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We pursue the idea that bigger diagrams make visible more automorphisms, meaning, more precisely, that
bigger diagrams with the same limit make visible more automorphisms of the same object. In the case
of the 2-solenoid, this means that we will find a copy of the 2-adic rational numbers [

�
] Q2 acting on

the 2-solenoid, rather than merely the 2-adic integers Z2. This is a big change in the sense that Q2 is
non-compact, while Z2 is compact. We had already seen that as a R× Z2 -space

2-solenoid ≈ (R× Z2)/Z
∆

where Z∆ is the diagonally imbedded copy of Z. Having found a larger group of automorphisms, we will
find that

2-solenoid ≈ (R×Q2)/Z[1/2]∆

as R×Q2 -space, and that the diagonal copy Z[1/2]∆ of

Z[1/2] = Z +
1

2
· Z +

1

4
· Z +

1

8
· Z + . . .

(the rational numbers with denominators restricted to be powers of 2) is still discrete[ � ] in the product
R×Q2, and the 2-adic rationals Q2 are presented naturally as a (strict) colimit of topological groups

Z2 ⊂
1

2
· Z2 ⊂

1

4
· Z2 ⊂

1

8
· Z2 ⊂ . . .

That is, at the level of sets, we have an ascending union. To be sure that we give this ascending union a
suitable topology, consideration of mapping properties is wise.

• Bigger diagrams, more automorphisms
• Coproducts, colimits
• Hausdorffness of quotients G/H
• Ascending unions, strict colimits

1. Bigger diagrams, more automorphisms

Incidental to refining our viewpoint on the 2-solenoid, we should verify that many different (related, of
course) diagrams can easily give the same limit object. The slogan here is that cofinal limits are (naturally)
isomorphic. We only prove the simple special case of this we need for immediate use, below. A fuller version
of this issue will arise with wider solenoids, approaching the adeles, shortly.

In particular, there is the theme of finding larger diagrams that have no bottom object (but give the same
limit), with motivation of finding larger automorphism groups. Discrete diagrams with bottom objects often
give compact limits, and this may mask interesting non-compact automorphism groups whose quotients are
(nevertheless) compact.

So far, we have the 2-solenoid X as a projective limit fitting into a diagram

[
�
] We will review the classical definition of the p-adic rationals and integers shortly. For the moment, we simply use

these names for the things that appear, without pretending to have proven that the naming is apt.

[ � ] As usual, a subset Y of a topological space is discrete if each point y of Y has a neighborhood U in X such that

U ∩ Y = {y}.

1



Paul Garrett: Bigger diagrams, more automorphisms, colimits (November 3, 2005)

X
** ** ))

. . . // R/4Z // R/2Z // R/Z

Given a point x on the solenoid, let xn be its projection to R/2nZ, and we think of such a point as being a
compatible family of points on the respective circles, written

x . . . −→ x2 −→ x1 −→ x0

Let’s review the way we found

Z2 = lim (. . . −→ Z/8 −→ Z/4 −→ Z/2 −→ Z/1)

as a group acting on the 2-solenoid. As earlier, given a point x on X , we act by an element r ∈ R on all
circles simultaneously, to make the new 0th projection 0 ∈ R/Z. That is, the new values

x . . . −→ x2 −→ x1 −→ x0 = 0

must actually be in Z, and form a compatible family inside

. . . mod 8// Z/8
mod 4 // Z/4

mod 2 // Z/2
mod 1 // Z/1

But in the diagram defining the 2-solenoid there is no compulsion to stop at the circle R/Z. If we want, we
could continue to the right with ever-shrinking circles, as in

. . . // R/4Z // R/2Z // R/Z // R/ 1
2Z

// R/ 1
4Z

// R/ 1
8Z

// . . .

Claim: The (projective) limit[ � ] of this diagram is naturally isomorphic to the limit of the original diagram.

Remark: This is not at all surprising at a heuristic level, but it is an example of an important general fact,
that cofinal limits are isomorphic. The general case is also important, but it is useful to give a quick proof
in a more limited family of special cases, too.

Proof: Let X be a projective limit fitting into a commutative diagram

X
)) ((. . . // X1

// X0

and consider also an enlarged diagram

Y
)) (( **

. . . // X1
// X0

// . . . // X−n
// . . .

We claim that there is a natural isomorphism X −→ Y , induced from the commutative diagram

X
)) ((. . . // X1

// X0

Y 55 66 44. . . // X1
// X0

// . . . // X−n
// . . .

First, to make a map from Y to the projective limit X is exactly to have a compatible family of maps from
Y to the Xn with n ≥ 0. The projections of Y to the Xn with n ≥ 0 already provide this, and we ignore the

[ � ] One could also wonder what sort of limit this diagram has to the right, meaning an object with compatible maps from

all the ever-shrinking circles. Suitable choices, illustrated just a little later, do lead to the useful notion of a colimit.
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Xi with i < 0 at this moment. On the other hand, to get a map from X to Y is to give a compatible family
of maps from X to all the Xn, now with n ∈ Z. For n ≥ 0 the projections of X to Xn work. For −n < 0, in
fact, there are many possibilities. For example, map X to X0 and then map to X−n by the transition maps
used in the diagram for Y .

Thus, we obtain unique maps f : Y −→ X and g : X −→ Y compatible with all the projections and
equalities. Then f ◦ g : Y −→ Y is a self-map of Y preserving all the projections, so, by the uniqueness of
the projective limit, must be the identity map. Similarly, g ◦ f is the identity on X . Thus, X ≈ Y . ///

Remark: Again, the purely arrow-theoretic proof captures whatever information and conditions are implicit
in the objects and maps we consider, such as topologies and continuity, group homomorphisms, and so on.

The larger diagram for the same object makes more automorphisms visible, as follows.

Given a point

x . . . −→ x1 −→ x0 −→ x−1 −→ . . .

in the larger diagram, since there is no obvious bottom circle to normalize, we have the further auxiliary
choice of an integer n, and rotate xn ∈ R/2nZ to 0. To help us remember what we’re doing, let’s take
Z 3 −n ≤ 0, and let R act by xi −→ xi + r for all indices i, with r chosen to rotate x−n to 0 in R/2−nZ.
Thus, we have

. . . −→ x1 −→ x0 −→ x−1 −→ . . . −→ x−n = 0 −→ 0 −→ 0 −→ . . .

since the arrows are group homomorphisms. That is, at and after the −nth place, all the (rotated) xi are
simply 0.

Thus, x−n = 0 ∈ 2−nZ/2−nZ, and there are exactly 2 choices for x−n+1, namely 0 and 2−n mod 2−n+1. For
each of these 2 choices, there are 2 choices of x−n+2, and so on. Note that the choice x−n = 0 on the nth

circle R/2−nZ means that x−n+i is in 2−nZ modulo 2−n+iZ. The collection of all such compatible families
for a fixed choice of −n fits together as

. . . −→ 2−nZ/4 −→ 2−nZ/2 −→ 2−nZ/1 −→ 2−nZ/
1

2
Z −→ 2−nZ/

1

4
Z −→ . . . −→ 2−nZ/2−nZ ≈ {0}

Let X(n) be the projective limit of this, fitting into

X(n)
++ ++ ++ ++

. . . // 2−nZ/2 // 2−nZ/1 // . . . // 2−nZ/2−n+1 // 2−nZ/2−n

At least heuristically, we can give X (n) a more suggestive name and notation, specifically

2−nZ2 = X(n)

but we should not accidentally presume too much from the notation.

It is easy to imagine that the family of these diagrams fits together, giving an ascending chain of larger-and-
larger limits. Indeed,

Claim: The diagram

X(n)

** ++
. . . // 2−nZ/2−n+1 //

inc

��

2−nZ/2−n

inc

��

X(n+1)
44 33 33

. . . // 2−(n+1)Z/2−n+1 // 2−(n+1)Z/2−n // 2−(n+1)Z/2−(n+1)
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induces a unique injective map [ � ] X(n) −→ X(n+1) compatible with all the projections (where the vertical
maps are the obvious inclusions).

Proof: Again, to give a map to a projective limit is to give a compatible family of maps to the things in the
limit. Thus, by composition with the inclusions, we obtain the dashed arrows

X(n)

** ++

**TTTTTTTTT

,,YYYYYYYYYYYYYYYYYY . . . // 2−nZ/2−n+1 //

inc

��

2−nZ/2−n

inc

��

X(n+1)
44 33 33

. . . // 2−(n+1)Z/2−n+1 // 2−(n+1)Z/2−n // 2−(n+1)Z/2−(n+1)

Since the initial diagram commutes, we can also define a map

2−nZ2 = X(n) −→ 2−(n+1)Z/2−(n+1)

by composition with any choice of inclusion map from the top row to the bottom. Thus, we have a unique
induced dotted arrow

2−nZ2 = X(n) −→ X(n+1) = 2−(n+1)Z2

in the commuting diagram

X(n)

** ++

**TTTTTTTTT

,,YYYYYYYYYYYYYYYYYY

--[[[[[[[[[[[[[[[[[[[[[[[[[[[

��

. . . // 2−nZ/2−n+1 //

inc

��

2−nZ/2−n

inc

��

X(n+1)
44 3333

. . . // 2−(n+1)Z/2−n+1 // 2−(n+1)Z/2−n // 2−(n+1)Z/2−(n+1)

We must prove that the induced map is injective. [ � ] First, we claim that an element y in a projective limit

Y
%% &&

. . . // Y1
// Y0

is 0 if and only if all its projections yi are 0. This reviews a minor mapping-property trick applicable to
objects that have an underlying structure of set. That is, the elements of a set W are in bijection with the
maps of a singleton set S = {s} to W , simply by taking a map f to f(s). Thus, since limits of topological
groups have the same underlying set as the corresponding limit of sets, elements of the limit Y are given by
compatible families of maps S −→ Yi. If all these are 0, then f(s) = 0 is certainly a compatible map to the
limit. By uniqueness, there is no other image possible. The converse is immediate.

Thus, given non-zero x ∈ X(n), at least one projected image xi ∈ 2−nZ/2−n+i is non-zero. The inclusion
to 2−(n+1)Z/2−n+i is still non-zero, so the image under the induced map to X (n+1) cannot be 0. Thus, the
(abelian) group homomorphism X (n) −→ X(n+1) has trivial kernel, so is injective. ///

[ � ] As usual in our discussions, a map is implicitly continuous, and here is a group homomorphism. The arrow-theoretic

nature of the argument carries these details along implicitly, and by its nature is applicable to many other situations

as well.

[ � ] Depending on one’s outlook, this might be a moment to introduce the purely mapping-theoretic version of injective

maps, namely monomorphisms. We won’t take this approach, but will give the definition: a map i : X −→ Y is a

monomorphism (in whatever category) if for all maps f, g : Z −→ X, the composites i ◦ f and i ◦ g are equal only if

f = g.
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Thus, we have a family of inclusions

X(0)
inc // X(1)

inc // X(2)
inc // . . .

Z2
1
2 · Z2

1
4 · Z2

of groups acting on the 2-solenoid. Of course the action of X (n+1) matches that of X(n) when restricted to
X(n), so we apparently have an action on the 2-solenoid of the ascending union

Q2 =

∞
⋃

n=0

2−nZ2 =

∞
⋃

n=0

X(n)

Remark: Several expected things really are true: the ascending union Q2 has a reasonable topology, and
acts continuously on the 2-solenoid. However, these conclusions do not follow as easily, or superficially, from
general mapping properties. That is, colimits do not behave as well (for our purposes) as do limits. We will
look at these issues just below. For the moment, we continue without worrying too much.

Next, we determine the isotropy subgroup of the point 0 in the 2-solenoid, under the action of R×Q2. Recall
that r ∈ R acts by

r · (. . . −→ xi mod 2iZ −→ . . .) = . . . −→ r + xi mod 2iZ −→ . . .

Similarly, each y ∈ Q2 is of the form (for some n, depending on y)

. . . −→ yi mod 2iZ −→ . . . −→ y−n+1 mod 2−n+1Z −→ y−n = 0 mod 2−nZ −→ 0 −→ 0 −→ . . .

with y−n+i lying in 2−nZ/2−n+iZ. With this way of presenting it, the action on x in the 2-solenoid is
straightforward, namely

y · x =
(

. . . −→ yi + xi mod 2iZ −→ . . .
)

Already R× Z2 was transitive, so certainly R× Q2 is transitive. The isotropy group of the point x = 0 in
the 2-solenoid is the collection of r ∈ R and y ∈ Q2 such that

r + yi ∈ 2iZ (for all i ∈ Z)

where for each y ∈ Q2 there is an integer n ≥ 0 such that all yi lie in 2−nZ. For fixed y with associated n,
taking i = −n, since y−n ∈ 2−nZ, we find

r ∈ −y−n + 2−nZ = 2−nZ

Then for all indices 0 ≥ i ∈ Z, by the isotropy condition,

y−n+i = −r (in 2−nZ/2−n+iZ)

Thus, for all n ≥ 0, we have the diagonal copy of 2−nZ imbedded in X(n) = 2−nZ2 induced from the diagram

2−nZ2 = X(−n)
++ ++

. . . // 2−nZ/2−n+1 // 2−nZ/2−n = 0

2−nZ

ggN N
N N N

N

88qqqqqqqqqq

33ggggggggggggggggggggggg
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That is, for all n ≥ 0 we have
(

2−nZ
)∆

= {(δ,−δ) : δ ∈ 2−nZ} ⊂ R×Q2

inside the isotropy group. Taking the ascending union, we find the diagonal copy of Z[1/2] as exactly the
isotropy group. Thus, as R×Q2 -spaces,

2-solenoid ≈ (R×Q2)/Z[1/2]∆

Remark: We have not yet shown that the diagonal copy of Z[1/2] is discrete in the product R × Q2. To
do so, we need to see what topology Q2 has. [ � ] Certainly Z[1/2] is not discrete in R, in fact is dense, even
though Z without allowing 2’s in the denominator was discrete in R. It will also be the case that Z[1/2] is
dense in Q2, and that it is only in the product R× Q2 that Z[1/2] becomes discrete.

2. Coproducts, colimits

When we look at colimits and coproducts here, it is important to see that, while at an abstract level these
things are just the arrows-reversed versions of limits and products, for many classes of naturally-occurring
objects there is a sharp asymmetry. For example, while limits are subobjects of products, colimits are
quotients of coproducts. In many situations, quotients are more abstract entities than are subobjects. This
can be explained from a set-theoretic viewpoint, since elements of a subset are the same sort of thing as
elements of the original set, since they are elements of the original set, while elements of quotients are sets
of elements of the original.

In particular, in many cases colimits are fragile, and need further details or hypotheses to give us helpful
outcomes. For example, while all subspaces of Hausdorff topological spaces are Hausdorff, quotients of
Hausdorff topological spaces need not be Hausdorff.

In the simple case of circles and solenoids we’re considering first, some of these themes are obscured
by the very simplicity of the situation. Indeed, there are not many different compact, connected, one-
dimensional manifolds: just circles. And these circles are themselves groups, and are abelian. But this
careful preparation is intended to make our subsequent treatment of surfaces and other higher-dimensional
examples less disconcerting.

The immediate goal is to give as graceful as possible a treatment of the topology on the ascending union

Q2 =

∞
⋃

n=0

1

2n
· Z2 =

∞
⋃

n=0

1

2n
·
(

lim
n

Z/2nZ
)

and to define a natural continuous action of Q2 on the 2-solenoid from those of the limitands [ � ] 2−n · Z2

already treated. [ � ] Before doing this, however, we must make the effort to treat the problem as glibly as
limits and products allowed, and we will find difficulties in the colimit situation unlike those for limits.

[ � ] Yes, it is the metric topology that can be defined in the customary ad hoc fashion, but if we take that definition the

problem becomes verifying that that is the same thing that we obtain here as the ascending union.

[ � ] Limitand is a made-up word, but serves its purpose. At least it has the pseudo-dignity of a pseudo-Latinate pseudo-

etymology.

[ � ] It is possible to misunderstand the nature of Q2 when presented as an ascending union of 2−nZ2’s. The worst

misunderstanding can be illustrated by a bad analogy, as follows. Returning to a more familiar setting, we can

certainly write the real line R as an ascending union R =
⋃

n≥1
2n · [−1, +1]. Each interval [−1, +1] is compact, and

the dilations by powers of 2 are all homeomorphic to each other. Since R is certainly not compact, it would be very

naive to think that expressing R in this fashion meant that R were somehow basically a compact interval. This is a

bad analogy because closed intervals do not arise in the manner that the sets 2−nZ2 do, in many regards.
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We need a dual notion to that of (projective) limit, namely colimit. [ � ] The definition can be obtained from
the definition of limit[

���
] by reversing all the arrows.

Remark: At a formal or abstract level, reversing the directions of arrows really does nothing. However,
with the actual objects that occur in practice and are of interest to us, this reversal often matters a great
deal. Again, for example, properties of quotient objects are often less predictable than properties of sub-
objects. [

� �
] Indeed, the smooth general use of products and limits is not matched by any similar smoothness

in treatment of the arrow-reversed coproducts and colimits, below.

Let {Xn : n = 0, 1, 2, . . .} be a family of objects with maps ϕi,i+1 : Xi −→ Xi+1. A colimit X of the Xi

(and, implicitly, maps ϕi,i+1) is an object of the same sort, with inclusion maps [
�

� ] ji : Xi −→ X giving
(first) commutativity of the diagram

X0
ϕ01 //

j0

&&
X1

ϕ12 //
j1 &&
. . . X

Second, it is required of X and the inclusion maps that, for all families of compatible maps fi : Xi −→ Z
(meaning fi = fi+1 ◦ ϕi,i+1 for all indices i), there is a unique f : X −→ Z giving a commutative diagram

X0
ϕ01 //

f0

((QQQQQQQQQQQQQQQQ

j0

&&
X1

ϕ12 //

f1...

!!CC
CC

CC
CC

j1 &&
. . . X

f~~}
}

}
}

Z

For X meeting these conditions, write

X = colimnXn (suppressing reference to the maps)

Thus, as topological group,
Q2 = colimn 2−nZ2

Example: For objects Xn which are simply sets, and assuming that the transition maps are inclusions,
the colimit certainly does capture the notion of ascending union, since to give a set map from an ascending
union is to give a family of maps on each Xn, with compatibility with respect to the inclusions. [

� � ]

[ � ] Actually, the only thing we really need for the moment is a very special case, a strict colimit. Also, a colimit may be

called an inductive limit, and also possibly a direct limit.

[
���

] Again, when we say limit we mean projective limit, which is sometimes called inverse limit.

[
� �

] We noted earlier that subspaces of Hausdorff spaces are Hausdorff, while quotients need not be. In a different vein,

submodules of finitely-generated free modules over principal ideal domains are still free, while quotients certainly

need not be.

[
� � ] These inclusion maps in colimits are opposite to the projection maps for limits. In many cases, such as when all

ϕi,i+1 are injections, with perhaps further conditions, they are literally inclusions, but one should be cautious.

[
� � ] Regarding ascending unions of sets with no further structure, with a family Sn with Sn ⊂ Sn+1, indexed by

n = 1, 2, 3, . . ., we probably have an intuitive belief that we can take the (ascending) union S =
⋃

n
Sn. However,

from a careful foundational viewpoint, it is non-trivial to make sense of this, since unions must be taken inside some

larger set.
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As usual, if a colimit exists at all, then it is unique up to unique isomorphism. Thus, as usual, the more
serious issue is existence, which needs a construction, either direct or indirect.

For present purposes, we will prove that colimits of topological groups can be constructed as corresponding
colimits of topological spaces, with group structure hung on the set afterward. [

�
� ] First, we have a general

result, applicable in any context where it makes sense, namely that often colimits can be constructed from
coproducts as quotients by equivalence relations generated by the inclusion maps. We will use this preliminary
result to prove that general colimits of topological spaces exist, from existence of coproducts. (Coproducts
of topological spaces are disjoint unions with each piece given its own topology!)

Recall from earlier that, given a family of objects {Xα : α ∈ A}, a coproduct of the Xα is an X with maps
iα : Xα −→ X such that, for all Z and maps fα : Xα −→ Z, there is a unique f : X −→ Z such that every
fα factors through f , that is, such that fα = f ◦ iα for all α. In a diagram, this asserts that there exists a
unique f : X −→ Z such that all triangles commute in

Z

X

f

hhQ Q Q Q Q Q Q Q

. . . Xα

fα

VV,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

iα������

EE������

. . . Xβ

fβEEEEEEEEEEEEEE

bbEEEEEEEEEEEEEE

iβ

YY3333333333333
. . .

Also, we need a robust way to describe quotients of objects which do have an underlying set, without assuming
too much further about what kind of things they are.

Let X be an object, and {xα : α ∈ A} and {yα : α ∈ A} two sets of elements of X . Then the quotient of
X by the relations[

� � ] xα ∼ yα (for all α ∈ A) is another object Q with a map q : X −→ Q such that, all
maps f : X −→ Z with f(xα) = f(yβ) for all α ∈ A factor through q uniquely. That is, there is F : Q −→ Z
such that we have a commutative diagram

X
q

��@
@@

@@
@@

f // Z

Q

F

??�
�

�
�

That is, Q is the largest quotient in which every xα becomes equal to the corresponding yα.

Remark: As usual, if a quotient exists at all, it is unique up to unique isomorphism.

Remark: With most familiar objects, quotients are readily constructed. For example, for a group G, the
quotient by a family of relations xα ∼ yα (for xα and yα in G) is the usual group quotient of G by the
intersection of all normal subgroups containing all the group elements xαy−1

α .

Claim: For topological spaces, quotients exist.

[
� � ] While group colimits can be constructed from the set colimits of the underlying sets, the underlying set of a group

coproduct is not the set coproduct. Specifically, set coproducts are disjoint unions, while group coproducts cannot

possibly be disjoint unions.

[
� � ] Here the symbol ∼ need not denote an equivalence relation!
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Proof: This argument is just a translation of the present set-up into the usual construction for quotients
of topological spaces, via equivalence relations. That is, given an equivalence relation R on a topological
space X , the quotient X/R by R is the set X/R of equivalence classes of R, with natural quotient map
q : X −→ X/R, and with U ⊂ X/R declared open if and only if q−1(U) is open in X . [

� � ] Certainly this
definition gives X/R a topology in which the quotient map is continuous. Given a set of required relations
xα ∼ yα for α ∈ A as in our general definition of quotient, we view ∼ in terms of its graph

Γ(∼) = {(xα, yα) ∈ X × X : α ∈ A}

Define an associated equivalence relation R by taking the graph Γ(R) of R to be the intersection of all graphs
Γ(S) of equivalence relations S containing Γ(∼), that is,[

� � ]

Γ(R) =
⋂

S : Γ(S)⊃Γ(∼)

Γ(S)

That is, in terms of graphs of equivalence relations, R is the smallest equivalence relation containing ∼.
Let f : X −→ Z be a continuous map such that f(xα) = f(yα) for all α. We must first show that f is
actually constant on R-equivalence classes, so that at least as a set map f factors through the quotient
q : X −→ X/R. To this end, we cleverly observe that the relation Rf defined by

xRfy if and only if f(x) = f(y)

is an equivalence relation, and that its graph contains all pairs (xα, yα). So Γ(Rf ) ⊃ Γ(R), and we have
a natural induced map r : X/R −→ X/Rf . Further, the continuity of f : X −→ Z immediately tells us
that the induced map X/Rf −→ Z is continuous, where X/Rf has the quotient topology in the usual sense.
Thus, we get a (unique) F : X/R −→ Z giving a commutative diagram

X
q //

f

%%
X/R

r //

F

77
U Z _ d i

m
X/Rf

// Z

This proves that the usual equivalence-relation definition of quotient topological space is a quotient object
in our current sense. ///

It is not surprising that some general results work out for coproducts and colimits. For example, we can
reduce existence of colimits to existence of coproducts and quotients.

Claim: A colimit of a family

X0
ϕ01 // X1

ϕ01 // . . .

is a quotient of the coproduct
∐

n Xn (with accompanying inclusion maps ji : Xi −→
∐

n Xn) by the relations

jm(xm) ∼ jm+1(xm+1) ϕm,m+1(xm) = xm+1

Proof: This is the arrows-reversed version of the dual assertion, that limits are subobjects of products. Let
Y be a coproduct of the Xn, with inclusions in : Xn −→ Y . Given a compatible family fn : Xn −→ Z, let

[
� � ] That this does give a topology on X/R follows easily from the definition of topology.

[
� � ] Perhaps one should work the plausible exercise that an intersection of graphs of equivalence relations is again the

graph of an equivalence relation.
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F : Y −→ Z be the (unique) map through which all the fn factor. Diagrammatically, we have the commuting

Y

F

��

X0

j0

99rrrrrrrrrrrrrrrrrrrrrrr

f0

**TTTTTTTTTTTTTTTTTTTTT X1

j1...

>>~~~~~~~~~~~~~~~~

f1...

&&NNNNNNNNNNNNN

Z

Note that the map F exists regardless of compatibilities of the fn with the transition maps Xn −→ Xn+1. On
the other hand, note that the inclusions in to the coproduct are not compatible with the maps Xn −→ Xn+1.

For xm ∈ Xm and xm+1 ∈ Xm+1, and ϕm,m+1(xm) = xm+1, the compatibility of the fm’s with the
transition maps is exactly that fm+1(ϕm,m+1(xm)) = fm(xm). By the mapping-property definition of
quotient, this implies that F factors uniquely through the quotient of the coproduct by all the given relations.
By uniqueness of the colimit, we are done. ///

Thus, we have indirectly conjured up arbitrary colimits of topological spaces, from coproducts and quotients
of them.

Remark: To see that the argument above does not depend seriously upon the requirement that the index
set be positive integers with the usual ordering, observe that we can define transition maps ϕmn : Xm −→ Xn

for m < n as the obvious composites

ϕmn = ϕn−1,n ◦ ϕn−2,n−1 ◦ . . . ◦ ϕm+1,m+2 ◦ ϕm,m+1

Then the relation for the quotient is defined by

jm(xm) ∼ jn(xn) for m < n and ϕmn(xm) = xn

or m > n and ϕnm(xn) = xm

The the argument proceeds as before.

Example: However, while every subspace of a Hausdorff topological space is again Hausdorff, not every
quotient of a Hausdorff space is Hausdorff. For example, let X be the unit interval, and let Q be the quotient
obtained by identifying [

� � ] all points of the form a/2n for a ∈ Z and 0 ≤ n ∈ Z in the interval. In this
quotient, every neighborhood of every point contains all rationals a/2n from the interval, so is certainly not
Hausdorff.

Example: The abrupt identification of many points in the previous example can be accomplished gradually,
perhaps subtly, in a colimit. For example, let X0 be the unit interval [0, 1], and inductively define a family

X0 −→ X1 −→ X2 −→ . . .

of successive quotient maps, where X1 is formed from X0 by identifying 0 and 1 (all rational points in X0

with denominators 20), then form X2 from X1 by identifying 1/2 with the point 1-and-0 (all rational points
with denominators 21 or less), then form X3 by identifying all points with denominators 22 or less, and so

[
� � ] In terms of equivalence relations, to identify all points of a subset Y of a topological space X is to define an equivalence

relation ∼ by saying that y ∼ y′ for all y, y′ ∈ Y , and otherwise x ∼ x′ only for x = x′, and then take the quotient

by this equivalence relation.
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on. Each space in the colimit is Hausdorff, yet one can anticipate that the colimit is the non-Hausdorff space
of the previous example.

3. Hausdorffness of quotients G/H

The following important little result admonishes us further about dangers in taking quotients.

Claim: Let G be a topological group, and H a subgroup. [
� � ] The quotient topological space G/H is

Hausdorff if and only if H is closed.

Remark: Thus, even if H is normal in G, so that G/H is a group, if H is not closed then the quotient
G/H does not meet the implicit Hausdorff-ness requirement of a topological group.

Proof: Suppose G/H is Hausdorff. Let q : G −→ G/H be the quotient map q(g) = gH . For g 6∈ H ,
q(g) 6= q(1). By the Hausdorff-ness of the quotient, there are disjoint opens U, V in G/H such that U 3 q(g)
and V 3 q(1). The inverse images q−1(U) 3 g and q−1(V ) ⊃ H are still disjoint, and are open by continuity
of q. Thus, q−1(U) is a neighborhood of g not meeting H . This holds for every g 6∈ H , so the complement
to H is open, and H is closed.

For the more difficult converse, for H closed, given x 6∈ H , we will first find a neighborhood V of 1 in G such
that

V · x ∩ V · H = φ

Then[ � � ]

V · xH ∩ V · H = φ

This will imply that q(V · xH) and q(V · H) are disjoint. Observe that[ � �
] for a subset X of G,

q−1(q(X)) = X · H = {x · h : x ∈ X, h ∈ H}

Thus, q(V ·xH) and q(V ·H) will be open,[ � � ] so will be disjoint neighborhoods of q(x) and q(1), respectively.
And the general Hausdorff-ness will be reduced to this case.

To find such V , use the local compactness to take a neighborhood U of 1, with compact closure U . Then[ � � ]

U ·x is a neighborhood of x, with closure U ·x. Since x 6∈ H , for each y ∈ U ·x∩H , necessarily y 6= x. Thus,
by Hausdorff-ness, there is an open neighborhood Uy of 1[ � � ] and open neighborhood Vy of y such that

Vy ∩ Uy · x = φ

Since U · x ∩ H is compact,[ � � ] there is a finite list y1, . . . , yn of points in U · x ∩ H such that the Vyi
cover

U · x ∩ H . The finite intersection Wo =
⋂

i Uyi
· x is open, and does not meet H . Then Wo · x−1 is a

[
� � ] Again, implicitly, a topological group is Hausdorff and locally compact.

[ � � ] By right-multiplying by h ∈ H and taking the union over all h ∈ H.

[ � �
] From noting that, for y ∈ G such that q(y) ∈ q(X), we have yH = xH for some x ∈ H, so y ∈ xH ⊂ X · H.

[ � � ] By construction of the quotient topology, a set Y in G/H is open if and only if q−1(Y ) is open in G.

[ � � ] Since right multiplication by x is a homeomorphism of G to itself.

[ � � ] As on many other occasions in this and similar discussions, from neighborhoods W of 1 we can make neighborhoods

W · x of other points x by translating.

[ � � ] This compactness results from H being closed and U being compact, since closed subsets of compacts are compact.
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neighborhood of 1. Let Vo be an open neighborhood of 1 such that V 2
o ⊂ Wox

−1,[ � � ] and let V = Vo ∩ V −1
o .

We claim that
V · x ∩ V · H = φ

Indeed, if y were in this intersection, then for some v ∈ V

y ∈ V · x ∩ v · H

Then

v−1y ∈ v−1 · V · x ∩ H ⊂ V · V · x ∩ H ⊂ V 2
o · x ∩ H ⊂ (Wo · x

−1) · x ∩ H = Wo ∩ H = φ

contradiction. So V · x ∩ V · H = φ, as desired, and

V · xH ∩ V · H = φ

The general issue of Hausdorff-ness of G/H reduces to the previous discussion by moving opens around.
Given y, z ∈ G such that yH 6= zH , let x = y−1z and choose V as in the previous paragraph for this x.
That is,

V · y−1zH ∩ V · H = φ

Left multiply by y to get
yV y−1 · zH ∩ yV · H = φ

Rearrange slightly to have
yV y−1 · zH ∩ yV y−1 · yH = φ

Whatever else it may be, W = yV y−1 is open in G and contains 1, so by our earlier observations, q(W · zH)
and q(W ·yH) are open, disjoint, and contain q(zH) and q(yH), respectively. This proves the Hausdorff-ness
of G/H . ///

4. Ascending unions, strict colimits

One lesson of the previous section is that general colimits may fail to have properties we need, such as
Hausdorff-ness. Fortunately, our ascending union

Q2 =

∞
⋃

n=1

2−nZ2 = colimn 2−nZ2

is a special sort of colimit.

A strict colimit is a colimit G of objects Gn where in the diagram

G0
ϕ01 //

j0

&&
G1

ϕ12 //
j1 %%
. . . G

the maps ϕn,n+1 : Gn −→ Gn+1 are all isomorphisms to their images. [ � � ]

[ � � ] That there is such a neighborhood Vo of 1 follows immediately from the continuity of G×G −→ G by multiplication.

[ � � ] The notion of image does not make sense in every category, although, luckily, it does have a sense in most familiar

categories. Recall that a map f : X −→ Y is an isomorphism to its image if the map f : X −→ f(X) is an

isomorphism, where f(X) is the image of X in Y by f . If, for example, these are topological spaces, then f(X) is

given the subspace topology.

12
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Remark: No, although we did prove that the 2−nZ2’s inject to their successors, we did not prove that these
injections are isomorphisms to their images. [ � � ] However, being bijective continuous maps from compact
spaces to Hausdorff spaces, it follows that these inclusions are homeomorphisms. [ � � ]

As usual, the mapping property definition specifies the object up to unique isomorphism, but it is useful to
identify in greater detail the topology on a strict colimit.

Claim: The strict colimit of topological spaces Xn (with inclusions jn,n+1 : Xn −→ Xn+1) is the set
strict colimit (ascending union) X (with inclusions jn : Xn −→ X) given the topology in which a set U in
X is open if and only if each Xn ∩ U is open in Xn.

Remark: Since the set strict colimit is the ascending union, we can safely reduce notational clutter by
identifying each set Xn with its image in the ascending union X , and concommitantly identifying the set
Xn with its image in Xn+1.

Proof: First, one should check that the sets U in X whose intersection U ∩Xn with every Xn is open really
do form a topology on X , but this is immediate.

Given an open set U in X , its inverse image in Xn via jn is simply Xn ∩ U , which is open by definition of
the topology on X . Thus, the inclusions jn : Xn −→ X are continuous.

Given a compatible family of continuous maps fn : Xn −→ Z, define f : X −→ Z pointwise in the only way
possible, namely

f(g) = fn(g) (for any n large enough so that g ∈ Xn)

using the fact that the ascending union is the set-colimit. We certainly do have the compatibility

f(jn(gn)) = fn(gn)

at least as set maps, because the ascending union is a set-colimit. To prove continuity of f , let V be open
in Z. Using the compatibility,

f−1(V ) ∩ Xn = f−1
n (V )

which is open in Xn by the assumed continuity of fn. Thus, f is continuous. That is, the ascending union
with this topology is a colimit of topological spaces. ///

Remark: Note that we make no claim about Hausdorff-ness or local compactness without further
hypotheses.

Theorem: Let topological groups Gn fit into a strict colimit diagram

G0
ϕ01 //

j0

&&
G1

ϕ12 //
j1 %%
. . . G

Suppose, further, that each Gn is open in Gn+1. Then the colimit G is Hausdorff and locally compact, and
the inclusions Gn −→ G are open maps. When the groups Gn act continuously on a topological space X ,
the strict colimit G acts continuously on X .

[ � � ] Not every continuous bijection is a homeomorphism. As a stark example, mapping {0, 1} to {0, 1} by 0 −→ 0 and

1 −→ 1, where the source copy has the discrete topology (all subsets are open), while the target copy has the indiscrete

topology (only the whole set and the empty set are open). This is continuous but not a homeomorphism.

[ � � ] The proof of this useful fact is simple: it suffices to prove that the map takes opens to opens, or, equivalently, closed

sets to closed. A closed subset of a compact set is compact, and the image of a compact set is compact. And then a

compact subset of a Hausdorff space is closed, and we are done.
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Remark: Since the continuous maps Gn −→ G are open[ � � ] they are homeomorphisms to their images. [ � �
]

Remark: To apply the theorem the colimit Z2 −→ 1
2Z2 −→ . . ., not only we must be sure that the colimit

is strict, but also that each image is open in the next object.

Proof: We claim that the strict colimit topology on the ascending union of the Gn’s (discussed in the previous
claim) constructs a topological-group colimit. We identify Gn with its image in Gn+1 and in the ascending
union.

First, using the assumption that Gn is open in Gn+1, we prove that the inclusion Gn −→ G is an open
map, that is, images of opens are open. Indeed, let U be open in Gn. By continuity of the transition maps,
the inverse images of U in Gn−1, Gn−2, and so on are open. Since each inclusion Gn −→ Gn+1 has open
image and is a homeomorphism, the images of U in Gn+1, Gn+2, etc., are open. Thus, by definition of the
topology, the image of U in G is open. In particular, Gn is open in G, and the inclusion Gn −→ G is a
homeomorphism to its image.

For the Hausdorff-ness of G, for given x 6= y ∈ G, let n be large enough such that x, y ∈ Gn. Since Gn is
Hausdorff, there are neighborhoods U 3 x and V 3 y in Gn such that U ∩ V = φ. Since U and V are still
open in G, this gives the Hausdorff-ness of G.

To prove local compactness, given g ∈ G again choose n large enough such that g ∈ Gn, and take a
neighborhood U of g in Gn with compact closure. Since Gn is open in G, this neighborhood is a neighborhood
of g in G as well, and has compact closure there, since the inclusion Gn −→ G is a homeomorphism to its
image.

We give the ascending union a group structure compatible with those on the limitands. This is easy,
since, given x, y ∈ G, for any large-enough index n we will have x, y ∈ Gn, and use the definition of the
group operation in Gn. Since the maps Gn −→ Gn+1 are group homomorphisms, we get the same answer
regardless of the choice of n. Similarly, to prove associativity, given x, y, z ∈ G, choose n large enough such
that x, y, z ∈ Gn, to infer (xy)z = x(yz) inside Gn. The property of the identity, and existence of inverses
follow similarly.

Similarly, to get a group action of G on X , without worrying about topology, given g ∈ G take n large
enough such that g ∈ Gn, and use the definition of the action g · x for Gn. The compatibility of the actions
of the various Gn’s implies that this is well-defined. The associativity g(g′x) = (gg′)x follows similarly, as
does 1 · x = x.

Next, in proving continuity of the group operation, given x, y ∈ G, take n large enough such that both x, y
are in Gn. Then x · y ∈ Gn. The group operation is continuous on Gn ×Gn −→ Gn, and since Gn is open in
G and the inclusion Gn −→ G is a homeomorphism to its image, this gives the continuity of G × G −→ G
at (x, y). The continuity of the inversion map is proven similarly from that on the individual Gn.

Similarly, to prove continuity of the action of G on X . Let m : G × X −→ X be the action just defined,
with mn : Gn × X −→ X the action of Gn. Let U be open in X . The compatibility of the inclusions with
the actions mn, together with the fact that Gn is open in G, implies that

m−1(U) =
⋃

n

m−1
n (U) = union of opens = open

That is, the action of G on X is continuous. ///

[ � � ] Again, a map is open if it sends open sets to open sets.

[ � �
] Again, for a map f : A −→ B to be a homeomorphism to its image means that the image f(A) with the subspace

topology inherited from the target space B is homeomorphic to A by f : A −→ f(A). And, again, this does not imply

that f : A −→ B is a surjection.
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To apply this theorem to

Q2 =

∞
⋃

n=0

2−n · Z2

what remains is to prove that each inclusion 2−nZ2 −→ 2−(n+1)Z2 has open image, since we have already
observed that Q2 is strict as a colimit.

To this end, consider the diagram

2−nZ2

pn−1 **

pn

++

i

��

. . . // 2−nZ/2−(n−1)Z //

in−1

��

2−nZ/2−nZ

in

��
2−(n+1)Z2

qn−1
44

qn

33 33
. . . // 2−(n+1)Z/2−(n−1) // 2−(n+1)Z/2−nZ // 2−(n+1)Z/2−(n+1)Z

To show that i(2−nZ2) is open in 2−(n+1)Z2, we will show that i(2−nZ2) is the inverse image ker qn =
q−1
n ({0}) of[ � � ]

{0} = in(2−nZ/2−nZ) ⊂ 2−(n+1)Z/2−nZ

The projection qn is continuous, so this inverse image will be open, as desired.

On one hand, the commutativity of the diagram shows immediately that

i(2−nZ2) ⊂ ker qn

On the other hand, to prove equality in this containment, proceed as follows. The restrictions to ker qn of
all the projections q` have images equal to the images of the vertical isomorphisms-to-their-images i`, so we
can create a compatible family of maps

f` = i−1
` ◦ q` : ker qn −→ p`(2

−nZ2)

This induces a map
f : ker qn −→ 2−nZ2

compatible with all the maps f`. By now it is not surprising that f is a two-sided inverse to i. This will
follow naturally from the compatibility

p` ◦ f = f` = i−1
` ◦ q`

combined with the compatibility
q` ◦ i = i` ◦ p`

Indeed,
q` ◦ i ◦ f = i` ◦ p` ◦ f = i` ◦ i−1

` ◦ q` = q`

As usual, only the identity map on a limit is compatible with all the projections, so

i ◦ f = identity on ker q

[ � � ] Each of the limitands is finite, so to be Hausdorff has no choice but to be given the discrete topology, the only

Hausdorff topology on a finite set. In a discrete topology, any subset is open.
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And
p` ◦ f ◦ i = i−1

` ◦ q` ◦ i = i−1
` ◦ i` ◦ p` = p`

so
f ◦ i = identity on 2−nZ2

Thus, f and i are mutual inverses, so i(2−nZ2) = ker q, which is open in 2−(n+1)Z2.

This completes the verification of all the hypotheses for application of the theorem.

Remark: Although it is possible to strengthen this discussion a bit, there are genuine complications in
treatment of colimits of topological groups, in contrast to limits.
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