–88.

Explanatory Variable Coefficient
Standard
Deviation

1. Return for the first quarter before the end of fund per-
formance.

–1.47   0.36

2. Return for the second quarter before the end of fund 
performance.

–4.93   0.32

3. Return for the third quarter before the end of fund 
performance.

–2.74   0.33

4. Return for the fourth quarter before the end of fund 
performance.

–3.71   0.35

5. Standard deviation for the year prior to the end of 
fund performance.

17.76   0.92

6. Number of times in the final three months the fund’s 
monthly return fell below the monthly median of all 
funds in the same primary category.

  0.00   0.33

7. Assets of the fund (in billions of dollars) estimated at 
the end of performance.

–1.30 –7.76

Constant term –0.37   0.07
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192 FINANCIAL ECONOMETRICS

For only one explanatory variable, the sixth one, the coefficient is
not statistically significant from zero. That explanatory variable is a
proxy for peer comparison of the hedge fund versus similar hedge funds.
The results suggest that there is a lower probability of the demise of a
hedge fund if there is good recent performance (the negative coefficient
of the first four variables above) and the more assets under management
(the negative coefficient for the last variable above). The greater the
hedge fund performance return variability, the higher the probability of
demise (the positive coefficient for the fifth variable above).

BOND PORTFOLIO APPLICATIONS

We have focused a good deal so far on applications to equity portfolio
management. In this section we will present a few applications to bond
portfolio management. 

Rich/Cheap Analysis for the Mortgage Market
Regression analysis has long been used to attempt to identify rich and
cheap sectors of the bond market.22 In the previous chapter, we dis-
cussed a model for predicting corporate bond spreads. Here we will use
a relative value regression model developed by the Mortgage Strategy
Group of UBS. The dependent variable is the mortgage spread, a vari-
able measured as the difference between the current coupon mortgage23

and the average swap rate. The average swap rate is measured by the
average of the 5-year swap rate and 10-year swap rate.

There are three explanatory variables in the model that have histor-
ically been found to affect mortgage pricing: 

1. The level of interest rates
2. The shape of the yield curve
3. The volatility of interest rates

The level of interest rates is measured by the average of the 5-year swap
rate and 10-year swap rate. The shape of the yield curve is measured by
the spread between the 10-year swap rate and 2-year swap rate. The
volatility measure is obtained from swaption prices. 

22 See H. Gifford Fong and Frank J. Fabozzi, Fixed Income Portfolio Management
(Homewood, IL: Dow Jones-Irwin, 1985).
23 More specifically, it is what UBS calls the “perfect current coupon mortgage,”
which is a proxy for the current coupon mortgage.
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The multiple regression model is24

Two years of data were used to estimate the regression model. While the
R2 for the estimated model is not reported, Exhibit 5.5 shows the actual
mortgage spread versus the spread projected by the regression model for
the Fannie Mae 30-year mortgage passthrough security, one type of
mortgage-backed security (MBS).

Let’s see how the model is used. The analysis was performed in early
March 2004 to assess the relative value of the MBS market. If the
spread predicted by the model (i.e., model spread) exceeds the actual
spread, the market is viewed as rich; it is viewed as cheap if the model
spread is less than actual spread. The market is fairly priced if the two

24 See “Mortgages—Hold Your Nose and Buy,” UBS Mortgage Strategist, 9 March
2004, pp. 15–26. UBS has argued in other issues of its publication that with this par-
ticular regression model the richness of mortgages may be overstated because the
model does not recognize the reshaping of the mortgage market. Alternative regres-
sion models that do take this into account are analyzed by UBS but the results are
not reported here.

Mortgage spread α β1 Average swap rate( )+=

β2 10-year 2-year swap spread⁄( )+

β3 10-year 2-year swap spread⁄( )2+

β4 Swaption volatility( ) e+ +

EXHIBIT 5.5  Mortgage Spreads: Actual versus Model

Source: Figure 4 in “Mortgages—Hold Your Nose and Buy,” UBS Mortgage Strat-
egist, 9 March 2004, p 19. Reprinted with permission.
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194 FINANCIAL ECONOMETRICS

spreads are equal. The predicted and actual spreads for March 2004 are
the last ones shown in Exhibit 5.5. While the model suggests that the
market is rich, it is less rich in comparison to the prior months. In fact,
on at the close of March 9, 2004 when the article was written, it was
only 5 basis points.

Empirical Duration
Duration is the approximate percentage change in the value of a security
or a portfolio to a change in interest rates. For most bonds, duration is
estimated from a valuation model by changing interest rates and
approximating the percentage price change based on the new prices gen-
erated by the model. An alternative approach is to use historical prices
to the estimate duration for complex bonds. The resulting duration is
referred to as empirical duration (also called regression-based duration
and implied duration). Empirical duration has been used for estimating
duration for complex bonds such as mortgage securities. (In the previ-
ous chapter we illustrated an application to the estimation of empirical
duration for equities.) 

For mortgage securities, several approaches based on observed mar-
ket prices are used to calculate duration. These market-based approaches
are empirical duration, coupon curve duration, and option-implied dura-
tion. In this section we discuss empirical duration because it is estimated
using regression analysis.25

Empirical duration is the sensitivity of a mortgage security as esti-
mated empirically from historical prices and yields. This approach was
first suggested in 1986 by Scott Pinkus and Marie Chandoha26 and then
in the 1990s by Paul DeRossa, Laurie Goodman, and Mike Zazzarino27

and Lakbir Hayre and Hubert Chang.28

Laurie Goodman and Jeffrey Ho provided more information on the
methodology used at PaineWebber (now UBS).29 On a daily basis the

25 For a more detailed discussion of regression-based models for measuring mortgage
securities, see Bennett W. Golub, “Measuring the Duration of Mortgage-Related Se-
curities,” Chapter 34 in Frank J. Fabozzi (ed.), The Handbook of Mortgage-Backed
Securities, 6th ed. (New York: McGraw Hill, 2006). 
26 The first attempt to calculate empirical duration was by Scott M. Pinkus and
Marie A. Chandoha, “The Relative Price Volatility of Mortgage Securities,” Journal
of Portfolio Management 12 (Summer 1986), pp. 9–22.
27 Paul DeRosa, Laurie Goodman, and Mike Zazzarino, “Duration Estimates on
Mortgage-Backed Securities,” Journal of Portfolio Management 18 (Winter 1993),
pp. 32–37.
28 Lakbir Hayre and Hubert Chang, “Effective and Empirical Duration of Mortgage
Securities,” Journal of Fixed Income 7 (March 1997), pp. 17-33.

c05-Regression Apps  Page 194  Thursday, October 26, 2006  2:03 PM



Regression Applications in Finance 195

following regression is used to calculate 2-week, 4-week, and 8-week
empirical duration for 30-year mortgage securities:

Change in mortgage price = α + β(∆10yrPrice)

where ∆10yrPrice = change in the price of the 10-year Treasury note.
The empirical duration is then calculated as follows:

where

For 15-year mortgage securities, instead of the 10-year Treasury
note, the 5-year Treasury note is used in the regression to estimate β and
in the empirical duration formula.

Exhibit 5.6 compares empirical duration and measures based on
non-statistical models (cash flow duration, effective duration or OAS
duration, and option-implied duration)30 several mortgage securities
(more specifically, mortgage passthroughs securities) issued by Ginnie
Mae (30-year issues denoted by GNSF in the exhibit) and Fannie Mae
(30-year issues denoted by FNCL and 15-year issues denoted by FNCI
in the exhibit). The mortgage securities reported in the exhibit were the
actively traded coupons based on prices from July 1, 1993 through May
12, 1998.

Goodman and Ho present another regression-based model to derive
duration. This model takes into account several factors that impact the
price of an MBS: level of rates, shape of the yield curve, and expected
interest rate volatility. The price model that they present allows not only
for an estimate of the sensitivity of the price to changes in the level of
rates, but also to the other factors.

29 Laurie S. Goodman and Jeffrey Ho, “An Integrated Approach to Hedging and Rel-
ative Value Analysis,” Chapter 15 in Frank J. Fabozzi (ed.), Advances in the Valua-
tion and Management of Mortgage-Backed Securities (Hoboken, NJ: John Wiley &
Sons, 1999).

D10yr = duration of the 10-year Treasury note
P10yr = price of the 10-year Treasury note
PMort = price of the mortgage security

= estimated parameter fro the change in mortgage price regression

30 For a discussion of these duration measures, see Golub, “Measuring the Duration
of Mortgage-Related Securities.” 

Empirical duration
D10yr( ) P10yr( )β̂

PMort
----------------------------------------=

β̂
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In their price model, the 10-year Treasury yield is used as a proxy
for the level of rates, the spread between the 10-year and 2-year Trea-
sury yields is used as a proxy for the shape of the yield curve, and the
implied 3-month yield volatility on the 10-year Treasury note is used as
a proxy for expected interest rate volatility. The price model involves
estimating the following regression:

where ln[10-year yield] means the natural logarithm of the 10-year
Treasury yield.

EXHIBIT 5.6  Comparison of Empirical, Effective (OAS), Cash Flow, Option 
Implied, and Price Model Durations 

Note: Hedge ratios versus 10-year Treasury for 30-year mortgages; 5-year Treasury
for 15-year mortgages.
Source: Exhibit 3 in Laurie S. Goodman and Jeffrey Ho, “An Integrated
Approach to Hedging and Relative Value Analysis,” Chapter 15 in Frank J.
Fabozzi (ed.), Advances in the Valuation and Management of Mortgage-Backed
Securities (Hoboken, NJ: John Wiley & Sons, 1999), p. 223.

5/12/98
Price

Cash
Flow

Duration
OAS

Duration
Empirical
Duration

Option
Implied

Duration

Price
Model

Duration

GNSF 6.0 96:26 6.27 6.57 5.32 5.53 5.75
GNSF 6.5 99:02 5.82 5.98 4.36 4.52 4.97
GNSF 7.0 101:05+ 5.59 5.25 3.55 3.62 4.01
GNSF 7.5 102:24+ 4.88 4.31 2.20 3.01 2.95
GNSF 8.0 103:28 3.98 3.32 1.41 2.59 1.74
GNSF 8.5 105:18+ 3.03 2.54 0.44 0.00 1.03
FNCL 6.0 96:17+ 5.55 5.88 5.10 5.22 5.29
FNCL 6.5 98:30+ 5.64 5.29 4.19 4.19 4.68
FNCL 7.0 101:02+ 5.28 4.55 3.39 3.32 3.79
FNCL 7.5 102:20+ 4.35 3.66 2.03 2.69 2.64
FNCL 8.0 103:24 3.72 2.84 1.23 2.32 1.48
FNCL 8.5 104:18 2.90 2.26 0.46 0.00 0.59
FNCI 6.0 98:16 4.33 4.31 3.77 3.85 6.12
FNCI 6.5 100:11 4.11 3.90 2.92 3.03 5.07
FNCI 7.0 101:25 3.66 3.31 2.10 2.46 3.80
FNCI 7.5 102:28+ 2.98 2.69 1.10 2.00 2.28
FNCI 8.0 103:03 2.42 2.24 0.55 1.85 0.72

Price a b 10-year yield( ) c 10-year yield[ ]ln( )+ +=
d 10-year/2-year spread( ) e Volatility( )+ +
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Exhibit 5.7 reports the price model results estimated using regression
for each of the actively traded coupons mortgage securities—30-year
Ginnie Maes (denoted GN in the exhibit), 30-year Fannie Maes (denoted
FN in the exhibit), and 15-year Fannie Maes (denoted DW in the
exhibit). Goodman and Ho used prices from July 1, 1993 through May
12, 1998 to estimate the regression. (Note that the reported standard
error of the regression in ticks.)

As can be seen from Exhibit 5.7, the R2 of the regression is above
97.5% for all of the mortgage securities. For example, for the R2 is
99.3% and the standard error is 9 ticks FNMA 7.0% regression (FN 7.0
in the exhibit). All the t-statistics are highly significant. 

Given the estimates for the parameters above, duration (called by
Goodman and Ho price model duration) is found as follows:

Price model duration = –[b + c/(10-year Treasury yield)]

For example, for the FN 7.0 price model regression, the regression
estimate for b was –11.89 and the regression estimate for c was 45.87.
On the close of May 12, 1998, the 10-year Treasury yield was 5.70%.
Therefore, the price model duration was:

Price model duration = –[–11.89 + (45.87/5.7)] = 3.84

The last column in Exhibit 5.6 shows the price model duration. In
the exhibit, the FN 7.0 is shown as FNCL 7.0. Note that the value
shown in the exhibit’s last column for duration is 3.79; this differs from
the value of 3.84 computed above due to rounding.

There are advantages and disadvantages of the regression-based
approach to estimating duration.31 First the advantages. The duration
estimate does not rely on any theoretical formulas or analytical assump-
tions. Second, the estimation of the required parameters is easy to com-
pute using regression analysis. Finally, only two inputs are needed: a
reliable price series and Treasury yield series.

As for the disadvantages. First, a reliable price series for a mortgage
security may not be available. For example, there may be no price series
available for a thinly traded mortgage derivative security or the prices
may be matrix-priced or model-priced rather than actual transaction
prices. Second, an empirical relationship does not impose a structure for
the options embedded in a mortgage-backed security; this can distort
the empirical duration. Third, the price history may lag current market

31 For a more detailed discussion, see Golub, “Measuring the Duration of Mortgage-
Related Securities.” 
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conditions. This may occur after a sharp and sustained shock to interest
rates has been realized. Finally, the volatility of the spread to Treasury
yields can distort how the price of a mortgage-backed security reacts to
yield changes.

CONCEPTS EXPLAINED IN THIS CHAPTER
(IN ORDER OF PRESENTATION)

Factors
Market efficiency
Market efficiency tests
Excess return
Active return
Return attribution analysis
Diversifiable risk
Jensen measure
Jensen alpha and alpha
Factor models
Factor loadings
Exact factor pricing models
Strict factor structure
Sharpe benchmark
Directional funds
Market neutral funds
Style analysis
Empirical duration
Price model duration
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Modeling Univariate Time Series

 

n this chapter we discuss techniques for modeling univariate time
series. These techniques are, for example, employed for short-term

prediction of asset prices or returns or to test the market-efficiency
hypothesis. We restrict the discussion to linear times series models and
focus on the class of 

 

autoregressive moving average 

 

(ARMA) models
Although financial time series typically exhibit structures that are more
complex than those provided by ARMA processes, ARMA models are a
first starting point and often serve as a benchmark against more com-
plex approaches.

We start by introducing some technical background, definitions,
properties of ARMA processes, and various models belonging to this
class. The practical steps for deriving a model from data using the Box-
Jenkins approach are presented in the next chapter. 

 

DIFFERENCE EQUATIONS

 

In linear time series analysis it is commonly assumed that a time series
to be modeled can be represented or approximated by a linear difference
equation. In this section, we introduce the notation for linear difference
equations and approaches to their solutions.  

 

Notation

 

Consider a situation where the value of a time series at time 

 

t

 

, 

 

y

 

t

 

, is a
linear function of the last 

 

p 

 

values of 

 

y

 

 and of exogenous terms, denoted
by 

 

ε

 

t

 

. We write

 

y

 

t

 

 = a

 

1

 

y

 

t 

 

– 1

 

 + a

 

2

 

y

 

t 

 

– 2

 

 

 

+ ··· + a

 

p

 

y

 

t – p

 

 + 

 

ε

 

t

 

(6.1)

I
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FINANCIAL ECONOMETRICS

 

Expressions of type (6.1) are called difference equations. If the
exogenous terms are zero, (6.1) is called an 

 

homogenous difference
equation.

 

 If the exogenous term is a white noise, expression (6.1) repre-
sents an autoregressive process of order 

 

p

 

, which will be detailed later. 
Let’s now introduce the lag operator notation. The 

 

lag operator

 

,
denoted by 

 

L

 

, is an operator that shifts the time index backward by one
unit.

 

1

 

 Applying the lag operator to a variable at time 

 

t

 

, we obtain the
value of the variable at time 

 

t

 

 

 

– 

 

1:

 

Ly

 

t

 

 = 

 

y

 

t 

 

– 1

 

 

Applying 

 

L

 

2

 

 amounts to lagging the variable twice. i.e., 

 

L

 

2

 

y

 

t

 

 = 

 

L

 

(

 

Ly

 

t

 

) =

 

Ly

 

t

 

 – 1

 

 = 

 

y

 

t

 

 – 2

 

.
More formally, the lag operator transforms one time series, say

into another series, say

where 

 

x

 

t

 

 

 

= 

 

y

 

t – 

 

1

 

. A constant 

 

c 

 

can be viewed as a special series, namely
series

with 

 

y

 

t

 

 

 

= 

 

c 

 

for all 

 

t

 

, and we can apply the lag operator to a constant
obtaining 

 

Lc 

 

= 

 

c

 

. Note that by raising 

 

L 

 

to a negative power, we obtain
a 

 

delay 

 

(or 

 

lead

 

) 

 

operator

 

:

 

L

 

–

 

k

 

y

 

t

 

 = 

 

y

 

t

 

 + 

 

k

 

The 

 

difference operator 

 

∆

 

 is used to express the difference between con-
secutive realizations of a time series. With 

 

∆

 

y

 

t

 

 

 

we denote the first differ-
ence of 

 

y

 

t

 

:

 

∆

 

y

 

t = 

 

y

 

t

 

 – 

 

y

 

t

 

 – 1

 

It follows that 

 

∆

 

2

 

y

 

t

 

 = 

 

∆

 

(

 

∆

 

y

 

t

 

) = 

 

∆

 

(

 

y

 

t

 

 – 

 

y

 

t

 

 – 1

 

) = (

 

y

 

t

 

 – 

 

y

 

t

 

 – 1

 

) – (

 

y

 

t

 

 – 1

 

 – 

 

y

 

t

 

 – 2

 

)
= 

 

y

 

t

 

 – 2

 

y

 

t

 

 – 1

 

 + 

 

y

 

t

 

 – 2

 

, etc.

 

1 

 

The lag operator is also called 

 

backward shift

 

 operator and sometimes denoted by 

 

B

 

.

yt{ }t ∞–=
∞

xt{ }t ∞–=
∞

yt{ }t ∞–=
∞
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The difference operator can be expressed in terms of the lag opera-
tor because 

 

∆

 

 = 1 – L. Hence, ∆2 = (1 – L)2 = 1 – 2L + L2 and, in general,
∆n = (1– L)n. From

(6.2)

it follows that

(6.3)

The lag operator enables us to express higher-order difference equations
more compactly in form of polynomials in lag operator L. For example,
the difference equation

yt = a1yt – 1 + a2yt – 2 + a3yt – 3 + c

can be written as

yt = a1Lyt + a2L2yt + a3L3yt + c

(1 – a1L – a2L2 – a3L3)yt = c

or, in short,

a(L)yt = c

where a(L) stands for the third-degree polynomial in the lag operator L,
i.e., a(L) = 1 – a1L – a2L2 – a3L3. This notation allows us to express
higher-order difference equation, in a very compact fashion. We write
the p-th order equation (6.1) as (1 – a1L – a2L2 – � – apLp)yt = εt or
more compactly as a(L)yt = εt where a(L) is the polynomial (1 – a1L –
a2L2 – � – apLp). The lag operator L is a linear operator (i.e., for any
value yt it holds Liyt = yt–i). For lag operators, the distributive law and
the associative law of multiplication holds. 

Replacing in polynomial a(L) lag operator L by variable λ and set-
ting it equal to zero, we obtain the reverse characteristic equation asso-
ciated with the difference equation (6.1):

a(λ) = 0 (6.4)

a b+( )n n
k⎝ ⎠

⎜ ⎟
⎛ ⎞

an k– bk

k 0=

n

∑=

∆n 1 L–( )n n
k⎝ ⎠

⎜ ⎟
⎛ ⎞

L–( )k

k 0=

n

∑= =
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Any value of λ which satisfies the reverse characteristic equation (6.4) is
called a root of polynomial a(λ). A polynomial of degree p has p roots
λk, k = 1,…,p. In general, roots are complex numbers:

λk = ak ± bki

with ak and bk being real numbers, and i = . Complex roots come in
the form of conjugate pairs (ai, bi) and for any such pair, a solution to
the homogeneous equation is c1(a1 + ib1) + c2(a1 – ib1), where c1 and c2
are arbitrary constants. 

The roots of the polynomial associated with difference-equation
representation of time series turn out to be important determinants of
the behavior of the time series.

Solving a Difference Equation
Expression (6.4) represents the so-called coefficient form of a reverse
characteristic equation, which is for a polynomial of degree p

1 – a1λ – … – apλp = 0

An alternative is the root form given by

(λ1 – λ)(λ2 – λ) · · · (λp – λ) =  = 0

The latter form reveals the roots directly, that is, the values of λ, for
which the reverse characteristic equation is satisfied.

For example, consider a difference equation

The reverse characteristic equation in coefficient form is given by

or

2 – 3λ + 1λ2 = 0

1–

λi λ–( )
i 1=

p

∏

yt
3
2
---yt 1–

1
2
---yt 2–– εt+=

1
3
2
---λ–

1
2
---λ2+ 0=
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that can be written in root form as

(1 – λ)(2 – λ) = 0

Here, λ1 = 1 and λ2 = 2 represent the set of possible solutions for λ sat-
isfying the reverse characteristic equation

Consider a homogeneous difference equation

yt – a1yt – 1 – a2yt – 2 – � – apyt – p = 0 (6.5)

where 

and where we assume that λ1, λ2. …, λp are distinct. Then the general
solution of (6.5) at time t, when referring to an origin at time t0, is given
by 

(6.6)

where αi , i = 1,…, p, are constants.  
To see that (6.6) does satisfy (6.5), we can substitute (6.6) in (6.5) to

obtain

(6.7)

Now we consider

1
3
2
---λ–

1
2
---λ2+ 0=

a λ( ) 1
λ
λ1
------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

1
λ
λ2
------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

… 1
λ
λp
------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

yt α1
1

λ1
t t0–

------------- α2
1

λ2
t t0–

------------- � αp
1

λp
t t0–

-------------+ + +=

a λ( ) α1
1

λ1
t t0–

------------- α2
1

λ2
t t0–

------------- � αp
1

λp
t t0–

-------------+ + +
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

0=

c06-ModelingUnivariate  Page 205  Thursday, October 26, 2006  2:05 PM



206 FINANCIAL ECONOMETRICS

We observe that

disappears for each value of i if  

that is, if

is the root of a(λ) = 0. Since

implies that the roots of a(λ) = 0 are

it follows that

a λ( )
1

λi
t t0–

------------- 1 a1λ– a2λ2– �– apλp–( )
1

λi
t t0–

-------------=

1

λi
t t0– p–

--------------------
1

λi
p

------ a1
1

λi
p 1–

-------------– �– ap–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

a λ( )
1

λi
t t0–

-------------

1

λi
p

------ a1
1

λi
p 1–

------------- �– ap–– 0=

λ
1
λi
----=

a λ( ) 1
λ
λ1
------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

1
λ
λ2
------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

� 1
λ
λp
------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

λ
1
λi
----=

a λ( )
1

λi
t t0–

-------------
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is zero for all i and thus (6.7) holds, confirming that (6.6) is a general
solution of (6.5). 

If we have only r < p distinct roots and each root has multiplicity pi
(i.e., the root is repeated pi times), where

then it can be demonstrated that

where αij are constants.2 Note that roots are generally complex numbers.

TERMINOLOGY AND DEFINITIONS

Autoregressive (AR) and moving average (MA) models are widely used
linear time series models. In this section, we introduce the notion of the
white noise process as the building block of the AR and MA processes,
following with description of the AR and MA processes. Finally, we
introduce the ARMA models.

White-Noise Process and Martingale Difference
The sequence of random variables X1, X2, … is called IID noise if the
observations of the time series are independent and identically distrib-
uted (IID) random variables with zero mean. This implies that time
series contain no trend or seasonal components and that there is no
dependence between observations. 

We assume that εt, t = ±0, ±1, ±2, …, is a zero-mean, IID sequence
{εt} with 

,     

2 George E. P. Box, Gwilym M. Jenkins, and Gregory C. Reinsel, Time Series Anal-
ysis Forecasting and Control, 3rd ed. (Englewood Cliffs, NJ: Prentice Hall, 1994).
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for all t and s. Sequence {εt} is called a purely random process, IID noise
or simply strict white noise and we write εt ~ IID(0, σ2). If we require the
sequence {εt} only to be uncorrelated and not necessarily independent, then
{εt} is sometimes known as a uncorrelated white noise process or white
noise. In this case, we write εt ~ WN(0, σ2). Every IID(0, σ2) sequence is
WN(0, σ2) but the converse does not hold. If successive values follow a
normal (Gaussian) distribution, then zero correlation implies indepen-
dence so that Gaussian white noise is a strict white noise and we denote it 

   or   

However, when successive values deviate from normal distribution, zero
correlation need not imply independence and white noise and strict
white noise do not coincide. 

An additional useful concept is the martingale difference. A series of
random variables, {Xt}, with finite first absolute moment, is called a
martingale if 

where ℑt = {Xt, Xt–1, …} is the information set available to time t
including Xt.

3 If we define {Yt} as the first differences of a martingale, Yt
= Xt  – Xt–1, then a series {Yt} is called a martingale difference. A mar-
tingale process implies that Yt is a “fair game” (i.e., a game which is in
favor of neither opponents), so that 

Xt  is a martingale if and only if (Xt  – Xt–1) is a fair game.4 
If Xt represents an asset’s price at date t, then the martingale process

implies that tomorrow’s price is expected to be equal to today’s price,
given the information set containing price history of an asset. Also, the
martingale difference process says that conditional on the asset’s price
history, the asset’s expected price changes (e.g., changes in prices
adjusted for dividends) are zero. In this sense, information ℑt contained
in past prices is instantly and fully reflected in the asset’s current price
and hence useless in predicting rates of return. The hypothesis that

3 As explained in Chapter 2, in more rigorous terms we condition with respect to a
σ-algebra. Informally, we condition with respect to an information set formed by the
past values of all relevant variables.
4 Due to this reason, fair games are sometimes called martingale differences. 

εt IIDN 0 σ2,( )∼ εt
IIDN 0 σ2,( )∼

Et Xt 1+ ℑt( ) Xt=

Et Xt 1+ Xt– ℑt( ) 0=
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prices fully reflect available information is widely known in finance as
the “efficient market hypothesis.” Broadly speaking, in an efficient mar-
ket,5 trading on the information contained in the prior asset’s prices will
not generate profit.

A martingale difference6 is similar to uncorrelated white noise
except that it need not have constant variance and that its conditional
mean is zero. A martingale difference with the conditional mean equal
to zero and a constant variance (i.e., E(Xt|Xs, s < t) = 0, Var(Xt) = σ2, for
all t) is called a homoskedastic martingale difference. Here we have
assumed that the original process and the difference process generate the
same information set, which is often the case. A martingale difference
with the conditional mean equal to zero and a nonconstant variance
(i.e., E(Xt|Xs, s < t) = 0, Var(Xt|Xs, s < t) = σ2) is called a conditional
white noise. In the case that successive values follow a normal (Gauss-
ian) distribution, a martingale difference with constant variance is a
strict white noise.

Uncorrelated white noise and martingale differences have constant
mean and zero autocorrelations. Note that definitions do not specify the
nonlinear properties of such sequences. Specifically, although {Xt} may
be uncorrelated white noise or a martingale difference, the series of
squared observations  need not be. Only if {Xt} is a strict white
noise then  will be uncorrelated white noise. 

Consideration of time-series models for white noise and martingale
processes that differ in certain characteristics allow treatment of differ-
ent levels of dependence between subsequent observations and play a
role in describing the dynamics of a financial series or checking the
validity of fitted models by inspecting the residuals from the model. To

5 Fama defines three types of capital market efficiency with regards to definition of
what is the relevant information set: weak-form market efficiency if information set
includes past prices and returns alone, semistrong-form efficiency if information set
includes all public information, and strong-form efficiency if information set in-
cludes any public as well as private information. Strong-form efficiency implies semi-
strong-form efficiency, which in turn implies weak-form efficiency, but the reverse
implications do not follow. (Eugene F. Fama, “Efficient Capital Markets: A Review
of Theory and Empirical Work,” Journal of Finance 25 (1970), pp. 383–417.)
6 The martingale process is a special case of the more general submartingale process.
Specifically, Xt is a “submartingale” if it has the property that .
In terms of the (Xt+1 – Xt) process, the submartingale model implies that

. For further details on the submartingale model and asso-
ciated concept of a superfair game, see for example, William A. Barnett and
Apostolos Serletis, “Martingales, Nonlinearity, and Chaos,” Journal of Econom-
ic Dynamics and Control 24 (2000), pp. 703–724.

Et Xt 1+ ℑt( ) Xt≥

Et Xt 1+ Xt– ℑt( ) 0≥

Xt
2{ }

Xt
2{ }
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summarize the relations between white noise and martingale processes,
we sketch here how they relate to each other:

 ■ Uncorrelated white noise → Homoskedastic martingale difference
 ■ Gaussian white noise → Strict white noise → Conditional white noise

where → stands for implication.

Autoregressive Processes
An autoregressive process (AR) of order p, or briefly an AR(p) process,
is a process where realization yt is a weighted sum of past p realizations,
i.e., yt – 1, yt – 2, …, yt – p, plus a disturbance term, denoted by εt. The
process can be represented by the p-th order difference equation

 yt = a1yt – 1 + a2yt – 2 + … + apyt – p + εt (6.8)

where εt ~ WN(0, σ2). Using the lag operator L, the AR(p) process (6.8)
can be expressed as 

(1 – a1L – a2L2 – … – apLp)yt = εt

or, more compactly,

a(L)yt = εt (6.9)

where the autoregressive polynomial a(L) is defined by a(L) = 1 – a1L –
a2L2 – … – apLp.

Moving Average Processes
A moving average (MA) process of order q, in short, an MA(q) process,
is the weighted sum of the preceding q lagged disturbances plus a con-
temporaneous disturbance term, i.e.,

yt = b0εt + b1εt – 1 + … + bqεt – q (6.10)

or

yt = b(L)εt (6.11)

where εt ~ WN(0, σ2), b0, …, bq are constants and b(L) = b0 + b1L + b2L2

+ … + bqLq denotes a moving average polynomial of degree q with b0 ≠ 0.
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Usually, if not mentioned otherwise, and without loss of generality,
we assume that b0 = 1. Also we assume that bq ≠ 0. Otherwise, we
would deal with an MA(q – 1) process. 

By allowing b0 ≠ 1, we can in fact restrict the noise variance to be
unity, because

yt = b0εt + b1εt – 1 + … + bqεt – q,     Var(εt) = σ2

can be rewritten in terms of standardized errors, ut = εt/σ:

yt = σut + b1σut – 1 + … + bqσut – q,     Var(ut) = 1

Thus either restriction b0 = 1 or restriction Var(εt) = σ2 = 1 should be
imposed. Otherwise parameters b0 and σ2 will not be identified when
estimating autoregressive moving average models. 

Autoregressive Moving Average Processes
The AR and MA processes just discussed can be regarded as special cases
of a mixed autoregressive moving average (ARMA) process, in short, an
ARMA(p,q) process, given by

yt = a1yt – 1 + a2yt – 2 + … + apyt – p + εt + b1εt – 1 + … + bqεt – q (6.12)

or

a(L)yt = b(L)εt (6.13)

Clearly, ARMA(p, 0) and ARMA(0, q) processes correspond to pure
AR(p) and MA(q) processes, respectively.

The advantage of ARMA process relative to AR and MA processes
is that it gives rise to a more parsimonious model with relatively few
unknown parameters. Instead of capturing the complex structure of
time series with a relatively high-order AR or MA model, the ARMA
model which combines the AR and MA presentation forms can be used.

ARMA Processes with Exogenous Variables 
ARMA processes that also include current and/or lagged, exogenously
determined variables are called ARMA processes with exogeneous vari-
ables and denoted by ARMAX processes. Denoting the exogenous vari-
able by xt, an ARMAX process has the form

a(L)yt = b(L)εt + g(L)xt (6.14)
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The degree of polynomial g(L) = g0 + g1L + … + gnLn specifies the
extent to which past values of the exogenous variable, xt, affect the
endogenous variable, yt. If more than one exogenous variable, say the r
variables x1,t, x2,t, …, xr,t, affect yt, then (6.14) can be generalized to

where gi(L) is the lag polynomial of degree ni that is associated with
variable xi,t.

ARMA Processes with Deterministic Components
The processes presented so far can be generalized by introducing addi-
tional deterministic components, that is, components that are not ran-
dom variables. Adding, for example, the constant term c to ARMA
process (6.13) we obtain

a(L)yt = c + b(L)εt (6.15)

If the ARMA process yt has mean µ = E(yt) for all t, it can be trans-
formed into a zero-mean process by centering (or de-meaning); that is,
by defining the centered process  = yt – µ. Then, we have

(6.16)

which is a zero-mean process. To see this, note that

with E(yt – i) = µ and E(εt – j) = 0, which implies

or

a L( )yt b L( )εt gi L( )xi t,
i 1=

r

∑+=

ỹt

a L( )ỹt b L( )εt=

E yt( ) c E aiyt i–
i 1=

p
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(6.17)

Alternatively, writing

a(L)(yt  – µ) = b(L)εt

it follows that 

a(L)yt = a(L)µ + b(L)εt

and because Lµ = µ,

and from (6.17), we obtain a(L)µ = c. 
In addition to having a constant term, there could be a deterministic

(linear or polynomial) time trend present. For example, with an addi-
tional linear trend component, (6.15) becomes

a(L)yt = c0 + c1t + b(L)εt

Under suitable conditions we could remove such more general determin-
istic trends from the process, and we typically neglect them in theoreti-
cal discussions of the ARMA process. However, in practice we generally
include a constant term when estimating ARMA models.

Integrated ARMA Processes
Very often we observe that the mean and/or variance of economic time
series, yt, change over time. In this case, we say the series are nonsta-
tionary—a concept that will be more formally defined and discussed
later. Generally, a nonstationary time series may exhibit a systematic
change in mean, variance or both. However, the series of the changes
from one period to the next, that is, the differenced series ∆yt, may have
a mean and variance that do not change over time. In this case, it will be
more convenient to model the differenced series, ∆yt, rather than the
original level series. It is conceivable that higher-order differencing
(∆dyt) may be necessary to obtain a constant mean and variance. 

µ
c

1 ai
i 1=

p

∑–

-----------------------=

a L( )µ 1 ai
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p
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An ARMA process is called an autoregressive integrated moving aver-
age (ARIMA) process, with order of differencing d, or an ARIMA(p, d, q)
process, if it has the following form 

a(L)∆dyt = b(L)εt (6.18)

with ∆0 = 1.
Defining zt = ∆dyt we deal, in terms of zt, with a standard ARMA

model, namely a(L)zt = b(L)εt. The original level data yt are recovered
from the differenced series by appropriate summation (“integration”):

,   d = 1, 2, ….

Standard analysis of financial time series considers the case when
the order of differencing, d, has an integer value, and is either 0 or 1.
However, we can also consider d to be a noninteger in which case we
say that yt is said to be fractionally integrated. The properties and impli-
cations of this type of processes will be introduced later, after we tackle
and explore the concepts of stationarity and linear processes. 

STATIONARITY AND INVERTIBILITY OF ARMA PROCESSES

In simple terms, stationarity describes a property of the process to achieve
a certain state of statistical equilibrium so that the distribution of the pro-
cess does not change much. Stationarity thus guarantees that that the
essential properties of a time series remain constant over time. Features
that do not vary over time can be captured to systematically model time
series. Depending on whether we focus on all characteristics or only some
particular ones, we distinguish different types of stationarity. Time series

is called strictly stationary if the joint distribution of any stretch yt, yt–1,
…, yt–k does not vary over time, with k being a finite positive integer.
More formally, strict stationarity requires that

∆d 1– yt ∆d 1– y0 ∆dyt 1–
i 0=

t 1–

∑+=

yt{ }t ∞–=
∞

Fyt yt 1– … yt k–, , , x0 x1 … xk, , ,( ) Fyt τ– yt τ– 1– … yt τ– k–, , , x0 x1 … xk, , ,( )=
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holds for all τ and all k, where  denotes a
(k + 1)-dimensional joint cumulative distribution function.

Some of the elementary implications of strictly stationary time series are7

1. The random variables yt are identically distributed,
2. (yt, yt+h)′  (y1, y1+h)′ for all integers t and h.8

An IID sequence is an example of a strictly stationary process.
Strict stationarity is often too restrictive since it requires that the

time series is completely invariant over time—that is, all moments are
constant over time. A less restrictive and in many applications sufficient
concept of stationarity is that of weak stationarity. Weak stationarity
focuses solely on the first and second moments of a time series. Time
series  is said to be weakly stationary if for all t and t – k

1. The mean of yt is constant over time: 

E(yt) =  E(yt – k) = µ, with |µ| < ∞

2. The variance of yt is constant over time: 

Var(yt) = E[(yt – µ)2] = Var(yt – k) =  < ∞

3. The covariance of yt and yt – k does not vary over time, but may depend
on the lag k: 

Cov(yt, yt – k) = E[(yt – µ)(yt – k  – µ)]   
= Cov(yt – j, yt – j – k) = γk, with |γk| < ∞

µ, , and all γk are constants and finite. For k = 0, γ0 is equivalent to
the variance of yt. In other words, a time series is weakly stationary if its
mean and all autocovariances are not affected by a change of time ori-
gin. An implication of the above definitions of the stationarity is that
the strict stationarity implies weak stationarity provided first and sec-
ond moments exist. Generally, the opposite is not true except in the case
of a normal distribution. Throughout this chapter, unless stated other-
wise, we will rely on the concept of weak stationarity which we mean
whenever relating to “stationarity.” 

7 See Peter J. Brockwell and Richard A. Davis, Introduction to Time Series and Fore-
casting, 2nd ed. (New York: Springer, 2002). 
8 The symbol  denotes equality in distribution.
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Let {yt} be a stationary process. We introduce the following concepts

1. γ(k) = Cov(yt,yt–k) is called the autocovariance function.
2. ρ(k) = γ(k)/γ(0), k = 0, 1, 2, . . ., is called the autocorrelation function.

For a weakly stationary series, γ0 and γk are time independent. A conse-
quence is that the autocorrelation coefficients, ρ(k), are also time-inde-
pendent. For stationary processes, both functions γ(·) and ρ(·) should
decay to zero quite rapidly. This can be an indication of the so called
short-term memory behavior of the time series. This property will be
explained later in this chapter. The autocovariance and autocorrelation
functions are important for characterization and classification of time
series and later in the chapter we will discuss how to use them to model
time series as an ARMA process. 

Consider the AR(p) process 

a(L)yt = εt

with E(εt) = 0 and Var(εt) = σ2 < ∞. This process is called stable if the
absolute values (or magnitude) of all the roots, λi, i = 1, …, p, of the
reverse characteristic equation a(λ) = 0 are greater than one.9 Note that
the absolute value of a complex root, λk = ak + bki, is computed by

It can be demonstrated that a stable process is weakly stationary. The con-
verse, however, is not true: a stationary process need not be stable. Con-
ceptually, stability and stationarity are different properties. However, in
practice, stability conditions are often referred to as stationarity condi-
tions. Often we are given the coefficients and not the roots of the AR poly-
nomial. It becomes infeasible to express the stationarity conditions of
higher-order AR polynomials in terms of the AR coefficients. It is conve-
nient to use the so-called Schur criterion, to determine stationarity in terms
of the AR coefficients.10 For the AR polynomial a(L) = 1 – a1L – a2L2 – …
– apLp, the Schur criterion requires the construction of two lower-triangu-

9 This concept of stable processes should not be confused with the concept of stable
Paretian or Lévy-stable processes. As explained in Chapter 14, Lévy-stable processes
are processes such that all finite distributions are Lévy-stable distributions. 
10 The Schur theorem gives the necessary and sufficient conditions for stability. See,
for example, Chapter 1 in Walter Enders, Applied Econometric Time Series, 1st Edi-
tion (New York: John Wiley & Sons, 1995).

λk ak
2 bk

2+=
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lar Toeplitz matrices, A1 and A2, whose first columns consists of the vec-
tors (1, –a1, –a2, …, –ap–1)′ and (–ap, –ap–1, …, –a1)′,  respectively. That is,

Then, the AR(p) process is covariance stationary if and only if the so-
called Schur matrix, defined by 

(6.19)

is positive definite.
For an AR(1) process, the Schur condition for weak stationarity

requires that

|a1| < 1

and for an AR(2) process covariance stationarity requires that the AR
coeffcients satisfy

(6.20)

It turns out that the stationarity property of the mixed ARMA process

a(L)yt = b(L)εt (6.21)

A1
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does not depend on the MA parameters; it depends solely on the AR
parameters. Therefore the stationarity results for AR processes apply
directly to mixed ARMA processes. A pure MA process of finite order is
always stationary, because its AR “polynomial” is equal to 1, which has no
roots (i.e., no roots can be on or inside the unit circle in the complex plane).

An ARMA process is called invertible if the magnitude of all roots
of the MA polynomial exceeds unity. Thus invertibility is the counter-
part to stationarity for the MA part of the process. 

If a mixed ARMA process is stationary, it has an infinite moving
average, in short, an MA(∞) representation. It is obtained by dividing
both sides of a(L)yt = b(L)εt by a(L), i.e.,11 

(6.22)

where polynomial c(L) = c0 + c1L + c2L2 + …, is generally, of infinite
degree. The coefficients of the MA(∞) representation can be computed
recursively by

(6.23)

where m = max(k, p). This representation shows explicitly the impact of
the past shocks εt – j(j > 0) on the current value yt (e.g., return yt). We
can say that the output yt and input εt are linked by a linear filter (6.22)
and c(L) is called the transfer function. The linear filter (6.22) is stable if
the series c(L) = c0 + c1L + c2L2 + � converges for |L| ≤ 1. The coeffi-
cients {cj} are also referred to as the impulse response function of the
ARMA process. For a stationary ARMA model, the shock εt – j does not
have a permanent impact on the series.

11 It can be demonstrated that we can operate with lag operator polynomials as if
they were algebraic polynomials. In particular, we can formally divide lag operator
polynomials
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Analogously, an invertible mixed ARMA process has an infinite
autoregressive, in short, an AR(∞) representation, which is given by

   or   (6.24)

This representation shows the dependence of the current value yt ( e.g.,
return yt) on the past values yt–i, where i > 0. The coefficients are referred
to as the d-weights of an ARMA model. A stationary, invertible  ARMA
model effectively has three representation forms: (6.21), (6.22), and
(6.24). Each of these presentations can shed a light on the model from a
different perspective, leading to a better understanding of the model. For
example, we can analyze the stationarity properties, estimation of param-
eters, and compute forecasts using different representation forms.

LINEAR PROCESSES

The linear time series models include ARMA models and are useful to
analyze stationary processes. The time series

is a linear process if it has the following form

(6.25)

for all t, where εt ~ WN(0, σ2), and {cj} is a sequence of constants with

(6.26)

The (6.25) can be written as yt = c(L)εt, where

Observing expression (6.25) we can say that a linear process is called a
moving average or MA(∞) if cj = 0 for all j < 0, that is, if
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The condition (6.26) ensures that the infinite sum in (6.25) converges
(with probability one), since E|εt| ≤ σ and 

As already noted, the operator c(L) mimics the function of a linear filter,
which takes the white noise series {εt} as input and produces the series
{yt} as output. A linear filter applied to any stationary input series, pro-
duces a stationary output series.12,13

Fractionally Integrated ARMA Processes
In the presentation of the ARIMA processes in (6.18), we only considered
integer values of d. When d takes a noninteger value, yt is said to be frac-
tionally integrated14 and resulting models for such values of d are referred
to as FARIMA models. The fractional-difference operator (1 – L)d is for-
mally defined by the binomial expansion

12 See Proposition 2.2.1 in Brockwell and Davis, Introduction to Time Series and
Forecasting, 2nd ed.
13 In practice, many financial time series exhibit behavior not shown by linear pro-
cesses, so it is necessary to establish and specify more general models beyond those
satisfying (6.25) with white noise. Deviation from linearity property in time series
can be seen by observing the sample path. For example, financial time series can con-
tain bursts of outlying values which cannot be reconciled with Gaussian linear pro-
cesses. Especially important is the observation of the periods of low and high
volatility in the time series. The type of models to describe such behavior include
models for modeling changing volatility; they are explained in the Chapter 8. Some
other nonlinear processes include bilinear models, autoregressive models with ran-
dom coefficients, and threshold models.
14 Clive W.J. Granger and R. Joyeux, “An Introduction to Long-Memory Time Series
Models and Fractional Differences,” Journal of Time Series Analysis 1 (1980), pp.
15–39.
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where 

,   j = 1, 2, …

Thus FARIMA processes are more specifically ARIMA(p, d, q) pro-
cesses with 0 <  < 0.5, that satisfy difference equations of the form 

(1 – L)da(L)yt = b(L)εt (6.27)

where a(L) and b(L) are polynomials of degree p and q, respectively, sat-
isfying, 

a(z) ≠ 0     and     b(z) ≠ 0     for all z such that 

L is the lag operator, and {εt} is a white noise sequence with mean 0 and
finite variance σ2. 

What are the important properties of the FARIMA processes and
what distinguishes them from the ARMA  processes? Compared to sta-
tionary ARMA process (d = 0), FARIMA processes with d ∈ (–¹�₂,¹�₂) are
stationary processes with different properties of the decay of the auto-
correlation function. Generally, autocorrelations from FARIMA pro-
cesses with d ∈ (0,¹�₂) remain markedly positive at very high lags, long
after the autocorrelations from I(0) processes have declined or reached
zero. Consequently, FARIMA processes with d ∈ (0,¹�₂) are said to
exhibit “long memory.” In contrast, the autocorrelation function of sta-
tionary ARMA processes converges to 0 rapidly, so that ARMA pro-
cesses are said to have “short memory.” (Formal definitions of these
concepts will be given later in this chapter when we discuss short- and
long-range dependence structure of the time series.) For d ∈ (¹�₂,∞), the
variance of the process {yt} generated by the model (6.27) is infinite, and
so the process is nonstationary. 

A fractionally integrated ARIMA(p, d, q) process can be regarded as
an ARMA(p,q) process driven by fractionally integrated noise. To
obtain this representation, equation (6.27) can be replaced by the two
equations

a(L)yt = b(L)ut (6.28)

and 

(1 – L)dut = εt (6.29)

πj
k 1– d–

k
----------------------

0 k j≤<
∏=

d

z 1≤
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The process {ut} is called fractionally integrated noise and has variance
and autocorrelations given by

(6.30)

and 

,   h = 1, 2, … (6.31)

respectively, where Γ(·) is the gamma function.15 
The exact autocovariance function of the ARIMA(p, d, q) process

{yt} defined by the (6.30) can be expressed as

(6.32)

where

, 

and γu(·) is the autocovariance function of fractionally integrated white
noise with parameters d and σ2, such that

with γu(0) and ρu(h) as in (6.30) and (6.31). The series (6.32) converges
rapidly as long as a(z) does not have zeros with absolute values close to 1.

15 Γ is the gamma function defined as

where α is positive. When α is a positive integer then Γ(α) = (α – 1)! with 0! defined
to be 1. 

γu 0( ) σ2Γ 1 2d–( )

Γ2 1 d–( )
-------------------------=

ρu h( ) σ2Γ h d+( )Γ 1 d–( )
Γ h d– 1+( )Γ d( )
-------------------------------------------

k 1– d+
k d–

----------------------
0 k h≤<
∏= =

Γ α( ) xα 1– e x– xd

0

∞

∫=

γy h( ) ψjψkγu h j k–+( )
k 0=

∞

∑
j 0=

∞

∑=

ψiz
i

i 0=

∞

∑ b z( )
a z( )
-----------= z 1≤

γu h( ) γu 0( )ρu h( )=
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IDENTIFICATION TOOLS

To identify the appropriate time series model, the unknown parameters
and the unknown orders p and q of the ARMA(p, q) model need to be
specified or identified and then estimated. The orders of the model can
be specified by inspecting the sample autocorrelation and partial auto-
correlation function and comparing them with theoretical values. These
parameters can be then estimated using several statistical procedures. 

Autocovariance and Autocorrelation Function
The infinite sequence of the autocovariances

γk = Cov(yt, yt – k),   k = 0, 1, … (6.33)

is called the autocovariance function (AcovF) for time series yt. By scal-
ing by the variance, Var(yt) = γ0, of the time series we obtain the auto-
correlation function (ACF)

(6.34)

Recall that for a weakly stationary process we have γk = γ–k and ρk = ρ–k.
The first step in deriving an ARMA model from stationary time

series data is the determination of the appropriate autoregressive order,
p, and the moving average order, q.16 Procedures for identifying these
parameters make use of the empirically estimated sample autocovari-
ance function (SACovF) or sample autocorrelation function (SACF).
Specifically, to draw inferences about p and q from a given SACovF or
SACF, it is important to first understand the relationship between the
parameters of an ARMA process and the theoretical autocovariance
function AcovF and theoretical autocorrelation function (ACF) implied
by these parameters. 

Let yt be generated by the zero-mean stationary ARMA(p, q) process

a(L)yt = b(L)εt (6.35)

where εt is the usual white-noise process with E(εt) = 0 and Var(εt) = σ2; and
a(L) and b(L) are polynomials defined by a(L) = 1 – a1L – a2L2 – … – apLp

16 In the case of nonstationary time series, we first perform a stationarity inducing
transformation of the data, such as differencing or detrending. Not all nonstationary
series can be made stationary

ρk Corr yt yt k–,( )
γk

γ0
-----= =
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and b(L) = b0 + b1L + b2L2 + … + bqLq17. From the definition of the
autocovariance,  γk = Cov(yt, yt–k) = E(ytyt–k), it follows that

(6.36)

Replacing yt–k by its moving average representation, yt–k = b(L)/a(L)εt–k
= c(L)εt–k, where c(L) = c0 + c1L + c2L2 + …, we obtain

Therefore,

(6.37)

where we recall that γ-k = γk.
For an AR(p) process (6.37) reduces to

γk = a1γk–1 + a2γk–2 + … + apγk–p,   k = 1, 2, …, (6.38)

which carries over to the ACF, namely,

ρk = a1ρρk–1 + a2ρk–2 + … + apρk–p,   k = 1, 2, …, (6.39)

Thus, the ACovF (ACF) follow the same autoregressive recursions as the
time series itself. Relations established by the expressions (6.38) and
(6.39) are called Yule-Walker equations. The AR(p) process is conse-
quently described by a gradual decay of the ACF for lags greater than p. 

In the case of a pure MA process, (6.37) simplifies to

17 We allow b0 ≠ 1.

γk a1γk 1– a2γk 2– … apγk p–+ + + +=

E boεtyt k– b1εt 1– yt k– … bqεt q– yt k–+ + +( )+

E εt i– yt k–( ) ci k– σ2   if i k k 1+ … q, , ,=,
0            otherwise⎩

⎨
⎧

=

γk

aiγk i–
i 1=

p

∑ σ2 bjcj k–
j k=

q

∑+    if k, p 1 p 2+ … q, , ,+=

aiγk i–
i 1=

p

∑ ,                           if k q 1+ q 2+ …, ,=
⎩
⎪
⎪
⎨
⎪
⎪
⎧

=
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(6.40)

since ai = 0 and cj = bj . This implies that for an MA(q) process the auto-
covariances and autocorrelations of orders higher than q, i.e., γk and ρk
respectively, with k = q + 1, q + 2, …, are always zero. In contrast to the
AR(p) process, the ACF of the MA(q) process vanishes for lags greater
than q. Thus, MA(q) process has no memory beyond q periods. 

More generally, for an ARMA(p,q) process, expression (6.37) implies

γk = a1γk–1 + a2γk–2 + … + apγk–p,   k = q + 1, q + 2, …, (6.41)

or

ρk = a1ρk–1 + a2ρk–2 + … + apρk–p,   k = q + 1, q + 2, …, (6.42)

The latter recursions are sometimes called extended Yule-Walker equa-
tions. Relations (6.39) and (6.42) entail that the ACF of a pure AR or
an ARMA process does not cut off but gradually dies out as k increases.

The stationarity and invertibility conditions of the ARMA(p, q) pro-
cess will depend on those of the respective AR and MA processes form-
ing it. Beyond a certain number of lags, that is q – p, the ACF displays
the shape of that of an AR(p) process.   

 Considering the fractionally integrated series, their ACF properties
are markedly different from the ACF of the standard ARMA (d = 0)
process. While the ACF of the standard ARMA process exhibits expo-
nential decay, the ACF of the FARIMA process for 0 < d < ¹�₂ declines at
a much slower rate (i.e., hyperbolically to zero). Generally, autocorrela-
tions from FARIMA processes remain markedly positive at very high
lags, long after the autocorrelations from stationary processes have
declined to (almost) zero.

Partial Autocorrelation Function
The partial autocorrelation function (PACF) represents another tool for
identifying the properties of an ARMA process. It is particularly useful
in determining the order of pure AR processes. A partial correlation
coefficient adjusts the correlation between two random variables at dif-
ferent lags for the correlation this pair may have with the intervening
lags. The ACF ρk, k = 0, 1, 2, …, represents the unconditional correla-

γk
σ2 bjbj k–

j k=

q

∑ ,   if k 0 1 … q, , ,=

0,                     if k q>⎩
⎪
⎨
⎪
⎧

=

c06-ModelingUnivariate  Page 225  Thursday, October 26, 2006  2:05 PM



226 FINANCIAL ECONOMETRICS

tion between yt and yt – k which does not take the influence of the inter-
vening realizations, yt – 1, yt – 2, …, yt – k + 1, into account. 

The PACF, denoted by αk, k = 1, 2, …, is the sequence of condi-
tional correlations

αk = Corr(yt, yt – k | yt – 1, …, yt – k + 1)   k = 1, 2, …., (6.43)

and reflects the association between yt and yt – k over and above the
association of yt and yt – k caused by the association with the interven-
ing variables yt – 1, yt – 2, …, yt – k + 1.

To compute the PACF, let’s view it as the sequence of the k-th
autoregressive coefficients in a k-th order autoregression. Letting akl
denote the l-th autoregressive coefficient of an AR(k) process, that is,

yt = ak1yt – 1 + ak2yt – 2 + … + akkyt – k + εk,t

then,

αk = akk,   k = 1, 2, …

The k Yule-Walker equations for the ACF,

ρl = ak,1ρl – 1 + … + ak,k – 1ρl – k + 1 + ak,kρl – k,   l = 1, 2, …, k (6.44)

give rise to the system of linear equations

or, in short 

Pkak = ρρρρk   k = 1, 2, … (6.45)

Using Cramer’s rule to successively solve (6.45) for akk, k = 1, 2, …, we
have 

1 ρ1     � ρk 1–

ρ1 1 ρk 2–

ρ2 ρ1     ρk 3–

� � �
ρk 2–       ρ1

ρk 1– ρk 2–       �       1

ak1

ak2

ak3

�
ak k 1–,

akk

ρ1

ρ2

ρ3

�
ρk 1–

ρk

=
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αkk = ,   k = 1, 2, … (6.46)

where |·| denotes the determinant of a matrix and matrix  is obtained by
replacing the last column of matrix Pk by vector ρρρρk = (ρ1, ρ2, …, ρk)′, that is, 

From the Yule-Walker equations it is evident that

 = 0

for an AR process whose order is less than k, since the last column of
matrix  can always be obtained from a linear combination of the first
k – 1 (or less) columns of . Hence, the theoretical PACF of an AR(p)
will be different from zero for the first p terms and exactly zero for
higher order terms. This property allows us to identify the order of a
pure AR process from its PACF. On the other hand, for MA or mixed
ARMA processes the PACF will gradually die out. This property pre-
vents us from identifying the autoregressive order of mixed processes by
simply examining sample PACFs. 

Estimation of ACF and PACF

Sample Autocorrelation Function
Given a sample of T observations, y1, y2,…, yT, the estimated or sample
autocorrelation function (SACF) as an estimator of the ACF, denoted by

, k = 1, 2, …, is computed by

(6.47)

Pk
*

Pk
---------

Pk
*

Pk
*

1 ρ1 � ρk 2– ρ1

ρ1 1 ρk 3– ρ2

ρ2 ρ1 ρk 4– ρ3

� � � �
ρk 2– 1 ρk 1–

ρk 1– ρk 2–       �       ρ1 ρk

=

Pk
*

Pk
*

Pk
*

ρ̂k

ρ̂k

yi µ̂–( ) yi k– µ̂–( )
i k 1+=

T

∑

yi µ̂–( )
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i 1=

T

∑
--------------------------------------------------------------=
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where  is the sample mean given by

(6.48)

It should be noted that (6.47) assumes that the elements of the sam-
ple autocovariance function (SACovF) are estimated by

,   k = 0, 1, …, (6.49)

rather than by

,   k = 0, 1, …, (6.50)

although only T – k and not T terms enter the summation. It turns out
that (6.50) may lead to a SACovF that is not positive semidefinite—that
is, it is associated with a nonstationary ARMA process. For this reason,
(6.49) is commonly used although it introduces a bias. However, for
large samples, i.e., large T, and reasonably small values for k the bias
will be small. 

As discussed above, the SACF helps to identify a suitable ARMA
model. For an MA(q) process, we have established that the theoretical
ACF cuts off after lag q. Thus, if the SACF exhibits such a pattern, we
suspect that the data are generated by an MA(q) process. However, in
practice we will not observe that the autocorrelations , i = 1, 2, …,
will be exactly zero, because they are estimates from given data sample
and not theoretical values. It is therefore important to assess whether or
not deviations from zero are statistically significant. To that purpose, we
compute confidence intervals for the SACF. If, for k > n, the population
value ρk is 0, Bartlett18 showed that the sample autocorrelations ,
i = 1, 2, …, are jointly normally distributed with mean zero and that the
covariance between  and  can be approximated by

18 M.S. Bartlett, “On the Theoretical Specification and Sampling Properties of Auto-
correlated Time-Series,” Journal of Royal Statistical Society B8 (1946), pp. 27–41.  
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(6.51)

Setting, in (6.51), s = 0 and recalling that ρ0 = 1 and ρk = ρ-k, we obtain

,   for k > n (6.52)

Therefore, if  lies outside the confidence interval ±1.96 , it is
considered to be significantly different from zero at the 5% significance
level. In practice, the confidence interval of  is often approximated by

. This leads to tighter confidence intervals than those computed
by Bartlett’s formula (6.52).

A stationary series will often exhibit short-term correlation where a
large value of ρ1 is followed by a few smaller correlations which gradu-
ally decay. In an alternating series,  alternates between positive and
negative values. For example, an AR(1) model with a negative coeffi-
cient, yt = –a1yt – 1 + εt, where a1 is a positive coefficient and εt are IID
random variables. If  does not decay for large values of k, it is an
indication of nonstationarity that may be caused by many factors. 

For visual inspection of the sample autocorrelation function, we
typically use a correlogram, which is a plot of  versus k.19

Sample Partial Autocorrelation Function 
To estimate the sample PACF (SPACF), we follow the procedure for
computing the theoretical PACF described earlier, but replace theoreti-
cal autocorrelations, ρi, by their estimates, .

This yields, analogous to equation (6.46),

,   k = 1, 2, … (6.53)

where

19 By definition, ρ0 = 1.
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and

A computationally more efficient procedure for estimating the SPACF is
the following recursion for k = 1, 2, …20

(6.54)

,   l = 1, 2, …, k (6.55)

with , for i, j < 1.
For large samples and values of k sufficiently large, the PACF is

approximately normally distributed with variance21

20 The comma is placed between the subscripts of the partial autocorrelations when-
ever it may not be clear where the first subscripts ends.
21 See M.H. Quenouille, “Approximate Tests of Correlation in Time Series,” Journal
of Royal Statistical Society, B11 (1949), pp. 68–84. 
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(6.56)

Thus, the 95% confidence interval can be approximated by .

Illustration: Analysis of the DAX Stock Index Return Series
We illustrate the concepts discussed thus far in this chapter by analyzing
the return series for the German stock index Deutscher Aktienindex
(DAX). Exhibit 6.1 shows the daily closing values of the DAX for the
period 01/1965–12/2005. Exhibit 6.2 reports the SACF and SPACF (up
to lag k = 20) of the index price (level) series. It is evident from the col-
umn in Exhibit 6.2 that the series is very persistent, with the autocorre-
lation function dying away very slowly. The first partial autocorrelation
function coefficient appears to be significant. Thus the slow decay of the
ACF for the DAX price series is evident.

Exhibit 6.3 shows the time plot of daily returns of the DAX index from
January 1, 1965 to December 30, 2005. The mean of this series is 2.27E-04
and standard deviation 0.0116. The correlogram, the plot of sample ACF is

Var âk( )
1
T
----≈

2± T⁄

EXHIBIT 6.1  DAX Daily Price Series from January 1, 1965 to December 31, 2005
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shown in Exhibit 6.4. Exhibit 6.5 reports the SACF and SPACF (up to lag k
= 20) of the index price return. 

Recall from (6.52) that if the autocorrelation coefficient  lies out-
side the confidence interval ±1.96 , where T is the number of obser-
vations, it is considered to be significantly different from zero at the 5%
significance level. From (6.56), the same applies to the partial autocorre-
lation coefficient. In the DAX case presented here, the significant value
for the autocorrelation coefficient for 10,654 observations is 0.019. The
DAX return series has seven significant autocorrelations (at lags 1, 2, 4,
6, 8, 11, and 14) and eight significant partial autocorrelations (at the
same lags as the autocorrelation function and at lag 20) for the first 20
lags. In the first 20 values of the autocorrelation coefficients we can
expect one significant value on average if the data are really random.

EXHIBIT 6.2  Sample Autocorrelation Function and Partial Autocorrelation 
Function of the DAX Index Price Series Data from January 1, 1965 to December 
31, 2005

Notes: k denotes the number of lags 

Period k SACF SPACF

  1 0.9996   1.0000
  2 0.9991 –0.0013
  3 0.9987   0.0144
  4 0.9982   0.0294
  5 0.9978 –0.0355
  6 0.9974   0.0030
  7 0.9969   0.0523
  8 0.9965   0.0122
  9 0.9961 –0.0308
10 0.9957   0.0049
11 0.9953   0.0012
12 0.9949 –0.0065
13 0.9945   0.0136
14 0.9941   0.0063
15 0.9936 –0.0591
16 0.9932 –0.0378
17 0.9927 –0.0005
18 0.9923   0.0254
19 0.9919   0.0061
20 0.9915   0.0261

ρ̂k
T
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The results for the autocorrelations suggest that the DAX return series
is not random. The Ljung-Box Q-statistic (a portmanteau statistic for
detecting departures from zero autocorrelations in either direction and
at all lags) for returns is also computed to verify the results on the auto-
correlation structure. (This statistic is described in the next chapter.)
The Q-statistic rejects the null hypothesis of no autocorrelation at the
1% level for all the lags considered. The results of the autocorrelation
and partial autocorrelation function suggest that the DAX return series
might be modeled by some ARMA process. 

Short-Range and Long-Range Dependence Structure
Time series processes can be roughly classified into two general classes
based on their dependence structure: short-range dependent (or short
memory) and long-range dependent (or long memory). These two
classes can be distinguished by observing the behavior of the autocorre-
lation function ρ(·) of the process when the lags increase. While short-
range dependence is a property of stationary processes that exhibit fast
(e.g., exponential) decay of autocorrelations, long-range dependence is a

EXHIBIT 6.3  Time Series Plot of the Daily Log DAX Index Returns from January 1, 
1965 to December 31, 2005
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property of certain stationary stochastic processes that has been associ-
ated historically with (1) slow decay of autocorrelations and (2) certain
type of scaling that is connected to self-similar processes. These proper-
ties of the long-range dependence can be traced back to work of Benoit
Mandelbrot and his co-authors from the 1960s and 1970s,22 explaining
the Hurst phenomenon.23

In the academic literature, there is no commonly accepted definition
of long-range dependence. A stationary process with autocorrelation
function ρ(k) is said to be a long-memory process if 

22 Benoit Mandelbrot and J. Van Ness, “Fractional Brownian Motions, Fractional
Noises and Applications,” SIAM Review 10 (1968), pp. 422–437. 
23 Harold Hurst noted that natural phenomena such as river discharges, rainfalls and
temperatures follow a biased random walk, which is a trend with noise. The rescaled
range statistics has been used to detect long-range dependence is these series and fi-
nancial data. Harold E. Hurst, “Long-Term Storage Capacity of Reservoirs,” Trans-
actions of the American Society of Civil Engineers 116 (1968), pp. 770–808. 

EXHIBIT 6.4  Sample Autocorrelation Function of the of the Daily DAX Returns in 
the Period January 1, 1965 to December 31, 2005
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does not converge. More formally, a weakly stationary process has long mem-
ory if its autocorrelation function ρ(·) has a hyperbolic decay ρ(k) ~ L(k)k2d–1

as k → ∞, 0 < d < 0.5, and L(k) is a slowly varying function.24 In contrast,

24 L(x) is a slowly varying function as x → ∞, if for every constant c > 0,

exists and is equal to 1. 

EXHIBIT 6.5  Sample Autocorrelation Function, Partial Autocorrelation Function, 
and Ljung-Box Statistics of the DAX Index Return Data from January 1, 1965 to 
December 31, 2005 

Note: k denotes the number of lags * indicates significance at the 5% level

Period k Q-stat. Q-stat cv.

  1   0.0324*   0.0324* 11.2018   3.8415
  2 –0.0292* –0.0302* 20.2643   5.9915
  3 –0.0181  –0.0162  23.7597   7.8147
  4 0.024*   0.0244* 29.9208   9.4877
  5 –0.0016  –0.0042  29.9487 11.0705
  6 –0.0452* –0.044*  51.7262 12.5916
  7 0.0091 0.0128 52.6036 14.0671
  8   0.0305*   0.0268* 62.5458 15.5073
  9 0.0134 0.0106 64.4549 16.9190
10 –0.0021  0.0011 64.5027 18.3070
11 0.019*   0.0202* 68.3733 19.6751
12 0.0042 0.0000 68.5576 21.0261
13 0.0039 0.0053 68.7222 22.3620
14   0.0242*   0.0274* 74.9640 23.6848
15 0.0048 0.003  75.2121 24.9958
16 0.0064 0.0065 75.6435 26.2962
17 0.0004 0.0021 75.6456 27.5871
18 –0.0084  –0.0095  76.3910 28.8693
19 –0.0166  –0.0168  79.3427 30.1435
20 0.0176   0.0197* 82.6447 31.4104

ρ̂k ρ̂kk

ρ k( )
k 0=

∞

∑

L cx( )
L x( )

---------------
x ∞→
lim
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a short memory time series will have an autocorrelation function geo-
metrically bounded as follows,  for some C > 0, 0 < r < 1.

Thus, the obvious way to measure the length of memory in a sto-
chastic process is by analyzing the rate at which its correlations decay
with lag. Let us first analyze the autocorrelation function ρ(·) of an
ARMA process at lag k. Such function converges rapidly to zero as k → ∞
in the sense that there exists r > 1 such that 

rkρ(k) → 0   as k → ∞ (6.57)

For ARMA processes, the correlations decay exponentially fast with k.
On the other hand, the autocorrelation function ρ(k) at lag k of a

FARIMA(p, d, q) process with 0 <  < 0.5 has the property

ρ(k)k1 – 2d → c   as k → ∞ (6.58)

This implies that ρ(k) converges to zero as k → ∞ at a much slower rate
than ρ(k) for an ARMA process. Thus, based on this property, FARIMA
processes are said to exhibit long memory and ARMA processes are said
to have short memory. 

In practice, it is difficult to distinguish between a long-memory (sta-
tionary) process and a nonstationary process. Both models share the
property that their empirical autocorrelation function will die out slowly.
If the data set exhibits this property, the candidate models include
FARIMA model with 0 < d < 1 and ARIMA model with d = 1. 

Let us now observe the implications of the absolute summability of the
autocorrelations. Formally, let Xn, n = 0, 1, 2, … be a stationary stochastic
process with mean µ = E(X0) and 0 < σ2 = Var X0 < ∞. Let ρn be the auto-
correlation function. Consider the partial sum process

Sn = X1 + X2 + … + Xn,   n ≥ 1, S0 = 0 (6.59)

Then the variance of the process (6.59) is

(6.60)

ρ k( ) Cr k≤

d

VarSn Cov Xi Xj,( )
j 1=

n

∑
i 1=

n

∑ σ2 ρ i j–
j 1=

n

∑
i 1=

n

∑= =

σ2 n 2 n i–( )ρi
i 1=

n 1–

∑+
⎝ ⎠
⎜ ⎟
⎛ ⎞

=
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For most of the “usual” stationary stochastic models including
ARMA processes and many Markov processes,25 the autocorrelations
are absolutely summable

(6.61)

Then, observing the limiting behavior of (6.60) divided by n,

(6.62)

and so the partial sums appear to grow at the rate Sn ∼  of the central
limit theorem. In other words, if the autocorrelations are absolutely sum-
mable, this guarantees that the variance of the partial sums Sn, n ≥ 0, can-
not grow more than linearly fast, which says, that we do not expect to
see Sn to be more than  away from its mean nµ. What Mandelbrot
actually realized almost three decades ago is that the behavior of the
particular statistic (the so-called rescaled range, R/S, statistic) applied to
the Nile River by Hurst might be explained if the variance of the partial
sums could grow faster than linearly fast.26 However, this implies that

25 The stochastic process {Xt} is a Markov process if it satisfies the property that, giv-
en the value of Xt, the values of Xh, h > t, do not depend on the values Xs, s < t. In
other words, {Xt} is a Markov process if its conditional distribution function satisfies
P(Xh|Xs, s ≤ t) = P(Xh|Xt, s ≤ t), h > t. 
26 The R/S statistic, originally developed by Hurst, is given by

where xj is an observation in the sample, n is the number of the observations in the
sample, and µ and Sn are the mean and the standard deviation of the sample, re-
spectively. The range refers to the difference between the maximum and minimum
(over k) of the partial sums of the first k deviations of a time series from its mean.
The R/S statistic is able to detect long-range dependence in highly non-Gaussian
time series exhibiting high skewness and/or kurtosis.

ρn
n 0=

∞

∑ ∞<

Var Sn

n
-----------------

n ∞→
lim σ2 1 2 ρi

i 1=

∞

∑+
⎝ ⎠
⎜ ⎟
⎛ ⎞

=

n

n

R/S( )n
1
Sn
----- Max

1 k n≤ ≤
xj µ–( )

j 1=
k∑ Min

1 k n≤ ≤
xj µ–( )

j 1=
k∑–[ ]=

ρn
n 0=

∞

∑ ∞=
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which is often taken as the definition of long memory.27 
On the other hand, we can also assume that the autocorrelations are

regularly varying:

, n → ∞, 0 < d < 1 (6.63)

with a slowly varying function L. Then we obtain28

(6.64)

In this case, the partial sums appear to grow at the rate Sn ∼ n1 – d/2 ,
which is faster than the rate of the central limit theorem. This can be a
possible explanation of the Hurst phenomenon. Based on this observa-
tion, one of the following postulations can be used as a definition of a
process with long-range dependence:

 ■ Lack of summability of autocorrelations

 ■ Autocorrelations are regularly varying at infinity with exponent –1 < d ≤ 0.
Note that this assumption implies lack of summability of autocorrela-
tions.

Many empirically observed time series data in hydrology, physics,
computer telecommunications, and finance, although satisfying the station-
arity assumption, were found to be strongly dependent over large time lags.
In these cases, the classical short-range dependent models such as ARMA
or ARIMA are inappropriate whereas long-range dependent models are
appropriate. 

 

27 This definition seems to originate with D. Cox, “Long-Range Dependence: A Re-
view,” in H. David and H. David (eds.), Statistics: An Appraisal (Ames, IA: Iowa
State University Press, 1984), pp. 55–74.
28 The result is obtained by the Karamata theorem. 

ρn n d– L n( )∼

Var Sn

n2ρn

-----------------
n ∞→
lim

2σ2

1 d–( ) 2 d–( )
-----------------------------------=

L n( )

ρn
n 0=

∞

∑ ∞=
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CONCEPTS EXPLAINED IN THIS CHAPTER
(IN ORDER OF PRESENTATION)

Difference equation
Homogeneous difference equations
Lag operator
Difference operator
Reverse characteristic equation

Coefficient form
Root form

Solution of a difference equation
White noise

Strict
Conditional

Martingale
Martingale difference

Homoskedastic
Auroregressive (AR) process
Moving average (MA) process
Autoregressive moving average (ARMA) process
Linear filter
ARMAX process
ARMA process with deterministic components
Centering or de-meaning
Integrated processes
Stationary process

Strictly
Weakly

Autocovariance function (ACovF)
Autocorrelation function (ACF)
Short-term memory process
Schur criterion
Invertible process
Transfer function
Impulse response function
Linear processes
Fractionally integrated ARMA process (FARIMA)
Long memory process
Fractionally integrated noise
Model identification
Sample autocovariance function (SAcovF)
Sample autocorrelation function (SACF)
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Yule-Walker equations
Partial autocorrelation function (PACF)
Bartlett’s formula
Short-range dependence
Long-range dependent (LRD) models
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Approaches to ARIMA Modeling
and Forecasting

 

he specification and estimation of the conditional mean (i.e., mean esti-
mate given a certain history of time series observations) is essential in

the analysis of a time series. This is, in a first step, typically done in form of
an autoregressive (AR) or autoregressive moving average (ARMA) model
described in the previous chapter. In case of nonstationarity, we consider
autoregressive integrated moving average (ARIMA)(

 

p

 

, 

 

d

 

, 

 

q

 

) models given
by (6.18). To do so, we difference the original level series, possibly nonsta-
tionary, until it becomes stationary and model the differenced series in the
standard ARMA framework. The original level data can be recovered from
the differenced series by integration. 

There are two basic approaches to provide methods (procedures)
for assessing the appropriateness of ARIMA models to describe a given
time series. The first approach is attributed to Box and Jenkins.

 

1

 

 In
essence, the Box-Jenkins approach involves inspecting the computed
sample autocorrelation functions (SACFs) and sample partial autocorre-
lation functions (SPACFs) of the time series and comparing them with
the theoretical autocorrelation functions (ACFs) and partial autocorre-
lation functions (PACFs). Once a good match is observed, respective
parameters are computed. The major advantage of this approach lies in
its systematic application of steps in model building. The disadvantage
is that the visual examination of SACFs and SPACFs is rather subjective. 

The second approach is to select a set of possible (

 

p

 

, 

 

q

 

) combina-
tions and estimate the parameters of the corresponding ARMA(

 

p

 

,

 

q

 

)

 

1 

 

G. E. P. Box and G. M. Jenkins, 

 

Time Series Analysis: Forecasting and Control,

 

 rev.
ed. (San Francisco: Holden-Day, 1976).

T
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models accordingly. The model for which a certain selection criterion
attains its minimum is chosen as an optimal one. Typical selection crite-
ria are the Akaike information criterion (AIC) and the so-called Baye-
sian or the Schwartz criterion. 

In this chapter, we discuss methods for model selection and estima-
tion and, given a model, how to forecast future values of a time series. 

 

OVERVIEW OF BOX-JENKINS PROCEDURE

 

Box and Jenkins presented a comprehensive set of procedures for deriv-
ing ARIMA models from time series data. Their approach has become
popular in a wide range of fields and is commonly referred to as the

 

Box-Jenkins approach

 

. In contrast to conventional econometric model-
ing strategies, which rely on (economic) theory to specify models, the
Box-Jenkins approach adopts an atheoretical or black-box modeling
strategy, which relies predominantly on statistical considerations. With
some experience, it often enables an analyst to construct a statistical
model that approximates an observed time series. 

The Box-Jenkins method consists of three steps (see Exhibit 7.1):

 

identification

 

, 

 

estimation 

 

and 

 

diagnostic checking.

 

2

 

 The application—
typically forecasting—of the derived model represents an additional
step. Often, the three steps are applied repeatedly until a satisfactory
model is obtained. Each of these steps serves a specific purpose:

 

Step 1

 

. The purpose of the 

 

identification step

 

 in the Box-Jenkins
approach is to first determine the order of differencing, 

 

d

 

, necessary to
induce stationarity and then the autoregressive order, 

 

p

 

, and the mov-
ing average order, 

 

q

 

.
The first step, identification, is to “guess” the degree of integration.

Given 

 

d

 

, the ARMA orders 

 

p 

 

and 

 

q 

 

for the differenced time series 

 

∆

 

d

 

y

 

t

 

have to be identified.

 

2 

 

The names of model building stages here follow the original terminology of Box,
Jenkins, and Reinsel. See G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, 

 

Time Series
Analysis: Forecasting and Control,

 

 3rd ed. (Englewood Cliffs, NJ: Prentice-Hall,
1994). However, some researchers use different terms to denote model building stag-
es. For example, the first stage is also called 

 

model specification

 

 or 

 

model formula-
tion

 

 (see C. Chatfield, 

 

The Analysis of Time Series: An Introduction,

 

 5th ed.
(London: Chapman & Hall, 1996), the second stage can also be called 

 

model fitting

 

.
Chan uses 

 

term model identification

 

 for the second stage which contradicts the orig-
inal notation (N. H. Chan, 

 

Time Series: Applications to Finance

 

 (Hoboken, NJ: John
Wiley & Sons, 2002). The third stage is also called 

 

model validation

 

.
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EXHIBIT 7.1  

 

The Box-Jenkins Approach to Time Series Modeling 

 

These initial guesses are typically not final values for these orders,
but they are used to specify one or more tentative (competing) models.
Upon examining the adequacy of a tentative model in the diagnostic–
checking step, we may decide to keep the initial choices or to choose
alternative orders until a (hopefully) satisfactory model is found.

The identification step may also indicate the need for additional
data transformations, such as seasonal differencing.

 

Step 2

 

. Given values for 

 

d

 

, 

 

p 

 

and 

 

q 

 

from the identification step, the
parameters of the ARIMA(

 

p, d, q

 

) model are derived in the 

 

estimation
step

 

. It delivers estimates of the ARMA coefficients 

 

c, a

 

1

 

,

 

 a

 

2

 

, …, 

 

a

 

p

 

, b

 

1

 

,

 

b

 

2

 

, …, 

 

b

 

q

 

, for ARMA model formulations (6.15) and (6.18) discussed
in the previous chapter and the residual variance

 

 

 

σ

 

2

 

.

 

Step 3.

 

 In the 

 

diagnostic–checking step

 

 we examine the adequacy of the
estimated model. Here, the main objective is to determine whether or
not all relevant information has been “extracted” from the data. If so,
the estimated residuals, the deviation of the model’s predictions from
the actually observed sample, should not have any systematic pattern
which allows one to “predict” the residuals. In other words, the residu-
als should resemble white noise.

 

Data

Identification Find orders 

 

d

 

, 

 

p

 

, 

 

q

 

Estimation Estimate ARMA model parameters 

 

c

 

, 

 

a

 

i

 

, 

 

b

 

i

 

, 

 

σ

 

2

 

Diagnostic Checking Is the model appropriate?

Model Application Forecasting

 

c07-Approaches ARIMA  Page 243  Thursday, October 26, 2006  2:06 PM



 

244

 

FINANCIAL ECONOMETRICS

 

If an estimated model fails one or more diagnostic tests, an alternative
model, that is, an alternative set of 

 

p-

 

, 

 

d-,

 

 and 

 

q

 

-values, should be iden-
tified.

To each of the described steps 1, 2 and 3, the specific corresponding
tools or procedures are assigned and used:

1. ARIMA, procedures for detrending and removing seasonal compo-
nents, SACFs and SPACFs explained in the previous chapter.

2. Estimation methods such as least squares estimation (LSE) and max-
imum likelihood estimation (MLE) that are explained later in this
chapter.

3. Analysis of residuals using 

 

portmanteau

 

 tests, such as Ljung-Box statis-
tic, described later in this chapter.

The most widely accepted criterion for validating a model is its fore-
casting performance—especially when forecasting is the modeling objec-
tive. To judge the forecasting accuracy of a model, one can fit it to
various subperiods of the complete data sample, beyond which there are
observations available. A comparison of the forecasting performance of
alternative models over several postsample (or holding-out) periods may
help to find the most suitable model—or at least, eliminate some inap-
propriate ones. Ultimately, the goodness of a model will be determined
and established by its actual operational (i.e., “real-life”) performance.
This relates to forecasting performance for newer data samples. For this
reason, the accuracy of any model in operation should be evaluated reg-
ularly to check its adequacy. This is especially important when operat-
ing in a changing environment. 

The next section details the steps of the Box-Jenkins approach—iden-
tification, estimation, diagnostic checking, and application in forecasting. 

 

IDENTIFICATION OF DEGREE OF DIFFERENCING

 

Here, we discuss two techniques for determining the appropriate degree
of differencing of a time series sample: 

 

 ■ 

 

Visual inspection of the sample autocorrelation function (SACF)

 

 ■ 

 

Testing for unit roots

 

Examination of SACF

 

The shape of the SACF can indicate whether or not a time series is inte-
grated. To show this, we use the extended Yule–Walker equations intro-
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duced in the previous chapter. They imply that for stationary ARMA(

 

p, q

 

)
processes

 

3

 

a

 

(

 

L

 

)

 

ρ

 

k

 

 

 

= 0,  

 

 k > q

 

(7.1)

Using results on homogeneous, linear difference equations, polynomial

 

a

 

(

 

L

 

) can be rewritten in factorized form as

(

 

λ

 

1

 

 

 

– L

 

)(

 

λ

 

2

 

 

 

– L

 

) · · ·

 

 

 

(

 

λ

 

p

 

 

 

– L

 

) = 0

where the 

 

λ

 

i

 

’s, 

 

i

 

 = 1, …, 

 

p

 

 are the roots of the AR polynomial. Assuming
distinct roots, result (6.6) in the previous chapter implies that (7.1) has
the solution

(7.2)

Stationarity implies that all 

 

λ

 

i

 

’s lie outside the unit circle in the com-
plex plane. If all roots are well outside the unit circle, 

 

ρ

 

k

 

 

 

approaches
zero rather quickly as 

 

k

 

 increases. Hence, for a stationary process the
ACF will die out rapidly. 

Suppose now one real root of 

 

a

 

(

 

L

 

), say root 

 

λ

 

i

 

, approaches unity,
i.e., 

 

λ

 

i

 

  

 

= 1 + 

 

δ, δ > 0, then because for small δ’s 1/(1 + δ) ≈ 1 – δ, we have
for moderate values of k 

(7.3)

This implies that the ACF will decline rather slowly and in almost linear
fashion.

In practice, the SACF of data generated by a nonstationary ARMA
process will exhibit a similar behavior. We use this to determine how
many times a data series has to be differenced in order to induce station-
arity. If the SACF of yt indicates nonstationarity (i.e., slow and almost
linear decay), we difference yt and analyze the SACF of ∆yt. If also the
SACF of ∆yt appears to be nonstationary, we keep differencing until the
SACF of ∆kyt, d = 0, 1, …, decays sufficiently fast indicating stationarity.
The first k-value for which we obtain stationarity will be the value we
(tentatively) choose for d, the order of differencing of the ARIMA(p, d, q)
model to be estimated.

3 Box and Jenkins, Time Series Analysis: Forecasting and Control, rev. ed.

ρk α1
1

λ1
k

------ α2
1

λ2
k

------ � αp
1

λp
k

------+ + +=

ρk αi
1

λi
k

------ αi 1 kδ–( )∼ ∼
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Differencing a time series more often than is necessary to induce sta-
tionarity is referred to as overdifferencing. This practice should be avoided,
because it complicates the model by introducing additional, noninvert-
ible MA components which may cause estimation problems. However,
as we will see next, one potential consequence of overdifferencing can
be utilized to identifying the appropriate order of differencing.

For example, let yt follow the process

yt = 2yt – 1 – yt – 2 + εt (7.4)

From conditions given by (6.20) in previous chapter,4 it follows that this
process is nonstationary. Taking the first difference, we obtain

which is a nonstationary AR(1) process because the AR coefficient is
one. Second-order differencing yields a stationary process—because 

The last result implies that (7.4) is an ARIMA(0,2,0) process. Differenc-
ing the process once more yields

which is also stationary. However, the third difference is not invertible—
because b1 = –1, i.e., the MA polynomial has a root on the unit circle.

Unit-Root Test
Rather than relying on visual checking of the SACF, a formal test is
often preferred. A natural approach to test, for example, whether the
AR(1) process 

4 Recall that an AR(2) process is weakly stationary if its coefficients satisfy |a2| < 1,
a2 + a1 < 1, and a2 – a1 < 1.

yt∆ 2yt 1– yt 2– εt+–( ) yt 1––=

yt 1– yt 2– εt+–=

yt 1–∆ εt+=

∆2yt y∆ t 1– y∆ t 2––=

εt=

∆3yt ∆2yt ∆2yt 1––=

εt εt 1––=
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yt = ayt – 1 + εt,     (7.5)

is stationary or a random walk5 (i.e., |a| < 1 versus a = 1), would be to
obtain the first ordinary least squares (OLS) estimate of a, denoted by

. Then, we can perform a t-test of  to check whether it is signifi-
cantly different from 1. The problem with this strategy is that if a = 1,
the OLS estimate turns out to be biased toward zero. Moreover, the
standard t-distribution is no longer the appropriate distribution for .
Therefore the tabulated significance levels of the t-statistic are not valid. 

To investigate this problem, Fuller6 and Dickey and Fuller7 subtract
yt–1 from both sides of (7.5), yielding

∆yt = (a – 1)yt – 1 + εt (7.6)

so that the test amounts to

H0: a – 1 = 0     and     H1: a – 1 < 0 (7.7)

Dickey and Fuller use Monte Carlo simulations to generate the critical
values for the nonstandard t-distribution arising under the null hypothe-
sis. A test of (7.7) by assessing the significance of the t-statistic in (7.6)
using critical values tabulated by Dickey and Fuller is called the Dickey-
Fuller (DF) test.

Dickey and Fuller consider, in fact, the more general model

∆yt = f(t) + (a – 1)yt – 1 + εt (7.8)

where f(t) is a deterministic function of time. It turns out that the criti-
cal values vary with the choice of f(t). They provide critical values for
the three cases:

Case 1: pure random walk where f(t) = 0
Case 2: random walk with constant drift where f(t) = c
Case 3: random walk with a deterministic linear trend where f(t) = c0 + c1t

In Case 1, we are testing the model (7.7) for H0: a = 1 as to whether
we have a stationary AR(1) process or a pure (driftless) random walk.

5 A random walk series is also called a unit-root nonstationary time series.
6 W.A. Fuller, Introduction to Statistical Time Series (New York: John Wiley & Sons,
1976).
7 D.A. Dickey, and W.A. Fuller, “Distribution of Estimators for Autoregressive Time
Series with a Unit Root,” Journal of the American Statistical Association 74 (1979),
pp. 427–431. 

εt
IID 0 σ2,( )∼

â â

â
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In Case 2, we are testing the model

yt = c + ayt – 1 + εt (7.9)

If c ≠ 0, then the t-ratio for testing H0: a = 1 is asymptotically normal. If
c = 0, then the t-ratio for testing will converge to another nonstandard
asymptotic distribution. If {εt} is a white noise series with finite moments
of order slightly greater than 2, then the Dickey-Fuller statistic converges
to a functional of the standard Brownian motion8 as the sample size
approaches infinity.9

If in Case 2 there is a unit root, that is,

yt = c + yt – 1 + εt (7.10)

then the constant c acts like a linear trend. In each period the level of yt
shifts, on average, by the amount c. A process of this type is said to have
a stochastic trend and to be a difference stationary (DS).

In Case 3 with a unit root, that is, 

yt = c0 + c1t + yt – 1 + εt (7.11)

we refer to c1t as deterministic trend, and the process becomes trend sta-
tionary (TS) after differencing. 

The difference stationary model  (7.10) and trend stationary model 

yt = c0 + c1t + εt (7.12)

can be used to represent nonstationary time series with a change in
mean level where the εt are usually correlated but stationary. Although
both representations feature time series that increase in the mean level
over time, the substantial difference between them relates to the process
to render them stationary. While for the model (7.10) a stationary pro-
cess {εt} is obtained after differencing, for the model (7.12) a stationary
process {εt} is obtained after detrending. To note the distinction, we
inappropriately difference the model (7.11) and obtain

8 A standard Brownian motion or Wiener process is a continuous-time stochastic pro-
cess {Wt} if the following holds: (1) ∆Wt =  and, (2) ∆Wt is independent of Wj
for all j ≤ t, where ε is a standard normal random variable and ∆Wt = Wt+∆ –Wt  is a
small change associated with a small increment ∆t in time. In the limit, as ∆ → 0, the
equation ∆Wt =   is interpreted as a continuous-time approximation of the
random walk model.
9 Peter C. B. Phillips, “Time Series Regression with a Unit Root,” Econometrica 55
(1987), pp. 227–301.

ε t∆( )

ε t∆( )
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∆yt = c1 + ∆εt

As a consequence, a process {∆εt} is stationary but noninvertible which
is not convenient. The consideration of general model (7.8) helps to dis-
tinguish between two models. Thus, for a = 1, we obtain a differenced
stationary series and for a < 1 a trend stationary series. 

The critical values Dickey and Fuller derive from their Monte-Carlo
simulations for each of the three cases are reproduced in Exhibit 7.2. 

A practical problem with the AR(1) based unit-root test is that the
residuals obtained from (7.8) tend to be autocorrelated. To circumvent
this, one can add sufficiently many lagged ∆yt – i on the right-hand side

EXHIBIT 7.2  Critical Values for Dickey-Fuller Test

Sample
Size

Probability of a Smaller Sample Value

0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99

Case 1: No constant and no time trend

  25 –2.66 –2.26 –1.95 –1.60 0.92 1.33 1.70 2.16
  50 –2.62 –2.25 –1.95 –1.61 0.91 1.31 1.66 2.08
100 –2.60 –2.24 –1.95 –1.61 0.90 1.29 1.64 2.03
250 –2.58 –2.23 –1.95 –1.62 0.89 1.29 1.63 2.01

300 –2.58 –2.23 –1.95 –1.62 0.89 1.28 1.62 2.00

∞ –2.58 –2.23 –1.95 –1.62 0.89 1.28 1.62 2.00

Case 2: With constant but no time trend

  25 –3.75 –3.33 –3.00 –2.62 –0.37 0.00 0.34 0.72
  50 –3.58 –3.22 –2.93 –2.60 –0.40 –0.03 0.29 0.66
100 –3.51 –3.17 –2.89 –2.58 –0.42 –0.05 0.26 0.63
250 –3.46 –3.14 –2.88 –2.57 –0.42 –0.06 0.24 0.62
300 –3.44 –3.13 –2.87 –2.57 –0.43 –0.07 –0.24 0.61
∞ –3.43 –3.12 –2.86 –2.57 –0.44 –0.07 0.23 0.60

Case 3: With constant and with linear time trend

  25 –4.38 –3.95 –3.60 –3.24 –1.14 –0.80 –0.50 –0.15
  50 –4.15 –3.80 –3.50 –3.18 –1.19 –0.87 –0.58 –0.24
100 –4.04 –3.73 –3.45 –3.15 –1.22 –0.90 –0.62 –0.28
250 –3.99 –3.69 –3.43 –3.13 –1.23 –0.92 –0.64 –0.31
300 –3.98 –3.68 –3.42 –3.13 –1.24 –0.93 –0.65 –0.32
∞ –3.96 –3.66 –3.41 –3.12 –1.25 –0.94 –0.66 –0.33
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of (7.8) until the residuals appear to be white. If the unit-root test
described above is based on the OLS-estimated coefficient of yt – 1 in  

(7.13)

then one refers to this test as the augmented Dickey-Fuller (ADF) test.
The ADF test, which is the most widely used unit-root test, relies on the
same critical values as the DF test. 

If the hypothesis H0: a – 1 = 0 cannot be rejected, we conclude that
yt ~ I(d) with d ≥ 1. To test whether the order of integration exceeds 1,
we perform a unit-root test for ∆yt  and repeat this until we reject H0.
For economic time series, we typically find d = 0, 1 or, at most, d = 2 to
be sufficient.

IDENTIFICATION OF LAG ORDERS 

Having decided the degree of differencing, the next step is to choose the
orders p and q for the autoregressive and moving average components
of the time series. The choice is facilitated  by investigating the sample
autocorrelations and partial autocorrelations of the time series as well
as applying model selection criteria.

Inspection of SACF and SPACF
Exhibit 7.3 summarizes the behavior of the ACF and PACF for AR, MA,
and ARMA processes. For MA models, the ACF is useful in specifying
the order because ACF cuts off at lag q for an MA(q) series. For AR
models, the PACF is useful in order determination because PACF cuts
off at lag p for an AR(p) process. If both the ACF and PACF tail off, a
mixed ARMA process is suggested. However, because the evaluation of
patterns is based on estimated quantities, it is not effective to check
whether the SACF (or SPACF, and so on) cuts off somewhere and

yt∆ f t( ) a 1–( )yt 1– ai yt i–∆
i 1=

p

∑ εt+ + +=

EXHIBIT 7.3  Patterns for Identifying ARMA Processes

Model

AR(p) MA(q) ARMA(p, q)

ACF Tails off Cuts off after q Tails off
PACF Cuts off after p Tails off Tails off
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exactly assumes a value of zero. It is required to check at what lag the
SACF or SPACF accordingly stops being significantly different from
zero, using the confidence intervals for estimated ACF and PACF as dis-
cussed in the previous chapter. 

Model Selection Criteria
A useful criterion for model selection reflects the idea that it is always
possible to more or less trade off p versus q in selecting the order of an
ARMA model by assigning an informational cost to the number of
parameters, to be minimized along with the goodness of fit of the model.
An obvious criterion for the goodness of fit of competing models is the
residual variance. 

Let the residuals of an estimated ARMA(p, q) model be denoted by
. The estimate of the corresponding residual variance, denoted

by , is

However, a naive in-sample comparison of the residual variances of
competing models would favor models with many parameters over sim-
ple, low-order models. Larger models tend to fit in-sample better,
because each estimated parameter provides additional flexibility in
approximating a data set of a given size. However, if we use too many
parameters we fit noise and obtain poor forecasting capabilities. This
phenomenon is called overfitting. As we are primarily concerned with
out-of-sample forecasting, we need to constrain model dimensionality in
order to avoid overfitting.

In the extreme, we could achieve a perfect fit by fitting a “model” that
has as many parameters as observations. In that case, , for t = 1, …,
T, and so that . However, what we obtain is not appropriately cat-
egorized as a “model,” (i.e., a simplified representation of reality) because
we express the T observations in terms of some other T numbers. This sim-
ply amounts to a transformation of the original data, but not to a reduc-
tion to a smaller set of parameters. Although this is an extreme example, it
illustrates that model selection solely based on the residual variance is
inappropriate because it leads to overparameterized models. Such models
overfit the data by also capturing  nonsystematic features contained in the
data. In general, overparameterized models tend to be unreliable.

Several model-selection criteria attempting to overcome the overpa-
rameterization problem have been proposed in the literature. Here we

ε̂t p q,( )
σ̂p q,

2

σ̂p q,
2 1

T
---- ε̂t

2
p q,( )

i 1=

T

∑=

ε̂t 0=
σ̂2 0=
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will briefly provide definitions of the most widely used criteria: Akaike
information criterion, Bayesian information criterion, and corrected
Akaike information criterion.

The Akaike Information Criterion (AIC) is given by 

(7.14)

The (p, q)–combination that minimizes the AIC should be selected. The
first term in (7.14), , measures a model’s goodness of fit in terms of
the estimated error variance; the second term, 2T-1(p + q), penalizes for
selecting models with a large number of parameters. The purpose of the
penalty term is to avoid overfitting. However, this criterion may give
more than one minimum and depends on assumption that the data are
normally distributed. Furthermore, Monte Carlo simulations10 indicate
that, despite the penalty term, the AIC tends to overparameterize. 

The Bayesian Information Criterion (BIC)11 is given by 

(7.15)

This criterion imposes a more severe penalty for each additional param-
eter and thereby tends to select lower-order models than the AIC. 

The Corrected Akaike Information Criterion (AICC) given by12

(7.16)

attempts to correct the bias of the AIC that is causing the overparame-
terization problem and is especially designed for small samples. Asymp-
totically, as T increases, both criteria are equivalent. However, for small
sample sizes, it tends to select different models.

10 See R. H. Jones “Fitting Autoregressions,” Journal of the  American Statistical As-
sociation 70 (1975), pp. 590–592 and R. Shibata,  “Selection of the Order of an Au-
toregressive Model by Akaike’s Information Criterion,” Biometrika 63 (1976), pp.
147–164. 
11 G. Schwarz, “Estimating the Dimension of a Model,” Annals of Statistics 6 (1978),
pp. 461–464.
12 AICC has been defined in C.M. Hurvich and C. L. Tsai, “Regression and Time Se-
ries Model Selection in Small Samples,” Biometrika 76 (1989), pp. 297–307.

AICp q, σ̂p q,
2 2

T
---- p q+( )+ln=

σ̂p q,
2

BICp q, σ̂p q,
2 Tln

T
--------- p q+( )+ln=

AICCp q, σ̂p q,
2
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2

T p– q– 2–
-------------------------------- p q 1+ +( )+=
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The AICC imposes a penalty that is somewhere between that of the
AIC and BIC. Let k be the number of estimated parameters of a model
as recommended by an information criterion. Due to the different pen-
alty terms we have kAIC ≥ kAICC ≥ kBIC. The BIC is strongly consistent
in selecting the orders of a process; namely, it determines the true model
asymptotically. This means if the data are truly generated by an
ARMA(p, q) process, the BIC will recover the correct orders p and q as
the sample size approaches infinity. In contrast, AIC will always deter-
mine an overeparameterized model, independent of the length of the
sample. Although consistency is an attractive property, real data are
typically not generated by a specific ARMA(p, q) process and are of lim-
ited sample size. Therefore the consistency is of less practical impor-
tance than it may appear. 

In practice, final model selection should not be based exclusively on
any of these information criteria. They basically measure the goodness
of fit, which is an important but typically not the only relevant criterion
for choosing a model. As pointed out by Box, Jenkins, and Reinsel,13

use of information criteria should be viewed as supplementary guide-
lines to assist in the model selection process rather than as a complete
substitute for a thorough inspection of characteristics of the sample
ACF and sample PACF.  

As discussed here, different information criteria may recommend
different models. But even if we decide to use only one of the criteria,
there may be several models that produce criterion values that are very
close to the minimum value. Whenever one encounters conflicting rec-
ommendations or only small differences, all reasonable models should
remain candidates for the final selection and be subjected to further
diagnostic checks. A test for whiteness of the residuals is an important
diagnostic check, which should be passed by the residuals of an esti-
mated model. 

MODEL ESTIMATION 

There are several approaches to estimating ARMA models. They are:

1. The Yule-Walker estimator uses the Yule-Walker equations explained
in the previous chapter with k = 1, …, p and estimates the AR parame-
ters of pure AR models from the SACF. For mixed ARMA models, in
principle the extended Yule-Walker equations could be used to estimate

13 Box, Jenkins, and Reinsel, Time Series Analysis: Forecasting and Control, 3rd ed.
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the AR coefficients. The MA coefficients need to be estimated by other
means. 

2. The least squares estimator (LSE) finds the parameter estimates that
minimize the sum of the squared residuals. For pure AR models, the
LSE leads to the linear OLS estimator. If moving average components
are present, the LSE becomes nonlinear and has to be solved with
numerical methods.

3. The maximum likelihood estimator (MLE) maximizes the (exact or
approximate) log-likelihood function associated with the specified
model. To do so, explicit distributional assumption for the distur-
bances, εt, has to be made. Typically, we assume a normal distribu-
tion (i.e., .

We discuss each approach briefly below.

Yule-Walker Estimation
Yule-Walker (YW) equations can be used for parameter estimation of
pure AR models. YW equations for AR(p) process are of the following
form

ρk = a1ρk–1 + ··· + apρk–p,   k = 1, 2, …. (7.17)

Using sample autocorrelations and collecting the first p equations in
matrix form we obtain

(7.18)

or, in short,

(7.19)

YW estimator is then given by

εt
IIDN 0 σ2,( )∼

1 ρ̂1 � ρ̂p 1–

ρ̂1 1 ρ̂p 2–
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(7.20)

If SACF is estimated by (see (6.47) in the chapter 6)

all roots of the YW-estimated AR polynomial  will be
greater than unity. That is, the estimated AR model will be stationary.  

The YW estimator as presented above is derived by solving exactly
identified systems of linear equations (i.e., there are as many equations
as unknowns). One can also specify overidentified systems of equations
by using more than the minimal number of p (or q) YW recursions. 

To illustrate, let’s use the first four YW equations to estimate an
AR(2) model:

or, in short,

The overidentified YW estimator is then given by the least squares solu-
tion for a: 

Overidentification makes use of information contained in higher-order
sample autocorrelations. However, higher-order SACF terms tend to be
noisier and therefore may lead to less reliable estimates. 

â T̂ 1– ρρρρ̂p=

ρ̂k

yi µ–( ) yi k– µ–( )
i k 1+=

T

∑

yi µ–( )2

i 1=

T
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--------------------------------------------------------------=

1 â1L– � âpLp––
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ρ̂4

≈

T̂4a ρρρρ̂4≈
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The YW estimator is consistent but not efficient14 and is typically
used as initial estimate for more elaborate iterative estimation methods
such as LSE or MLE.

Least Squares Estimator
The LSE finds the values for the model parameters which minimize the
sum of the squares residuals. Writing the ARMA equations (6.12 in the
previous chapter)

for the T observations y = (y1,…,yT)′, we obtain

(7.21)

where e denotes the vector of residuals e = (e1,…,eT)′; the asterisk refers
to pre-sample values y* = (y0, y–1,…,y–p + 1)′ and e* = (e0, e–1,…,e–q + 1)′.
The matrices are given by

14 A consistent estimator is one that is bound to give an accurate estimate of the pop-
ulation characteristic if the sample is large enough. An efficient estimator is one for
which the probability density function is as concentrated as possible around the true
value. Generally, an efficient estimator is the estimator with the smallest variance. 
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aiyt i–
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Solving (7.21) for e provides

(7.22)

Letting a = (a1,…, ap) and b = (b1,…, bq), the sum of squared residual,

S(a,b) = e′e

can be written as

(7.23)

B
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Minimization of (7.23) with respect to coefficient vectors a and b yields
the LSE of a and b. 

To minimize (7.23), presample values have to be known. The fol-
lowing three approaches can be used to deal with this problem.

1. Set presample values y* and e* equal to the unconditional expectations,
using

E(yt) = 0,     E(εt) = 0,     t ≤ 0

Assumption E(yt) = 0, t ≤ 0, is questionable when the AR polynomial
has a root close to the unit circle and could lead to a severe bias. With
an increasing sample size, the impact of the zero initial-value assump-
tion will, however, diminish.

2. Compute the sum of squares starting at t = p + 1 instead of t = 1. Then,
the p “presample” values y1, …, yp are known and only the initial dis-
turbances will be set to zero. This method leads to conditional sum of
squares, since it is conditioned on  y1, …, yp. Again, for large samples
the effects of setting εt  = 0 for p – q < t < q will be negligible.

3. Treat εp–q,…, εp as unknown parameters that have to be jointly esti-
mated with the ARMA parameters. To do so, one can consider them
like unknown parameters with respect to which we minimize the sum
of squared residuals or by backcasting (i.e., forecasting backward).
The backcasting procedure uses the fact that, if yt is generated by a
stationary process,

a(L–1)yt = b(L–1)vt

where L–1 represents the lead operator, then vt has the same mean and
variance as εt.

Since (7.23) is not quadratic in the MA coefficients, the first-order
conditions obtained in the optimization will not be linear. Thus we will
not have a closed-form solution but rather require iterative numerical
solutions. 

Given estimates  and , fitted residuals are given by

(7.24)

from which we can derive the estimate of the residual variance by

â b̂

ê B̂ 1– Ây Â*y*– B̂*e*–⎝ ⎠
⎛ ⎞=
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(7.25)

Maximum Likelihood Estimator 
The method of maximum likelihood (ML) is another statistical proce-
dure that obtains an estimate that minimizes some form of the sum of
squared errors. The likelihood procedure searches for the parameter val-
ues that are most “suitable” for the set of observations. 

Recall the standard situation in ML estimation—assume random
variables are IID and drawn from distribution f(·; θ) with the probability
density function (pdf). For example, if all yt’s are drawn from N(µ, σ2),
then θ is a parameter vector that summarizes estimates of the mean and
variance, θ = (µ, σ2)′.

Given θ, the joint pdf of YT = (y0,…yT) is written as

,   θ ∈ Θ (7.26)

where Θ denotes the set of admissible parameter values. For a given
sample YT, the joint pdf f(YT; θ) can be viewed as a function of θ. Then,
for different choices of θ, the value of f(YT; θ) is an indication of the
“plausibility” of a particular θ for the data set YT.

The likelihood function of model f(·; θ) for data set YT can be defined
as

where ∝ stands for “is proportional to.” Any function positively pro-
portional to f(YT; θ) is a valid likelihood function—which includes the
joint pdf itself. The MLE of θ, , has the property that for any
other estimator, ,

The MLE  of θ is obtained by finding the value of θ that maximizes
(7.26). That means that we aim to find the value of the unknown
parameter that maximizes the likelihood (probability) computed for a
given set of observations y1, …, yT. This procedure has a general charac-
ter and the IID assumption can be relaxed.
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If YT  is a sample of time series, the yt’s will generally be depen-
dent. Consequently, their joint density function cannot be written as a
product of individual pdf values f(yt, θ) as in (7.26). However, the joint
density function of two dependent random variables can be decom-
posed as15

f(x2, x1) = f(x2|x1)f(x1) (7.27)

where f(x2|x1) represents the conditional density of x2 given the value of
x1. Accordingly, for three dependent random variables:

f(x3, x2, x1) = f(x3|x2, x1)f(x2, x1) (7.28)

Substituting (7.27) for f(x2, x1) yields 

f(x3, x2, x1) = f(x3|x2, x1)f(x2|x1)f(x1) (7.29)

Then, for time series data YT = (y0,…yT), the joint pdf can be written as

f(YT) = f(yT|YT – 1) f(yT – 1|YT – 2) ··· f(y0) (7.30)

and the likelihood function becomes

(7.31)

Maximizing L(θ;YT) is equivalent to maximizing the log-likelihood function

(7.32)

which is typically maximized in practice.
We will now illustrate the idea through the example. Consider an

AR(1) process yt = a1yt – 1 + εt with εt ~ N(0, σ2), IID. Then, the condi-
tional pdf of yt given yt – 1 is normal with (conditional) mean ayt – 1 and
variance σ2. Thus, f(yT|YT – 1) ~ N(ayt – 1, σ2) or

15 The parameter vector θ is omitted as an argument in the density function whenever
it is clear from the context.

L θ;YT( ) f y0( ) f yt Yt 1–( )
t 1=

T
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Lln θ;YT( ) f y0( )ln f yt Yt 1–( )ln
t 1=

T

∑+=
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,     t = 1, 2, ..., T

Combining this with (7.32) yields

The log-likelihood function is

(7.33)

The unconditional pdf of initial value y0 is normal with mean 0 and
variance :

Therefore

(7.34)

Substitution of equation (7.34) into (7.33) gives exact likelihood
function for the AR(1) model. Maximization with respect to a and σ2

yields exact maximum likelihood estimates. 
For higher-order AR models, we have to specify the unconditional

joint pdf of the pre-sample values y0, …, y–p+1. In practice, it is often
omitted from the log-likelihood function because its (1) influence on the
parameter estimates becomes negligible for large samples and (2) deriva-
tion is a nontrivial computational problem.
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      Conditional MLE is obtained by conditioning y1,…, yT on pre-
sample realizations y0, …, y–p + 1. Conditional log-likelihood function
of general ARMA(p, q) model with constant c and εt  ~ N(0, σ2), IID:

where 

and

DIAGNOSTIC CHECKING  

After estimating an ARIMA model, the next step in the Box-Jenkins
approach is to check the adequacy of that model. Ideally, a model should
extract all systematic information from the data. The part of the data
unexplained by the model (i.e., the residuals) should be small and not
exhibit any systematic or predictable patterns, i.e., white noise, since any
information useful for prediction should be captured by the model and
not left in the residuals. With these desirable properties for the residuals
in mind, most diagnostic checks involve analyses of the residuals of the
estimated model. 

In addition to analyzing residuals, one could design diagnostic
checking procedures that take the modeling objectives explicitly into
account. If the model is intended for forecasting, given sample y1, …, yT,
one could use only observations y1, …, yT – K  in the estimation step and
generate out-of-sample forecasts for the hold-out sample yT – K + 1, …,
yT. A comparison of actual and predicted values for the hold-out sample
indicates the predictive performance of the estimated model and allows
one to judge its adequacy in terms of the modeling objective.

The evaluation of the predictive performance of a model is not con-
sidered here but will be discussed later in this chapter. We present next
various diagnostic-checking devices that are based on residual analysis.
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Testing for Whiteness of the Residuals 
A standard assumption in ARIMA modeling is that the disturbances εt,
the unexplained part of yt given past information yt – 1, yt – 2,… and εt – 1,
εt – 2, …, cannot be (fully or partially) explained or predicted from this
past information. This is reflected in the white noise assumption explained
in the previous chapter 

,     (7.35)

In accordance with this assumption, the residuals of an estimated model
should exhibit white noise-like behavior. Any departure from whiteness
indicates that the residuals still contain information that the model has
not extracted from the data.

A simple plot of the residuals may exhibit systematic patterns and
reveal the inadequacy of the estimated model. A more systematic way of
checking the whiteness is to subject the residuals to the standard identifi-
cation procedures employed in the identification step of model building.
If the SACF and SPACF of the residuals have no significant elements, we
conclude that they resemble white noise; otherwise, there is still informa-
tion in the residuals.

One problem with checking the significance of individual elements
of any of the identification functions is that each element might be indi-
vidually insignificant, but all (or a subset) of the elements taken together
may be jointly significant. For example, the residual SACF could exhibit
a systematic pattern within the 95% confidence interval—indicating
that the residuals may contain relevant information—although, for each
k, we cannot reject the null hypothesis ρε,k = 0. 

Portmanteu Tests 
Several diagnostic goodness of fit tests have been proposed based on the
residual autocorrelation coefficients. A popular goodness of fit test is the
Box-Pierce Q-statistic, also known as the portmanteau test,16 which
tests the joint hypothesis H0: ρε,1 = ρε,2  = … = ρε,K  = 0. The Q-statistic
is computed by

16 G. E. P. Box and D. A. Pierce, “Distribution of Residual Autocorrelations in Au-
toregressive Moving Average Time Series Models,” Journal of the American Statis-
tical Association 65 (1970), pp. 1509–1526.

E εt( ) 0= E εsεt( ) σ2,   if s t=
0,     if s t≠⎩

⎨
⎧

=
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(7.36)

where  is the k-th order sample autocorrelation of the residuals and
T is the sample size. K in (7.36) is chosen sufficiently large so that the
effect of higher-order autocorrelations, which are assumed to approach
zero, can be neglected. In practice, one can compute Q for several val-
ues of K. The sum of squared autocorrelations is intended to capture
deviations from zero in either direction and at all lags K. 

For data generated by a white noise process, Q has an asymptotic
chi-square (χ2) distribution with (K – p – q) degrees of freedom. If Q
exceeds the tabulated critical value associated with the chosen signifi-
cance level, we reject the null hypothesis of uncorrelated residuals.

The Q test is only asymptotically valid and may perform rather
poorly for small and moderate samples,17 for which the distribution of
Q can be quite different from the χ2 distribution. In view of this, Ljung
and Box18 adapt the Box-Pierce test for finite sample by modifying the
Q-statistic to obtain the Q*-statistic, such that

(7.37)

which constitutes the Ljung–Box test. However, for moderate sample
sizes, also the Ljung-Box test has low power and may fail to detect
model misspecifications. 

Both versions of the portmanteau test check only for uncorrelatedness
of the residuals and not  for independence or “true” whiteness. If the data
are generated by a nonlinear process, we may find a linear ARMA model
that extracts all autocorrelations from the data. Then, the residuals
would be uncorrelated and both the residual SACF and a Q test would
indicate that the estimated ARMA model is adequate. However, more
complex temporal dependencies may still be present in the residuals. The
detection of such dependencies in the absence of autocorrelations indi-
cates that the class of linear ARMA models is inappropriate for the data

17 This is pointed out in  N. Davies and P. Newbold, ”Some Power Studies of a Port-
manteau Test of Time Series Model Specification,” Biometrika 66 (1979), pp. 153–
155.
18 G. M. Ljung and G. E. P. Box, “On a Measure of a Lack of Fit in Time Series Mod-
els,” Biometrika 65 (1978), pp. 297–303.  

Q T ρ̂ε k,
2

k 1=

K

∑=

ρ̂ε k,

Q* T T 2+( ) T k–( ) 1– ρ̂ε k,
2

k 1=

K

∑=
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at hand. Granger and Anderson,19 for example, present several examples
where the residuals are uncorrelated whereas the squared residuals are
significantly correlated. Adapting the Ljung-Box test, McLeod and Li20

test the joint hypothesis  by performing
a Q test on the squared residuals. They compute

(7.38)

where  denotes the kth order sample autocorrelation of the squared
residuals. They show that under the null hypothesis of no autocorrelation,

 has a χ2 distribution with K degrees of freedom.
Alternatively, a goodness of fit test based on residual partial auto-

correlation can be used. If  is the k-th order residual partial auto-
correlation coefficients, then the statistic

is asymptotically χ2 distributed with (K – p – q) degrees of freedom if
the model fitted is appropriate.21 Simulation results of Monti indicates
that the empirical sizes of QM are adequate in moderate sample sizes.
The finite sample behavior of the portmanteau tests based on residual
autocorrelations and residual partial autocorrelations can also be
affected by the choice of the estimation method (e.g., maximum likeli-
hood estimator or least squares estimator). Although the estimators are
asymptotically equivalent, they may differ markedly from one another
in finite samples. A consequence is that the finite-sample properties of
the goodness of fit tests which are based on the residual autocorrelation
or partial autocorrelation coefficients are likely to depend on how
model parameters are estimated.

Note that the literature offers a variety of alternative tests for whiteness.22

19 Clive W. J.  Granger, and A. P.  Andersen, An Introduction to Bilinear Time Series
Models (Göttingen: Vandenhoeck and Ruprecht, 1978).
20 A. J. McLeod and W. K. Li, “Diagnostic Checking ARMA Time Series Models us-
ing Squared-Residual Correlations,” Journal of Time Series Analysis 4 (1983), pp.
269–273.  
21 A. C. Monti, “A Proposal for a Residual Autocorrelation Test in Linear Models,”
Biometrika 81 (1994), pp. 776–780.
22 For a discussion of these approaches, see M. G. Kendall and A. Stuart,  The Ad-
vanced Theory of Statistics, vol. 3 (London: Griffin, 1976).  
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Testing for Normality 
If the MLE is used to estimate the model, a specific distribution has to be
assumed for the disturbances εt. As part of the diagnostic check, one
should examine whether the residuals are compatible with this distribu-
tional assumption. Thus, in the common case of a normal assumption, the
residuals have to be tested for normality. The Jarque-Bera test accom-
plishes this. It is based on the third and fourth sample moments of the
residuals. Since the normal distribution is symmetric, the third moment,
denoted by µ3, should be zero; and the fourth moment µ4, should satisfy
µ4  = 3σ4 where σ2 is the variance. 

The measure of third moment or skewness, , of residual distribu-
tion can be calculated as 

and the measure of fourth moment or kurtosis, , as

where T is the number of observations, and  is the estimator of the
standard deviation. Under the assumptions of normality,  and 
would have a mean zero asymptotic normal distribution with variances
6/T and 8/3⋅T, respectively. 

The Jarque-Bera test tests the null hypothesis 

   and   

The sample statistics

(7.39)

and 
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Ŝ
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(7.40)

are asymptotically χ2(1) distributed, respectively. The null hypothesis,
H0, as stated above consists of a joint test for λ1 and  λ2 being zero and
can be tested via

λ3 = λ1 + λ2

which is asymptotically χ2(2) distributed. 
It should be noted the χ2 distribution will only be valid for large sam-

ples. The small sample properties of the sample moments may deviate
considerably from their theoretical counterparts. Thus, for small samples,
results of the Jarque-Bera test must be interpreted with caution. 

Illustration: Modeling Individual Stock Returns Using Simple 
ARMA Model
To illustrate a simple ARMA model, we will use a time series of daily
returns of Commerzbank, one of the major German banks, for the
period January 1, 1999 to December 31, 2002. For closing price series
pt, daily returns (in %) are defined as yt = 100[ln(pt) – ln(pt–1)]. Descrip-
tive characteristics for the return series are given in Exhibit 7.4. The
Commerzbank return series displays statistical properties associated
with nonnormal data as far as the third and fourth moments are con-
cerned. More specifically, the return series are skewed negatively and the
frequent number of large absolute returns (either positive or negative)
lead to a large degree of kurtosis.

Descriptive graphs for the level of prices and daily return series are
given in Exhibits 7.5 and 7.6. The plot in Exhibit 7.5 suggests that the
data are nonstationary in the mean. Exhibits 7.7 and 7.8 show the ACF

λ2
1

24T
-----------

ε̂t
4

σ̂4
------ 3–

⎝ ⎠
⎜ ⎟
⎛ ⎞ 2

t 1=

T

∑=

EXHIBIT 7.4  Descriptive Statistics for the Daily Returns on Commerzbank Stock

Mean –0.00140
Std. Dev.   0.022
Skewness –0.4729
Kurtosis   6.8196
Min –0.1322
Max   0.0753
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EXHIBIT 7.5  Commerzbank Stock Daily Closing Price Series from January 1, 1999 
to December 31, 2002

EXHIBIT 7.6  Commerzbank Stock Daily Returns from January 1, 1999 to 
December 31, 2002
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EXHIBIT 7.7  Time Series Plot of the Sample Autocorrelation Function of the 
Return Series up to 20 Lagsa 

a The bold lines reflect the approximate confidence interval.

EXHIBIT 7.8  Time Series Plot of the Partial Sample Autocorrelation Function of the 
Return Series up to 20 Lagsa 

a The bold lines reflect the approximate confidence interval.
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and PACF estimates given as the correlogram plot respectively. The pat-
tern of SACF shows that there is a strong correlation at lag 7 and 8.

The results for the behavior of the autocorrelation and partial auto-
correlation function suggest that the Commerzbank return series can be
modeled by some ARMA process. For example, the order of the process
may be determined by using the information criteria for model selection. 

Fitting an ARMA(1,1) model 

yt = a1yt –1  + b1εt – 1 + εt

we obtain the coefficients  = 0.3792 with standard error of 0.2191
(t-statistic = 1.7304), and  = –0.2782 with standard error of 0.2313
(t-statistic = –1.2029). 

To evaluate the validity of the model, we perform diagnostic checks
on the residuals with inspection of the structure of the SACF and SPACF
of the residuals. The residuals from the fitted model are shown in
Exhibit 7.9. Diagnostic plots of the SACF of the residuals from the fitted
ARMA(1,1) model are shown in Exhibit 7.10. The first four values of
autocorrelations of residuals are very close to zero and only values at
lags 7 and 8 appear significant. 

EXHIBIT 7.9  Time Series Plot of the Residuals from the Fitted ARMA(1,1) Model 
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EXHIBIT 7.10  Diagnostic Plot of the ACF of the Residuals from the ARMA(1,1) 
Model up to 20 Lagsa 

a The bold lines reflect the approximate confidence interval.

FORECASTING 

Let the data observed up to period t be collected in the information set23

It = {yτ: τ ≤ t}

Having observed a time series up to period t, we would like to forecast a
future value yt+h. Then, the objective of the forecasting is to predict future
realizations of yt given a specific model. After estimating the model, the
estimate of future value yt + h at time t is denoted by . We distinguish
between the one-step-ahead predictor, , and the multi-step-ahead
predictor, , given the forecasting horizon h and forecasting origin t.

23 Note that It contains only information about yt. In principle, other variables could
enter (e.g., in case of ARMAX models). 
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ŷt h( )

c07-Approaches ARIMA  Page 271  Thursday, October 26, 2006  2:06 PM



272 FINANCIAL ECONOMETRICS

To characterize the forecasts, three quantities are used: 

 ■ Forecast function 
 ■ Forecast error  
 ■ Variance of the forecast error

These quantities characterize the quality of forecasts given the underly-
ing forecasting model that has been estimated.

Loss Function 
Instead of considering the “true cost” of wrong predictions, we consider
a purely statistical criterion, namely, the mean-squared prediction error
(MSE). Given the information set, we can also define the conditional
expectation of yt+h:

Et(yt+h): = E(yt+h|It) = E(yt+h|yt, yt–1, …)

We would like to find the estimate of yt+h, , which has the
smallest possible MSE:

(7.41)

Squaring the expression in brackets and using the fact that 

(7.42)

which is due to the property that yt + h – Et(yt + h) depends only on εt + 1,
…, εt + h and Et(yt + h) –  only on yt, yt – 1,…, then, we obtain

 MSE( ) = MSE(Et(yt + h)) + E[Et(yt + h) – )2]

We see quantity MSE( ) is minimized, if

 = Et(yt + h) 

In other words, Et(yt + h), the conditional mean of yt + h given the histor-
ical time series observations, is the best estimator in terms of the mean
square error. 

ŷt h( )
ε̂t h( )

ŷt h( )

MSE ŷt h( )( ) E yt h+ ŷt h( )–( )2[ ]=

E yt h+ Et yt h+( )– Et yt h+( ) ŷt h( )–+( )2[ ]=

E yt h+ Et yt h+( )–( ) Et yt h+( ) ŷt h( )–( )[ ] 0=

ŷt h( )

ŷt h( ) ŷt h( )

ŷt h( )
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Best Linear Predictor  
We confine ourselves to linear predictions, that is, linear predictions of
yt+h given yt, yt–1,… and εt, εt–1, …. Assuming a stationary and invert-
ible model (i.e., it has pure AR and MA representations), we have24 

where {ci} is a sequence of constants with

Predictor  is linear and uses only information yt, yt – 1,… or εt, εt – 1,
…. Therefore

We obtain the weights  that minimize MSE , from the fol-
lowing computation

(7.43)

From (7.33) it follows that MSE  is minimized for 

24 Recall from Chapter 6 that this is the condition for M(∞) to be a linear process. 
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ŷt h( ) c̃jεt j–
j 0=

∞

∑=
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and the minimum-MSE h-step predictor for yt + h, that is Et(yt + h) =
, is given by

(7.44)

The h-step prediction error is then

and the variance of the h-step prediction error is

(7.45)

There are four points to note:

1.  Thus, the variance of the h-step predic-
tion error approaches the unconditional variance of yt as h → ∞.

2. Given ai and bi, the ci coefficients can be computed recursively so
that (7.44) can be used for prediction. However, for this we require
all εt – i, i = 0, 1, …, unless we have a pure MA model, for which
εt – i, i = 0, 1, …, q suffice.   

3. For t = 1, 2, …, T, we obtain the εt’s from

,     t = 1, ..., T

Setting the initial values of y0, y–1,…, and ε0, ε–1,… deserves special
consideration. For a stationary and invertible model, we have 

in (7.44). Thus, the cj can be ignored for sufficiently large j.
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4. Instead of infinite sum (7.44), we can use the ARMA recursion for
multistep prediction:

,     h = 1, 2, ...

where 

Prediction Intervals  
The predictor  derived above yields a point forecast for yt + h. To
assess the uncertainty associated with this prediction, we compute the
confidence or prediction interval. It is calculated assuming that the fitted
model holds true in the future or on an empirical basis from the fitted
errors. 

Since predictor  is a linear combination of disturbances εt, the
distributions of  and prediction error  are determined by the
distribution of the εt. Assuming

we have from (7.45),

Thus the prediction error is normally distributed. Note, however, that
, h = 1, 2, …, are not independent. The distribution of the normal-

ized prediction error is 

where

ŷt h( ) aiŷt h i–( )
i 1=

p

∑ bjε̂t h j–( )
j 0=

q

∑+=
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The h-step prediction interval at a specified confidence level (1 – α) of
the standard normal distribution can be obtained by observing the nor-
malized prediction error within bounds derived from  an α × 100%
quantile of the standard normal distribution.

Formally, let z(α) denote α × 100% quantile of standard normal dis-
tribution. Due to the symmetry of standard normal distribution, we
have z(α/2) = –z(1–α/2). Then

Interval

or

is called the (1 – α) × 100% h-step prediction interval.
Usually, for α the values of 0.05 or 0.01 are chosen. The length of

the prediction-error interval increases as h increases, because σ(h)
increases with h. 
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CONCEPTS EXPLAINED IN THIS CHAPTER
(IN ORDER OF PRESENTATION)

The Box-Jenkins methodology
Identification
Estimations
Diagnostics
Overdifferencing
Unit root test
Dickey-Fuller test (DF test)
Stochastic trend
Difference stationary process
Augmented Dickey-Fuller test (ADF test)
Akaike information criterion (AIC)
Bayesian information criterion (BIC) or Schwartz criterion
Corrected Akaike information criterion (AICC)
Least squares (LS) estimation 
Maximum likelihood (ML) estimation
Testing whiteness of residuals
Box-Pierce Q test
Liung-Box test
McLeod-Li test
Jarque-Bera test
Forecast function
Forecast error
Mean squared prediction error
Prediction intervals
Loss function
Linear predictors
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Autoregressive Conditional
Heteroskedastic Models

 

n linear regression analysis, a standard assumption is that the variance of
all squared error terms is the same. This assumption is called 

 

homoske-
dasticity 

 

(constant variance). However, many time series data exhibit 

 

het-
eroskedasticity

 

, where the variances of the error terms are not equal, and in
which the error terms may be expected to be larger for some observations
or periods of the data than for others. The issue is then how to construct
models that accommodate heteroskedasticity so that valid coefficient esti-
mates and models are obtained for the variance of the error terms. 

 

Autore-
gressive conditional heteroskedasticity

 

 (ARCH) models are the topic of
this chapter. They have proven to be very useful in finance to model return
variance or volatility of major asset classes including equity, fixed income,
and foreign exchange. Understanding the behavior of the variance of the
return process is important for forecasting as well as pricing option-type
derivative instruments since the variance is a proxy for risk. 

Although asset returns, such as stock and exchange rate returns,
appear to follow a martingale difference sequence, observation of the daily
return plots shows that the amplitude of the returns varies across time. A
widely observed phenomenon in finance confirming this fact is the so-
called 

 

volatility clustering

 

. This refers to the tendency of large changes in
asset prices (either positive or negative) to be followed by large changes
and small changes to be followed by small changes. Hence, there is tempo-
ral dependence in asset returns. Typically, they are not even close to being
independently and identically distributed (IID). This pattern in the volatil-
ity of asset returns was first reported by Mandelbrot.

 

1

 

 Time-varying vola-

 

1 

 

Benoit B. Mandelbrot, “The Variation of Certain Speculative Prices,” 

 

Journal of
Business

 

 36 (1963), pp. 394–419.

I

 

c08-ARCHModels  Page 279  Thursday, October 26, 2006  2:07 PM



 

280

 

FINANCIAL ECONOMETRICS

 

tility and heavy tails found in daily asset returns data are two of the typical

 

stylized facts

 

 associated with financial return series.

 

2

 

 
The ARCH model and its generalization, the 

 

generalized

 

 

 

autoregres-
sive conditional heteroskedasticity

 

 (GARCH) model, provide a conve-
nient framework to study the problem of modeling volatility clustering.
While these models do not answer the question of what causes this phe-
nomenon, they model the underlying time-varying behavior so that fore-
casts models can be developed. As it turns out, ARCH/GARCH models
allow for both volatility clustering and unconditional heavy tails. The
ARCH model is one of the pivotal developments in the financial econo-
metrics field and seems to be purposely built for applications in finance.

 

3

 

It was introduced in the initial paper by Engle to model inflation rates.
Since the seminal papers of Engle

 

4

 

 in 1982 and Bollerslev

 

5

 

 in 1987, a
large number of variants of the initial ARCH and GARCH models have
been developed. They all have the common goal of modeling time-vary-
ing volatility, but at the same time they allow extensions to capture more
detailed features of financial time series. In addition to ARCH/GARCH
models, there are other models of time-varying volatility, such as sto-
chastic-volatility models, which are beyond our objectives here.

In this chapter, we will focus on basic ARCH and GARCH models,
discuss their structural properties, their estimation, and how they can be
used in forecasting. Additionally, we will discuss important variants of
these models along with the relevance for practical use.

 

ARCH PROCESS

 

The ARCH process describes a process in which volatility changes in a
particular way. Consider an ARCH(

 

q

 

) model for 

 

y

 

t

 

2 

 

The term stylized facts is used to describe well-known characteristics or empirical
regularities of financial return series. For example, daily stock index returns display
volatility clustering, fat tails, and almost no autocorrelation. These three major styl-
ized facts can be explained by the ARCH family of models. Additional stylized facts
include leverage effect and long memory effect described later in the chapter.
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y

 

t

 

 = 

 

ε

 

t

 

(8.1)

,   (8.2)

(8.3)

where 

 

h

 

t

 

 is the variance of 

 

ε

 

t

 

 conditional on the information available at
time 

 

t

 

. 

 

h

 

t

 

 is called the 

 

conditional variance of

 

 

 

ε

 

t

 

. The sequence {

 

ε

 

t

 

} is the
error process to be modeled. Expression (8.1) is typically extended to
the so-called mean equation for 

 

y

 

t

 

 that can be more complex and
involve additional explanatory variables or at least a constant. The
focus of ARCH models is equation (8.3) describing how 

 

h

 

t

 

 varies condi-
tionally on past  (Process  is referred to as the noise pro-
cess.). The random variable 

 

η

 

t

 

 is an innovation term which is typically
assumed to be IID with mean zero and unit variance. If {

 

η

 

t

 

} has the stan-
dardized Gaussian distribution (i.e., IID ), the random vari-
able 

 

ε

 

t

 

 is conditionally normal. For this case, we use the term 

 

normal
ARCH

 

 model. The Gaussian assumption for 

 

η

 

t

 

 is not critical. We can
relax it and allow for more heavy-tailed distributions, such as the Student’s

 

t

 

-distribution, as is typically required in finance.  
Let 

 

ℑ

 

t

 

 denote the filtration information until time 

 

t

 

.

 

6

 

 Then

This implies that the conditional variance of 

 

ε

 

t

 

 evolves according to pre-
vious realizations of . Thus, we can write .

In order to have a well-defined process described by (8.3), conditions
on the coefficients need to be imposed to avoid negative 

 

h

 

t

 

 values. To
ensure this, the parameters in the conditional variance equation (8.3)
should satisfy 

 

a

 

0

 

 > 0 and 

 

a

 

i

 

 

 

≥

 

 0 for 

 

i

 

 = 1, 2, …, 

 

q

 

. 
In its simplest form, an ARCH(

 

q

 

) model represents the asset return
series {

 

y

 

t

 

} with the process {

 

ε

 

t

 

} as in (8.1). As stated earlier, in practice,
equation (8.1) takes a more complex form and describes how 

 

y

 

t

 

 varies
over time. For example, 

 

y

 

t

 

 could have a conditionally varying mean, 

 

µ

 

t

 

,
arising, for example, from an ARMA structure, and 

 

ε

 

t

 

 = 

 

y

 

t

 

 – 

 

µ

 

t

 

 then rep-
resents a shock in the asset return process. The generalized model of 

 

y

 

t

 

6 

 

More formally,  denotes the sigma field generated by
past information until time 

 

t

 

.  in (8.2) is a positive, time-varying, and measurable
function with respect to 

 

σ

 

-algebra 

 

ℑ

 

t

 

–1

 

.
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incorporating more complex structures is discussed later in this chapter
in the section ARMA-GARCH models. 

Properties of ARCH Processes
The structure of the ARCH model implies that the conditional variance of
εt, ht, evolves according to the most recent realizations of  analogous to
an autoregressive AR(q) model. Large past squared shocks imply a large
conditional variance for εt. As a consequence, εt tends to assume a large
value which in turn implies that a large shock tends to be followed by
another large shock. 

Let us now take a closer look at the ARCH(1) model for process
{εt}. Equation (8.3) for an ARCH(1) model becomes ht = 
capturing the effect that a large value in εt leads to a larger variance
(volatility) in the following period. By recursive substitution of (8.3)
into (8.2) for ARCH(1) case, we obtain

(8.4)

If a1 < 1, the last term of the expression above tends to zero as n tends
to ∞, and we obtain 

(8.5)

Therefore, εt is a nonlinear function of (ηt,ηt–1,…) with the following
properties:

1. The unconditional mean of εt is zero, since

εt
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where  denotes the information set available at time t – 1.
2. The conditional variance of εt is

3. The unconditional variance of εt is obtained as7

4. The kurtosis of εt,  Kε,  is given by

where we assume that the εt has a finite fourth moment.8 The ARCH
model with a conditionally normal distribution εt leads to heavy tails in
the unconditional distribution. In other words, the excess kurtosis of εt
is positive and the tail distribution of εt is heavier than that of the nor-
mal distribution. 

Thus, the ARCH(1) process has a mean of zero, a constant uncondi-
tional variance, and a time-varying conditional variance. The εt is a sta-
tionary process for which 0 ≤ a1 < 1 is satisfied, since the variance of εt
must be positive. Additional constraints on a1 may be imposed if the
higher-order moments of εt need to exist. For example, to examine the tail
behavior of εt in Property 4, a requirement of the finite fourth moment of εt
is imposed. It turns out that Properties (1) through (4) also hold for higher
order ARCH models but the relevant formulas become more involved. 

The ARCH model provides a useful framework for modeling volatil-
ity of returns since it partially captures the phenomenon that—in absolute
terms—large returns would be again followed by large returns. However,
ARCH models possess some drawbacks in practical applications:

7 This follows from the fact that εt is a stationary process with E(εt) = 0 and deriving
Var(εt) = Var(εt–1) =E( ).
8 We also assume the condition 0 ≤ a1 ≤ 1 that guarantees stationarity. For the deri-
vation, see for example, Ruey S. Tsay, Analysis of Financial Time Series (New York:
John Wiley & Sons, 2002). 
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 ■ Due to the structure of the model, only the squared εt–i affect the cur-
rent volatility, . This may be unrealistic since in practice, volatility
may respond differently to positive and negative values of εt (e.g., posi-
tive and negative shocks may be interpreted as good and bad news,
respectively, that  may impact the volatility differently).  

 ■ It might be difficult to determine the order of q, the number of lags of
the squared residuals in the model. 

 ■ The impact of a large shock lasts only for q periods.

GARCH PROCESS

In Chapter 6 we started with the analysis of an AR model and extended
it to include MA component, giving rise to a general ARMA model.
Analogously, we can extend the concept of an ARCH model to a gener-
alized ARCH (GARCH) model. Next, we consider the GARCH(p, q)
process for the time series εt

,   (8.6)

(8.7)

where, again, ht is the conditional variance of εt (conditional on the infor-
mation available at time t), and ηt are IID with mean 0 and variance 1.
Thus the GARCH(p,q) model relates the conditional variance, ht, to a lin-
ear function of past squared errors and past conditional variances. Differ-
ence from the ARCH model is that GARCH model allows the conditional
variance to be modeled by past values of itself in addition to the past
shocks. For process (8.7) to be well defined and to ensure that the condi-
tional variance of εt is stationary, the conditions on the parameters a’s and
b’s need to be imposed. This can be quite involved and we will show some
technical aspects of the problem in the next section. For now, we assume
that the parameters (a0, a1, …, aq, b1, …, bp) are restricted such that ht > 0
for all t, which is ensured when a0 > 0, ai ≥ 0 for i = 1, 2, …, q, and bj ≥ 0
for j = 1, 2, …, p. We also assume that the fourth moment of ηt exists. 

It is important to note that not only the  but also the ht – j are
unobservable. ht – j can be estimated from the initial sample of the data
but it is better to reparameterize (8.7) and rewrite it as an ARMA process.
Rewriting the equation for ht in (8.7) considering the squared random
variable εt at time t relative to the conditional variance and by substitut-
ing for ut =  – ht, we obtain an ARMA(r, p) representation for :

ht
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where r = max(p, q). {ut} is a martingale difference series (i.e., E(ut) = 0
and Cov(ut, ut–i) = 0 for i ≥ 1). However, {ut} in general is not an IID
sequence. In compact representation, we can write the ARMA represen-
tation as

(8.8)

where L is the lag (backward shift) operator,

Φi = ai + bi, r = max(p, q), and

It is clear that ai = 0 for i > q and bi = 0 for i > p. Thus, by defining
, process  can be viewed as an ARMA(r,p) process

driven by the noise ut. 
Note that the Gaussian assumption of ηt is not always realistic. If

the distribution of the historical innovations ηt–n, …, ηt is heavier tailed
than the normal, one can modify the model and allow heavy-tailed dis-
tributions such as the Student’s t-distribution. We address this issue in
more detail later in this chapter and in the Chapter 14 where we discuss
stable Paretian distributions. 

Let us now consider the simple GARCH(1,1) model, which is the
most popular for modeling asset-return volatility. We write this model as

,   ηt ~ N(0,1)

(8.9)

The conditional variance in (8.9) is modeled by the past shock  and
its own lagged value ht – 1. For a0 ≥  0, a1 > 0, b1 > 0 and a1 + b1 < 1,
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 is a strict stationary solution of (8.9). The sum a1 + b1 mea-
sures the persistence of the conditional variance to shocks. It
approaches infinity as a1 + b1 approaches one from below.9 Considering
(8.8), if εt satisfies (8.9), then  has the ARMA(1,1) representation

where  and the expectation and variance conditional on ℑt–1
are Et–1(ut) = 0 and Vart–1(ut) = , respectively. It is also
assumed that εt and  have finite fourth moments, which requires
that  + 2a1b1 +  ≥ 1. 

As in the ARCH case, GARCH processes with a conditional normal
return distribution imply unconditional distributions that have heavier
tails than the normal distribution. Thus, the ARCH/GARCH models
allow for both volatility clustering and (unconditional) heavy tails.

The relationship between the kurtosis of {εt} and the volatility clus-
tering and conditional nonnormality (non-Gaussian innovations) can be
further explored since both volatility clustering and conditional nonnor-
mality can induce the leptokurtosis typically observed in financial return
series. Bai, Russel, and Tiao10 consider the ARMA(r,q) representation of
the GARCH(p,q) process (8.8) and analyze the relationships between
(1) the excess kurtosis of ηt, called the IID kurtosis and denoted by Kη,
(2) the excess kurtosis of εt, called the overall kurtosis and denoted by
Kε if it exists, and (3) the excess kurtosis of the normal GARCH pro-
cess, called the GARCH kurtosis and denoted by  if it exists. They
make two additional assumptions to ensure that ut’s are uncorrelated
with zero mean and finite variance and that the  proccess is weakly
stationary.11 Obviously, if ηt follows a normal distribution, Kη = 0 and

9 Robert F. Engle and Tim Bollerslev, “Modelling the Persistence of Conditional
Variances,” Econometric Reviews 5 (1986), pp. 1–50.
10 Xuezheng Bai, Jeffrey R. Russel, and George C. Tiao, “Kurtosis of GARCH and
Stochastic Volatility Models with Non-Normal Innovations,” Journal of Economet-
rics 114 (2003), pp. 349–360.
11 Specifically, they assume

A1: All the zeroes of the polynomial Φ(L) in (8.8) are lying outside the unit circle
A2: 0 < (Kη+2)k1 < 1, with

where  

.
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process (8.7) is a normal GARCH(p,q) process. Their results show that
if εt follows the GARCH(p,q) process specified by (8.7) and satisfies the
additional two assumptions, the following holds:

(8.10a)

(8.10b)

Expression (8.10a) for  relates the normal GARCH kurtosis to the
GARCH parameters ai’s and bi’s in (8.7) and characterizes the fact that
volatility clustering introduces leptokurtosis. 

For a normal GARCH(1,1) model, (8.10a) reduces to

which shows that coefficient a1 plays an important role in determining
the tail behavior of εt. If  a1 = 0, then  = 0 and there are no heavy
tails, and if a1 > 0 then the {εt} process has heavy tails. The kurtosis of εt
exists if .12

The empirical results of Bai, Russel, and Tiao, considering the auto-
correlation function of  for a normal GARCH(1,1) model, indicate
that the implied GARCH kurtosis, , takes values which are substan-
tially below the sample excess kurtosis found in the return data. Thus the
normal GARCH(1,1) model is not capable of matching the large leptokur-
tosis typically found in the data. This motivated Bollerslev13 to suggest the
use of the Student’s t-distribution to match excessive sample kurtosis. 

The expression (8.10b) for the overall kurtosis Kε suggests that 
(GARCH kurtosis induced by time-varying volatility), and Kη (kurtosis
of the IID innovation process), contribute symmetrically to the increase
of the overall kurtosis. The experiments of Bai, Russel, and Tiao show
that a nonnormal GARCH model fits well the time-varying volatility
relation and matches the sample kurtosis much better. 

12 See Tim Bollerslev, “Generalized Autoregressive Conditional Heteroscedasticity,”
Journal of Econometrics 31 (1986), pp. 307–327.
13 Bollerslev, “Generalized Autoregressive Conditional Heteroscedasticity.”
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Properties of GARCH Processes
The structural properties of GARCH processes relate to conditions for
the existence of a stationary solution and higher-order moments. The
necessary and sufficient condition for strict stationarity and ergodicity
of the GARCH(1,1) model in (8.9) is obtained as follows 

(8.11)

Condition (8.11) allows a1 + b1 to be 1, or slightly larger than 1, in
which case . The derivation of (8.11) is given in this chapter’s
appendix. For the general model (8.6) and (8.7), the necessary and suffi-
cient condition for second-order stationarity is 

(8.12)

The necessary and sufficient condition for strict stationarity and ergod-
icity of the general model (8.6) and (8.7) was established by Bougerol
and Picard14 as follows:

(8.13)

Ling and McAleer15 established the necessity and sufficiency of the
condition for the existence of the fourth and higher moments for the
GARCH(p, q) model. He and Terasvirta16 observe the following general
class of GARCH(1,1) model:

,   (8.14)

where , δ > 0, zt is a sequence of IID random variables
with mean zero and variance 1, and g(x) and c(x) are nonnegative func-

14 P. Bougerol and N. Picard, “Stationarity of GARCH Processes and of Some Non-
negative Time Series,” Journal of Econometrics 52 (1992), pp. 115–127.
15 Shiqing Ling and Michael McAleer, “Necessary and Sufficient Moment Condi-
tions for the GARCH(r,s) and Asymmetric Power GARCH(r,s) Models,” Economet-
ric Theory 18 (2002), pp. 722–729. 
16 C. He and Timo Terasvirta, “Properties of Moments of a Family of GARCH Pro-
cesses,” Journal of Econometrics 92 (1999), pp. 173–192.
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tions. The necessary condition for the mδ-th unconditional moment of
model (8.14) to exist is

(8.15)

where m is a positive integer and δ = 1 or 2. The result is derived under
the assumption of the conditional process (e.g., the process started at
some finite value infinitely many periods ago). Although result (8.15) is
a useful one, it cannot be verified in practice, so it is an axiom rather
than assumption. Ling and McAleer17 obtain the sufficient conditions
for the strict stationarity of model (8.14) without invoking the assump-
tion of the conditional model.18 They establish two propositions deal-
ing with expression (8.14). In the first, they establish that for some real
α ∈ (0,1], there exists a unique αδ-order stationary solution to (8.14) if

, E[g(zt)]
α < ∞ and E[c(zt)]

α < 1. In the second proposition, they
postulate that the necessary and sufficient condition for the existence of the
mδth moment of the solution for {εt} in Proposition 1 is E[c(zt)]

mδ < 1, where m
is a positive integer if the conditions  and E[g(zt)]

mα < ∞ are satisfied. 
For example, when g(zt–1) ≡ a0 > 0 and , we have

a GARCH(1,1) process and condition  for some α ∈ (0,1] is
equivalent to condition E[ln[c(zt)]] < 0, which is the necessary and suffi-
cient condition established in (8.11). 

ESTIMATION OF THE GARCH MODELS

A main obstacle for estimating GARCH models is that the conditional
variance in (8.7) is an unobserved variable, which must itself be explic-
itly estimated along with the parameters of the model. 

Maximum Likelihood Estimation 
Engle19 suggested two possible methods for estimating the parameters in
model (8.1)–(8.3), namely the least squares estimator (LSE) and the
maximum likelihood estimator (MLE). The LSE is given as 

17 Shiqing Ling and Michael McAleer, “Stationarity and the Existence of Moments of
a Family of GARCH Processes,” Journal of Econometrics 106 (2002), pp. 109–117. 
18 They show that model (8.14) in fact, did start infinitely many periods ago, but they
argue this is the consequence of the existence of the unique stationary solution and
is not an assumption.
19 Engle, “Autoregressive Conditional Heteroscedasticity with Estimates of the Vari-
ance of U.K. Inflation.”
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(8.16)

where  and . The  is consis-
tent and asymptotically normal if  which is a strong condition.

We will briefly discuss the method of maximum likelihood estima-
tion. Recall the assumption of the ARCH model that  with

 IID. Then, the likelihood, lt, of εt is 

which is the conditional probability function of  where
ℑt–1 = σ(εt–1, εt–2, …).20 By iterating this conditional argument, we obtain

The joint likelihood of the entire sample of T observations is

and for the log likelihood we obtain

(8.17)

The conditional log-likelihood function can thus be written as

20 Recall that σ denotes the sigma algebra generated by εt. The choice of logarithm
is convenient as it replaces products with sums and maximizing the logarithm of a
function is equivalent to maximizing the function itself as the logarithm is a mono-
tone, increasing function. 
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(8.18)

where θ = (a0, a1, …, aq, b1,…, bp). The value of θ which maximizes
L(θ) is referred to as maximum likelihood estimates or MLEs. Under
certain technical assumptions, MLEs are consistent and asymptotically
normal. Hence, with infinitely many observations the parameter esti-
mates would converge to their true values and the variance of the esti-
mates would be the smallest possible. 

The MLE of a GARCH model is obtained by numerically maximizing
the log-likelihood function using iterative optimization methods like
Gauss-Newton or Newton-Raphson. The log-likelihood function may have
many local maxima and different algorithms could end up in different local
maxima of function (8.18). To determine parameter vector estimate , the
Berndt, Hall, Hall, and Hausmann (BHHH) algorithm21 is often used but it
may encounter convergence problems if the initial values are not suffi-
ciently close to the final solutions. The information matrix of function
(8.18) is block-diagonal so that the parameters in the conditional-mean
and the conditional-variance equation can be estimated separately without
loss of asymptotic efficiency. The residuals from the estimated conditional
mean equation can be used to estimate the conditional variances. 

Starting values for the parameters in θ and initialization of the two
series  and ht need to be specified for iterative ML optimization.
Econometric software packages use conditional maximum likelihood to
estimate the model, that is, the estimation is conducted conditional
upon the pre-sample initializations of ε and h.22 The usual default solu-
tion to parameter initializations is to set parameter values in the mean
equal to those estimated using a “first pass” LS estimation, and the
parameters (except a0) in the conditional-variance equation to zero. For
the conditional variance ht, a common initialization is to set each ele-
ment to the average mean-adjusted sum of squares of the data, i.e., the
residual sum of squares from a linear regression of the dependent vari-

21 E. Berndt, B. Hall, R. Hall, and J. Hausmann, “Estimation and Inference in Non-
linear Structural Models,” Annals of Economic and Social Measurement 3 (1974),
pp. 653–665.
22 For a detailed description of the procedure and comparison of nine software pack-
ages with particular reference to estimation accuracy of GARCH models, see Chris
Brooks, Simon P. Burke, and Gita Persand, “Benchmarks and the Accuracy of
GARCH Model Estimation,” International Journal of Forecasting 17 (2001), pp.
45–56.
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able on a constant, divided by the number of observations. Differences
in parameter initialization of the packages may yield different results.

Quasi-Maximum Likelihood Estimation 
When the innovation process is not normal or the conditional distribution
is not perfectly known, one may still use Gaussian MLE methods due to the
property of asymptotic parameter efficiency. Such estimates are known as
pseudo- or quasi-MLE (PMLE or QMLE). QMLE is consistent and asymp-
totically normal if .23 The QMLE estimates are in general less
precise than those from MLE, provided that the ηt are indeed Gaussian.

Recently, it has been established24 for a nonstationary ARCH(1) model
(i.e.,  holds with b1 = 0) and IID (0,1) innovation pro-
cess {ηt} with finite variance , that as T → ∞ then
the sequence of QMLE estimators  is consistent and asymptotically normal,

where25

In other words, for the ARCH(1) model the QMLE is always asymptoti-
cally normal as long as the fourth-order moment of the innovations ηt is
finite. This is surprising in the absence of strict stationarity. More impor-
tantly, these results hold for the GARCH(1,1) model as well.26 Thus,
whether or not the process is stationary, asymptotic normality holds. 

The local QMLE for GARCH(p, q) is consistent and asymptotically
normal if . For the global QMLE the condition  is
sufficient for consistency and  is sufficient for asymptotic nor-
mality. The QMLE is efficient only if ηt is normal. When ηt is not nor-
mal, adaptive estimation is useful to obtain efficient estimators. 

Another alternative approach to estimation is the generalized method
of moments which is beyond the scope of the coverage here.

23 Shiqing Ling and Michael McAleer, “Asymptotic Theory for a Vector ARMA-
GARCH Model,” Econometric Theory 19 (2003), pp. 278–308.
24 S.T. Jensen and A. Rahbek, “Asymptotic Normality of the QMLE Estimator of
ARCH in the Nonstationary Case,” Econometrica 72 (2004), pp. 641–646.
25 Note that if zt is Gaussian, then σ2 = 2a2.
26 S. T. Jensen and A. Rahbek, “Asymptotic Normality for Non-Stationary, Explo-
sive GARCH,” Preprint No. 4, Department of Applied Mathematics and Statistics
(2003), University of Copenhagen. 
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STATIONARY ARMA-GARCH MODELS

In the initial definition of the ARCH process given by (8.1) through
(8.3), the observed process was simply assumed to be the error process
{εt}. While the purpose of the ARCH/GARCH models is to analyze and
model the second moment or volatilities of financial and economic data,
the specification of the conditional mean is still important. If the condi-
tional mean is not specified adequately, then the construction of consis-
tent estimates of the true conditional variance process would not be
possible and statistical inference and empirical analysis might be wrong.
This means that we have to capture the conditional mean of the data
with an adequate model so that the residuals obtained from this model
satisfy the assumptions for the white-noise sequence {εt} which enters
the conditional variance. This establishes in essence a joint estimation of
two models, the conditional-mean and the conditional-variance model.

For asset returns, the conditional mean is typically captured by an
AR or ARMA model. We define the joint ARMA-GARCH model by 

(8.19a)

,   (8.19b)

where ηt is a sequence of IID random variables, with mean zero and vari-
ance one. We also say that the observations y1, …, yT are generated by the
ARMA model with errors generated by the GARCH process. When s = 0,
the ARMA-GARCH model reduces to the ARMA-ARCH model. 

If all the roots of

lie outside the unit circle, the ARMA-GARCH process yt is strictly sta-
tionary if εt is strictly stationary, and yt is 2m-th order stationary if εt is
2m-th stationary.27 If the characteristic polynomial has one unit root
taking the value +1, with other roots lying outside the unit circle,
(8.19a) and (8.19b) is nonstationary. 

27 W. K. Li, Shiqing Ling, and Michael McAleer, “Recent Theoretical Results for
Time Series Models with GARCH Errors,” Journal of Economic Surveys 16 (2002),
pp. 245–269.
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The parameters of an ARMA-GARCH model can be jointly esti-
mated via MLE. Alternatively, a two-step procedure can be adopted:

1. Estimate the parameters of the conditional mean in (8.19a).
2. From residuals of (8.19a), estimate the parameters of the GARCH

model using the methods described in the previous sections.

The latter is sometimes referred to as GARCH estimation after linear fil-
tering or removing linear dependence.28

LAGRANGE MULTIPLIER TEST

In order to determine whether or not an ARCH specification is neces-
sary, one needs to test the residuals of the conditional-mean equation
for ARCH effects. The squared series  can be examined to check
for heteroskedasticity, as is done in the Lagrange multiplier test (LM
test) developed by Engle. The test is based upon the score under the null
and the information matrix under the null. 

This LM test checks the hypothesis that {εt} is an IID white noise
against the alternative that is an ARCH(q) process. The testing problem
can be formulated as the test of the null hypothesis that the ARCH coef-
ficients are all zero, i.e.,

H0: a1 = a2 = … = aq = 0

against the alternative,

H1: ai > 0 for at least one i = 1, 2, …, q (8.20)

Consider the ARCH model with ht = h(zta) where h is some differ-
entiable function and  where et are the mean-
equation residuals, and a = (a0, a1, …, aq)′. Under the null, ht is a con-
stant denoted h0. 

The LM statistic is given by 

28 The ARMA-GARCH models are examples of models that are linear in mean and
nonlinear in variance. Other combinations of models for mean and variance are pos-
sible, such as models that are nonlinear in mean but linear in variance (e.g., bicorre-
lation models), or models that are nonlinear in both mean and variance (e.g.,
threshold models).  

εt
2{ }

zt 1 êt 1–
2 … êt q–

2, , ,( )=
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(8.21)

where

, ,

, 

The LM statistic does not depend on the linear form of the conditional
variance function ht in equation (8.3)29 which implies that the test sta-
tistic for any specification of ht depends only on the past squared errors
{ : i = 1, 2, …, q}. Under the assumption of conditional normality of
the errors {εt}, an asymptotically equivalent statistic is given by

(8.22)

where R2 is the squared multiple correlation between f and Z30 or the R2

of the regression of  on a constant and q lagged values of . Under the
null hypothesis of no ARCH effect, the LM statistic ζ asymptotically fol-
lows the  distribution.31 

In summary, the test procedure is performed by first obtaining the
residuals from the ordinary least squares regression of the conditional-
mean equation and then regressing the squared residuals on a constant
and q lags, where q can be chosen arbitrarily. TR2 is evaluated against

 distribution. This is asymptotically locally most powerful test.

Illustration: Fitting a GARCH(1,1) Model 
We examine the behavior of the DAX index return series using a
GARCH(1,1) model. The autocorrelation structure present in the sec-
ond-order moments of returns on the DAX index indicates some form
of heteroskedasticity. We estimate a GARCH(1,1) model jointly with a
mean model given by a constant 

29 Engle, “Autoregressive Conditional Heteroscedasticity with Estimates of the Vari-
ance of U.K. Inflation.” 
30 f is the column vector of .
31 Engle, “Autoregressive Conditional Heteroscedasticity with Estimates of the Vari-
ance of U.K. Inflation.”
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where yt is the return at time t, ht the conditional variance at time t, and
zt the standardized residual. The residuals conditional on past informa-
tion are assumed to be normally distributed. 

The maximum likelihood estimates for the GARCH(1,1) model for
the DAX return series are given in Exhibit 8.1. The coefficients of all
three terms in the conditional variance equation, are highly significant
as measured by their t-statistics. Note the high significance of the coeffi-
cient b1 which is associated with the variance of the previous period. 

Process {εt} will be stationary if a1 + b1 < 1; in that case the uncondi-
tional variance is given by a0/(1 – a1 – b1). The sum a1 + b1 measures the
persistence in volatility and, as is typical for financial return data, is very
close to unity. From the results, it seems that the DAX returns have high
persistence in volatility with a1 + b1 = 0.9698. The high persistence
implies that average variance will remain high since increases in the con-
ditional variance due to shocks will decay slowly. This would also imply
that multi-step forecasts from the model will approach the unconditional
variance of the return series quite slowly. The variance intercept term is
very small, while the coefficient on the lagged conditional variance is
close to 0.9. The estimated mean lag of the variance expression can be cal-
culated as 1/(1 – b1) and equals approximately 8 days for the DAX series.

Exhibit 8.2 shows the plot of the fitted model that consists of the
return series, conditional standard deviations and estimated innovations
over the in-sample period.

yt c εt+=

εt htzt    zt N 0 1,( )∼,=

ht a0 a1εt 1–
2 b1ht 1–+ +=

EXHIBIT 8.1  GARCH Estimation Results for the DAX Return Series in the Period 
1997 through 2001 (1,034 observations)

Estimate Std. error t-statistic

c 0.0012216 0.0004374   2.7930
a0    7.6552e-006 2.775e-006   2.7586
a1 0.097243  0.015967    6.0904
b1 0.87256    0.022564  38.6700
a1 + b1 0.969803  
Max. Likelihood 2908.5263            
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EXHIBIT 8.2   Returns, Conditional Standard Deviations and Estimated Innovations 
from a GARCH(1,1) Fitted in the Period 1997 through 2001 

EXHIBIT 8.3   GARCH Estimation Results for the DAX Return Series in the Period 
2001 through 2005 (1,272 observations) 

To compare the goodness of fit for different periods, we examine the
most recent 2001–2005 period containing 1,272 observations. We fit
the GARCH specification defined in the first two equations of our illus-
tration and obtain the estimates shown in Exhibit 8.3. The t-statistics
for all the coefficients of the conditional variance equation are again sig-
nificant. 

Estimate Std. error t-statistic

c 0.00057404 0.00032216   1.7818
a0 1.3608e-006  5.7394e-007   2.3710
a1 0.097243    0.015967      6.0904
b1 0.85113      0.026065    32.6543
a1 + b1 0.948373    
Max. Likelihood 3646.9956               
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Similar to the result for the 1997–2001 period, the DAX returns
have high persistence in volatility with a1 + b1 = 0.9484. 

Exhibit 8.4 shows the returns, conditional standard deviations and
estimated innovations of the GARCH model over the entire in-sample
2001–2005 period. Note the different behavior of these series compared
to that in the period 1997 through 2001, especially evident in the sec-
ond half of the sample.

VARIANTS OF THE GARCH MODEL 

A variety of different specifications for the conditional variance equa-
tion, generalizing the standard ARCH/GARCH model have been pro-
posed. These extensions were motivated by the need to more effectively
model some particular features observed in financial data or by concerns
regarding computational simplicity. 

EXHIBIT 8.4  Returns, Conditional Standard Deviations, and Estimated 
Innovations from a GARCH(1,1) Fitted in the Period 2001 through 2005 
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In the following, we describe empirically relevant variants of the
GARCH model that are able to accomodate particular features of asset
return series by introducing 

 ■ Conditional nonnormality of the error process {εt} to better explain the
leptokurtosis of the return series (i.e., applying nonnormal innovations
ηt).

 ■ Asymmetric responses to negative and positive return innovations to
model the asymmetry in the reaction of conditional volatility to the
arrival of different news. 

 ■ Long-memory,32 i.e., variances generated by fractionally integrated
processes.

GARCH MODEL WITH STUDENT’S T-DISTRIBUTED
INNOVATIONS

As discussed in this chapter, time-varying volatility models with Gauss-
ian distributed innovations are capable of capturing the unconditional
nonnormality in the data. However, GARCH models with conditionally
normal errors fail to sufficiently capture the leptokurtosis common in
asset returns. In other words, the shortcoming of the GARCH model
with Gaussian innovations is that the assumption of conditional nor-
mality for {εt} usually does not hold. The error term or residual εt is
conditionally normal if the standardized residual 

is normally distributed. Typically, the standard normality tests applied
to standardized residuals indicate that they are not normal—they are
leptokurtic although less so than the residuals εt. Thus, the GARCH

32 Recall that models with a long memory property have dependency between ob-
servations of a variable for a large number of lags so that Cov[yt+n,yt–j, j ≥ 0] does
not tend to zero as n gets large. In contrast, if the dependency between observations
of a variable disappears for a small number of lags n, such as for stationary ARMA
process, then the model is described as having a short-memory property and
Cov[yt+n,yt–j, j ≥ 0] → 0. Formally, long memory is defined for a weakly stationary
process if its autocovariance function γ(j) has a hyperbolic decay structure:

 as j → ∞, C ≠ 0, 0 < d < 0.5.γ j( ) Cj
2d 1–∼
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ε̂t
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model is only able to capture partially the leptokurtosis in the uncondi-
tional distribution of asset returns.

To model the nonnormality in conditional returns, we need to
employ a distribution that reflects the specific features of the data better
than the normal distribution. For paramater estimation, we then need to
construct the likelihood function with the chosen distributional alterna-
tive. For example, we can estimate a GARCH model with the Student’s
t-distribution or generalized exponential distribution (GED). Both of
these distributions are symmetric, and allow excess kurtosis. The Stu-
dent’s t-distribution or the standardized t(d) distribution has only one
parameter, d, and its density is  

where d > 2, η denotes the random variable with zero mean and unit
standard deviation and Γ(·) represents the gamma function. The distinc-
tive property of the density of the standardized t(d) distribution is that it
is a power function of the random variable η, rather than an exponen-
tial function as in the normal distribution. This allows the standardized
t(d) distribution to have fatter tails than the normal distribution. 

This distribution is symmetric around zero and the mean, variance,
skewness, and excess kurtosis are 0, 1, 0, and 6/(d – 4), respectively. For
the kurtosis to be well defined, d must be larger than 4. It can be shown
that the standardized t(d) distribution converges to the standard normal
distribution as d goes to infinity. For the values of d above 50, the stan-
dardized t(d) distribution is very close to the standard normal distribution. 

When using the assumption that ηt ~ t(d) in the GARCH model, the
estimation can be done by quasi maximum likelihood estimation. We
call the linear GARCH model combined with the Student’s t-distribu-
tion a GARCH-t model. The GARCH(1,1)-t model has been found to
outperform the normal GARCH(1,1) model for high-frequency stock
returns.

To accommodate asymmetric distributions, we may use the expo-
nential generalized beta distribution of the second kind (EGB2) that is
able to accommodate both fat tails and asymmetry. Wang et al. favor
the GARCH-EGB2 model over the GARCH-t model in the context of
daily exchange-rate series.33

33 Kai-Li Wang, Christopher Fawson, Christopher B. Barret, and James B. Mc-
Donald, “A Flexible Parametric GARCH Model with an Application to Exchange
Rates,” Journal of Applied Econometrics 16 (2001), pp. 521–536.
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Exponential GARCH Model 
Next we consider an asymmetric GARCH process. Since future return
volatility tends to respond asymmetrically with respect to negative or
positive shocks, the common GARCH model is not appropriate. To
overcome this limitation, a nonlinear exponential GARCH (EGARCH)
specification was proposed by Nelson.34 

Specifically, the asymmetric behavior of asset returns is modeled as
an asymmetric, nonlinear specification of the conditional variance pro-
cess and a symmetric distribution (such as Gaussian or the Student’s t-
distribution) for the conditional error. Instead of (8.7), the conditional
variance ht is now specified as

(8.23)

where  and  are the weighted inno-
vations that model asymmetric effects between positive and negative asset
returns, and θ and γ are constants. Both ηt and  are zero mean
IID sequences with continuous distribution. Thus . 

The function g(ηt) can be rewritten as

(8.24)

so that θ + γ and θ – γ reflect the asymmetry in response to positive and
negative innovations. Obviously, the model is nonlinear if γ ≠ 0. If θ < 0
a positive return shock or surprise will increase volatility less than a
negative one of the same magnitude. This phenomenon is referred to as
the leverage effect.35

For a standard Gaussian random variable ηt, ; for
the standardized Student’s t-distribution we have

34 Daniel Nelson, “Conditional Heteroskedasticity in Asset Returns: A New Ap-
proach,” Econometrica 59 (1991), pp. 347–370. 
35 This term dates to Fischer Black, “Studies of Stock Market Volatility Changes,”
Proceedings of the American Statistical Association, Business and Economic Statis-
tics Section, 1976. Black noted that volatilities tend to be higher after negative shocks
than after positive shocks of the similar size. This phenomenon has come to be re-
ferred to as “leverage effect” since it links the equity value of the firm to the risk of
the market. 
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where d is the number of degrees of freedom. 
 In summary, the EGARCH model has two advantages over the

common GARCH specification:

 ■ Function g enables the model to respond asymmetrically to positive
and negative lagged values of εt.

 ■ Use of the log-conditional variance in EGARCH specification relaxes
the constraint of positive model coefficients (even in the case of nega-
tive parameters, ht will be positive).

Integrated GARCH Model 
The estimation of ARCH processes on log-return data yields the similar
pattern in the results:

 ■ For longer samples, the estimated parameters a1, ..., aq and b1,...,bp of
the model (8.2)–(8.3) and (8.7) sum up to values that are typically close
to one. 

 ■ For shorter samples, the sum of the estimated coefficients, although
not small, stays away from 1.

These two observed facts are known as the integrated GARCH
(IGARCH) effect. Thus, the IGARCH effect builds up when the sample
size increases. This effect has been linked to the persistence in the auto-
correlation for absolute returns. 

Based on these observed facts, Engle and Bollerslev36 introduced the
integrated GARCH(p, q) (IGARCH(p, q)) process for which

a0 > 0   and   (8.25)

Under the assumptions of the general ARCH model, in particular, the
E(η2) = 1, the IGARCH model has a strictly stationary solution (ht), and
therefore {εt} is strictly stationary as well, but εt’s do not have a finite
second moment. This can be verified by taking the expectations in the
formal definition (8.25) and observing that E(h) = E(ε2):

36 Engle and Bollerslev, “Modelling the Persistence of Conditional Variances.”
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Since a0 > 0 is necessary for strict stationarity, it follows E(h) = ∞. 
We can also rewrite the GARCH(1,1) model given by (8.9) as 

where L denotes the lag operator (i.e., Lht = ht–1). If the polynomial
1 – a1L  – b1L contains a unit root (i.e., when a1 + b1 = 1), we obtain
the IGARCH model of Engle and Bollerslev.37

As pointed out by Mikosh and Starica,38 the name integrated can be
misleading from an ARCH perspective. The name integrated suggests
that there is a unit root problem (as for integrated ARMA processes)
concerning the stationarity of such GARCH processes. However, this
does not apply for the GARCH (8.2), (8.3), (8.6), and (8.7) models
because, if (8.25) holds, they have unique strictly stationary solution.
Thus, for the GARCH case, integrated is not synonymous for nonsta-
tionarity. 

The stationary GARCH(1,1) process is nonpersistent in variance if
and only if a1 + b1 < 1 (i.e., when εt has finite variance), so that shocks to
conditional variance disappear at the exponential rate (a1 + b1)t. On the
other hand, the stationary IGARCH(1,1) model with a1 + b1 = 1 is per-
sistent in variance so that shocks to conditional variance never die out.

Fractionally Integrated GARCH Model 
The clear distinction between GARCH and IGARCH models has been
criticized. An obvious generalization is to allow for fractional orders of
integration such that

leading to the fractionally integrated GARCH (FIGARCH) model. This
model was first suggested by Bailie, Bollerslev, and Mikkelsen39 to

37 Engle and Bollerslev, “Modeling the Persistence of Conditional Variances.”
38 T. Mikosch and Catalin Starica, “Long Range Dependence Effects and ARCH
Modeling,” Technical Report (2000), University of Groningen.
39 R. T. Bailie, T. Bollerslev, and H.O. Mikkelsen (1996) “Fractionally Integrated
Generalized Autoregressive Conditional Heteroscedasticity,” Journal of Economet-
rics 74 (1996). pp. 3-30. 
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accommodate empirical regularities concerning evidence of fractional
integration for a time-series of daily index returns. A FIGARCH(p, d, q)
process is defined by

(8.26)

where ,40 a0 ∈ (0,∞), and (1 – L)d a fractional-difference
operator. The fractional-difference operator is formally defined by its
infinite Maclaurin series expansion,

(8.27)

where Γ(·) is the gamma function.
The leverage effect introduced in the EGARCH section is not gener-

ated by the FIGARCH model. Analogous to the extension of GARCH
model to EGARCH model to account for this effect, we can generalize
the FIGARCH model to a FIEGARCH model.41 

Specifically, the FIEGARCH model takes the form   where
the {ηt} are IID with zero mean and a symmetric distribution, and 

(8.28)

is the conditional variance with , ω > 0, θ > 0,
γ ∈ ℜ, and constants ai such that the process log ht has long memory with
parameter d ∈ (0,0.5). If θ is nonzero, the model allows for a so-called
leverage effect, whereby the sign of the current return may have impact on
the future volatility. 

By replacing the apparent unit root in the estimated EGARCH
model with the fractional differencing operator, the FIEGARCH model
nests the conventional EGARCH model for d = 0, and the integrated
EGARCH model for d = 1. For 0 < d < 1 the effect of shock to the fore-
cast of dissipates at a slow hyperbolic rate of decay.

40 Symbol  is used to indicate equality by definition, so that {vt} is by construction
a martingale-difference sequence relative to the σ–field generated by the {εs, s ≤ t}.
41 Tim Bollerslev and H.O. Mikkelsen, “Modeling and Pricing Long-Memory in
Stock Market Volatility,” Journal of Econometrics 73 (1996), pp. 151–184. 
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Long-Memory GARCH Model 
A common finding in much of the empirical literature on the second-
order structure of high-frequency42 financial time series is that sample
autocorrelations for squared or absolute-valued observations tend to
decay very slowly and remain fairly large at long lags.43 As a conse-
quence, extensions of GARCH models have been proposed which can
produce such long-memory behavior.

A class of long-memory GARCH (LMGARCH) processes that
belong to the family of conditionally heteroskedastic processes pro-
posed by Robinson are very closely related to the FIGARCH processes
and share some of the features of fractional ARIMA processes.44 In par-
ticular, shocks to the conditional variance of an LMGARCH process
eventually die away to zero (in a forecasting sense), at a slow hyperbolic
rate rather than the faster geometric rate that is characteristic of weakly
stationary GARCH processes.

The LMGARCH process can be represented by using the definitions
of the generalized class of GARCH processes. Generalized GARCH pro-
cesses allow  to satisfy the equation

(8.29)

for some ω ∈(0,∞) and

, 

42 For high-frequency data the time horizon of observations is very short—for ex-
ample, for stock market data we deal with 5 or 10 minute intervals or with tick-
by-tick intervals in the interbank foreign exchange market. In this context, we dis-
cuss the intradaily data as opposed to interdaily data. Large intraday price varia-
tions occur more and more frequently in stock and foreign exchange markets so
that the modelling of intraday price movements and volatilities becomes an impor-
tant task for active traders and market makers. As liquid assets are traded many
times during a day, there is potentially useful information in the intraday prices
about the variance.
43 See for example, Z. Ding and C. Granger, “Modeling Volatility Persistence of
Speculative Returns: A New Approach,” Journal of Econometrics 73 (1996), pp.
185–215. 
44 P. M. Robinson, “Testing for Strong Serial Correlation and Dynamic Conditional
Heteroscedasticity in Multiple Regression,” Journal of Econometrics 47 (1991), pp.
67–84. 
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where .45

The specification in (8.29) also includes processes for which the
autocorrelations  decay at a rate slower than geometric.
One possibility is to allow the coefficients {ωj, j ≥ 0} to decay hyperboli-
cally so that ωj ∼ Cj–δ as j → ∞ for some δ ∈(0,1). One specific parame-
terization of Ω(L) that allows for such behavior is

(8.30)

for some  with the lag polynomials

 and 

being such that  and  for all complex-valued z on the
closed unit disk.46 The fractional-difference operator is defined as in (8.27).

From (8.29) and (8.30), it follows that the stochastic volatility ht is
given by equation

(8.31)

where

with ψj ≥ 0(j ≥ 1) and ω defined as in (8.29). 

45 A strictly stationary GARCH(p, q) process is a special case of (8.29) with the
coefficients {ωj, j ≥ 0} declining towards zero geometrically fast. When

, the geometric decay of {ωj, j ≥ 0} implies that the autocorrelations
 are also geometrically decaying. Therefore

 exhibits short memory in the sense that the series

is absolutely convergent.
46 See P. M. Robinson and M. Henry, “Long and Short Memory Conditional Het-
eroscedasticity in Estimating the Memory Paramater of Levels,” Econometric Theo-
ry 15 (1999), pp. 299–336.
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Under (8.29) and (8.30), the coefficients {ωj, j ≥ 0} decay at a slow
hyperbolic rate so that ωj ∼ Cjd–1 as j → ∞. This in turn implies that the
autocorrelations  satisfy47

   as   n → ∞ (8.32)

provided that . Thus, when the fourth moment of the
 exists,  is a weakly stationary process which exhibits

long memory for all d ∈ (0,0.5), in the sense that series 

is properly divergent. For this reason, a process satisfying (8.29) and
(8.30) is referred to as an LMGARCH(p, d, q) process. The exact prop-
erties of processes satisfying (8.29) and (8.30) are not yet established.

Forecasting with GARCH Models
GARCH models describe evolution of the conditional variance of εt,
which can be linked with the evolution of the conditional variance of
variable yt under investigation

(8.33)

Thus appropriate modeling of ht provides models and forecasts for the
variance of yt as well. Once the parameters of the GARCH models or its
variants have been estimated using data for t = 1, . . ., τ, variance fore-
casts can be generated for τ + n, n ≥ 1. A clear advantage of GARCH
models is that the one-step ahead forecast of the variance ht+1 is given
directly by the model. 

Formally, consider GARCH(1,1) model given by (8.9) and let τ be
the forecast origin. The 1-step ahead forecast is

47 M. Karanasos, Z. Psaradakis, and M. Sola, “On the Autocorrelation Properties of
Long-Memory GARCH Processes,” Journal of Time Series Analysis 25 (2004), pp.
265–281.  

ρn εn
2( ) n 1≥,{ }

ρn εt
2( )

ωjωj n+
j 0=

∞

∑

ωj
2

j 0=

∞

∑
---------------------------- Cn2d 1–∼=

E εt
4( ) ∞<

E εt
4( ) ∞< εt

2{ }

ρn εt
2( )

n 0=

∞

∑

Var yt yt 1– yt 2– …, ,( ) Var εt εt 1– εt 2– …, ,( )=

c08-ARCHModels  Page 307  Thursday, October 26, 2006  2:07 PM



308 FINANCIAL ECONOMETRICS

(8.34)

where the estimated parameters  and values hτ and  at the
forecast origin are known. We are also interested to obtain the forecasts
of , …,  where ℑτ denotes all the information available
up to and including observation τ. To obtain multistep ahead forecasts,
(8.34) is updated by recursive substitution for hτ. In this way, for the
GARCH(1,1) model, the n-step ahead forecast can be written as

(8.35)

for any n ≥ 2 where the quantities on the right-hand side are known.
This is obtained by considering  and rewriting (8.9) as

which becomes hτ+2 = a0 + (a1 + b1)hτ+1 for t = τ + 1 since .
This can be extended to general recursion form

, n > 1 (8.36)

The out-of-sample forecasts are obtained by using (8.35) given the esti-
mates of the parameters based on the in-sample data. For the
GARCH(1,1) model, given that , the n-step ahead forecast
is obtained by repeated substitution in (8.36)

, n ≥ 2

where  is the one-step ahead forecast given by (8.34). As the forecast
horizon grows, the long-term prediction (i.e., obtained by letting n → ∞)
will tend towards the unconditional volatility:

, as n → ∞
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To measure forecast errors, we use usual summary statistics based
directly on the deviation between forecasts and realizations (actual val-
ues) such as the root mean squared error (RMSE), the mean absolute
error (MAE) and the mean absolute percentage error (MAPE). Let 
be the actual and  the forecast volatility at time τ, with a forecast
period going from τ + 1 to τ + n. Then the forecast error statistics are
respectively

 ■ RMSE = 

 ■ MAE = 

 ■ MAPE = 

The RMSE and the MAE statistics are scale-dependent measures but
provide a basis to compare volatility forecasts across the different models
used. The MAPE statistics are independent of the scale of the variables.

In practice, when we test the ability of models to predict future vol-
atility, out-of-sample estimations of conditional volatility are compared
to some simple benchmark. To that purpose, we can calculate variance
forecasts using a constant volatility assumption or some form of a mov-
ing average estimator of a variance. A constant volatility assumption
benchmark has the form

for all n, and an n-day moving average estimator 

for all n, where rt are return series in the observed period. These simple
benchmarks use the fact that squared returns are a proxy for variance.

In practice, daily volatility forecasts can be obtained by the follow-
ing general procedure:
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1. Estimate the models using the in-sample data set (t = 1, …, τ) and calcu-
late the volatility forecasts for the next m trading days τ + 1, …, τ + m.48

2. Move k days forward in time and reestimate the models using observa-
tions t = 1, …, τ + k (k is usually chosen to be 1, 5, or 10) and generate
a new set of volatility forecasts.

3. Repeat the second step until the point where there are m days left until
the end of complete data set, giving a total of  (T – m – τ)/k  prediction
dates (τ + k, τ + 2k, …) where T is the number of observations in a
complete data set.

4. Average the calculated volatility forecasts over each of the forecast
horizons of m days (at each of the prediction dates).

5. Calculate the forecast error statistics RMSE, MAE, and MAPE for the
forecasted average volatilities for each of the forecast horizons m.

The models along with benchmarks can be evaluated for different fore-
cast horizons ranging from 1-week (5 days) to half a year trading period
(approximately 120 days). The accuracy of the volatility prediction from
the models will be measured by the chosen forecast error statistic and
related to the length of the forecast horizon. Fair comparison of the out-of-
sample performance of the different models can be subsequently done by
investigating the statistical significance of the observed difference in specific
error statistic between the models. This can be done by using the bootstrap
technique, a methodology that is beyond the scope of this chapter. 

Illustration: Forecasting with the GARCH Model
In our previous illustration, we have examined how the GARCH(1,1)
model fits the DAX returns. Since we performed the fit with the entire
observed data period, this was so-called in-sample fit. Now we examine
the forecasting ability of the GARCH(1,1) model for the DAX returns in
the same period. In this case, we split the data in two sets: in-sample data
set on which the model is fitted to obtain parameter estimates and out-of-
sample set which is used for forecasting and performance evaluation. In
the first step, we fit the GARCH(1,1) model as shown in the previous illus-
tration. In the second step we perform one-step ahead forecasts in that we
update the forecast using the estimated coefficients.

For the period 1997 through 2001, the model is fitted using the first
800 data points and the rest of the data (234 data points) is used for
evaluating the forecasting performance. Exhibit 8.5 shows the maximum
likelihood estimates for joint estimation of the GARCH(1,1) model and
ARMA(1,1) model using the in-sample data set of 800 observations.

48 Length m is called the forecasting horizon.
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EXHIBIT 8.5  ARMA-GARCH Estimation Results for the DAX Return Series Using 
the In-Sample Data Set of 800 Observations

EXHIBIT 8.6  Forecasts of the ARMA(1,1)–GARCH(1,1) Model in the Forecasting 
Interval (the last 234 Observations in the Period 1997 through 2001) 

Exhibit 8.6 shows the plots of the actual and predicted returns in
the out-of-sample forecasting interval. The forecast error statistics of
volatility forecasts for out-of-sample data set are 0.003, 0.0026 and
0.1762 for RMSE, MAE, and MAPE respectively. 

Estimate Std. Error t-Statistic

a1 –0.58438 0.16331 –3.5784
b1   0.66483 0.15136   4.3923
Max. Likelihood 2186.4322      
α0          9.6526e-006        3.5103e-006   2.7498
α1 0.1066   0.019818   5.3793
β1   0.85537 0.0283  30.2245
α1 + β1   0.96197
Max. Likelihood 2248.3835      
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Illustration: Forecasting for Value-at-Risk Models 
Broadly speaking, Value-at-Risk (VaR) is a quantitative technique with
an aim to evaluate possible losses related to the trading of financial
assets over a given time period. It has been endorsed by financial regula-
tors and bank supervisory committees as a tool designed to quantify and
forecast market risk.49 Due to the tremendous growth in trading activity
and the volatility of the global financial markets, VaR models have
become a standard tool for risk managers. They are important for char-
acterizing short-term risk regarding daily and intradaily trading posi-
tions. VaR provides a simple answer to the following question: with a
given probability α, what is the predicted financial loss over a given time
horizon? The answer is the VaR at level α, which gives an amount in the
currency of the traded assets, and since it is a single number it is easily
comprehensible. However, VaR is not a perfect measure and its draw-
backs are well documented in the risk management literature. 

The statistical definition of the VaR at level α for sample of returns
is simply the corresponding empirical quantile at (1 – α) × 100%.
Empirically, the computation of the VaR for a sample of returns will
require the computation of the empirical quantile at level (1 – α) of the
distribution of the returns of the portfolio. Because quantiles are direct
functions of the variance in parametric models, ARCH class models
immediately translate into conditional VaR models. The basic concept
underlying the original ARCH model (8.1) through (8.3) is that for a
forecast of the distribution of εt (where for example εt represents log-
returns of asset prices for t ≥ 1) we need to know only two components:

 and the distribution of innovation ηt. For example, if ηt is normal
N(0,1), then given the past observations of the time series, εt ∼ N(0,ht).
Thus, conditionally upon εt–1, εt–2, εt–q, the present value εt may assume
values in [–1.96 , 1.96 ] with 95% probability. Similarly, there
is a 5% chance for the log-return to fall below the threshold –1.64 .
The 5%-quantile of the log-return distribution is considered a measure
of risk for underlying asset, namely, the VaR. This simple example show
the applicability of models of ARCH type and explain their popularity.

49 Regulatory changes have two implications: the imposition of minimum capital re-
quirements for financial institutions as designed by the Basel Committee on Banking
Supervision and the adoption of the VaR method of assessing capital adequacy as a
risk management technique. According to the Basel Capital Accord, the VaR level at
a 10-day horizon is directly related to the amount of capital required for the bank to
cushion possible market losses. For general information on VaR techniques see Phil-
ippe Jorion, Value-at-Risk (New York: McGraw-Hill, 2000).

ht

ht ht
ht
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For a sample of daily returns, yt, with t = 1, …, T we can characterize
the model of asset returns using conditional mean equation. For example,
we can fit an AR(n) structure of the series for all specifications

a(L)(yt – c) = εt

where a(L) = 1 – a1L – ... – anLn is an AR lag polynomial of order n.
Accordingly, the conditional mean of yt, is

For the conditional variance of εt, we can also consider several specifi-
cations. We will now show the application of the usual parametric VaR
model of RiskMetrics.50 In the basic RiskMetrics model, the conditional
variance is estimated by a GARCH(1,1) model given by (8.9) with zero con-
stant (a0 = 0) and parameters a1 and b1 summing to unity.  

where εt = ηt with . Compared to the simple volatility
unconditional estimators that use an equally weighted moving average,
the RiskMetrics approach uses exponential weights, so that more recent
observations weigh more heavily. The rate of decline of the exponential
weights depends on the decay factor λ, thus expressing the persistence
with which a shock will decay. The RiskMetrics specification is for daily
data λ = 0.94 and for monthly data λ = 0.97. The advantage of this
approach is that only the one parameter λ is needed to be estimated, facil-
itating estimation and providing more robustness against estimation error. 

Daily VaR is defined as the VaR level for long positions so that losses
are incurred for negative returns. How good a model is at predicting long
VaR is thus related to its ability to model large negative returns.51 For
short positions, the performance of VaR is measured by its ability to pre-
dict large positive returns. For the RiskMetrics model, the one-step ahead
VaR computed in t – 1 for long trading position is given by 

50 Riskmetrics, or more specifically the RiskMetrics Group, is a commercial vendor
of tools for investment and risk management. Riskmetrics was originally part of
JPMorgan and in 1998 spun off from that firm.
51 See for example, S. Mittnik and M. Paolella, “Conditional Density and Value-at-
Risk Prediction of Asian Currency Exchange Rates,” Journal of Forecasting 19
(2000), pp. 313–333.
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µt + ηγ

and for short trading positions it is equal to 

µt + η1–γ

with ηγ being the quantile at (1 – γ) × 100% for the normal distribution.
When computing the VaR, µt and  are evaluated by replacing the
unknown parameters in the previous equation by their maximum likeli-
hood estimates. Note that ηγ = –η1 – γ for the normal distribution, so that
the predicted long and short level VaR will be equal in both cases.52

In practice, VaR models are used to deliver out-of-sample forecasts,
where the model is estimated from observed returns (for example, up to
time τ) and the VaR forecast is made for period (τ + 1, τ + m) where m is
the time horizon of the forecasts. The model can be reestimated every,
say, 50 days to update the parameters. It is of interest to calculate fail-
ure rates for the short or long forecasted VaRτ + 1 with the observed
return yt for all days in the out-of-sample period for values of the empir-
ical quantile at level (1 – α) typically equal to 5%, 2.5%, 1%, 0.5%,
and 0.25%. The failure rate is the number of times returns exceed (in
absolute value) the predicted VaR. For the correctly specified VaR
model, the failure rate should be equal to the prespecified VaR level. 

MULTIVARIATE GARCH FORMULATIONS

Because volatilities of asset returns of market indexes move together in
time, considering GARCH independently for every asset is not suffi-
cient. The multivariate analysis of the movement of covariances over
time or time-varying correlations adds additional challenge to “univari-
ate stylized facts” such as volatility clustering, fat tails and skewness.
The issue is important, since there is empirical evidence to show that
markets become more closely interrelated during periods of higher vola-
tility or market crashes. In particular, in view of applying GARCH to
asset allocation, multivariate modeling becomes necessary. Several dif-
ferent models have been proposed in the literature including the VECH
and the diagonal VECH model which we briefly discuss here. 

We assume rt to be a n-dimensional vector of asset returns. Then the
multivariate return model is given by 

52 For examples of VaR forecasts with other distributions see, Pierre Giot and Sébas-
tien Laurent, “Value-at-Risk for Long and Short Trading Positions,” Journal of Ap-
plied Econometrics 18 (2003), pp. 641–664.  
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(8.37)

,   ηt. ~ N(0,I) (8.38)

with a constant conditional mean factor  and a covariance matrix Σt.
53

The multivariate GARCH model of Bollerslev, Engle, and Woold-
ridge54 accounts for both varying correlations and changes in volatility.
For a symmetric matrix H, let vech(H) denote the column stacking oper-
ator applied to the lower portion of the symmetric matrix H. The model
takes the general form (8.37) and

(8.39)

where C is a n(n + 1)/2 vector of constants and A and B are n(n + 1)/2 ×
n(n + 1)/2 matrices. For the model, it is evident that the conditional
variances and conditional covariances depend on the lagged values of all
of the conditional variances of, and conditional covariences between, all
of the asset returns in the series, as well as the lagged squared errors and
the errors cross-products. 

The VECH model has two major disadvantages. First, estimation of
such a model is a daunting task, even for only several assets since (8.39)
contains n(n + 1)/2 + 2(n(n + 1)/2)2 unknown parameters that have to be
estimated. For example, for n = 5, this corresponds to 465 parameters.
Second, the conditions needed for the model to ensure that Σt stays pos-
itive definite are difficult to establish. In practice, it remains that some
simplifying assumptions need to be imposed. 

To restrict the VECH’s model conditional variance-covariance
matrix, the diagonal multivariate GARCH model was introduced,
where the matrices A and B are both taken to be diagonal. Therefore the
conditional variances and covariances depend on their own lagged
moments their respective component in the product of . An
alternative representation of the multivariate GARCH model, which
guarantees that the conditional covariance matrix stays positive definite,
is introduced by Engle and Kroner.55 Their model is written as

53 The square root of a matrix is its Cholesky decomposition.
54 Tim Bollerslev, Robert F. Engle, and Jeffery M. Wooldridge, “A Capital Asset Pric-
ing Model with Time-Varying Covariances,” Journal of Political Economy 96
(1988), pp. 116–131.
55 Robert F. Engle and Kenneth F. Kroner, “Multivariate Simultaneous Generalized
ARCH,” Econometric Theory 11 (1995), pp. 122–150.
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where V, Ak, Bk, k = 1,…,K are all n × n matrices. As in (8.39), this for-
mulation involves many unknown parameters, namely (1 + 2K)n2,
which is large even if K = 1). Yet another way to extend GARCH to a
multivariate model is to assume constant correlations. The conditional
covariances can be obtained by taking the product of the corresponding
standard deviations multiplied with the correlation. Variances are mod-
eled as in (8.9) for every component. Explicitly, this amounts to the
specification given by (8.38) and 

   i = 1, ..., n (8.40)

   i = 1, ..., n,   i = 1, ..., n (8.41)

where ρi,j is the constant conditional correlation coefficient between the
residuals εt,i and εt,j. In principle, the model consists of n univariate
return processes, which define the changes in the covariance matrix only
by the changing variances. Hence the properties derived for the univari-
ate GARCH(1,1) model can be transferred to this multivariate case.

The estimation in the multivariate case is, in principle, a straightfor-
ward extension from the univariate case. The one-dimensional function
of the sample observations is simply replaced by its multidimensional
counterpart.

APPENDIX: ANALYSIS OF THE PROPERTIES OF THE 
GARCH(1,1) MODEL

Nelson56 investigated the properties of the GARCH(1,1) in detail. He
defines the model GARCH(1,1) from (8.7) 

(A8.1)

56 Daniel B. Nelson, “Stationarity and Persistence in the GARCH(1,1) Model,”
Econometric Theory 6 (1990), pp. 318–334. 
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where a0 ≥ 0, b1 ≥ 0, a1 > 0, 

,  is nondegenerate, P[–∞ < zt < ∞] = 1 (A8.2)

and 

 exists. (A8.3)

It is important to note that the requirement (A8.3) does not require that
 be finite, only that the expectations of the positive and

negative parts of  are not both infinite. For example, (A8.3)
always hold if b1 > 0. By substituting in (A8.1), we obtain for t ≥ 257

(A8.4)

To fully define the model (A8.4) requires the definition of the probabil-
ity measure µ0 for the starting value h0

58 or the assumption that the sys-
tem extends infinitely far into the past. In the first case, the start of the
system at time 0 requires that h0 is strictly positive and finite with prob-
ability one, and h0 and  are independent. The obtained model

 is the conditional model. In the second case, by extending
the process infinitely far into the past, we obtain the unconditional
model  defined by assumptions (A8.2), with

57 It can be shown that equation (A8.4) holds for t = 1 as well.
58 Probability measure is a mapping from arbitrary sets to nonnegative real number
R+ and is associated with possible values of random variable in infinitesimally small
intervals. This measure is typically denoted by the symbol dP(t) where zt is the ran-
dom variable. It holds

The expected value of zt  is

and its variance

The expected value and variance have geometric interpretation as the center of the
probability mass and the spread of the probability mass around the center. 

zt{ }t ∞– ∞,= IID∼ zt
2

E b1 a1zt
2+( )ln[ ]

E b1 a1zt
2+( )ln[ ]

b1 a1zt
2+( )ln[ ]

ht h0 b1 a1zt i–
2+( )

i 1=

t

∏ a0 1 b1 a1zt i–
2+( )

i 1=

k

∏
k 1=

t 1–

∑++=

P zt( )d∞–
+∞∫ 1=

E zt( ) zt P zt( )d∞–
+∞∫=

E zt E zt( )2
–( ) zt E zt( )–( )2 P zt( )d∞–

+∞∫=

zt{ }t 0 ∞,=
ht εt,{ }t 0 ∞,=

hu t εu t,{ }t 0 ∞,=
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(A8.5)

and . If a0 = 0, uht ≡ uzt ≡ 0 for all t. If uht = ∞ and zt = 0,
define uεt ≡ ∞ · 0 ≡ 0. Without further restrictions, there is no guarantee
that uht and uεt are finite. 

Thus, under the assumption b1 < 0, the necessary and sufficient con-
dition for the existence of the unique stationary solution for GARCH(1,1)
specified in (A8.1) is

  (A8.6)

This condition can be obtained by analyzing the conditions for station-
arity for the two cases distinguished by the choice of a0 in (A8.5):

 ■ Case a0 = 0: In this case uht = ∞ for all t and we consider only the
conditional model. It is established that ht → ∞ almost surely if

, ht → 0 almost surely if ,
and if , ln(ht) is a driftless random walk after
time 0.

 ■ Case a0 > 0: If , then ht → ∞ almost surely
and uht → ∞ almost surely for all t. If , then
a0/(1 – b1) ≤ uht < ∞ for all t almost surely and uht is strictly station-
ary and ergodic.59

The log-moment condition (A8.6) allows a1 + b1 to be slightly larger
than 1, in which case the variance is not finite (i.e., ). The con-
dition is however, not easy to apply in practice as it is the mean of a func-
tion of an unknown random variable with unknown parameters. 

When a0 = 0, ht is a martingale. Regarding the behavior of its condi-
tional expectation, ht with a0 > 0 and a0 = 0 is analogous to a random walk
with and without drift, respectively. However, the behavior of ht in other
respects is markedly different from that of a random walk; for example, the
structure of the higher moments of ht when a1 + b1 = 1 and a0 = 0 implies
that the distribution of ht becomes more and more concentrated around
zero with fatter and fatter tails, which is not the case for a random walk. 

59 The process is strictly stationary with a well-defined probability measure.

hu t a0 1 b1 a1zt i–
2+( )

i 1=

k

∏
k 1=

∞

∑+=

εu t hu tzt≡

E b1 a1zt
2+( )ln[ ] 0<

E b1 a1zt
2+( )ln[ ] 0> E b1 a1zt

2+( )ln[ ] 0<
E b1 a1zt

2+( )ln[ ] 0>

E b1 a1zt
2+( )ln[ ] 0≥

E b1 a1zt
2+( )ln[ ] 0<

E εt
2( ) 0=
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CONCEPTS EXPLAINED IN THIS CHAPTER
(IN ORDER OF PRESENTATION)

Homoskedasticity
Heteroskedasticity
Autoregressive conditional heteroskedasticity (ARCH)
Volatility clustering
Generalized autoregressive conditional heteroskedasticity (GARCH) model
Conditional variance
Overall kurtosis
Stationarity of ARCH/GARCH processes
Maximum likelihood estimation of ARCH/GARCH models
Pseudo (or quasi) maximum likelihood estimation of ARCH/GARCH models 
Berndt, Hall, Hall, and Hausmann (BHHH) algorithm
Lagrange multiplier test
GARCH models with Student’s t distributed innovations
Exponential GARCH (EGARCH) models
Integrated GARCH (IGARCH) models
Fractionally integrated GARCH (FIGARCH) models 
Fractionally integrated exponential GARCH (FIEGARCH) models 
Long memory GARCH (LMGARCH) processes 
Forecasting with GARCH models
Root mean square error (RMSE)
Mean absolute error (MAE)
Mean absolute percentage error (MAPE)
Multivariate GARCH models
VECH model
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Vector Autoregressive Models I

 

n this and the following two chapters we discuss vector autoregressive
models. Here we provide the formal background of VAR models and

discussing their statistical properties. The next chapter addresses the
estimation of VAR models.

 

VAR MODELS DEFINED

 

Vector autoregressive

 

 (VAR) models are, as suggested by their name,
models of vectors of variables as autoregressive processes, where each
variable depends linearly on its own lagged values and those of the
other variables in the vector. This means that the future values of the
process are a weighted sum of past and present values plus some noise
(and, possibly, exogenous variables). For example, it is known that
there are equity price “leaders” and equity price “laggards” in the sense
that the returns of some portfolios of large-cap stocks anticipate the
returns of large portfolios of small-cap stocks.

 

1

 

 An analyst who wants
to exploit this relationship for a specific pair of leader-laggard portfolios
might fit a bivariate VAR to model the returns of the leader and laggard
portfolios.

Suppose, for example, that portfolio A is a leader portfolio and
portfolio B a laggard portfolio. The analyst can write the following
model for returns:

 

1 

 

See John Y. Campbell, Andrew W. Lo, and A. Craig MacKinlay, 

 

The Econometrics
of Financial Markets

 

 (Princeton, NJ: Princeton University Press, 1997); and Angelos
Kanas and George P. Kouretas, “A Cointegration Approach to the Lead-Lag Effect
Among Sized-Sorted Equity Portfolios,” Working Paper, Department of Economics,
University of Crete, 2001.

I
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where 

 

R

 

A

 

(

 

t

 

) and 

 

R

 

B

 

(

 

t

 

) are the returns of the two portfolios, respectively,
and 

 

ε

 

A

 

 and 

 

ε

 

B

 

 are independent white-noise terms (IID zero-mean vari-
ables). The first equation states that the price-leader portfolio follows a
random walk; the second equation states that the laggard portfolio
tends to follow the leader with a delay of one period.

The above is a simple example of a multivariate extension of the
autoregressive (AR) model. A vector autoregressive model of order 

 

p

 

[VAR(

 

p

 

)] has the following general form:

where  is a multivariate stochastic time series in vec-
tor notation; 

 

A

 

i

 

, 

 

i

 

 = 1, 2, …, 

 

p

 

 are deterministic 

 

n 

 

×

 

 

 

n

 

 matrices;
 is a multivariate white noise with variance-covari-

ance matrix ΩΩΩΩ

 

; and  is a vector of deterministic terms. 
Using the lag-operator 

 

L

 

 notation, a VAR(

 

p

 

) model can be written
in the following form:

In most applications, the deterministic term will consist of constant inter-
cept terms, i.e., 

 

s

 

t

 

 = 

 

v

 

 or a linear function. A deterministic term formed
by a constant can produce a linear trend while a deterministic term
formed by a linear trend can produce either a quadratic or a linear trend.

Let us first examine the stationarity and stability conditions of VAR
models.

 

Stationarity, Stability, and Invertibility 

 

Recall that a stochastic process is called 

 

weakly stationary

 

 or covari-
ance-stationary if the expectation of 

 

x

 

t

 

, 

 

E

 

(

 

x

 

t

 

), and the autocovariances,
Cov(

 

x

 

t

 

, 

 

x

 

t

 

–

 

k

 

), do not vary with time and are finite. A process is called

 

strictly stationary

 

 if all finite-dimensional distributions are time-invari-
ant. However, in real-life applications, processes start at a given time. 

We call weakly asymptotically stationary a process that starts at a
time origin and is such that its first and second moments (i.e., expecta-
tions and variances-covariances) converge to finite limits.

Stationarity imposes a lot of structure on a stochastic process. In
1938, the Swedish mathematician Herman Ole Andreas Wold proved a

RA t 1+( ) RA t( ) εA t 1+( )+=

RB t 1+( ) aRA t( ) εB t 1+( )+=

xt A1xt 1– A2xt 2–
… Apxt p– st εt+ + + + +=

xt x1 t, … xn t,, ,( )′=

εεεεt ε1 t, … εn t,, ,( )′=
st s1 t, … sn t,, ,( )′=

xt A1L A2L2 … ApLp+ + +( )xt st εt+ +=
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fundamental theorem, known as the 

 

Wold decomposition theorem

 

2

 

 for
multivariate time series, which proposes

Any zero-mean, covariance stationary process 

 

y

 

t

 

 = (

 

y

 

1,

 

t

 

, …, 

 

y

 

n

 

,

 

t

 

)

 

′

 

 can
be represented in a unique way as the sum of a stochastic process and a
linearly predictable deterministic process, that is, 

where the stochastic part is represented as an infinite moving average,

     

subject to the condition

to ensure that the series is summable. The εεεε

 

t

 

 are the one-step-ahead lin-
ear forecast errors and the deterministic part is a linear deterministic
process. 

Note also that the Wold representation is the unique representation of a
covariance stationary time series in terms of linear predictors; however,
other representations based on nonforecast errors are perfectly possible.

Consider a VAR(

 

p

 

) model

, 

 

t

 

 = 

 

±

 

0, 

 

±

 

1, 

 

±

 

2, …

where the deterministic term is a constant; 

 

ε

 

t

 

 is a sequence of zero-
mean, finite-variance IID variables; and time extends from –

 

∞

 

 to +

 

∞

 

.
Defining the matrix polynomial

where z is a complex number, the equation

 

2 

 

Herman Ole Andreas Wold, 

 

A Study in the Analysis of Stationary Time Series

 

(Stockholm: Almqvist and Wiksell, 1938). 

yt µµµµt ΨΨΨΨ L( )εεεεt+=

ΨΨΨΨ L( ) ΨΨΨΨiεεεεt i–
i 0=

∞

∑= ΨΨΨΨ0 In=

ΨΨΨΨiΨΨΨΨi′
i 0=

∞

∑ ∞<

xt A1L A2L2 … ApLp+ + +( )xt v εt+ +=

A z( ) I A1z– A2z2– …– Apzp–=
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is called the reverse characteristic equation of the VAR model. It is the
multivariate equivalent of the univariate reverse characteristic equation.
Alternatively, defining the matrix polynomial,

, z ∈ �

the equation

is called the characteristic equation of the VAR model. As in the univari-
ate case, its solutions are the reciprocal of the solutions of the reverse
characteristic equation. 

Consider the characteristic equation of an n-variate VAR(p) model
with p distinct solutions λi. The characteristic equation can then be
written as follows:

3

If the roots of the reverse characteristic equation are strictly outside
of the unit circle, then the VAR process is said to be stable. Formally, we
can write the stability conditions as follows:

It can be demonstrated that, if the stability conditions are satisfied, the
relative VAR process is stationary if it extends on the entire time axis
and is asymptotically stationary if it starts from initial conditions. How-
ever, the converse is not true: there are stationary processes that are not
stable. 

To understand the meaning of the stability conditions, consider that
the solutions of a VAR model are linear combinations of terms of the
type λt, ρt cos(wt + ϕ) where λ, ρ are respectively the reciprocal of the
solution or the modulus of the reciprocal of the solution of the reverse
characteristic equation . If the roots of the reverse char-

3 Here we assume that roots are all distinct. The analysis remains the same in the case
of multiple roots but the mathematics is more cumbersome. In practice, roots will all
be distinct.

det A z( )( ) 0=

B z( ) Izp A1zp 1–– A2zp 2–– …– Ap–=

det B z( )( ) 0=

z λ1–( )… z λs–( ) 0=

det A z( )( ) 0≠  for z 1≤

det A z( )( ) 0=
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acteristic equation are outside the unit circle, all past shocks (i.e., noise
terms) decays exponentially over time.

If a VAR process satisfies the stability conditions and is stationary,
then the process is invertible in the sense that the process

can be written in an infinite moving average representation as follows:

where the ΦΦΦΦi are n × n constant matrices. 
It can be demonstrated that, if the process is stable, the matrix

sequence ΦΦΦΦi is absolutely summable. Therefore the process

is a well-defined process. We can rewrite the above process as

where

is the constant mean of the process

u = E[xt]

The concept of stable process as used here must not be confused with the
concept of stable Paretian processes that will be defined in Chapter 14. If

I A1L A2L2– …– ApLp––( )xt ν εt+=

xt I A1L A2L2– …– ApLp––( )
1–

ν εt+( )=

ΦΦΦΦiL
i

i 0=

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

v εt+( )=

ΦΦΦΦ0 I=

ΦΦΦΦiL
i

i 0=

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

εt

xt u ΦΦΦΦiL
i

i 0=

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

εt+=

u ΦΦΦΦi
i 0=

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

v=
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the process is not stable, then the mean is a function of time—as we will see
later, in the section on the solutions of VAR processes. The above consider-
ations show that, in the case of a VAR(p) process, the Wold decomposition
coincides with the infinite moving average representation obtained by
inverting the process and the shocks εt are the linear forecast errors.

Solutions of VAR(p) Models
We now present the explicit solutions for multivariate VAR(p) models.
These solutions provide the necessary intuition for the concepts of coin-
tegration, error correction, and dynamic factors that are introduced in
Chapter 11. 

As for any other linear model, solutions to a VAR model are the
sum of a deterministic part plus a stochastic part. The deterministic part
depends on the initial conditions and deterministic terms; the stochastic
part depends on random shocks. The stochastic part of the solution is a
weighted sum of past shocks. If the process is stable, then shocks in the
distant past have only a negligible influence and the stochastic part is a
weighted sum of the most recent shocks. If the process is integrated,
then the effects of shocks never decay; the stochastic part is thus the
cumulation of all past shocks. If the process is explosive, then shocks
are amplified as time passes. 

Equivalence of VAR(p) and VAR(1)
In order to compute explicit solutions of VAR(p) models, we make use
of the key fact that any VAR(p) model is equivalent to some VAR(1)
model after introducing appropriate additional variables. This is an
important simplification as VAR(1) models can be characterized with
simple intuitive formulas. 

To illustrate this point, first write down a bivariate model of order
one in matrix notation, that is,

and explicitly

xt A1xt 1– st εt+ +=

x1 t,
x2 t,

a11 a12

a21 a22

x1 t 1–,
x2 t 1–,

s1 t,
s2 t,

ε1 t,
ε2 t,

+ +=

x1 t, a11x1 t 1–, a12x2 t 1–, s1 t, ε1 t,+ + +=

x2 t, a21x1 t 1–, a22x2 t 1–, s1 t, ε2 t,+ + +=

c09-VectorAutoregressModels  Page 326  Thursday, October 26, 2006  2:07 PM



Vector Autoregressive Models I 327

We observe that any VAR(1) model becomes an arithmetic multi-
variate random walk if A1 is an identity matrix and st is a constant vec-
tor. In particular, in the bivariate case, a VAR(1) is a random walk if

and .
Consider now a bivariate VAR(2) model of order two:

Let us introduce a new vector variable zt = xt – 1. The VAR(2) model can
then be rewritten as follows:

or in matrix form

The above considerations can be generalized. Any AR(p) or VAR(p)
model can be transformed into a first-order VAR(1) model by adding
appropriate variables.4 In particular, an n-dimensional VAR(p) model of
the form

is transformed into the following np-dimensional VAR(1) model

4 The theory of VAR models parallels the theory of systems of linear differential
equations and of systems of linear stochastic differential equations.

a11 a12

a21 a22

1 0
0 1

=

st s1 s2,( )=

x1 t,
x2 t,

a11 a12

a21 a22

x1 t 1–,
x2 t 1–,

b11 b12

b21 b22

x1 t 2–,
x2 t 2–,

s1 t,
s2 t,

ε1 t,
ε2 t,

+ + +=

x1 t, a11x1 t 1–, a12x2 t 1–, b11z1 t 1–, b12z2 t 1–, s1 t, ε1 t,+ + + + +=

x2 t, a21x1 t 1–, a22x2 t 1–, b21z1 t 1–, b22z2 t 1–, s1 t, ε2 t,+ + + + +=

z1 t, x1 t 1–,=

z2 t, x2 t 1–,=

x1 t,
x2 t,
z1 t,
z2 t,

a11 a12 b11 b12

a21 a22 b21 b22

1 0 0 0
0 1 0 0

x1 t 1–,
x2 t 1–,
z1 t 1–,
z2 t 1–,

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

s1 t,
s2 t,
0
0

ε1 t,
ε2 t,
0
0

+ +=

xt A1L A2L2 … ApLp+ + +( )xt st εt+ +=
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where

, , , 

Xt, St, and Wt are np × 1 vectors and A is a np × np square matrix. In
order to compute explicit solutions of higher-order VAR processes, we
have therefore only to consider VAR(1) models. 

It can be demonstrated that the reverse characteristic equation of this
VAR(1) system and that of the original VAR(p) system have the same roots. 

Solving Stable VAR(1) Processes
We can now proceed to show how solutions to stable VAR models can
be computed. Given the equivalence between VAR(1) and VAR(p) we
will only consider VAR(1) models. We first consider stable processes
that start in the infinite past and then move to possibly unstable pro-
cesses that start at a given point in time from some initial conditions. 

Consider an n-dimensional VAR(1) model,

, t = 0, ±1, ±2, …

where the deterministic term, v, is a constant vector. Suppose that the
roots of its characteristic equation 

lie inside the unit circle. The solutions of this equation are the eigenvalues
of the matrix A. Therefore, in the case of a stable process, all the eigen-
values of the matrix A have modulus less than one. Note that we here
express the stability condition in terms of the characteristic equation,
while in a previous section we used the reverse characteristic equation. 

As the VAR operator is stable, the process is stationary and invert-
ible. Being that it is a VAR(1) process, the infinite moving average poly-
nomial is given by

Xt AXt St Wt+ +=

Xt

xt

xt 1–
···

xt p– 1+

= A

A1 A2 … Ap 1– Ap

In 0 … 0 0
0 In … 0 0
0 0 ···

···
···

0 0 … In 0

= St

st

0
···
0

= Wt

εt

0
···
0

=

xt Axt 1– v εt+ +=

det Iz A–( ) 0=
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As we saw above in our discussion of stability, stationarity, and
invertibility, an invertible process can be represented as follows:

where

is the constant mean of the process

We now compute the autocovariances of the process. It can be dem-
onstrated that the time-invariant autocovariances of the process are

where ΩΩΩΩ is the variance-covariance matrix of the noise term. This
expression involves an infinite sum of matrices. While it is not conve-
nient for practical computations, it can be demonstrated that the fol-
lowing recursive matrix equations hold:

These equations are called Yule-Walker equations. They are the multi-
variate equivalent of the Yule-Walker equations that we defined for
univariate ARMA processes. 

Yule-Walker equations can be used to compute the process autocova-
riances (see chapters 6 and 7 for the definition of these terms) recur-
sively—provided that we know ΓΓΓΓ0. Note that ΓΓΓΓ0 is the variance-covariance
matrix of the process, which is different from the variance-covariance
matrix ΩΩΩΩ of the noise term. It can demonstrated that ΓΓΓΓ0 satisfies

I AL–( ) 1– AiLi

i 0=

∞

∑= A0 I=

xt u AiLi

i 0=

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

εt+=

u Ai

i 0=

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

v=

u E xt[ ]=

ΓΓΓΓh E xt u–( ) xt h– u–( )′[ ] Ai h+ ΩΩΩΩ Ai( )′
i 0=

∞

∑= =

ΓΓΓΓh AΓΓΓΓh 1–=
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which allows to compute ΓΓΓΓ0 via

The vec operation and the Kronecker product ⊗ are defined in the appendix
to this chapter. 

To explicitly compute solutions, consider separately the case of dis-
tinct roots and the case of at least two coincident roots. Suppose first
that the matrix A has distinct eigenvalues (λ1, …, λn) (see the appendix
to this chapter for a definition of eigenvalues) and distinct eigenvectors
(ξ1, …, ξn). The matrix A is thus nonsingular and can be represented as:
A = ΞΞΞΞΛΛΛΛΞΞΞΞ–1 where Ξ = [ξ1, …, ξn] is a nonsingular matrix whose columns
are the eigenvectors and

is a diagonal matrix whose diagonal elements are the eigenvalues of A. 
Consider the process solution

The infinite matrix series on the right-hand side converges as the eigen-
values of the matrix A have modulus less than one. In fact we can write

ΓΓΓΓ0 AΓΓΓΓ0A′ ΩΩΩΩ+=

vec ΓΓΓΓ0( ) I A– A⊗( ) 1– vec ΩΩΩΩ( )=

ΛΛΛΛ
λ1  0
 ···  
0  λn⎝ ⎠

⎜ ⎟
⎜ ⎟
⎛ ⎞

=

xt u AiLi

i 0=

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

εt+=

A ΞΞΞΞΛΞ 1–=

Ai

i times

ΞΞΞΞΛΞ 1– … ΞΞΞΞΛΞ 1– ΞΞΞΞΛiΞ 1–= =

⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭
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and

The process solution can therefore be written as

The process can be represented as a constant plus an infinite moving
average of past noise terms weighted with exponential terms.

Solving Stable and Unstable Processes with Initial Conditions
In the previous section we considered stable, stationary systems defined on
the entire time axis. In practice, however, most models start at a given time.
If the system starts at a given moment with given initial conditions, it need
be neither stable nor stationary. Consider an n-dimensional VAR(1) model

,   t = 1, 2, …

together with initial conditions. 
Suppose the VAR(1) model starts at t = 0 and suppose that the ini-

tial conditions x0 are given. The solution of the model is the sum of the
general solution of the associated homogeneous system with the given
initial conditions plus a particular solution. The general solution can be
written as follows:

with constants c determined in function of initial conditions. A particu-
lar solution can be written as

ΛΛΛΛi
λ1

i  0
 ···  

0  λn
i⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

I AL–( ) 1– AiLi

i 0=

∞

∑ ΞΞΞΞΛiΞ 1– Li

i 0=

∞

∑= =

xt u ΞΞΞΞΛiΞ 1– Li

i 0=

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

εt+=

xt Axt 1– st εt+ +=

xG t( ) ΞΞΞΞΛΛΛΛtc c1λ1
t ξ1 … cnλn

t ξn+ += =

xt ΞΞΞΞΛΛΛΛiΞΞΞΞ 1– st i– εεεεt i–+( )
i 0=

t 1–

∑=
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All solutions are a sum of a particular solution and the general solution.
We can also see that the solution is a sum of the deterministic and sto-
chastic parts:

From the above formulas, we can see that the modulus of eigenvalues
dictates if past shocks decay, persist, or are amplified.

We now discuss the shape of the deterministic trend under the above
assumptions. Recall that the deterministic trend is given by the mean of
the process. Let us assume that the deterministic terms are either con-
stant intercepts st = µ or linear functions st = γt + µ. Taking expectations
on both sides of the above equation, we can write

in the case of constant intercepts, and

in the case of a linear functions. 
As the matrix ΛΛΛΛ is diagonal, it is clear that the process deterministic

trend can have different shapes in function of the eigenvalues. In both
cases, the trend can be either a constant, a linear trend, or a polynomial
of higher order. If the process has only one unitary root, then a constant
intercept produces a linear trend, while a linear function might produce
a constant, linear, or quadratic trend.

To illustrate the above, consider the following VAR(2) model where
we replace the notation xt with x(t):

with the following initial conditions at time t = 1,2:

xt

Deterministic part

ΞΞΞΞΛΛΛΛtc ΞΞΞΞΛΛΛΛiΞΞΞΞ 1– st i–
i 0=

t 1–

∑+

Stochastic part

ΞΞΞΞΛΛΛΛiΞΞΞΞ 1– εεεεt i–
i 0=

t 1–

∑+=

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭
E xt[ ] ΞΞΞΞΛΛΛΛtc ΞΞΞΞΛΛΛΛiΞΞΞΞ 1– µµµµ

i 0=

t 1–

∑+=

E xt[ ] ΞΞΞΞΛΛΛΛtc ΞΞΞΞΛΛΛΛiΞΞΞΞ 1– γt µµµµ+( )
i 0=

t 1–

∑+=

x t( ) 0.6x t 1–( ) 0.1y t 1–( )– 0.7x t 2–( )– 0.15y t 2–( ) εx t( )+ +=

y t( ) 0.12x t 1–( )– 0.7y t 1–( ) 0.22x t 2–( ) 0.8y t 2–( ) εy t( )+–+ +=
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x(1) = 1    x(2) = 1.2    y(1) = 1.5    y(2) = –2 

It can be transformed into a VAR(1) model as follows:

with the following initial conditions:

x(2) = 1.2    y(2) = –2    z(2) = 1    w(2) = 1.5

Note that now we have defined four initial conditions at t = 2.
The coefficient matrix

has four complex eigenvalues:

The corresponding eigenvector matrix (columns are the eigenvectors) is

The general solution can be written as

x t( ) 0.6x t 1–( ) 0.1y t 1–( )– 0.7z t 1–( )– 0.15w t 1–( ) εx t( )+ +=

y t( ) 0.12x t 1–( )– 0.7y t 1–( ) 0.22z t 1–( ) 0.8w t 1–( ) εy t( )+–+ +=

z t( ) x t 1–( )=
w t( ) y t 1–( )=

A

0.6 0.1– 0.7– 0.15
0.12– 0.7 0.22 0.8–
1 0 0 0
0 1 0 0⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

ΛΛΛΛ

0.2654 0.7011i+ 0 0 0
0 0.2654 0.7011i– 0 0
0 0 0.3846 0.8887i+ 0
0 0 0 0.3846 0.8887i–

=

ΞΞΞΞ

0.1571 0.4150i+ 0.1571 0.4150i– 0.1311– 0.3436i– 0.1311– 0.3436i+

0.0924 0.3928i+ 0.0924 0.3928i– 0.2346 0.5419i+ 0.2346 0.5419i–

0.5920 0.5920 0.3794– 0.0167i+ 0.3794– 0.0167i+

0.5337 0.0702i+ 0.5337 0.0702i– 0.6098 0.6098

=

xG c10.7497t 1.2090t ρ1+( )cos c20.9684t 1.1623t ρ2+( )cos+=
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STATIONARY AUTOREGRESSIVE DISTRIBUTED LAG MODELS

An important extension of pure VAR models is given by the family of
autoregressive distributed lag (ARDL) models. The ARDL model is
essentially the coupling of a regression model and a VAR model. The
ARDL model is written as follows:

In the ARDL model, a variable yt is regressed over its own lagged values
and over the values of another variable xt, which follows a VAR(p)
model. Both the ηηηηt and the εεεεt terms are assumed to be white noise with a
time-invariant covariance matrix. 

The previous ARDL model can be rewritten as a VAR(1) model as
follows:

yt v ΦΦΦΦ1yt 1– � ΦΦΦΦsyt s– P0xt � Pqxt q– ηηηηt+ + + + + + +=

xt A1xt 1– � Apxt p– εεεεt+ + +=

yt

yt 1–

�
yt s– 2+

yt s– 1+

xt

�
�
�

xt p–⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞ v

0
�
0
0
0  

0
�
0
0⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞ ΦΦΦΦ1 ΦΦΦΦ2 � ΦΦΦΦs 1– ΦΦΦΦs P0 P1 � Pq � 0 0

I 0 � 0 0 0 0 � 0 � 0 0
� � � � � � � � � � � �
0 0 � I 0 0 0 � 0 � 0 0
0 0 � 0 I 0 0 � 0 � 0 0
0 0 � 0 0 0 A1 � Aq � Ap 1– Ap

0 0 � 0 0 0 I � 0 � 0 0
� � � � � � � � � � � �
0 0 � 0 0 0 0 � 0 � 0 0
0 0 � 0 0 0 0 � 0 � I 0⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

yt 1–

yt 2–

�
yt s– 1+

yt s–

xt

xt 1–

�
xt q–

�
xt p–

xt p– 1–⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

ηηηηt

0
�
�
0
εεεεt

0
�
�
0⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

+

c09-VectorAutoregressModels  Page 334  Thursday, October 26, 2006  2:07 PM



Vector Autoregressive Models I 335

The estimation of the ARDL model can therefore be done with the
methods used for VAR models. Coefficients can be estimated with OLS
methods and the number of lags can be determined with the AIC or BIC
criteria discussed in a previous section.

The ARDL model is quite important in financial econometrics:
many models of stock returns are essentially ARDL models. In particu-
lar, all models where stock returns are regressed over a number of state
variables that follow a VAR model are ARDL models. 

VECTOR AUTOREGRESSIVE MOVING AVERAGE MODELS

Vector autoregressive moving average (VARMA) models combine an
autoregressive part and a moving average part. In some cases, they can
offer a more parsimonious modeling option than a pure VAR model. A
VARMA(p,q) model without deterministic component is of the form:

A VARMA model has two characteristic equations:

If the roots of the equation det(A(z)) = 0 are all strictly outside the unit
circle, then the process is stable and can be represented as an infinite
moving average. If the roots of the equation det(B(z)) = 0 are all strictly
outside the unit circle, then the process is invertible and can be repre-
sented as an infinite autoregressive process. Both representations require
the process to be defined for –∞ < t < ∞.

If the process starts at t = 0, the theory developed above in our dis-
cussion of VAR models can be applied. The process can be reduced to a
VAR(1) model and then solved with the same methods.

Integrated Processes
Recall that a process is strictly stationary if the joint distribution of a
finite collection xt, xt – 1,..., xt – k does not vary with t; it is covariance-
stationary if its first and second moments are time-invariant. Stationar-
ity does not imply weak stationarity as distributions might have infinite

A L( )xt B L( )εεεεt=

A L( ) I A1L– A2L2– …– ApLp–=

B L( ) I B1L B2L2 … BqLq+ + + +=

det A z( )( ) 0=
det B z( )( ) 0=
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first or second moments. A process described by a vector difference
equation (VDE) is stationary if the VDE is stable, that is, if the solutions
of the characteristic equations lie strictly outside the unit circle.

A process is said to be integrated of order one if its first differences
form a stationary process. Recursively, we can define a process integrated
of order n if its first differences are integrated of order n – 1. An arithmetic
random walk is a process integrated of order one as its differences are sta-
tionary. However, not all integrated processes are random walks as the def-
inition of stationarity does not assume that processes are generated as IID
sequences. In other words, a stationary process can exhibit autocorrelation.

Consider a multivariate process xt. The process xt is said to be inte-
grated of order d if we can write

where yt is a stationary process. Suppose that xt can be represented by a
VAR process,

The process xt is said to be integrated of order d if we can factorize
Φ as follows:

where Ψ(L) is a stable VAR process that can be inverted to yield

In particular, an integrated process with order of integration d = 1
admits the following representation:

The above definition can be generalized to allow for different orders of
integration for each variable. 

It is clear from the above definition that the characteristic equation
of a process integrated of order d has d roots equal to 1.

I L–( )dxt yt=

I A1L– A2L2– …– ApLp–( )xt Φ A( )xt εεεεt= =

A L( )xt 1 L–( )dC L( )xt εεεεt= =

1 L–( )dxt C L( ) 1– εεεεt Ciεεεεt i–
i 0=

∞

∑= =

xt∆ 1 L–( )xt C L( ) 1– εεεεt ΨΨΨΨiL
i

i 0=

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

εεεεt= = =
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Stochastic and Deterministic Trends
An integrated process is characterized by the fact that past shocks never
decay. In more precise terms, we can demonstrate that an integrated
process can be decomposed as the sum of three components: a determin-
istic trend, a stochastic trend, and a cyclic stationary process. To see
this, consider first a process integrated of order 1 and without a con-
stant intercept, given by

Let’s rewrite ΨΨΨΨ(L) as

where ΨΨΨΨ(1) = ΨΨΨΨ. We can now write the process xt as follows:

or, dividing by (1 – L):

The process xt is thereby decomposed into a stochastic trend,

and a stationary component

xt∆ ΨΨΨΨ L( )εεεεt ΨΨΨΨiL
i

i 0=

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

εεεεt= =

ΨΨΨΨ L( ) ΨΨΨΨ 1 L–( ) ΨΨΨΨi
*Li

i 0=

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

+=

xt∆ 1 L–( )xt ΨΨΨΨ 1 L–( ) ΨΨΨΨi
*Li

i 0=

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

+ εεεεt= =

xt
ΨΨΨΨ

1 L–
-------------εεεεt ΨΨΨΨi

*Li

i 0=

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

εεεεt+=

xt ΨΨΨΨ εεεεi
i 1=

t

∑ ΨΨΨΨi
*Li

i 0=

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

εεεεt+=

ΨΨΨΨ εεεεi
i 1=

t

∑
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The difference between the two terms should be clearly stated: The sto-
chastic term is a sum of shocks that never decay, while in the stationary
term past shocks decay due to the weighting matrices . 

An eventual deterministic trend is added to the stochastic trend and
to the stationary component. A constant intercept produces a linear trend
or a constant. In fact, if we add a constant intercept v we can write

which implies

where u = Ψv. The term u can be zero even if the intercept v is different
from zero.

A process xt is called trend stationary if it is the sum of a determin-
istic trend plus a stationary component, that is if

A process is called difference stationary if it becomes stationary after
differencing. A difference-stationary process is the sum of a stochastic
trend plus a stationary process.

FORECASTING WITH VAR MODELS

One of the key objectives of financial modeling is forecasting. Forecast-
ing entails a criterion for forecasting as we have to concentrate a proba-

ΨΨΨΨi
*Li

i 0=

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

εεεεt

ΨΨΨΨi
*

xt∆ 1 L–( )xt v ΨΨΨΨ 1 L–( ) ΨΨΨΨi
*Li

i 0=

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

+ εεεεt+= =

xt
ΨΨΨΨ

1 L–
-------------εεεεt ΨΨΨΨi

*Li

i 0=

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

εεεεt
ΨΨΨΨ

1 L–
-------------v+ +=

xt ΨΨΨΨ εεεεi
i 1=

t

∑ ΨΨΨΨi
*Li

i 0=

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

εεεεt tu+ +=

xt st ΨΨΨΨt+=
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bility distribution in a point forecast. A widely used criterion is the
minimization of the mean square error (MSE). Suppose that a process yt
is generated by a VAR(p) process. It can be demonstrated that the opti-
mal h-step ahead forecast according to the MSE criterion is the condi-
tional expectation:

If the error terms are strict white noise, then the optimal forecast of
a VAR model can be computed as follows:

This formula remains valid if the noise term is a martingale difference
sequence (see Chapter 6 for a definition). If the error term is white
noise, the above forecasting formula will be the best linear predictor.

APPENDIX: EIGENVECTORS AND EIGENVALUES

Consider a square n × n matrix A and a n-vector x. We call eigenvectors
of the matrix A those vectors such that the following relationship holds

Ax = λx

for some real number λ. Given an eigenvector x the corresponding λ is
called an eigenvalue. Zero is a trivial eigenvalue. Nontrivial eigenvalues
are determined by finding the solutions of the equation

det(A – λI) = 0

where I is the identity matrix. A n × n matrix has at most n distinct
eigenvalues and eigenvectors.

Vectoring Operators and Tensor Products
We first define the vec operator. Given an m × n matrix,

Et yt h+( ) E yt h+ ys s t≤,( )≡

Et yt h+( ) v A1Et yt h 1–+( ) � ApEt yt h p–+( )+ + +=

A
a11 � a1n

� � �
am1 � amn⎝ ⎠

⎜ ⎟
⎜ ⎟
⎛ ⎞

=
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the vec operator, written as vec(A),5 stacks the matrix columns in an mn
× 1 vector as follows:

Next it is useful to define the Kronecker product. Given the m × n matrix,

and the p × q matrix,

we define the Kronecker product C = A ⊗ B as follows:

The Kronecker product, also called the direct product or the tensor
product, is an (mp) × (nq) matrix. It can be demonstrated that the tensor
product satisfies the associative and distributive property and that,
given any four matrices A, B, C, D of appropriate dimensions, the fol-
lowing properties hold:

5 The vec operator should not be confused with the vech operator which is similar
but not identical. The vech operator stacks the terms below and on the diagonal.

vec A( )

a11

�
am1

�
a1n

�
amn⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

A
a11 � a1n

� � �
am1 � amn⎝ ⎠

⎜ ⎟
⎜ ⎟
⎛ ⎞

=

B
b11 � b1q

� � �
bp1 � bpq⎝ ⎠

⎜ ⎟
⎜ ⎟
⎛ ⎞

=

C A B⊗
a11B � a1nB

� � �
am1B � amnB⎝ ⎠

⎜ ⎟
⎜ ⎟
⎛ ⎞

= =

C′ A⊗( )vec B( ) vec A B C⊗ ⊗( )=
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CONCEPTS EXPLAINED IN THIS CHAPTER
(IN ORDER OF PRESENTATION)

Vector autoregressive (VAR) models
Wold decomposition theorem
Reverse characteristic equation
Characteristic equation
Stability conditions
Stable processes
Invertible processes
Infinite moving average representation
Absolutely summable sequences
Solutions of a VAR process
Equivalence VAR(p) and VAR(1)
Yule-Walker equations

Computing autocovariances with Yule-Walker equations
General solutions of a homogeneous system
Particular solutions
Linear and quadratic trends
Autoregressive distributed lag (ARDL) models
Vector autoregressive moving average (VARMA) models
Integrated processes
Vector difference equations (VDE)
Stochastic trends
Trend stationary processes
Difference stationary processes
Forecasting
Mean square error
Eigenvalues and eigenvectors
Vec operator
Kronecker product
Tensor product

A B⊗( ) C D⊗( ) AC( ) BD( )⊗=

A B⊗( )′ A′( ) B′( )⊗=

Trace A′BCD′( ) vec A( )( )′ D B⊗( )vec C( )=
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Vector Autoregressive Models II

 

n this chapter we discuss estimation methods for vector autoregressive
(VAR) models. We first consider estimation of stable systems. The key

result here is that stable VAR systems can be conveniently estimated
with least squares methods. We then proceed to the estimation of unsta-
ble systems.

 

ESTIMATION OF STABLE VAR MODELS

 

When discussing the estimation of regression models in Chapter 3, we
introduced two main methods for estimating linear regressions: the least
squares method and the maximum likelihood method. These methods
apply immediately to unrestricted stable VAR models. Note that models
are said to be “unrestricted” if the estimation process is allowed to
determine any possible outcome, and “restricted” if the estimation pro-
cedure restricts parameters in some way.

Suppose that a time series is given and that the data generating pro-
cess (DGP) of the series is the VAR(

 

p

 

) model:

where 

 

x

 

t

 

 = (

 

x

 

1,

 

t

 

, . . ., 

 

x

 

N

 

,

 

t 

 

)

 

′

 

 is a 

 

N–

 

dimensional stochastic time series in
vector notation; 

 

A

 

i

 

 are deterministic 

 

N

 

 

 

×

 

 

 

N

 

 matrices; εεεε

 

t

 

 = (

 

ε

 

1,

 

t

 

, . . ., 

 

ε

 

N

 

,

 

t

 

)

 

′

 

is a multivariate white noise with variance-covariance matrix 

 

Σ

 

; and 

 

v

 

 =
(

 

v

 

1

 

, . . ., 

 

v

 

N

 

)

 

′

 

 is a vector of constants. 
Let’s first assume that stability condition

det(

 

A

 

(

 

z

 

)) 

 

≠

 

 0 for  

 

≤

 

 1

I

xt A1xt 1– A1xt 1– � A1xt 1– v εεεεt+ + + + +=

z
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holds, that is, the roots of the reverse characteristic equation are strictly
outside of the unit circle. The result is that the VAR(

 

p

 

) model is stable
and the corresponding process stationary. We will consider processes
that start at 

 

t = 

 

1, assuming that 

 

p

 

 initial conditions: 

 

x

 

–

 

p

 

+1

 

, . . ., 

 

x

 

0

 

 are
given. In this case, stable VAR models yield asymptotically stationary
processes. 

Recall that the above 

 

N-

 

dimensional VAR(

 

p

 

) model is equivalent to
the following 

 

Np-

 

dimensional VAR(1) model:

 

X

 

t

 

 = 

 

AX

 

t 

 

– 1

 

 + 

 

V

 

 + 

 

U

 

t

 

where

, , 

, 

Matrix 

 

A

 

 is called the 

 

companion matrix 

 

of the VAR(

 

p

 

) system.
Given that the VAR(

 

p

 

) model is unrestricted, it can be estimated as
any linear regression model. As we consider only consistent estimators,
the estimated parameters (in the limit of an infinite sample) satisfy the
stability condition. However on a finite sample, the estimated parame-
ters might not satisfy the stability condition.

We will first show how the estimation of a VAR(

 

p

 

) model and its
VAR(1) equivalent can be performed with least squares and maximum
likelihood methods. To do so we apply the estimation theory developed
in Chapter 3, estimating the model coefficients either by the multivariate
least squares method or by the maximum likelihood method. 

 

Multivariate Least Squares Estimation

 

Conceptually, the multivariate 

 

least squares

 

 (LS) estimation method is
equivalent to that of a linear regression (see Chapter 3); the notation,
however, is more complex. This is because we are dealing with multiple
time series and because noise terms are correlated. Similar to what we

Xt

xt

xt 1–

�
xt p– 1+

= A

A1 A2 � Ap 1– Ap

IN 0 � 0 0
0 IN � 0 0
0 0 � � �
0 0 � IN 0

=

V

v
0
�
0

= Ut

εt

0
�
0

=

 

c10-VectorAutoregress  Page 344  Thursday, October 26, 2006  2:08 PM



 

Vector Autoregressive Models II

 

345

 

did in estimating regressions (Chapter 3), we represent the autoregres-
sive process as a single-matrix equation. We will introduce two different
but equivalent notations. 

Suppose that a sample of 

 

T 

 

observations of the 

 

N

 

-variate variable

 

x

 

t

 

, 

 

t

 

 = 1, . . ., 

 

T

 

 and a presample of 

 

p

 

 initial conditions 

 

x

 

–

 

p

 

 + 1

 

, . . ., 

 

x

 

0

 

are given. We first stack all observations 

 

x

 

t

 

, t = 1, . . ., T in a vector

Introducing a notation that will be useful later, we can also write

x = vec(X)

In other words, x is a (NT × 1) vector where all observations are
stacked, while X is a (N × T) matrix where each column represents an
N-variate observation.

Proceeding analogously with the noise terms, we stack the noise
terms in a (NT × 1) vector as follows:

We can represent this alternatively as follows:

x

x1 1,
�

xN 1,
�
�

x1 T,
�

xN T,⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

X x1 … xT, ,( )
x1 1, � x1 T,

� � �
xN 1, � xN T,⎝ ⎠

⎜ ⎟
⎜ ⎟
⎛ ⎞

= =

u

ε1 1,
�

εN 1,
�
�

ε1 T,
�

εN T,⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=
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where U is a (N × T) matrix such that each column represents an n-variate
innovation term.

The noise terms are assumed to have a nonsingular covariance matrix,

with E[εi,t εj,s] = 0, ∀i, j, t ≠ s. The covariance matrix of u, Σu can be
written as

In other words, the covariance matrix of u is a block-diagonal matrix
where all diagonal blocks are equal to Σ. This covariance structure
reflects the assumed white-noise nature of innovations that precludes
autocorrelations and cross autocorrelations in the innovation terms.

Using the notation established above, we can now compactly write
the VAR(p) model in two equivalent ways as follows:

X = AW + U

x = wβ + u

The first is a matrix equation where the left and right sides are N × T
matrices such that each column represents the VAR(p) equation for each
observation. The second equation, which equates the two NT vectors on
the left and right sides, can be derived from the first as follows, using
the properties of the vec operator and the Kronecker product estab-
lished in the appendix to Chapter 9

vec(X) = vec(AW) + vec (U)

vec(X) = (W′ ⊗ IN)vec(A) + vec(U)

x = wβ + u

This latter equation is the equivalent of the regression equation estab-
lished in Chapter 3.

u vec U( )=

U
ε1 1, � ε1 T,

� � �
εN 1, � εN T,⎝ ⎠

⎜ ⎟
⎜ ⎟
⎛ ⎞

=

Σ σi j,[ ] E εi t, εj t,[ ]= =

Σu IT Σ⊗
Σ � 0
� � �
0 � Σ⎝ ⎠

⎜ ⎟
⎜ ⎟
⎛ ⎞

= =
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Matrix w is shown in Exhibit 10.1; matrices W and A and vector B are
given by

W

1 1 � 1 1
x0 x1 � xT 2– xT 1–

x 1– x0 � xT 3– xT 2–

� � � � �
x1 p– x2 p– � xT p– 1– xT p–

=

1 1 � 1 1
x1 0, x1 1, � x1 T, 2– x1 T, 1–

� � � � �
xN 0, xN 1, � xN T 2–, xN T 1–,
x1 1–, x1 0, � x1 T 3–, x1 T 2–,

� � � � �
xN 1–, xN 0, � xN T 3–, xN T 2–,

� � � � �
� � � � �
� � � � �

x1 1 p–, x1 2 p–, � x1 T p– 1–, x1 T p–,
� � � � �

xN 1 p–, xN 2 p–, � xN T p– 1–, xN T p–,

Np 1+( ) T×=

A v A1 … Ap, , ,( )=

v1 a11
1 � a1N

1 � � � a11
p � a1N

p

� � � � � � � � � �

vN aN1
1 � aNN

1 � � � aN1
p � aNN

p⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

N Np 1+( )×=

β vec A( )

v1

�
vN

a11
1

�

aN1
1

�

a1N
p

�

aNN
p

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

N Np 1+( ) 1×= =
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To estimate the model, we have to write the sum of the squares of
residuals as we did for the sum of the residuals in a regression (see Chap-
ter 3). However, as already mentioned, we must also consider the multi-
variate nature of the noise terms and the presence of correlations. 

Our starting point is the regression equation x = wβ + u, which
implies u = x – wβ. As the innovation terms exhibit a correlation struc-
ture, we have to proceed as in the case of generalized least squares
(GLS). We write the weighted sum of squared residuals as

For a given set of observations, the quantity S is a function of the model
parameters S = S(β). The function S admits the following alternative rep-
resentation:

Since

The least squares estimate of the model parameters  are obtained
by minimizing S = S(β) with respect to beta requiring

Equating the vector of partial derivatives to zero yields the so-called
normal equations of the LS method. From

it follows that the normal equations are given by

S u′Σu
1– u εt′Σ

1– εt
t 1=

T

∑= =

S β( ) trace U′Σu
1– U[ ] trace X AW–( )′Σu

1– X AW–( )[ ]= =

S u′Σu
1– u vec U( )( )′ IT Σ⊗( ) 1– vec U( )= =

vec X AW–( )( )′ IT Σ 1–⊗( )vec X AW–( )=

trace X AW–( )′Σu
1– X AW–( )[ ]=

β̂,

∂S β( )
∂β

-------------- 0=

S u′Σu
1– u x wβ–( )′Σu

1– x wβ–( )= =

x′Σu
1– x β′w′Σu

1– wβ 2β′w′Σu
1– x–+=
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The Hessian matrix turns out as

and is positive definite given our assumptions. Consequently, the LS
estimator is

This expression—which has the same form as the Aitkin GLS estima-
tor—is a fundamental expression in LS methods. However, due to the
structure of the regressors, further simplifications are possible for a
VAR model, namely

are possible. To demonstrate this point, consider the following deriva-
tion:

This derivation shows that, in the case of a stable unrestricted VAR pro-
cess, the multivariate GLS estimator coincides with the ordinary least
squares (OLS) estimator obtained by minimizing the quantity S = u′u.

∂S β( )
∂β

-------------- 2w′Σu
1– wβ 2w′Σu

1– x– 0= =

∂2S β( )
∂β∂β′
----------------- 2w′Σu

1– w=

β̂ w′Σu
1– w( )

1–
w′Σu

1– x=

β̂ WW′( ) 1– W IN⊗( )x=

β̂ w′Σu
1– w( )

1–
w′Σu

1– x=

W′ IN⊗( )′ IT Σ⊗( ) 1– W′ IN⊗( )( )
1–

W IN⊗( ) IT Σ⊗( ) 1– x=

W IN⊗( ) IT Σ 1–⊗( ) W′ IN⊗( )( )
1–

W IN⊗( ) IT Σ⊗( ) 1– x=

WIT( ) INΣ 1–( ) W′ IN⊗( )⊗( )
1–

WIT( ) INΣ 1–( )x⊗=

W Σ 1–⊗( ) W′ IN⊗( )( )
1–

W Σ 1–⊗( )x=

WW′( ) 1– Σ 1–( )⊗( ) W Σ⊗( )x=

WW′( ) 1– W( ) Σ 1– Σ( )x⊗=

WW′( ) 1– W IN⊗( )x=
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We can therefore estimate VAR processes by OLS estimate equation by
equation rather than the full N-dimensional system. Computationally,
this entails a significant simplification.

We can also write another expression to estimate matrix A. Using X
= AW + U, we have 

The relationship between  and  is as follows:

To summarize

1. Given a VAR(p) process, the multivariate GLS estimator coincides with
the OLS estimator computed equation by equation.

2. The following three expressions for the estimator are equivalent:

We next discuss the asymptotic distribution of these estimators.

The Asymptotic Distribution of LS Estimators 
In Chapter 2 we stated that estimators depend on the sample and are
therefore to be considered random variables. To assess the quality of the
estimators, the distribution of the estimators must be determined. 

It is difficult to calculate the finite sample distributions of the LS
estimators of the stationary VAR model. Finite sample properties of a
stationary VAR process can be approximately ascertained using Monte
Carlo methods.

Â XW′ WW′( ) 1–=

Â β̂

β̂ WW′( ) 1– W IN⊗( )x=

vec Â⎝ ⎠
⎛ ⎞ WW′( ) 1– W IN⊗( )vec X( )=

vec XW′ WW′( ) 1–( )=

β̂ w′Σu
1– w( )

1–
w′Σu

1– x=

β̂ WW′( ) 1– W IN⊗( )x=

Â XW′ WW′( ) 1–=
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Significant simplifications arise as the sample size approaches infin-
ity. The essential result is that the model estimators become normally
distributed. The asymptotic properties of the LS estimators can be
established under additional assumptions on the white noise. Suppose
that the white-noise process has finite and bounded fourth moments and
that noise variables at different times are independent and not merely
uncorrelated as we have assumed thus far. (Note that these conditions
are automatically satisfied by any Gaussian white noise.). Under these
assumptions, it can be demonstrated that the following properties hold:

 ■ The ((Np + 1) × (Np +1)) matrix

 

exists and is nonsingular.

 ■ The (N(Np + 1) × 1) vector  of estimated model parameters is jointly
normally distributed:

The (N(Np + 1) × N(Np + 1)) matrix  is the covariance
matrix of the parameter distribution.

From this it follows that, for large samples, we can approximate
matrices ΓΓΓΓ and ΣΣΣΣ by

Note that these matrices are not needed to estimate the model parame-
ters; they are required only for determining the distribution of the
model parameters. If N = 1, these expressions are the same as those
already established for multivariate regressions. The above estimator of
the noise covariance matrix is biased. An unbiased estimator is obtained
by multiplying the above by the factor T/(T – Np – 1).

ΓΓΓΓ: plim
WW′

T
--------------=

ββββ̂

T ββββ̂ ββββ–⎝ ⎠
⎛ ⎞ d

N 0 ΓΓΓΓ 1– ΣΣΣΣ⊗,( )→

ΓΓΓΓ 1– ΣΣΣΣ⊗

ΓΓΓΓ̂
WW′

T
--------------=

ΣΣΣΣ̂
1
T
----X IT W′ WW′( ) 1– W–( )X′=
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Estimating Demeaned Processes
In previous sections we assumed that the VAR(p) model has a constant
intercept and that the process variables have, in general, a nonzero
mean. Note that the mean and the intercept are not the same numbers.
In fact, given that the process is assumed to be stationary, we can write

We can recast the previous derivation in a different notation, assum-
ing that the process variables are demeaned. In this case, we can rewrite
the VAR process in the following form:

Defining the demeaned vector yt = xt – µ, the VAR process becomes

The formulas previously established hold with some obvious changes.
We will state them explicitly, as they will be used in the following sec-
tions. Defining

E xt( ) A1E xt 1–( ) A2E xt 2–( ) � ApE xt p–( ) v+ + + +=

µµµµ A1µµµµ A2µµµµ– �– Apµµµµ–– v=

µµµµ IN A1– A2– �– Ap–( ) 1– v=

xt µµµµ–( ) A1 xt 1– µµµµ–( ) A2 xt 2– µµµµ–( ) � Ap xt p– µµµµ–( ) εεεεt+ + + +=

yt A1yt 1– A2yt 2– � Apyt p– εεεεt+ + + +=

Y y1 … yT, ,( )=

U εεεε1 … εεεεT, ,( )=

y vec Y( )=

u vec U( )=

ΣΣΣΣu IT ΣΣΣΣ⊗=

A A1 … Ap, ,( )=

α vec A( )=

Z
y0 � yT 1–

� � �
y1 p– � yT p–⎝ ⎠

⎜ ⎟
⎜ ⎟
⎛ ⎞

=
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we have

The LS estimators are

It can be demonstrated that the sample mean,

is a consistent estimator of the process mean and has a normal asymp-
totic distribution. If we estimate intercept  from the original (non-
demeaned) data, the mean , is estimated by the mean can be estimated
with the following estimator: 

This is consistent and follows an asymptotic normal distribution. 
We now turn our attention to the maximum likelihood estimation of

stable VAR models.

Maximum Likelihood Estimators
Under the assumption of Gaussian innovations, maximum likelihood
(ML) estimation methods coincide with LS estimation methods when we
condition on the first p observations. Recall from Chapter 2 that, given
a known distribution, ML methods try to find the distribution parame-

z Z′ IN⊗( )=

y zα u+=

Y AZ U+=

αααα̂ z′ΣΣΣΣu
1– z( )

1–
z′ΣΣΣΣu

1– y=

αααα̂ ZZ′( ) 1– Z IN⊗( )y=

Â YZ′ ZZ′( ) 1–=

µµµµ̂
1
T
---- xt

t 1=

T

∑=

v̂
µµµµ̂

µµµµ̂ IN A1– A2– �– Ap–( ) 1– v̂=
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ters that maximize the likelihood function (i.e., the joint distribution of
the sample computed on the sample itself). In the case of a multivariate
mean-adjusted VAR(p) process, the given sample data are T observa-
tions of the N-variate variable yt, t = 1, . . ., T and a presample of p initial
conditions y–p+1, . . ., y0. If we assume that the process is stationary and
that innovations are Gaussian white noise, the variables yt, t = 1, . . ., T
will also be jointly normally distributed. However, it is advantageous to
express the joint distribution of the noise terms in function of the data.
As the white noise is assumed to be Gaussian, the noise variables at dif-
ferent times are independent. As observed in Chapter GG, this allows
considerable simplifications for computing the likelihood function.

The noise terms (εεεε1, . . ., εεεεT) are assumed to be independent with
constant covariance matrix ΣΣΣΣ and, therefore, u = vec(U) has covariance
matrix ΣΣΣΣu = IT ⊗ ΣΣΣΣ. Under the assumption of Gaussian noise, u has the
following NT-variate normal density:

Using 

written in matrix form 

fu u( ) 2π( )
NT

2
---------–

IT ΣΣΣΣ⊗
1
2
---– 1

2
---– u′ IT ΣΣΣΣ 1–⊗( )u⎝ ⎠

⎛ ⎞exp=

2π( )
NT

2
---------–

ΣΣΣΣ
T

2
----– 1

2
---– εεεεt′ΣΣΣΣ

1– εεεεt
t 1=

T

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

exp=

εεεε1 y1 A1y0– A2y 1–– �– Apy1 p––=

εεεε2 y2 A1y1– A2y0– �– Apy2 p––=

�����������������
εεεεp yp A1y0– A2yp 2–– �– Apy0–=

εεεεp 1+ yp 1+ A1yp– A2yp 2–– �– Apy1–=

�����������������
εεεεT 1– yT 1– A1yT 2–– A2yT 3–– �– ApyT p– 1––=

εεεεT yT A1yT 1–– A2yT 2–– �– ApyT p––=
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and the model equation y = zα + u, we can express the density function
in terms of the variables

We can now write the log-likelihood as follows:

ε1

ε2

�
εp

εp 1+

�
εT 1–

εT⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞ IN 0 � 0 0 0 � � 0 0 � 0 0

A1– IN � 0 0 0 � � 0 0 � 0 0
� � � � � � � � � � � � �
Ap– Ap 1–– � A1– IN 0 � � 0 0 � 0 0 �
0 Ap– � A2– A1– IN � � 0 0 � 0 0
� � � � � � � � � � � � �
0 0 � 0 0 0 � 0 Ap– Ap 1–– � IN 0
0 0 � 0 0 0 � 0 0 Ap– � A1– IN⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

y1

y2

�
yp

yp 1+

�
yT p–

�
yT 1–

yT⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

Ap– Ap 1–– � A1–

0 Ap– � A2–

� � � �
0 0 � Ap–

� � � �
0 0 � 0⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

y1 p–

y2 p–

y 1–

y0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

+

fy y( )
∂u
∂y
------ fu u( ) 2π( )

NT

2
---------–

IT ΣΣΣΣ⊗
1
2
---– 1

2
---– y zα–( )′ IT ΣΣΣΣ 1–⊗( ) y zα–( )⎝ ⎠

⎛ ⎞exp= =

l( )log NT

2
---------– 2π( )log T

2
---- ΣΣΣΣulog 1

2
--- εεεεt

′ΣΣΣΣ 1– εεεεt
t 1=

T

∑––=

NT

2
---------– 2π( )log T

2
---- ΣΣΣΣulog 1

2
--- y zα–( )′ IT ΣΣΣΣ 1–⊗( ) y zα–( )––=

NT

2
---------– 2π( )log

T

2
---- ΣΣΣΣulog

1
2
---trace U′ΣΣΣΣu

1– U( )––=

NT

2
---------– 2π( )log

T

2
---- ΣΣΣΣulog

1
2
---trace Y AZ–( )′ΣΣΣΣu

1– Y AZ–( )( )––=
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Equating the partial derivatives of this expression to zero, we obtain the
very same estimators as with the LS method. In the case of Gaussian
noise, LS/OLS methods and ML methods yield the same result.

ESTIMATING THE NUMBER OF LAGS

In the previous sections, we assumed that the order p of the model (i.e.,
the number of lags in the model) is known. The objective of this section
is to establish criteria that allow determining a priori the correct num-
ber of lags. This idea has to be made more precise. We assume, as we
did in the previous sections on the estimation of the model coefficients,
that the true data generation process is a VAR(p) model. In this case, we
expect that the correct model order is exactly p, that is, we expect to
come out with a consistent estimate of the model order. This is not the
same problem as trying to determine the optimal number of lags to fit a
VAR model to a process that is not be generated by a VAR data generat-
ing process. We assume that the type of model is correctly specified and
discuss methods to estimate the model order under this assumption. 

In general, increasing the model order will reduce the size of residu-
als but tends to reduce the forecasting ability of the model. By increas-
ing the number of parameters, we improve the in-sample accuracy but
tend to worsen the out-of-sample forecasting ability. In this section we
consider only linear models under the assumption that the data genera-
tion process is linear and autoregressive with unknown parameters. 

To see how increasing the number of lags can reduce the forecasting
ability of the model, consider that the forecasting ability of a linear VAR
model can be estimated. Recall from Chapter 9 that the optimal forecast
of a VAR model is the conditional mean. This implies that the optimal
one-step forecast given the past p values of the process up to the present
moment is

The forecasting mean square error (MSE) can be estimated. It can be
demonstrated that an approximate estimate of the one-step MSE is

x̂t 1+ A1xt A2xt 1– � Apxt p– 1+ v+ + + +=

ΣΣΣΣx 1( )
T Np 1+ +

T
----------------------------ΣΣΣΣ p( )=
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where ΣΣΣΣ(p) is the residual covariance matrix of a model of order p and
ΣΣΣΣx(1) is the covariance matrix of the forecasting errors. Based on ΣΣΣΣx(1),
Akaike suggested a criterion to estimate the model order.1 First, we have
to replace ΣΣΣΣ(p) with its estimate. In the case of a zero-mean process, we
can estimate ΣΣΣΣ(p) as

The quantity

is called the final prediction error (FPE). In 1969, Akaike proposed to
determine the model order by minimizing the FPE.2 Four years later, he
proposed a different criterion based on information theoretic consider-
ations. The latter criterion, commonly called the Akaike information
criterion (AIC), proposes to determine the model order by minimizing
the following expression:

Neither the FPE nor the AIC estimators are consistent estimators in
the sense that they determine the correct model order in the limit of an
infinite sample. Different but consistent criteria have been proposed.
Among them, the Bayesian information criterion (BIC) is quite popular.
Proposed by Schwartz, the BIC chooses the model that minimizes the
following expression:3

1 Hirotugu Akaike, “Fitting Autoregressive Models for Prediction,” Annals of the In-
stitute of Statistical Mathematics 21 (1969), pp. 243–247.
2 Hirotugu Akaike, “Information Theory and an Extension of the Maximum Likeli-
hood Principle,” B. Petrov and F. Csaki (eds.), Second International Symposium on
Information Theory (Budapest: Akademiaio Kiado, 1973).
3 G. Schwarz, “Estimating the Dimension of a Model,” Annals of Statistics 6 (1978),
pp. 461–464.

ΣΣΣΣ̂ p( )
1
T
----X IT W′ WW′( ) 1– W–( )X′=

FPE p( ) T Np 1+ +

T Np 1+–
----------------------------

N
det ΣΣΣΣ̂ p( )( )=

AIC p( ) ΣΣΣΣ̂ p( )
2pN2

T
---------------+log=

BIC p( ) ΣΣΣΣ̂ p( )
Tlog

T
------------2pN2+log=
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There is a vast literature on model selection criteria. The justification of
each criterion impinges on rather complex considerations of information
theory, statistics, and learning theory.4

AUTOCORRELATION AND DISTRIBUTIONAL PROPERTIES OF 
RESIDUALS

The validity of the LS method does not depend on the distribution of
innovations provided that their covariance matrix exists. However, the
LS method might not be optimal if innovations are not normally distrib-
uted. The ML method, in contrast, critically depends on the distribu-
tional properties of innovations. Nevertheless, both methods are sensitive
to the autocorrelation of innovation terms. Distributional properties are
critical in applications such as asset allocation, portfolio management,
and risk management. Therefore, once the model order and parameters
are estimated, it is important to check the absence of autocorrelation in
the residuals and to ascertain deviations from normal distributions. 

There is a range of tests for the autocorrelation and normality of
residuals. In particular, the autocorrelation of residuals can be tested
with the multivariate Ljung-Box test. The multivariate Ljung-Box test
(or Q-test) is a generalization of the Ljung-Box test described in Chap-
ter 7. The null hypothesis of the Ljung-Box test is that all noise terms at
different lags up to lag s are uncorrelated. Given a n-dimensional
VAR(p) model, the Q-test statistics, in the form introduced by Hosk-
ing,5 is the following:

where 

4 See, for example, D. P. Foster and R. A. Stine, “An Information Theoretic Compar-
ison of Model Selection Criteria,” Working Paper 1180, 1997, Northwestern Uni-
versity, Center for Mathematical Studies in Economics and Management Science.
5 J.R.M. Hosking, “The Multivariate Portmanteau Statistic,” Journal of American
Statistical Association 75 (1980), pp. 602–608.

LB s( ) T T 2+( )
1

T j–
-----------tr C0jC00

1– C0j
′ C00

1–[ ]
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s

∑=

C0j T 1– εεεεtεεεεt j–
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t j 1+=

T
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and T is the sample size. Under the null hypothesis, if s > p, the distribution
of this statistic is approximately a Chi-square distribution with n2(s – p). 

In the case of stationary models, the normality of distributions can
be tested with one of the many tests for normality discussed in Chapter
7. These tests are available on most statistical computer packages.

VAR ILLUSTRATION

Let’s now illustrate step by step the process of estimating a VAR model.
As stated in Chapter 9, VAR models have been proposed to model asset
returns. If asset returns, especially indexes, can be represented as VAR
models, then future returns can be predicted from past returns. The
objective of this exercise is not to investigate the econometric validity of
this assumption but to show how to estimate VAR models and perform
diagnostic checks. Specifically, we will show how to:

 ■ Select the number of lags.
 ■ Assess the significance of VAR regression equations (in particular the

significance of individual coefficients).
 ■ Assess the causal relationships among the variables.

This information is important both as a model diagnostic and as a tool
to help the economic interpretation of the model.

We fit a VAR model to the monthly returns of three stock market
indexes: Wilshire capitalization weighted (y1), Wilshire equal weighted
(y2,), and S&P 500 (y3,). The time period covered is from October 1989
to January 2003; the data set includes 160 monthly returns. We first
model the three indexes as an unrestricted VAR process. Later, we
explore the existence of cointegrating relationships. The three series of
returns are shown in Exhibit 10.2.

Given that the return series are not integrated, the first task is to
determine the number of lags of the VAR model. In practice one com-
pares different models estimated with a different number of lags. To see
how this is done, we compare models with one and two lags. We use the
following notation:

A hyphen following the index abbreviation identifies the number of lags. 

Wilshire Capitalization Weighted (y1): WCW
Wilshire Equal Weighted (y2): WEW
S&P 500 (y3): S&P
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EXHIBIT 10.2  Monthly Returns for the Wilshire Capitalization Weighted, Wilshire 
Equal Weighted, and S&P 500: October 1989–January 2003

Month/
Year

Wilshire
Cap

Weighted
(y1) 

Wilshire
Equal

Weighted
(y2)

S&P
500
 (y3) 

Month/
Year

Wilshire
Cap

Weighted
(y1) 

Wilshire
Equal

Weighted
(y2)

S&P
500
 (y3) 

Oct-89   –2.92   –5.19   –2.33 Oct-92     1.21     2.34     0.36

Nov-89     1.77   –0.53     2.08 Nov-92     4.15     7.93     3.37

Dec-89     1.82   –1.18     2.36 Dec-92     1.78     4.55     1.31

Jan-90   –7.34   –5.10   –6.71 Jan-93     1.23     6.72     0.73

Feb-90     1.59     2.45     1.29 Feb-93     0.41   –1.12     1.35

Mar-90     2.50     2.74     2.63 Mar-93     2.57     3.32     2.15

Apr-90   –2.88   –2.70   –2.47 Apr-93   –2.76   –1.67   –2.45

May-90     9.13     5.21     9.75 May-93     3.13     4.32     2.70

Jun-90   –0.48     0.94   –0.70 Jun-93     0.46     1.36     0.33

Jul-90   –0.97   –2.78   –0.32 Jul-93   –0.01     1.34   –0.47

Aug-90   –9.41 –11.86   –9.03 Aug-93     3.86     4.01     3.81

Sep-90   –5.49   –7.87   –4.92 Sep-93     0.20     3.14   –0.74

Oct-90   –1.34   –6.53   –0.37 Oct-93     1.67     4.38     2.03

Nov-90     6.82     4.79     6.44 Nov-93   –1.62   –2.35   –0.94

Dec-90     3.17     0.58     2.74 Dec-93     1.80     1.40     1.23

Jan-91     4.86     8.63     4.42 Jan-94     3.15     5.01     3.35

Feb-91     7.78   15.58     7.16 Feb-94   –2.24   –0.43   –2.70

Mar-91     3.05     9.41     2.38 Mar-94   –4.53   –4.28   –4.35

Apr-91     0.32     3.83     0.28 Apr-94     0.96   –0.93     1.30

May-91     4.01     4.13     4.28 May-94     0.98   –0.18     1.63

Jun-91   –4.47   –3.03   –4.57 Jun-94   –2.67   –2.60   –2.47

Jul-91     4.70     3.71     4.68 Jul-94     2.97     1.37     3.31

Aug-91     2.76     3.58     2.35 Aug-94     4.42     4.08     4.07

Sep-91   –1.15     1.18   –1.64 Sep-94   –1.94     0.76   –2.41

Oct-91     1.84     3.40     1.34 Oct-94     1.63     0.13     2.29

Nov-91   –3.82   –2.17   –4.04 Nov-94   –3.66   –4.23   –3.67

Dec-91   10.98     4.80   11.43 Dec-94     1.35   –0.75     1.46

Jan-92   –0.20   17.04   –1.86 Jan-95     2.16     2.00     2.60

Feb-92     1.38     6.37     1.28 Feb-95     3.98     3.34     3.88

Mar-92   –2.48   –1.43   –1.96 Mar-95     2.64     1.92     2.96

Apr-92     1.34     3.75     2.91 Apr-95     2.48     2.52     2.91

May-92     0.61     0.94     0.54 May-95     3.39     1.99     3.95

Jun-92   –2.04   –2.80   –1.45 Jun-95     3.19     5.47     2.35

Jul-92     4.05     3.03     4.03 Jul-95     4.11     5.96     3.33

Aug-92   –2.11   –2.49   –2.02 Aug-95     0.97     3.41     0.27

Sep-92     1.19     1.53     1.15 Sep-95     3.81     2.98     4.19
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EXHIBIT 10.2     (Continued)

Month/
Year

Wilshire
Cap

Weighted
(y1) 

Wilshire
Equal

Weighted
(y2)

S&P
500
 (y3) 

Month/
Year

Wilshire
Cap

Weighted
(y1) 

Wilshire
Equal

Weighted
(y2)

S&P
500
 (y3) 

Oct-95   –1.00   –4.51   –0.35 Dec-98     6.40     2.08     5.76

Nov-95     4.24     1.80     4.40 Jan-99     3.68     8.50     4.18

Dec-95     1.63     1.04     1.85 Feb-99   –3.62   –4.40   –3.11

Jan-96     2.68     3.02     3.44 Mar-99     3.86   –0.41     4.00

Feb-96     1.75     4.05     0.96 Apr-99     4.79     8.40     3.87

Mar-96     1.09     2.78     0.96 May-99   –2.19     4.30   –2.36

Apr-96     2.47     6.43     1.47 Jun-99     5.18     4.41     5.55

May-96     2.73     8.05     2.58 Jul-99   –3.21     0.82   –3.12

Jun-96   –0.82   –3.19     0.41 Aug-99   –0.93   –3.51   –0.50

Jul-96   –5.40   –8.41   –4.45 Sep-99   –2.61   –1.64   –2.74

Aug-96     3.20     4.55     2.12 Oct-99     6.36   –0.39     6.33

Sep-96     5.32     3.44     5.62 Nov-99     3.35     9.64     2.03

Oct-96     1.40   –2.23     2.74 Dec-99     7.59     8.62     5.89

Nov-96     6.63     2.03     7.59 Jan-00   –4.15   10.35   –5.02

Dec-96   –1.13     0.48   –1.96 Feb-00     2.24   15.95   –1.89

Jan-97     5.35     6.66     6.21 Mar-00     5.94     0.78     9.78

Feb-97   –0.05   –1.41     0.81 Apr-00   –5.21 –10.14   –3.01

Mar-97   –4.42   –4.86   –4.16 May-00   –3.49   –6.91   –2.05

Apr-97     4.36   –2.66     5.97 Jun-00     4.41     8.65     2.47

May-97     7.09     9.51     6.14 Jul-00   –2.04   –1.96   –1.56

Jun-97     4.59     4.89     4.46 Aug-00     7.26     5.64     6.21

Jul-97     7.69     5.25     7.94 Sep-00   –4.67   –3.91   –5.28

Aug-97   –3.76     3.54   –5.56 Oct-00   –2.12   –7.10   –0.42

Sep-97     5.90     8.97     5.48 Nov-00   –9.95 –13.18   –7.88

Oct-97   –3.33   –2.11   –3.34 Dec-00     1.78   –1.67     0.49

Nov-97     3.27   –2.02     4.63 Jan-01     3.83   26.88     3.55

Dec-97     1.85   –2.15     1.72 Feb-01   –9.48   –7.75   –9.12

Jan-98     0.54     1.75     1.11 Mar-01   –6.73   –7.28   –6.33

Feb-98     7.28     6.86     7.21 Apr-01     8.23     7.45     7.77

Mar-98     5.00     5.66     5.12 May-01     1.00     7.86     0.67

Apr-98     1.19     3.01     1.01 Jun-01   –1.68     1.28   –2.43

May-98   –2.66   –4.09   –1.72 Jul-01   –1.65   –2.96   –0.98

Jun-98     3.51   –2.69     4.06 Aug-01   –6.05   –4.00   –6.26

Jul-98   –2.19   –5.17   –1.06 Sep-01   –8.98 –13.02   –8.08

Aug-98 –15.57 –19.79 –14.46 Oct-01     2.54     8.39     1.91

Sep-98     6.53     3.80     6.41 Nov-01     7.65     7.61     7.67

Oct-98     7.44     3.62     8.13 Dec-01     1.80     6.19     0.88

Nov-98     6.30     8.68     6.06 Jan-02   –1.24     2.69   –1.46
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EXHIBIT 10.2     (Continued) 

We will first estimate and discuss each model separately and then
compare the two models. Let’s start with the one lag case, that is, repre-
sent our three index time series as the following VAR model:

We treat each equation as a regression equation and compute the t-sta-
tistics for each coefficient to assess its significance. We also compute the
Q-statistics to assess if residuals are autocorrelated and the Granger
causality probability to assess causal links between variables.

Note that for a VAR(p) model and sample size T we have at most T – p
observations for estimation. Thus, with p = 1 and T = 160, we can use
159 observations.

For each equation, there are three independent regressors plus a
constant so that k = 4 coefficients need to be estimated. Least-squares
estimation results are reported for each equation in the three panels in
Exhibit 10.3. The Granger causality probabilities are summarized in
Exhibit 10.4. The three panels in Exhibit 10.5 show the predicted versus
the actual values of the three variables.  

Let us look at the estimated coefficients for equation WCW-1. Again,
keep in mind that this is only an exercise on how to apply modeling tools,
we do not claim any general validity for the results. 

Month/
Year

Wilshire
Cap

Weighted
(y1) 

Wilshire
Equal

Weighted
(y2)

S&P
500
 (y3) 

Feb-02   –2.06   –3.72   –1.93

Mar-02     4.38     8.97     3.76

Apr-02   –4.88   –0.22   –6.06

May-02   –1.18   –2.05   –0.74

Jun-02   –7.03   –6.79   –7.12

Jul-02   –8.07 –11.37   –7.80

Aug-02     0.59     0.74     0.66

Sep-02 –10.03   –8.46 –10.87

Oct-02     7.65     4.29     8.80

Nov-02     6.03   13.28     5.89

Dec-02   –5.54   –4.48   –5.88

Jan-03   –2.52     1.26   –2.62

WCW-1

WEW-1

S&P-1

y1 t( ) c1 a11 1, y1 t 1–( ) a12 1, y2 t 1–( ) a13 1, y3 t 1–( ) ε1 t( )+ + + +=

y2 t( ) c2 a21 1, y1 t 1–( ) a22 1, y2 t 1–( ) a23 1, y3 t 1–( ) ε2 t( )+ + + +=

y3 t( ) c3 a31 1, y1 t 1–( ) a32 1, y2 t 1–( ) a33 1, y3 t 1–( ) ε3 t( )+ + + +=
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EXHIBIT 10.3  Estimates of the Three Equations of a VAR Model with One Lag
Panel A. Equation Estimated: WCW-1

R2 = 0.0497 
Adjusted R2 = 0.0313 

Q-statistic = 0.0323 

Panel B. Equation Estimated: WEW-1

R2 = 0.1578 
Adjusted R2 = 0.1415 

Q-statistic = 0.0076

Panel C. Equation Estimated: S&P-1

R2 = 0.0529 
Adjusted R2 = 0.0345 

Q-statistic = 0.0187 

EXHIBIT 10.4  Granger Causality Probabilities

Variable Coefficient t-statistic t-probability 

y1 lag1 a11,1 = 1.679106   2.825664 0.005340 
y2 lag1 a12,1 = –0.233356 –2.148203 0.033251 
y3 lag1 a13,1 = –1.489729 –2.802706 0.005715 
Constant c1 = 1.040901   2.881954 0.004513

Variable Coefficient t-statistic t-probability 

y1 lag1 a21,1 = 3.382911   4.445398 0.000017 
y2 lag1 a22,1 = –0.312517 –2.246509 0.026084 
y3 lag1 a23,1 = –2.817606 –4.139312 0.000057 
Constant c2 = 1.424466   3.079692 0.002452

Variable Coefficient t-statistic t-probability 

y1 lag1 a31,1 = 1.667135   2.847066 0.005011 
y2 lag1 a32,1 = –0.237547 –2.219168 0.027928 
y3 lag1 a33,1 = –1.504514 –2.872438 0.004644 
Constant c3 = 1.099824   3.090190 0.002372

Variable y1  y2 y3

y1 0.01 0.03 0.01
y2 0.00 0.03 0.00
y3 0.01 0.03 0.00

σ̂1
2 εεεε̂′εεεε̂ n k–( )⁄ εεεε̂′εεεε̂ 155⁄ 19.0604= = =

σ̂1
2 εεεε̂′εεεε̂ n k–( )⁄ εεεε̂′εεεε̂ 155⁄ 31.2591= = =

σ̂1
2 εεεε̂′εεεε̂ n k–( )⁄ εεεε̂′εεεε̂ 155⁄ 18.5082= = =
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EXHIBIT 10.5  The Predicted versus the Actual Values of the Three Variables 
Panel A: Actual versus Predicted Equation WEW–1. The second graph represents re-
siduals. 

Panel B: Actual versus Predicted Equation WMW–1. The second graph represents
residuals. 
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EXHIBIT 10.5     (Continued)
Panel C: Actual versus Predicted Equation S&P–1. The second graph represents re-
siduals. 

Recall that the t-statistics associated with each coefficient are
obtained dividing each coefficient estimate by its respective estimated
standard deviation (see Chapter 2) under the assumption that that coef-
ficient is zero. As explained in Chapter 2, the t-statistic of an estimated
coefficent represents how many standard deviations that coefficient is
far from zero. For example, in equation WCW-1, the coefficient of is
1.679106 and its t-statistic is 2.825664. This means that this estimated
coefficient is 2.825664 standard deviations from zero.

The t-probability6 relative to a coefficient estimates the probability
of the null hypothesis that that coefficient is zero; that is, it tests the sig-
nificance of that coefficient. Small t-values correspond to statistically
significant coefficients. For this exercise, we assume that coefficients are
significant at 99% (i.e., t-values less than 0.01).The t-probability is the
p-value of the t-statistics, that is, the probability of the tail beyond the
observed value of the t-statistics of the Student-t distribution with T – p

6 Recall from Chapter 2 that the t-probability is the probability that the t-statistic ex-
ceeds a given threshold. The p-probability is the probability of the null that all the
coefficients be zero.
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= 155 degrees of freedom. Exhibit 9.2 shows that only the coefficient of
at lag 1 has a nonnegligible probability of being irrelevant. In fact, that
coefficient is –2.148203 standard deviations from zero, which corre-
sponds to a tail probability in excess of 3%.7

The overall usefulness of the WCW-1 equation can be assessed by
the R2 and the adjusted R2. Though the null hypothesis that the coeffi-
cients of the equation WCW-1 are zero can be rejected, the R2 shows
that only 5% of the variance of variable is explained. The Q-statistic
confirms that the residuals have a weak autocorrelation.

We can now repeat the same reasoning for equation WEW-1. Exhibit
9.2 shows that only the coefficient at lag 1 has a nonnegligible probabil-
ity of being irrelevant. Note that the t-probabilities of coefficients of
equation WEW-1 are lower than those of equation WCW-1.

The R2 and the adjusted R2 reveal that equation WEW-1 has more
explanatory power than equation WCW-1. In fact, nearly 16% of the
variance is explained. In addition, the Q-statistic shows that the autocor-
relation of the residuals of equation WEW-1 is negligible. As explained in
Chapter 7, the Q-statistic tests the autocorrelation coefficient at every lag
by forming the sum of the squared autocorrelation coefficients.

The results for equation S&P-1 are very similar to those of equation
WCW-1. 

Exhibit 10.4 shows the Granger causality probabilities. All the
probabilities are small, which implies that there are no clear causal links
between the three indexes.

Finally, Exhibit 10.5 shows the predicted versus the actual values of
the three variables.  

Let’s now discuss the VAR model with two lags. That is, we fit the
following VAR model to the three index series:

We can now perform the same exercise as with the VAR(1) model with
two lags. The sample now includes 158 observations. One might object

7 The threshold for statistical significance is subjective. In addition, some statisticians
question the validity of tail probabilities to gauge significance. See Chapter 2.

WEW-2

WMW-2

S&P-2

y1 t( ) c1 a11 1, y1 t 1–( ) a12 1, y2 t 1–( ) a13 1, y3 t 1–( )+ + +=

a11 2, y1 t 2–( ) a12 2, y2 t 2–( ) a13 2, y3 t 2–( ) ε1 t( )+ + + +

y2 t( ) c2 a21 1, y1 t 1–( ) a22 1, y2 t 1–( ) a23 1, y3 t 1–( )+ + +=

a21 2, y1 t 2–( ) a22 2, y2 t 2–( ) a23 2, y3 t 2–( ) ε2 t( )+ + + +

y3 t( ) c3 a31 1, y1 t 1–( ) a32 1, y2 t 1–( ) a33 1, y3 t 1–( )+ + +=

a31 2, y1 t 2–( ) a32 2, y2 t 2–( ) a33 2, y3 t 2–( ) ε3 t( )+ + + +
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that we compare models estimated on different data sets (158 versus159
data points). Though this is true, in practice we have effectively more
data to estimate a VAR(1) model with respect to a VAR(2) model. Each
regression equation now has six regressors, three variables for each lag. 

The least squares estimates are reported for each equation in the
three panels in Exhibit 10.6. The Granger causality probabilities are
summarized in Exhibit 10.7 while the three panels in Exhibit 10.8 show
the predicted versus the actual values of the three variables. Again, keep
in mind that this is only an exercise on how to apply modeling tools. 

In equation WCW-2, the t-statistics show that at a 99% confidence
level we cannot reject the null hypothesis of zero coefficient for variable
y1 at lag 2, for variable y2 at both lags, and for variable y3 at lag 2.
Equation WCW-2 has little explanatory power, with less than 7% of the
variance of y1 explained by the regression equation. This result is in
agreement with the previous case of one lag.

For equation WEW-2, we find that for the coefficients a21,2, a22,2,
a23,2 the null hypothesis of zero cannot be rejected (i.e., the null hypoth-
esis that these coefficients are not significant cannot be rejected).

As in the case with one lag (WEW-1), equation WEW-2 has a much
higher explanatory power with an R2 about 16%, but the residuals seem
to be slightly autocorrelated.

In equation S&P-2 all first coefficients are significant. The overall
significance of equation S&P-2 is similar to that for one lag in equation
S&P-1.

EXHIBIT 10.6  Estimates of the Three Equations of a VAR Model with Two Lags
Panel A: Equation Estimated: WCW-2 

R2 = 0.0675 
Adjusted R2 = 0.0305 

Q-statistic = 0.0284 

Variable Coefficient t-statistic t-probability 

y1 lag1 a11,1 = 1.717375   2.743612 0.006813 
y1 lag2 a11,2 = 0.523684   0.797806 0.426236 
y2 lag1 a12,1 = –0.242473 –1.946917 0.053400 
y2 lag2 a12,2 = –0.178097 –1.591905 0.113497 
y3 lag1 a13,1 = –1.535214 –2.764817 0.006406 
y3 lag2 a13,2 = –0.343669 –0.590118 0.555993 
constant c1 = 1.155683   2.991625 0.003242 

σ̂1
2 εεεε̂′εεεε̂ n k–( )⁄ εεεε̂′εεεε̂ 155⁄ 19.1921= = =
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EXHIBIT 10.6     (Continued)
Panel B: Equation Estimated: WEW-2 

R2 = 0.1659 
Adjusted R2 = 0.1328 

Q-statistic = 0.0948 

Panel C: Equation Estimated: S&P-2

R2 = 0.0624 
Rbar-squared = 0.0252 

Q-statistic = 0.0775 

EXHIBIT 10.7  Granger Causality Probabilities

Variable Coefficient t-statistic t-probability 

y1 lag1 a21,1 = 3.402066   4.225204 0.000041 
y1 lag2 a21,2 = 0.550829   0.652368 0.515156 
y2 lag1 a22,1 = –0.309937 –1.934661 0.054901 
y2 lag2 a22,2 = –0.171607 –1.192458 0.234952 
y3 lag1 a23,1 = –2.859107 –4.002905 0.000098 
y3 lag2 a23,2 = –0.420667 –0.561545 0.575259 
constant c2 = 1.581039   3.181692 0.001778 

Variable Coefficient t-statistic t-probability 

y1 lag1 a31,1 = 1.707183   2.755778 0.006577 
y1 lag2 a31,2 = 0.410345   0.631660 0.528564 
y2 lag1 a32,1 = –0.247446 –2.007572 0.046473 
y2 lag2 a32,2 = –0.130363 –1.177396 0.240890 
y3 lag1 a33,1 = –1.547094 –2.815274 0.005524 
y3 lag2 a33,2 = –0.275951 –0.478782 0.632786 
constant c3 = 1.182225   3.092252 0.002367 

Variable y1 y2 y3

y1 0.03 0.06 0.02
y2 0.00 0.10 0.00
y3 0.02 0.09 0.02

σ̂1
2 εεεε̂′εεεε̂ n k–( )⁄ εεεε̂′εεεε̂ 155⁄ 31.7561= = =

σ̂1
2 εεεε̂′εεεε̂ n k–( )⁄ εεεε̂′εεεε̂ 155⁄ 18.7979= = =

c10-VectorAutoregress  Page 369  Thursday, October 26, 2006  2:08 PM



370 FINANCIAL ECONOMETRICS

Exhibit 10.7 shows the Granger causality probabilities. With two
lags, the Granger-causality probability exhibit a weak structure, which
might indicate some causal links.

Exhibit 10.8 illustrates graphically the predicted versus the actual
values of the three variables. 

Let’s now compare the two models. The variance of the residuals is
slightly smaller in the case of two lags. To see if we should prefer the
model with two lags to the model with one lag, let’s use the AIC crite-
rion. This criterion requires computing the following expression:

where  is the variance of residuals, n is the number of data points and
k the number of parameters. The model with the smallest AIC value has
to be preferred. If we consider, for example, equations WCW-1 and
WCW-2, in the case of one lag, there are 159 data points and four param-
eters to estimate, while in the case of two lags there are 158 data points
and seven parameters to estimate. Computing the AIC coefficient yields:

n σ̂ε
2 2k+log

σ̂ε
2

EXHIBIT 10.8  Predicted Versus Actual Values of the Three Variables
Panel A: Actual versus Predicted Equation WEW-2. The second graph represents re-
siduals. 
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EXHIBIT 10.8     (Continued)
Panel B: Actual versus Predicted Equation WMW-2. The second graph represents re-
siduals.

Panel C: Actual versus Predicted Equation S&P-2. The second graph represents residuals.
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For one lag: 159 × log(19.0604) + 2 × 4 = 476.6704 

For two lags: 158 × log(19.1921) + 2 × 7 = 480.8108 

For the equations WEW-1 and WEW-2, we obtain respectively 555.3274
and 563.8355 and for the equations S&P-1 and S&P-2 471.9960 and
477.5317 respectively. Therefore there should be a slight preference for
a model with only one lag.

CONCEPTS EXPLAINED IN THIS CHAPTER
(IN ORDER OF PRESENTATION)

Restricted and unrestricted VAR models
Companion matrix
Multivariate least squares estimation
Vec operator
Kronecker product
Normal equations
LS estimators
Asymptotic distributions of LS estimators
Demeaned processes
ML estimators
Likelihood of the VAR model
Mean square error (MSE)
Final prediction error (FPE)
Akaike information criterion (AIC)
Bayesian information criterion (BIC)
Ljung-Box test
Q-test
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Cointegration and State Space
Models

 

n this chapter, we introduce the concepts of cointegrated processes and
state space models, as well as the relative estimation methods. State

space models were introduced in the engineering literature in the 1960s
especially through the work of Rudolf E. Kalman. Cointegration analy-
sis is a more recent econometric tool. The first articles to introduce coin-
tegrated models were penned by Engle and Granger in the second half of
the 1980s. 

Though vector autoregressive (VAR) processes and state space mod-
els are equivalent representations of the same processes, deeper insight
into the relationship between state space models and cointegration was
gained more recently when it was understood that cointegration implies
a reduced number of common stochastic trends. The idea behind cointe-
gration that there are feedback mechanisms that force processes to stay
close together is therefore intimately related to the idea that the behav-
ior of large sets of processes is driven by the dynamics of a smaller num-
ber of variables. 

 

COINTEGRATION

 

Cointegration is one of the key concepts of modern econometrics. Let’s
start by giving an intuitive explanation of cointegration and its proper-
ties. Two or more processes are said to be 

 

cointegrated

 

 if they stay close
to each other even if they “drift about” as individual processes. A color-
ful illustration is that of the drunken man and his dog: Both stumble
about aimlessly but never drift too far apart. Cointegration is an impor-

I
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tant concept both for economics and financial modeling. It implements
the notion that there are feedbacks that keep variables mutually aligned.
To introduce the notion of cointegration, recall the concepts of station-
ary processes and integrated processes. 

 

Key Features of Cointegration

 

Let’s first give an intuitive characterization to the concept of cointegra-
tion in the case of two stochastic processes. Cointegration can be under-
stood in terms of its three key features:

 

 ■ 

 

Reduction of order of integration

 

 ■ 

 

Regression

 

 ■ 

 

Common trends

First, consider

 

 reduction of order of integration

 

. 

 

Two or more stochastic
processes that are integrated of order one or higher are said to be coin-
tegrated if there are linear combinations of the processes with a 

 

lower

 

order of integration. In financial econometrics, cointegration is usually a
property of processes integrated of order one that admit linear combina-
tions integrated of order zero (stationary). As we will see, it is also pos-
sible to define fractional cointegration between fractionally integrated
processes.

Second, the concept of cointegration can be also stated in terms of

 

linear regression

 

. Two or more processes integrated of order one are
said to be cointegrated if it is possible to make a meaningful linear
regression of one process on the other(s). In general, it is not possible to
make a meaningful linear regression of one integrated process over
another. However, regression is possible if the two processes are cointe-
grated. Cointegration is that property that allows one to meaningfully
regress one integrated process on other integrated processes.

Finally, a property of cointegrated processes is the presence of inte-
grated 

 

common trends

 

. Given 

 

n

 

 processes with 

 

r

 

 cointegrating relation-
ships, it is possible to determine 

 

n-r

 

 common trends. Common trends are
integrated processes such that any of the 

 

n

 

 original processes can be
expressed as a linear regression on the common trends. Cointegration
entails dimensionality reduction insofar as common trends are the com-
mon drivers of a set of processes.

 

Long-Run Equilibrium

 

Given 

 

n

 

 processes integrated of order one, the processes are said to be
cointegrated if there is a linear combination of the processes that is sta-
tionary. If the processes are stock prices, cointegration means that even
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if the stock prices are individually integrated of order one—for example
arithmetic random walks—there are portfolios that are stationary. The
linear relationships that produce stationary processes are called 

 

cointe-
grating

 

 relationships.
Cointegrated processes are characterized by a short-term dynamics

and a long-run equilibrium. Note that this latter property does not
mean that cointegrated processes 

 

tend

 

 to a long-term equilibrium. On
the contrary, the relative behavior is stationary. Long-run equilibrium is
the static regression function, that is, the relationship between the pro-
cesses after eliminating the short-term dynamics.

In general, there can be many linearly independent cointegrating
relationships. Given 

 

n

 

 processes integrated of order one, there can be a
maximum of 

 

n

 

 – 1 cointegrating relationships. Cointegrating relation-
ships are not uniquely defined: In fact, any linear combination of cointe-
grating relationships is another cointegrating relationship.

 

More Rigorous Definition of Cointegration

 

Let’s now define cointegration in more rigorous terms. The concept of
cointegration was introduced by Granger in the second half of the
1980s.

 

1

 

 It can be expressed in the following way. Suppose that 

 

n

 

 time
series 

 

x

 

i

 

,

 

t

 

, integrated of the same order 

 

d

 

 are given. If there is a linear
combination of the series

that is integrated of order 

 

e < d

 

, then the series are said to be cointe-
grated. Any linear combination as the one above is called a cointegrat-
ing relationship. The most commonly found concept of cointegration in
financial econometrics is between processes integrated of order 

 

d 

 

= 1
that exhibit stationary linear combinations (

 

e = 

 

0).
The concept of cointegration can be extended to processes integrated

of order 

 

d

 

 where 

 

d

 

 is a rational fraction. Such processes are called 

 

frac-
tionally integrated processes

 

. The reduction of the order of integration can
be fractional too. For example, processes with order of integration 

 

d = 

 

¹⁄₂

 

are cointegrated if they exhibit linear combinations that are stationary.
Given 

 

n

 

 time series, there can be from none to at most 

 

n

 

 – 1 cointe-
grating relationships. The cointegration vectors [

 

β

 

i

 

] are not unique. In
fact, given two cointegrating vectors [

 

α

 

i

 

] and [

 

β

 

i

 

] such that 

 

1 

 

Clive W.J. Granger, “Some Properties of Time Series Data and Their Use in Econo-
metric Model Specification,” 

 

Journal of Econometrics

 

 16 (1981), pp. 121–130.

δt βixi t,
i 1=

n

∑=
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,   

are integrated of order 

 

e

 

, any linear combination of the cointegrating
vectors is another cointegrating vector as the linear combination

is integrated of order 

 

e

 

.

 

Stochastic and Deterministic Cointegration

 

An important distinction has to be made between stochastic and deter-
ministic cointegration. Following the definition of cointegration given
above, a multivariate integrated process is cointegrated if there are sta-
tionary linear combinations of its components. Let us now look at how
we define cointegration if the integrated process has a deterministic trend.

Suppose that the multivariate stochastic process 

 

x

 

t

 

 has a determinis-
tic trend. The process 

 

x

 

t

 

 is said to be 

 

stochastically cointegrated

 

 if there
are linear combinations of the process components, each including its
own deterministic trend, that are trend stationary (i.e., stationary plus a
deterministic trend). In other words, stochastic cointegration removes
stochastic trends but not necessarily deterministic trends.

The process 

 

x

 

t

 

 is said to be 

 

deterministically cointegrated

 

 if there
are linear combinations of the process components, each including its
own deterministic trend, that are stationary without any deterministic
trend. In other words, deterministic cointegration removes both sto-
chastic trends and deterministic trends.

 

Common Trends

 

Suppose there are 

 

n

 

 time series 

 

x

 

i

 

,

 

t

 

, 

 

i

 

 = 1, …, 

 

n

 

, and 

 

k < n

 

 cointegrating
relationships. It can be demonstrated that there are 

 

n – k 

 

integrated time
series 

 

u

 

j

 

,

 

t

 

, 

 

j

 

 = 1, …, 

 

n

 

 – 

 

k

 

, called 

 

common trends

 

, such that every time
series can expressed as a linear combination of the common trends plus
a stationary disturbance: 

αiXi
i 1=

n

∑ βiXi
i 1=

n

∑

A αiXi
i 1=

n

∑ B βiXi
i 1=

n

∑+

xi t, γ juj t, ηi t,+
j 1=

n k–

∑=
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In other words, each process can be regressed on the common trends.
Common trends are integrated processes; they were first discussed by
Stock and Watson.

 

2

 

 
Let’s now analyze how, in a set of cointegrated processes, each pro-

cess can be expressed in terms of a reduced number of common stochastic
trends. The exposition follows the original work of Stock and Watson.

 

3

 

Suppose that the 

 

n

 

-variate process 

 

x

 

t

 

 has no deterministic trend, is inte-
grated of order 1, and admits 

 

n – k linearly independent cointegrating
relationships. This means that there are r = n – k vectors of coefficients
βi,j, i = 1, 2, …, n and j = 1, 2, …, r such that the processes

are stationary. Assuming that the process has no deterministic trend, we
do not have to make any distinction between stochastic and determinis-
tic cointegration. If xt represent logarithms of stock prices, cointegra-
tion means that there are r portfolios that are stationary even if each
individual price process is a random walk.

We arrange the cointegrating relationships in an n × r matrix: 

This matrix has rank r given that its columns are linearly independent.
Therefore the r-variate process ββββ′xt is stationary. Recall that the process
can be represented as

where x–1 represents the constant term. It can be demonstrated that the
assumption of r independent cointegrating relationships implies

2 James H. Stock and Mark W. Watson, “Diffusion Indexes,” NBER Working Paper
W6702, 1998; James H. Stock and Mark W. Watson, “New Indexes of Coincident
and Leading Economic Indications,” in O.J. Blanchard and S. Fischer (eds.), NBER
Macroeconomics Annual 1989 (Cambridge, MA: MIT Press, 1989).
3 James H. Stock and Mark W. Watson, “Testing for Common Trends,” Journal of
the American Statistical Association 83 (December 1988), pp. 1097–1107.

βi j, xi t,
i 1=

n

∑

ββββ
β1 1, … β1 n k–,

··· ··· ···
βn 1, … βn n k–,⎝ ⎠

⎜ ⎟
⎜ ⎟
⎛ ⎞

=

xt ΨΨΨΨ εεεεi
i 1=

t

∑ ΨΨΨΨi
*Li

i 0=

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

εεεεt x 1–+ +=
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ββββ′ΨΨΨΨ = 0

Therefore, we can write

where zt is a r-variate stationary process. The stochastic trends have
been removed.

Let’s now explicitly express the process xt in terms of common sto-
chastic trends. Observe that the assumption of r cointegrating relation-
ships entails that both ββββ′ΨΨΨΨ = 0 and ΨΨΨΨ has rank k = n – r. In fact, if the
rank of ΨΨΨΨ were smaller than k = n – r, then there would be one or more
additional cointegrating relationships. Because ΨΨΨΨ has rank k < n there is
an n × r matrix H1 such that ΨΨΨΨH1 = 0. Furthermore, if H2 is an n × k
matrix with rank k and columns orthogonal to the columns of H1 then
A = ΨΨΨΨH2 is a n × k matrix with rank k. The n × n matrix H = [H1H2] is
non singular and ΨΨΨΨH = [0A]. We can therefore write the representation
in terms of common stochastic trends as follows:

Cointegrated VAR Illustration
Let’s now illustrate step by step the process of estimating a cointegrated
VAR model. The theory of estimation of cointegrated processes is devel-
oped in the next sections. As most advanced econometric software have
packages for cointegration estimation that can be used without a detailed
knowledge of the theory, we first present the examples. We will use the
same data we used for illustrating the VAR modeling, namely monthly
return data for the three indexes—Wilshire Capitalization Weighted
(WCW), Wilshire Equal Weighted (WEW), and S&P 500 (S&P) index.
Returns form stationary time series. Cointegration, however, is a concept
that applies to integrated processes. Therefore, our first task is to recon-
struct the value Pi of each index from the relative returns. 

Returns for each of the three indexes are defined as follows:

ββββ′xt zt ββββ′ ΨΨΨΨi
*Li

i 0=

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

εεεεt ββββ′x 1–+= =

xt ΨΨΨΨH( ) H 1– εεεεi
i 1=

t

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

ΨΨΨΨi
*Li

i 0=

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

εεεεt x 1–+ + Aττττt ΨΨΨΨi
*Li

i 0=

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

εεεεt x 1–+ += =

ττττt H 1– εεεεi
i 1=

t

∑=
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, i = 1, 2, 3

Therefore we can write the value of each index as follows:

Using this formula we can now compute the values of the three indexes,
assuming conventionally that the three indexes have initial unitary
value. Assuming returns are a stationary process, the value process is a
nonlinear geometrical process. However, if we take the logarithms of
values we obtain an integrated process. 

Exhibit 11.1 shows the three integrated processes corresponding to
the logarithms of the index values. Note that we are considering only
the 130 months period from October 1989 to August 2000. The reason

Rt
i Vt

i Vt 1–
i–

Vt 1–
i

-------------------------
Vt

i

Vt 1–
i

------------- 1–= =

Vt
i 1 Rt

i+( )Vt 1–
i V1

i 1 Rs
i+( )

s 2=

t

∏= =

EXHIBIT 11.1  Logarithms of the Index Values

c11-Cointegration  Page 379  Thursday, October 26, 2006  2:08 PM



380 FINANCIAL ECONOMETRICS

is that it is widely accepted that there was a structural break in year
2000. Structural breaks substantially affect cointegration tests. 

Note that the following estimation exercise has the sole purpose of
showing how cointegration tests are applied and is not intended to pro-
vide general conclusions about the characteristics of financial markets.
Because most state-of-the-art econometric packages offer cointegration
analysis, the objective of our exercise is to show how results from a typ-
ical package should be read and interpreted.

Let’s now run the cointegration analysis using the Johansen method-
ology that will be described in the following sections. We start by deter-
mining the number of cointegrating relationships. Then we specify the
number of lags. How we determine the number of lags is discussed in
the next section on error correction models.

The Johansen methodology offers two tests for testing the number
of cointegrating relationships: the trace test and the eigenvalue test.
Exhibit 11.2 presents the results of both tests.

The trace test tests the null hypothesis that there are at most r coin-
tegrating relationships. That is, rejecting the null means that there are
more than r cointegrating relationships. Panel A of Exhibit 11.2 reports
the results of the trace test. The test itself computes the trace statistic, as
explained in the previous chapter, and compares it with critical values.
Critical values have been computed by several different sources, includ-
ing Johansen himself. The trace test rejects the null if the trace statistic
exceeds the critical value.

EXHIBIT 11.2  Results of Johansen Trace and Eigenvalue Tests
Panel A: Results of Trace Test:

Panel B: Results of Eigenvalue Test:

Critical Value at

Null Hypothesis Trace Statistic 90% 95% 99%

r ≤ 0 38.047 27.067 29.796 35.463 
r ≤ 1   3.890 13.429 15.494 19.935 
r ≤ 2   0.364   2.705   3.841   6.635 

Critical Value at

Null Hypothesis Eigenvalue Statistic 90% 95% 99%

r ≤ 0 34.157 18.893 21.131 25.865 
r ≤ 1   3.526 12.297 14.264 18.520 
r ≤ 2   0.364   2.705   3.841   6.635
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The trace test is performed sequentially. First we test the null
hypothesis that there are at most 0 cointegrating relationships; that is,
we test the null hypothesis of no cointegration. Then we proceed to test
the null of at most 1 or 2 cointegrating relationships. The first line of
Panel A in the exhibit tests the null r ≤ 0. The trace statistic has the
value 38.047 which largely exceeds critical values at the 90%, 95%,
and 99% confidence levels. Therefore the null hypothesis of no cointe-
gration is rejected at the 99% confidence level.

The second and the third lines in Panel A of Exhibit 11.2 test the
null hypothesis that r ≤ 1 and r ≤ 2, respectively. The trace statistics
3.526 and 0.364 are well below the respective critical levels at every
confidence level. Therefore the null hypothesis of at most 1 or 2 cointe-
gration relationship is accepted. The conclusion is there is one cointe-
grating relationship.

The eigenvalue test tests the null hypothesis of r versus r + 1 cointe-
grating relationships. The test rejects the null hypothesis if the eigen-
value test statistic exceeds the respective critical value. The results are
reported in panel B of Exhibit 11.2. The first line in panel B rejects the
null hypothesis of 0 versus 1 cointegrating relationships, while the sec-
ond and the third lines accept the null hypothesis of 1 versus 2 and 2
versus 3 cointegrating relationships. Both tests therefore conclude that
there is one cointegrating relationship.

ERROR CORRECTION MODELS

Having discussed cointegration and cointegrated processes, we now dis-
cuss their representation. Granger was able to demonstrate that a multi-
variate integrated process is cointegrated if and only if it can be
represented in the error correction model (ECM) form with appropriate
restrictions. 

First we rewrite a generic VAR model in error correction form. All
VAR models can be written in the following error-correction form:

where there are p – 1 terms are in first differences and the last term is in
levels. The term in levels can be placed at any lag. 

To see how this representation can be obtained, consider, for exam-
ple, the following transformations of a VAR(2) model:

∆xt ΦΦΦΦ1L ΦΦΦΦ2L2 … ΦΦΦΦp 1– Lp 1–+ + +( )∆xt ΠΠΠΠLpxt Dst εεεεt+ + +=
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with the term in level at lag 2, or 

with the term in level at lag 1. Clearly these transformations can be
immediately generalized to any number of lags. Note that, though they
mix differences and levels, these transformations do not assume any
special property of the VAR model: they are simple rearrangements of
terms which are always possible. Cointegration is expressed as restric-
tions on the matrix ΠΠΠΠ. 

In fact, cointegration is expressed as the ECM representation of a mul-
tivariate process in first differences with corrections in levels as follows:

where αααα is an n × r matrix, ββββ is an n × r matrix with ααααββββ′ = ΠΠΠΠ.
In the above ECM representation, ββββ′xt reflect common trends while

αααα contains the loading factors of the common trends. If r = 0, there is no
common trend and no cointegration exists between the processes; if r =
n, the processes are stationary; in the other cases n > r > 0, processes are
integrated and there are cointegrating relationships.

Illustration
Let’s illustrate ECM to determine the number of lags for the three
indexes in an earlier illustration. Different models have to be run and
results compared with the same significance tests used for the VAR
model. Let’s start with one lag. We use the notation in the previous
chapter to denote the number of lags by following the index with a
hyphen and the number of lags. 

xt A1xt 1– A2xt 2– Dst εεεεt+ + +=

xt xt 1–– A1 I–( )xt 1– A1 I–( )xt 2– A1 I–( )xt 2– A2xt 2– Dst εεεεt+ + + +–=

∆xt A1 I–( )∆xt 1– A1 A2 I–+( )xt 2– Dst εεεεt+ + +=

ΦΦΦΦ1 A1 I–( )= ΠΠΠΠ A1 A2 I–+( )=,

xt A1xt 1– A2xt 2– Dst εεεεt+ + +=

xt xt 1–– A1 A2 I–+( )xt 1– A2xt 1– A2xt 2– Dst εεεεt+ + +–=

∆xt A– 2( )∆xt 1– A1 A2 I–+( )xt 1– Dst εεεεt+ + +=

ΦΦΦΦ1 A– 2 ΠΠΠΠ A1 A2 I–+( )=,=

∆xtT ALi

i 1=

P 1–

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

∆xt 1– ααααββββ′xt 1– εεεεt+ +=
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With one lag and one cointegrating relationship, we estimate the
following ECM:

where w1 is the cointegrating variable obtained as a linear combination of

v1(t – 1), v2(t – 1), v3(t – 1)

We will first analyze each equation as a regression equation. To do
that, we compute the overall R2 and the t-statistics for each coefficient
to assess if that coefficient is significant. Recall that we have already
established that there is one cointegrating relationship. In general, esti-
mation software gives the user the option to either impose the number
of cointegrating relationships or let the system determine this number.

As the ECM model includes one lag, observations relative to each
regression equation require two consecutive values. Therefore, the num-
ber of observations is equal to the number of observable values reduced
by 1. For our illustration: Number of observations = 130 – 1 = 129. 

For each equation, there are four predetermined variables (three dif-
ferences and one level) and five coefficients to estimate. The results are
reported in the three panels in Exhibit 11.3. 

The overall usefulness of the WEW-1 equation can be assessed by
the R2 and the adjusted R2. Although the null hypothesis that the coeffi-
cients of the equation WCW-1 are zero can be rejected, the R2 shows
that only 11% of the variance of variable ∆v1 (WCW) is explained. 

For equation WEW-1, Exhibit 11.3 shows that the coefficient a22,1
of ∆v2 at lag 1, the constant term, and the error correction term are all
insignificant. 

The R2 and the adjusted R2 reveal that equation WCW-1 has more
explanatory power than equation WEW-1 with nearly 17% of the vari-
ance of ∆v2 (WEW) explained. 

The results for equation S&P-1 are very similar to those of equation
WCW-1. 

WCW-1

WEW-1

S&P-1

∆v1 t( ) c1 α1w1 t 1–( ) a11 1, ∆v1 t 1–( ) a12 1, ∆v2 t 1–( )+ + +=

a13 1, ∆v3 t 1–( ) ε1 t( )+ +

∆v2 t( ) c2 α2w1 t 1–( ) a21 1, ∆v1 t 1–( ) a22 1, ∆v2 t 1–( )+ + +=

a23 1, ∆v3 t 1–( ) ε2 t( )+ +

∆v3 t( ) c3 α3w1 t 1–( ) a31 1, ∆v1 t 1–( ) a32 1, ∆v2 t 1–( )+ + +=

a33 1, ∆v3 t 1–( ) ε3 t( )+ +
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EXHIBIT 11.3  Estimates of the Three Equations of the ECM Model with One Lag
Panel A: Equation Estimated: WCW-1

R2 = 0.1121 
Adjusted R2 = 0.0837 

Panel B: Equation Estimated: WEW-1

R2 = 0.1736 
Adjusted R2 = 0.1472 

Panel C: Equation Estimated: S&P-1

R2 = 0.0959 
Adjusted R2 = 0.0670 

Cointegrating vector:  = (–156.3260, 16.9512, 132.3237)

Variable Coefficient t-statistic t-probability

∆v1 lag1 a11,1 = 1.727977   0.558256 0.011713 
∆v2 lag1 a12,1 = –0.049972 –0.364564 0.716053 
∆v3 lag1 a13,1 = –1.734178 –2.910603 0.004272 
w1 term α1 = 0.009380   2.807155 0.005800 
Constant c1 = –0.010369 –1.038562 0.301013 

Variable Coefficient t-statistic t-probability 

∆v1 lag1 a21,1 = 2.729288   3.185647 0.001824 
∆v2 lag1 a22,1 = –0.012120 –0.069707 0.944538 
∆v3 lag1 a23,1 = –2.464786 –3.261450 0.001429 
w1 term 1 α2 = 0.006277   1.480869 0.141158 
Constant c2 = –0.003075 –0.242773 0.808579 

Variable Coefficient t-statistic t-probability 

∆v1 lag1 a31,1 = 1.649616   2.465139 0.015053 
∆v2 lag1 a32,1 = –0.081206 –0.597991 0.550928 
∆v3 lag1 a33,1 = –1.670842 –2.830593 0.005416 
w1 term 1 α3 = 0.007235   2.185528 0.030714 
Constant c3 = –0.003537 –0.357536 0.721294 

σ̂1
2 εεεε̂′εεεε̂ n k–( )⁄ εεεε̂′εεεε̂ 125⁄ 0.0015= = =

σ̂1
2 εεεε̂′εεεε̂ n k–( )⁄ εεεε̂′εεεε̂ 125⁄ 0.0023= = =

σ̂1
2 εεεε̂′εεεε̂ n k–( )⁄ εεεε̂′εεεε̂ 125⁄ 0.0014= = =

β̂′
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THEORY AND METHODS OF ESTIMATION OF 
NONSTATIONARY VAR MODELS

In this and the following sections, we examine the theory behind the
estimation of nonstationary and nonstable processes. In a nonstationary
process, the averages, variances, or covariances may vary with time. A
somewhat surprising fact is that least-squares methods can be applied to
the nonstationary case although other methods are more efficient.

Consider the following VAR process:

The process can be rewritten in the following error correction form:

, ΠΠΠΠ = I – A1 – A2 – � – Ap

The cointegration properties of the VAR model depend on the rank
r of the matrix ΠΠΠΠ. If r = 0, then the VAR model does not exhibit any
cointegration relationship and it can be estimated as a stable process in
first differences. In this case, the process in first differences can be esti-
mated with LS or MLE techniques for estimation of stable VAR pro-
cesses as discussed in the previous sections.

If r = n, that is, if the matrix ΠΠΠΠ is of full rank, then the VAR model
itself is stable and can be estimated as a stable process. If the rank r is
intermediate 0 < r < n, then the VAR process exhibits cointegration. In
this case, we can write the matrix ΠΠΠΠ as the product ΠΠΠΠ = ααααββββ′ where both
αααα and ββββ are n × r matrices of rank r. The r columns of the matrix ββββ are
the cointegrating vectors of the process.

Next we discuss different estimation methods for cointegrated VAR
models, starting with the LS estimation method.

Estimation of a Cointegrated VAR with Unrestricted LS Methods 
In this section on the estimation of nonstationary VAR processes, we
assume for simplicity v = 0, that is, we write a VAR process as follows:

xt A1xt 1– A2xt 2– � Apxt p– v εεεεt+ + + + +=

xt∆ ΠΠΠΠxt 1–– F1 xt 1–∆ F2 xt 2–∆ � Fp 1– xt p– 1+∆ v εεεεt+ + + + + +=

Fi Ai
q i 1+=

p

∑–=

xt A1xt 1– A2xt 2– � Apxt p– εεεεt+ + + +=
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The cointegration condition places a restriction on the model. In fact, if
we assume that the model has r cointegrating relationships, we have to
impose the restriction rank(ΠΠΠΠ) = r, where ΠΠΠΠ = I – A1 – A2 – � – Ap. This
restriction precludes the use of standard LS methods. However, Sims,
Stock, and Watson4 and Park and Phillips5 demonstrated that, if we esti-
mate the above model as an unconstrained VAR model, the estimators
thus obtained are consistent and have the same asymptotic properties as
the ML estimators that are discussed in the next section. 

To write down the estimators, we define, as in the case of stable
VAR, the following notation:

Using this notation, we can write the estimators of the cointegrated
VAR model as the usual LS estimator of VAR models as discussed in
Chapter 10, that is, we can write

It has also be demonstrated that this estimator has the same asymptotic
properties of the ML estimators that we discuss next. Note that in the
illustration earlier in this chapter, we imposed one cointegrating rela-
tionship. In the previous chapter, we estimated the same data in first dif-
ferences (i.e., we imposed the zero cointegrating relationship). In this
section, however, we discuss unconstrained estimation of an integrated
VAR system. The three estimates are not identical. 

ML Estimators
The ML estimation procedure has become the state-of-the-art estima-
tion method for systems of relatively small dimensions, where it outper-

4 Christopher A. Sims, James H. Stock, and Mark W. Watson. 1990. “Inference in
Linear Time Series Models with Some Unit Roots,” Econometrica 58 (1), pp. 161–
182.
5 J. Y. Park and P. C. B. Phillips, “Statistical Inference in Regressions with Integrated
Processes. Part 2,” Econometric Theory 5 (1989), pp. 95–131.

X x1 … xT, ,( )=

A A1 … Ap, ,( )=

Z
x0 � xT 1–

� � �
x1 p– � xT p–⎝ ⎠

⎜ ⎟
⎜ ⎟
⎛ ⎞

=

Â XZ′ ZZ′( )=
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forms other methods. The ML estimation methodology was developed
primarily by Søren Johansen,6 hence it is often referred to as the
Johansen method. We will assume, following Johansen, that innovations
are independent identically distributed (IID) multivariate, correlated,
Gaussian variables. The methodology can be extended to nonnormal
distributions for innovations but computations become more complex
and depend on the distribution. We will use the ECM formulation of the
VAR model, that is, we will write our cointegrated VAR as follows:

We first describe the ML estimation process for cointegrated processes
as introduced by Banerjee and Hendry.7 We then make the connection
with original reduced rank regression method of Johansen.

The method of Banerjee and Hendry is based on the idea of concen-
trated likelihood. Concentrated likelihood is a mathematical technique
through which the original likelihood function (LF) is transformed into
a function of a smaller number of variables, called the concentrated
likelihood function (CLF). The CLF is also known in statistics as the
profile likelihood. To see how CLF works, suppose that the LF is a func-
tion of two separate sets of parameters:

In this case, the MLE principle can be established as follows:

where LC(ϑ1) is the CLF which is a function of the parameters ϑ1 only. 
To see how this result can be achieved, recall from Chapter 2 that,

assuming usual regularity conditions, the maximum of the LF is attained
where the partial derivatives of the log-likelihood function l are zero. In
particular:

6 S. Johansen “Estimation and Hypothesis Testing of Cointegration Vectors in Gaus-
sian Vector Autoregressive Models,” Econometrica 59 (1991): pp. 1551–1581.
7 A. Banerjee and D. F. Hendry, “Testing Integration and Cointegration: An Over-
view,” Oxford Bulletin of Economics and Statistics 54 (1992), pp. 225–255.

xt∆ ΠΠΠΠxt 1–– F1 xt 1–∆ F2 xt 2–∆ � Fp 1– xt p– 1+∆ εεεεt+ + + + +=

L L ϑ1 ϑ2,( )=

L ϑ1 ϑ2,( )
ϑ1 ϑ2,
max L ϑ1 ϑ2,( )

ϑ2
max ⎝ ⎠

⎛ ⎞
ϑ1

max LC ϑ1( )( )
ϑ1

max = =

∂l ϑ1 ϑ2,( )

∂ϑ2
-------------------------- 0=
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If we can solve this system of functional equations, we obtain: ϑ2 =
ϑ2(ϑ1). The invariance property of the ML estimators8 now allows us to
conclude that the following relationship must hold between the two sets
of estimated parameters:

We see that the original likelihood function has been concentrated
in a function of a smaller set of parameters. We now apply this idea to
the ML estimation of cointegrated systems. It is convenient to use a
notation that parallels that already introduced but is adapted to the spe-
cial form of the cointegrated VAR model that we adopted as follows:

We define

,

8 Recall that the invariance property of ML estimators states that if parameter a is a
function of parameter b then the ML estimator of a is the same function of the ML
estimator of b.

ϑ̂2 ϑ2 ϑ̂1( )=

xt∆ ΠΠΠΠxt 1–– F1 xt 1–∆ F2 xt 2–∆ � Fp 1– xt p– 1+∆ εεεεt+ + + + +=

X x0 … xT 1–, ,( )=

xt∆
x1 t,∆
�

xn t,∆⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

X∆ x1∆ … xT∆, ,( )
x1 1,∆ � x1 T,∆
� � �

xn 1,∆ � xn T,∆⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

= =

Zt∆
xt∆
�

xt p– 2+∆⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

Z∆
x0∆ � xT 1–∆
� � �

x p– 2+∆ � xT p– 1+∆⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

x1 0,∆ � x1 T 1–,∆
� � �

xn 0,∆ � xn T 1–,∆
� � �

x1 p– 2+,∆ � x1 T,∆
� � �

xn p– 2+,∆ � xn T,∆⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

= =

c11-Cointegration  Page 388  Thursday, October 26, 2006  2:08 PM



Cointegration and State Space Models 389

Using the matrix notation, as we assume ΠΠΠΠ = ααααββββ′, we can compactly
write our model in the following form: 

Reasoning as we did in the case of stable VAR models, we can write the
log-likelihood function as follows:

We now concentrate this log-likelihood function, eliminating ΣΣΣΣ and
F. As explained above, this entails taking partial derivatives, equating
them to zero, and expressing ΣΣΣΣ and F in terms of the other parameters.
By equating the derivatives with respect to ΣΣΣΣ to zero, it can be demon-
strated that ΣΣΣΣC = T–1UU′. Substituting this expression in the log-likeli-
hood, we obtain the concentrated likelihood after removing ΣΣΣΣ:

where K is a constant that includes all the constant terms left after con-
centrating.

We next eliminate the F terms. This result can be achieved taking
derivatives of l with respect to F, equating them to zero, and evaluating
them at ΣΣΣΣC. Performing all the calculations, it can be demonstrated that
the evaluation at ΣΣΣΣC is irrelevant and that the following formula holds:

F F1 F2 … Fp 1–, , ,( )=

X∆ F Z∆ ααααββββ′X U+–=

l( )log
nT

2
-------– 2π( )log

T

2
---- ΣΣΣΣulog

1
2
--- εεεεt

′ΣΣΣΣ 1– εεεεt
t 1=

T

∑––=

nT

2
-------– 2π( )log

T

2
---- ΣΣΣΣulog

1
2
---trace U′ΣΣΣΣu

1– U( )––=

nT

2
-------– 2π( )log

T

2
---- ΣΣΣΣulog

1
2
---trace ΣΣΣΣu

1– UU′( )––=

nT

2
-------– 2π( )log

T

2
---- ΣΣΣΣulog–=

1
2
---trace X∆ FZ ααααββββ′X+–( )′ΣΣΣΣu

1– X∆ FZ ααααββββ′X+–( )( )–

lCI K
T

2
---- UU′log–=

K
T

2
---- X∆ FZ ααααββββ′X+–( ) X∆ FZ ααααββββ′X+–( )′log–=
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Substituting this expression in the formula for lCI, that is, the log-likeli-
hood after eliminating ΣΣΣΣC, we obtain:

where M = IT – ∆Z′(∆Z∆Z′)–1∆Z. Matrices of the form A = I – B′(BB′)–1B
are called projection matrices. They are idempotent and symmetric, that
is AA = A2 = A and A = A′. The latter properties were used in the last
three steps of the above derivations. 

We will rewrite the CLF as follows. Define R0 = ∆∆∆∆XM, R1 = XM and

, i, j = 1, 2

We can then rewrite the CLF as follows:

The original analysis of Johansen obtained the same result applying
the method of reduced rank regression. Reduced rank regressions are
multiple regressions where the coefficient matrix is subject to con-
straints. The Johansen method eliminates the terms F by regressing ∆xt
and xt–1 on (∆xt–1, ∆xt–2, . . ., ∆xt–p+1) to obtain the following residuals:

FC X∆ ααααββββ′X+( ) Z∆ ′ Z∆ Z∆ ′( ) 1–=

lCΠ K
T

2
---- | X∆ X∆ ααααββββ′X+( ) Z∆ ′ Z∆ Z∆ ′( ) 1–( ) Z∆– ααααββββ′X+( )( )log–=

X∆ X∆ ααααββββ′X+( ) Z∆ ′ Z∆ Z∆ ′( ) 1– Z∆– ααααββββ′X+( )′|

K
T

2
---- | X∆ ααααββββ′X X∆ ααααββββ′X+( ) Z∆ ′ Z∆ Z∆ ′( ) 1–( ) Z∆–+( )log–=

X∆ ααααββββ′X X∆ ααααββββ′X+( ) Z∆ ′ Z∆ Z∆ ′( ) 1– Z∆–+( )′|

K
T

2
---- | X∆ ααααββββ′X+( ) IT Z∆ ′ Z∆ Z∆ ′( ) 1– Z∆–( )( )log–=

X∆ ααααββββ′X+( ) IT Z∆ ′ Z∆ Z∆ ′( ) 1– Z∆–( )( )′|

K
T

2
---- X∆ ααααββββ′X+( )M X∆ ααααββββ′X+( )′log–=

K
T

2
---- XM X∆ ′∆ ααααββββ′X+ M X′∆ XM∆ ααααββββ′X( )+ ′ ααααββββ′XM ααααββββ′X( )′+log–=

Sij

RiRj

T
-----------=

lCΠΠΠΠ ααααββββ′( ) K
T

2
---- S00 S10ααααββββ′– S01 ααααββββ′( )′– ααααββββ′S11 ααααββββ′( )′+log–=
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where 

and

The original model is therefore reduced to the following “simpler model”:

The likelihood function of this model depends only on R0t, R1t. It can
be written as follows:

where we define R0, R1 as above. If we also define Sij as above, we
obtain exactly the same form for the CLF:

We have now to find the maximum of this CLF. Note that this prob-
lem is not well identified because, given any solution αααα, ββββ′ and any non-
singular matrix G, the following relationships hold:

so that the matrices

are also a solution. Additional conditions must therefore be imposed.

R0t xt∆ D1 xt 1–∆ D2 xt 2–∆ � Dp 1– xt p– 1+∆+ + + +=

R1t xt 1–∆ E1 xt 1–∆ E2 xt 2–∆ � Ep 1– xt p– 1+∆+ + + +=

D D1 D2 … Dp 1–, , ,( ) X∆∆∆∆ Z∆∆∆∆ ′ Z∆∆∆∆ Z′∆( ) 1–= =

E E1 E2 … Ep 1–, , ,( ) X Z∆∆∆∆ ′ Z∆∆∆∆ Z′∆( ) 1–= =

R0t ααααββββ′R1t ut+=

l ααααββββ′( ) K1
T

2
---- R0 R1 ααααββββ′( )+( )′ R0 R1 ααααββββ′( )+( )log–=

lCΠΠΠΠ ααααββββ′( ) K
T

2
---- S00 S10ααααββββ′– S01 ααααββββ′( )′– ααααββββ′S11 ααααββββ′( )′+log–=

ΠΠΠΠ ααααββββ′ ααααGG 1– ββββ′ αααα*ββββ′*= = =

αααα* ααααG=

ββββ′* G 1– ββββ′=
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If the matrix ΠΠΠΠ = ααααββββ′ were unrestricted, then maximization would
yield

However, our problem now is to find solutions that respect the cointe-
gration condition, that is, the rank r of ΠΠΠΠ which is the common rank of
αααα, ββββ′. To achieve this goal, we can concentrate the CLF with respect to αααα
and thus solve with respect to ββββ′. By performing the rather lengthy com-
putations, it can be demonstrated that we obtain a solution by solving
the following eigenvalue problem:

This eigenvalue problem, together with normalizing conditions, will
yield n eigenvalues λi and n eigenvectors Λi. In order to make this prob-
lem well determined, Johansen imposed the normalizing conditions:

. Order the eigenvalues and choose the r eigenvectors Λi cor-
responding to the largest r eigenvalues. It can be demonstrated that a
ML estimator of the matrix C is given by

and an estimator of the matrix αααα by . The maximum of the
log-likelihood is

The solutions of the above eigenvalue problem, that is, the eigenval-
ues λi, can be interpreted as the canonical correlations between ∆xt and
xt – 1. Canonical correlations are the maximum correlations between
linear combinations of the ∆xt and xt – 1. We therefore see that the coin-
tegrating relationships are those linear combinations of the levels xt – 1
that are maximally correlated with linear combinations of the ∆xt after
conditioning with the remaining terms. 

Different types of normalizing conditions have been studied and are
described in the literature. A general theory of long-run modeling that

ΠΠΠΠ S01S11
1–=

S10S00
1– S01 λS11– 0=

Λ′S11Λ I=

ββββ̂′ ΛΛΛΛ̂1 … ΛΛΛΛ̂r, ,( )=

αααα̂ S00Ĉ=

lmax K
T

2
---- S00log–

T

2
---- 1 λi–( )log

i 1=

r

∑–=
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considers general nonlinear constraints on the matrix C was developed
by Pesaran and Shin.9 The interested reader should refer to their article.

Estimating the Number of Cointegrating Relationships
The Johansen ML estimation method and its extensions critically
depend on correctly estimating the number r of cointegrating relation-
ships. Two tests, in particular, have been suggested in relationship with
the Johansen method: the trace test and the maximum eigenvalue test.
The trace test tests the hypothesis that there are at most r cointegrating
vectors while the maximum eigenvalue test tests the hypothesis that
there are r + 1 cointegrating vectors against the hypothesis that there are
r cointegrating vectors. The mathematical details are given in the
Johansen paper discussed earlier. Lütkepohl, Saikkonen, and Trenkler
provide an extensive discussion of the relative merit and power of the
various forms of these tests.10 Here we provide only a brief overview of
these tests which are implemented in many standard statistical packages. 

The trace test is immediately suggested by the Johansen procedure.
Recall from the discussion earlier in this chapter that with the Johansen
method the maximum of the log-likelihood function is

The likelihood ratio test statistics for the hypothesis of at most r cointe-
grating vectors is

where the sum is extended to the n – r smallest eigenvalues. The likeli-
hood ratio statistics for the maximum eigenvalue test is

9 M. Hashem Pesaran and Yongcheol Shin, “Long-Run Structural Modelling,”
Chapter 11 in S. Strom (ed.), Econometrics and Economic Theory in the 20th Cen-
tury: The Ragnar Frisch Centennial Symposium (Cambridge: Cambridge University
Press, 2001).
10 H. Lütkepohl, P. Saikkonen, and C. Trenkler, “Maximum Eigenvalue Versus
Trace Tests for the Cointegrating Rank of a VAR Process,” Econometrics Journal 4
(2001), pp. 287–310.

lmax K
T

2
---- S00log–

T

2
---- 1 λi–( )log

i 1=

r

∑–=

λtrace T 1 λi–( )log
i r 1+=

n

∑–=

λmax T 1 λr 1+–( )log–=
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The asymptotic distribution of both test statistics are not normal. They
are given by the trace, respectively, the maximum eigenvalue of a sto-
chastic matrix formed with functionals of a Brownian motion. Critical
values at different confidence levels have been tabulated and are used in
many standard statistical packages.

Ml Estimators in the Presence of Linear Trends
The above discussion assumed a zero intercept in the model and there-
fore no linear trends or nonzero intercepts in the process. If we add an
intercept to a VAR model, we might obtain a linear trend in the vari-
ables. With cointegrated systems, there is the additional complication
that a linear trend might or might not be present in the cointegrated
variables. In other words, the cointegrating vectors transform the I(1)
variables into stationary variables or into trend-stationary variables. 

The original definition of cointegration in Engle and Granger
excluded deterministic trends in the cointegrated variables.11 We now
distinguish between stochastic cointegration and deterministic cointe-
gration. A set of I(1) variables is said to be stochastically cointegrated if
there are linear combinations of these variables that are trend-stationary
(i.e., stationary plus a deterministic trend). A set of I(1) variables are
said to be deterministically cointegrated if there exist linear combina-
tions which are stationary without any deterministic trend.

Therefore, when considering deterministic terms in a cointegrated
VAR model, we cannot consider only constant intercepts but must
include linear trends. Adding a constant term and a linear trend to the
model variables as we did in the stable case, the estimation procedure
described in the previous section remains valid.

Estimation with Canonical Correlations
The use of canonical correlation analysis (CCA) was first proposed by
Bossaerts in 1988.12 In 1995, Bewley and Yang provided a more rigor-
ous foundation for CCA-based methodology which they called level
canonical correlation analysis (LCCA) because the canonical correla-
tions are computed in levels.13 Cointegration tests based on CCA are
based on the idea that canonical correlations should discriminate those

11 R. F. Engle and C. W. J. Granger, “Cointegration and Error Correction: Represen-
tation, Estimation, and Testing,” Econometrica 55 (1987), pp. 251–276.
12 Peter Bossaerts, “Common Non-Stationary Components of Asset Prices,” Journal
of Economic Dynamics and Control 12 (1988), pp. 348–364.
13 Ronald Bewley and Minxian Yang, “Tests for Cointegration Based on Canonical
Correlation Analysis,” Journal of the American Statistical Association 90 (1995), pp.
990–996.
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linear combinations of variables that are I(1) from those that are I(0). In
fact, integrated variables should be more predictable while stationary
components should be less predictable. 

Bossaerts proposed performing CCA and the use of the standard
Dickey-Fuller (DF) test to identify those canonical variates that are I(1).
He considers a model of the type

After performing the CCA between ∆∆∆∆xt and xt, the canonical variates
are tested for unit roots. Bossaerts conjectured, without proof, that one
can use the standard critical values of the DF test.

Bewley and Yang extended the methodology, allowing for determin-
istic trends and other variables explaining short-run dynamics. They
proposed new tests, developed the asymptotic theory, and computed the
critical values to determine the number of cointegrating vectors. 

Computationally, the LCCA methodology of Bewley and Yang is not
very different from that of Johansen. Following Bewley and Yang, the
LCCA method proceeds as follows. First, if there are additional exoge-
nous variables, they have to be removed regressing xt and xt – 1 on those
variables. Let R0t and R1t denote the residuals of these regressions and
perform the regression:

The determination of the canonical correlations between R0t and R1t is
formally done as in the Johansen method, that is, solving the following
eigenvalue problem:

where

, i, j = 1, 2

However, the interpretation of these quantities is different. Here we are
seeking canonical correlations between variables in levels while in the
Johansen methods we correlate both levels and differences. The LCCA
method picks the largest eigenvalues as does the Johansen method. Bew-
ley and Yang developed the asymptotic theory as well as four tests for

xt∆∆∆∆ ααααββββ′xt εεεεt+=

R0t BR1t ut+=

S10S00
1– S01 λS11– 0=

Sij

RiRj

T
-----------=
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cointegration, two DF-type tests, a trace test, and a maximum eigen-
value test. For each test they tabulated critical values for up to six-vari-
ables systems. 

The asymptotic theory developed by Bewley and Yang shows that
one can indeed use the standard unit root tests such as the Dickey-Fuller
and Phillips tests, but the critical values depend on the number of vari-
ables and are not standard. Therefore, one cannot use the DF test with
standard critical values, as conjectured by Bossaerts. 

Estimation with Principal Component Analysis
Thus far we have discussed methodologies for estimating cointegrated
systems based on OLS, ML, and CCA. In this section we analyze
another important method based on Principal Component Analysis
(PCA). PCA is a well-known statistical methodology that, given a set of
multidimensional data, finds the directions of maximum variance. PCA-
based methods are used in classical factor analysis of stationary returns.

The use of PCA-based methods for integrated variables was origi-
nally proposed by Stock and Watson.14 They were the first to observe
that the presence of r cointegrating vectors in n time series implies the
presence of r common stochastic trends. This means that there are r
independent linear combinations of the variables that are I(1) while the
remaining n-r are I(0). In addition, it means that each of the n variables
can be expressed as a linear combination of the common stochastic
trends plus a stationary process. 

Stock and Watson conjectured that those linear combinations that
are I(1) must have the largest variance. Therefore, by performing a PCA
on the variables in levels, one should be able to determine the cointe-
grating vectors by picking the largest eigenvalues. The Stock and Wat-
son methodology proceeds as follows.

Suppose the data generation process is our usual VAR(p) model,

where we assume for the moment that the intercept term is zero. Sup-
pose also that the number of lags p have been determined independently.
Next, perform the PCA of the variables xt. This entails solving the fol-
lowing eigenvalue problem:

14 James H. Stock and Mark W. Watson, “Testing for Common Trends,” Journal of
the American Statistical Association 83 (1988), pp. 1097–1107.

xt A1xt 1– A2xt 2– � Apxt p– εεεεt+ + + +=

ΩΩΩΩββββ µββββ=
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where Ω is the empirical covariance matrix of the xt, defined as

and µ and β are respectively the eigenvalues and the eigenvectors to be
determined.

Order the eigenvalues and choose the m largest eigenvalues µi, i = 1,
. . ., m. The corresponding eigenvectors βi are the candidate cointegrat-
ing vectors. Forming the linear combinations Pi,t = ββββixt, we obtain the
vector Pt = (P1,t, . . ., Pm,t)′ first m principal components. We must now
check the hypothesis that these principal components are I(1) series and
are not cointegrated among themselves.

In order to do this, the Stock and Watson method estimates the fol-
lowing stable VAR(p) model:

and then computes

Regress ∆∆∆∆Ft on Ft–1, compute the normalized eigenvalues of the regres-
sion matrix B, and compare with the critical values tabulated in the
Stock and Watson paper to test the null of m common trends against m–
q common trends. 

If the VAR model exhibits a nonzero intercept, then there might be
linear trends in the variables. This fact, in turn, raises the question of
stochastic versus deterministic cointegration. The details of the compu-
tations are actually quite intricate.15

A major advantage of the PCA-based methodologies is that critical
values depend only on the number of common trends and not on the
number of time series involved. Therefore they can be used to determine
a small number of common trends in a large number of time series.

Estimation with the Eigenvalues of the Companion Matrix
A univariate process is called integrated of order one if it can be written
as: xt = ρxt – 1 + ηt where ρ = 1, and ηt is a stationary process. Dickey
and Fuller established the asymptotic distribution of ρ and tabulated the

15 The interested reader should consult the original Stock and Watson paper.

ΩΩΩΩ
1
T
---- xtxt′

t 1=

T

∑=

Pt∆∆∆∆ A1 Pt 1–∆∆∆∆ � Ap 1– Pt p– 1+∆ εεεεt+ + +=
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critical values that now form the basis of the DF and ADF unit root test.
Ahlgren and Nyblom16 developed an equivalent methodology for multi-
variate processes. They studied a N-variate, VAR(1) process of the form: 

The major result of their work is that the number of cointegrating
relationships depends on the eigenvalues of the autoregressive matrix.
Ahlgren and Nyblom determined the asymptotic distribution of the
eigenvalues of the autoregressive matrix estimated with OLS methods
and computed critical values. The methodology can be extended to VAR
models of any order by transforming the original model into a VAR(1)
model and considering the companion matrix.

STATE-SPACE MODELS

All ARMA and VAR models can be expressed as State-Space Models.  
The general form of a state-space model is the following:

where

 ■ xt is the n-dimensional vector of observable output series
 ■ zt is the s-dimensional vector of latent (nonobservable) state variables
 ■ ut is a m-dimensional vector of deterministic inputs
 ■ εεεεt is the n-dimensional observation white noise
 ■ ηηηηt is the s-dimensional transition equation white noise
 ■ A is the n × s observation matrix
 ■ B is the n × m input matrix of the observation equation
 ■ C is the s × s transition matrix
 ■ D is the s × m input matrix of the transition equation

The first equation, called the observation equation, is a linear
regression of the output variables over the state variables and the input

16 Niklas Ahlgren and Jukka Nyblom, “A General Test for the Cointegrating Rank
in Vector Autoregressive Models,” Working Paper No 499, 2003, Swedish School of
Economics and Business Administration.

xt ΠΠΠΠxt 1– εεεεt+=
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variables, while the second equation, called the (state) transition equa-
tion is a VAR(1) model that describes the dynamics of the state vari-
ables. In general it is assumed that the system starts from a state z0 and
an initial input u0.

The joint noise process,  is a zero-mean, IID sequence with
variance-covariance matrix

Observe that it is possible to write different variants of state-space
models. For example, we could define state-space processes with only
one noise process so that ηηηηt = Hεεεεt. Observe also that it is not restrictive
to assume that the transition equation is a VAR(1) model. In fact, all
VAR(p) models are equivalent to a larger VAR(1) model obtained add-
ing variables for each additional lag.

Let’s now establish the equivalence with ARMA/VAR models. To
see the equivalence of state-space and ARMA models, consider the fol-
lowing ARMA(p,q) model:

,   ψ0 = 1

This model is equivalent to the following state-space model:

xt = Czt
zt = Azt – 1 + εt

where

εεεεt′ ηηηηt′,( )′

ΩΩΩΩε ΩΩΩΩεη
ΩΩΩΩηε ΩΩΩΩη

xt ϕixt i–
i 1=

p

∑ ψjεt j–
j 0=

q

∑+=

C ϕ1…ϕp 1 ψ1…ψq=

zt

xt 1–
···

xt p–

εt

εt 1–
···

εt q–

=
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and 

The converse also holds. It can be demonstrated that a state-space model
admits a VARMA representation. 

Neither ARMA nor state-space representations are unique. How-
ever, it can be demonstrated that a minimal state-space representation
exists for any model that admits an ARMA and state-space representa-
tion. A minimal representation is a state-space model of minimal dimen-
sion, that is, such that any other equivalent model cannot have state
vector of smaller dimension.

The solutions of a state-space model are clearly determined by the
transition equation. Therefore solutions of a state-space model are
determined by the solutions of a VAR(1) model. We know from our
above discussion of VAR models that these solutions are sums of expo-
nentials and/or sinusoidal functions. Exhibit 11.4 shows the solutions of
bivariate VAR(2) model. The two variables x and y exhibit oscillating
behavior. This VAR(2) model is equivalent to a state-space model with
four state variables. Two of the variables are x and y while the other
two are their lagged values.

Maximum Likelihood Estimation
The estimation of linear state-space models based on maximum likeli-
hood (ML) principles requires the determination of the log-likelihood,
which is a function of observables and hidden variables plus determinis-
tic inputs. Hidden variables, however, can only be estimated, not
observed. We use the Kalman filter to replace unknown hidden variables
with their best estimates. We describe first the Kalman filter and then
show how to compute the log-likelihood function and applying the
expected maximization method.

Estimation of the Kalman Filter
The Kalman filter allows us to obtain, filtered, smoothed, or predicted
state-variable estimates:

A

ϕ1 … ϕp 1 ψ1 … ψq 1– ψq

1 … 0 0 0 … 0 0
··· ··· ··· ··· ··· ··· ··· ···
0 … 1 0 0 … 0 0
0 … 0 0 0 … 0 0
··· ··· ··· ··· ··· ··· ··· ···
0 … 0 0 0 … 1 0

=
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 ■ Filtering, which computes the present state conditional to all the obser-
vations up to the present time.

 ■ Smoothing, which computes the state at intermediate dates conditional
on all the observations up to the present date.

 ■ Forecasting, which forecasts the state at a future date conditional on all
the observations up to the present date.

We first describe the Kalman filter using the state-space model speci-
fied above with the additional assumption that the noise terms are nor-
mally distributed. The assumption of normality can be relaxed. (We will
see later how the filter is modified relaxing the assumption of normality.)
We need to introduce the following notation—standard in the Kalman
filter literature—to express compactly the various conditional means. We
need to define the following four variables:

1. The conditional mean of the state variables at time t given observations
up to time t:

EXHIBIT 11.4  Solutions of a Bivariate VAR(2) Model
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2. The conditional mean of the observables and of the state variables at
time t given observations up to time t – 1:

3. The mean squared errors of forecasts:

4. The residuals of the regression of the observable on its own past:

The Kalman filter is a recursive methodology for computing past,
present, and future states given a set of observables up to the present
state. Starting from the initial period, the filter computes the conditional
mean and the conditional covariance matrix of the states step by step.
Let us now look at the four steps of the recursive equations of the Kal-
man filter: the prediction step, the correction step, the forecasting step,
and the smoothing step. 

The Prediction Step
The prediction step predicts the state and the variables one step ahead
for every time 1 ≤ t ≤ T given the present state:

The covariance matrices of the one-step-ahead prediction error of the
states and the variables are

zt t E zt x1 … xt, ,( )=

zt t 1– E zt x1 … xt 1–, ,( )=

xt t 1– E xt x1 … xt 1–, ,( )=

ΩΩΩΩz t E zt zt t–( ) zt zt t–( )′( )=

ΩΩΩΩz t 1– E zt zt t 1––( ) zt zt t 1––( )′( )=

ΩΩΩΩx t 1– E xt xt t 1––( ) xt xt t 1––( )′( )=

x̃ xt xt t 1–– xt Azt t 1––= =

zt t 1– Azt 1– t 1– But 1–+=

xt t 1– Czt t 1– Dut+=

ΩΩΩΩz t t 1–( ) AΩΩΩΩz t 1– t 1–( )A′ ΩΩΩΩηηηη+=

ΩΩΩΩx t t 1–( ) CΩΩΩΩz t t 1–( )C′ ΩΩΩΩεεεε+=
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The Correction Step
The correction step improves the forecast made in the prediction step,
taking into account the covariance matrix. The role played by the condi-
tional covariance matrix in improving forecasts was the key intuition of
Kalman. The correction step is written as follows:

where  is called the filter gain matrix.

The Forecasting Step
The forecasting step forecasts both the state and the variables s steps
ahead for every time t = T + s > T given the present state. It is based on
the following recursive relationships:

The forecasting step also predicts the covariance matrix of the states
and the variables one step ahead: 

The Smoothing Step
The smoothing step computes the states at intermediate times t < T. It is
computed recursively backwards with the following recursive equations:

where  is called the Kalman smoothing matrix.
The filter is initialized with the initial conditions (i.e., the initial

state z0 and the initial input u0) and computations are carried out recur-
sively to the desired time. 

Note that if the noise terms are not normally distributed but their
second order moment still exists, all of the recursion equations remain
valid.

zt t zt t 1– Pt xt xt t 1––( )+=
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The Log-Likelihood Function
To compute the log-likelihood of the model, first arrange all the model
parameters, that is the four matrices A, B, C, D, and the covariance
matrices, in one parameter vector θθθθ. The model likelihood has the fol-
lowing expression:

Assuming that the noise is normally distributed then

Therefore we can write the log-likelihood as follows:

We can see from the above expression that all quantities that appear in
the log-likelihood function can be computed using the Kalman filter.
The Kalman filter provides a convenient recursive procedure for com-
puting the log-likelihood and performing ML estimates. 

CONCEPTS EXPLAINED IN THIS CHAPTER
(IN ORDER OF PRESENTATION)

Cointegration
Cointegrated processes
Reduction of order of integration
Common trends
Long-run equilibrium
Fractional cointegration
Stochastic and deterministic cointegration
Error correction models (ECM)
Estimation of cointegrated VAR with LS methods
ML estimators of cointegrated VAR
Johansen method
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Concentrated likelihood
Reduced rank regression
Canonical correlations
Trace test
Maximum eigenvalue test
Estimation with linear trends
Canonical correlation analysis (CCA)
Estimation of cointegrated VAR with principal components
Estimation with the eigenvalues of the companion matrix
State-space models
Observation matrix
Transition matrix
Equivalence VARMA state-space
Estimation of state space models with ML methods
Kalman filters
Filtering 
Smoothing
Forecasting
Prediction step
Correction step
Forecasting step
Smoothing step
Likelihood of state-space models
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Robust Estimation

 

n this chapter we discuss methods for 

 

robust estimation

 

, with particu-
lar emphasis on the robust estimation of regressions. Robust estima-

tion is a topic of robust statistics. Therefore we first introduce the
general concepts and methods of robust statistics and then apply them
to regression analysis. In particular, we will introduce robust regression
estimators and robust regression diagnostics. 

 

ROBUST STATISTICS

 

Robust statistics

 

 addresses the problem of making estimates that are
insensitive to small changes in the basic assumptions of the statistical
models employed. The concepts and methods of robust statistics origi-
nated in the 1950s. The technical term “robust statistics” was coined by
G. E. P. Box in 1953. However, the concepts of robust statistics had
been used much earlier, for example by the physicist Arthur Eddington
and the geophysicist Harold Jeffreys. 

Statistical models are based on a set of assumptions; the most
important include (1) the distribution of key variables, for example the
normal distribution of errors, and (2) the model specification, for exam-
ple model linearity or nonlinearity. Some of these assumptions are criti-
cal to the estimation process: if they are violated, the estimates become
unreliable. Robust statistics (1) assesses the changes in estimates due to
small changes in the basic assumptions and (2) creates new estimates
that are insensitive to small changes in some of the assumptions. The
focus of our exposition is to make estimates robust to small changes in
the distribution of errors and, in particular, to the presence of outliers.

Robust statistics is also useful to separate the contribution of the
tails from the contribution of the body of the data. We can say that

I
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robust statistics and classical nonrobust statistics are complementary.
By conducting a robust analysis, one can better articulate important
econometric findings. We will see later examples of how robust statistics
sheds new light on a number of well-known empirical findings.

 

1

 

As observed by Peter Huber, 

 

robust

 

, 

 

distribution-free

 

, and 

 

nonpara-
metrical

 

 seem to be closely related properties but actually are not.

 

2

 

 For
example, the sample mean and the sample median are nonparametric esti-
mates of the mean and the median but the mean is not robust to outliers.
In fact, changes of one single observation might have unbounded effects
on the mean while the median is insensitive to changes of up to half the
sample. Robust methods assume that there are indeed parameters in the
distributions under study and attempt to minimize the effects of outliers
as well as erroneous assumptions on the shape of the distribution. 

A general definition of robustness is, by nature, quite technical. The
reason is that we need to define robustness with respect to changes in dis-
tributions. That is, we need to make precise the concept that small changes
in the distribution, which is a function, result in small changes in the esti-
mate, which is a number.

 

3

 

 Let’s first give an intuitive, nontechnical over-
view of the modern concept of robustness and how to measure robustness.

 

1 

 

For example, see Anna Chernobai and Svetlozar T. Rachev, “Applying Robust
Methods to Operation Risk Modeling,” for an application of robust methods to the
modeling of the tail behavior in operational risk. 

 

2 

 

Huber’s book is a standard reference on robust statistics: Peter J. Huber, 

 

Robust
Statistics

 

 (New York: John Wiley & Sons, Inc., 1981). See also, C. Goodall, “M-Es-
timators of Location: An Outline of the Theory,” in David C. Hoaglin, Frederick
Mosteller, and John W. Tukey (eds.), 

 

Understanding Robust and Exploratory Data
Analysis

 

 (New York: John Wiley & Sons, 1983), pp. 339–403; F. R. Hampel, E. M.
Ronchetti, P. J. Rousseeuw, and W. A. Stahel, 

 

Robust Statistics: The Approach
Based on Influence Functions

 

 (New York: John Wiley & Sons, 1986); P. W. Holland
and R. E. Welsch, “Robust Regression Using Iteratively Reweighted Least-Squares.”

 

Communications in Statistics: Theory and Methods

 

 A6, 9 (1977), pp. 813–827;
L. A. Jaeckel, “Estimating Regression Coefficients by Minimizing the Dispersion of
the Residuals,” 

 

Annals of Mathematical Statistics

 

 43 (1972), pp. 1449–1458; R.
Koenker and G. Basset Jr., “Regression Quantiles,” 

 

Econometrica

 

 36 (1978), pp.
33–50; P. J. Rousseeuw and A. M. Leroy, 

 

Robust Regression and Outlier Detection

 

(New York: John Wiley & Sons, 1987); R. A. Maronna, R. D. Martin, and V. J. Yo-
hai, 

 

Robust Statistics: Theory and Methods

 

 (Hoboken, NJ: John Wiley & Sons,
2006); and J. W. Tukey, “A Survey of Sampling from Contaminated Distributions,”
in I. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow, and H. B. Mann (eds.),

 

Contributions to Probability and Statistics, Essays in Honor of Harold Hotelling

 

(Stanford, CA: Stanford University Press, 1960), pp. 448–485.

 

3 

 

To this end, we need to define topological and metric concepts on the functional
space of distributions.
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Qualitative and Quantitative Robustness

 

In this section we introduce the concepts of qualitative and quantitative
robustness of estimators. Estimators are functions of the sample data.
Given an 

 

N

 

-sample of data 

 

X

 

 = (

 

x

 

1

 

, . . ., 

 

x

 

N

 

)

 

′

 

 from a population with a
cdf 

 

F

 

(

 

x

 

), depending on parameter 

 

θ

 

∞

 

,

 

 an estimator for 

 

θ

 

∞

 

 is a function
. Consider those estimators that can be written as

functions of the cumulative empirical distribution function:

where 

 

I

 

 is the indicator function. For these estimators we can write

Most estimators, in particular the ML estimators, can be written in
this way with probability 1. In general, when 

 

N

 

 

 

→ ∞

 

 then 

 

F

 

N

 

(

 

x

 

) 

 

→

 

 

 

F

 

(

 

x

 

)
almost surely and  in probability and almost surely. The esti-
mator  is a random variable that depends on the sample. Under the
distribution 

 

F

 

, it will have a probability distribution 

 

L

 

F

 

(

 

ϑ

 

N

 

). Intuitively,
statistics defined as functionals of a distribution are robust if they are
continuous with respect to the distribution. In 1968, Hampel intro-
duced a technical definition of qualitative robustness based on metrics
of the functional space of distributions.

 

4

 

 The Hampel definition states
that an estimator is robust for a given distribution 

 

F

 

 if small deviations
from 

 

F

 

 in the given metric result in small deviations from 

 

L

 

F

 

(

 

ϑ

 

N

 

) in the
same metric or eventually in some other metric for any sequence of sam-
ples of increasing size. The definition of robustness can be made quanti-
tative by assessing quantitatively how changes in the distribution 

 

F

 

affect the distribution 

 

L

 

F

 

(

 

ϑ

 

N

 

). 

 

Resistant Estimators

 

An estimator is called 

 

resistant

 

 if it is insensitive to changes in one single
observation.

 

5

 

 Given an estimator , we want to understand

 

4 

 

F. R. Hampel, “A General Qualitative Definition of Robustness,” 

 

Annals of Math-
ematical Statistics

 

 42 (1971), pp. 1887–1896.

 

5 

 

For an application to the estimation of the estimation of beta, see R. Douglas Mar-
tin and Timothy T. Simin, “Outlier Resistant Estimates of Beta,” 

 

Financial Analysts
Journal

 

 (September–October 2003), pp. 56–58. We discuss this application at the
end of this chapter.
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what happens if we add a new observation of value 

 

x

 

 to a large sample.
To this end we define the 

 

influence curve

 

 (IC), also called 

 

influence func-
tion

 

. The IC is a function of 

 

x

 

 given 

 

ϑ

 

, and 

 

F

 

 is defined as follows:

where 

 

δ

 

x

 

 denotes a point mass 1 at 

 

x

 

 (i.e., a probability distribution
concentrated at the single point 

 

x

 

). As we can see from its previous defi-
nition, the 

 

IC

 

 is a function of the size of the single observation that is
added. In other words, the 

 

IC

 

 measures the influence of a single obser-
vation 

 

x

 

 on a statistics 

 

ϑ

 

 for a given distribution 

 

F

 

. In practice, the influ-
ence curve is generated by plotting the value of the computed statistic
with a single point of 

 

X

 

 added to 

 

Y

 

 against that 

 

X

 

 value. For example,
the 

 

IC

 

 of the mean is a straight line. Several aspects of the influence
curve are of particular interest: 

 

 ■ 

 

Is the curve “bounded” as the X values become extreme? Robust statis-
tics should be bounded. That is, a robust statistic should not be unduly
influenced by a single extreme point. 

 

 ■ 

 

What is the general behavior as the X observation becomes extreme?
For example, does it becomes smoothly down-weighted as the values
become extreme? 

 

 ■ 

 

What is the influence if the X point is in the “center” of the Y points?.

Let’s now introduce concepts that are important in applied work.
We then introduce the robust estimators.

 

Breakdown Bound

 

The 

 

breakdown (BD) bound or point is the largest possible fraction of
observations for which there is a bound on the change of the estimate
when that fraction of the sample is altered without restrictions. For
example, we can change up to 50% of the sample points without pro-
voking unbounded changes of the median. On the contrary, changes of
one single observation might have unbounded effects on the mean.

Rejection Point
The rejection point is defined as the point beyond which the IC becomes
zero. Note that observations beyond the rejection point make no contri-
bution to the final estimate except, possibly, through the auxiliary scale
estimate. Estimators that have a finite rejection point are said to be

ICϑ F, x( )
ϑ 1 s–( )F sδx+( ) ϑ F( )–

s
--------------------------------------------------------------

s 0→
lim=
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redescending and are well protected against very large outliers. However,
a finite rejection point usually results in the underestimation of scale.
This is because when the samples near the tails of a distribution are
ignored, an insufficient fraction of the observations may remain for the
estimation process. This in turn adversely affects the efficiency of the
estimator. 

Gross Error Sensitivity
The gross error sensitivity expresses asymptotically the maximum effect
that a contaminated observation can have on the estimator. It is the
maximum absolute value of the IC. 

Local Shift Sensitivity
The local shift sensitivity measures the effect of the removal of a mass at
y and its reintroduction at x. For continuous and differentiable IC, the
local shift sensitivity is given by the maximum absolute value of the
slope of IC at any point. 

Winsor’s Principle
Winsor’s principle states that all distributions are normal in the middle. 

M-Estimators
M-estimators are those estimators that are obtained by minimizing a func-
tion of the sample data. Suppose that we are given an N-sample of data X
= (x1, . . ., xN)′. The estimator T(x1, . . ., xN) is called an M-estimator if it
is obtained by solving the following minimum problem:

where ρ(xi,t) is an arbitrary function. Alternatively, if ρ(xi,t) is a smooth
function, we can say that T is an M-estimator if it is determined by solv-
ing the equations:

where

T arg mint J ρ xi t,( )
i 1=

N

∑=
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

ψ xi t,( )
i 1=

N

∑ 0=
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When the M-estimator is equivariant, that is T(x1 + a, . . ., xN + a) = T(x1,
. . ., xN) + a, ∀a ∈ R, we can write ψ and ρ in terms of the residuals x – t.
Also, in general, an auxiliary scale estimate, S, is used to obtain the scaled
residuals r = (x – t)/S. If the estimator is also equivariant to changes of
scale, we can write 

ML estimators are M-estimators with ρ = –log f, where f is the prob-
ability density. (Actually the name M-estimators means maximum likeli-
hood-type estimators.) LS estimators are also M-estimators.

The IC of M-estimators has a particularly simple form. In fact, it
can be demonstrated that the IC is proportional to the function ψ:

IC = Constant × ψ

L-Estimators
Consider an N-sample (x1, . . ., xN)′. Order the samples so that x(1) ≤
x(2) ≤ . . . ≤ x(N). The i-th element X = x(i) of the ordered sample is called
the i-th order statistic. L-estimators are estimators obtained as a linear
combination of order statistics:

where the ai are fixed constants. Constants are typically normalized so that

An important example of an L-estimator is the trimmed mean. The
trimmed mean is a mean formed excluding a fraction of the highest and/

ψ xi t,( )
∂ρ xi t,( )

∂t
---------------------=

ψ x t,( ) ψ
x t–

S
-----------⎝ ⎠

⎛ ⎞ ψ r( )= =

ρ x t,( ) ρ
x t–

S
-----------⎝ ⎠

⎛ ⎞ ρ r( )= =

L aix i( )
i 1=

N

∑=

ai
i 1=

N

∑ 1=
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or lowest samples. In this way the mean, which is not a robust estima-
tor, becomes less sensitive to outliers.

R-Estimators
R-estimators are obtained by minimizing the sum of residuals weighted
by functions of the rank of each residual. The functional to be mini-
mized is the following:

where Ri is the rank of the i-th residual ri and a is a nondecreasing score
function that satisfies the condition 

The Least Median of Squares Estimator 
Instead of minimizing the sum of squared residuals, as in LS, to estimate
the parameter vector, Rousseuw6 proposed minimizing the median of
squared residuals, referred to as the least median of squares (LMedS)
estimator. This estimator effectively trims the N/2 observations having
the largest residuals, and uses the maximal residual value in the remain-
ing set as the criterion to be minimized. It is hence equivalent to assum-
ing that the noise proportion is 50%. 

LMedS is unwieldy from a computational point of view because of its
nondifferentiable form. This means that a quasi-exhaustive search on all
possible parameter values needs to be done to find the global minimum. 

The Least Trimmed of Squares Estimator 
The least trimmed of squares (LTS) estimator offers an efficient way to
find robust estimates by minimizing the objective function given by 

6 P. Rousseuw, “Least Median of Squares Regression,” Journal of the American Sta-
tistical Association 79 (1984), pp. 871–890.

arg min J a Ri( )ri
i 1=

N

∑=
⎩ ⎭
⎨ ⎬
⎧ ⎫

a Ri( )
i 1=

N

∑ 0=

J r i( )
2

i 1=

h

∑=
⎩ ⎭
⎨ ⎬
⎧ ⎫
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where  is the i-th smallest residual or distance when the residuals are
ordered in ascending order, that is:  and h is the
number of data points whose residuals we want to include in the sum.
This estimator basically finds a robust estimate by identifying the N – h
points having the largest residuals as outliers, and discarding (trimming)
them from the dataset. The resulting estimates are essentially LS esti-
mates of the trimmed dataset. Note that h should be as close as possible
to the number of points in the data set that we do not consider outliers.

Reweighted Least Squares Estimator 
Some algorithms explicitly cast their objective functions in terms of a set
of weights that distinguish between inliers and outliers. However, these
weights usually depend on a scale measure that is also difficult to esti-
mate. For example, the reweighted least squares (RLS) estimator uses
the following objective function:

where  are robust residuals resulting from an approximate LMedS or
LTS procedure. Here the weights ωi trim outliers from the data used in
LS minimization, and can be computed after a preliminary approximate
step of LMedS or LTS. 

Robust Estimators of the Center
The mean estimates the center of a distribution but it is not resistant.
Resistant estimators of the center are the following:7

 ■ Trimmed mean. Suppose x(1) ≤ x(2) ≤ . . . ≤ x(N) are the sample order
statistics (that is, the sample sorted). The trimmed mean TN(δ,1 – γ) is
defined as follows: 

, , 

7 This discussion draws from Chernobai and Rachev, “Applying Robust Methods to
Operation Risk Modeling.”

r i( )
2

r 1( )
2 r 2( )

2 � r N( )
2≤ ≤ ≤

arg min J ωiri
2

i 1=

N

∑=
⎩ ⎭
⎨ ⎬
⎧ ⎫

ri

TN δ 1 γ–,( )
1

UN LN–
---------------------- xj

j LN 1+=

UN

∑=

δ γ, 0 0.5,( )∈ LN floor Nδ[ ]= UN floor Nγ[ ]=
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 ■ Winsorized mean. The Winsorized mean  is the mean of Win-
sorized data:

 ■ Median. The median Med(X) is defined as that value that occupies a
central position in a sample order statistics:

Robust Estimators of the Spread
The variance is a classical estimator of the spread but it is not robust.
Robust estimators of the spread are the following:8

 ■ Median absolute deviation. The median absolute deviation (MAD) is
defined as the median of the absolute value of the difference between a
variable and its median, that is,

MAD = MED|X – MED(X)|

 ■ Interquartile range. The interquartile range (IQR) is defined as the dif-
ference between the highest and lowest quartile:

IQR = Q(0.75) – Q(0.25)

where Q(0.75) and Q(0.25) are the 75th and 25th percentiles of the
data.

 ■ Mean absolute deviation. The mean absolute deviation (MeanAD) is
defined as follows:

8 This discussion draws from Chernobai and Rachev, “Applying Robust Methods to
Operation Risk Modeling.”

XW

yj

xIN 1+             j LN≤

xj                  LN 1+ j UN≤ ≤
xj xUN 1+=     j UN 1+≥⎩

⎪
⎨
⎪
⎧

=

XW Y=

Med X( )
x N 1+( ) 2⁄( )                         if N is odd

x N 2⁄( ) x N 2 1+⁄( )+( ) 2⁄( )    if N is even⎩
⎨
⎧

=
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 ■ Winsorized standard deviation. The Winsorized standard deviation is
the standard deviation of Winsorized data, that is,

Illustration of Robust Statistics 
To illustrate the effect of robust statistics, consider the series of daily
returns of Nippon Oil in the period 1986 through 2005 depicted in
Exhibit 12.1. If we compute the mean, the trimmed mean, and the
median we obtain the following results:

1
N
----- xj MED X( )–

j 1=

N

∑

σW

σN

UN LN–( ) N⁄
------------------------------------=

EXHIBIT 12.1  Daily Returns Nippon Oil: 1986–2005
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Mean = 3.8396e–005
Trimmed mean (20%)9 = –4.5636e–004
Median = 0

In order to show the robustness properties of these estimators, let’s mul-
tiply the 10% highest/lowest returns by 2. If we compute again the same
quantities we obtain:

While the mean is largely affected, the median is not affected and the
trimmed mean is only marginally affected by doubling the value of 20%
of the points.

We can perform the same exercise for measures of the spread. If we
compute the standard deviation, the IQR, and the MAD we obtain the
following results:

Let’s multiply the 10% highest/lowest returns by 2. The new values are:

The MAD are less affected by the change than the standard deviation
while the IQR is not affected. If we multiply the 25% highest/lowest
returns by 2 we obtain the following results:

ROBUST ESTIMATORS OF REGRESSIONS

Let’s now apply the concepts of robust statistics to the estimation of
regression coefficients, which is sensitive to outliers.

9 Trimmed mean (20%) means that we exclude the 20%/2 = 10% highest and lowest
observations.

Mean = 4.4756e–004
Trimmed mean (20%) = –4.4936e–004
Median = 0

Standard deviation = 0.0229
IQR = 0.0237
MAD = 0.0164

Standard deviation = 0.0415
IQR = 0.0237
MAD = 0.0248

Standard deviation = 0.0450
IQR = 0.0237 (but suddenly changes if we add/sub-

tract one element)
MAD = 0.0299
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Identifying robust estimators of regressions is a rather difficult
problem. In fact, different choices of estimators, robust or not, might
lead to radically different estimates of slopes and intercepts. Consider
the following linear regression model:

If data are organized in matrix form as usual,

, , , 

then the regression equation takes the form, 

Y = Xβ + ε

The standard nonrobust LS estimation of regression parameters mini-
mizes the sum of squared residuals,

or, equivalently, as explained in the previous chapter, solves the system
of N + 1 equations,

or, in matrix notation, X′Xβ = X′Y. The solution of this system is

The fitted values (i.e, the LS estimates of the expectations) of the Y are

Y β0 βiXi
i 1=

N

∑ ε+ +=

Y
Y1

�
YT⎝ ⎠

⎜ ⎟
⎜ ⎟
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= X
1 X11 � XN1
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⎜ ⎟
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The H matrix is called the hat matrix because it puts a hat on, that is, it
computes the expectation  of the Y. The hat matrix H is a symmetric
T × T projection matrix; that is, the following relationship holds: HH =
H. The matrix H has N eigenvalues equal to 1 and T – N eigenvalues
equal to 0. Its diagonal elements, hi ≡ hii satisfy:

0 ≤ hi ≤ 1

and its trace (i.e., the sum of its diagonal elements) is equal to N:

tr(H) = N

Under the assumption that the errors are independent and identi-
cally distributed with mean zero and variance σ2, it can be demon-
strated that the  are consistent, that is,  in probability when
the sample becomes infinite if and only if h = max(hi) → 0. Points where
the hi have large values are called leverage points. It can be demon-
strated that the presence of leverage points signals that there are obser-
vations that might have a decisive influence on the estimation of the
regression parameters. A rule of thumb, reported in Huber,10 suggests
that values hi ≤ 0.2 are safe, values 0.2 ≤ hi ≤ 0.5 require careful atten-
tion, and higher values are to be avoided.

Thus far we have discussed methods to ascertain regression robust-
ness. Let’s now discuss methods to “robustify” the regression estimates,
namely, methods based on M-estimators and W-estimators. 

Robust Regressions Based on M-Estimators
Let’s first discuss how to make robust regressions with Huber M-estima-
tors. The LS estimators  are M-estimators but are not
robust. We can generalize LS seeking to minimize 

by solving the set of N + 1 simultaneous equations

10 Huber, Robust Statistics.

Ŷ

Ŷ Ŷ E Y( )→

ββββ̂ X′X( ) 1– X′Y=

J ρ Yi βijXij
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N
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T
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ψ Yi βijXij
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where 

Robust Regressions Based on W-Estimators
W-estimators offer an alternative form of M-estimators. They are obtained
by rewriting M-estimators as follows:

Hence the N + 1 simultaneous equations become 

or, in matrix form

X′WXβ = X′WY

where W is a diagonal matrix. 
The above is not a linear system because the weighting function is in

general a nonlinear function of the data. A typical approach is to deter-
mine iteratively the weights through an iterative reweighted least squares
(RLS) procedure. Clearly the iterative procedure depends numerically on
the choice of the weighting functions. Two commonly used choices are
the Huber weighting function wH(e), defined as

and the Tukey bisquare weighting function wT(e), defined as

ψ
∂ρ
∂ββββ
------=

ψ Yi βijXij
j 0=

N
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where k is a tuning constant often set at 1.345 × (standard deviation of
errors) for the Huber function and k = 4.6853 × (standard deviation of
errors) for the Tukey function. 

ILLUSTRATION: ROBUSTNESS OF THE CORPORATE BOND 
YIELD SPREAD MODEL

To illustrate robust regressions, let’s continue with our illustration of
the spread regression used in Chapter 4 to show how to incorporate
dummy variables into a regression model. The last column of Exhibit
4.2 represents the diagonal elements of the hat matrix called leverage
points. These elements are all very small, much smaller than the safety
threshold 0.2. We therefore expect that the robust regression does not
differ much from the standard regression. 

We ran two robust regressions with the Huber and Tukey weighting
functions. The tuning parameter k is set as suggested earlier. The esti-
mated coefficients of both robust regressions were identical to the coeffi-
cients of the standard regression. In fact, with the Huber weighting
function we obtained the parameters estimates shown in the second col-
umn Exhibit 12.2. The tuning parameter was set at 160, that is, 1.345
the standard deviation of errors. The algorithm converged at the first
iteration.

With the Tukey weighting function we obtained the following beta
parameters in Exhibit 12.2: with the tuning parameter set at 550, that
is, 4.685 the standard deviation of errors. The algorithm converged at
the second iteration.

Let’s illustrate the robustness of regression through another example.
Let’s create an equally weighted index with the daily returns of 234 Jap-
anese firms. Note that this index is created only for the sake of this illus-
tration; no econometric meaning is attached to this index. The daily
returns for the index for period 1986 to 2005 are shown in Exhibit 12.3.

EXHIBIT 12.2  Robust Estimates of Parameters Using Huber and Tukey Weighting 
Functions

Coefficient Huber Tukey

β0 157.0116 157.0138
β1   61.2781   61.2776
β2 –13.2054 –13.2052
β3 –90.8871 –90.8871
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EXHIBIT 12.3  Daily Returns of the Japan Index: 1986–2005

Now suppose that we want to estimate the regression of Nippon Oil
on this index; that is, we want to estimate the following regression:

Estimation with the standard least squares method yields the following
regression parameters:

R2: 0.1349
Adjusted R2: 0.1346
Standard deviation of errors: 0.0213

beta t-statistic p-value

β0 0.0000   0.1252 0.9003
β1 0.4533 27.6487 0.0000

RNO β0 β1RIndex Errors+ +=
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When we examined the diagonal of the hat matrix, we found the
following results

suggesting that there is no dangerous point. Robust regression can be
applied; that is, there is no need to change the regression design. We
applied robust regression using the Huber and Tukey weighting func-
tions with the following parameters:

Huber (k = 1.345 × standard deviation)

and

Tukey (k = 4.685 × standard deviation)

The robust regression estimate with Huber weighting functions yields
the following results:

The robust regression estimate with Tukey weighting functions yields
the following results:

We can conclude that all regression slope estimates are highly signifi-
cant; the intercept estimates are insignificant in all cases. There is a con-

Maximum leverage = 0.0189
Mean leverage = 4.0783e–004

R2 = 0.1324
Adjusted R2 = 0.1322
Weight parameter = 0.0287
Number of iterations = 39

beta t-statistic Change in p-value

β0 –0.000706 –0.767860 0.442607
β1   0.405633   7.128768 0.000000

R2 = 0.1315
Adjusted R2 = 0.1313
Weight parameter = 0.0998
Number of iterations = 88

beta t-statistic Change in p-value

β0 –0.000879 –0.632619 0.527012
β1   0.400825   4.852742 0.000001 
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siderable difference between the robust (0.40) and the nonrobust (0.45)
regression coefficient. 

Robust Estimation of Covariance and Correlation Matrices
Variance-covariance matrices are central to modern portfolio theory. In
fact, the estimation of the variance-covariance matrices is critical for
portfolio management and asset allocation. Suppose returns are a multi-
variate random vector written as

rt = µµµµ + εεεεt

The random disturbances εεεεt is characterized by a covariance matrix ΩΩΩΩ. 

The correlation coefficient fully represents the dependence structure
of multivariate normal distribution. More in general, the correlation
coefficient is a valid measure of dependence for elliptical distributions
(i.e., distributions that are constants on ellipsoids). In other cases, dif-
ferent measures of dependence are needed (e.g., copula functions).11

The empirical covariance between two variables is defined as

where

, 

are the empirical means of the variables.
The empirical correlation coefficient is the empirical covariance nor-

malized with the product of the respective empirical standard deviations:

11 Paul Embrechts, Filip Lindskog, and Alexander McNeil, “Modelling Dependence
with Copulas and Applications to Risk Management,” in S. T. Rachev (ed.), Hand-
book of Heavy Tailed Distributions in Finance (Amsterdam: Elsevier/North-Hol-
land, 2003).
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The empirical standard deviations are defined as

, 

Empirical covariances and correlations are not robust as they are highly
sensitive to tails or outliers. Robust estimators of covariances and/or
correlations are insensitive to the tails. However, it does not make sense
to robustify correlations if dependence is not linear.

Different strategies for robust estimation of covariances exist;
among them are:

 ■ Robust estimation of pairwise covariances
 ■ Robust estimation of elliptic distributions

Here we discuss only the robust estimation of pairwise covariances. As
detailed in Huber,12 the following identity holds:

Assume S is a robust scale functional:

A robust covariance is defined as

Choose

, 

12 Huber, Robust Statistics.
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A robust correlation coefficient is defined as 

The robust correlation coefficient thus defined is not confined to stay in
the interval [–1,+1]. For this reason the following alternative definition
is often used:

Applications
As explained in Chapter 4, regression analysis has been used to estimate
the market risk of a stock (beta) and to estimate the factor loadings in a
factor model. Robust regressions have been used to improve estimates in
these two areas. 

Martin and Simin provide the first comprehensive analysis of the
impact of outliers on the estimation of beta.13 Moreover, they propose a
weighted least-squares estimator with data-dependent weights for esti-
mating beta, referring to this estimate as “resistant beta,” and report
that this beta is a superior predictor of future risk and return character-
istics than the beta calculated using LS. To see the potential dramatic
difference between the LS beta and the resistant beta, shown below are
the estimates of beta and the standard error of the estimate for four
companies reported by Martin and Simin:14

13 Martin and Simin, “Outlier-Resistant Estimates of Beta.” 
14 Reported in Table 1 of the Martin-Simin study. Various time periods were used
from January 1962 to December 1996. 

OLS Estimate Resistant Estimate

Beta Standard Error Beta Standard Error

AW Computer Systems 2.33 1.13 1.10 0.33
Chief Consolidated 1.12 0.80 0.50 0.26
Mining Co. Oil City Petroleum 3.27 0.90 0.86 0.47
Metallurgical Industries Co. 2.05 1.62 1.14 0.22

c
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4
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Martin and Simin provide a feeling for the magnitude of the abso-
lute difference between the OLS beta and the resistant beta using weekly
returns for 8,314 companies over the period January 1992 to December
1996. A summary of the distribution follows:

Studies by Fama and French find that market capitalization (size)
and book-to-market are important factors in explaining cross-sectional
returns.15 These results are purely empirically based since there is no
equilibrium asset pricing model that would suggest either factor as
being related to expected return. The empirical evidence that size may
be a factor that earns a risk premia (popularly referred to as the “small-
firm effect” or “size effect”) was first reported by Banz.16 Knez and
Ready reexamined the empirical evidence using robust regressions, more
specifically the least-trimmed squares regression discussed earlier.17

Their results are twofold. First, they find that when 1% of the most
extreme observations are trimmed each month, the risk premia found by
Fama and French for the size factor disappears. Second, the inverse rela-
tion between size and the risk premia reported by Banz and Fama and
French (i.e., the larger the capitalization, the smaller the risk premia) no
longer holds when the sample is trimmed. For example, the average
monthly risk premia estimated using LS is –12 basis points. However,
when 5% of the sample is trimmed, the average monthly risk premia is
estimated to be +33 basis points; when 1% of the sample is trimmed,
the estimated average risk premia is +14 basis points. 

Absolute Difference in Beta No. of Companies Percent

0.0+ to 0.3 5,043 60.7
0.3+ to 0.5 2,206 26.5
0.5+ to 1.0    800   9.6
Greater than 1.0+    265   3.2

15 Eugene F. Fama and Kenneth R. French, “The Cross-Section of Expected Stock Re-
turns,” Journal of Finance 47 (1992), pp. 427–466 and “Common risk Factors in the
Returns on Stocks and Bonds,” Journal of Financial Economics 33 (1993), pp. 3–56.
16 Rolf W. Banz, “The Relationship Between Return and Market Value of Common
Stocks,” Journal of Financial Economics 9 (1981), pp. 3–18.
17 Peter J. Knez and Mark J. Ready, “On the Robustness of Size and Book-to-Market
in Cross-Sectional Regressions,” Journal of Finance 52 (1997), pp. 1355–1382.
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CONCEPTS EXPLAINED IN THIS CHAPTER
(IN ORDER OF PRESENTATION)

Robust estimation
Robust statistic
Qualitative robustness
Hampel’s qualitative robustness
Quantitative robustness
Resistant estimators
Influence curve/Influence function
Breakdown bound
Rejection point
Redescending estimators
Gross error sensitivity
Local shift sensitivity
Winsor’s principle
M-estimators
Equivariant estimators
L-estimators
Trimmed mean
R-estimators
Least median of squares (LMedS)
Least trimmed of squares (LTS)
Reweighted least squares (RLS)
Trimmed mean
Winsorized mean
Median
Median absolute deviation (MAD)
Interquartile range (IQR)
Mean absolute deviation (MeanAD)
Winsorized standard deviation
Hat matrix
Leverage points
Robust regression
Huber weighting function
Tukey weighting function
Resistant beta
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       Principal Components
Analysis and Factor Analysis

 

n Chapter 5, we described how regression analysis is used to estimate
factor models. In our discussion, we stated that the factors used in a

factor model can be obtained based on either theory or one of two sta-
tistical techniques, namely 

 

principal components analysis

 

 (PCA) or fac-
tor analysis. These two statistical techniques provide a tool to (1) reduce
the number of variables in a model (i.e., to reduce the dimensionality)
and (2) identify if there is structure in the relationships between vari-
ables (i.e., to classify variables).

In this chapter, we explain PCA and factor analysis, illustrate and
compare both techniques using a sample of stocks. The chapter closes
with two examples of principal components analysis applied to stock
returns and bond analysis. Before beginning our discussion of PCA and
factor analysis let’s take a look at factor models, which are the econo-
metric models behind both.

 

FACTOR MODELS

 

Factor models are statistical models that try to explain complex phe-
nomena through a small number of basic causes or factors. Factor mod-
els serve two main purposes: (1) They reduce the dimensionality of
models to make estimation possible; and/or (2) they find the true causes
that drive data. Factor models were introduced by Charles Spearman in
1904.

 

1

 

 A former British Army officer, Spearman was a leading psycholo-

 

1 

 

Charles Spearman, “General Intelligence, Objectively Determined and Measured,”

 

American Journal of Psychology

 

 15 (1904), pp. 201–293.

I
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gist who developed many concepts of modern psychometrics. At the
turn of the century, in the prevailing climate of “positive science,” psy-
chologists were trying to develop quantitative theories of personality.
Psychologists had already developed a large number of psychometric
tests, including the IQ test invented by the French psychologist Binet.
All these tests gave psychologists a vast amount of data. 

Spearman was particularly interested in understanding how to mea-
sure human intellectual abilities. In his endeavor to do so, he developed
the first factor model, known as the Spearman model. The Spearman
model explains intellectual abilities through one common factor, the
famous “general intelligence” 

 

g

 

 factor, plus another factor 

 

s

 

 

 

which is spe-
cific to each distinct ability. Spearman was persuaded that the factor 

 

g

 

had an overwhelming importance. That is, he thought that any mental
ability can be explained quantitatively through a common intelligence
factor. According to this theory, outstanding achievements of, say, a
painter, a novelist, and a scientist can all be ascribed to a common gen-
eral intelligence factor plus a small contribution from specific factors.

Some 30 years later, Louis Leon Thurstone developed the first true
multifactor model of intelligence. An engineer by training, Thurstone
was among the first to propose and demonstrate that there are numer-
ous ways in which a person can be intelligent. Thurstone’s Multiple-fac-
tors theory identified the following seven primary mental abilities:
Verbal Comprehension, Word Fluency, Number Facility, Spatial Visual-
ization, Associative Memory, Perceptual Speed, and Reasoning.

 

2

 

 The
Educational Testing Service presently operates a system based on three
important factors of mental ability—verbal, mathematical, and logical
abilities—but most psychologists agree that many other factors could be
identified as well. 

One might question whether factors are only statistical artifacts or
if they actually correspond to any reality. In the modern operational
interpretation of science, a classification or a factor is “real” if we can
make useful predictions using that classification. For example, if the
Spearman theory is correct, we can predict that a highly intelligent per-
son can obtain outstanding results in any field. Thus, a novelist could
have obtained outstanding results in science. However, if many distinct
mental factors are needed, people might be able to achieve great results
in some field but be unable to excel in others. 

In the early applications of factor models to psychometrics, the sta-
tistical model was essentially a conditional multivariate distribution. The
raw data were large samples of psychometric tests. The objective was to

 

2 

 

Louis L. Thurstone, 

 

Primary Mental Abilities

 

 (Chicago: University of Chicago
Press, 1938).
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explain these tests as probability distributions conditional on the value
of one or more factors. In this way, one can make predictions of, for
example, the future success of young individuals in different activities. 

In economics, factor models are typically applied to time series. The
objective is to explain the behavior of a large number of stochastic pro-
cesses, typically price, returns, or rate processes, in terms of a small num-
ber of factors. These factors are themselves stochastic processes. In order
to simplify both modeling and estimation, most factor models employed
in financial econometrics are static models. This means that time series
are assumed to be sequences of temporally independent and identically
distributed (IID) random variables so that the series can be thought as
independent samples extracted from one common distribution.

In financial econometrics, factor models are needed not only to
explain data but to make estimation feasible. Given the large number of
stocks presently available—in excess of 15,000—the estimation of corre-
lations cannot be performed without simplifications. Widely used ensem-
bles such as the S&P 500 or the MSCI Europe, include hundreds of
stocks and therefore hundreds of thousands of individual correlations.
Available samples are insufficient to estimate this large number of corre-
lations. Hence factor models able to explain all pairwise correlations in
terms of a much smaller number of correlations between factors.

 

Linear Factor Models Equations

 

Linear factor models are regression models of the following type:

where 

The 

 

β

 

ij

 

’s are called the 

 

factor loadings

 

 or 

 

factor sensitivities; 

 

they
express the influence of the 

 

j-

 

th factor on the 

 

i-

 

th variable. 
In this formulation, factor models are essentially static models,

where the variables and the factors are random variables without any
explicit dependence on time. It is possible to add a dynamics to both the
variables and the factors, but that is beyond the scope of this book.

 

X

 

i

 

= a set of 

 

N 

 

random variables

 

f

 

j

 

= a set of 

 

K

 

 common factors

 

ε

 

i

 

= the noise terms associated with each variable 

 

X

 

i

Xi αi βijfj
j 1=

K

∑ εi+ +=
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As mentioned above, one of the key objectives of factor models is to
reduce the dimensionality of the covariance matrix so that the covari-
ances between the variables 

 

X

 

i

 

 is determined only by the covariances
between factors. Suppose that the noise terms are mutually uncorre-
lated, so that

and that the noise terms are uncorrelated with the factors, that is, 

 

E

 

(

 

ε

 

i

 

f

 

j

 

)
= 0, 

 

∀

 

i

 

,

 

j

 

. Suppose also that both factors and noise terms have a zero
mean, so that 

 

E

 

(

 

X

 

i

 

) = 

 

α

 

i

 

. Factor models that respect the above con-
straints are called 

 

strict factor models.

 

Let’s compute the covariances of a strict factor model:

From this expression we can see that the variances and covariances
between the variables 

 

X

 

i

 

 depend only on the covariances between the
factors and the variances of the noise term. 

We can express the above compactly in matrix form. Let’s write a
factor model in matrix form as follows:

 

X

 

 = αααα

 

 + ββββ

 

f 

 

+ εεεε

 

where 

 

X

 

 = (

 

X

 

1

 

, . . ., 

 

X

 

N

 

)

 

′

 

= the 

 

N-

 

vector of variables
αααα

 

 = (

 

α

 

1

 

, . . ., 

 

α

 

N

 

)

 

′

 

= the 

 

N-

 

vector of means
εεεε

 

 = (

 

ε

 

1

 

, . . ., 

 

ε

 

N

 

)

 

′

 

= the 

 

N-

 

vector of idiosyncratic noise terms

 

f

 

 = (

 

f

 

1

 

, . . ., 

 

f

 

K

 

)

 

′

 

= the 

 

K

 

-vector of factors 

E εiεj( )
0     i j≠,
σi

2   i j=,⎩
⎨
⎧

=

E Xi αi–( ) Xj αj–( )( ) E βisfs εi+
s 1=

K

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

βjtft εj+
t 1=

K

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

E βisfs
s 1=

K

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

βjtft
t 1=

K

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

⎝ ⎠
⎜ ⎟
⎛ ⎞

E βisfs
s 1=

K

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

εj( )
⎝ ⎠
⎜ ⎟
⎛ ⎞

+=

E εi( ) βjtft
t 1=

K

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

E εiεj( )+ +

βisE fsft( )βjt E εiεj( )+
s t,
∑=
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Let’s define the following:

If we assume that our model is a strict factor model, the matrix ΨΨΨΨ will
be a diagonal matrix with the noise variances on the diagonal, that is,

Under the above assumptions, we can express the variance-covari-
ance matrix of the variables in the following way:

ΣΣΣΣ = ββββΩΩΩΩββββ′ + ΨΨΨΨ

In practice, the assumption of a strict factor model might be too restric-
tive. In applied work, factor models will often be approximate factor
models.3 Approximate factor models allow idiosyncratic terms to be
weakly correlated among themselves and with the factors.

As many different factor models have been proposed for explaining
stock returns, an important question is whether a factor model is fully
determined by the observed time series. In a strict factor model, factors
are determined up to a nonsingular linear transformation. In fact, the
above matrix notation makes it clear that the factors, which are hidden,
nonobservable variables, are not fully determined by the above factor
model. That is, an estimation procedure cannot univocally determine
the hidden factors and the factor loadings from the observable variables
X. In fact, suppose that we multiply the factors by any nonsingular
matrix R. We obtain other factors

g = Rf

= the N × K matrix of factor loadings. 

ΣΣΣΣ = the N × N variance-covariance matrix of the variables X
ΩΩΩΩ = the K × K variance-covariance matrix of the factors
ΨΨΨΨ = N × N variance-covariance matrix of the error terms εεεε

3 See, for example, Jushan Bai, “Inferential Theory for Factor Models of Large Di-
mensions,” Econometrica 71 (2003), pp. 135–171.

ββββ
β11 � β1K

� � �
βN1 � βNK

=

ΨΨΨΨ
ψ1

2 � 0
� � �

0 � ψN
2⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=
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with a covariance matrix

ΩΩΩΩg    ====    RΩΩΩΩR–1

and we can write a new factor model:

In order to solve this indeterminacy, we can always choose the matrix
R so that the factors g are a set of orthonormal variables, that is, uncorre-
lated variables (the orthogonality condition) with unit variance (the nor-
mality condition). In order to make the model uniquely identifiable, we can
stipulate that factors must be a set of orthonormal variables and that, in
addition, the matrix of factor loadings is diagonal. Under this additional
assumption, a strict factor model is called a normal factor model. Note
explicitly that under this assumption, factors are simply a set of standard-
ized independent variables. The model is still undetermined under rotation,
that is multiplication by any nonsingular matrix such that RR′ = I.

In summary, a set of variables has a normal factor representation if
it is represented by the following factor model:

where factors are orthonormal variables and noise terms are such that
the covariance matrix can be represented as follows:

where ββββ is the diagonal matrix of factor loadings and ΨΨΨΨ is a diagonal
matrix. 

How can we explain the variety of factor models proposed given
that a strict factor model could be uniquely identified up to a factor lin-
ear transformation? As mentioned, the assumptions underlying strict
factor models are often too restrictive and approximate factor models
have to be adopted. Approximate factor models are uniquely identifi-
able only in the limit of an infinite number of series. The level of
approximation is implicit in practical models of returns.

Types of Factors and Their Estimation
In financial econometrics, the factors used in factor models can belong
to three different categories:

X αααα ββββf εεεε+ + αααα ββββR 1– Rf εεεε+ + αααα ββββgg εεεε+ += = =

X αααα ββββf εεεε+ +=

ΣΣΣΣ ββββββββ′ ΨΨΨΨ+=
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 ■ Macroeconomic factors
 ■ Fundamental factors
 ■ Statistical factors

Macroeconomic factors are macroeconomic variables that are believed
to determine asset returns.4 They might be variables such as the GNP,
the inflation rate, the unemployment rate, or the steepness of the yield
curve. Fundamental factors are variables that derive from financial anal-
ysis;5 statistical factors are factors that derive from a mathematical pro-
cess as we will shortly explain. 

Macroeconomic factors are exogenous factors that must be esti-
mated as variables exogenous to the factor model. They influence the
model variables but are not influenced by them. Given factors as exoge-
nous variables, a factor model is estimated as a linear regression model.
Obviously this implies that there is indeed a linear relationship between
the factors and the model variables. One cannot write an arbitrary fac-
tor model with arbitrary factors. More precisely, one can always write a
linear model with arbitrary factors and arbitrary factor loadings. How-
ever, such a model will have no explanatory power. The variance of each
variable that is not explained by common factors appears as noise.

As explained in Chapter 3, adding factors might improve the
explanatory power of the model but, in general, worsens the ability to
estimate the model because there are more parameters to estimate.
Thus, even if factors exhibit genuine linear relationships with the model
variables, given the finite and often small size of samples, there is a
trade-off between adding explanatory factors and the ability to estimate
them (i.e., noise to information ratio).

Note that the ability to find exogenous factors is an empirical ques-
tion. Given a set of empirical variables, say stock returns, it is an empiri-
cal fact that there are other variables of a different nature that are linearly
related to them. However, it is conceivable that there are economic fac-
tors that have a nonlinear relationship with stock returns. Thus, the
decomposition with exogenous factors is dictated by empirical research.

Statistical factors, in contrast, are obtained through a logical process of
analysis of the given variables. Statistical factors are factors that are endog-
enous to the system. They are typically determined with one of two statisti-
cal processes; namely, principal component analysis or factor analysis. 

4 An example of a macrofactor is the Chen-Roll-Ross model. See Nai-fu Chen, Rich-
ard Roll, and Stephen A. Ross, “Economic Forces and the Stock Market,” Journal
of Business 59 (July 1986), pp. 383–403.
5 Examples are the MSCI Barra model and several models developed by Fama and
French.
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Note that factors defined through statistical analysis are linear com-
binations of the variables. That is, if the variables are asset returns, fac-
tors are portfolios of assets. They are hidden variables insofar as one
does not know the weights of the linear combinations. However, once
the estimation process is completed, statistical factors are always linear
combinations of variables. If data have a strict factor structure, we can
always construct linear combinations of the series (e.g., portfolios of
returns) that are perfectly correlated with a set of factors. Often they
can be given important economic interpretations. In the following sec-
tions we describe the theory and estimation methods of principal com-
ponents analysis and factor analysis.

PRINCIPAL COMPONENTS ANALYSIS

Principal components analysis (PCA) was introduced in 1933 by Harold
Hotelling.6  Hotelling proposed PCA as a way to determine factors with
statistical learning techniques when factors are not exogenously given.
Given a variance-covariance matrix, one can determine factors using the
technique of PCA. 

PCA implements a dimensionality reduction of a set of observations.
The concept of PCA is the following. Consider a set of n stationary time
series Xi, for example the 500 series of returns of the S&P 500. Consider
next a linear combination of these series, that is, a portfolio of securities.
Each portfolio P is identified by an n-vector of weights ωωωωP and is charac-
terized by a variance . In general, the variance  depends on the
portfolio’s weights ωωωωP. Lastly, consider a normalized portfolio, which has
the largest possible variance. In this context, a normalized portfolio is a
portfolio such that the squares of the weights sum to one. 

If we assume that returns are IID sequences, jointly normally dis-
tributed with variance-covariance matrix σσσσ, a lengthy direct calculation
demonstrates that each portfolio’s return will be normally distributed
with variance

The normalized portfolio of maximum variance can therefore be deter-
mined in the following way:

6 Harold Hotelling, “Analysis of a Complex of Statistical Variables with Principal
Components,” Journal of Educational Psychology 27 (1933), pp. 417–441.

σP
2 σP

2

σP
2 ωωωωP

TσσσσωωωωP=
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Maximize 

subject to the normalization condition

where the product is a scalar product. It can be demonstrated that the
solution of this problem is the eigenvector ωωωω1 corresponding to the larg-
est eigenvalue λ1 of the variance-covariance matrix σσσσ. As σσσσ is a vari-
ance-covariance matrix, the eigenvalues are all real.

Consider next the set of all normalized portfolios orthogonal to ωωωω1,
that is, portfolios completely uncorrelated with ωωωω1. These portfolios are
identified by the following relationship:

We can repeat the previous reasoning. Among this set, the portfolio of
maximum variance is given by the eigenvector ωωωω2 corresponding to the
second largest eigenvalue λ2 of the variance-covariance matrix σσσσ. If
there are n distinct eigenvalues, we can repeat this process n times. In
this way, we determine the n portfolios Pi of maximum variance. The
weights of these portfolios are the orthonormal eigenvectors of the vari-
ance-covariance matrix σσσσ. Note that each portfolio is a time series
which is a linear combination of the original time series Xi. The coeffi-
cients are the portfolios’ weights.

These portfolios of maximum variance are all mutually uncorre-
lated. It can be demonstrated that we can recover all the original return
time series as linear combinations of these portfolios:

Thus far we have succeeded in replacing the original n correlated time
series Xj with n uncorrelated time series Pi with the additional insight
that each Xj is a linear combination of the Pi. Suppose now that only p
of the portfolios Pi have a significant variance, while the remaining n-p
have very small variances. We can then implement a dimensionality
reduction by choosing only those portfolios whose variance is signifi-
cantly different from zero. Let’s call these portfolios factors F. 

ωωωωP
TσσσσωωωωP

ωωωωP
TωωωωP 1=

ωωωω1
TωωωωP ωωωωP

Tωωωω1 0= =

Xj αj i, Pi
i 1=

n

∑=
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It is clear that we can approximately represent each series Xi as a
linear combination of the factors plus a small uncorrelated noise. In fact
we can write

where the last term is a noise term. Therefore to implement PCA one
computes the eigenvalues and the eigenvectors of the variance-covari-
ance matrix and chooses the eigenvalues significantly different from
zero. The corresponding eigenvectors are the weights of portfolios that
form the factors. Criteria of choice are somewhat arbitrary. 

Suppose, however, that there is a strict factor structure, which means
that returns follow a strict factor model as defined earlier in this chapter:

The matrix ββββ can be obtained diagonalizing the variance-covariance
matrix. In general, the structure of factors will not be strict and one will
try to find an approximation by choosing only the largest eigenvalues.

Note that PCA works either on the variance-covariance matrix or on
the correlation matrix. The technique is the same but results are gener-
ally different. PCA applied to the variance-covariance matrix is sensitive
to the units of measurement, which determine variances and covariances.
This observation does not apply to returns, which are dimensionless
quantities. However, if PCA is applied to prices and not to returns, the
currency in which prices are expressed matters; one obtains different
results in different currencies. In these cases, it might be preferable to
work with the correlation matrix.

We have described PCA in the case of time series, which is the rele-
vant case in econometrics. However PCA is a generalized dimensionality
reduction technique applicable to any set of multidimensional observa-
tions. It admits a simple geometrical interpretation which can be easily
visualized in the three-dimensional case. Suppose a cloud of points in the
three-dimensional Euclidean space is given. PCA finds the planes that cut
the cloud of points in such a way as to obtain the maximum variance. 

Illustration of Principal Components Analysis
Let’s now show how PCA is performed. To do so, we will use a subset of
the same stocks that we used in Chapter 3 to illustrate the estimation of
the characteristic line. The data are monthly observations for the follow-
ing 10 stocks: Campbell Soup, General Dynamics, Sun Microsystems,

Xj αj i, Fi
i 1=

p

∑ αj i, Pi
i p 1+=

n

∑+ αj i, Fi εj+
i 1=

p

∑= =

r a ββββf εεεε+ +=
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Hilton, Martin Marietta, Coca-Cola, Northrop Grumman, Mercury
Interactive, Amazon.com, and United Technologies. The period consid-
ered is from December 2000 to November 2005. This book’s Data
Appendix (following Chapter 15) shows the monthly returns for the
stocks. Exhibit 13.1 shows the graphics of the 10 return processes.

As explained earlier, performing PCA is equivalent to determining the
eigenvalues and eigenvectors of the covariance matrix or of the correla-
tion matrix. The two matrices yield different results. We perform both
exercises, estimating the principal components using separately the cova-
riance and the correlation matrices of the return processes. We estimate
the covariance with the empirical covariance matrix. Recall that the
empirical covariance σij between variables (Xi,Xj) is defined as follows:

EXHIBIT 13.1  Graphics of the 10 Stock Return Processes
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, 

Exhibit 13.2 shows the covariance matrix. 
Normalizing the covariance matrix with the standard deviations, we

obtain the correlation matrix. Exhibit 13.3 shows the correlation matrix.
Note that the diagonal elements of the correlation matrix are all equal to
one. In addition, a number of entries in the covariance matrix are close
to zero. Normalization by the product of standard deviations makes the
same elements larger.

Let’s now proceed to perform PCA using the covariance matrix. We
have to compute the eigenvalues and the eigenvectors of the covariance
matrix. Exhibit 13.4 shows the eigenvectors (panel A) and the eigenval-
ues (panel B) of the covariance matrix. 

Each column of panel A of Exhibit 13.4 represents an eigenvector.
The corresponding eigenvector is shown in panel B. Eigenvalues are
listed in descending order; the corresponding eigenvectors go from left to
right in the matrix of eigenvectors. Thus the leftmost eigenvector corre-
sponds to the largest eigenvalue. Eigenvectors are not uniquely deter-
mined. In fact, multiplying any eigenvector for a real constant yields
another eigenvector. The eigenvectors in Exhibit 13.4 are normalized in
the sense that the sum of the squares of each component is equal to 1. It
can be easily checked that the sum of the squares of the elements in each
column is equal to 1. This still leaves an indeterminacy, as we can change
the sign of the eigenvector without affecting this normalization.

As explained earlier, if we form portfolios whose weights are the eigen-
vectors, we can form 10 portfolios that are orthogonal (i.e., uncorrelated).
These orthogonal portfolios are called principal components. The variance
of each principal component will be equal to the corresponding eigenvector.
Thus the first principal component (i.e., the portfolio corresponding to the
first eigenvalue), will have the maximum possible variance and the last
principal component (i.e., the portfolio corresponding to the last eigen-
value) will have the smallest variance. Exhibit 13.5 shows the graphics of
the principal components of maximum and minimum variance. 

The 10 principal components thus obtained are linear combinations
of the original series, X = (X1, . . ., XN)′ that is, they are obtained by
multiplying X by the matrix of the eigenvectors. If the eigenvalues and
the corresponding eigenvectors are all distinct, as it is the case in our

σ̂ij
1
T
---- Xi t( ) Xi–( ) Xj t( ) Xj–( )

t 1=

T

∑=

Xi
1
T
---- Xi t( )

t 1=

T

∑= Xj
1
T
---- Xj t( )

t 1=

T

∑=
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444 FINANCIAL ECONOMETRICS

illustration, we can apply the inverse transformation and recover the X
as linear combinations of the principal components. 

PCA is interesting if, in using only a small number of principal com-
ponents, we nevertheless obtain a good approximation. That is, we use
PCA to determine principal components but we use only those principal
components that have a large variance as factors of a factor model.
Stated otherwise, we regress the original series X onto a small number
of principal components. In this way, PCA implements a dimensionality
reduction as it allows one to retain only a small number of components.
By choosing as factors the components with the largest variance, we can
explain a large portion of the total variance of X.

Exhibit 13.6 shows the total variance explained by a growing num-
ber of components. Thus the first component explains 55.2784% of the
total variance, the first two components explain 66.8507% of the total
variance, and so on. Obviously 10 components explain 100% of the
total variance. The second, third, and fourth columns of Exhibit 13.7

EXHIBIT 13.5  Graphic of the Portfolios of Maximum and Minimum Variance 
Based on the Covariance Matrix

0.8

0.6

0.4

0.2

0.0

–0.2

–0.4

–0.6

–0.8
0 10 20 30 40 50 60

Months

c13-PrincipComponents  Page 444  Thursday, October 26, 2006  2:11 PM



Principal Components Analysis and Factor Analysis 445

show the residuals of the Sun Microsystem return process with 1, 5, and
all 10 components, respectively. There is a large gain from 1 to 5, while
the gain from 5 to all 10 components is marginal.

EXHIBIT 13.6  Percentage of the Total Variance Explained by a Growing Number of 
Components Based on the Covariance Matrix

EXHIBIT 13.7  Residuals of the Sun Microsytem Return Process with 1, 5, and All 
Components Based on the Covariance Matrix and the Correlation Matrix

Principal
Component 

Percentage of 
Total Variance Explained

  1    55.2784%
  2 66.8508
  3 76.4425
  4 84.1345
  5 91.2774
  6 95.1818
  7 97.9355
  8 99.8982
  9 99.9637
10 100.0000   

Residuals Based on Covariance Matrix Residuals Based on Correlation Matrix

Month/
Year

1 Principal
Component

5 Principal
Components

10 Principal
Components

1 Principal
Component

5 Principal
Components

10 Principal
Components

Dec. 2000     0.069044     0.018711   1.53E-16   0.31828   0.61281 –2.00E-15

Jan. 2001 –0.04723 –0.02325   1.11E-16 –0.78027 –0.81071   1.78E-15

Feb. 2001 –0.03768     0.010533 –1.11E-16 –0.47671   0.04825   2.22E-16

March 2001 –0.16204 –0.02016   2.50E-16 –0.47015 –0.82958 –2.78E-15

April 2001l –0.00819 –0.00858 –7.63E-17 –0.32717 –0.28034 –5.00E-16

May 2001     0.048814 –0.00399   2.08E-17   0.36321     0.016427   7.22E-16

June 2001   0.21834     0.025337 –2.36E-16 1.1437 1.37      7.94E-15

July 2001 –0.03399   0.02732   1.11E-16 –0.7547    0.35591   1.11E-15

Aug. 2001     0.098758 –0.00146   2.22E-16 1.0501   0.19739 –8.88E-16

Sept. 2001     0.042674     0.006381 –5.55E-17   0.40304   0.28441   2.00E-15

Oct. 2001     0.038679 –0.00813 –5.55E-17   0.50858   0.17217   4.44E-16

Nov. 2001 –0.11967 –0.01624   1.11E-16 –0.89512 –0.8765  –7.77E-16

Dec. 2001 –0.19192     0.030744   1.67E-16 –1.001        0.047784 –1.55E-15

Jan. 2002 –0.13013 –0.00591   5.55E-17 –1.1085  –0.68171 –1.33E-15

Feb. 2002     0.003304     0.017737 0 –0.05222   0.20963 –9.99E-16

March 2002 –0.07221     0.012569   5.55E-17 –0.35765   0.13344   2.22E-16

April 2002l –0.08211 –0.00916   2.78E-17 –0.38222 –0.47647 –2.55E-15

May 2002 –0.05537 –0.02103 0 –0.45957 –0.53564   4.22E-15
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446 FINANCIAL ECONOMETRICS

EXHIBIT 13.7     (Continued)

Residuals Based on Covariance Matrix Residuals Based on Correlation Matrix

Month/
Year

1 Principal
Component

5 Principal
Components

10 Principal
Components

1 Principal
Component

5 Principal
Components

10 Principal
Components

June 2002 –0.15461     0.004614   1.39E-16 –1.0311  –0.54064 –3.33E-15

July 2002   0.00221     0.013057   8.33E-17   0.24301   0.37431 –1.89E-15

Aug. 2002 –0.12655     0.004691   5.55E-17 –0.8143  –0.30497   2.00E-15

Sept. 2002 –0.07898     0.039666   5.55E-17 –0.25876   0.64902 –6.66E-16

Oct. 2002   0.15839     0.003346 –1.11E-16   0.98252   0.53223 –1.78E-15

Nov. 2002 –0.11377     0.013601   1.67E-16 –0.95263 –0.33884 –2.89E-15

Dec. 2002 –0.06957     0.012352   1.32E-16 –0.10309     0.029623 –4.05E-15

Jan. 2003   0.14889 –0.00118 –8.33E-17 1.193    0.73723   5.00E-15

Feb. 2003 –0.03359 –0.02719 –4.16E-17 –0.02854 –0.38331   4.05E-15

March 2003 –0.05314 –0.00859   2.78E-17 –0.38853 –0.40615 –2.22E-16

April 2003   0.10457 –0.01442 –2.22E-16   0.73075     0.097101 –1.11E-15

May 2003     0.078567     0.022227 –5.55E-17   0.52298   0.63772 –7.77E-16

June 2003 –0.1989  –0.02905   1.39E-16 –1.4213  –1.3836  –3.55E-15

July 2003 –0.0149  –0.00955 0   0.13876 –0.1059    3.44E-15

Aug. 2003 –0.12529 –0.00528   8.33E-17 –0.73819 –0.51792   9.99E-16

Sept. 2003   0.10879 –0.00645 –8.33E-17   0.69572   0.25503 –2.22E-15

Oct. 2003   0.07783   0.01089 –2.78E-17   0.36715   0.45274 –1.11E-15

Nov. 2003     0.038408 –0.01181 –5.55E-17   0.11761 –0.13271   3.33E-16

Dec. 2003   0.18203     0.012593 –1.39E-16 1.2655   0.98182   3.77E-15

Jan. 2004     0.063885 –0.00042   6.94E-18   0.33717   0.038477 0

Feb. 2004 –0.12552 –0.00225   1.11E-16 –0.70345 –0.49379 0

March 2004 –0.01747     0.016836 0 –0.1949    0.35348 –1.94E-16

April 2004     0.015742     0.013764   4.16E-17 0.2673   0.46969 –5.77E-15

May 2004 –0.03556 –0.02072 –6.94E-17 –0.60652 –0.68268 0

June 2004   0.14325     0.008155 –1.94E-16   0.54463   0.59768   3.22E-15

July 2004     0.030731 –0.00285 –4.16E-17   0.13011     0.028779   7.08E-16

Aug. 2004     0.032719 –0.00179 –5.55E-17   0.26793   0.18353   2.05E-15

Sept. 2004     0.083238     0.003664 0   0.58186   0.29544   3.77E-15

Oct. 2004   0.11722 –0.00356 –1.39E-16   0.77575   0.38959   2.22E-16

Nov. 2004 –0.04794 –0.00088 0 –0.47706 –0.35464 –3.13E-15

Dec. 2004 –0.1099  –0.01903   1.11E-16 –0.69439 –0.64663 –2.22E-16

Jan. 2005 0.0479 –0.00573   2.08E-17   0.24203 –0.04065 –4.45E-16

Feb. 2005 –0.015        0.003186   1.39E-17 –0.07198     0.054412   3.28E-15

March 2005     0.005969 –0.0092  –4.16E-17     0.035251 –0.02106   3.83E-15

April 2005l –0.00742 –0.01241 –4.16E-17 –0.09335 –0.42659 –1.67E-16

May 2005   0.14998 –0.01126   6.25E-17 1.0219     0.034585 –9.05E-15

June 2005 –0.05045 –0.00363   3.47E-17 –0.25655 –0.1229  –4.66E-15

July 2005     0.065302 –0.00421 –5.20E-17   0.56136   0.16602   3.08E-15

Aug. 2005     0.006719 –0.01174   1.39E-17   0.09319 –0.22119 –2.00E-15

Sept. 2005   0.12865 –0.00259 –8.33E-17   0.95602   0.33442   3.50E-15

Oct. 2005 –0.01782     0.011827 –8.33E-17 –0.2249    0.27675   1.53E-15

Nov. 2005     0.026312  –7.72E-05 –1.39E-17   0.26642   0.19725   1.67E-15
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Principal Components Analysis and Factor Analysis 447

We can repeat the same exercise for the correlation matrix. Exhibit
13.8 shows the eigenvectors (panel A) and the eigenvalues (panel B) of
the correlation matrix. Eigenvectors are normalized as in the case of the
covariance matrix.

Exhibit 13.9 shows the total variance explained by a growing num-
ber of components. Thus the first component explains 30.6522% of the
total variance, the first two components explain 45.2509% of the total
variance and so on. Obviously 10 components explain 100% of the
total variance. The increase in explanatory power with the number of
components is slower than in the case of the covariance matrix.

The proportion of the total variance explained grows more slowly
in the correlation case than in the covariance case. Exhibit 13.10 shows
the graphics of the portfolios of maximum and minimum variance. The
ratio between the two portfolios is smaller in this case than in the case
of the covariance.

The last three columns of Exhibit 13.8 show the residuals of the Sun
Microsystem return process with 1, 5, and all components based on the
correlation matrix. Residuals are progressively reduced, but at a lower
rate than with the covariance matrix.

PCA and Factor Analysis with Stable Distributions
In the previous sections we discussed PCA and factor analysis without
making any explicit reference to the distributional properties of the
variables. These statistical tools can be applied provided that all vari-
ances and covariances exist. Therefore applying them does not require,
per se, that distributions are normal, but only that they have finite vari-
ances and covariances. Variances and covariances are not robust but are
sensitive to outliers. As discussed in Chapter 12, robust equivalent of
variances and covariances exist. In order to make PCA and factor analy-
sis insensitive to outliers, one could use robust versions of variances and
covariances and apply PCA and factor analysis to these robust esti-
mates.

In many cases, however, distributions might exhibit fat tails and
infinite variances. In this case, large values cannot be trimmed but must
be taken into proper consideration. However, if variances and covari-
ances are not finite, the least squares methods used to estimate factor
loadings cannot be applied. In addition, the concept of PCA and factor
analysis as illustrated in the previous sections cannot be applied. In fact,
if distributions have infinite variances, it does not make sense to deter-
mine the portfolio of maximum variance as all portfolios will have infi-
nite variance and it will be impossible, in general, to determine an
ordering based on the size of variance. 
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EXHIBIT 13.9  Percentage of the Total Variance Explained by a Growing Number of 
Components Using the Correlation Matrix

EXHIBIT 13.10  Graphic of the Portfolios of Maximum and Minimum Variance 
Based on the Correlation Matrix

Principal 
Component

Percentage of 
Total Variance Explained

  1 30.6522%
  2 45.2509   
  3 57.1734   
  4 67.0935   
  5 75.7044   
  6 82.6998   
  7 88.8901   
  8 94.5987   
  9 97.7417   
10 100.0000     
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450 FINANCIAL ECONOMETRICS

Both PCA and factor analysis as well as the estimation of factor mod-
els with infinite-variance error terms are at the forefront of econometric
research. We will discuss both topics in Chapter 14 where we discuss sta-
ble distributions.

FACTOR ANALYSIS

In the above sections we saw how factors can be determined using prin-
cipal components analysis. We retained as factors those principal com-
ponents with the largest variance. In this section, we consider an
alternative technique for determining factors: factor analysis (FA). Sup-
pose we are given T independent samples of a random vector X = (X1, .
. ., XN)′. In the most common cases in financial econometrics, we will be
given T samples of a multivariate time series. However, factor analysis
can be applied to samples extracted from a generic multivariate distri-
bution. To fix these ideas, suppose we are given N time series of stock
returns at T moments, as in the case of PCA.

Assuming that the data are described by a strict factor model with K
factors, the objective of factor analysis (FA) consists of determining a
model of the type

X = αααα + ββββf + εεεε

with covariance matrix

ΣΣΣΣ = ββββββββ′′′′ + ΨΨΨΨ

The estimation procedure is performed in two steps. In the first step, we
estimate the covariance matrix and the factor loadings. In the second
step, we estimate factors using the covariance matrix and the factor
loadings. 

If we assume that the variables are jointly normally distributed and
temporally independently and identically distributed (IID), we can esti-
mate the covariance matrix with maximum likelihood methods. Estima-
tion of factor models with maximum likelihood methods is not immediate
because factors are not observable. Iterative methods such as the expecta-
tion maximization (EM) algorithm are generally used.

After estimating the matrices ββββ and ΨΨΨΨ factors can be estimated as
linear regressions. In fact, assuming that factors are zero means (an
assumption that can always be made), we can write the factor model as

X – αααα = ββββf + εεεε
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which shows that, at any given time, factors can be estimated as the
regression coefficients of the regression of (X – αααα) onto ββββ. Using the
standard formulas of regression analysis that we established in Chapter
3, we can now write factors, at any given time, as follows:

The estimation approach based on maximum likelihood estimates
implies that the number of factors is known. In order to determine the
number of factors, a heuristic procedure consists of iteratively estimat-
ing models with a growing number of factors. The correct number of
factors is determined when estimates of q factors stabilize and cannot be
rejected on the basis of p probabilities. A theoretical method for deter-
mining the number of factors was proposed by Bai and Ng.7 Given the
technical nature of the argument, the interested reader should consult
their article.

The factor loadings matrix can also be estimated with ordinary least
squares (OLS) methods. The OLS estimator of the factor loadings coin-
cide with the principal component estimator of factor loadings. How-
ever, in a strict factor model, OLS estimates of the factor loadings are
inconsistent when the number of time points goes to infinity but the
number of series remains finite, unless we assume that the idiosyncratic
noise terms all have the same variance. 

The OLS estimators, however, remain consistent if we allow both the
number of processes and the time to go to infinity. Under this assumption,
we can also use OLS estimators for approximate factor models.8 

In a number of applications, we might want to enforce the condition
α = 0. This condition is the condition of asset of arbitrage. OLS esti-
mates of factor models with this additional condition are an instance of
constrained OLS methods that we described in Chapter 4.

An Illustration of Factor Analysis
Let’s now show how factor analysis is performed. To do so, we will use
the same 10 stocks and return data for December 2000 to November
2005 that we used to illustrate principal components analysis. 

As just described, to perform factor analysis, we need estimate only
the factor loadings and the idiosyncratic variances of noise terms. We

7 Jushan Bai and Serena Ng, "Determining the Number of Factors in Approximate
Factor Models," Econometrica 70 (January 2002), pp. 191–221.
8 See Bai, “Inferential Theory for Factor Models of Large Dimensions.”

f̂t ββββ̂′ΨΨΨΨ̂ 1– ββββ̂⎝ ⎠
⎛ ⎞

1–

ββββ̂′ΨΨΨΨ̂ 1– X
t

αααα̂–( )=
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452 FINANCIAL ECONOMETRICS

assume that the model has three factors. Exhibit 13.11 shows the factor
loadings. Each row represents the loadings of the three factors corre-
sponding to each stock. The last column of the exhibit shows the idio-
syncratic variances.

The idiosyncratic variances are numbers between 0 and 1, where 0
means that the variance is completely explained by common factors and
1 that common factors fail to explain variance. 

The p-value turns out to be 0.6808 and therefore fails to reject the
null of three factors. Estimating the model with 1 and 2 factors we
obtain much lower p-values while we run into numerical difficulties
with 4 or more factors. We can therefore accept the null of three factors.
Exhibit 13.12 shows the graphics of the three factors.

Applying PCA to Bond Portfolio Management
There are two applications in bond portfolio management where PCA
has been employed. The first application is explaining the movement or
dynamics in the yield curve and then applying the resulting principal
components to measure and manage yield curve risk. Several studies
suggest that the principal components approach to controlling interest
rate risk is superior to using the traditional measure of interest rate risk,
duration, coupled with a second-order approximation of price changes
known as “convexity.”9 The second application of PCA is to identify
risk factors beyond changes in the term structure. For example, given

9 We explained duration in Chapter 5.

EXHIBIT 13.11  A Factor Loadings and Idiosyncratic Variances

Factor Loadings

β1 β2 β3 Variance

SUNW   0.656940   0.434420   0.27910 0.301780
AMZN   0.959860 –0.147050 –0.00293 0.057042
MERQ   0.697140   0.499410 –0.08949 0.256570
GD   0.002596 –0.237610   0.43511 0.754220
NOC –0.174710 –0.119960   0.23013 0.902130
CPB   0.153360 –0.344400   0.13520 0.839590
KO   0.170520   0.180660 –0.46988 0.717500
MLM   0.184870   0.361180   0.28657 0.753250
HLT   0.593540   0.011929 –0.18782 0.612300
UTX   0.385970   0.144390 –0.15357 0.806590
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Principal Components Analysis and Factor Analysis 453

historical bond returns and factors that are believed to affect bond
returns, PCA can be used to obtain principal components that are linear
combinations of the variables that explain the variation in returns.

Using PCA to Control Interest Rate Risk
Using PCA, several studies have investigated the factors that have affected
the historical returns on Treasury portfolios. Robert Litterman and Jose
Scheinkman found that three factors explained historical bond returns for
U.S. Treasuries zero-coupon securities.10 The first factor is changes in the
level of rates, the second factor is changes in the slope of the yield curve,
and the third factor is changes in the curvature of the yield curve. 

After identifying the factors, Litterman and Scheinkman use regres-
sion analysis to assess the relative contribution of these three factors in

10 Robert Litterman and Jose Scheinkman, “Common Factors Affecting Bond Re-
turns,” Journal of Fixed Income 1 (June 1991), pp. 54–61.

EXHIBIT 13.12  Graphics of the Three Factors
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454 FINANCIAL ECONOMETRICS

explaining the returns on zero-coupon Treasury securities of different
maturities. On average (i.e., over all maturities), the first principal com-
ponent explained about 90% of the returns, the second principal com-
ponent 8%, and the third principal component 2%. Thus, only three
principal components were needed to fully explain the dynamics of the
yield curve.

Subsequent to the publication of the 1991 Litterman-Scheinkman
study, there have been several studies that have examined the yield curve
movement using PCA and reported similar results—that is, three princi-
pal components and a similar relative contribution to the explanatory
power for each principal component. Exhibit 13.13 shows the results of
one study by Golub and Tilman for U.S. Treasury securities using the
monthly database by RiskMetricsTM. Schumacher, Dektar, and Fabozzi
found similar results for the U.S. mortgage-backed securities market.11 

Martellini, Priaulet, and Priaulet investigated both the zero-coupon
euro interbank yield curve and zero-coupon Treasury yield curves of the
following five countries: France, Germany, Italy, Spain, and the Nether-
lands.12 Daily returns are used and the period investigated is January 2,
2001 through August 21, 2002. Five principal components are esti-
mated.13 Exhibit 13.14 shows for each of the five countries and the euro
interbank market, the percentage of the variation in the movement of
interest rates explained. 

Notice the following for the results reported in Exhibit 13.14 for the
five government bond markets. First, the first three principal compo-
nents explain from 91% to 97% of the change in interest rates. Second,
the relative contribution of each principal component has the same rela-
tive importance for each country. Third, compared to the U.S. Treasury
market, the second and third principal components explain a larger per-
centage of the change in interest rates in the five non-U.S. government
bond markets examined. Since the second and third principal compo-
nents are typically interpreted as the slope and curvature of the yield
curve, these findings suggest that in these five non-U.S. markets nonpar-
allel shifts in the yield curve are more important than in the U.S. Trea-

11 Michael P. Schumacher, Daniel C. Dektar, and Frank J. Fabozzi, “Yield Curve
Risk of CMO Bonds,” in Frank J. Fabozzi (ed.), CMO Portfolio Management
(Hoboken, NJ: John Wiley & Sons, 1994).
12 Lionel Martellini, Philippe Priaulet, and Stephane Priaulet, “The Euro Benchmark
Yield Curve: Principal Component Analysis of Yield Curve Dynamics,” in Frank J.
Fabozzi (ed.), Professional Perspectives on Fixed Income Portfolio Management:
Volume 4 (Hoboken, NJ: John Wiley & Sons, 2003). 
13 In their study, Martellini, Priaulet, and Priaulet refer to the principal components
as “factors.”
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sury market. For the euro interbank market, the first three principal
components explain less of the variation in the movement of interest rates
than in government bond markets, only 84%. Moreover, nonparallel
shifts in the yield curve are even more important compared than for the
five government bond markets whose results are reported in Exhibit
13.14 and that the last two principal components explain around 16%
of the dynamics of the yield curve.

EXHIBIT 13.14  Percentage of Explanation by the First Five Principal Components 
for Five Non-U.S. Government Bond Markets and the Euro Interbank Market: 
January 2, 2001–August 21, 2002

Source: Adapted from Exhibit 1 in Lionel Martellini, Philippe Priaulet, and
Stephane Priaulet, “The Euro Benchmark Yield Curve: Principal Component
Analysis of Yield Curve Dynamics,” in Frank J. Fabozzi (ed.), Professional Per-
spectives on Fixed Income Portfolio Management, Vol. 4 (Hoboken, NJ: John
Wiley & Sons, 2003). 

France PC 1 PC 2 PC 3 PC 4 PC 5

% Explained 62.42% 21.87%   6.76%   5.47%   2.22%
% Cumulative 62.42% 84.29% 91.05% 96.52% 98.74%

Germany PC 1 PC 2 PC 3 PC 4 PC 5

% Explained 66.87% 22.29%   7.91%   1.44%   0.89%
% Cumulative 66.87% 89.16% 97.07% 98.51% 99.40%

Italy PC 1 PC 2 PC 3 PC 4 PC 5

% Explained 66.12% 22.47%   8.28%   1.69%   0.72%
% Cumulative 66.12% 88.59% 96.87% 98.56% 99.28%

The Netherlands PC 1 PC 2 PC 3 PC 4 PC 5

% Explained 65.03% 22.30%   7.44%   2.82% 1.49%
% Cumulative 65.03% 87.33% 94.77% 97.59% 99.08%

Spain PC 1 PC 2 PC 3 PC 4 PC 5

% Explained 62.22% 22.61%   9.60%   2.82%   1.55%
% Cumulative 62.22% 84.83% 94.43% 97.25% 98.80%

Euro Interbank PC 1 PC 2 PC 3 PC 4 PC 5

% Explained 47.54% 25.63% 10.91%   5.80%   3.46%
% Cumulative 47.54% 73.17% 84.08% 89.88% 93.34%
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Once yield curve risk is described in terms of principal components,
the factor loadings can be used to:

 ■ Construct hedges that neutralize exposure to changes in the direction
of interest rates.

 ■ Construct hedges that neutralize exposure to changes in nonparallel
shifts in the yield curve.

 ■ Structure yield curve trades.

Axel and Vankudre illustrate how this is done.14 They also present evi-
dence that using PCA to measure and control interest rate risk is supe-
rior to the traditional approaches using duration/convexity and another
widely used measures of the yield curve risk, key rate duration.15 In the
out-of-sample hedges that they performed using PCA, Axel and Vanku-
dre found significantly lower profit and loss variance than for hedges
using duration. Similar findings are reported in other studies.16 

PCA of the dynamics of the yield curve have lead to the use of what
is now referred to as principal component duration.17 Moreover, PCA
can be used to estimate the probability associated with a given hypo-
thetical interest rate shock so that a bond portfolio manager can better
analyze the interest rate risk of a bond portfolio and traders can better
understand the risk exposure of a bond trading strategy.18 

Bond Risk Factors
The discussion of bond risk factors described in the previous application
focused on term structure factors for government bond markets and the
euro interbank market which has little credit risk. For a bond index that

14 Ralph Axel and Prashant Vankudre, “Managing the Yield Curve with Principal
Component Analysis,” in Frank J. Fabozzi (ed.), Professional Perspectives on Fixed
Income Portfolio Management, Vol. 3 (Hoboken, NJ: John Wiley & Sons, 2002).
15 Thomas S. Y. Ho, “Key Rate Durations: Measures of Interest Rate Risks,” Journal
of Fixed Income 2 (September 1992), pp. 29–44.
16 See, for example, Lionel Martellini, Philippe Priaulet, Frank J. Fabozzi, and
Michael Luo, “Hedging Interest Rate Risk with Term Structure Factor Models,”
Chapter 11 in Frank J. Fabozzi, Lionel Martellini, and Philippe Priaulet (eds), Ad-
vanced Bond Portfolio Management: Best Practices in Modeling and Strategies
(Hoboken, NJ: John Wiley & Sons, 2006).
17 See Bennett W. Golub and Leo M. Tilman, “Measuring Yield Curve Risk Using
Principal Components Analysis, Value-at-Risk, and Key Rate Durations,” Journal of
Portfolio Management 26 (Summer 1997), pp. 72–84.
18 Golub and Tilman, “Measuring Plausibility of Hypothetical Interest Rate
Shocks.” 
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includes nongovernment securities, there are risk factors other than
term structure factors. 

Using PCA, Gauthier and Goodman have empirically identified the
risk factors that generate nominal excess returns for the Salomon Smith
Barney Broad Investment Grade Index (SSB BIG Index) for the period
January 1992 to March 2003.19 Exhibit 13.15 shows the results of their

19 Laurent Gauthier and Laurie Goodman, “Risk/Return Trade-Offs on Fixed In-
come Asset Classes,” in Professional Perspectives on Fixed Income Portfolio Man-
agement, Vol. 4. In addition to nominal excess returns, Gauthier and Goodman also
analyzed duration-adjusted excess returns. Only the results for the nominal excess
returns are discussed here.

EXHIBIT 13.15  Principal Component Analysis of the Sectors of the SSB BIG Index: 
January 1992–March 2003

Source: Adapted from Exhibit 3 in Laurent Gauthier and Laurie Goodman, “Risk/Re-
turn Trade-Offs on Fixed Income Asset Classes,” in Professional Perspectives on Fixed
Income Portfolio Management, Vol. 4 (Hoboken, NJ: John Wiley & Sons, 2003).

Component

1 2 3 4 5 6

Nominal Returns

Agy. Callable   0.28   0.00   0.41   0.16   0.00   0.85
Agy. NC   0.54   0.24 –0.20   0.60   0.46 –0.22
MBS   0.30   0.00   0.75   0.00 –0.34 –0.46
Credit   0.48 –0.82 –0.28 –0.11   0.00   0.00
ABS   0.31   0.15   0.19 –0.73   0.56   0.00
Treasury   0.47   0.49 –0.34 –0.25 –0.60   0.00

Factor contribution (%) 92.7  3.1 2.3 0.9   0.5  —
Cumulative Importance (%) 92.7  95.8  98.1  99    99.5  1  

Duration-Adjusted Returns

Agy. Callable   0.18   0.28   0.76 –0.10 –0.53 –0.12
Agy. NC    0.21   0.52   0.17   0.67   0.45
MBS   0.23   0.65 –0.23 –0.66   0.21
Credit   0.91 –0.40   0.00   0.12
ABS   0.23   0.26 –0.58   0.32 –0.64 –0.18
Treasury   0.00   0.00   0.00 –0.22   0.97

Factor contribution (%) 80.3  12.1  2.9 2.5 1.8 —
Cumulative importance (%) 80.3  92.4  95.3  97.8  99.6  1.0
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PCA for the first six principal components for each bond sector of the
SSB BIG Index. The values for each principal component reported in the
exhibit are the factor loadings. Notice from the last row in the exhibit
that the first three principal components explain 98.1% of the variation
in nominal excess returns.

The first principal component explains 92.7% of the variation. How
do we know how to interpret the first principal component or risk fac-
tor? First, while we do not report the average duration of each sector of
the SSB BIG Index here, it turns out that the order of magnitude of the
factor loading on each of the sectors looks very much like the average
duration for each sector. To confirm this, Gauthier and Goodman did
two things. First they looked at a scatter plot of the return on first prin-
cipal component versus the change in the 10-year Treasury yield. The
first principal component had a very clear, linear relationship to changes
in interest rates. Second they looked at the correlation of each of the
first three principal components to various market measures (such as the
slope of the 2 to 10 spread, 5-year cap volatility, etc.). They found that
the 10-year yield had a correlation of –89% to nominal returns. 

The second principal component explains 3.1% of nominal excess
returns. Gauthier and Goodman identify this factor as the credit specific
factor because of the high negative factor loadings on the credit index
combined with a high positive weighting on Treasuries. They confirm
this by looking at the correlation between the second principal compo-
nent and the S&P 500. The correlation was –0.5. The weight on the
credit index is –0.82, indicating that the lower the S&P 500, the lower
corporate bond returns will be. 

Gauthier and Goodman identify the third principal component as
an optionality factor. This can be supported by noting that the factor
loadings on the assets classes that have some optionality (callable Agen-
cies, MBS and ABS) is positive, while the factor loading on the noncall-
able series (Treasuries, noncallable agencies and credit) is negative. This
third principal component, which represents optionality, is consistent
with studies of the movements of the yield curve discussed earlier
because it reflects market factors such as the shape of the curve and vol-
atility. Gauthier and Goodman show that there is a high positive corre-
lation between the optionality factor and the slope of the yield, but a
negative relationship with 5-year cap volatility. This suggests (1) the
steeper the yield curve slope, the better a callable series should do and
(2) the higher the volatility, the lower the return on the callable series. 
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PCA AND FACTOR ANALYSIS COMPARED

The two illustrations of PCA and FA are relative to the same data and
will help clarify the differences between the two methods. Let’s first
observe that PCA does not imply, per se, any specific restriction on the
process. Given a nonsingular covariance matrix, we can always perform
PCA as an exact linear transformation of the series. When we consider a
smaller number of principal components, we perform an approximation
which has to be empirically justified. For example, in our PCA illustra-
tion, the first three components explain 76% of the total variance
(based on the covariance matrix, see Exhibit 13.6). 

Factor analysis, on the other hand, assumes that the data have a
strict factor structure in the sense that the covariance matrix of the data
can be represented as a function of the covariances between factors plus
idiosyncratic variances. This assumption has to be verified, otherwise
the estimation process might yield incorrect results. 

In other words, PCA tends to be a dimensionality reduction tech-
nique that can be applied to any multivariate distribution and that
yields incremental results. This means that there is a trade-off between
the gain in estimation from dimensionality reduction and the percentage
of variance explained. Consider that PCA is not an estimation proce-
dure: it is an exact linear transformation of a time series. Estimation
comes into play when a reduced number of principal components is cho-
sen and each variable is regressed onto these principal components. At
this point, a reduced number of principal components yields a simplified
regression which results in a more robust estimation of the covariance
matrix of the original series though only a fraction of the variance is
explained. 

Factor analysis, on the other hand, tends to reveal the exact factor
structure of the data. That is, FA tends to give an explanation in terms
of what factors explain what processes. Factor rotation can be useful
both in the case of PCA and FA. Consider FA. In our illustration, to
make the factor model identifiable, we applied the restriction that fac-
tors are orthonormal variables. This restriction, however, might result
in a matrix of factor loadings that is difficult to interpret. 

For example, if we look at the loading matrix in Exhibit 13.11,
there is no easily recognizable structure, in the sense that the time series
is influenced by all factors. Exhibit 13.16 shows graphically the rela-
tionship of the time series to the factors. In this graphic, each of the 10
time series is represented by its three loadings.

We can try to obtain a better representation through factor rotation.
The objective is to create factors such that each series has only one large
loading and thus is associated primarily with one factor. Several proce-
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dures have been proposed for doing so.20 For example, if we rotate fac-
tors using the “promax” method, we obtain factors that are no longer
orthogonal but that often have a better explanatory power.21 Exhibit
13.18 shows graphically the relationship of time series to the factors
after rotation. The association of the series to a factor is more evident.
This fact can be seen from the matrix of new factor loadings in Exhibit
13.17 which shows how nearly each stock has one large loading.  

20 These include the promax, promin, proma, and simplimax. 
21 The promax method was developed in A. E. Hendrickson and P. O. White, “Pro-
max: A Quick Method for Rotation to Orthogonal Oblique Structure,” British Jour-
nal of Statistical Psychology 17 (1964), pp. 65–70.

EXHIBIT 13.16  Graphical Representation of Factor Loadings

1.0

0.5

0.0

–0.5

–1.0
1.0

0.5

0.0

–0.5

–1.0 –1.0
–0.5

0.0
0.5

1.0

Component 1Component 2

C
om

po
ne

nt
 3

c13-PrincipComponents  Page 462  Thursday, October 26, 2006  2:11 PM



Principal Components Analysis and Factor Analysis 463

EXHIBIT 13.17  Factor Loadings after Rotation

EXHIBIT 13.18  Relationship of Times Series  to the Factors after Rotation

F1 F2 F3

SUNW   0.214020   0.750690   0.101240
AMZN   0.943680   0.127310   0.104990
MERQ   0.218340   0.578050 –0.294340
GD   0.163360   0.073269   0.544220
NOC –0.070130 –0.003990   0.278000
CPB   0.393120 –0.178070   0.301920
KO   0.032397 –0.100020 –0.545120
MLM –0.137130   0.561640   0.123670
HLT   0.513660   0.048842 –0.168290
UTX   0.229400   0.133510 –0.204650
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CONCEPTS EXPLAINED IN THIS CHAPTER
(IN ORDER OF PRESENTATION)

Factor models
Spearman’s model
Thurstone’s multiple-factors model
Linear factor models
Factor loadings
Static models
Dynamic models
Strict factor models
Normal factor models
Covariance of a factor models
Fundamental factors
Macroeconomic factors
Statistical factors
Principal components analysis
Strict factor structure
Principal components
Factor analysis
PCA with stable distributions 
Principal components duration
Bond risk factors
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Financial Econometrics

 

n August of 1992, powerful hurricane Andrew ravaged through south-
ern Florida and Louisiana, creating insured losses exceeding $16 billion

and total losses of more than $30 billion. This single event forced several
insurance companies to bankruptcy and significantly depleted the insur-
ance capital available for natural catastrophes. In September 1998, the
sudden rise of volatility in the global financial markets, set off by a
default in Russia’s sovereign debt, led to the hedge fund

 

1

 

 Long-Term
Capital Management (LTCM) incurring losses in excess of 90% of its
value. LTCM was highly leveraged, meaning it had more than $125 bil-
lion of borrowed funds. This financial mishap caused a serious treat to
the stability of the global financial system and a more widespread col-
lapse in the financial markets was only avoided by a $3.6 billion bailout
organized by the Federal Reserve Board of the New York. A consequence
of this event is that it exposed the vulnerability of financial markets to
dealings of hedge funds. What do natural catastrophes such as hurricane
Andrew have in common with market crashes and what are the implica-
tions of these events? Although the first one relates to natural phenom-
ena and the second one to socioeconomic phenomena, both of these
events share the property that laws that govern extreme events may vio-

 

1 

 

This term denotes a fund whose managers receive performance-related fees and can
freely use various active investment strategies to achieve positive absolute returns, in-
volving any combination of leverage, derivatives, long and short positions in securi-
ties or any other assets in a wide range of markets. Hedge funds are currently not
regulated but monitoring of their activities is increasing. The terms “pooled invest-
ment vehicle” and “sophisticated alternative investment vehicles” are used inter-
changeably.

I
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late the assumptions on which the current prevailing assessment of insur-
ance losses due to extreme weather events and risk management
practices in financial markets are built upon. For the hurricane event, the
expert commission that reviewed the situation concluded that “the basic
assumptions underpinning most of the insurance industry are violated by
the laws of nature that apply to climate and tropical cyclones.”

 

2

 

 In the
case of LTCM, the review pointed out that LTCM’s assessment of the
potential for overall losses in a situation of extreme financial risk was
built on a basic assumption that did not hold. LTCM appeared to use
recent history to estimate risk, assigning a low probability to events such
as sovereign defaults and major market crashes such as the October
1987 stock market crash.

 

3

 

 In both cases, the basic assumption that was
rendered invalid is the one of Gaussian law or the popular “bell” curve. 

The tails of the distribution describe the regions to either side of a
distribution curve that correspond to large fluctuations. The two events
described above imply that extreme events take place far more often
than one would expect based on the “normal” Gaussian statistics. The
extreme events are contained in the tail region and if they appear with
higher probability compared to that implied by the Gaussian distribu-
tion, we say that such distribution possess “fat tails.” In mathematical
terms, fat tails or heavy tails are associated with a power-law curve and
fall off much slower than the tails of the Gaussian curve.

 

4

 

 Thus, to
appropriately assess the probability of extreme events taking place, we
have to consider the assumptions and models that distance themselves
from the Gaussian laws, or even better, that generalize them. The heavy-
tail behavior has been found in both natural and economic data such as
astrophysics, evolutionary biology, internet traffic data, a wide range of
financial asset data, and complex business management issues.

 

5

 

Focusing on financial asset data, we have indicated in Chapter 8 that
movements in asset prices or equivalently asset returns show certain
important characteristics or stylized facts. Leptokurtic property is one of

 

2 

 

Anthony Michaels, Ann Close, David Malmquist, and Anthony Knapp, “Climate
Science and Insurance Risk,” 

 

Nature

 

 389 (1997), pp. 225–227.

 

3 

 

Philippe Jorion, “Risk management lessons from Long-Term Capital Manage-
ment,” 

 

European Financial Management

 

 6 (2000), pp. 277–300.

 

4 

 

There are various characterizations of fat tails in the literature. In finance, typically
the tails which are heavier than those of the Gaussian distribution are considered
“heavy.” In some applications of extreme value theory such as the modeling of op-
erational risk, the exponential tails are considered a borderline case separating “thin
tails” and “heavy tails.”

 

5 

 

Mark Buchanan, “Power Laws & the New Science of Complexity Management,”

 

Strategy+Business

 

 34 (2004), pp. 71–79.
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them, indicating that empirical asset return distributions are fat tailed and
more peaked around the center compared to normal distribution. This was
first noted in the studies of Mandelbrot dealing with cotton futures return
data.

 

6

 

 Subsequently, other asset classes such as bonds and exchange rates
have also been observed to exhibit fat tails.

 

7

 

 Fatter tails imply a higher
probability of large losses than the Gaussian distribution would suggest. 

Events such as market crashes and bubbles regularly point out the
potential effects of fat tails in

 

 

 

unconditional return distributions. Empir-
ical research in finance has the goal of precise modeling of such extreme
events to provide the basis for asset pricing, trading, and risk manage-
ment in all market environments. For modeling extreme events, various
nonnormal distributions have been suggested in the literature:

 

 ■ 

 

Mixtures of two or more normal distributions

 

 ■ 

 

Student’s 

 

t

 

-distributions, hyperbolic distributions, and other scale mix-
tures of normal distributions

 

 ■ 

 

Gamma distributions

 

 ■ 

 

Extreme value distributions

 

 ■ 

 

Stable Paretian (Lévy) non-Gaussian distributions

 

 ■ 

 

Smoothly truncated stable distributions

 

 ■ 

 

Tempered stable distributions

 

 ■ 

 

Infinitely divisible (non-Gaussian) distributions

The focus of this chapter is on the stable Paretian or stable distribu-
tions that are appropriate for modeling heavy-tailed data. While alterna-
tive models utilizing other nonnormal distributions have been proposed
and used, stable distributions have unique characteristics that make them
a suitable candidate for modeling of financial stochastic processes. One
of them is the 

 

stability,

 

 which is not shared by alternative distributions.
The stability property implies that any sum of independent and identi-
cally stable distributed returns is again stable distributed, and further-
more, the distribution of the properly linearly normalized returns has the
same distribution as the individual returns. Stability implies existence of
an overall parameter, the index of stability, that governs the main prop-
erties of the underlying return distribution and remains unchanged
across all scales (e.g., daily, monthly or annual sampling intervals).

 

6 

 

Benoit B. Mandelbrot, “The Variation of Certain Speculative Prices,” 

 

Journal of
Business

 

 36 (1963), pp. 394–419.

 

7 

 

For a review of these studies, see Chapter 11 in Svetlozar T. Rachev, Christian
Menn, and Frank J. Fabozzi, 

 

Fat-Tailed and Skewed Asset Return Distributions: Im-
plications for Risk Management, Portfolio Selection, and Option Pricing

 

 (Hoboken,
NJ: John Wiley & Sons, 2005).
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However, the use of stable distributions has its cost. Since, in
essence, they describe distributions with 

 

infinite variance

 

, there is a con-
ceptual difficulty in using them for financial data with bounded range
and in estimation. Since the assumption of IID random variables for the
stability property may be too restrictive in practice, more advanced
models, generalizing the concept of stable distributions, have been
developed (smoothly truncated stable distributions

 

8

 

 and tempered stable
distributions),

 

9

 

 relaxing the stability property but allowing for finite and
infinite variance return distributions.

In this chapter, we provide a formal definition of stable distribu-
tions, discuss their main properties, and show how they can be applied
in financial modeling. In the next chapter, we see how some of the
econometric models described in previous chapters (e.g., ARMA and
GARCH) are modified to accommodate the assumption that innovation
processes are governed by stable Paretian distributions.

 

BASIC FACTS AND DEFINITIONS OF STABLE DISTRIBUTIONS

 

Stable Paretian distributions

 

 are a class of probability laws that have inter-
esting theoretical and practical properties. They are appealing for financial
modeling since they generalize the normal (Gaussian) distribution and
allow heavy tails and skewness, properties which are common in financial
data. In this section, we present the basic definitions of stable laws. We
will be rather informal in coverage by presenting the material without
proofs, which can be found in the standard literature on this topic.

 

10

 

Definitions of the Stable Distributions

 

The key characteristic of stable distributions, and the reason for the term
“stable,” is that they retain shape (up to scale and shift) under addition:
if 

 

X

 

1

 

, 

 

X

 

2

 

 …, are IDD stable random variables, then for every 

 

n

 

(14.1)

 

8 

 

Christian Menn and Svetlozar T. Rachev, “A New Class of Probability Distribu-
tions and Its Applications to Finance,” 

 

Technical Report

 

, University of California at
Santa Barbara, 2004.

 

9 

 

J. Rosinski, “Tempered Stable Processes,” in O. E. Barndorff–Nielsen (ed.), 

 

Second
MaPhySto Conference on Lévy Processes: Theory and Applications

 

 (Aarhus: Ma
Physto, 2002), pp. 215–220.

 

10 

 

See, for example, Svetlozar T. Rachev and Stefan Mittnik, 

 

Stable Paretian Models
in Finance

 

 (Chichester: John Wiley & Sons, 2000).

X1 X2 … Xn
d+ + + cnX dn+=
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for some constants 

 

c

 

n

 

 > 0 and 

 

d

 

n

 

. The symbol  means equality in distri-
bution; that is, the right- and left-hand sides of the expression (14.1) have
the same distribution. The law is called 

 

strictly stable

 

 if 

 

d

 

n

 

 = 0 for all 

 

n

 

.
For financial modeling, this key characteristic implies that the distribu-

tion of the total (cumulative) return of IID, say, daily returns over a period
has the same distributional “shape” as the individual daily returns.

 

11

 

The class of all laws that satisfy (14.1) is called stable or 

 

α

 

-stable and is
described by four parameters:

 

 ■ 

 

Index of stability 

 

α

 

 that determines the tail weight or the distribution’s
kurtosis with 0 < 

 

α

 

 

 

≤

 

 2.

 

12

 

 ■ 

 

Skewness

 

 

 

parameter

 

 

 

β

 

 which determines the distribution’s skewness
and is in the range –1 

 

≤

 

 0 

 

≤

 

 1.

 

 ■ 

 

Scale parameter 

 

σ

 

 that can be any positive number. (If 

 

σ

 

 = 0 the distri-
bution is degenerated and the stable random variable is a constant.) 

 

 ■ 

 

Location parameter 

 

µ

 

 that the shifts distribution right if 

 

µ

 

 > 0, and left
if 

 

µ

 

 < 0.

To denote that a stable random variable 

 

X

 

 is characterized by the
four stable parameters, we write 

 

X

 

 ~ 

 

S

 

α

 

(

 

β

 

,

 

σ

 

,

 

µ

 

) where 

 

S

 

α

 

 denotes the 

 

α

 

-
stable distribution. Parameters 

 

α

 

 and 

 

β

 

 determine the shape of the distri-
bution. If the index of stability 

 

α

 

 = 2, then the stable distribution
reduces to the normal (Gaussian) distribution. That implies that relative
to the normal distribution a higher probability of extreme events exists
when 

 

α

 

 < 2. The impact of 

 

α

 

 for values less than 2 on the density of the
distribution is twofold. First, it has an effect on the tail thickness of the
density. Second, it has an effect on the peakedness at the origin relative
to the normal distribution. Jointly, these two effects are known as the
“leptokurtosis” of the density; consequently, the index of stability 

 

α

 

 can
be interpreted as a measure of leptokurtosis. As the value of 

 

α

 

 becomes
smaller, the more leptokurtic the distribution—the peak of the density
becomes higher and the tails heavier. Thus, for 

 

α

 

 < 2, stable distribu-
tions are more peaked around the center than the normal and have fat-
ter tails. In fact, for 

 

α

 

 < 2 they are so heavy that the variance is infinite;
and for 

 

α

 

 

 

≤

 

 1, even the first moment does not exist.

 

11 

 

The standard deterministic summation scheme where 

 

n

 

 is a deterministic integer
as in (14.1) produces the stable Paretian distributions. Other schemes are also possi-
ble, such as the maximum and minimum schemes that lead to extreme-value distri-
butions. Some authors use the term 

 

sum-stable

 

 to distinguish it from 

 

min-stable

 

 and

 

max-stable

 

 schemes.

 

12 

 

Other names for 

 

α

 

 are the stable index, characteristic exponent, exponent of stable
distribution, and the tail index.

=d
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For 

 

β

 

 

 

= 0, the distribution is symmetric around the location parame-
ter 

 

µ

 

. If 

 

β

 

 > 0, the distribution is skewed to the right and if β < 0, it is
skewed toward the left. Larger magnitudes of β indicate greater skew-
ness. A symmetric stable distribution is a stable distribution with β = 0
and µ = 0 and the stable distribution is symmetric around µ if β = 0.13

The scale parameter generalizes the definition of standard deviation
and can be interpreted as volatility. It allows any stable random variable
X to be expressed as X = σX0, where the distribution of X0 has a unit
scale parameter and the same α and β as X. 

Exhibit 14.1 shows the effect of α on the kurtosis of the density for
the case of β = 0, µ = 0, and σ = 1. Exhibit 14.2 illustrates the impact of
β on the skewness of the density function for α = 1.5, µ = 0, and σ = 1.

Inconveniently, stable distributions, in general, do not have closed-form
expressions for the density and distribution functions. However, they can be

13 If β = 0, we say that the distribution is symmetric around µ. In the literature, it is
often the case that the symmetry is defined around the value of location parameter
equal to zero.

EXHIBIT 14.1  Influence of α on the Resulting Stable Distribution
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described by their characteristic function, denoted by ϕ. A characteristic
function (ch.f.) uniquely defines a probability distribution, as is the case for
cumulative distribution function and the probability density function.  

In addition to definition (14.1), another definition of a stable ran-
dom variable is given by its characteristic function.

A random variable X is said to have a stable distribution if there are
parameters 0 < α ≤ 2, σ ≥ 0, –1 ≤ β ≤ 1, and µ that are real such that its
characteristic function has the following form

(14.2)

where

EXHIBIT 14.2  Influence of β on the Resulting Stable Distribution

ϕ t( ) Eexp itX( )

exp σα t α– 1 iβ signt( )tan
πα
2

-------–⎝ ⎠
⎛ ⎞ iµt+

⎩ ⎭
⎨ ⎬
⎧ ⎫

  if α 1≠

exp σ t– 1 iβ
2
π
--- signt( ) tln+⎝ ⎠

⎛ ⎞ iµt+
⎩ ⎭
⎨ ⎬
⎧ ⎫

       if α = 1
⎩
⎪
⎪
⎨
⎪
⎪
⎧

= =
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The explicit expression for the logarithm of the characteristic func-
tion ϕ(t) of any stable random variable was derived by Paul Lévy in 1925.
The characteristic function given by (14.2) is one parameterization that is
denoted with S(α,β,σ,µ1;1), µ1 = µ. Another parameterization, denoted
by  S(α,β,σ,µ0;0), is

(14.3)

The first parameterization is more commonly found in the literature
and the second one is used in applications since it facilitates numerical
operations. As pointed out in Samorodnitsky and Taqqu,14 the charac-
teristic function (14.2) is not continuous at α = 1 and β ≠ 0. When α is
near 1, computing stable densities and cumulatives in this range is
numerically difficult. In applications, one prefers the (14.3) parameter-
ization, which is jointly continuous in alpha and beta. By defining the
modified location parameter

 

Zolotarev  shows that the characteristic function and therefore the distri-
bution of the new modified variable shifted by µ0 undergoes no disconti-
nuity as α passes unity.15 The parameters α, β, and σ have the same
meaning in both parameterizations, only the location parameter is differ-

14 Gennady Samorodnitsky and Murad S. Taqqu, Stable Non-Gaussian Random
Processes (New York: Chapman & Hall, 1994).
15 See V.M. Zolotarev, One-Dimensional Stable Laws, Volume 65 of Translations
of Mathematical Monographs (Providence, RI: American Mathematical Society,
1986). Translated from Russian by H.H. McFaden.
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ent. A subscript with location parameter is used to distinguish between
the two parameterizations: µ0 for the location parameter in S(α,β,σ,µ0;0)
and µ1 for the location parameter in the S(α,β,σ,µ1;1) parameterization. 

They are only three special cases where one can provide closed-form
expression for the density and verify directly that they are stable:

 ■ Normal distribution for the case where α = 2, β = 0 and the reparame-
terization in scale. 

 ■ Cauchy distribution for the case where α = 1 and β = 0.
 ■ Lévy distribution for the case where α = 0.5 and β = 1.

The Cauchy distribution has much fatter tails than the normal distribution.
The probability mass of the Lévy distribution is concentrated on the inter-
val (µ, +∞). The special cases are presented in the following examples:

Normal or Gaussian distribution: X ~ N(µ,σ2) if it has a density

,   –∞ < x < ∞ (14.4)

Gaussian laws are stable: N(µ,σ2) = S(2,0, ,µ;0) = S(2,0, ,µ;1)

Cauchy distribution: X ~ Cauchy(σ,µ) if it has a density

,   –∞ < x < ∞ (14.5)

Cauchy laws are stable: Cauchy(σ,µ) = S(1,0,σ,µ;1) 

Lévy distributions: X ~ Lévy(σ,µ) if it has a density

,   µ < x < ∞ (14.6)

Lévy’s laws are stable: Lévy(σ,µ) = S(1/2,1,σ,σ + µ;1) 

Exhibit 14.3 compares the normal distribution and the Cauchy dis-
tribution. From the exhibit the fatter tails of the Cauchy distribution are
evident. The expected value of the Cauchy distribution is not well
defined, since the integrals

f x( )
1

2πσ
---------------exp

x µ–( )2

2σ2
--------------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞
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σ 2⁄ σ 2⁄
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1
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---------------------------------=
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2π
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EXHIBIT 14.3  Comparison of Standard Cauchy and Standard Normal Distribution
Panel A: General Shape 

Panel B: Comparison of the Tails
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and

are individually divergent. The variance and higher moments are also
not well defined. 

Capturing stylized facts of asset returns, such as skewness and heavy
tails, requires the specification of appropriate distributions or models.
Clearly, the stable distribution with β ≠ 0 and α < 2 is a natural candidate.
Increasing β towards +1 results in skewness to the right; decreasing β
towards –1 results in skewness to the left; and lower values of α lead to
stronger leptokurtosis. When α > 1, the location parameter measures the
mean of the distribution. In empirical finance α usually takes values in the
interval (1,2). This implies the assumption that the asset returns modeled
with α-stable laws exhibit finite means but infinite variances. Empirical
evidence suggests that financial return data have a finite mean. The
assumption of finite variance, however, has to be questioned.

PROPERTIES OF STABLE DISTRIBUTIONS 

We now consider several key properties of stable distributions that are
appealing in empirical finance. Specifically, we describe the behavior of
the tails of the stable distribution and discuss the implications for the p-th
absolute moment of the stable distribution.

Important Properties of Stable Models
When α = 2, the stable law is identical to the normal law that has light
tails and all moments exist. Except for the normal law, all other stable
laws have heavy tails following an asymptotic power (Pareto) decay law
characterized by 

(14.7)

for the right tail and 

xf x( ) xd
∞–

0

∫

xf x( ) xd
0

+∞

∫

xαP X x>( )
x +∞→

lim kα
1 β+

2
-------------σα=
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(14.8)

for the left tail, where

, if α ≠ 1

and

kα = , if α = 1

When β = –1, the right tail decays faster than any power. The left tail
behavior is similar by the symmetry property. 

To see the difference between Gaussian and non-Gaussian stable
distributions we compare their tail behavior. The tail behavior of the
Gaussian distribution as x → ∞ is specified by

which is markedly different from the asymptotic behavior of the tails of
stable distributions that follow a power law

,  as x → ∞

In the (non-Gaussian) stable case, the tail of the stable law approaches
zero in form of a power function. It is called “Pareto-like” behavior
because the Pareto distribution decays in the same fashion.  

One important consequence of the power decay of the tails is that
only certain moments exist. This is, however, not a property that exclu-
sively applies to stable laws; any distribution decaying with a power law
(e.g., Pareto law) will not have finite moments for certain orders. For a
stable random variable, the p-th absolute moment

(14.9)

xαP X x–<( )
x +∞→

lim kα
1 β–

2
------------σα=

kα
1 α–

Γ 2 α–( ) πα 2⁄( )cos
--------------------------------------------------=

2
π
---

P X x–<( ) P X x>( )
1

2 πσx
------------------e

x2

4σ2
----------–

∼=

P X x>( ) cx α–∼

E X p P X p x>( ) xd
0

∞

∫=

c14-HeavyTailed  Page 476  Thursday, October 26, 2006  2:11 PM



Heavy-Tailed and Stable Distributions in Financial Econometrics 477

exists if and only if p < α or α = 2, that is, when the integral given by
(14.9) converges. If the tails are too heavy, the integral will diverge.16

Thus, the second moment of any non-Gaussian stable distribution is infi-
nite. One obvious consequence for practical applications in finance is
that, since stable distributions have infinite variances, one cannot measure
risk in terms of variance and dependence in terms of correlation. Alterna-
tive concepts, namely, scale and covariation can be employed instead.

The third important property inherent to stable laws is the stability
or additivity property, allowing us to use stable laws in portfolio analy-
sis. Specifically, the sum of two independent stable random variables fol-
lows—up to some adjustment of scale and location—again the same
stable distribution. We say the family of stable distributions is closed
under convolution.17 Following (14.1): If X and Y are independent and
identically distributed stable random variables, then for any given posi-
tive numbers a and b, there exist a positive number c and real number d,
such that

where c is determined by aα + bα = cα, and α ∈ (0,2] is the index of sta-
bility of the stable distribution. For d = 0, we obtain the strictly stable
distribution of X. 

Applicability of Stable Models 
Due to their appealing probabilistic properties and the overwhelming
empirical evidence that asset returns are fat tailed, stable distributions
are natural candidates in financial modeling.18 Specifically, the unique
probabilistic property of the generalized central limit theorem combined
with the compelling empirical evidence provide justification for using
stable models.

Let us now look at the property of the generalized central limit the-
orem (GCLT). The classical central limit theorem (CLT) says that the
normalized sum of IID random variables with a finite variance con-

16 Note that the sample moments of all orders will exist: one can always compute the
variance of the sample. The sample variance under the stable distribution sample will
have a limiting distribution after a normalization and this fact can be used in testing
the stable hypothesis.
17 Recall that in Chapter 2 we explained that the distribution of the sum is the con-
volution of the distributions. 
18 See Chapter 1 in Rachev, Menn, and Fabozzi, Fat-Tailed and Skewed Asset Return
Distributions: Implications for Risk Management, Portfolio Selection, and Option
Pricing.

aX bY d+ cX d+=
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verges to a normal distribution. This holds (under fairly general condi-
tions) regardless of the forms of the individual probability distribution
of independent random variables. This theorem is crucial to probability
theory; it asserts that, asymptotically, the Gaussian law rules the center
of the distribution or “bell.” The CLT also serves as the formal justifica-
tion for treating measurement errors as Gaussian random variables and
holds to the extent that the total error is the sum of a large number of
small contributions.19 However, we also need an alternative that is only
concerned with the tail behavior. This alternative is offered in the form
of the GCLT. It states that if the finite variance assumption is removed,
only the α-stable distribution arises as limiting distribution of sums of
IID random variables. 

Suppose X1, X2,…, Xn,… is a sequence of IID random variables with
distribution F. If there are sequences of positive numbers {an}, an > 0, and
real numbers {bn}, bn ∈ ℜ, such that

(14.10)

for some random variable X, then we say F (or the random sequence
) is in the domain of attraction of an α-stable law with index

α ∈ (0,2).20 We write F ∈ DA(α), where α ∈ (0,2] is the stable index of
the corresponding stable distribution, and we call X a stable distributed

19 Note that the central limit theorem holds in the limit (n → ∞ for n independent ran-
dom variables) but in practical data analysis it is more important to know to what
extent the Gaussian approximation is valid for finite n. Generally, we can say that it
holds as long as the sum is built up of a large number of small contributions. Discrep-
ancies arise if, for example, the distributions of the individual contributions have long
tails, so that occasional large values make up a large part of the sum. Such contribu-
tions lead to non-Gaussian tails in the sum, which can significantly alter the proba-
bility to find values with large departures from the mean. See G.R. Grimmett and
D.R. Stirzaker, Probability and Random Processes (Oxford: Clarendon Press, 1992). 
20 Throughout the text, the symbol “⇒”means convergence in distribution. For ex-
ample, if we consider the Xi’s to be (continuously compounded) daily financial asset
returns, we could say that the sum of daily returns is—up to scale and location—dis-
tributed as monthly or annual returns. It has been proven that an must be of the form
an = n1/α h(n), where h(n) is a slowly varying function at infinity. Thus

where X is some α-stable distributed random variable. (See Theorem 2.1.1 in I. A.
Ibragimov and Yu. V. Linnik, Independent and Stationary Sequences of Random
Variables (Groningen: Wolters-Noordhoff Publishing, 1971).)
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random variable. Note that when the Xi’s are IID with finite variance,
then (14.10) amounts to the classical central limit theorem. The
assumption that Xi’s are in the domain of attraction of an α-stable law
is more general than assuming that they are α-stable distributed,
because the former requires only conditions on the tails of the distribu-
tion. The domain of attraction for a stable model contains many distri-
butions with properties close to the specified stable law. 

In other words, the GCLT says that the only possible distributions with
a domain of attraction are stable ones.21 Characterizations of distributions
in the domain of attraction of α-stable law are in terms of tail probabilities.
The implication of this unique property for financial modeling lies in the
fact that presuming that movements in asset prices are driven by many,
independently occurring small shocks (identically stable distributed with
index of stability α), then the only appropriate distributional model for
these changes is a stable model with the same stability index α.22

Rather than engaging in a dispute whether stable models are appro-
priate, it is reasonable to use stable models as a realistic alternative in
financial econometrics. In practice, statistical tests should determine
whether a stable distribution fits the data better than any other candidate.

ESTIMATION OF THE PARAMETERS OF THE 
STABLE DISTRIBUTION

As already mentioned, stable distributions have, in general, no closed-form
expression for their probability density and distribution function. Conse-
quently, methods for estimating the parameters of the stable distribution
rely on numerical approximations. Since the stable characteristic function
can be written in a closed form, several estimation techniques are based on
fitting the sample characteristic function. There are two basic strategies to
estimation. The first focuses solely on the estimation of the tail index; the
second is to estimate all parameters of the distribution.

21 Mandelbrot has even suggested that the substance of the classical central limit the-
orem would be better understood if it was referred to as center limit theorem. Indeed,
that theorem concerns the center of the distribution, while the anomalies concern the
tails. In a similar vein, the generalized central limit theorem that yields Lévy stable
limits would be better understood if called tail limit theorem. See Benoit B. Mandel-
brot, “Heavy Tails in Finance for Independent or Multifractal Price Increments,” in
Svetlozar T. Rachev (ed.), Handbook of Heavy Tailed Distributions in Finance (Am-
sterdam: Elsevier/North-Holland, 2003), pp. 1–34.
22 This property is a consequence of the domain of attraction of stable distributions
defined by (14.10). For further details on this property, see Chapter 2 in Rachev and
Mittnik, Stable Paretian Models in Finance, pp. 27–28.
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Asymptotic Tail Behavior: Where Does the Tail Begin?
One of the most popular estimators of the tail index is the Hill estima-
tor,23 which is a simple nonparametric estimator based on order statis-
tics.24 Hill proposed a conditional maximum likelihood estimation (MLE)
approach by maximizing the conditional likelihood function. Given a
sample of n observations, X1, …, Xn, the Hill estimator is computed by 

(14.11)

with standard error

where Xj:n denotes the j-th order statistic of the sample size n; and k is the
number of observations that lie in the right tail of the distribution of interest. 

The Hill estimator is strongly consistent25 and asymptotically nor-
mal.26 Asymptotic normality of the Hill estimator is given by

The Hill estimator depends on the number k of the largest observa-
tions chosen to calculate the estimates. The practical choice of the trun-
cation parameter k/n poses a problem with the Hill estimator and its
generalizations. k must be sufficiently small so that Xn–k:n is in the tail

23 B. M. Hill, “A Simple General Approach to Inference about the Tail of a Distribu-
tion,” Annals of Statistics 3 (1975), pp. 1163–1174.
24 Let X1, X2, …, Xn be n IID, continuous random variables having a common
probability distribution function and distribution function. Define X1:n as the
smallest of the n-tuple (X1, X2, , …, Xn), X2:n as the second smallest of the n-tuple
(X1, X2, …, Xn), …, Xj:n as the j-th smallest of the n-tuple (X1, X2, …, Xn), …,
and finally Xn: n as the largest of the n-tuple (X1, X2, …, Xn). The ordered values
X1:n  ≤  X2:n  ≤ � ≤ Xn:n are called order statistics corresponding to the random
variables X1, X2, …, Xn. In other words, X1:n, …, Xn:n are the ordered values of
X1, X2, …, Xn. For further details on order statistics, see for example, Sheldon
Ross, A First Course in Probability (Englewood Cliffs, NJ: Prentice Hall, 1994).
25 P. Deheuvels, E. Häusler, and D. M. Mason, “Almost Sure Convergence of the Hill
Estimator,” Mathematical Proceedings of the Cambridge Philosophical Society 104
(1988), pp. 371–381.
26 C. M. Goldie and R. L. Smith, “Slow Variation with Remainder: A Survey of the
Theory and its Applications,” Quarterly Journal of Mathematics 38 (1987), pp. 45–71.
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of the distribution; however, it should not be too small because then the
estimator will not be accurate. In general, k needs to satisfy

k → ∞   and      and   n → ∞ (14.12)

to achieve strong consistency and asymptotic normality. With the
proper choice of the sequence k = k(n), the estimator is consistent and
asymptotically normal. However, the rate of convergence of the tail esti-
mators can be very slow.

It should be noted that the Hill estimator and its modifications are
highly unreliable to be used in practice. Mittnik, Paolella, and Rachev
found that small sample performance of  for IID stable distributed
returns does not resemble its asymptotic behavior, even for n >
10,000.27 To obtain meaningful estimates of α, it is necessary to have an
enormous data series; for example, for α = 1.9, reasonable estimates are
produced only for n > 100,000. The implication is that, considering the
length of financial data available, no meaningful estimates can be
obtained by the Hill method. In practice, one usually plots values of the
estimator against the value of k (obtaining the Hill plot) and looks for a
stabilization (flat spot) in the graph. 

Alternatives to the Hill estimator are the Pickands and the modified
unconditional Pickands estimators.28 In contrast to the Hill estimator,
these two estimators are solely based on the k-th, (2k)-th, (3k)-th, and
(4k)-th order statistics. Although the tail estimators are not reliable
enough to be used in practice, they are the only ones that should be used
when attempting to “get an idea” about the behavior far in the tail.
Their use requires minimal assumptions (only certain tail behavior of
the sample distribution) but an extremely large sample size.

Estimating the Entire Distribution
Methods for estimating stable parameters by fitting the entire distribu-
tion include: 

1. Quantile approaches
2. Characteristic function techniques
3. Maximum likelihood methods

27 Stefan Mittnik, Marc S. Paolella, and Svetlozar T. Rachev, “A Tail Estimator for
the Index of the Stable Paretian Distribution,” Communications in Statistics, Theory
and Methods 27 (1998), pp. 1239–1262.
28 J. Pickands, “Statistical Inference Using Extreme Order Statistics,” Annals of Sta-
tistics 3 (1975), pp. 119–131.

k
n
--- 0→

α̂Hill
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We discuss each in the following sections.

Quantile Approaches
In essence, the quantile estimator matches sample quantiles and theoretical
quantiles. The quantile approach was first suggested by Fama and Roll29 and
is based on observed properties of stable quantiles. Their method was
designed for estimating parameters of symmetric stable distributions with an
index of stability α > 1. This estimator exhibits a small asymptotic bias.
McCulloch30 generalized the quantile procedures of Fama and Roll to the
asymmetric case. His method uses a modified quantile technique, which
provides consistent and asymptotically normal estimators of all four sta-
ble parameters with α ∈ [0.6,2.0] and β ∈ [ –1,1]. The estimator is based
on five sample quantiles, namely the 5%, 25%, 50%, 75%, and 95% quan-
tiles. A disadvantage of the McCulloch method is that it ignores all observa-
tions in the tails (below the 5% quantile and above the 95% quantile).

Characteristic Function Techniques
Characteristic function techniques are based on fitting the sample char-
acteristic function to the theoretical characteristic function. The first
characteristic function methods proposed were the minimum distance,
the minimum r-th mean distance, and the method of moments.31 Char-
acteristic function estimators are consistent and under certain condi-
tions are asymptotically normal.32 

Maximum Likelihood Method
The maximum likelihood (ML) method for estimating stable parameters
was first proposed by DuMouchel.33 ML methods differ in the manner
in which they compute stable densities. DuMouchel evaluated the den-
sity by grouping data applying the fast Fourier transform (FFT) to “cen-

29 Eugene F. Fama and Richard R. Roll, “Parameter Estimates for Symmetric Stable
Distributions,” Journal of the American Statistical Association 66 (June 1971), pp.
331–338.
30 J. H. McCulloch, “Simple Consistent Estimators of Stable Distribution Parameters,”
Communication in Statistics: Simulation Computation 15 (1986), pp. 1109–1136.
31 S. J. Press, “Estimation of Univariate and Multivariate Stable Distributions,” Jour-
nal of the American Statistical Association 67 (1972), pp. 842–846.
32 I. A. Koutrouvelis, “An Iterative Procedure for the Estimation of the Parameters
of Stable Laws,” Communications in Statistics: Simulation and Computation 10
(1981), pp. 17–28.  
33 W. DuMouchel, “Stable Distributions in Statistical Inference: 1. Symmetric Stable
Distribution Compared to Other Symmetric Long-Tailed Distributions,” Journal of
the American Statistical Association 68 (1973), pp. 469–477.
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ter” values and asymptotic expansions in the tails. He proved that the
ML estimator is consistent and asymptotically normal. Mittnik, Rachev,
and Paolella34 suggest an approximate conditional ML procedure where
they calculate the density at equally-spaced grid points via an FFT of the
characteristic function and at intermediate points by linear interpola-
tion. The FFT method applies an FFT approximation to the probability
density function to compute the likelihood. The unconditional ML esti-
mate of θ = (α,β,σ,µ) is obtained by maximizing the logarithm of the
likelihood function

(14.13)

where rt are, for example, daily asset returns, and T is the number of
observations in the sample.

The estimation of all stable models is approximate in the sense that
the stable function, Sα(β,σ,µ), is approximated via FFT of the stable char-
acteristic function given by expression (14.2).35 One advantage of the ML
approach over most other methods is its ability to handle generalizations
to dependent or not identically distributed data arising in financial model-
ing (e.g., various time-series models with stable disturbances

Assessing the Goodness of Fit
To compare the goodness of fit between stable distributions and normal
or other distributions, we can employ different criteria:

 ■ Kolmogorov-Smirnov distance statistic
 ■ Anderson-Darling statistic
 ■ the log-likelihood values obtained from maximum likelihood estimation

Kolmogorov-Smirnov Distance Statistic
The Kolmogorov-Smirnov distance statistic (KS-statistic) is computed
according to

34 Stefan Mittnik, Svetlozar T. Rachev, and Marc S. Paollela, “Stable Paretian Mod-
eling in Finance: Some Empirical and Theoretical Aspects,” in R. J. Adler et al. (eds).
A Practical Guide to Heavy Tails: Statistical Techniques and Applications (Boston:
Birkhauser, 1998), pp. 79–110.  
35 Details on the tail estimation using FFT is provided in Chapter 3 of Rachev and
Mittnik, Stable Paretian Models in Finance.
36 For further references on estimating stable parameters, see Rachev and Mittnik,
Stable Paretian Models in Finance.

L θ( ) Sα β,
rt µ–

σ
-------------⎝ ⎠

⎛ ⎞ σ 1–

t 1=

T

∏=
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(14.14)

where FS(x) is the empirical sample distribution and  is the cumula-
tive density function of the estimated parametric density.37 The “sup”
denotes the supremum, which is the least upper bound of a set. The KS-
statistic turns out to emphasize deviations around the median of the fit-
ted distribution. It is a robust measure in the sense that it focuses only
on the maximum deviation between the sample and fitted distributions.
The formal definition and use of KS-statistic in comparing probability
distributions are described in the appendix.

Anderson-Darling Statistic 
Anderson-Darling statistic (AD-statistic)38 is computed by

(14.15)

The AD-statistic scales the absolute deviations between empirical and
fitted distributions with the standard deviation of FS(x) that is given in
the denominator of (14.15). By its construction, the AD-statistic accen-
tuates more the discrepancies in the tails. 

Maximum Log-Likelihood Value 
The maximum log-likelihood value achieved in an ML estimation may
be viewed as an overall measure of goodness of fit and allows us to
judge which distribution candidate is more likely to have generated the
data. From a Bayesian viewpoint, given large samples and assuming
equal prior probabilities for two candidate distributions, the ratio of
maximum likelihood values of two competing models represents the
posterior odds ratio of one candidate relative to the other.39

37 See, for example, Chapter 9 in M.H. DeGroot, Probability and Statistics, 3rd ed.
(Reading, MA: Addison-Wesley, 1965). 
38 T. W. Anderson, D. A. Darling, “Asymptotic Theory of Certain ‘Goodness of Fit’
Criteria Based on Stochastic Processes,” Annals of Mathematical Statistics 23
(1952), pp. 193–212.
39 Arnold Zellner, An Introduction to Bayesian Inference in Econometrics (New
York: John Wiley & Sons, 1971).

KS sup
x R∈

FS x( ) F̂ x( )–=

F̂ x( )

AD sup
x R∈

FS x( ) F̂ x( )–

F̂ x( ) 1 F̂ x( )–( )
------------------------------------------=
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When comparing the goodness of fit, one has to keep the number of
freely estimated parameters in mind. Here, we can employ the informa-
tion criteria, such as Akaike information criterion (AIC), Bayesian
information  criterion (BIC), and  Corrected Akaike information crite-
rion (AICC) discussed in Chapter 7. For nonnormal data they are based
on the log-likelihood. For example, the AIC becomes

AIC = –2(loglikelihood) + 2k 

with k denoting the number of estimated parameters.
We will now turn to illustrations that investigate alternative uncon-

ditional distributional models for the stock returns. 

APPLICATIONS TO GERMAN STOCK DATA40 

Since the initial work in the 1960s by Mandelbrot and Fama, the stable dis-
tribution has been applied to modeling both the unconditional and condi-
tional return distributions, as well as providing a theoretical framework for
portfolio theory and market equilibrium models.41 In this section, we apply
the probability and statistical concepts of stable distributions to the model-
ing of financial data. We provide illustrations applied to financial asset
returns for individual stocks.

We investigate the distributional behavior of daily logarithmic stock
returns constituting the German DAX index in the period January 1,
1988 through September 30, 2002.42 The returns are corrected for cash
dividends, stock splits, and capital adjustments. We would like to exam-
ine whether the stable distribution offers a reasonable improvement
over the Gaussian distribution. The sample is restricted to 35 stocks
that have a minimum of 1,000 observations to ensure that the statistics
estimated were generated from sufficient data.

An initial assessment of the nonnormality of the sample is done by
computing the kurtosis of the returns. For the normal case, the kurtosis is
3 whereas for heavy-tailed distributions, the values exceed 3. As shown in
Exhibit 14.4, for the 35 DAX stocks considered, kurtosis is significantly
greater than 3, indicating leptokurtosis for all 35 return series. 

40 Markus Hoechstoetter, Svetlozar Rachev, and Frank J. Fabozzi, “Distributional
Analysis of the Stocks Comprising the DAX 30,” Probability and Mathematical Sta-
tistics 25, no. 2 (2005), pp. 363–383. 
41 Rachev and Mittnik, Stable Paretian Models in Finance.
42 During the period of observation there were 55 stocks that had been included in
the DAX. 
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EXHIBIT 14.4  Kurtosis and Kolmogorov-Smirnov Test

Notes: Column (2): Kurtosis measurements of the returns with over 1,000 trading
days (January 1988–September 2002). Columns (3)–(6): Kolmogorov-Smirnov test
results. H = 0: normal hypothesis not rejected. H = 1: normal hypothesis rejected. P
is the significance level, KSSTAT is the value of the KS-statistic, and CV is the critical
value.

Source: Adapted from Table 1 in Markus Hoechstoetter, Svetlozar Rachev, and
Frank J. Fabozzi, “Distributional Analysis of the Stocks Comprising the DAX 30,”
Probability and Mathematical Statistics 25, no. 2 (2005), pp. 363–383.

(1)
Company

(2)
Kurtosis

(3)
H

(4)
P

(5)
KSSTAT

(6)
CV

Adidas-Salomon   5.9 1 7.25 · 10–6 7.57 4.11

BASF   6.3 1 3.37 · 10–14 6.53 2.23

BMW   9.0 1 1.43 · 10–20 7.90 2.23

Continental   6.2 1 2.74 · 10–5 5.05 2.90

Daimler Benz 11.0 1 6.37 · 10–9 5.98 2.60

Babcock Borsig 40.5 1 2.25 · 10–12 8.42 3.08

Degussa 15.2 1 4.17 · 10–15 7.78 2.57

Bayer 11.8 1 1.35 · 10–16 7.07 2.23

Hoechst   8.1 1 2.99 · 10–11 6.50 2.50

MAN 14.2 1 1.38 · 10–11 5.88 2.23

Henkel 11.7 1 9.42 · 10–19 7.53 2.23

Karstadt Quelle 12.7 1 8.44 · 10–13 6.54 2.35

Linde   9.8 1 3.28 · 10–20 7.83 2.23

Mannesmann 11.1 1 1.68 · 10–12 6.87 2.50

Metallgesellschaft 21.5 1 3.27 · 10–18 1.14 3.43

Preussag   9.1 1 3.96 · 10–11 6.36 2.46

RWE 11.6 1 3.46 · 10–20 8.37 2.38

SAP   8.4 1 2.63 · 10–5 6.22 3.56

Schering   6.1 1 1.99 · 10–14 6.58 2.23

Siemens 11.0 1 3.49 · 10–13 7.09 2.51

Metro   5.4 1 4.35 · 10–3 4.49 3.48

Thyssen   7.2 1 1.11 · 10–6 5.05 2.56

Veba   7.7 1 1.46 · 10–20 7.34 2.07

Viag 15.1 1 2.55 · 10–21 8.76 2.42

Volkswagen   8.1 1 4.06 · 10–8 4.88 2.23

Kaufhof 13.7 1 4.74 · 10–6 5.48 2.93

Bay. Hyp. u. Wechsel-Bank 18.7 1 1.59 · 10–10 6.65 2.65

Bay. Hypo- u. Vereinsbank 12.5 1 3.27 · 10–23 8.40 2.23

Commerzbank 10.4 1 2.03 · 10–17 7.25 2.23

Deutsche Bank 12.2 1 7.30 · 10–14 7.26 2.51

Dresdner Bank 14.7 1 3.41 · 10–23 9.43 2.50

Deutsche-Lufthansa (common stock)   9.1 1 7.10 · 10–8 5.93 2.75

Deutsche Lufthansa (name share)   5.6 0 9.37 · 10–2 3.45 3.79

Allianz   9.9 1 1.01 · 10–18 7.53 2.23

Muenchener Ruck   6.8 1 7.20 · 10–6 6.41 3.48
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The Kolmogorov-Smirnov distance goodness of fit test shows that
the Gaussian distribution is clearly rejected for all but one stock at the
95% confidence level.43 The values for the KS-statistic are given in col-
umns (3) through (6) in Exhibit 14.4.

The estimates of the parameters of the stable distribution are obtained
via the ML estimation. The estimates for the index of stability α range from
1.4461 to 1.8168. The values of β imply skewness for the majority of the
stocks. Exhibit 14.5 shows the MLE estimates for the four stable parame-
ters. Based on the estimated values for α and β and the values of the KD-
statistic, it is safe to say that the data strongly favor the stable distribution
over the Gaussian hypothesis for all stocks considered except Lufthansa. 

APPENDIX: COMPARING PROBABILITY DISTRIBUTIONS44

When examining the empirical distribution of observations, it is not only
interesting to fit a representative of a given class of probability distributions
to the observations, but it is also quite important to determine how well the
fit between the empirical and the theoretical distribution is. The reason why
this question is so important is that when estimating the parameters of a
given distribution family one determines the best candidate in exactly this
distribution class to explain the observations. But it very might be that the
real distribution generating the data does not belong to the prespecified dis-
tribution family and consequently the estimated distribution will not be
able to explain the observed realizations, neither in the past nor in the
future. This question leads us to the concept of probability metrics. 

Generally speaking a probability metric45 is a function that assigns
distances to two given probability distributions. This concept helps in
addressing the above mentioned problems because we can proceed in the

43 The use of the KS-statistic to test the Gaussian hypothesis in data is presented in
the appendix.
44 This appendix draws from Svetlozar T. Rachev, Christian Menn, and Frank J.
Fabozzi, Fat-Tailed and Skewed Asset Return Distributions: Implications for Risk
Management, Portfolio Selection, and Option Pricing (Hoboken, NJ: John Wiley &
Sons, 2005).
45 Strictly speaking, one has to distinguish between two types of probability metrics.
The so-called “simple probability” metrics (or “simple distances”) measure the dis-
tance between two probability distributions; whereas the “compound probability”
metrics (distances) measure the distance between two (possibly dependent) random
variables. For a rigorous description of probability metrics, see Svetlozar T. Rachev,
Probability Metrics and the Stability of Stochastic Models (Chichester: John Wiley
& Sons, 1991).
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following way: Given a sample of observations, we can compare the
empirical distribution with the presumed distribution in order to deter-
mine whether it is plausible that the data were generated by the estimated
distribution or not. Another application could be to determine whether
the data generating distribution belongs to a certain class of probability
distributions such as the class of normal distributions.

Kolmogorov-Smirnov Distance and Quantile-Quantile Plots
One of the most famous (simple) probability distances is the Kolmogorov-
Smirnov distance (KS-distance). We apply this probability distance in our
illustration in the chapter. When used to test a distributional assumption,
we refer to the KS-distance as a KS-statistic as we have done in our illus-
tration. Given two probability distributions P and Q on the real line with
cumulative distribution functions F and G, we can assess a distance
between these two distributions by calculating the highest distance
between the values F(x) and G(x) for varying x. Mathematically, this
means calculating the supremum distance between F and G:

The supremum is the least upper bound of a set and is denoted by “sup.”
It was understood by statisticians that the distribution of this distance

calculated between an empirical distribution function and the theoretical
one on the basis of a sample, does not depend on the concrete type of dis-
tribution as long as it is a continuous distribution. This fact can be used
to perform the famous Kolmogorov-Smirnov test of goodness of fit,
which is outlined below.

Given a sample of observations x = (x1, …, xn), the empirical distri-
bution function Fn is given by the following expression

where #{...} denotes the number of elements contained in the set {...} and Fn
defines a discrete probability distribution on the real line and for large val-
ues of n the empirical distribution converges to the theoretical one. Under
the hypothesis that the sample was generated by a probability distribution
with distribution function F, the distribution of the KS-distance between F
and Fn is tabulated. That means that depending on the concrete value of n
and the observed distance (denoted by d), it is possible to calculate the p-
value and to decide whether we should believe in the hypotheses or not.

d P Q,( ) F G– ∞ sup
x

F x( ) G x( )–= =

Fn t( )
1
n
---# xi xi t≤{ }=
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Sometimes it is helpful to plot the distance between the empirical and
theoretical distribution function to illustrate the deviation graphically. In
order to generate a maximum of comparability, it is common to standard-
ize the two distributions in the following way: Instead of plotting the x-
values versus the difference of distribution function values, we plot the
quantiles of the first distribution versus the quantiles of the second. The
result is called the quantile-quantile plot or simply the QQ-plot. 

Let us illustrate the concepts presented with an example. Suppose
that we are given the sample of 20 observations (e.g., daily stock return
data in percent over one trading month) in Exhibit A14.1. We want to
determine whether it is reasonable to assume that the underlying distri-
bution is standard normal. 

We can use the QQ-plot in Exhibit A14.2, which shows the differences
between the empirical distribution and the standard normal distribution.

The line in the exhibit embodies the perfect coincidence, whereas the
dots represent the actual observations. We can see that there are notable
differences between the corresponding quantiles. In order to interpret
these deviations, we calculate additionally the KS-distance. The calcula-
tions are shown in Exhibit A14.3. The KS-distance is given by

and the critical value (which can be found in any statistics textbook) for
a confidence level of 95% is dn = 0.2647. The latter value can be inter-
preted as follows: If we draw randomly 20 values from a standard nor-
mal distribution and calculate the KS-distance, then we obtain in 95%

d max
1 i 20≤ ≤

Fn xi( ) Φ xi( )– 0.1446= =

EXHIBIT A14.1     Sample of 20 Observations  

i Observation i Observation

  1 –2.1 11   0.4
  2   0.1 12   0.1
  3   0.3 13 –1.1
  4 –0.8 14 –0.3
  5   1.7 15   0.9
  6   1.3 16   0.1
  7   0.2 17 –3.1
  8 –0.4 18 –0.7
  9   0.0 19 –0.2
10 –0.1 20   1.5
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of the cases a value which is below 0.2467 and only in 5% of the cases a
value above. Consequently, a value higher than 0.2467 will speak
against the hypothesis that the data are generated by a standard normal
distribution. In our case, the value is below and we cannot reject the
standard normal hypothesis.

Anderson-Darling Distance
Sometimes it is important to assign different weights to the same devia-
tions between two probability distribution functions. In financial appli-
cations, for example, one might be interested in estimating the tails of a
return distribution very accurately. The reason for that is that the tails
are responsible for the unexpected events and if such an unexpected
event takes place, we want to know how much money we lose (or win)
and, therefore, we need information about the tail of the return distri-
bution. If we assume a certain probability distribution with distribution
function F and measure the distance between F and the empirical distri-

EXHIBIT A14.2     Q-Q Plot Illustration
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bution function Fn by the KS-distance, then the same importance is
assigned to the tails as to the center. The reason is that the KS-distance
measures the uniform distance between the two functions (that is, the
maximum deviation regardless where it occurs). 

An alternative way is provided by the following empirical variant of
the Anderson Darling statistic (AD-statistic):

As with the KS-statistic, the AD-statistic measures the distance between
the empirical and theoretical distribution function but is rescaled by
dividing the distance through the “standard deviation” of this distance,
given by the denominator in the above formula. As can be seen, the
denominator becomes small for very large and very small x-values. Thus

EXHIBIT A14.3     Calculation of the KS-Distance 

i xi Φ(xi) F20(xi) = i/n |F20(xi) – Φ(xi)|

  1 –3.1 0.00096767 0.05 0.04903233
  2 –2.1 0.01786436 0.1  0.08213564
  3 –1.1 0.1356661  0.15 0.0143339  
  4 –0.8 0.21185533 0.2  0.01185533
  5 –0.7 0.24196358 0.25 0.00803642
  6 –0.4 0.3445783  0.3  0.0445783  
  7 –0.3 0.38208864 0.35 0.03208864
  8 –0.2 0.42074031 0.4  0.02074031
  9 –0.1 0.4601721  0.45 0.0101721  
10 0 0.5              0.5  0                 
11   0.1 0.5398279  0.55 0.0101721  
12   0.1 0.5398279  0.6  0.0601721  
13   0.1 0.5398279  0.65 0.1101721  
14   0.2 0.57925969 0.7  0.12074031
15   0.3 0.61791136 0.75 0.13208864
16   0.4 0.6554217  0.8  0.1445783  
17   0.9 0.81593991 0.85 0.03406009
18   1.3 0.90319945 0.9  0.00319945
19   1.5 0.93319277 0.95 0.01680723
20   1.7 0.95543457 1     0.04456543

AD sup
x

Fn x( ) F x( )–

F x( ) 1 F x( )–( )
------------------------------------------=

c14-HeavyTailed  Page 493  Thursday, October 26, 2006  2:11 PM



494 FINANCIAL ECONOMETRICS

the same absolute deviation between F and Fn in the tails gets a higher
weight as if it occurs in the center of the distribution. The drawback of
this approach is the fact that the distribution of the statistic depends on
the concrete choice of F and consequently tests about the validity of the
assumption cannot be performed as easy as with the KS-distance.

We use the AD-statistic measure in our illustration in Chapter 15.

CONCEPTS EXPLAINED IN THIS CHAPTER
(IN ORDER OF PRESENTATION)

Stable Paretian distributions
Strictly stable distributions
Index of stability
Skewness parameter
Scale parameter
Location parameter
Symmetric stable distributions
Characteristic function of stable distributions
Normal, Cauchy, and Lévy distributions 
Power law decay of tails
Stability or additivity property
Domain of attraction
Generalized central limit theorem
Estimation of the tail parameters

Hill estimators
Density estimation

Quantile approaches
Characteristic function techniques
Maximum likelihood method

Kolmogorov-Smirnov distance statistic
Anderson-Darling statistic
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ARMA and ARCH Models with
Infinite-Variance Innovations

 

n Chapter 6 we described autoregressive moving average (ARMA)
processes and their properties with regards to stationarity and estima-

tion. In the previous chapter we introduced a stable non-Gaussian dis-
tributed random variable (exhibiting heavy tails) along with major
properties of stability and power law decay of tails which imply that its
second moment is infinite.

 

1

 

 ARMA models can then be extended by con-
sidering error terms that follow a stable non-Gaussian distribution, giv-
ing rise to “infinite variance autoregressive moving average models.”
Such heavy-tailed processes are encountered in economics and finance
and it is of practical interest to analyze their properties. However, the
statistical theory of the infinite variance models is fundamentally differ-
ent from that of models with finite variances. In this chapter we describe
ARMA models and autoregressive conditional heteroskedastic (ARCH)
models with infinite variance innovations and outline relevant proper-
ties along with estimation approaches.

 

INFINITE VARIANCE AUTOREGRESSIVE PROCESSES

 

Recall from equation (6.8) in Chapter 6 that a stationary autoregressive
(AR(

 

p

 

)) time series {

 

y

 

t

 

} is represented by difference equation 
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t–p
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(15.1)

 

1 

 

There are versions of the stable random variables called “modified tempered sta-
ble” with finite second moment. Jan Rosinski, “Tempering Stable Processes,” in
O.E. Barndorff -Nielsen (ed.), 

 

Second MaPhySto Conference on Lévy Processes:
Theory and Applications

 

, 2002, pp. 215–220.

I
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where {

 

ε

 

t

 

} is a sequence of independent and identically distributed (IID)
errors and 

 

φ

 

 = (

 

a

 

0

 

, 

 

a

 

1

 

, …, 

 

a

 

p

 

)

 

′

 

 is an unknown parameter vector with true
value 

 

φ

 

0

 

. When the second moment of the error term, , is finite,
we have shown that various estimators (e.g., least-squares estimators
and maximum likelihood estimators) of 

 

φ

 

0

 

 are asymptotically normal
and several methods are available for statistical inference. When 
is infinite, we call the model given by equation (15.1) the 

 

infinite vari-
ance autoregressive model

 

 (IVAR model). Such heavy-tailed models
have been encountered in economics and finance.

 

2

 

 A problem with
IVAR models is their estimation because the maximum likelihood esti-
mation is very cumbersome.

The condition for strict stationarity of model (15.1) is given as fol-
lows:

 

3

 

The characteristic polynomial 1 – 

 

a

 

1

 

λ

 

 – … 

 

a

 

p

 

λ

 

p

 

 has all roots outside
the unit circle and {

 

ε

 

t

 

} are independent and identically distributed with
 for some 

 

δ

 

 > 0.

Regarding estimation of model (15.1), consistency and the limiting
distribution of estimators for 

 

φ

 

0

 

 are of interest. Various estimators have
been applied to estimate the model (15.1). The least squares estimator
(LSE) of 

 

φ

 

0

 

 has been proven to be strongly consistent with a conver-
gence rate 

 

n

 

–1/

 

δ

 

, where 

 

n

 

 is the sample size, 

 

δ

 

 < 

 

α

 

, and 

 

α

 

 

 

∈

 

 (0,2) is the
tail index of 

 

ε

 

t

 

.

 

4

 

 The 

 

least absolute deviation

 

 (LAD) estimator

 

5

 

 also has
been proven to be strongly consistent with the same convergence rate as
for the LSE. The so called 

 

Whittle estimator

 

 that has been applied to
standard ARMA processes and a fractionally integrated ARIMA (

 

p

 

,

 

d

 

,

 

q

 

)

 

2 

 

Svetlozar T. Rachev and Stefan Mittnik, 

 

Stable Paretian Models in Fi

 

nance (Chich-
ester: John Wiley & Sons, 2000). 

 

3 

 

See proposition 13.3.2 in P. J. Brockwell and R. A. Davis, 

 

Time Series: Theory and
Methods

 

, 2nd ed. (New York: Springer, 1996).

 

4 

 

E. J. Hannan and M. Kanter, “Autoregressive Processes with Infinite Variance,”

 

Journal of Applied Probability

 

 14 (1977), pp. 411–415.

 

5 

 

The problem in estimation of (15.1) is that the large positive or negative values of

 

ε

 

t

 

 in IVAR models generate 

 

y

 

t

 

 

 

which appear to be outliers, and the same generates
many leverage points (i.e., the large positive or negative values of 

 

y

 

s

 

, as 

 

s 

 

> 

 

t

 

) such
that process {

 

y

 

t

 

} itself has heavy tails. Compared with the least squares estimator, the
LAD estimator gives less weight to the outliers but it gives basically the same weight
to the leverage points. This may result in the covariance matrix failing to be finite
and asymptotic normality will not hold. See S. Ling, “Self-Weighted Least Absolute
Deviation Estimation for Infinite Variance Autoregressive Models,” 

 

Journal of Roy-
al Statistical Society

 

 67, no. 2 (2005), pp. 381–393.

E εt
2( )

E εt
2( )

E εt
δ ∞<
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497

 

processes

 

6

 

 has also been applied to IVAR models. It has been shown that
the Whittle estimator converges to a function of a sequence of stable
random variables.

 

7

 

 However, the limiting distributions of these estima-
tors do not have a closed form which implies that they cannot be used
for statistical inference in practice. Recently, Ling provides a new
approach to handle heavy-tailed time series data based on the approach
of robust estimators and introduces a self-weighted LAD (SLAD) esti-
mator.

 

8

 

 He proves that this estimator is asymptotically normal.

 

ARMA Process with Infinite-Variance Innovations

 

We can extend the IVAR models to infinite variance ARMA(

 

p

 

, 

 

q

 

) pro-
cess in the same way that we extended the AR to ARMA processes with
finite innovations in Chapter 6. Consider a casual stationary ARMA-
process {

 

y

 

t

 

}

 

t

 

∈
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satisfying the difference equation
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(15.2)

for 

 

t

 

 ∈ Z = {0, ±1, ±2, ...}. The innovations {εt}t∈Z are IID symmetric
random variables in the domain of normal attraction of a symmetric

6 The Whittle estimator is defined to be the value of β which minimizes 

where Σj denotes the sum over all nonzero Fourier frequencies ,
and the numerator of the sum terms is the so called sample periodogramm of the se-
quence {Xt}. In the Gaussian case, the Whittle estimator is related to least squares
and maximum likelihood estimators and is a standard estimator for ARMA process-
es {Xt} with finite variance. (See P. Whittle, “Estimation and Information in Station-
ary Time Series,” Arkiv for Matematik 2 (1953), pp. 423–434.). When the {Xt} is a
fractionally integrated ARIMA(p, d, q) process, it is easier to implement the Whittle
estimator then maximizing the Gaussian likelihood. For further details, see Chapter
10 in Brockwell and Davis, Time Series: Theory and Methods, Second Edition. 
7 T. Mikosch, T. Gadrich, C. Klüppelberg, and R.J. Adler, “Parameter Estimation for
ARMA Models with Infinite Variance Innovations,” Annals of Statistics 23, no. 1
(1995), pp. 305–326.
8 Shiqing Ling, “Self-Weighted Least Absolute Deviation Estimation for Infinite
Variance Autoregressive Models.”
9 See Gennady Samorodnitsky and Murad S. Taqqu, Stable Non-Gaussian Random
Processes: Stochastic Models with Infinite Variance (New York: Chapman & Hall,
1994); and T. Mikosch, T. Gadrich, C. Klüppelberg, and R. J. Adler, “Parameter Es-
timation for ARMA Models with Infinite Variance Innovations,” The Annals of Sta-
tistics 23, no. 1 (1995), pp. 305–326.

σ̂n
2 β( )

1
n
---

In X, λj( )

g λj β,( )
---------------------

j
∑=

λj 2πj n⁄ π π,–( )∈=
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stable distribution with index α ∈ (0,2) and scale parameter σ0 > 0.
That is, as n → ∞,

(15.3)

where ε0 has characteristic function

Expression (15.2) describes an infinite variance ARMA(p, q) process. 

Properties and Estimation of ARMA Processes with
Infinite-Variance Innovations
An estimator for the ARMA coefficients

β = (a1, …, ap, b1,…, bq)′

can be derived by using the sample periodogramm of {yt}
10 which is

defined by

,   –π < λ < π (15.4)

The self-normalized periodogramm is obtained by normalizing the expres-
sion (15.4) with the sum of the squared terms of the sequence {yt}.

11

Sequence {yt}t∈Z has the infinite moving average representation

,   t ∈ Z, c0 = 1

where cj are specified, for a complex z ∈ C with norm  ≤ 1, by

10 Mikosch, Gadrich, Klüppelberg, and Adler, “Parameter Estimation for ARMA
Models with Infinite Variance Innovation.”

11 ,   –π < λ < π

n 1 α⁄– εt
d

t 1=

n

∑ Y→

Ee
iuε0 e

σ0u α–
=

In y, λ( ) n 1 α⁄– yte
iλt–

t 1=

n

∑
2

=

In y, λ( ) yte
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t 1=
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z
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with a(z) = 1 – a1z – a2z2 – … – apzp and b(z) = 1 + b1z + … – bqbq. The
parameter space for β is defined as C:= {β ∈ Rp+q: ap ≠ 0, bq ≠ 0, a(z) and
b(z) have no common errors, a(z)b(z) ≠ 0 for  ≤ 1}

The objective function is defined as 

where g(λ, β) is the power transfer function corresponding to β ∈ C,

Suppose β0 ∈ C is the true, but unknown, parameter vector. Then, two
natural estimators are given by 

(15.5)

and 

Estimator (15.5) is called the Whittle estimator and is given by the value
of β that minimizes .

The rate of convergence of this estimator will differ depending on
the properties of the ARMA process. While the rate of convergence for
the Whittle estimator in the case of the ARMA(p, q) processes with
finite variance is n–1/2, in the stable case a considerably faster rate of
convergence of order (n/ln n)–1/α, α < 2, is obtained. 

Fractional ARIMA Process with Infinite-Variance Innovations
Recall from Chapter 6 that if the fractionally differenced series (1 – L)dyt
follows an ARMA(p, q) process, then yt is called an FARIMA(p, d, q)
process, which is a generalized ARIMA model by allowing for non-inte-
ger d. The FARIMA for time series {yt} is defined by 

1 c1z c2z2 …+ + + c z( )  :
b z( )
a z( )
-----------= =

z

σn
2 β( )

In y, λ( )
g λ β,( )
------------------ λd

π–

π

∫=

g λ β,( ) : b e iλ–( )

a e λ–( )
-----------------

2

c e iλ–( )
2

= =

βn arg minβ C∈ σn
2 β( )=

βn arg minβ C∈ σn
2 β( ) arg minβ C∈ σ̂n

2 β( )= =

σn
2 β( )
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a(L)yt = b(L)∆–dεt = b(L)(1 – L)–dεt (15.6)

where the innovations εt have infinite variance and d is a positive frac-
tional number. The notation ∆d with (for d = 1, 2, …) stands for the
operator iterated d times, and

(15.7)

with l0(–d) := 1 and

   j = 1, 2, …

Time series (15.6) exhibits both infinite variance and long-range
dependence. One can estimate both d and the coefficients in polynomi-
als a(L) and b(L) by using a variant of Whittle’s method. 

The innovations εt in (15.6) are assumed to be IID zero mean and in
the domain of attraction of a stable law with 1 < α < 2; that is,

,   as x → ∞ (15.8)

where F is a slowly varying function, and

(15.9)

where i and j are nonnegative numbers satisfying i + j = 1. Then, there is
a unique moving average representation

(15.10)

satisfying (15.6), provided that (1) polynomials a(L) and b(L) have no
zeros in the closed unit disk D = {z:  ≤ 1} and no zeros in common
and (2) d < 1–1/α. The coefficients cj are defined by

,   (15.11)

∆ d– 1 L–( ) d– lj d–( )Lj

j 0=

∞

∑= =

lj d–( )
Γ j d+( )

Γ d( )Γ j 1+( )
--------------------------------=

P εt x>( ) x α– F x( )∼

P εt x>( ) P εt x>( )⁄ i→ P εt x–<( ) P εt x>( )⁄ j→,

yt cjεt j–
j 0=

∞
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z

cjz
j

j 0=

∞

∑ b z( )

a z( ) 1 z–( )d
------------------------------= z 1≤
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The process given by (15.10) is called a fractional ARIMA process or, in
short, a FARIMA(p, d, q) process. 

Similar to the definition of estimators for an ARMA process, we
define the vector of true parameters 

β0 = (a1, …, ap, b1,…, bq, d)′ (15.12)

where parameter d is now added. Analogous to the ARMA case, we
define the Whittle estimator βn as the value of β minimizing objective
function . In the case of a FARIMA process, the expression for the
power transfer function g(λ, β) is more involved than in the ARMA
case. As in the ARMA case, the estimator βn is consistent.

An analysis of the stationary process 

(15.13)

with a noise sequence, {εt}t∈Z, of IID random variables, which may have
finite or infinite variance, is useful for characterization of the long-memory
or long-range dependence of some process.12 

The result of Mikosh et al.13 on the Whittle estimator for IVAR mov-
ing average models was extended by Kokoszka and Taqqu14 for long
memory autoregressive fractionally integrated moving average models.

STABLE GARCH MODELS 

In Chapter 8, GARCH and ARMA-GARCH models were described.
Here we look at the extension of these models by allowing the distribu-

12 Correlations to distinguish between short and long memory if the variance is infi-
nite cannot be used. Several approaches try to use “correlation-like” notions in that
case. In the class of stable processes notions of covariation and codifference have
been introduced and their rate of decay for various classes of stationary stable pro-
cesses computed. (See, for example, A. Astrauskas, J. Levy and M. S. Taqqu, “The
Asymptotic Dependence Structure of the Linear Fractional Lévy motion,” Lithua-
nian Mathematical Journal 31, no. 1 (1991), pp. 1–28.) Such “surrogate correla-
tions” can be expected to carry even less information than the “real correlations” do
in the case when the latter are defined. 
13 Mikosch, Gadrich, Klüppelberg, and Adler, “Parameter Estimation for ARMA
Models with Infinite Variance Innovation.”
14 P. Kokoszka and M. S. Taqqu, “Infinite Variance Stable Moving Averages with
Long Memory,” Journal of Econometrics 73, no. 1 (1996), pp. 79–99. 
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tion of the historical innovations to be heavier-tailed than the normal
distribution—more precisely belonging to the family of non-Gaussian
stable distributions. Recall that GARCH model is given by

(15.14)

where zt are IID mean zero and unit variance random variables repre-
senting the innovations of the return process; and the conditional vari-
ance , follows 

(15.15)

Commonly it is assumed that zt ~ N(0,1), so that the returns are condi-
tionally normal. We observed in Chapter 8 that the GARCH model with a
conditionally normal return distribution can lead to heavy tails in the
unconditional return distribution. We also introduced in Chapter 8 ARMA-
GARCH models where expression (15.14) is replaced by an ARMA
expression that captures serial dependence in returns. The ARMA struc-
ture is used to model the conditional mean  of the return
series yt, i.e.,

(15.16)

where ℑt–1 is the information set up to time t – 1. The GARCH is again
given by

(15.17)

with εt = σtzt and zt ~ N(0,1) IID. 
If we assume that the distribution of the historical innovations zt–n, …, zt

is heavier-tailed than the normal, then the GARCH model will exhibit
non-Gaussian conditional distribution. In the remainder of this chapter,
we consider the heavy-tailed innovation process {zt} with specific focus
on a family of non-Gaussian stable distributions.
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An ARMA-GARCH model that accommodates heavy-tailed innova-
tion process has been introduced by Panorska, Mittnik, and Rachev15

and given by an ARMA structure as in (15.16),

(15.18)

and a GARCH structure imposed on the scale parameter σt,

(15.19)

where εt = σtzt and zt is an IID location zero, unit scale heavy-tailed ran-
dom variable. For example, for zt the partially asymmetric Weibull, the
Student’s t, and the asymmetric stable distributions can be used. Note
that in this model, σt in expression (15.9) is interpreted as a scale
parameter and not necessarily a volatility, since for some distributional
choices for zt, the variance may not exist. Specifically, in the case where
zt are realizations from a stable non-Gaussian distribution, the GARCH
model is represented by the modified expression of (15.19).

(15.20)

and the index of stability α for the stable distribution is constrained to
be greater than 1.16 Expression (15.20) represents a stable-GARCH
model. 

Similar to conventional GARCH models, stable-GARCH models may
prove beneficial to model the conditional distribution of asset returns by
capturing appropriately temporal dependencies of the return series. To
test the goodness of fit of the models, the standard Kolmogorov-Smirnov
distance and Anderson-Darling test statistic can be applied. These test
statistics are explained in the appendix to Chapter 14.

15 Ania K. Panorska, Stefan Mittnik, and Svetlozar T. Rachev, “Stable GARCH
Models for Financial Time Series,” Applied Mathematics Letters 8, no. 5 (1995), pp.
33–37.
16 Note that term  in (15.9) assuming stable innovation process zt can become
infinite, rendering the whole expression meaningless. The condition of α > 1 means
that we impose a finite mean condition.
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Panorska, Mittnik, and Rachev model the conditional distribution
for the Nikkei Index using different distributional models for the {zt}
process, including Weibull, the Student-t, and the asymmetric stable dis-
tribution. All the alternative distributional models for the innovation
process outperform the normal assumption for the innovation process
in modeling daily asset returns. 

In (15.14) to (15.20) we presented the extension of a conventional
GARCH process to a stable-GARCH process. The formal definition of a
stable-GARCH process is as follows.

Definition of stable-GARCH Process. A sequence of random variables
εt is said to be a stable GARCH(α, p, q) or SαGARCH(p, q) process if:

 ■ εt = σtzt, where zt are IID random variables distributed as strictly
symmetric α-stable random variable17 with unit scale parameter,
1 < α ≤ 2.

 ■ Nonnegative constants ai, i = 1, …, q, and bj, j = 1, 2, …, p, and a0
exist, such that (15.20) holds.

The assumption 1 < α ≤ 2 is commonly satisfied in finance, since most
return series have finite mean. 

In addition to allowing infinite-variance disturbances, the stable-
GARCH process can be further generalized by considering asymmetric
innovations and processes where the GARCH equation propagates not
just conditional moments of order 2, but, more generally, absolute
moments of order δ > 0. The process {yt} is called a stable Paretian
power-GARCH process, in short, an Sα,β,δ GARCH(r, s) process, if it is
described by

,   (15.21)

and

(15.22)

17 To obtain strictly symmetric stable random variables, we assume β = µ = 0. The
characteristic function for symmetric stable random variable with scale parameter σ
is .exp σt α

–{ }
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where a0 > 0, ai ≥ 0, i = 1, 2, …, r, r ≥ 1, bj ≥ 0, j = 1, 2, …, s, s ≥ 0, and
Sα,β denotes the standard asymmetric stable Paretian distribution18 with
stable index α, skewness parameter β ∈ [–1,1], zero location parameter,
and unit scale parameter.19 The power parameter, δ, satisfies 0 < δ < α.
By letting the location parameter in (15.21) be time-varying, we permit
general mean equations, including, for example, regression and/or
ARMA structures.

Properties of Stable GARCH Processes
The sufficient conditions for a unique stationarity solution of the stable
power-GARCH process (15.21)–(15.22) driven by stable Paretian inno-
vations have been established with the following proposition:20

The sufficient conditions under which the Sα,β,δ GARCH(r,s) process
defined by (15.21) and (15.22) has a unique strictly stationary solu-
tion are: 1 < α ≤ 2, 0 < δ < α, a0 > 0, ai ≥ 0, i = 1, 2, …, r, r ≥ 1, bj ≥ 0,
j = 1, 2, …, s, s ≥ 0, and 

(15.23)

where  with z ~ Sα,β(0,1). The left side of inequality
(15.23) is defined as volatility persistence, VS. 

Factor λα,β,δ depends on power δ as well as the stable index α and
skewness parameter β of the standard stable Paretian distribution and
is, for 0 < δ < α, of the form21

18 Here we employ the same parameterization and notation as in Svetlozar T. Rachev
and Stefan Mittnik, Stable Paretian Models in Finance (Chichester: John Wiley &
Sons, 2000).
19 As already discussed in Chapter 14, the stable distribution is symmetric for β = 0
and skewed to the right (left) for β > 0 (β < 0). The stable index α, which in general
assumes values in the interval (0,2], determines the tail-thickness of the distribution.
The tails become thinner as α approaches 2; and for α = 2, the standard stable Pare-
tian distribution coincides with the normal distribution N(0,2). For α < 2, zt does not
possess moments of order α or higher. Thus, the mean exist only for α > 1.
20 Stefan Mittnik, Marc S. Paolella, and Svetlozar T. Rachev, “Stationarity of Stable
Power-GARCH Processes,” Journal of Econometrics 106, no. 1 (2002), pp. 97–107. 
21 Gennady Samorodnitsky and Murad S. Taqqu, Stable Non-Gaussian Random
Processes, Stochastic Models with Infinite Variance (New York: Chapman & Hall,
1994).
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(15.24)

where  and

It is important to note that λα,β,δ increases without bound as δ
approaches α. Note that in practice, the restrictions 1 < α ≤ 2, 0 < δ < α
need to be satisfied for the examined datasets, which usually consist of
various volatile series of exchange rates, stock returns, and stock indices
return series. The stationarity conditions for the special stable-GARCH
process (15.20) follow by setting δ = 1 and β = 0.22

Analogous to the ordinary normal GARCH model, we say that yt is
an integrated Sα,β,δ GARCH(r, s) process, denoted by Sα,β,δ IGARCH(r, s),
if in (15.23) the volatility persistence is equal to 1. In practice, the esti-
mated volatility persistence, ,tends to be quite close to 1 for a highly
volatile series, so that an integrated model might offer a reasonable data
description. However, both finite sample and asymptotic properties of

 and the associated likelihood ratio statistics are not known, so that
it is not immediately clear how one can test for an integrated process.
An alternative approach is to fit both GARCH and IGARCH models
and examine the change in various goodness of fit statistics, most nota-
bly the Anderson-Darling statistics. 

From the analysis performed by Mittnik, Paolella, and Rachev,23 it
follows that the admissible parameter space for parameters in the condi-
tional-volatility equation (15.22), ai ≥ 0, i = 1, 2, …, r, and bj, j = 1, 2,
…, s, shrinks, under ceteris paribus conditions, as the tails of the inno-

22 If a0 > 0 and 

then the stable GARCH (α, p, q) with p ≥ 2 or q ≥ 2, has a unique strictly stationary
solution. The case when p = q = 1 requires separate treatment because of some tech-
nical issues concerning conditions for obtaining a stationary solution. This is beyond
the scope of this chapter.
23 Mittnik, Paolella, and Rachev, “Stationarity of Stable Power-GARCH Processes.” 
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vations became heavier (i.e., α ↓ 1), as the skewness of the innovation
increases (i.e., as β → ±1), and as the power parameter increases (i.e., δ
↑ α). In the case when δ = α, simulation experiments show extremely
erratic behavior of the conditional-volatility process, which is actually
not encountered in financial data.

ESTIMATION OF THE STABLE GARCH MODEL

As explained in the previous chapter, estimation of the probability den-
sity function (pdf) and subsequently the likelihood function Sα,β, distri-
bution is nontrivial, because it lacks an analytic expression. We describe
here the maximum likelihood estimate for a GARCH(r, s) specification
with r = s = 1 which is commonly sufficient to capture serial dependence
in absolute returns. 

For a GARCH(1,1) model, (15.21) and (15.22) become

,   (15.25)

(15.26)

where ct is the conditionally varying scale parameter of the stable distribu-
tion. The goal is to estimate the parameter vector θ = (µ, c0, a0, a1, b1, α,
β, δ), where c0 denotes the unknown initial value of ct. The ML estimate
of θ is obtained by maximizing the logarithm of the likelihood function

(15.27)

The ML estimation is approximate in the sense that the stable Paretian
density Sα,β((yt – µ)/ct) needs to be approximated. For this purpose, the
algorithm of Mittnik, Rachev, Doganoglu, and Chenyao,24 which approx-
imates the stable Paretian density via fast Fourier transform (FFT) of the
characteristic function is used. The ML estimator of the parameters of
the stable density is consistent and asymptotically normal with the
asymptotic covariance matrix being given by the inverse of the Fisher

24 S. Mittnik, S.T. Rachev, T. Doganoglu, and D. Chenyao, “Maximum Likelihood
Estimation of Stable Paretian Models,” Mathematical and Computer Modelling 29
(1999), pp. 275–293.
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information matrix.25 Approximate standard errors of the estimates can
be obtained via numerical approximation of the Hessian matrix. 

For practical use, three issues are important:

1. How easily the stable ML estimation routine can be implemented.
2. Whether the stable ML estimation routine is numerically well behaved.
3. Performance in terms of computational speed.

The stable ML estimation method can be directly implemented using
standard econometric packages and is well behaved.26 The exception is
in cases of grossly misspecified and/or overspecified models, as well as
the more general class of ARMA-GARCH models when there is near
unit root in the general ARMA structure (which poses a well-known dif-
ficulty in ARMA estimation). 

As highlighted in Chapter 8, evaluation of the GARCH recursion
requires presample values of z0 and c0. Instead of treating them as
unknown parameters, they can be set to their unconditional expected
values

   and   (15.28)

Note that expression (15.28) is not valid in the IGARCH case. To avoid
problems for IGARCH and nearly integrated GARCH models, we need
to estimate c0 as an additional parameter rather than setting it to its
unconditional expected value.

For the integrated Sα,β,δ IGARCH(1,1) model, the restriction b1 = 1 – λα,β,δa1
needs to be imposed. This entails the evaluation of volatility persistence,

at each iteration, as b1 is also dependent on values , , and .

25 The Fisher information matrix is explained in Chapter 2.
26 The satisfactory behavior of the algorithm is due to avoidance of explicit numeri-
cal integration and the fact that the method can be made arbitrarily accurate by the
choice of several tuning constants. 
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Illustration: Modeling Exchange Rate Returns 
To examine the appropriateness of the stable GARCH hypothesis, we
present an application reported in Mittnik and Paolella27 who model
exchange rate returns for five daily spot foreign exchange rates against
the U.S. dollar, namely the British pound, Canadian dollar, German
mark, Japanese yen, and the Swiss franc. The sample covers the period
January 2, 1980 to July 28, 1994, yielding series of lengths 3,681, 3,682,
3,661, 3,621, and 3,678, respectively. Since serial correlation was found
to be negligible, and, assuming a GARCH(1,1) specification is sufficient
to capture serial correlation in absolute returns, the model of the form
(15.25) and (15.26) for each of the four currencies was specified.

The approximate ML estimation is used to fit the model (15.25) and
(15.26). To avoid problems for IGARCH and nearly integrated GARCH
models, Mittnik and Paolella estimate c0 as an additional parameter
rather than to set it to its unconditional expected value. The parameter
estimates of the models are shown in Exhibit 15.1. 

It is important to note the estimates of the skewness parameter β: all
 values are statistically different from zero, although those for the

British pound and German mark are quite close to zero. Skewness is
most pronounced for the Japanese yen, for which  and

.
The persistence of volatility is given in the last column of Exhibit 15.1

and reflects the speed with which volatility shocks die out. A  value of
persistence measure ( ) near 1 is indicative of an inte-
grated GARCH process, in which volatility shocks have persistent
effects. The results show that the models for the Canadian dollar and
Japanese yen with  values of 1.001 and 1.002 respectively, are very
close to being integrated. For the estimates here, we obtain , which
suggest that conditional volatility  is a well defined quantity in the
sense that  for VS < 1.28 

27 Stefan Mittnik and Marc S. Paolella, “Prediction of Financial Downside-Risk with
Heavy-Tailed Conditional Distributions,” in Svetlozar T. Rachev (ed.) Handbook of
Heavy Tailed Distributions in Finance (Amsterdam: Elsevier Science 2003), pp. 386–
404.
28 It is worthwhile noting that the restriction α = δ, imposed by Liu and Brorsen
when estimating stable-GARCH models for the same four currencies is not sup-
ported by the presented results. This is important because, if δ ≥ α, the uncondi-
tional first moments of ct is infinite for any α < 2. The specification α = δ does not
only induce conceptual difficulties, but also leads to a highly volatile evolution of
the ct series in practical work. (See S. Liu and B.W. Brorsen, “Maximum Likeli-
hood Estimation of a GARCH-Stable Model,” Journal of Applied Econometrics 10
(April 1995), pp. 273–285.)
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1
b̂

1
+=

V̂
δ̂ α̂<

ct
δ

E ct
δ yt 1– yt 2– …, ,( )

c15-ARMA-ARCHInf  Page 509  Thursday, October 26, 2006  2:12 PM



510 FINANCIAL ECONOMETRICS

EXHIBIT 15.1  GARCH Parameter Estimates for Exchange-Rate Return Modelsa

a Estimated models: , . “Shape” de-
notes the degrees of freedom parameter  ν for the Student’s t-distribution and stable
index α for the stable Paretian distribution; “Skew” refers to the stable Paretian
skewness parameter β. Standard deviations resulting from ML estimation are given
in parentheses.
b  corresponds to  in the stable Paretian and  in the Student’s t case. V = 1
implies an IGARCH model.

Source: Table 1 in Stefan Mittnik and Marc S. Paolella, “Prediction of Financial
Downside-Risk with Heavy-Tailed Conditional Distributions,” in Svetlozar T.
Rachev (ed.), Handbook of Heavy Tailed Distributions in Finance (Amsterdam:
Elsevier Science 2003).

Intercept 
 µµµµ

GARCH
Parameters

 Distribution 
 Parameters 

Persistence
Measureb

θ0  θ1  φ1  δ Shape (αααα) Skew (ββββ)  

British

Sα,β  –9.773e-3  8.085e-3  0.04132  0.9171  1.359  1.850  –0.1368 0.984

  (0.012)  (2.39e-3)  (6.42e-3)  (0.0118)  (0.0892)  (0.0245)  (0.0211)  

t  –2.312e-3  0.01190  0.06373  0.9071  1.457  6.218 — 0.976

 (0.010)  (3.56e-3)  (0.0115)  (0.0200)  (0.167)  (0.615)   

Canadian         

Sα,β  5.167e-3  1.034e-3  0.04710  0.9164  1.404  1.823  0.3577 1.001

 (0.0614)  (3.12e-4)  (6.63e-3)  (0.0118)  (0.0143)  (0.0104)  (0.0209)  

t  –2.240e-3  7.774e-4  0.06112  0.9118  1.793  5.900  --- 0.992

 (3.83e-3)  (6.90e-4)  (5.98e-3)  (7.27e-3)  (0.0150)  (0.0801)   

German         

Sα,β  2.580e-3  0.01525  0.05684  0.8971  1.101  1.892  –0.06779 0.969

  (0.016)  (1.61e-3)  (3.44e-3)  (7.42e-3)  (9.78e-3)  (0.0216)  (0.0184)  

t  6.643e-3  0.01812  0.07803  0.8938  1.261  7.297 — 0.969

 (9.21e-4)  (2.25e-3)  (6.45e-3)  (4.43e-3)  (0.147)  (0.186)   

Japanese         

Sα,β  –0.01938  4.518e-3  0.06827  0.8865  1.337  1.814  –0.4175 1.002

  (0.0166)  (1.12e-3)  (7.91e-3)  (0.0124)  (0.0132)  (0.0107)  (8.80e-3)  

t  5.318e-3  9.949e-3  0.07016  0.8756  1.816  5.509 — 0.972

 (8.87e-3)  (3.03e-3)  (0.0119)  (0.0205)  (0.162)  (0.461)   

Swiss         

Sα,β  –2.677e-3  0.01595  0.04873  0.9115  1.041  1.902  –0.2836 0.971

  (0.0124)  (3.30e-3)  (6.84e-3)  (0.0132)  (0.144)  (0.0206)  (0.0722)  

t  8.275e-3  0.02099  0.06825  0.9061  1.159  8.294 — 0.968

 (0.0118)  (3.91e-3)  (6.85e-3)  (7.25e-3)  (0.179)  (0.933)   

V̂

rt µ ctεt+= ct
δ θ0 θ1 rt 1– µ– δ φ1ct 1–
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V̂ V̂S V̂t
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For all five exchange rate series, Mittnik and Paolella also estimate
models with the IGARCH condition imposed. Exhibit 15.2 shows the
resulting parameter estimates. As expected, for those models for which
the persistence measure was close to unity, Canadian dollar and Japa-
nese yen, the IGARCH-restricted parameter estimates differ very little.
For the remaining models, the greatest changes occur with the power

EXHIBIT 15.2  IGARCH Parameter Estimates for Exchange-Rate Return Modelsa 

a Estimated models: ,  with IGARCH
condition  imposed. See footnote to Exhibit 15.1 for further details.

Source: Table 2 in Stefan Mittnik and Marc S. Paolella, “Prediction of Financial
Downside-Risk with Heavy-Tailed Conditional Distributions,” in Svetlozar T.
Rachev (ed.), Handbook of Heavy Tailed Distributions in Finance (Amsterdam:
Elsevier Science 2003).

Intercept 
 µµµµ

GARCH
Parameters

 Distribution 
 Parameters 

θ0  θ1  φ1  δ Shape Skew

British      

Sα,β –0.01023 7.050e-3 0.03781 0.9114 1.598 1.846 –0.1340

 (0.0103) (1.79e-3) (5.64e-3) — (0.0677) (0.0224) (0.0147)

t –3.033e-3 4.237e-3 0.05774 0.9130 1.949 5.543 —

(0.0101) (1.68e-3) (9.83e-3) — (0.264) (0.484)

Canadian

Sα,β 5.148e-3 1.115e-3 0.04689 0.9154 1.404 1.823 0.3578

(3.65e-3) (2.14e-4) (5.71e-3) — (0.0143) (0.0105) (0.0209)

t –2.098e-3 4.998e-4 0.06468 0.9146 1.796 5.890 —

(3.48e-3) (1.37e-4) (7.54e-3) — (0.0226) (0.838)

German

Sα,β 8.959e-3 9.666e-3 0.04518 0.8896 1.676 1.881 0.03944

 (0.0113) (1.85e-3) (6.10e-3) — (0.662) (0.0217) (0.0930)

t 8.851e-3 5.505e-3 0.08124 0.9003 1.741 6.560 —

(0.0106) (1.60e-3) (0.0106) — (0.231) (0.676)

Japanese

Sα,β –0.01932 4.814e-3 0.06768 0.8858 1.336 1.814 –0.4175

 (8.44e-3) (9.75e-4) (7.68e-3) — (0.0751) (0.0226) (0.0151)

t 6.136e-3 5.611e-3 0.06036 08689 2.314 5.066 —

(8.57e-3) (1.31e-3) (0.0112) — (0.224) (0.410)

Swiss

Sα,β 3.823e-3 0.01111 0.03700 0.9009 1.724 1.889 –1703

 (0.0127) (2.65e-3) (5.40e-3) — (0.0419) (0.0169) (0.137)

t 9.130e-3 2.047e-3 0.07125 0.9347 1.166 8.194 —

(0.0119) (8.34e-4) (9.13e-3) — (9.79e-3) (0.0996)

rt µ ctεt+= ct
δ θ0 θ1 rt 1– µ– δ φ1ct 1–

δ+ +=
φ̂1 1 λ̂θ̂1–=

c15-ARMA-ARCHInf  Page 511  Thursday, October 26, 2006  2:12 PM



512 FINANCIAL ECONOMETRICS

parameter δ and, to a lesser extent, the shape parameter α. The former
increases, while the latter decreases under IGARCH restrictions.

To compare the goodness of fit of the candidate models, Mittnik
and Paolella employ the maximum log-likelihood value, Anderson-Dar-
ling statistic and the AICC described in Chapter 7. The results are
shown in Exhibit 15.3. The inference suggested from the maximum log-
likelihood value L and the AICC are identical. For each currency we
plot the values of 

ADt

FS ẑt:T( ) F̂ ẑt:T( )–

F zt:T( ) 1 F̂ ẑt:T( )–( )
------------------------------------------------------=

EXHIBIT 15.3  Goodness of Fit Measures of Estimated Exchange-Rate Return 
Modelsa 

a L refers to the maximum log-likelihood value; AICC is the corrected AIC criteria;
SBC is the Schwarz Bayesian Criteria; and AD is the Anderson-Darling statistic.

Source: Table 3 in Stefan Mittnik and Marc S. Paolella, “Prediction of Financial
Downside-Risk with Heavy-Tailed Conditional Distributions,” in Svetlozar T.
Rachev (ed.), Handbook of Heavy Tailed Distributions in Finance (Amsterdam:
Elsevier Science 2003).

 L AICC SBC AD

 Sα,β  t  Sα,β  t  Sα,β  t  Sα,β  t

Britain: 

GARCH –3842.0 –3828.6 7700.0 7671.2 7684.0 7657.2 0.0375 0.0244 

IGARCH –3842.3 –3837.1 7698.6 7686.2 7684.6 7674.2 0.0417 0.0420 

Canada: 

GARCH –159.92 –152.25 0335.9 0318.5 0319.9 0304.5 0.0532 0.0571 

IGARCH –159.97 –153.71 0334.0 0319.4 0320.0 0307.4 0.0529 0.0633 

Germany: 

GARCH –3986.5 –3986.2 7989.0 7986.4 7973.0 7972.4 0.0368 0.345 

IGARCH –3989.9 –3999.4 7993.8 8010.8 7979.8 7998.8 0.0506 0.200 

Japan:

GARCH –3178.7 –3333.7 6373.4 6681.4 6357.4 6667.4 0.0401 0.0986 

IGARCH –3178.8 –3334.6 6371.6 6681.2 6357.6 6669.2 0.0394 0.0793 

Switzerland: 

GARCH –4308.6 –4308.1 8633.2 8630.2 8617.2 8616.2 0.0457 0.287 

IGARCH –4314.2 –4325.0 8642.4 8662.0 8628.4 8650.0 0.0460 0.278 
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t = 1,…,T, where T is the sample size and  denotes the sorted
GARCH-filtered residuals. The plots shown in Exhibit 15.4 indicate
that in most cases, the maximum absolute value of the ADt occurs in the
left (tail) of the distribution. 

PREDICTION OF CONDITIONAL DENSITIES 

Under unconditional normality, to obtain predictive conditional density
it would be sufficient to simply predict the conditional mean and vari-
ance. However, for GARCH processes driven by non-normal, asymmet-
ric, and possibly, infinite-variance innovations, the predictive conditional
density, given by

(15.29)

needs to be computed. In (15.29),  refers to the estimated parameter
vector using the sample information up to and including period t and
ct+1(·) is obtained from the conditional-scale recursion (15.22) using .
Multistep density predictions given by

(15.30)

are obtained by recursive application of (15.20), with unobserved quan-
tities being replaced by their conditional expectation. 

For one-step predictions over the out-of-sample dataset, the follow-
ing recursive procedure is used:

1. Evaluate , t = M, …, T – 1 for the Sα,β,δGARCH(r, s)
model where M is the beginning of the out-of-sample set used for pre-
diction.

2. Reestimate (via ML estimation) the model parameters at each step.

The overall density forecasting performance of competing models can
be compared by evaluating their conditional densities at the future
observed value yt+1, i.e., . A model will perform well in such

ẑt:T

f̂t 1+ t yt 1+( ) f
yt 1+ µ θ̂t( )–

ct 1+ θ̂t( )
------------------------------- yt yt 1 …,–,

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

θ̂t

θ̂t

f̂t n+ t yt n+( ) f
yt n+ µ θ̂t( )–

ct n+ θ̂t( )
------------------------------- yt yt 1 …,–,

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

f̂t 1+ t yt 1+( )

f̂t 1+ t yt 1+( )
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EXHIBIT 15.4  Comparison of the Variance-Adjusted Differences between the 
Sample and Fitted Distribution Functions for Exchange-Rate Return Models

Source: Figure 1 in Stefan Mittnik and Marc S. Paolella, “Prediction of Financial
Downside-Risk with Heavy-Tailed Conditional Distributions,” in Svetlozar T.
Rachev (ed.), Handbook of Heavy Tailed Distributions in Finance (Amsterdam:
Elsevier Science, 2003).
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a comparison if realization yt+1 is near the mode of  and if the
mode of the conditional density is more peaked. The conditional densities
are determined not only by the specification of the mean and GARCH
equations, but also by the distributional choice for the innovations.

Illustration: Forecasting of Densities of Exchange Rate 
Returns
To illustrate forecasting, let’s continue with the Mittnik and Paolella model
for exchange-rate returns used in our earlier illustration.29 They calcu-
late the predictive conditional density for five currencies using the fol-
lowing three models: (1) GARCH(1,1) model with stable innovations
(Sα,β,δ GARCH(1, 1)), (2) GARCH(1,1) model with heavy-tailed Stu-
dent’s t-distribution innovations (tν,δ GARCH(1, 1)),30 and (3) conven-
tional GARCH(1,1) model with normal innovations. Exhibit 15.5 presents

29 Mittnik and Paolella, “Prediction of Financial Downside-Risk with Heavy-Tailed
Conditional Distributions.”
30 See Chapter 8.

f̂t 1+ t ·( )

EXHIBIT 15.5  Comparison of Overall Forecasting Performancea 

a The entries represent average predictive likelihood values, .

Source: Table 4 in Stefan Mittnik and Marc S. Paolella, “Prediction of Financial
Downside-Risk with Heavy-Tailed Conditional Distributions,” in Svetlozar T.
Rachev (ed.), Handbook of Heavy Tailed Distributions in Finance (Amsterdam:
Elsevier Science 2003).

British Canadian German Japanese Swiss 

Mean 

Normal 0.4198 1.1248 0.4064 0.4796 0.3713 
t 0.4429 1.1871 0.4258 0.5207 0.3851 
Sα,β 0.4380 1.1798 0.4213 0.5173 0.3820 

Standard Deviation

Normal 0.1934 0.5697 0.1888 0.1988 0.1620 
t 0.2325 0.6802 0.2151 0.2782 0.1840 
Sα,β 0.2189 0.6482 0.2016 0.2662 0.1771 

Median 

Normal 0.4291 1.0824 0.4178 0.5172 0.3942 
t 0.4483 1.1500 0.4452 0.5261 0.4069 
Sα,β 0.4493 1.1730 0.4477 0.5242 0.4041 

f̂t 1+ t rt 1+( )
t 2000=
T 1–∑
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516 FINANCIAL ECONOMETRICS

the means, standard deviations, and medians of the density values
, t = 2000, …, T – 1 for each currency. Based on the means,

values corresponding to the competing stable distribution Sα,β, and Stu-
dent’s t-hypotheses are very close, with the Student’s t-values nevertheless
larger in each case. Based on the medians, however, the stable Paretian
model is (slightly) favored by the British, Canadian, and German curren-
cies. It is noteworthy that these results might be contrary to the model
selection based on the applied goodness of fit measures; for example, AD
statistics favors use of stable Paretian innovations for the Japanese yen and
Student’s t-innovations for the British pound. The standard deviations
reported in Exhibit 15.5 indicate that the density values of the GARCH-t
model fluctuate the most. Overall, the use of stable Paretian models helps
to improve forecasting ability. 

CONCEPTS EXPLAINED IN THIS CHAPTER
(IN ORDER OF PRESENTATION)

Infinite-variance autoregressive models (IVAR)
Condition for strict stationarity and ergodicity
Estimation methods

LAD
Whittle estimator
ARMA processes with infinite-variance innovations
Sample periodogram
Self-normalized periodogram
Transfer function 
Power transfer function
Fractional ARIMA processes with infinite-variance innovations (FARIMA)
Stable GARCH models
ARMA-GARCH models
Stable Paretian power GARCH processes
Volatility persistence
Maximum likelihood estimates of stable GARCH processes
IGARCH processes
Conditional density forecast

f̂t 1+ t yt 1+( )
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Appendix

Monthly Returns for 20 Stocks:
December 2000 – November 2005

 

Company Ticker Symbol

 

Sun Microsystems SUNW
Amazon.com AMZN
Mercury Interactive MERQ
General Dynamics GD
Northrop Grumman NOC
Campbell Soup CPB
Coca–Cola KO
Martin Marietta MLM
Hilton HLT
United Technologies UTX
Unilever UN
ITT ITT
 Exxon Mobile XOM
Alcoa AA
Wal–Mart WMT
Boeing BA
Procter & Gamble PG
Honeywell International HON
Oracle ORCL
General Motors GM
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Index

 

Absolute deviation. 

 

See

 

 Mean absolute
deviation; Median absolute devi-
ation

Accounting issues, 20
ACF. 

 

See

 

 Autocorrelation function
AcovF. 

 

See

 

 Autocovariance function
Active portfolio, 170

strategy, 20
Active return, 173
Added value residuals, 185
Additivity property, 477
ADF. 

 

See

 

 Augmented Dickey-Fuller
Adjusted R

 

2

 

, 98–99
Adler, R.J., 497, 498, 502
AD-statistic. 

 

See

 

 Anderson-Darling sta-
tistic

Agency MBS, 19
Ahlgren, Niklas, 398
AIC. 

 

See

 

 Akaike Information Criterion
AICC. 

 

See

 

 Corrected Akaike Informa-
tion Criterion

Aitken’s generalized least squares (GLS)
estimator, 121–122

Akaike, Hirotugu, 358
Akaike Information Criterion (AIC),

242, 252, 358, 485
Algebraic polynomials, 218
Algorithm behavior, 508
ALM. 

 

See

 

 Asset-liability management
Alpha-quantile (

 

α

 

-quantile), 41
Alternative investments, 19
Andersen, A.P., 265
Anderson, T.W., 484
Anderson-Darling distance, 492–493
Anderson-Darling statistic (AD-statistic),

484, 493

AR. 

 

See

 

 Autoregressive
Arbitrage Pricing Theory (APT), 183
Arbitrary factors, 435
ARCH. 

 

See

 

 Autoregressive conditional
heteroskedasticity

ARDL. 

 

See

 

 Autoregressive distributed lag
ARIMA. 

 

See

 

 Autoregressive integrated
moving average

ARMA. 

 

See

 

 Autoregressive moving aver-
age

ARMA-GARCH model, 293–294, 503
parameters, 294

ARMAX. 

 

See

 

 Autoregressive moving
average processes with exoge-
nous variables

Arrow, Kenneth, 37
Asset-backed securities, 18, 19
Asset classes, 17–19

constraints, 20
performance, 20

Asset-liability management (ALM), 12,
16

Assets
inputs, requirement, 21
prices/returns, 73
selection, 16, 21–22, 172–173

Astrauskas, A., 501
Asymmetry, usage, 40
Asymptotic distribution. 

 

See

 

 Least squares
Asymptotic power decay law, 475
Asymptotic tail behavior, 480–481
Asymptotic theory, 396
Atheoretical modeling strategy, 242
Attraction, domain, 478–479
Augmented Dickey-Fuller (ADF) test,

250
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Autocorrelated residuals, 122
Autocorrelation. 

 

See

 

 Residuals
absence, 359
capture, 122
detection, 122–123
function, 216. 

 

See also

 

 Partial auto-
correlation function

geometric decaying, 306
Autocorrelation coefficient, confidence

interval, 232
Autocorrelation function (ACF), 241.

 

See also

 

 Partial autocorrelation
function; Sample autocorrela-
tion function; Sample partial
autocorrelation function

estimation, 227–233
sample, 227–229, 232. 

 

See also

 

 DAX
Index Return Data

Autocovariance, 216
Autocovariance function (AcovF), 223
Autoregressive (AR) models, 207, 220

multivariate extension, 322
Autoregressive (AR) parameter, estima-

tion, 63
Autoregressive (AR) polynomial, 210,

245
Autoregressive (AR) processes, 210
Autoregressive conditional heteroske-

dasticity (ARCH)
models, 279

infinite-variance innovations, inclu-
sion, 495

process, 280–284
properties, 282–284

Autoregressive distributed lag (ARDL)
model, 334

estimation, 335
Autoregressive integrated moving aver-

age (ARIMA)
autocovariance function, 222
modeling/forecasting, approaches, 241
process, 214

Autoregressive moving average (ARMA),
201

ARMA (1,1) model residuals, ACF
(diagnostic plot), 271

forecasting, 271–276

Autoregressive moving average (ARMA)
model. 

 

See

 

 Stationary ARMA-
GARCH models

ARMA-GARCH model, 293–294, 503
parameters, 294

d-weights, 219
estimation, 253–262
infinite-variance innovations, inclu-

sion, 495, 497–498
properties/estimation, 498–499

selection criteria, 251–253
usage. 

 

See

 

 Simple ARMA model
Autoregressive moving average (ARMA)

processes, 211. 

 

See also

 

 Fraction-
ally integrated ARMA processes;
Integrated ARMA processes

deterministic components, usage, 212–
213

exogenous variables, usage, 211–212
identification, patterns, 250
infinite-variance innovations, inclu-

sion. 

 

See

 

 Fractional ARMA pro-
cess

stationarity/invertibility, 214–219
Autoregressive moving average pro-

cesses with exogenous variables
(ARMAX), 211, 271

Axel, Ralph, 458
Axiom Balanced Growth Fund, 187
Ayers, Michael, 80

Backcasting, 258
Backward forecasting, 258
Backward removal method, 114, 119–120
Backward shift operator, 202
Backward stepwise method, 114, 119
Bai, Jushan, 41, 433
Bai, Xuexheng, 286
Bailie, R.T., 304
Banerjee, A., 387
Banz, Rolf W., 427
Barndorff-Nielsen, O.E., 468
Barnett, William A., 209
Barret, Christopher B., 301
Bartlett, M.S., 229
Basel Capital Accord, 312
Basset, Jr., G., 408
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Bayesian criterion, 242
Bayesian Information Criterion (BIC),

252, 358, 485
Bayesian modeling, 69–72
Bayesian probability theory, 26
Bayesian statistics, 69–71
Bayes theorem, 31, 71–72

consequence, 72
BD. 

 

See

 

 Breakdown
Belief, intensity, 25
Bell distribution, 478
Benchmark. 

 

See

 

 Sharpe benchmarks
establishment, 17
securities, 163
selection, 184–186
volatility, 170

Bernardo, J.M., 69
Berndt, E., 291
Berndt, Hall, Hall, and Hausmann

(BHHH) algorithm, 291
Berry, D.A., 69
Best linear unbiased estimator (BLUE),

96
Beta. 

 

See

 

 Resistant beta
estimation, regression analysis (usage),

176–177
Bewley, Ronald, 394
BHHH. 

 

See

 

 Berndt, Hall, Hall, and Haus-
mann

BIC. 

 

See

 

 Bayesian Information Criterion
Bilinear models, 220
Bivariate case, 90
Bivariate normal distribution, 53
Bivariate VAR(2) model, solutions, 401
Black, Fischer, 152, 302
Black-box modeling strategy, 242
Block-diagonal matrix, 346
BLUE. 

 

See

 

 Best linear unbiased estima-
tor

Bohr, Niels, 80
Bollerslev, Tim, 280, 286, 302–304,

315
Bond portfolios

applications, 192–199
management

PCA application, 452–453
uses, 169

Bonds
indexes, publication, 184
rating agencies, 19
risk factors, 458–460
spread application, regression data,

135–137
Book-maket factor, 179
Book-to-price ratio, 13
Bootstrapping, 152–153
Bootstrap technique, usage, 310
Borel sets, 29

inverse image, 31
Bossaerts, Peter, 394
Bougerol, P., 288
Box, George E.P., 207, 241–242, 245,

253, 263–264, 407
Box-Jenkins approach. 

 

See

 

 Time series
involvement, 241

Box-Jenkins procedure, overview, 242–
244

Box-Pierce Q-statistic, 263–264
Bradley, Brendan O., 88
Branches, generic structure, 73
Braylovskiy, Greg, 132
Breakdown (BD) bound, 410
Bridging principle, 69
Bridgmen, Percy, 80
Broad-based stock index, 97
Brockwell, Peter J., 215, 220, 496, 497
Brooks, Chris, 292
Brorsen, B.W., 512
Brownian motion, 248
Buchanan, Mark, 466
Burke, Simon P., 292

Calculus, discovery, 2
Campbell, John Y., 321
Canonical correlation analysis (CCA),

394–396. 

 

See also

 

 Level canoni-
cal correlation analysis

Canonical correlations, 392
estimation usage, 394–396

Capital asset pricing model (CAPM), 4,
170

calculation, 180
review, 175–176
testing, methodology, 177–178
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Capital asset pricing model (

 

Cont

 

.)
tests, 169, 175–179

findings, 178–179
usage. 

 

See

 

 Manager performance eval-
uation

validity, 106
Capital markets efficiency, types, 209
Cap volatility, 460
Carnap, Rudolph, 80
Cash distribution, 74
Cash equivalents, 17
Cash flow, comparison, 196
Categorical variables, 127. 

 

See also

 

Dependent categorical variables;
Independent categorical variables;
Regression

quantitative input variables, 128
Categorization, usefulness (determina-

tion), 131
Cauchy distribution, 473

normal distribution, comparison, 474
CCA. 

 

See

 

 Canonical correlation analysis
Center

resistant estimators, 414
robust estimators, 414–415

Centering, usage, 212
Center limit theorem, 479
Central limit theorem (CLT), 237, 477–

478. 

 

See also

 

 Generalized central
limit theorem

understanding, 479
Central value, measurement, 39
Certificates of deposit (CDs), 114
Chan, Nai-fu H., 242, 435
Chandoha, Marie A., 194
Chang, Hubert, 194
Characteristic exponent, 469
Characteristic function technique, 482
Characteristic line, 177. 

 

See also

 

 Com-
mon stocks; Mutual funds

estimation data. 

 

See

 

 Large-cap mutual
funds

Chatfield, C., 242
Chen, Nai-fu, 184
Chen-Roll-Ross model, 435
Chenyao, D., 508
Chernobai, Anna, 408, 414, 415

Chi-square distributions, 56, 57–58
Chow, Gregory C., 132
Chow, Y.S., 52, 66
Chow test, 132, 142

value, 143
CLF. 

 

See

 

 Concentrated likelihood func-
tion

Client-imposed constraints, 20
Clients, risk tolerance, 21
Close, Ann, 466
Closed-form solution, 258
CLT. 

 

See

 

 Central limit theorem
Coefficient form, 204
Coefficient matrix, 333
Coefficient of determination, 98
Coefficients. 

 

See

 

 Random coefficients
estimation, 134

Cointegrated processes, 373
Cointegrated VAR

estimation, unrestricted LS methods
(inclusion), 385–386

illustration, 378–381
Cointegrating processes, 375
Cointegrating relationships, 375, 381

number, estimation, 393–394
Cointegrating vectors, 385
Cointegration, 373–381. 

 

See also

 

 Deter-
ministic cointegration; Stochastic
cointegration

common trends, 376–377
concept, introduction, 375
definition, 375–376, 394
features, 374
models, 373

Collinearity, 124
Combinatorial probabilities, 31
Commerzbank return series, 270
Commerzbank stock

daily closing price series, 268
daily returns, 268

descriptive statistics, 267
Common stocks. 

 

See

 

 U.S. common stocks
characteristic line, 99–100. 

 

See also

 

General Motors; Oracle
empirical duration, 107–113

Common trends, 374, 376. 

 

See also

 

Cointegration
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Companion matrix. 

 

See

 

 Vector autore-
gressive

consideration, 398
eigenvalues, estimation (usage), 397–

398
Company-specific risk, 176
Compound probability metrics, 487
Concentrated likelihood function (CLF),

387
maximum, determination, 391–392

Conditional covariance matrix, 402
Conditional densities

expression, 87
mode, peaking, 515
prediction, 513–516

Conditional distribution, 49
function, 237

Conditional expectation, 37–39, 83,
89, 272

defining, 272
usage, 38

Conditional likelihood function, 480
Conditional log-likelihood function, 291
Conditional mean, 293
Conditional model, 317
Conditional nonnormality, 286
Conditional probability, 37–39

function, 290
Conditional returns, nonnormality (mod-

eling), 300
Conditional sum of squares, 258
Conditional variance, 281, 283
Conditional-variance model, 293
Conditional VaR models, 312
Conditional volatility, out-of-sample

estimations, 309
Conditional white noise, 209
Conditioning

definition, 84
framework, 82

Confidence, 60
categorization, 128
intervals, 63

 

a priori

 

 establishment, 63
computation, 226

Consistent estimator, 60, 256
Constant parameters, vector, 59

Constant unconditional variance, 283
Constrained least squares (LS), 151–163

problem, 156
Treasury issues/worksheet. 

 

See

 

 Curve
fitting

usage. 

 

See

 

 Spot rate curve
Continuous time, 5
Convexity, 452–453
Copula function, 88, 424
Corporate bonds

classification, 18
investor exposure, 19
spreads, residuals/leverage (usage),

138–142
Corporate bond yield spreads

model, robustness (illustration), 421–
427

prediction, 132–143
Corrected Akaike Information Crite-

rion (AICC), 252–253, 485
Correlation. 

 

See

 

 Statistical moments
coefficient, 47. 

 

See also

 

 Squared cor-
relation coefficient

R

 

2

 

, relation, 99
definition, 47
expectations. 

 

See

 

 Surrogate correla-
tions

Correlation-like notions, usage, 501
Correlation matrices. 

 

See

 

 Returns
basis, 445–446, 449
eigenvalues/eigenvectors, 448
robust estimation, 424–426
usage, 449

Correlogram, 229
Cotton prices, similarity (time aggrega-

tions), 11
Covariance matrices

basis, 445–446
eigenvectors/eigenvalues, 443
positive definite, 54–55
robust estimation, 424–426

Covariances, 47
existence, 447
robust estimators, 425

Coverage ratio, 133
Cramer-Rao bound, 67–68
Cramer’s rule, usage, 226
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Credit risk exposure, 19
Credit specific factor, 460
Critical values, 63
Cross-sectional regression, 178
CSFB/Tremont, 188
Cumulative distribution function, 32, 471
Cumulative probability, 150
Curve fitting, constrained least squares

(Treasury issues/worksheet), 157–
162

Daily index returns, time series, 304
Daily returns. 

 

See

 

 Japan Index; Nippon
Oil

Daily stock index returns, volatility
clustering (display), 280

Daily volatility forecasts, obtaining, 310
Darling, D.A., 484
Data generating process (DGP), 3–7,

58, 343
changes, 59
consideration, 6
noise terms, relationship, 6
operation, 9
reflection, 12
usage, 396–397

Data points, number, 14
Davies, N., 264
Davis, Richard A., 215, 220, 496, 497
DAX. 

 

See

 

 Deutscher Aktenindex
Debt instrument, 36
Decay, shock, 332
Decision rule, 66
Defaults, forecasting, 19
Defined-benefit pension funds, sponsors,

173
DeGroot, M.H., 484
Deheuvels, P.E. Häusler, 480
Dektar, Daniel C., 454
Delay operator (lead operator), 202
Demeaned processes, estimation, 353–354
De-meaning, usage, 212
Densities, Fourier transform, 51
Density function, 356

skewness, 470
Dependence

concept, 79–85

structure. 

 

See

 

 Long-range depen-
dence; Short-range dependence
structure

Dependent categorical variables, 148–151
Dependent random variable, 260

probability distribution, 81
Dependent variable, 148
Derivatives, combination, 465
Derman, Emanuel, 152
DeRosa, Paul, 194
Design matrix, 93
Deterministic cointegration, 376, 397
Deterministic components, usage. 

 

See

 

Autoregressive moving average
processes

Deterministic independent value, value,
81

Deterministic integer, 469
Deterministic regressors, 89
Deterministic trends, 248, 337–338
Deterministic variables. 

 

See

 

 Regressor
Detrending, 223
Deutscher Aktenindex (DAX)

Daily Price Series, 231
Daily Returns, ACF (sample), 234
index, 485
Index Return Data, ACF/PACF/Ljung-

Box statistics, 235
Index Returns, daily log (time series

plot), 233
Return Series, GARCH Estimation

Results, 296, 298
Stock Index Return Series, analysis,

231–233
Developed market foreign stocks/bonds,

19
DF. 

 

See

 

 Dickey-Fuller
Diagnostic checking, 242–243

devices, 262
procedures, 262–271

Diagonal matrix, 121
Dickey, D.A., 247
Dickey-Fuller (DF) test, 247, 395. 

 

See
also

 

 Augmented Dickey-Fuller test
critical values, 249

Difference equations, 201–207
solving, 204–207
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Difference operator, 202, 500
Difference stationary (DS), 248, 338
Differencing, 223

degree, identification, 244–250
Differential equations

expression, 4
stochastic nature, 4

Diffuse prior, assumption, 72
Dijkstra, T.K., 124
Dimensionality reduction technique, 461
Ding, Z., 305
Direct product, 340
Discontinuities, 154
Discount functions, 153
Discrete probability model, 27
Discrete time, 5
Dispersion, usage, 40
Distributional assumptions, 9
Distributions, 32. 

 

See also

 

 Exponential
distributions; 

 

F

 

 distributions;
Normal distribution; Sampling
distributions; 

 

t

 

-distributions
description, 42–43
equality, 215
finite second moments, 61
functions, 32

description. 

 

See

 

 Probability
parameters, MLE, 69
tail-thickness, 505

Diversifiable risk, 176
Doganoglu, T., 508
Domain, 79

symmetry, 44
Domain of attraction. 

 

See

 

 Attraction
Dor, Arik Ben, 186, 187, 191
Down market, 143
Driftless random walk, 318
DS. 

 

See

 

 Difference stationary
Duchin, R., 44
Dummy variables, 128. 

 

See also

 

 Regres-
sion

introduction process, 130–131
usage, 142. 

 

See also

 

 Mutual funds
DuMouchel, W., 482
Duration. 

 

See

 

 Common stocks; Regres-
sion-based duration; Trade dura-
tion

estimate, 113
interpretation, 107

Durbin-Watson statistics, 123
Dybvig, Philip H., 188
Dynamic factor models, 182
Dynamic forecasts, 13

Earnings before interest, taxes, deprecia-
tion and amortization (EBITDA),
133

Earnings before interest and taxes (EBIT),
133. 

 

See also

 

 Logged EBIT
Earning-to-price ratio, 13
ECM. 

 

See

 

 Error correction model
Econometric models

applications, 12–16
determination, 9–10
flexibility, data size (trade-offs), 10
performance measurement, 12
risk/robustness, 11–12
time horizons, 10–12
viewpoint, 6

Econometric packages, 380
Econometrics, possibility, 82
Econometric tools, 19
Economic time series, mean/variance, 213
Eddington, Arthur, 407
Effective duration, comparison, 196
Efficient estimator, 256
Efficient market hypothesis, 209
Efficient portfolio, 21
EGARCH. 

 

See

 

 Exponential GARCH
Eiffel, Gustave, 1

design principles, 2
equation, 2

Eigenvalues, 339–341. 

 

See also

 

 Correla-
tion matrices; Covariance matri-
ces; Matrices

estimation usage. 

 

See

 

 Companion
matrix

problem, 382
tests, results, 380

Eigenvectors, 339–341. 

 

See also

 

 Correla-
tion matrices; Covariance matrices

matrix, 333
normalization, 447
unique determination, absence, 440
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Elementary probability, theorem, 31
Elliptical distributions, 88
EM. 

 

See

 

 Expectation maximization
Embedded options, 152
Embrechts, Paul, 88, 424
Emerging market foreign stocks/bonds,

19
Empirical covariance matrix, 439
Empirical duration, 107, 194–199. 

 

See
also

 

 Common stocks
comparison, 196
data, 108–111
regression parameters, estimation, 112

Empirical mean, unbiased estimator, 61
Empirical standard deviations, 92
Empirical studies, one realization (impli-

cations), 8–9
Empirical variables, 435
Empirical variance, unbiased estimator,

61
Enders, Walter, 216
Engle, Robert, 280, 286, 290, 295,

302–303, 315, 394
Entry criteria, 120–121
Equality, indication, 304
Ergodicity, requirement, 27
Error correction model (ECM), 381–384

equations, estimates, 384
illustration, 382–384
representation, 382

Error process, conditional nonnormal-
ity, 299

Errors
cross-products, 315
mitigation, 11
random vector, 181

Error terms. 

 

See

 

 Vectors
distribution, 96

Estimated models parameter estimates,
goodness-of-fit measure. 

 

See

 

Exchange-rate return model
Estimation, 79, 242

principles, 58–68
Estimators, 59–60. 

 

See also

 

 Consistent
estimator; 

 

L

 

-estimators; 

 

M

 

-esti-
mators; Resistant estimators; 

 

R

 

-
estimators; Unbiased estimator

Euclidean space, 29
Euro Interbank market, principal com-

ponents (explanation percent-
age), 457

Events, 29–30
basis, 27
distinction. 

 

See

 

 Outcomes
number, decrease, 73
outcomes, sets, 29

Exact factor pricing model, 183
Excess kurtosis, 41
Excess return, 173
Excess risk-factor returns, 183
Exchange-rate return model

estimated models parameter estimates,
goodness-of-fit measure, 513

GARCH parameter estimates, 510
IGARCH parameter estimates, 511
sample/fitted distribution functions,

variance-adjusted differences
(comparison), 514

Exchange rate returns, densities (fore-
casting illustration), 515–516

Exchange rate returns, modeling (illus-
tration), 509–513

Exogenous variables, usage. 

 

See

 

 Autore-
gressive moving average pro-
cesses

Expectation maximization (EM) algo-
rithm, 450

Expected inflation, monthly data, 115–
119

Expected interest rate volatility, 196
Expected rate of inflation. 

 

See

 

 Inflation
Expected returns, forecasting, 13
Expected value, 40
Explanatory power, 188

out-of-sample, 98
Explanatory variable, 79, 191
Exponential distributions, 56–57
Exponential GARCH (EGARCH) model,

301–302
log-conditional variance, usage, 302

Exponential smoothing, usage. 

 

See

 

 Infla-
tion

Exponential tails, 466
Extended Yule-Walker equations, 225
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Fabozzi, Frank J., 4, 39, 68, 133, 152,
192, 454, 458, 467, 477, 485–
487, 489

Factor analysis (FA), 429, 450–460
comparison. 

 

See

 

 Principal component
analysis

consideration, 461
illustration, 451–452
stable distributions, 447–450

Factorization, 82
Factor loadings, 181, 431, 452

graphical representation, 462
post-rotation, 463

Factor models, 429–436
application, 430–431

Factor models, linear regression (appli-
cation), 181–184

Factors
graphics, 453
post-rotation, time series (relation-

ship), 463
types/estimation, 434–436

Factor sensitivities, 431
Fair games, 208

translation, 39
Falkenberry, Thomas Neal, 10
Fama, Eugene F., 171, 174, 184, 209,

427, 482
FARIMA. 

 

See

 

 Fractionally integrated
ARMA

Fast Fourier transform (FFT), 482–483
Fat-tailed distribution, 56
Fawson, Christopher, 301

 

F

 

 distributions, 56, 58
Federal Reserve Board of New York, 465
FFT. 

 

See

 

 Fast Fourier transform
FIGARCH. 

 

See

 

 Fractionally integrated
GARCH

Filter gain matrix, 403
Filtering, 401
Filtration, 74–75
Final prediction error (FPE), 358
Finance, regression applications, 169
Financial econometrics

applications, 129
scheme, 8

models, similarity, 4

observations, usage, 90
scope/methods, 1
usage, 7–10
world state, intention, 80

Financial markets, probabilistic repre-
sentation, 36–37

Financial modeling, 479
Financial Times Actuaries Euro-Pacific

Index, 184
Financial time series, behavior, 220
Finite-dimensional distributions, 322
Finite dimensional probability distribu-

tions, 36
Finite distributions, 216
Finite variances, 47
Firm-size factor, 179
Firshers’ kurtosis, 41
First moment, 40
First-order VAR(1) model, 327
First pass LS estimation, 291
Fisher information, 68

matrix, 67–68, 508
Fisher’s kurtosis, 56
Fisher’s Law, 113
Fisher’s skewness, 41
Fitch, rating agency, 19
Fitted ARMA (1,1) model, residuals

(time series plot), 270
Fitted distribution functions, variance-

adjusted differences (comparison).

 

See

 

 Exchange-rate return model
Fitted financial time series model, resid-

uals, 27
Focardi, Sergio M., 4, 68
Fogler, H. Russell, 185
Fong, H. Gifford, 152, 192
Forecasted interval, GARCH (1,1)

model forecasts, 311
Forecasting, 271–276, 401. 

 

See also

 

Value-at-Risk models
accuracy, 244
capabilities, 251
GARCH models, usage, 307–314

illustration, 311
horizon, 310
performance, comparison, 516
VAR models, usage, 338–339
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Forecast origin, 308
Foreign bonds/stocks, 17
Forward entry method, 119–120
Forward stepwise method, 119
Foster, D.P., 359
Fourier-Stieltjes transform, 51–52
Fourier transform, 51
Four-segment spline, restrictions (absence),

154
Fourth central moment, 40
Fourth-order moment. 

 

See

 

 Innovations
FPE. 

 

See

 

 Final prediction error
Fractional ARMA process, infinite-vari-

ance innovations (inclusion), 500–
502

Fractional-difference operator, 220, 304
defining, 306

Fractionally integrated ARMA (FARIMA)
autocorrelation function, 236
models, 220

 

(p,

 

 

 

d, q) process, 501
processes, 220–223

ACF, 225
Fractionally integrated GARCH

(FIGARCH) model, 303–305
Fractionally integrated noise, 222
Fractionally integrated processes, 375
Fractionally integrated white noise, auto-

covariance function, 222–223
Frank Russell Company (FRC), 185
Freedom

k degrees, 61
m degrees, 87

French, Kenneth R., 174, 186, 427
Frequentist interpretation. See Probability
FridsonVision, 132
F-statistic, 142
F-test, 132
Fuller, W.A., 247
Function, 79
Fung, William, 188
Future returns, prediction, 12

Gadrich, T., 497, 498, 502
Galileo, 2
Gamma function, 58, 222, 304

GARCH. See Generalized autoregressive
conditional heteroskedasticity

GARCH-stable models, estimation, 512
Gaussian approximation, 478
Gaussian assumption, 281
Gaussian distributed innovations, 299
Gaussian distribution, 52, 466
Gaussian linear processes, 220
Gaussian noise, assumption, 355
Gaussian random variables, 52
Gaussian stable distributions, 475
Gaussian variables, 52–56
Gaussian white noise, 210
Gauthier, Laurent, 459
GCLT. See Generalized central limit the-

orem
GED. See Generalized exponential dis-

tribution
Generalized autoregressive conditional het-

eroskedasticity (GARCH), 284–289
formulations. See Multivariate GARCH

formulations
GARCH (1,1), returns/conditional

standard deviations/estimation
innovations, 297, 298

GARCH(1,1) model, 301
expressions, 287
fitting, 296–299
properties, analysis, 315–318

GARCH(1,1)-t model, 301
GARCH-t model, 301
kurtosis, 287
parameter. See Exchange-rate return

model
processes, properties, 288–289

Generalized autoregressive conditional
heteroskedasticity (GARCH)
model, 280

estimation, 289–293
student’s t-distributed innovations,

299–314
usage. See Forecasting
variants, 299

Generalized central limit theorem (GCLT),
477–479

Generalized exponential distribution
(GED), 300
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General Motors (GM), common stock
(characteristic line), 100, 102

German stock data, stable distribution
applications, 485–487

Ghurye, S.G., 408
Giot, Pierre, 314
Global financial markets, volatility,

312, 465
Global multivariate probability distri-

bution density, 66
Glosten, Lawrence A., 188
GLS. See Aitken’s generalized least

squares
Goldie, C.M., 480
Golub, Bennett W., 194, 195, 197, 456,

458
Golub-Tilman derived principal com-

ponents, RiskMetrics implica-
tion, 455–456

Goodall, C., 408
Goodman, Laurie, 194, 195, 196, 198,

459
Goodness of fit

assessment, 483–485
comparison, 297
measure. See Exchange-rate return

model
statistics, 507
tests, finite-sample properties, 265

Gourieroux, Christian, 167
Granger, Clive W.J., 220, 265, 305,

375, 394
Granger causality probabilities, 364, 369

summary, 363, 364
weak structure, 370

Grimmett, G.R., 478
Gross error sensitivity, 411
Growth stocks, 18

Hall, B., 291
Hall, R., 291
Hampel, F.R., 408, 409
Hannan, E.J., 496
Hat. See Parameters
Hat matrix, diagonal, 423
Hausmann, J., 291
Hayre, Lakbir, 194

He, C., 288
Heavy-tailed distributions, 55–56, 281,

465
Heavy-tailed models, 495
Heavy-tailed Student’s t-distribution

innovation, 515
Heavy tails, 466
Hedge Fund Research Company (HFR),

188
Hedge funds

regulation, absence, 465
return-based style analysis, 186–191
style analysis, 189

stepwise regression, usage, 190
survival, 191–192

Hendrickson, A.E., 462
Hendry, David F., 89, 124, 387
Henry, M., 306
Hessian matrix, 508
Heteroskedasticity, 279

models. See Autoregressive condi-
tional heteroskedasticity models

HFR. See Hedge Fund Research Com-
pany

Higher-order AR models, 261
Higher-order autocorrelation, 264
Higher-order difference equation, 203
Higher-order SACF terms, 255
High-frequency data, 305
High-yield corporate bonds, 18
Hill, B.M., 480
Hill estimator

modifications, reliability (absence), 481
Hill estimator, asymptotic normality, 480
Hillsdale U.S. Market Neutral Fund,

187
Historical data, usage, 7–8
Ho, Jeffrey, 195, 196, 198
Ho, Thomas S.Y., 458
Hoaglin, David C., 408
Hoechstoetter, Markus, 485, 486, 489
Hoeffding, W., 408
Hold-out sample, 262
Holland, P.W., 408
Homogenous difference equation, 202

consideration, 205
Homoskedasticity, 279

Index  Page 535  Thursday, October 26, 2006  2:13 PM



536 Index

Homoskedastic martingale difference, 209
Hosking, J.R.M., 359
Hotelling, Harold, 436
Hsieh, David A., 188
h-step prediction error, variance, 274
h-step prediction interval, 276
Hsu, John, 69
Huber, Peter J., 408, 419, 425
Huber M-estimators, 419
Huber weighting functions, 420–421

usage. See Parameters
Hurst, Harold E., 234
Hurst phenomenon, 234

explanation, 238
Hurvich, C.M., 252

Ibragimov, I.A., 478
IC. See Influence curve
Identification, 242–243

tools. See Time series models
Idiosyncratic variances, 452
IGARCH. See Integrated GARCH
IID. See Independent and identically

distributed
Implied duration, 194
Impulse response function, 218
Independence, 264

assumption, 50
Independent and identically distributed

(IID), 207, 279
assumption, 259
errors, sequence, 496
mean zero, 502
multivariate innovations, 387
noise, 208
random variables, 235

assumption, 468
sequence, 431

sequence, 49, 215, 436
total (cumulative) return, 469

Independent categorical variables, 128–
148

Independent variables, 79
generalization. See Multiple indepen-

dent variables
Index values, logarithm, 379
Individual investors, 17

Infinite autoregressive process, 335
Infinite moving average, 498

polynomial, 328–329
representation, 325

Infinite variance autoregressive (IVAR)
model, 496

Infinite variance autoregressive processes,
495–502

Infinite variance innovations, 513
inclusion. See Autoregressive moving

average model; Fractional ARMA
process

Inflation
expected rate, 113
exponential smoothing, usage, 114
monthly data. See Expected inflation
rate. See U.S. Department of Com-

merce
Influence curve (IC), 410
Influence function, 410
Information

filtration, 73, 74
propagation, 72
structures, 72–73

Innovations, fourth-order moment, 292
Input-output data, 128
Instantaneous state, 80
Institutional investors, 17
Instrument, 166
Instrumental variable, 166

asymptotic distribution, 167
Integrals, property, 50–51
Integrated ARMA processes, 213–214
Integrated GARCH (IGARCH)

effect, 302
IGARCH-restricted parameter esti-

mates, 512
model, 302–303
parameter estimates. See Exchange-

rate return model
Integrated order of one, 397–398
Integrated processes, 335–336
Integration

lower order, 374
order, reduction, 374

Intercept. See Nonzero intercept
difference, 129
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Interest, real rate, 113
Interest rate risk (control), PCA (usage),

453–458
Interest rates

level, 192
volatility, 192

Interquartile range (IQR), 415, 417
Intraday price variations, occurrence, 305
Invertibility, 322–326. See also Autore-

gressive moving average processes
Invertible ARMA process, 218
Invertible process, 329
Investment

management process, 16–23
applications, 169–173

objectives, 17
setting, 16

performance, measurement/evalua-
tion, 16

policy
establishment, 16–20
setting, 169–170

strategy, selection, 16
Investment-grade bonds, 19, 134
Investment-grade corporate bonds, 18
IQR. See Interquartile range
Iterated expectations, law, 38, 84
i-th order statistic, 412
Ito-Stratonovich definition, 4
IVAR. See Infinite variance autoregres-

sive

Jaeckel, L.A., 408
Jagannathan, Ravi, 186, 187, 188, 191
Japanese yen, skewness, 511
Japan Index, daily returns, 422
Jarque-Bera test, 266
Jeffreys, Harold, 407
Jenkins, Gwilym M., 207, 241, 242,

245, 253
Jensen, Michael C., 179
Jensen, S.T., 292
Jensen alpha, 180, 182
Jensen index, 179
Jensen measure, 106, 179
Jevons, Stanley, 3
Johansen, S., 387

Johansen method, 395
Johansen trace, results, 380
Johnson, Robert R., 107
John W. Henry & Company--Financial

and Metals Portfolio (CTA fund),
187

Joint density, 50
usage, 81–82

Joint noise process, 399
Joint normal probability distributions, 54
Joint tests, 172
Jones, R.H., 252
Jones, Robert C., 174, 180
Jorion, Philippe, 312, 466
Joyeux, R., 220
JPMorgan, 313
Jumps, 154

Kalman, Rudolf E., 373
Kalman filter

correction, 403
estimation, 400–403
forecasting, 403
prediction, 402
smoothing, 403
usage, 400

Kalman smoothing matrix, 403
Kalotay, Andrew, 152
Kanas, Angelos, 321
Kanter, M., 496
Karamata theorem, usage, 238
Karanasos, M., 307
Kendall, M.G., 265
Keynes, John Maynard, 25–26
Klüppelberg, C., 497, 498, 502
Knapp, Anthony, 466
Knez, Peter J., 427
Knot points, 154

level, 155
Koenker, R., 408
Kokoszka, P., 502
Kolmogorov, Andrei N., 26
Kolmogorov-Smirnov distance (KS-dis-

tance), 490
calculation, 493
goodness-of-fit test, 487
plots, 490–492
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Kolmogorov-Smirnov distance statistic
(KS-statistic), 483–484

Kolmogorov-Smirnov test, 486
Kouretas, George P., 321
Koutrouvelis, I.A., 482
Kronecker product, 330, 346

defining, 340
Kroner, Kenneth F., 315
KS-distance. See Kolmogorov-Smirnov

distance
KS-statistic. See Kolmogorov-Smirnov

distance statistic
k-th moment, 46
k-th-order autoregression, 226
k-th order sample autocorrelation. See

Residuals
Kurtosis, 40, 283, 486

degree, 267
estimation, 45
illustration, 58

LAD. See Least absolute deviation
Lagged squared errors, 315
Lagging, requirement, 180
Lag models. See Stationary autoregres-

sive distributed lag models
Lag operator, 500

notation, 202
polynomials, usage, 218
third-degree polynomial, 203
usage, 202–203

Lag orders, identification, 250–253
Lagrange multiplier (LM), 151

test, 294–299
Lags

addition, 10
number, estimation, 357–359

Large capitalization stocks, 18
Large-cap mutual funds, 100, 143, 175

characteristic line, 180
estimation data, 103–105

Large-cap stocks, portfolios, 321
Laurent, Sébastien, 314
Law of iterated expectations. See Iter-

ated expectations
LCCA. See Level canonical correlation

analysis

Lead operator. See Delay operator
Least absolute deviation (LAD). See

Self-weighted LAD
estimator, 496–497

weight, 496
Least median of squares (LMedS) esti-

mator, 413
Least squares estimator (LSE), 254,

256–259. See also Reweighted
least squares estimator

asymptotic distribution, 351–352
usage, 496

Least squares (LS). See Constrained least
squares; Ordinary least squares

estimate, 349
estimation. See Multivariate least

squares estimation
methods, inclusion. See Cointegrated

VAR
problem. See Constrained least squares

Least trimmed of squares (LTS) estima-
tor, 413–414

Lehman Corporate Bond Index, 184
Lehman Intermediate Government Bond

Index, 184
Lehman Long-Term Government Bond

Index, 184
Lehman Mortgage-Backed Securities, 184
Lehman Treasury Index, 107
Lehman U.S. Aggregate Bond Index, 113
Leibniz, Gottfried, 2
Leibniz rule, 50–51
Leonard, Thomas, 69
Leptokurtic distribution, 55
Leptokurtosis, 469

strengthening, 475
usage, 286

Leroy, A.M., 408
L-estimators, 412–413
Level canonical correlation analysis

(LCCA), 394–396
Leverage

combination, 465
effect, 302
function, 304
points, 419
usage. See Corporate bonds
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Levy, Haim, 44
Levy, J., 501
Lévy-stable distributions, 216
Lévy-stable processes, concept, 216
Li, W.K., 265, 294
Liability-driven objectives, 17
Likelihood, 71

function, 66, 260
ratio test statistics, 393

Limiting behavior, observation, 237
Limiting distribution, 477
Limit random variable, 48
Linear approximation, 9
Linear differential equations, systems

theory, 327
Linear equations, system, 226
Linear factor models equations, 431–434
Linear filter, 220
Linear instrumental variables, methods,

165–167
Linear models. See Regression

linear regressions, 88–89
Linear OLS estimator, 254
Linear predictor, 273–275
Linear probability model, 148–149

usage, 149
Linear processes, 219–223, 273
Linear regression, 374. See also Simple

linear regression
application. See Factor models
equation, 86
estimation, 90–96
function, 86
model, 79

assumptions, 95
Linear stochastic differential equations,

systems theory, 327
Linear trends, MI estimators (interac-

tion), 394
Linear VAR model, 357
Ling, Shiqing, 288, 289, 292, 294, 496,

497
Linkskog, Filip, 424
Linnik, Yu V., 478
Lipper Growth and Income Index, 174
Lipper Growth Index, 174
Liquid assets, trading, 305

Litterman, Robert, 453
Liu, S., 512
Ljung, G.M., 264
Ljung-Box Q-statistic, 233
Ljung-Box statistics. See DAX Index

Return Data
Ljung-Box test, 264

adaption, 265
LM. See Lagrange multiplier
LMedS. See Least median of squares
LMGARCH. See Long-memory GARCH
Lo, Andrew W., 321
Local shift sensitivity, 411
Location

measurement, 39
parameter, 469

Logarithm
selection, 290
transformation, 67

Log-conditional variance, usage. See
Exponential GARCH model

Log function, monotonic characteristic,
67

Logged EBIT, 133
Logistic distribution, 150
Logit regression model, 150–151
Log-likelihood

derivatives, 68
function, 91, 261, 387, 404

computation, 400
concentration, 389

Hessian, 68
writing, 404

Long memory, 221, 233, 235
Long-memory GARCH (LMGARCH)

model, 305–307
Long memory property, 299
Long-range dependence, 501

detection, 234. See also Non-Gauss-
ian time series

structure, 221, 233–239
Long-run equilibrium, 374–375
Long-run modeling theory, 392–393
Long tails, 478
Long-Term Capital Management (LTCM),

465
assessment, 466
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Long-term dynamics, 11
Loss function, 272
Low-order models, 251
LS. See Least squares
LSE. See Least squares estimator
LTCM. See Long-Term Capital Man-

agement
LTS. See Least trimmed of squares
Lütkepohl, H., 393

MA. See Moving average
MacKinlay, A. Craig, 321
Maclaurin series expansion, 304
MAD. See Median absolute deviation
Madow, W.G., 408
MAE. See Mean absolute error
Malkiel, Burton G., 191
Malmquist, David, 466
Manager performance evaluation,

CAPM usage, 179–180
Mandelbrot, Benoit B., 11, 234, 279,

467, 479
Mann, H.B., 408
MAPE. See Mean absolute percentage

error
MAR Futures, 188
Marginal density, 33
Marginal distribution, 51

function, 33–35
Marginalization, 130
Market-neutral funds, 187
Markets

environments, mutual fund charac-
teristic line (testing), 143–148

price efficiency, 21
risk, adjustment, 106

Markov process, 237. See also Stochas-
tic processes

Markowitz, Harry M., 100
Markowitz efficient frontier, 179
Markowitz mean-variance efficient

portfolios, construction, 172
Maronna, R.A., 408
Martellini, Lionel, 454, 457, 458
Martin, R. Douglas, 408, 409, 426
Martingale, 39

difference, 207–210. See also Homosk-
edastic martingale difference

sequence, 304
Mason, D.M., 480
Matlab, 120
Matrices

eigenvalues, 330–331
form, usage, 91
notation, 93, 418

usage, 389
Maximum covariance portfolio, graphic,

444, 449
Maximum eigenvalue test, 393
Maximum likelihood estimates (MLEs),

90–94, 488–489
Maximum likelihood estimation (MLE),

290–292, 400. See also Pseudo-
maximum likelihood estimation;
Quasi-maximum likelihood esti-
mation

methods, 93
Maximum likelihood estimator (MLE),

259–262, 290, 354–357
log-likelihood function, maximiza-

tion, 254
Maximum likelihood (ML), 65–67

estimators, 386–393
invariance property, 388

method, 354–355. See also Stable
distributions

principle, 66, 91
Maximum log-likelihood value, 484–485
Max-stable scheme, 469
MBS. See Mortgage-backed security
McAleer, Michael, 288, 289, 292, 294
McCulloch, J.H., 482
McDonald, James B., 301
McLeod, A.J., 265
McNeil, Alexander, 88, 424
Mean absolute deviation (MeanAD),

40, 415–416
definition, 40

Mean absolute error (MAE), 309
Mean absolute percentage error (MAPE),

309
Mean reversion, 50
Means of something, 45
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Mean-squared prediction error (MSE),
272

Mean square error (MSE), 339
Measurable space, 29
Median absolute deviation (MAD), 415,

417
Median (Med(X)), 415
Memoryless distribution, 57
Menger, Carl, 3
Menn, Christian, 39, 467, 468, 477, 487
Merton, Robert C., 188
Messages, a priori probability, 72–73
M-estimators, 411–412

basis. See Robust regression
rewriting, 420

Method of moments (MM), 164
Michaels, Anthony, 466
Mid-capitalization stocks, 18
MI estimators, interaction. See Linear

trends
Mikkelsen, H.O., 304
Mikosch, T., 303, 497, 498, 502
Minimum MSE h-step predictor, 274
Minimum variance portfolio, graphic,

444, 449
Min-stable scheme, 469
Mithcell, Mark, 188
Mittnik, Stefan, 313, 468, 481, 483, 485,

496, 503, 505–511, 514, 515
Mixed ARMA process, stationarity

property, 217
ML. See Maximum likelihood
MLEs. See Maximum likelihood esti-

mates; Maximum likelihood esti-
mator

MM. See Method of moments
Model fitting, 242
Model formulation, 242
Models. See Econometric models

dimensionality, reduction, 429–430
Model-selection criteria, 251–252
Model specification, 242
Model valuation, 242
Modified location parameter, defining,

472
Moments. See Statistical moments
Momentum factors, 180

Monfort, Alain, 167
Monti, A.C., 265
Moody’s, rating agency, 19
Mortgage-backed security (MBS), 18,

19, 193. See also Agency MBS
Mortgage market

reshaping, nonrecognition, 193
rich/cheap analysis, 192–194

Mortgage price, change, 195
Mortgage spreads (actual vs. market),

193
Mortgage Strategy Group, 192
Moving average (MA), 114. See also

Infinite moving average
models, 207
polynomial, 246
processes, 210–211
representation, 224, 500–501

MSCI Barra, 173
model, 433

MSCI Europe, 431
MSE. See Mean-squared prediction error;

Mean square error
Multicollinearity, 124
Multidimensional random vector, 35
Multifactor models, evidence, 180–184
Multifactor risk approach, 22
Multiple independent variables, gener-

alization, 93–94
Multiple regression model, 193
Multi-step-ahead predictor, 271
Multivariate data, set, 88
Multivariate extension. See Autoregres-

sive models
Multivariate GARCH formulations, 314–

316
Multivariate GARCH model, 315
Multivariate integrated process, 376
Multivariate least squares (LS) estima-

tion, 344–351
Multivariate Ljung-Box test, 359
Multivariate normal distributions, 53,

88
Multivariate process, consideration, 336
Multivariate t-distribution, 87–88
Multivariate VAR(p) models, explicit

solutions, 326

Index  Page 541  Thursday, October 26, 2006  2:13 PM



542 Index

Multivariate white noise, 343
Mutual funds. See Large-cap mutual

funds
Mutual funds, characteristic line, 100–

106
estimation/data, dummy variable

(usage), 145–147
illustration, 106
testing. See Markets

Natural phenoma, 234
n-dimensional cumulative distribution

function, 33
n-dimensional distribution function, 33
n-dimensional probability density func-

tion, 33
n-dimensional real space, 35–36
n-dimensional stochastic process, 35
N-dimensional stochastic time series,

343
N-dimensional system, 351
n-dimensional VAR(1) model, consider-

ation, 328, 331
n-dimensional VAR(p) model, 359
N-dimensional VAR(p) model, regres-

sor matrix, 347
Negative shocks, impact. See Volatility
Nelson, Daniel B., 301, 316
Neural networks, 8
Newbold, P., 264
Newton, Isaac, 2
Ng, Serena, 451
Ninety-Day Bill Index, 184
Nippon Oil

daily returns, 416
regression, estimation, 422

Nippon Performance Fund, 187
No ARCH effect, null hypothesis, 295
Noise. See White noise

sequence, 7
terms, 434

joint distribution, 355
uncorrelation, 432

Nonagency securities, 19
Nondecreasing score function, 413
Nondemeaned data, 354
Nonempty sets, 28

Non-Gaussian distributions, 467
Non-Gaussian stable distributions, 476
Non-Gaussian tails, 478
Non-Gaussian time series, long-range

dependence (detection), 238
Nonlinear approximation, 9
Nonlinear processes, 220
Nonnormality. See Residuals

assessment, 485
Nonobservable parameter, 68
Nonsingular matrix, 434
Nonstandard asymptotic distribution,

248
Nonstationary AR(1) process, 146
Nonstationary time series, 223
Nonstationary VAR models, estima-

tion (theory/models), 385–398
Nonsystematic risk, 176
Nontrivial eigenvector, 339
Non-U.S. bonds, 17. 19
Non-U.S. common stocks, 17
Non-U.S. government bond markets,

principal components (explana-
tion percentage), 457

Non-U.S. markets, nonparallel shifts, 454
Non-U.S. stocks, 19
Nonzero intercept, 183
Normal ARCH model, 281
Normal distribution, 5, 52, 55–56. See

also Bivariate normal distribution;
Multivariate normal distributions;
Standard normal distribution

comparison. See Cauchy distribution
Normal equations, 94
Normal factor model, 434
Normality, testing, 266–267
Normally distributed prediction error,

275
Normal variable, 52
Northfield Information Services, 173
Notation, 201–204. See also Lag opera-

tor notation
n-tuples, 58–59
Null, probability, 366
Null hypothesis, 265

testing, 266, 381
n-variate process, 377
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N-variate variable, 345
n-variate VAR(p) model, 324
Nyblom, Jukka, 398

Objective material reality, 80
Observations

defining, 129
equation, 398–399
one-dimensional function, 316
sample, 491
white noise, 398

Off-the-run Treasury issues, 152
Olkin, I., 408
One-step-ahead forecast, 309

performing, 311
One-step-ahead predictor, 271
One-step-ahead VaR, computation, 313
On-the-run Treasury issue, 152
Operational risk, modeling, 466
Option-adjusted spread, 133
Optionality factor, 460
Option implied duration, comparison,

196
Oracle, common stock (characteristic

line), 100, 102
Ordinary least squares (OLS), 65–67

beta, absolute difference, 427
estimate, 247
estimator, 182, 451

coincidence, 350–351
method, 94–96, 451

usage, 123
OLS-estimated coefficient, 250
usage, 154

Orthogonality condition, 166, 434
Orthonormal variables, 434
Outcomes, 29–30

definition, 27
events, distinction, 27–28
finite/countable set, 31

Outliers
appearance, 496
sensitivity, 417–418

Out-of-sample forecasting ability, 357
Out-of-sample forecasts, 308

delivery, 314
generation, 262

Out-of-sample performance, 310
Out-of-sample period, 314
Overdifferencing, 246
Overidentified systems, 255

PACF. See Partial autocorrelation func-
tion

Panama Canal, construction, 1
Panorska, A.K., 503, 505
Paolella, Marc S., 313, 481, 483, 506,

507, 509–511, 514, 515
Parameterization, 472–473
Parameters

distribution
covariance matrix, 352
determination, 61

formula, 41
hat, 45
robust estimates, Huber/Tukey weight-

ing functions (usage), 421
true value, 165–166
vector, 260

Parametric estimation results, 488–489
Paretian density, 508
Paretian non-Gaussian distributions, 467
Pareto, Vilfredo, 3
Pareto decay law, 475
Pareto distribution, decay, 476
Pareto-like behavior, 476
Park, J.Y., 386
Partial autocorrelation, subscripts (comma

placement), 230
Partial autocorrelation function (PACF),

225–227, 241
estimation, 227–233
sample, 229–231. See also DAX

Index Return Data
Partially asymmetric Weibull, 503
Partition, 73
Passive portfolio, 170

strategy, 20–21
PCA. See Principal component analysis
Pearl, J., 70
Pearson’s kurtosis, 41
Pearson’s skewness, 41
Perfect current coupon mortgage, 1192

Index  Page 543  Thursday, October 26, 2006  2:13 PM



544 Index

Performance
comparison. See Forecasting
evaluation, 22, 173. See also Invest-

ment
measurement, 22, 173. See also

Econometric models; Investment
Periodogramm. See Sample periodogramm
Persand, Gita, 292
Pesaran, M. Hashem, 393
Phillips, Peter C.B., 248, 386
Picard, N., 288
Pickands, J., 481
Pierce, D.A., 263
Pinkus, Scott M., 194
Platykurtic distribution, 56
PMLE. See Pseudo-maximum likeli-

hood estimation
Point forecast, 275
Polynomial, roots, 204
Polytomous variable, 131
Pooled investment vehicle, 465
Populations

description, 8
sample, 69

Portfolio. See Efficient portfolio
betas, 178
construction, 12–15

approaches, 21–22
exposures, assessment, 15
inputs, requirement, 21
maximum variance, 437
optimization, 12–15
risk factor sensitivity, 15
strategy. See Active portfolio strat-

egy; Passive portfolio strategy
selection, 20–21, 170–172
usage. See Structured portfolio

strategies
theory, 424

Portmanteau statistic, 233
Portmanteau tests, 263–265
Positive-definite matrix, 88
Positive definite symmetric matrix, 121
Positive science, 430
Positive shocks, impact. See Volatility
Posterior probability, 71

Potential outcomes, concentration. See
Tails

Power function, 300
Power parameter, 505
p-probability, 366
Prediction intervals, 275–276
Pre-sample initializations, 291
Press, S.J., 482
Priaulet, Philippe, 454, 457, 458
Priaulet, Stephanie, 454, 457, 458
Price change, second-order approxima-

tion, 452
Price distribution, 74
Price-earnings factor, 179
Price model duration, 197

comparison, 196
Price model regression results, 198
Price processes. See Real-world price

processes
Pricing efficiency, semistrong form, 171
Principal component analysis (PCA),

429, 436–450
application. See Bond portfolios
estimation usage, 396–397
FA, comparison, 461–463
illustration, 438–447
PCA-based methods, 396
stable distributions, 447–450
usage. See Interest rate risk; SSB BIG

Index
Principal components, 440

determination, 444
duration, 458

Prior distribution, 70
Prior probability, 71

distinction, 70
Probabilistic dynamics, 28
Probabilistic models, 7–8
Probability. See Conditional probability

a priori evaluation, 26–27
axiomatic system, 26
axiomatic theory, 27
concepts, 25–58
density function, 32

concentration, 256
economic/finance theory, 27
frequentist interpretation, 69
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Probability (Cont.)
interpretations, 26–27
intuitiveness, 30–31
matrix, 487, 490
measure, 46

defining, 318
metrics. See Compound probability

metrics; Simple probability met-
rics

distinguishing, 487
model. See Linear probability model
overview, 27–29
relative frequency, 26
review, 25
space, 30
subjectivistic interpretation, 70

Probability distribution
comparison, 487–494
function, 480, 492

description, 39–45
Probability theory, 25, 28

convolution, 52
development, 3
rules, set, 28

Probit regression model, 149–150
Profit opportunities, 13
Projection matrices, 390, 419
Promax method, 462
Psaradakis, Z., 307
Pseudo-maximum likelihood estimation

(PMLE), 292
Psychometrics, 430–431
p-th absolute moment, 46
p-th absolute moment, 476–477
Pulvino, Todd, 188
Putnam Utilities Growth and Income,

186
Sharpe benchmark, usage, 187

p-value, 65, 107, 134, 422
computation, 452

Pyrrho’s lemma, 124

Q-statistic. See Box-Pierce Q-statistic
assessment, 363

Q-test statistic, 359
Qualitative inputs, representation, 128
Qualitative robustness, 409

Quantile approaches. See Stable distri-
butions

Quantile-quantile plots (Q-Q plots),
490–492

illustration, 492
Quantitative robustness, 409
Quantities. See Statistical quantities
Quasi-maximum likelihood estimation

(QMLE), 292–293
Quenouille, M.H., 230
q-vector, 67–68

Rachev, Svetlozar T., 39, 408, 414,
415, 424, 467, 468, 477, 481,
483, 485–487, 489, 496, 503,
505–508

Rahbek, A., 292
Random coefficients, 220
Random variables, 31–32

assumption. See Symmetric stable
random variables

characterization, 60
conditional expectations, 83–84
convergence, 48–49
defining, 30
demonstration, 37–38
equivalence. See Regressor
IID, 259
n-tuples, 32
sequences, 48–49

convergence, 48
independence/identical distribution,

49–50
sum, 50–52

Random vectors, 32–35
Random walk

model, continuous-time approxima-
tion, 248

series, 247
Rates, level, 453
Ready, Mark J., 427
Real estate, 17
Reality, interpretation, 26
Real rate of interest. See Interest
Real rates, monthly data, 115–119
Real-world price processes, 5
Recoveries, forecasting, 19
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Reduced rank regression method, 387,
390

Regression, 65–67. See also Spurious
regression; Stepwise regression

applications. See Finance
characteristic, 84–85
coefficients, 93, 95

vector, 91
disadvantages, 123–125
equation, 85
estimation. See Linear regression
explanatory power, determination,

97–99
function, 85
linear models, 85–90
models. See Logit regression model;

Probit regression model
categorical/dummy variables, 127–

151
usefulness, 98

parameters
confidence intervals, 96
estimation, 419. See also Empirical

duration
residual, 395, 402
robust estimators, 417–421
sampling distributions, 96–97

Regression analysis
theory/estimation, 79
topics, 127
usage, 99–114. See also Beta

Regression-based duration, 107, 173,
194

Regressive model, formula, 13–14
Regressor

addition/removal, 114
data, 121
deterministic variables, equivalence,

89–90
matrix. See N-dimensional VAR(p)

model
number, increase, 124–125
random variables, equivalence, 85–

88
structure, 350
variables, 79

Regulatory changes, implications, 312

Regulatory constraints, 20
Reilly, Frank K., 107
Reinsel, G.C., 242, 253
Reinsel, Gregory C., 207
Rejection point, 410–411
Removal criteria, 120–121
Rescaled range (R/S) statistic, 238
Residual risk, 176
Residuals. See Fitted financial time series

model
autocorrelation, 121–123

properties, 359–360
conditional mean, 85, 89
consideration, 85
distributional properties, 359–360
empirical variance, 93
graphs, 365–366, 370–371
k-th order sample autocorrelation, 264
nonnormality, 121–123
sum. See Squared residuals
unconditional mean, 86, 89
usage. See Corporate bonds
variables, correlation, 89
variance, 92, 251
variance-covariance matrix, 121
vector, 256
whiteness, testing, 263
zero-mean value, 91

Residual SACF, 263
Resistant beta, 426
Resistant estimators, 409–411. See also

Center
R-estimators, 413
Restricted least squares, 151
Return attribution analysis, 173
Return-based style analysis. See Hedge

funds
Returns

distribution, 10
forecasting. See Expected returns
geometric compounding, 5
prediction. See Future predictions
processes, correlation matrix, 442

Return series
PSACF, time series plot, 269
SACF, time series plot, 269

Reverse characteristic equation, 203, 204
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Reweighted least squares (RLS)
estimator, 414–416
procedure, 420

Risk. See Econometric models
factor, 170, 180
management, 12, 15

technique, 312
premia, impact, 427
tolerance. See Clients

Risk-adjusted basis, costs, 175
Risk-free asset, 176, 178
Risk-free rate, 99, 144
RiskMetrics

database, 454
implication. See Golub-Tilman derived

principal components
parametric VaR model, 313

Riskmetrics, 313
Risk-return trade-off optimization, 15
RLS. See Reweighted least squares
RMSE. See Root mean squared error
Robinson, P.M., 305, 306
Robust correlation coefficient, 426
Robust covariance, definition, 425
Robust estimates, Huber/Tukey weight-

ing functions (usage). See Param-
eters

Robust estimation, 407. See also Correla-
tion matrices; Covariance matrices

Robust estimators, 97. See also Center;
Regression; Spreads

Robustness. See Econometric models;
Qualitative robustness; Quanti-
tative robustness

applications, 426–427
definition, 408
illustration. See Corporate bond yield

spreads
Robust regression

applications, 426–427
M-estimator basis, 419–420
W-estimators, basis, 420–421

Robust statistics, 407–417
illustration, 416–417

Roll, Richard R., 179, 186, 435, 482
model. See Chen-Roll-Ross model

Ronchetti, E.M., 408

Root form, 205
Root mean squared error (RMSE), 309
Roots, distinction, 324
Rosinski, Jan, 468, 495
Ross, Sheldon, 480
Ross, Stephen A., 183, 186, 188, 435

model. See Chen-Roll-Ross model
Rousseeuw, P.J., 408, 413
R/S. See Rescaled range
R-squared (R2), 98, 383. See also

Adjusted R2

relation. See Correlation
Ruelle, David, 66
Russel, Jeffrey R., 286
Russell 5000, 14
Russell Earnings-growth Stock Index,

184
Russell Price-drive Stock Index, 184
r-variate process, 377

SACF. See Sample autocorrelation func-
tion

SACovF. See Sample covariance function
Saha, Atanu, 191
Sakkonen, P., 393
Salomon Smith Barney Non-U.S. Gov-

ernment Bond Index, 184
Samorodnitsky, Gennady, 472, 497,

506
Sample autocorrelation function (SACF),

223, 241
examination, 244–246
inspection, 250–251

Sample covariance function (SACovF),
223

Sample distribution functions, variance-
adjusted differences (comparison).
See Exchange-rate return model

Sample moments, 44–45
Sample partial autocorrelation function

(SPACF), 241
inspection, 250–251

Sample periodogramm, 497, 498
Sampling distributions, 60–63. See also

Regression
complexity, 63
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Sampling distributions (Cont.)
mean/variables

(20 elements), 62
(100 elements), 64

problem, 61
Sandwich estimator, 97, 122
SAS, 120
Scale parameter, 469
Schafer, G., 28
Scheinkman, Jose, 453
School of Copenhagen, 80
Schumacher, Michael P., 454
Schur theorem, 216
Schwartz criterion, 242
Schwarz, G., 252, 358
Science

enthusiasm, 2–3
linear progress, 3

Score, 53
Scott, Robert, 113, 154, 156, 163
Second central moment, 40
Second-order stationarity, 288
Second-pass regression, 178
Security, characteristic line, 99
Self-weighted LAD (SLAD) estimator, 497
Semistrong efficiency, 171
Semistrong-form efficiency, 209
Sensitivity. See Gross error sensitivity;

Local shift sensitivity
Serial correlation, capture, 507, 509
Serletis, Apostolos, 209
Sharpe, William F., 100, 175, 186
Sharpe benchmarks, 184–186

construction, 169
usage. See Putnam Utilities Growth

and Income
Shea, G.S., 155
Shin, Yongcheol, 393
Short memory, 233, 236

exhibiting, 306
Short-range dependence structure, 221,

233–239
Short-term behavior, 11
Short-term dynamics, 11

capture, 14
Short-term memory, 216
Sigma algebra, 290

Sigma field, 281
Sigma-filed algebra, 29–32, 74, 84
Significance test, 65
Simin, Timothy T., 409, 426
Simple ARMA model, usage, 267–271
Simple distances, 487
Simple linear regression, 90
Simple probability metrics, 487
Sims, Christopher A., 386
Single-index market model, 100
Single regressor, 94
Skew, reference, 510
Skewness, 40

measure, 266
parameter, 469

Sklar, Lawrence, 66
SLAD. See Self-weighted LAD
Small capitalization stocks, 18
Small-cap stocks, portfolios, 321
Smith, A.F.M., 69
Smith, R.L., 480
Smoothing, 401. See also Kalman filter
Sola, M., 307
Sophisticated alternative investment

vehicle, 465
Sorted GARCH-filtered residuals, 512
S&P. See Standard & Poor’s
SPACF. See Sample partial autocorrela-

tion function
Spearman, Charles, 429
Spherical distributions, 87
Spline

constrained least squares usage, esti-
mated coefficients, 163

method, 153
restrictions, absence. See Four-seg-

ment spline
Spot rate curve

estimation, constrained least squares
(usage), 164

obtaining, curve fitting, 152–163
Spreads

application, regression data. See Bonds
residuals/leverage, usage. See Corpo-

rate bonds
robust estimators, 415–416

Spurious regression, 123
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Squared correlation coefficient, 99
Squared residuals, weighted sum, 349
Squared sum of residuals (SSR), 95, 132
SSB BIG Index, sectors (PCA usage),

459
SSR. See Squared sum of residuals; Sum

of the squared residuals
Stability, 322–326

conditions, 324
index, 469
property, 477

Stable distributions, 465
alpha, impact, 470
applications. See German stock data
attraction, domain, 479
beta, impact, 471
characteristic function techniques, 482
definitions, 468–475
estimation, 481–483
exponent, 469
facts, 468–475
ML method, 482–483
parameters, estimation, 479–485
properties, 475–479
quantile approaches, 482
sample distribution, 477
symmetry, 505

Stable GARCH models, 502–507
estimation, 507–513

Stable GARCH processes
definition, 504
properties, 505–507

Stable index, 469
Stable innovation process, assumption,

504
Stable laws, definition, 468
Stable models

applicability, 477–479
properties, 475–477

Stable non-Gaussian distribution, 5,
503

Stable Paretian distributions, 468, 469
normal distribution, coincidence, 505

Stable Paretian processes, 325
concept, 216

Stable power GARCH process, 506

Stable processes
concept, 218
solving, initial conditions (inclusion),

331–333
Stable VAR(1) processes, solving, 328–

331
Stable VAR models, estimation, 343–

357
Stahel, W.A., 408
Standard deviation, 40, 493. See also

Winsorized standard deviation
Standard normal distribution, 53
Standard & Poor’s 500 (S&P500)

benchmark usage, 105
index, 44–45, 378
level, uncertainty, 81
monthly returns, 361–363
return/excess return, 101–102
values, 83

Standard & Poor’s (S&P)
rating agency, 19
S&P-1, actual/predicted equations, 366

Starica, Catalin, 303
State equation, 399
State space models, 373, 398–404

defining, 399
State space representations, 400
Static models, usage, 7
Stationarity, 322–326. See also Autore-

gressive moving average pro-
cesses

guarantee, 283
Stationary ARMA-GARCH models,

293–294
Stationary ARMA process, 299
Stationary autoregressive distributed

lag models, 334–335
Stationary GARCH process, 306
Stationary process, 283, 379

analysis, 501
Stationary series, 229
Stationary solution, 289
Stationary VAR model, LS estimators,

351
Statistical factors, 173
Statistical models, 70
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Statistical moments, 39, 40–41
correlation, 46–48
generalizations, 163–167
introduction, 44
method, 164–165

Statistical quantities, 39, 41–44
Statistical significance, threshold, 367
Statistical tests, advice, 131–132
Statistics

review, 25
Statue of Liberty, 1
Stepping, 120
Stepwise regression, 114–121

usage. See Hedge funds
Stine, R.A., 359
Stirzaker, D.R., 478
Stochastically cointegrated process, 376
Stochastic cointegration, 376, 397
Stochastic processes, 35–36, 74

Markov process, 237
Stochastic trends, 337–338

decomposition, 337
Stock, James H., 377, 386, 396–397
Stock exchanges, operation, 4
Stock returns

covariance matrix, 441
modeling, 267–271
processes, graphics, 439

Stocks
beta, 100
monthly returns (2000-2005), 519–

525
picking/ranking systems, 14

Straumann, Daniel, 88
Streater, R.F., 66
Strictly stationarity, 215
Strictly stationary process, 322
Strictly stationary time series, 214
Strict white noise, 208
Strong efficiency, 171
Strong-form efficiency, 209
Strong-form pricing efficiency, 169, 172

test, 174–175
Structured portfolio strategies, usage,

21
Stuart, A., 265

Student’s t-distributed innovations. See
Generalized autoregressive con-
ditional heteroskedasticity model

Student’s t-distribution, 281, 467
usage, 287

Stylized facts, 280
Subjective element, 70
Submartingale model, 209
Sum of the squared residuals (SSR), 95

minimization, 151
minimum, determination, 154

Sum-stable scheme, 469
Sun Microsystem return process, resid-

uals, 445–446
Supremum, 490
Surrogate correlations, expectation, 501
Symmetric nonnormal distribution, 55
Symmetric stable distribution, 470
Symmetric stable random variables,

assumption, 504
Symmetry. See Asymmetry; Domain/

symmetry
Systematic risk, 176

Tails. See Non-Gaussian tails
behavior. See Asymptotic tail behavior
comparison, 474
index, 469
origin, 480–481
potential outcomes, concentration, 40
power law decay, 495

Taqqu, Murad S., 88, 472, 497, 501,
502, 506

Taxation, issues, 20
T-distributed innovations. See General-

ized autoregressive conditional
heteroskedasticity models

t-distributions, 5, 56, 58. See also Mul-
tivariate t-distribution

Technical assumptions, 176
Teicher, H., 52, 66
Tensor products, 339–341
Ten-year Treasury yield

monthly data, 115–119
prediction, 113–114

regression results, 120
Terasvirta, Timo, 288
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Term model identification, 242
Test statistic, 65
Thin tails, 466
Third central moment, 40
Third-degree polynomial. See Lag oper-

ator
Third moment, measure, 266
Threshold models, 220, 294
Thurstone, Louis L., 430

Multiple-factors theory, 430
Tiao, George C., 286
Tilman, Leo M., 456, 458
Time horizons, 305. See also Econo-

metric models
Time intervals, 11
Time-invariant autocovariances, 329
Time-invariant distributions, 59
Time path, 35–36
Time process, 27
Time series

data, 121, 178, 260
usage, 179

modeling, Box-Jenkins approach, 243
models, identification tools, 223–239
process, 233
relationship. See Factors

Time-varying conditional variance, 283
Time-varying volatility

models, 280, 299
relation, 288
usage, 287

Total variance, percentage, 445, 449
Toy, William, 152
t-probability, characteristic, 366
Trace test, 393

tests, 380
Tracking error, minimization, 170
Trade duration, 107
Transfer function, 218
Transition equation, 399
Transition matrix, 398
Trend stationary (TS), 248, 338
Trenkler, C., 393
Tribe, 29
Trimmed mean, 412–414, 416–417

computation, 417
Trivial eigenvector, 339

True whiteness, 264
TS. See Trend stationary
Tsai, C.L., 252
Tsay, Ruey S., 283
t-statistics, 134

application, 132
computation, 106
estimation, 137
excess, 366

Tukey, J.W., 408
Tukey bisquare weighting function,

420–421
Tukey weighting functions, usage. See

Parameters
Tuning parameter, 421
t-values, 366

Unbiased estimator, 60, 94
Uncertain reasoning, Bayesian theories,

70
Uncertainty

deterministic view, 66
modeling, 80
quantification, 28

Unconditional correlation, 225–226
Unconditional model, 317
Unconditional return distribution, 502
Unconditional variance, 283. See also

Constant unconditional variance
Unconstrained VAR model, 386
Uncorrelated standard normal random

variables, 248
Uncorrelated variables, 122
Uncorrelated white noise, 210

process, 208–209
Unique return, 179–180
Unique risk, 176
Unitary root, 332
Unitary variance, 61
Unit-root nonstationary time series, 247
Unit root problem, 303
Unit-root test, 246–250
Unit variance random variables, 502
Univariate time series

modeling, 201
terminology/definitions, 207–214
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ditions (inclusion), 331–333
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U.S. Department of Commerce, infla-

tion rate, 114
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U.S. mortage-backed securities market,

454
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U.S. Treasury auctions, 113
U.S. Treasury bills, 113
U.S. Treasury bonds, 113
U.S. Treasury coupon securities/bills, 152
U.S. Treasury coupon strips, 152
U.S. Treasury notes, 113
U.S. Treasury yield, 114
U.S. Treasury zero-coupon securities, 453

Vakudre, Prashant, 458
Value-at-Risk (VaR)

forecasts, 314
models. See Conditional VaR models

characteristic equation, 324
forecasting, 312–314
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Van Ness, J., 234
VAR. See Vector autoregressive
VaR. See Value-at-Risk
Vardharaj, Raman, 100
Variables. See Gaussian variables; Ran-

dom variables; Regession
correlation. See Residuals
dependence, 79
generalization. See Multiple indepen-

dent variables
graph, zero mean, 54
non-linear relationships, 97
predicted/actual values, contrast,

365, 370–371
reality, relationship, 80
standard deviation, 47
sum, 50

Variance, 40
analysis, 120
estimator, 94
example, 47
existence, 447
property, 47

Variance-adjusted differences, compar-
ison. See Exchange-rate return
model

Variance-covariance matrices, 13, 54,
424, 433, 437

diagonalizing, 438
estimation, 14

VARMA. See Vector autoregressive mov-
ing average

VDE. See Vector difference equation
Vec operators, 330, 339–340
Vector autoregressive moving average

(VARMA) models, 335–338
Vector autoregressive (VAR) models, 60,

321, 343
companion matrix, 344
defining, 321–333
equations, estimates, 364, 368–369
estimation, 360. See also Stable VAR

models
theory/methods. See Nonstationary

VAR models
explicit solutions. See Multivariate

VAR(p) models
illustration, 360–372. See also Coin-

tegrated VAR
properties, 382
theory, 327
usage. See Forecasting
VAR(1) models, equivalence, 326–328
VAR(1) processes, solving. See Stable

VAR(1) processes
VAR(2) model, solutions. See Bivari-

ate VAR(2) model
VAR(p) models, explicit solutions

(computation), 326–328
Vector difference equation (VDE), 336
Vectoring operators, 339–341
Vectors, error terms, 93
Volatility

clustering, 286
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White estimator, 97
Whiteness. See True whiteness

alternative tests, 265
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White noise. See Conditional white
noise; Gaussian white noise;
Multivariate white noise; Strict
white noise

assumption, 263, 352
concept, 5
process, 207–210
sequence, 91, 221
series, 220
terms, 345

Whittle, P., 497
Whittle estimator, 499

definition, 497
Wiener process, 248
Williams, George, 152
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363–364, 366–368, 378, 383
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Winsorized mean, 415
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Wold decomposition theorem, 323
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curvature, 453
shape, 192, 196
slope, 453, 460
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Yule-Walker (YW) equation, 224, 254–

256
multivariate equivalent, 329

Yule-Walker (YW) estimation, 254–256
Yule-Walker (YW) estimator, 253

Zadeh, Lotfi A., 25
Zazzarino, Mike, 194
Zellner, Arnold, 484
Zero-coupon benchmark security, 152
Zero-coupon instruments, 113
Zero-coupon rate, 152
Zero-coupon securities. See U.S. Trea-

sury zero-coupon securities
Zero-coupon Treasury securities, 454
Zero-mean finite-variance IID variables,

323
Zero mean IID sequences, 301
Zero-mean process, 212, 358
Zero-mean random disturbance, 5

occurrence, 7
Zero-mean stationary ARMA, 223
Zero-probability events, 37
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