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PREFACE

The twenty-five years that have passed since Atmospheric Radiation,
Theoretical Basis, was published have seen many altered perceptions,
usually direct results of changing technologies. Fortunately, there have
been fewer advances in fundamental ideas, which are the concern of this
book. The second edition has been extensively revised to reflect current
knowledge.

We have preserved the organization of the first edition to the extent
possible. The task of reconciling manuscripts by two authors writing a
continent apart was greatly eased by working to an established pattern.

Two new sections have been added. Whereas remote sensing (§ 6.5)
was in an early stage when the first edition was prepared, and at that time
offered few interesting and novel ideas, it is now a major discipline with
extensive relationships to many other fields.

Solutions to scattering problems were mentioned only in summary
form in the earlier work because Chandrasekhar's landmark book,
Radiative Transfer, appeared then to be definitive, leaving little room for
improvement. (That was before the advent of large computers.) Now the
symbiosis between transfer theory and numerical methods has given rise
to another important and sometimes elegant discipline (Chapter 8).

We wish to express our gratitute to a number of our colleagues who
assisted us in different ways: John Shaw helped us to come to grips with
modern theories of molecular spectra; Peter Gierasch contributed a
thoughful review of Chapter 10 at a time when it threatened to turn into
a monograph; Stephen Fels put much effort into reviewing some of the
chapters and gave us the benefit of his deep insights into many topics; we
are indebted to B. Crofton Farmer and his colleagues at the Jet
Propulsion Laboratory for access to their computer, their programs, and
their data, that has allowed us to prepare the illustrative spectra in
Chapter 3; Andrew Ingersoll, Donald Hunten, and Darrell Strobel made
available to use their lists of typographic errors in the first edition; and
we are particularly grateful to David Crisp who reviewed the entire
manuscript and offered invaluable comments on both style and content.

Finally we would not have attempted this revision but for kind and
encouraging comments by many individuals to the effect that they or their
students had derived benefit from the first edition; and we would not
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have been able to complete the task but for the generous hospitality of
the Jet Propulsion Laboratory that provided us with a meeting place.

Cambridge, Massachusetts R. M. G.
Pasadena, California Y. L. Y.
January, 1989
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1
INTRODUCTION

1.1. The nature of the problem

Earth, like the other inner planets, receives virtually all of its energy
from space in the form of solar electromagnetic radiation. Its total heat
content does not vary significantly with time, indicating a close overall
balance between absorbed solar radiation and the diffuse stream of
low-temperature, thermal radiation emitted by the planet. The transfor-
mation of the incident solar radiation into scattered and thermal
radiation, and the thermodynamic consequences for the earth's gaseous
envelope, are the subjects of this book.

The scope must be narrowed, however, because in its broadest
interpretation our title could include atmospheric photochemistry and
many other topics usually treated in books dealing with the upper
atmosphere. By restricting attention to the thermodynamic aspects, this
problem of selection usually resolves itself. For example, the absorption
of energy accompanying photodissociation or photoionization will be
considered if the energy involved is comparable to that of other sources
or sinks, but not otherwise. Similarly, the oxygen airglow has some
thermodynamic consequences in the upper atmosphere, but the impor-
tant topic of the airglow will be mentioned only in this limited context.

The irradiance1 at mean solar distance—the solar constant—is
slightly less than 1400 Wm- 2 , giving an average flux of solar energy per
unit area of the earth's surface equal to 350 W m-2 (the factor 4 is the
ratio of surface area to cross section for a sphere). Of this energy,
approximately 31% is scattered back into space, 43% is absorbed at the
earth's surface, and 26% is absorbed by the atmosphere. The ratio of
outward to inward flux of solar radiation is known as the albedo. We may
speak of the albedo of the entire earth or of individual surfaces with
reference either to monochromatic radiation or to a weighted average

whole is about 0.31, and an average of 224 Wm- 2 is available for
heating, directly and indirectly, the earth and its atmosphere.

The redistribution of this absorbed solar energy by dynamic and
radiative processes and its ultimate return to space as low-temperature

A brief account of the sun as a source of radiation is given in Appendix 9.

over the solar spectrum. In this last sense the albedo of the earth
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planetary or terrestrial radiation are the most important topics of this
book. They are related mainly to conditions in the troposphere and lower
stratosphere, where most of the atmospheric mass resides, but there are
also other problems of interest concerned with the small amounts of
ultraviolet radiation that can be absorbed high in the atmosphere where
densities are low and the resulting thermal effects may be large. This
raises problems, unfamiliar in the lower atmosphere, such as nonequi-
librium conditions, chemical energy, etc.

Assuming that the earth radiates as a black body in the infrared
spectrum, we may compute the general level of terrestrial temperatures.
The rate at which energy is absorbed by earth is

where /= solar constant (—1400 Wm~2),

r = earth's radius, and

a = albedo for solar radiation (—0.31).

The rate at which energy is emitted by earth is

where a = the Stefan-Boltzmann constant and

0e = effective emission temperature of earth.

If the planet is in a steady state, we may equate (1.1) to (1.2) to give
255.5 K for the effective emission temperature. This is lower than the
average temperature of the earth's surface but approximately equal to
the average temperature of the atmosphere, indicating that much of the
radiation to space must come from the atmosphere rather than from the
surface, a conclusion that is confirmed from a cursory examination of
the atmospheric absorption spectrum.

At a temperature of 255.5 K emission of thermal radiation is
negligible for wavelengths less than 4 jum (micron)2 and, since solar
radiation carries little energy at longer wavelengths, it is possible and
convenient to treat the solar and terrestrial fluxes independently. First
consider the terrestrial component. The principal gaseous constituents of
the atmosphere (O2, N2, A) are almost transparent to wavelengths longer
than 4jUm, but minor polyatomic constituents such as H2O, CO2, O3,
N2O, CO, and CH4 have intense and complex absorption spectra and are
present in sufficient quantities to absorb a considerable proportion of the

The micron (|Um) and other spcctrographic units arc discussed and defined in Appendix 2.
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terrestrial radiation. Dust, haze, and, perhaps most importantly, clouds
absorb and scatter light strongly throughout the entire spectrum. Since
clouds, ground, and atmosphere do not differ greatly in temperature, it
follows from Kirchhoff's laws that emission and absorption are approxi-
mately equal to each other. Terrestrial radiation is therefore passed from
layer to layer in the atmosphere, creating a transfer problem of great
intricacy. The situation differs in the upper atmosphere because
Kirchhoff's laws are not obeyed if the pressure is very low.

Absorption by polyatomic gases is complicated, each band consisting
of many lines whose individual shapes can affect the radiative transfer. If
the data are used in their entirety, even a relatively simple problem may
be impractical because of the requirements for computer time. Methods
are required that treat correctly only the essential statistics of the
problem. The development of such methods has led to a fairly complete
understanding of the transfer problem for constant-pressure paths.
Absorption along an atmospheric path, for which temperature, pressure,
and chemical composition all vary together, presents new problems, not
all of which have been solved.

Figure 1.1 gives a general picture of the importance of different
absorptions in the lower atmosphere for mid-latitudes. An indication of
the energy absorbed by the stratosphere or troposphere can be found by
multiplying (a) by (c) or by (b) — (c), respectively.

Most of the solar absorption in the stratosphere is by the ultraviolet
Hartley and Muggins bands of ozone. At much higher levels, the small
amount of solar radiation with wavelengths less than 0.2 jitm is absorbed,
mainly by molecular oxygen. In the troposphere, depletion of sunlight is
caused by a group of near infrared bands of water vapor. For terrestrial
radiation, water vapor is the most important single constituent of the
lower atmosphere, although carbon dioxide is always significant. In the
stratosphere, water vapor, carbon dioxide, and ozone are of comparable
importance, while in the mesosphere carbon dioxide dominates.

In addition to the absorptions shown in Fig. 1.1, both solar and
terrestrial streams of radiation are absorbed or scattered by dust, haze,
molecules, and clouds. The theory of scattering by molecules and by
water drops is well developed, but dust and haze cannot be treated so
precisely and their amounts are variable and difficult to relate to other
physical or meteorological phenomena.

The motions, temperatures, chemical composition, and amounts and
types of cloud are all related. Ideally, nothing should be taken as given;
all atmospheric properties, including the radiation field, should result
from model calculations, given only the fixed boundary conditions and
the incident flux of solar radiation. Fully interactive models are now
possible using the largest computers, but their very complexity presents
troublesome questions of verification and raises serious barriers to
understanding. Advances have, in fact, been quite limited and it is
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FIG. 1.1 Atmospheric absorptions, (a) Black-body curves for 6000 K and 250 K. (b)
Atmospheric absorption spectrum for a solar beam reaching ground level, (c) The same for
a beam reaching the temperate tropopause. The axes are chosen so that areas in (a) are
proportional to radiant energy. Integrated over the earth's surface and over all solid angles,
the solar and terrestrial fluxes are equal to each other; consequently, the two black-body
curves are drawn with equal areas. Conditions are typical of mid-latitudes and for a solar
elevation of 40° or for a diffuse stream of terrestrial radiation.

possible that the promise of very large computers is illusory if the
purpose is understanding as opposed to elaborate bookeeping.

Historically, before large computers became available, two classes of
study developed, one synthetic but limited in scope and the other
descriptive but aiming at completeness. The former, typified by the early
work of Gold and Emden, approaches from the standpoint of local
radiative equilibrium in an atmosphere of known cloudiness and chemical
composition, and inquires how far such models can account for the
observed atmosphere. Modifications, such as adding a convective
troposphere, can make models more realistic. This kind of a priori
approach was also important in the early days of planetary exploration
because almost no direct observations were available. The second class of
study, for which Simpson's early work is the paradigm, accepts the
observed thermal structure and attempts to calculate the accompanying
radiation field. The two methods are complementary; each throws some

4
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light on the nature of the hydrodynamic processes, the former from the
ways in which the models differ from observations and the latter by
computing the diabatic heating to which the motions must respond.
These classical methods, rather than the theory and results from large
numerical models, are emphasized in this book.

The theoretical basis of atmospheric radiation involves a wide range
of physical concepts and mathematical methods. It may help the reader
to indicate how the different chapters fit into the scheme of ideas that has
been outlined.

The remainder of Chapter 1 provides background information about
the observed thermal structure and chemical composition of the atmos-
phere. Chapter 2 outlines the formal mathematical theory required to
handle radiative transfer problems. Chapter 3 describes the physics of
molecular absorption and Chapter 4 discusses methods that isolate the
essential statistics from the mass of spectral details. Chapter 5 makes
some reference to the spectrographic data available for application to
atmospheric problems. Having provided in the last three chapters the
information required about atmospheric absorption, Chapter 6 is con-
cerned with calculating atmospheric radiation in an atmosphere of
arbitrary structure. The final section in Chapter 6 discusses the inverse
problem, namely the retrieval of atmospheric parameters from observed
satellite data. To this point dust and haze have not been considered and
clouds have been considered only in idealized form. Chapter 7 outlines
the theory of scattering by small particles and droplets and Chapter 8
discusses the mathematical methods required to use these data. Chapters
9 and 10 deal with some simple investigations involving atmospheric
radiation. Chapter 9 discusses atmospheres in radiative and radiative-
con vective equilibrium, and what we can learn from them. Chapter 10
outlines formal approaches to the problem of greatest concern to
meteorology, the interaction between fields of radiation and of motion.

1.2. The thermal structure of the atmosphere

The average thermal structure of the atmosphere differs little from year
to year, and it is useful to think in terms of climatological mean
conditions with small variations superimposed. Figure 1.2 shows lon-
gitudinally averaged temperatures for January and July in the Northern
Hemisphere. For the purposes of this book, these cross sections represent
conditions at all longitudes and in both hemispheres, although the
distribution of land and sea does influence climatological means.

The following features of Fig. 1.2 may be noted. The structure of the
lowest 2 or 3 km is complicated, with inversions at some latitudes. Above
3 km, however, there are some regular features. The equally spaced
isotherms indicate a constant lapse rate of about 6.5 K km^1, independent
of both season and latitude. At the tropopause a sudden change to
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FIG. 1.2. Meridional cross sections of longitudinally averaged temperatures. Temperatures
are in Centrigrade. Northern Hemisphere data: (a) January, (b) July. Heavy lines indicate
the tropopause and the arctic inversion. After Holton (1979).

isothermal or inversion conditions takes place. The tropopause is usually
multiple between latitudes 30° and 50°, where the high tropical tropo-
pause overlaps the low arctic tropopause. In the stratosphere, tempera-
tures are, curiously, lower in tropical regions than in the arctic. In
Appendix 3 atmospheric parameters are given for a model atmosphere in
the range 0-30 km.

6



INTRODUCTION

FIG. 1.3. Temperature of the midhdle atmosphere at solstice. After Brasseur and Solomon
(1984).

Above 30 km thermal data are more sparse. The main feature of Fig.
1.3 is a temperature maximum close to 50km at all latitudes. The
temperature minimum at 80 km may be deeper (down to 130 K) than is
indicated in the figure. Above this minimum, the rise of temperature into
the thermosphere is a dominating feature of the upper atmosphere.
Numerical details are given in Appendix 3.

Above 100 km the physical and chemical state of the atmosphere is
variable. Temperature always increases with height up to about 250 km,
above which level the thermal conductivity of air is so large as to create a
near-isothermal state. Whether this constant temperature is as low as
1000 K or as high as 2000 K depends on the level of solar activity; the
diurnal variation is also large. Figure 1.4 shows two temperature profiles
up to 500 km, and Appendix 3 gives data on a model atmosphere up to
1000 km.

Atmospheric nomenclature is generally derived from the thermal
state. We have already used the terms troposphere, stratosphere,
mesosphere, and thermosphere. These designations suffer from being too
evocative and there is almost no physical distinction to be drawn between
the stratosphere and the mesosphere. Better terms are lower atmosphere
(troposphere), middle atmosphere (stratosphere and mesosphere), and
upper atmosphere (above 80 km).

The lowest 1 or 2 km of the atmosphere differs from the remainder

h7
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FIG. 1.4. Kinetic temperature up to 500 km. From the £7.5. Standard Atmosphere 1976.

of the troposphere. Interactions with the surface are strong and diurnal
variations are large. The lowest 100 m or so has been intensively studied
and is referred to as the planetary boundary layer.

1.3. The chemical composition of the atmosphere

A summary of the available data on the composition of dry air is given in
Table 1.1. Relative concentrations for important isotopes are given in
Table 1.2. From these figures the totals in Table 1.1 can be broken down
into isotopic components, if required.

Concentrations of atmospheric gases are subject to chemical and
photochemical alteration. Molecular oxygen is decomposed into atoms
above 90 km. Methane and nitrous oxide are unstable in the stratosphere.
Figure 1.5 shows representative vertical profiles of the species listed in
Table 1.1, for average, mid-latitude conditions.

The concentration of water vapor is influenced by condensation, and
the gas is not evenly mixed with other constitutents below 15 km. In the
troposphere, the average relative humidity is close to 50% and the vapor
pressure varies over a very wide range. For a ground temperature of
278 K the vapor pressure is close to 8 mb, on the average; above 15 km

h8
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Table 1.1. The composition of dry air

Molecule

Fraction by
volume in the
troposphere Comments

N, 7.8084 x 10 l Photochemical dissociation high
in the ionosphere; mixed at
lower levels

O, 2.0946 x 10 * Photochemical dissociation above 95 km;
mixed at lower levels

9.34 x 10 3 Mixed up to 110km; diffusive separation
above

CO, 3.45 x 10 Slightly variable; mixed up to 100km;
dissociated above

CH4 1.6 x 10 6 Mixed in troposphere; dissociated in
mesosphere

N,O 3.5 x 10 7 Slightly variable at surface; dissociated in
stratosphere and mesosphere

CO 7 x 10 8 Variable photochemical and combustion
product

Highly variable; photochemical origin

CFC13 and 1-2 x 10 10 Industrial origin; mixed in troposphere,
CF2C12 dissociated in stratosphere

Note: Many other trace gases are present in the atmosphere, some of which (e.g., H2, NO,
SO2, NH3, Ne, He, Rn, Kr, Xe) have been extensively studied, but none influences the
radiation fluxes to a significant extent. In addition to these gases, the atmosphere contains solid
matter in suspension, whose concentration and composition are highly variable. Water vapor is
discussed in the text; the above figures apply to dry air.

the relative humidity falls to 1% and the vapor pressure averages
4xlO~~ 4 mb. Measured frost-point temperatures are shown in Fig. 1.6.
These may be interpreted in terms of vapor pressures with the aid of the
vapor-pressure data in Appendix 4. The highest available frost-point
measurements from aircraft indicate a frost-point temperature of 189 K at
15 km at all times and over a wide range of latitudes. Other observations
suggest that, above this level, oxidation of methane provides an
additional source of water. Photochemical decomposition of water starts
around 80km, reducing the mixing ratio above this level.

9
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Table 1.2. Isotopic abundances in
nature

Isotope
Percentage

relative abundance

'H
2D

99.9851
0.0149

12C
13C

98.892
1.108

16Q

170
18Q

99.758
0.0373
0.2039

5N
99.631
0.369

Note: Almost all terrestrial hydrogen is combined
in the form of water. Since HHO and HDO have
different vapor pressures, the relative concentra-
tions of 2D to H can vary from phase to phase
by as much as 10%. Small differences in the con-
centrations of oxygen isotopes also occur.

The vertical distribution of ozone differs from that of other atmos-
pheric gases, having a maximum number density near to 25 km (Fig. 1.7).
Ozone is formed photochemically from oxygen: rapidly above 30km so
that equilibrium is obtained during daylight hours and slowly below this
level so that ozone concentration depends on mixing and transport
processes, and is highly variable. This variability is reflected in the

FIG. 1.5. Vertical profiles of mixing ratio of selected species at equinox. After Allen et al
(1981, 1984).
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FIG. 1.6. Mean temperature and frost-point over southern England. After Murgatroyd et
al. (1955).

seasonal and latitudinal changes shown in Fig. 1.8. The maximum ozone
amount occurs in the polar night, where none is formed. Day-to-day
ozone changes are related to the passage of weather systems.

Carbon dioxide strongly influences the radiation field at all levels
below 100km. It is chemically unreactive and has its main sources and
sinks in industrial and biological processes at the earth's surface. In the
planetary boundary layer, its concentration is variable but, at higher
levels, its mixing ratio is essentially constant below the dissociation level
of molecular oxygen; above this level carbon dioxide dissociates. The
total amount of carbon dioxide in the atmosphere is slowly increasing
with time (Fig. 1.9) because of industrial and agricultural activity.

Methane and nitrous oxide are of biospheric origin. Both are
destroyed by photochemical processes in the middle atmosphere. Obser-
vations show that their mixing ratios are constant in the lower atmos-
phere and slowly increase with time.
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FIG. 1.7. The vertical distribution of ozone. The solid line is the result of theoretical
calculations by Logan et al. (1978) for middle latitudes, and the points are measurements by
a number of different authors.

FIG. 1.8. Latitude-season cross section of total ozone. The total ozone in a vertical
column is measured in units of lCr3cm of the gas reduced to s.t.p. (Dobson units). After
Brasseur and Solomon (1984).
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FIG. 1.9. Molecular concentration of CO2 at the Mauna Loa observatory, Hawaii. Both
long-term and seasonal changes are shown. After Bacastow et al. (1985).

Tropospheric carbon monoxide is a photochemical and combustion
product, more variable in composition than are methane and nitrous
oxide. The molecular mixing ratio varies from 5 x 10~8 in the Southern
Hemisphere to 2 X 10~7 in the Northern Hemisphere. The vertical
distribution is irregular, reflecting the production and loss processes.

Dust and haze are so variable in amount and chemical composition
that few generalizations can be made, particularly about the vertical
distribution. Visibility measurements reflect the aerosol concentration at
ground level. The visual range can vary from a meter or two to 200 km,
depending upon atmospheric conditions. Generally speaking, dust and
haze concentrations decrease rapidly with height in the troposphere; a
scale height of 1 km is typical. Visible tops are formed at inversions.
Haze particles are frequently hygroscopic and their size depends upon the
relative humidity. In the stratosphere the concentration of aerosols
smaller than 0.1 ̂ m continues to fall off with height, but larger particles
(0.1 ^m-l.O^m) increase to a maximum near 20km. Aerosols are
usually considered important for their effects on solar radiation, but they
may also modify the terrestrial radiation, particularly close to the ground.

Clouds have very great influence on both the solar and the terrestrial
radiation. They are properly described as aerosols but are always treated
as an independent phenomenon. It is not possible to give a useful, brief
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description of cloud climatology, cloud physics, and the associated
dynamic processes.
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THEORY OF RADIATIVE TRANSFER

2.1. Definitions

2.1.1. Intensity, flux, energy density

In common with astrophysical usage the word intensity1 will denote
specific intensity of radiation, i.e., the flux of energy in a given direction
per second per unit frequency (or wavelength) range per unit solid angle
per unit area perpendicular to the given direction. In Fig. 2.1 the point P
is surrounded by a small element of area dns, perpendicular to the
direction of the unit vector s. From each point on dns a cone of solid
angle dcos is drawn about the s vector. The bundle of rays, originating on
dns, and contained within da>s, transports in time dt and in the frequency
range v to v + dv, the energy

where IV(P, s) is the specific intensity at the point P in the s-direction. If
Iv is not a function of direction the intensity field is said to be isotropic ; if
Iv is not a function of position the field is said to be homogeneous. If it is
more convenient to use wavelength than frequency we have the alterna-
tive definition of intensity,

where c is the velocity of light.
The component of flux in the d direction, Fvd(P}, is defined as the

total energy flowing across unit area perpendicular to d, per unit
frequency interval. An infinitesimal area dnd has a projected area in the s

1 Much of the early work on radiative transfer is to he found in the astrophysical literature. SI
nomenclature differs from astrophysical nomenclature and is more suited to situations involving finite
sources. Equivalents arc specific intensity (this book) and radiance (SI) and flux (this hook) and exitance
(SI). This book does not use an equivalent to radiant intensity (SI) and the SI system does not use an
equivalent to irradiance (this book) .

or
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FIG. 2.1. Specific intensity of radiation.

direction,

where (d, s) denotes the angle between the two vectors. The energy flux
across dnd, integrated over all s directions is, from the definitions of
IV(P, s) and FVid(P),

or

where the integral extends over all solid angles.
If x, y, z are three orthogonal unit vectors, we have the trigono-

metric identity

Substituting in (2.3),

Equation (2.4) is the transformation law for the components of the vector
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The sun's disk subtends, on the average, an angle of 32' at the
earth's surface; for most practical purposes sunlight can be regarded as a
parallel beam of radiation. The above definition of intensity is unneces-
sarily general for this case. Let us suppose that the sun's direction is that
of the vector s®, and let its disk subtend a solid angle dco& at the earth.
For unmodified solar radiation, IV(P, s) is only nonzero if s is very close
to s©. In most circumstances, therefore, we may replace the angle (d, s)
by (d, s©). From (2.3),

where 7r is the mean value of the intensity, averaged over the sun's disk.
If we write

then

is the solar irradiance, a positive quantity that is a function of solar
distance only.

We can now evaluate the energy density («v) of a radiation field.
Consider a cylinder, parallel to the s direction, of length ds and cross
section dns (Fig. 2.2). A photon traveling in the s direction will spend a
time dt = ds/c in the cylinder, where c is the velocity of light. The total
amount of energy in the cylinder made up of photons traveling in the s
direction within the solid angle da>s is that which crosses dns in time dt:

FIG. 2.2. Radiative heating.
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The volume of the cylinder is ds dns and these quanta contribute to the
energy density an amount

Integrating over all directions we find for the energy density in the
frequency range v to v + dv:

Hence,

where

is the mean intensity of the radiation field.
The divergence of the energy flux equals the rate at which energy is

added to the field per unit volume, i.e., the rate at which energy is lost by
the matter. Let hv be the rate per unit volume at which heat is gained by
matter from radiation in unit frequency range

Expanding the right-hand side of (2.10) and using the definition of flux
(2.3), we find

The meaning of (2.11) is made clear by Fig. 2.2. The energy lost by
matter in the small cylinder is [dlv(s)/ds] dsdns da>s per second per unit
frequency range. Since ds dns is the volume of the cylinder, the heat loss
per unit volume from radiation traveling in the s direction is
[dlv(s)/ds] d(os, and (2.11) follows by integrating over all a>s..
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In later sections of this chapter the operator d/ds occurring in (2.11)
will be written in different forms that we will state now so that they may
be conveniently compared:

(where %x>y,z is the cosine of the angle between the direction of the
intensity and the x, y, and z directions);

In later chapters we will frequently make use of the concept of
radiative equilibrium, whereby there is no net energy exchange between
matter and the radiation field,

A special case of radiative equilibrium is monochromatic radiative
equilibrium where

In defining radiative equilibrium, and in other problems concerning
atmospheric thermodynamics, the relevant quantities are those that are
integrated over the entire spectrum. This operation will be indicated by
omitting the suffix v from frequency-dependent quantities. Thus,

There are circumstances in which limited frequency ranges have
particular physical significance, e.g., the frequency range embracing an
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isolated absorption band. Integrals over such ranges will be designated by
a suffix other than v. Thus,

2.1.2. Extinction and emission

We now require formal definitions for the interactions between matter
and a radiation field. For most atmospheric problems a name can be
assigned to a process without difficulty, and careful definitions may seem
pedantic. However, if we wish to examine the whole range of atmos-
pheric phenomena, without having to modify definitions, it pays to
examine the situation closely.

The totality of interactions between radiation and matter will be
classed as either extinction or emission. The two processes are distin-
guished by the sign of the change of radiant intensity as a result of the
interaction. If the intensity decreases then we have extinction', if the
intensity increases we have emission. No interaction at all can be pictured
as the simultaneous extinction and emission of identical quanta, or,
alternatively, as a case of vanishingly small interaction coefficients. This
prosaic distinction between extinction and emission is the only one that
applies to all phenomena described by the two terms.

The fundamental law of extinction is that of Lambert.2 It states that
the extinction process is linear, independently in the intensity of radiation
and in the amount of matter, provided that the physical state (i.e.,
temperature, pressure, composition) is held constant. The possible
processes nonlinear in the light intensity have been fully explored. The
scattering of light by light is a tractable theoretical problem and the
nonlinear scattering from bound electrons can be observed in the
laboratory with the aid of coherent light amplifiers. The photon densities
required to exhibit nonlinear effects are greatly in excess of those
occurring in planetary atmospheres, and deviations from Lambert's law
on this account are completely negligible. On the other hand, the optical
properties of individual molecules are strongly influenced by the proxi-
mity of other molecules; the problem of pressure broadening of spectral
lines, which will be discussed in Chapter 3, is one example. However, if
we postulate that the matter is always in the same physical state, then the
intermolecular forces are fixed. Under this condition, only a linear
dependence of extinction on amount of matter is possible.

The name of Bouguet is more commonly used in European literature.

m.ixrnn
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From Lambert's law, the change of intensity along a path ds is
proportional to the amount of matter in the path,

where eV;V is the volume extinction coefficient. To satisfy Lambert's law,
ev>v must be proportional to the local density of absorbing matter.

The argument that the extinction process is linear in the amount of
matter applies with equal force to the emission process. As a formal
statement, we may write

defining the source function Jv, the form of which will be the subject of
later discussion.

The dependence of ev v on the density of matter gives rise to a
number of different expressions: en = ev/n, where n is the number density
of absorbing molecules, defines the molecular extinction coefficient;
em = ev/p, where p is the density of absorbing matter, gives the mass
extinction coefficient; es = evn/«s, where ns is Loschmidt's number, yields
the extinction coefficient per cm s.t.p., alternatively stated, per cm-
Amagat. The interrelations between these coefficients are discussed in
Appendix 2.

Our earlier statement that all interactions can be classed as extinc-
tion or emission can now be summed up in the statement that any change
in intensity resulting from the interaction of matter and radiation must be
the sum of (2.15) and (2.16),

and hence

Equation (2.17) is known as the equation of transfer, and was first
given in this form by Schwarzschild. While it sets the pattern of the
formalism used in transfer problems, its physical content is very slight.
The physics is mainly contained in the definitions of the extinction
coefficient and the source function. Equation (2.17) can be written in any
of the other notations (2.12); in particular the vector notation is

where the del operator operates on the position vector of P.
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Combining (2.10), (2.11), and (2.17), we can now express the
heating rate in terms of the source function and extinction coefficient,

where

Equation (2.18) expresses the heating rate as the difference between
the absorption from the mean radiation field and the mean emission. The
condition for monochromatic radiative equilibrium (2.14) is now

We will find it convenient for some purposes to use only quantities
with the dimensions of intensity. The heating function H/ has such
dimensions, but is defined for a finite frequency interval only,

Further subdivision of interactions between matter and the radiation
field depends on the physical process involved, and particularly on
changes of internal energy of the matter. If radiation interacts with
matter whose only mode of internal energy is translational, then the
interaction coefficients are very small in all circumstances discussed in this
book. For example, if a 0.1 jum phohhton interacts with a free electron
(Compton scattering), only 5 X 10~5 of its energy is transformed into
kinetic energy, and this is the most efficient conversion of any relevance
to the atmosphere. If there is no change of any form of internal energy
the interaction is a simple scattering process. There is a close approach to
simple scattering when the matter has only narrow (quantized) states of
internal energy and the incident photon has a frequency far from that of a
possible transition.

All matter with which we will be concerned has electronic, vibra-
tional, and rotational internal energy, and some small interaction at least
will take place between these energy states and incident radiation. The
process may still be classified as scattering, however. An interacting
photon will cause a transition to a higher, excited state. The excited state
has a limited lifetime, and if the absorbed photon is reemitted with

han of interactions between ma
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negligible conversion to translational energy, the process is one of
scattering. If the transition to the lower state takes place in one step, then
the emitted photons will have frequencies identical to those of the
absorbed photons, and we refer to a process of coherent scattering. The
molecule may, however, revert to the ground state by a cascade process
through intermediate levels. The emitted photons now differ in frequency
from those incident, but the total energies of the extinction and emission
processes are the same; this is incoherent scattering.

It often happens, however, that before the matter can reemit,
molecular collisions occur, during which nonradiating transitions
(deactivation) can take place. The energy then ends up in other forms of
internal energy. In the case of complete thermodynamic equilibrium the
energy is shared equally among all the accessible degrees of freedom.
Where energy is transferred to kinetic energy, the process is called
absorption; the reverse process will be called thermal emission. Thermal
emission and scattering are not mutually exclusive, and frequently occur
simultaneously. We shall see that circumstances occur when there is
essentially no distinction, other than semantic, between them. Since all
processes are linear, the extinction coefficient can be expressed as the
sum of an absorption coefficient (kv) and a scattering coefficient (sv):

The most general problem in atmospheric radiation therefore has a
source function consisting of two parts,

One physical observation can usefully be introduced at this stage;
namely, that the atmosphere is effectively isotropic. Exceptions exist,
such as raindrops falling under gravity and the ionospheric propagation of
radio waves in the earth's magnetic field, but these are of a relatively
obvious character. Assuming isotropy, and accepting the random nature
of molecular agitation, there is no sufficient reason for absorption and
thermal emission to be anything but isotropic.

Simple scattering, on the other hand, involves a very direct
connection between incident and emitted radiation. Since light has vector
properties (see §2.1.3), isotropy is no longer expected, and is not
observed for scattering either by molecules or small particles. The more
complex scattering process, involving transitions between quantized
states, may or may not preserve some memory of the vector properties of
the incident photon. Thus, although it must be with circumspection, it is
possible to think of absorption and scattering processes as differing in the
symmetry of the source function, although this is neither as fundamental
nor as useful a distinction as that adopted in this section.
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If we consider carefully the meaning of the word "heating", it is
synonymous with an increase in the translational energy of matter. Our
definitions of scattering and radiative equilibrium therefore correspond,
and there is, for example, no formal mathematical distinction between
absorption in radiative equilibrium and isotropic scattering.

2.1.3. Simple scattering

In the previous paragraph the vector properties of electromagnetic
radiation were first mentioned. We now discuss how to write the equation
of transfer in a suitable matrix form.

According to the Maxwell equations, the most general propagating
electromagnetic wave consists of vibrations of the electric vector in the
plane transverse to the direction of propagation. To specify the phase and
polarization of the radiation field requires a pair of complex numbers.
However, in the formulation of the equation of radiative transfer, it is
more convenient to use an equivalent representation employing four real
quantities known as Stokes parameters, each with the physical dimensions
of an intensity. We will denote these by /^ (i = 1,2, 3,4).

The most general polarization from a single source is elliptical. The
polarization ellipse can be defined in terms of the intensities of two
components polarized at right angles to each other, and the direction in
space of the major or minor axis of the ellipse. Let I and r be two unit
vectors forming an orthogonal set with s, the direction of propagation.
Let /(v° and /tr) be the intensities of the two polarized components of the
beam. The total intensity is

and both component intensities are determined if we also know

Let tan /3 equal the ratio of the axes of the polarization ellipse, and let x
be the angle between 1 and the major axis. We define

and

We can now make a variety of choices for the Stokes parameters:
(Iv, Qv, Uv, Vv) is one possibility; (/<°, /tr), f/v, Vr) is another. Four
parameters are more than are necessary to specify an elliptically
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polarized beam, for which the following relation exists,

A more general field may contain many independent, polarized
components. If, as in nature, these possess no systematic phase relations,
then the Stokes parameters are additive, but (2.28) no longer holds. Then
all four parameters are required to define the field. Natural (or
unpolarized) light has /1° = /lr), and therefore Qv = Uv = Vv = 0.

If we now consider the equation of transfer (2.17), we need to make
no modifications except to substitute fy and J^ in place of Iv and Jv. In
particular, we do not need to modify our definition of the extinction
coefficient, which is the same for all Stokes parameters if the medium is
isotropic. The problem is to write the source function in a form that can
be related to the phase matrix Pijy which in turn can be calculated from
electromagnetic theory.

When an incident bundle of radiation, characterized by the fluxes
/v}(s) d(os (i = 1, 2, 3, 4), is scattered by an infinitesimally small quantity
of matter, we observe a new radiation field characterized by the vector
diy\A) (emission) (/ = 1, 2, 3, 4). According to Lambert's law, these
quantities must be linearly related. Stating this relationship in its most
general form

where, following the sum rule for repeated indices, the right-hand side is
summed over all i. Wj,-(s, d) is an intensity transformation matrix, whose
form will be discussed in Chapter 7, and which, according to Lambert's
law, must be proportional to the amount of matter. As a matter of
definition, which is obviously pertinent, we may assume W(i to be
proportional to sv>v ds/4jt, where sv,r is the volume scattering coefficient.
Thus we can write

where the constant of proportionality P^ is the phase matrix.
Substituting (2.30) in (2.29), and integrating over all angles of

incidence, we find

and hence, from (2.16), the source function is
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The components of the phase matrix are related to each other by
Maxwell's equations, but one component must be normalized if energy is
to be conserved in a strictly scattering or conservative process. This
normalization may be expressed by

where P = PU is the matrix component for transformation of intensity to
intensity. For most purposes in this book, we need only consider this one
component.

A special case, for which there is an extensive literature, is that of
isotropic scattering, P = 1. Atmospheric aerosols do not scatter isotopi-
cally, but for molecules and very small particles this can be a useful
approximation.

One consequence of (2.33) is that there is no formal distinction
between calculations for conservative processes on the one hand and for
radiative equilibrium on the other. For conservative scattering (2.32)
reads

From (2.33),

which, from (2.20), is the condition for radiative equilibrium.

2.2. Thermal emission

2.2.1. Thermodynamic equilibrium

Thermodynamic equilibrium describes the state of matter and radiation
inside a constant-temperature enclosure. The equilibrium is complete for,
according to the second law of thermodynamics, no thermal changes can
be produced by any mechanism without the intervention of external
work. The implications are far reaching and were first described by
Kirchhoff in 1882. Radiation inside the enclosure is known as black-body
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or enclosed radiation. The latter is the better name, but the former is
more commonly used.

Kirchhoff's deductions were as follows.

(a) In each separate, homogeneous medium within the enclosure,
the radiation is homogeneous, unpolarized, and isotropic.

(b) The source function is equal to the intensity,

/

(c) c'2/v is the same in all media in the enclosure, where c' is the
velocity of light in the medium concerned.

(d) As a direct consequence of (c), c'2/v must be a universal
function of temperature (0) only, and will be written c2Sv where c is the
velocity of light in vacua.

A further consequence of the existence of strict thermodynamic
equilibrium is that Bv must have the form

where F is an unknown function. The proof of this statement is to be
found in standard textbooks on thermodynamics. Differentiating (2.35)
with respect to v, we can show that the turning points of the function Bv

are determined by the ratio 61 v, or the product 6X, only. This is Wien's
displacement law.

Integrating (2.35) over all frequencies and making the substitution
x = 6/v, there results

This is the Stefan- Boltzmann radiation law, and o is the Stefan-
Boltzmann constant.

Investigation of the function F was the historical reason for the
development of quantum theory. Planck's theory leads to the expression

where h = Planck's constant, and

k = Boltzmann's constant.
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Using equation (2.2), we may write alternatively,

where

and

are known as the first and second radiation constants, respectively.
Both forms of the Planck function (2.37) and (2.38) are shown in

Fig. 2.3. Tabulated values are given in Appendix 5. Bv has a single
maximum at

while the maximum of is at

The curve with ordinate ABA in Fig. 2.3 illustrates an important
practical point in atmospheric computations. A black body at 6000 K has

FIG. 2.3. The Planck function. The curve with ordinate ABA gives areas proportional to
energies.



30 ATMOSPHERIC RADIATION

only 0.4% of its energy at wavelengths longer than 5jum; a 250 K black
body, on the other hand, has only 0.4% of its energy at wavelengths
shorter than 5 ,um. For most practical purposes, therefore, the solar and
terrestrial radiation streams can be treated independently.

The Planck function behaves very differently in its two wings. As
A — »o° or v— »0,

(2.41) and (2.42) are known as the Ray leigh- Jeans distribution. As A— »0
or v^»°°,

which is the Wien distribution.

2.2.2. Breakdown of thermodynamic equilibrium

In strict thermodynamic equilibrium, the source function depends only
upon temperature, frequency, and the velocity of light. This so greatly
simplifies the problem of radiative transfer for thermal radiation that it is
important to understand the conditions under which Planck's source
function may be an adequate approximation. Before Milne's analysis of
the problem in 1930, it was usually assumed that the Planck function was
correct for thermal radiation, for reasons that appear to have been based
on the following argument. Consider a small element of matter inside a
constant- temperature enclosure, where it absorbs and emits according to
Planck's and Kirchhoff's laws. If we extract this element from the
enclosure without altering its physical state, the only change to which it
can react is to the incident radiation, which is not the same outside as
inside the enclosure. Since it is reasonable to suppose that emission is a
property of matter alone, the source function should not be affected by
this change, and should continue to be the Planck function.

This argument is fallacious, however, because, as first pointed out by
Einstein, emission is also influenced by the incident radiation field
(induced emission). The important practical question is the extent to
which the absorption coefficient and the source function can be changed
from their equilibrium values by the action of the incident radiation.

Since the discussion now involves disequilibrium states, we can no
longer use thermodynamic arguments but, instead, we must employ a
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microscopic statistical model. In this section, we shall follow the
consequences of this model to the point of understanding the conditions
under which Kirchhoff s and Planck's laws fail. A more difficult problem
is to derive an accurate source function under these conditions. That
question will be considered in § 6.3.3.

Thermal equilibrium can be denned in terms of Boltzmann's law for
the distribution of molecules between two states (1 and 2),

where the n's are state populations, the g's are statistical weights, and the
E's are energies; v1|2 is, by Planck's quantum relationship, the frequency
of a photon absorbed or emitted during a radiative transition between the
two states, and h and k are Planck's and Boltzmann's constants. As
applied to translational modes, (2.45) leads to Maxwell's distribution of
molecular velocities. For complete equilibrium, (2.45) is obeyed for all
energy states, regardless of their nature and throughout the medium.

Complete equilibrium is an idealization, appropriate to the inside of
a constant-temperature enclosure in which nothing changes and to which
we have no access. We wish to treat systems not in equilibrium but to
which Boltzmann's law applies in a limited sense, namely, those for
which (2.45) applies to certain groups of levels, but not to all levels. We
say that the relevant levels are in a state of local thermodynamic
equilibrium (LTE) at a given temperature. To give a concrete example,
consider resonant fluorescence of sodium vapor at room temperature.
The translational energies of the sodium atoms will be close to local
thermodynamic equilibrium, while the glowing gas emits as if it were at a
temperature of thousands of kelvin.

Einstein demonstrated that Planck's source function results if (2.45)
is obeyed for the levels under consideration. We may, therefore, regard
Planck's and Boltzmann's laws as interchangeable; conditions leading to
one lead to the other, and vice versa. We shall go further and
demonstrate that a one-to-one relationship exists between the source
function and the state populations and, therefore, that our task is simply
to calculate the state populations. Now, it is known that collisions acting
alone will bring about a Boltzmann distribution and, consequently, a
Planck source function. But, in a collisionless medium, radiation can
bring about almost any population of energy levels and Planck's law need
not be obeyed.

The population of energy levels and the resulting source function will
be the result of a conflict between collisional and radiative effects. The
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rate of collisional adjustment of state populations is determined by a
relaxation time, t\, that is inversely proportional to the collisional rate (or
proportional to the pressure). Radiative adjustment is determined by the
natural lifetime of the excited states with respect to radiative transitions,
(j), a molecular constant, independent of the state of the medium. When
r]/<f)«1, LTE should occur and Planck's law will be valid; when
r7/</> » 1, on the other hand, a different source function will probably be
required. Because of the rapid variation of pressure with height and the
dependence of r] on the pressure, there will be a fairly sharply denned
relaxation level in the atmosphere below which Planck's law is valid for
transitions between a particular pair of energy levels but above which
another source function will be required.

We shall, primarily, be concerned with interactions between vibra-
tional, rotational, and translational levels. If all these levels were in
disequilibrium it would be difficult, if not impossible, to derive a useful
source function. Fortunately, we may treat the case of disequilibrium
among vibrational states while the translational and rotational levels are
in local thermodynamic equilibrium. We shall justify this statement for
the rotational levels in § 2.2.4, but we may discuss the translational states
now.

The temperature denned by (2.45), if applied to the populations of
the translational states, is the kinetic temperature. Every collision makes
some adjustment to the translational energy states and, from this, we
shall show that there is a unique kinetic temperature wherever there is a
fluid atmosphere. Consider levels in the thermosphere where diffusion is
the most important heat transfer process. Disturbance of the equilibrium
among translational states will be caused by the arrival of molecules from
levels with differing kinetic temperatures. A relevant dimensionless
parameter is,

where / is the molecular mean free path and z is the altitude. If A « 1 we
have, in effect, an unlimited isothermal collisional region and we expect
to obtain Maxwell's distribution. If A » 1, on the other hand, a unique
Maxwell distribution is impossible. A gradient of 1 Kkm"1 at a tempera-
ture of 1000 K leads to A — I x 10~8. If / approaches one scale height
(about 50km at these levels) molecules may leave the atmosphere
without performing collisions on the way. This condition defines the
lower boundary to the exosphere, which we may conveniently take to be
the upper limit to the fluid atmosphere. At this level A~ 0.05 and
equilibrium may be expected between the translational modes. The
kinetic temperature and the Maxwell distribution are therefore valuable
concepts at all levels considered in this book.
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The model developed in the following sections treats rotation and
vibration as independent forms of energy. As will be discussed in Chapter
3, this is not strictly correct for polyatomic molecules, but the question is
unimportant in the present context.

2.2.3. The interaction between matter and radiation

An upper and a lower vibrational level (u and /) are connected by
collisional and radiative transitions (Fig. 2.4). Collisional transitions (b
coefficients in Fig. 2.4) involve a radiating and a colliding molecule and
can raise or lower the vibrational energy. Similarly, absorption and
induced emission (the C coefficients) involve a radiating molecule and a
photon and cause transitions in both directions. Radiative transitions can
also take place spontaneously, without the presence of a photon or a
colliding molecule (A coefficients), but only in a downward direction. For
completeness, we include in Fig. 2.4 transitions involving other levels of
the same molecule or of different molecules (designated by k).

Radiative transitions are accompanied by the appearance or disap-
pearance of a photon. We assume that we may distinguish photons
associated with u<^>l transitions from all others. This may not always be
an easy thing to do because ground-state and upper-state transitions
(Chapter 3) may be very close. Given unlimited spectral resolution, the
distinction can always be made, however, and we shall assume that there
is no ambiguity.

Each vibrational state has a rotational-translational fine structure
that gives rise to the characteristic appearance of a vibration-rotation

FIG. 2.4. Transitions involving two vibrational levels. n(u), n(l), and n(k) are number
densities. A(u, 1), C(u, I), and C(l, «) are Einstein coefficients. />(«, /) and b(l, u) are
collisional transition coefficients. The heavy horizontal lines are the vibrational energy
levels; the shaded areas show, schematically, the rotational fine structure.
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band (Chapter 3). According to our assumptions, the states forming this
fine structure are in thermodynamic equilibrium and their relative
populations may be incorporated into a fixed structure factor, f(y — v0),
where v is the frequency of the absorbed or emitted photon, and v() is the
frequency of the vibrational transition alone, /is normalized,

(i) The Einstein relations. Consider an element of matter with state
populations «(«) and «(/), interacting with a radiation field containing
uv dv photons per unit volume with frequencies between v and v + dv.
For the remainder of this section we shall express all radiation para-
meters in terms of the energy unit hv, so that all previous expressions for
Iv, Bv, and uv must be divided by hv.

The radiative transitions (u <H> /) per unit volume and per unit
frequency range can now be specified in terms of the structure factors and
three Einstein coefficients.

Rate of spontaneous emission

rate of induced emission

and rate of absorption

We may eliminate two out of the three coefficients by requiring that,
when Boltzmann's law is obeyed, the steady-state solution for uv is
4;rflv/c;3 see (2.8) and (2.37), divided by hv.

Boltzmann's law for the vibrational populations is from (2.45)

where the overbar indicates thermodynamic equilibrium. Substituting
(2.51) into (2.48), (2.49), and (2.50), forming a balance equation, and

Here, and in the remainder of this section, we use vacuum conditions and the velocity of light in
vacuuo (c). The refractive index of air is very close to unity, and no correction for it is applied in
atmospheric thermal calculations. If required, the refractive index, or the local velocity of light (c'), can
be systematically introduced into the discussion.
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comparing uv to the Planck function (2.37), leads to the Einstein
relations:

(ii) The equation of transfer. We now consider the situation represented
in Fig. 2.2. The energy density is Iv dca/c and the rate of gain of photons
by the radiation field is [dlv(s)/ds] dca. From the definitions (2.48),
(2.49), and (2.50) and the Einstein relations (2.52) and (2.53), we may
write

The factor dwl^n in the third term on the right-hand side (2.54) is
because spontaneous emission is isotropic. Induced emission, on the
other hand, is identical in all respects to the incident radiation and all
induced photons fall within the solid angle dm.

If we compare (2.54) to (2.17) we find, as matters of definition, that
the absorption coefficient and source function are

where the overbars again indicate an equilibrium state. The absorption
coefficient in thermodynamic equilibrium is the quantity usually meas-
ured in the laboratory and is
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Equations (2.55), (2.56), and (2.57) are rarely used without ap-
proximations. One approximation is acceptable for all atmospheric bands
except for the water vapor rotation band. It is assumed that each (u, /)
band is so narrow that we may replace v by v0 in (2.55) and (2.57). We
may then integrate both equations over all frequencies, using (2.47), and
introduce the band intensity

The exponential terms in (2.58) and (2.59) owe their existence to
induced emission and it is often argued that they may be neglected. For
most atmospheric bands the exponential is very small. For the 667cm"1

band of CO2, for example, exp(-hv0/k0) is 0.0082 at 200 K and 0.041 at
300 K. Apart from the statistical weights, the same factor determines the
ratio of number densities in the upper and lower states [see (2.51)].
Almost all of the molecules are, therefore, in the lower state for
thermodynamic equilibrium. If the system is not very far from thermo-
dynamic equilibrium, the factor multiplying the exponential in (2.58) is
close to unity, and we may consistently write

To the same degree of approximation,

Equation (2.61) shows that Jv has the same angular and frequency
dependence as Bv. These two quantities differ by a scaling factor
dependent upon the state populations. According to our earlier assump-
tion of narrow bands, we may replace /„ and Bv by /(/, u) and B(l, u},
quantities characteristic of the entire band. Since n(u) and «(/) can be
calculated, given the temperature, the problem of determining the
absorption coefficient and the source function comes down to determin-
ing n(u) and «(/).

(iii) State populations. These are the result of a steady state between
collision-induced and radiative transitions. First, consider the radiative
transitions.
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The heating rate (2.18), when expressed in terms of photon energies,
is equal to the number of photons lost to the radiation field or the net
number gained by the upper state. If we integrate (2.18) over all
frequencies, therefore, we obtain the radiative contribution to the time
rates of change of the populations of the u and / states:

where

There are many possible collision partners that can lead to collisional
excitation or deexcitation of the radiating molecule. Here we use the
simplest prescription, collisions with "air" molecules whose number
density is WA. In terms of the binary coefficients indicated in Fig. 2.4,

For thermodynamic equilibrium, we must have a steady state and it
follows from (2.64) that

so that

In order to show the nature of the solution, we shall first consider a
two -level model, for which the total number of molecules in states u and /
is conserved:

Note that (2.62) and (2.64) referred to / < H > M transitions only; we now go
further and require explicitly that there are no other transitions to or
from u or /.
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We now eliminate n(l) and «(/) from (2.51) and (2.65),

The effect of collisions is to drive n(u) toward its equilibrium value
with a collisional relaxation time, i}(u, I),

The relaxation time is inversely proportional to the pressure through the
number density, «A.

For a steady state, with transitions caused by both radiation and
collisions,

and we find, after some manipulation,

or

where, from (2.21),

The radiative relaxation time for spontaneous emission is

0 may be calculated from (2.52), (2.53), and (2.58) (with v = v(l),
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but it is common practice to evoke the approximations (2.60) and to write

and

Sn is the band intensity per molecule in the ground state (=Sv/n(/)).
To the same degree of approximation, we may eliminate H(l, u)

with the help of (2.62) and (2.70) and write

In (2.75), it is possible to write Jv and Bv in place of /(/, u) and
B(l, u) because, according to (2.61), the ratio of these two quantities is
independent of the frequency. This statement does not apply to equa-
tions, such as (2.74), that involve more than this ratio.

2. 2. 4. Discussion of the source function

(i) In a constant- temperature enclosure. Iv = Bv, by definition, and,
from (2.61) and (2.75),

regardless of the collisions. This is Kirchhoff's second law, showing that
our treatment is appropriately consistent with classical thermodynamics.

It also follows from (2.63) that

an uninterestingly restrictive condition for atmospheric calculations.

(ii) Rapid collisions. At high pressures, the collisional rate is high, the
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vibrational relaxation time is short, and r)/<j) « 1. From (2.74),

J(l,u) = B(l,u), (2.78)

but there is no restriction on the heating rate. From (2.56), the levels are
in local thermodynamic equilibrium. This is the situation occurring in the
lower atmosphere, which greatly simplifies meteorological calculations.

(Hi) Slow collisions. If »j/0»l, (2.75) gives

while (2.74) yields

Equation (2.79) is an incoherent scattering relation, that is, one in
which the frequencies of the incident and scattered photons differ. The
equation may be obtained from (2.32) with an isotropic phase function,
after integration over all frequencies in the (/, u) band. The state
populations have arranged themselves in such a way that there is no net
heating. They are not in thermodynamic equilibrium and collisions are so
slow that there is effectively no communication between the radiation
field and the translational modes.

The magnitude of rj/(p at 1 bar is a critical parameter. The most
important single band in the mesosphere is the 15 ̂ m band of CO2, with
a radiative lifetime of 0.74s. An estimate of the collisional relaxation
time at 1 bar and 180 K is 25 ,us. rj/0 is approximately unity at a pressure
of 34 dyne arT2, occurring 76 km above the earth's surface. This is the
most important relaxation level in atmospheric calculations; we shall
discuss others in § 6.3.3.

We are now in a position to discuss our earlier assumption that the
rotational levels are in thermal equilibrium when vibrational relaxation
takes place, i.e., that rotational relaxation takes place at the lower
pressure. Before doing so, however, we briefly consider electronic
transitions.

Permitted electronic transitions have a radiative lifetime of the order
of 10~8 s. Energy levels are widely spaced and collisional relaxation times
may be expected to be longer than those for vibrational transitions
(rj»10~"6s at s.t.p.); even at 1 bar, ?//0»102, and only resonant
scattering can be expected.

On the other hand, the forbidden transition between the ground
states of atomic oxygen has a radiative lifetime of about 104 s. The
transition is important in the mesosphere because the energy gap is so
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small that almost all collisions can induce transitions. The time between
collisions is 102s at 500km, and Planck's source function is valid for this
transition at all levels below the exosphere.

We now consider the rotational transitions. First, we consider the
situation at a pressure low enough for both rotational and vibrational
relaxation to have occurred. The foregoing discussion is valid but for the
fact that the two levels under consideration will now be individual
vibration-rotation energy levels. There will be no communication be-
tween the vibration-rotation levels and the translational levels; (2.79)
will be valid, but the frequency integral will be over a single rotation line
rather than a band. The difference will show in the rotational level
populations but not in the heating rate, which is zero in either case.
Intermediary cases, when some of the rotational levels are in equilibrium
and some are not, are complicated, but of little importance.

Finally, we must justify the assertion that rotational relaxation
occurs at lower pressures than does vibrational relaxation. Nearly all
rotational levels have longer radiation lifetimes than any vibrational
levels. The radiation lifetime of a combined transition should be equal to
the shorter of the two, that of the vibrational levels. On the other hand,
collisional relaxation times for rotational levels are much shorter than
those of vibrational levels. According to Anderson's theory of line
broadening (§3.5.3), rotational relaxation times are related to spectral
line widths, from which we may conclude that a typical relaxation time
for a rotational level at 1 bar is 10"10 s, about 105 times smaller than for
vibrational levels. This justifies our assertion that rotational relaxation
takes place at a lower pressure than does vibrational relaxation.

The rotation band of water vapor must be considered on a different
basis. The rotational relaxation time should be the same as above, but
radiative lifetimes vary between 0.1 and 10s (the latter for small J
values). Thermodynamic equilibrium should prevail for all / levels at
pressures above 10~3 dyne cm~2 and for none at pressures below
10~5 dyne cm"2. For atmospheric pressures between these two values, the
water vapor rotation band would pose a formidable problem were it not
for photochemical decomposition. A pressure of 10~3 dyne cm~2 cor-
responds to a level of about 150 km and few water vapor molecules exist
above this level. Planck's source function is a good approximation for all
levels at which water vapor is important.

2.2.5. Transitions between more than two levels

The approximate equations of §§ 2.2.3 and 2.2.4 are often used in
atmospheric calculations. However, the level populations n(u) and «(/)
can be influenced by radiative and collisional transitions to and from
other states, and involving other molecules; these possibilities were
generally indicated by the level k in Fig. 2.4. If u, I, and k are all in
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thermodynamic equilibrium there will be no net collisional transfer
between them, but if one of the k levels is highly overpopulated because
of a solar absorption or a chemical reaction, as examples, and if
transitions between k and u or / are possible, the state populations and
source functions may be greatly changed from those for the two-level
model.

The equations that we have used are readily generalized if we allow
for the fact that u may now be either the upper or the lower level for a
u+*k transition. From (2.62) and (2.65) we may write a balance
equation,

A similar equation can be written for the lower level, /.
To solve these equations we require the collisional coefficients

b(u, k). If radiative transitions take place between k and u, the heating
rate can be calculated from (2.63) and (2.55) (omitting induced
emission) ,

where, from (2.61),

In (2.82), the incident radiation Iv must include solar radiation where
solar absorption can cause transitions between coupled levels or species.
Both of the foregoing equations are written in the form appropriate to
u>k.

The equations can be closed by writing them for every k level
between which communication is possible. For this closed set the sum of
the population densities will be conserved. Although complicated, these
calculations pose no difficulty for a modern computer provided that all of
the coefficients are known, and therein lies the main difficulty of this
work.

A comment on the heating rate h(k, u) is in order. It does not follow
that the "heating" for each band ends up as kinetic energy. That is so for
a two-level model but, for multiple levels, heating may be positive for
one pair of levels and negative for another pair that are strongly coupled
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by collisions to the first. Only when the h's are summed over all
interrelated levels and species is it possible to assess the net transfer to
kinetic energy.

2.3. The integral equations

2.3.1. Introduction

For the rest of this chapter, we shall be concerned with formal
mathematical manipulation of the equation of transfer needed for
subsequent chapters. No new physics is introduced and the reader may
treat the remaining paragraphs of this chapter as appendixes, to be
consulted when the equations are required. There are, of course, physical
grounds for choosing the particular models treated. In §§2.3.3 and 2.3.4
the model of a plane-parallel atmosphere is introduced, first for an
isotropic thermal source function with uniform isotropic boundary
conditions, and second for a scattering source function with a nearly
parallel incident flux as an upper boundary condition. These two models
are used to treat terrestrial and solar radiation, respectively, and owe
their usefulness to the effective independence of the two radiation fields.
Discussion of the detailed correspondence between the models and the
actual atmosphere will, however, be left for Chapter 6.

As far as actual solutions to the equations are concerned, we discuss
one general solution in §2.3.2 that can be implemented by means of a
numerical quadrature. This is the only solution that has been shown to be
useful for the practical meteorological task of calculating diabatic heating
of the atmosphere. For the formally equivalent problems of scattering
and radiative equilibrium complete solutions have been developed, some
of considerable mathematical elegance. We defer consideration of these
methods to Chapter 8.

2. 3. 2. The general solution

The optical path along a ray trajectory from point 1 to point 2 in the
direction s is

Note that we have defined f to be positive definite.
Consider the path of integration shown in Fig. 2.5. The equation of

transfer at P' is
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FIG. 2.5. Path of integration.

The sign of the left-hand side depends upon the sign of drv/ds and upon
the choice of P as the origin for fv.

Multiplying both sides of (2.85) by e~Tv we find

Integrating from P to P",

Equation (2.86) can be evaluated if the source function between P
and P" is known, and also the incident intensity at P". Atmospheric
problems are frequently posed in such a form, and this solution is widely
used. It states that the intensity at P is made up of the intensity imposed
at P", attenuated according to Lambert's law, together with contributions
from each intervening, radiating element, attenuated by the appropriate
optical path.

We can simplify (2.86) by observing that the equation of transfer
must also be obeyed inside the boundaries, which we may take to be
infinitely thick, optically. Consequently, if P" tends to infinity, so will
tv(P", P) and (2.86) becomes
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We can recover (2.86) if we write

Thus, a boundary condition on the intensity can be introduced into the
integral equation by assuming a constant source function from the
boundary to infinity. This procedure is widely used in atmospheric
computations.

For some special problems in Chapter 8, we shall require a volume
integral for /V(P). First we redefine s to be the radius vector from the
point P; it is therefore the reverse of the vector in Fig. 2.5, and (2.87)
becomes

where

From the definition of /„ (2.9) we have

A volume element at the point P' (distance s from P) is (Fig. 2.6)

FIG. 2.6. Geometry relating the mean intensity to the source function.
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and, therefore,

where the integral extends over all space.

2.3.3. Thermal radiation in a stratified atmosphere

We now consider an isotropic source function in an atmosphere for which
absorption coefficient and temperature are functions of the vertical
coordinate (z) alone (a stratified atmosphere, see Fig. 2.7).

The appropriate equation of radiative transfer in this case is, from
(2.17) and Fig. 2.7,

where £ = cos £ is the cosine of the zenith angle of the vector s (2.12).
Introducing the optical depth,

we have

The change of sign between (2.91) and (2.93) follows from the definition
(2.92).

FIG. 2.7. A stratified atmosphere.



THEORY OF RADIATIVE TRANSFER 47

In the following treatment we must bear in mind that the solutions to
(2.93) will differ for upward traveling beams (l^ %>Q) and downward
traveling beams (— 1^|<0), because the boundary conditions differ in
the two cases.

For an upward traveling stream of radiation, when the lower
boundary (z = z") is a black-body with temperature 8* , we have (see
Fig. 2.7)

For a downward traveling stream, on the other hand, the appropriate
boundary condition for a planetary atmosphere is that no thermal
radiation is incident upon the atmosphere from outer space. Then we
have

We now return to the formal solution (2.86), but with the optical
depth replacing the optical path. To do this we first simplify the notation
and write (see Fig. 2.7)

If we compare the optical paths fv(P' , P) and fv(P", P) in Figs. 2.5 and
2.7, we can see that the appropriate substitution is

for both upward and downward directed beams: in both cases fv is
positive, as required, because the numerator and the denominator in
(2.97) always have the same sign. Direct substitution of (2.97) in (2.86)
and use of the boundary conditions (2.94) and (2.95) yields

for -1^^<0. Expressions (2.98) and (2.99) are valid for 0 =£ T ̂  TI .
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For numerical solutions at a given zenith angle, (2.98) and (2.99) can
be employed in the form given. Further simplification is possible,
however, if we wish to calculate integrated quantities, such as the mean
intensity (2.9) or the flux (2.3), and if the source function is isotropic.

Isotropy of Jv(t) enables us to perform angular integrations in terms
of exponential integrals of order n (see Appendix 6),

From Fig. 2.8, an element of solid angle is,

and the angular integration runs from § = +1 to § = 0 in the positive
hemisphere and £ = 0to|; = — l in the negative hemisphere.

The mean intensity (2.9) can now be written

FIG. 2.8. Evaluation of the flux.
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Substituting from (2.98), (2.99), and (2.100),

or, using a property of El and E2 that is described in Appendix 6,

Similarly we find the vertical flux (2.3) (horizontal fluxes are zero in
a stratified atmosphere),

From a property of E2 and E3, given in Appendix 6,

For numerical computations the first two terms and the third term in
(2.106) are evaluated independently since they involve two different
relationships between Jv and t (appropriate to the atmosphere below or
above z, respectively). In the meteorological literature positive definite
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quantities F+ and F~ are usually defined in the following way:

and (2.106) becomes

Finally, from (2.18), (2.21), (2.103) and (2.104), we can express the
heating function in the form

2.3.4. 5o/flr radiation in a stratified atmosphere

Equation (2.87) is a general solution to all radiative transfer problems,
given the appropriate source function and boundary conditions. If we
treat the solar and thermal radiation fields as separable, the solar source
function involves only scattering processes and, in practice, attention is
usually concentrated on simple scattering by molecules and aerosol
particles. The appropriate source function is therefore given by (2.32).
The lower boundary condition will express a reflectivity condition
involving, in general, a reflection matrix.

This is too complex for real geophysical situations, however, and a
more commonly used boundary condition assumes that the surface has
uniform brightness and that the albedo is

The upper boundary condition expresses the fact that an unpolarized
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and nearly parallel beam of solar radiation strikes the atmosphere at an
angle defined by (|s, <p0), where cp is an azimuth angle. Some
instruments are able to discriminate in favor of the incident beam by
recording radiation only in the neighborhood of the sun. Consequently, it
is of value to state the equation of transfer in two parts, one valid for
angles close to (£0, <p0) and one for all other angles.

The appropriate equation of transfer is obtained by substituting the
source function (2.32) into (2.93). In addition, we change the notation
from d, s, du>d, and du>'d to (f, q>), (£', <p'), du>, and du>':

Now consider a small solid angle da>& surrounding the direction
(§0, <p0). Integrate both sides of (2.113) over du>& and let d(o& become
very small. The second term on the right-hand side will tend to zero, as
will contributions from the other two terms, provided that no source of
"parallel" radiation is involved. Such a source carries a finite irradiance
f^\rv) in an infinitesimally small solid angle, so that from (2.7)

The differential equation governing the "parallel" irradiance is

or, integrating from 0 to rv, bearing in mind that £s is negative for the
solar beam,

where/^(O) is the solar irradiance outside the earth's atmosphere (2.7).
Some texts choose to replace §© by —1§0|, since the solar beam is always
downward and £0 is always a negative number.

It is appropriate to point out here that the laboratory experimenter
attempts to reproduce the conditions of (2.115) by placing an absorption
tube in a collimated beam formed from a small source, which is
ultimately focused on the slit of a spectrophotometer. A quantity
proportional to the irradiance is recorded, and by alternately filling and
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emptying the absorption tube the optical path and hence the absorption
coefficient can be determined.

Returning now to (2.113) we redefine /f so that it is continuous near
(£©, <£>©) and does not include the direct, "parallel" beam. Equation
(2.113) is still satisfactory except for that part of the integral over o)' near
to (£0, q90). This contributes a term

According to our redefinition of the intensity to exclude direct radiation,
this term would be missed; it must, therefore, be added explicitly to the
equation of transfer, which now becomes

The upper boundary condition on the scattered intensity is now the same
as for thermal radiation, i.e., that there is no scattered radiation from
outer space,

2.4. Approximate methods for thermal radiation

2.4.1. TTze atmospheric problem

The intricacies of atmospheric radiation calculations, taken together with
the ready availability of large digital computers, have led to an emphasis
upon the development of numerical radiation algorithms. These algo-
rithms can be coupled to algorithms for hydrodynamic processes and
interactions may be handled by iteration. If the end result is to couple
algorithms for scattering and radiative heating with algorithms for
atmospheric and ocean dynamics, serious questions may arise as to the
significance of the results. Recent history has demonstrated that such
complex numerical calculations may be flawed; they may yield unphysical
results and equally competent investigators can disagree. An outsider can
make no judgment. Even if complete documentation were available it
would be impractical to check on the results, and documentation is often
missing.
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Such questions are beyond the scope of this book, the limited
purpose of which is to describe the fundamental processes that lie behind
the computations. Although numerical methods may be essential for
accurate numbers, a valuable level of understanding of atmospheric
problems can also be achieved with approximate equations; the remain-
der of this chapter will be concerned with an examination of some of the
most important.

In this chapter we limit considerations to thermal radiation, for
which the source function is isotropic. This permits approximations to
angular integrals that may be less appropriate for anisotropic, scattering
phase functions. Nevertheless, the methods have important extensions
also to scattering phase functions. Dicussion will be delayed until Chapter
8, after examining scattering phase functions in Chapter 7.

The value of approximate methods is often underrated. For many
purposes they may provide all the accuracy that is required; they should
always be considered as a first step in any investigation of atmospheric
radiation.

2.4.2. Transparent and opaque approximations

The radiation mean free path is, from (2.15), equal to (ev v)~
l. It varies

with frequency and, as we shall see in subsequent chapters, this variation
may be very large. First, consider a single frequency.

A typical atmospheric problem may involve coupling between the
radiation field and some other physical phenomenon, such as atmospheric
motion, that may impose its own characteristic scales on the problem, for
example, the wavelength of a periodic disturbance or the vertical grid
scale in a numerical model. We may now ask whether the transfer
equation may be simplified if this imposed scale (/) is, respectively, much
smaller than or much larger than the radiative scale, (ev<v)~

l. To do so,
we make some reasonable assumptions as to the conditions imposed on
the problem by the scale /:

1. The average over a volume of any fluctuating quantity is assumed
to tend to zero as the linear dimensions of the volume of
integration become larger than /.

2. To order of magnitude we may replace d"Ids" by
(l/l)d"-l/ds"-1. (In boundary-layer problems of fluid flow (2)
defines a smooth function.)

We restrict our attention to thermodynamic equilibrium (Jv = Bv)
and consider (2.18), expressing the heating rate as the balance between
the angle-averaged absorption and emission. If e v v /« l , the medium is
transparent over many scale lengths. Contributions to the first term in the
parentheses on the right-hand side of (2.18) originate largely from
distances approximately equal to the mean free path of the radiation, and
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the angle average in (2.19) can be approximated by an integral over a
sphere of radius equal to many scale lengths. According to assumption
(1), the first term in parentheses should not reflect the local fluctuations
in the physical state of the medium that are, however, intrinsic to the
second term because it is a function of the local temperature. Conse-
quently, if d indicates a small spatial variation, and provided that Iv and
Bv are of the same magnitude,

If we further assume that the composition is not perturbed,4 then
dev>v = 0 and (2.118) becomes

Equations (2.118) and (2.119) are known as the transparent ap-
proximation. For small temperature variations, (2.119) can be written in
the form

where the overbar denotes a local mean; this is a statement of Newton's
law of cooling.

The other limit that we may consider is that of the opaque
approximation (eV)V/ » 1). Major contributions to the local intensity now
come from distances small compared to /. According to condition (2), it is
now possible to make a Taylor expansion of Bv, provided that it and fv

are continuous functions of the space variable. These conditions may not
be satisfied near a boundary where sharp gradients of temperature, even
temperature discontinuities, can exist. We must, therefore, assume that
we are dealing with events that are unaffected by the (distant)
boundaries.

The Taylor expansion of Bv(rv) is

Substituting (2.121) in (2.87) and integrating over all space,

We shall reconsider this restriction in § 10.6.
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Multiplying by dot and integrating over all solid angles,

For time-independent problems, (2.12) enables us to write the first
differential operator in (2.123),

where %x, %y, and £z are the three direction cosines. Since Bv is isotropic,
the angular dependence of each term is that of the direction cosines, and
because

the second term on the right-hand side of (2.123) is zero. The third term
involves quantities such as J %x%y da), which are zero, and quantities such
as J %2da), which equal 4;r/3. Applying the operator (2.124) twice,

By similar arguments, it can be shown that all even derivatives on
the right-hand side of (2.123) are zero. According to property (2) of the
scale length, /, we may write,

and neglect all terms in (2.123) after the third.
From (2.18) and (2.123), we now find

or, if ev v is constant,
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2.4.3. Approximate forms for the absorption coefficient

Stellar spectra exhibit strong absorption continua and it was a logical step
in the development of astrophysical theory to assume the absorption
coefficient to be independent of frequency (grey absorption). This
assumption carried over into the early meteorological literature with the
difference that two independent coefficients were assigned to the solar
and terrestrial radiation streams (semigrey absorption).

In fact, the earth's atmosphere differs so greatly from a grey
absorber that grey calculations have little meaning except in the limits of
the transparent and opaque approximations, when effective mean ab-
sorption coefficients can be defined. Equations (2.119) and (2.127) can be
used to express the frequency-integrated heating (the quantity of
thermodynamic significance) in terms of the frequency-integrated source
function if the mean absorption coefficients,

or

respectively, are employed.
Below 120km in the earth's atmosphere, the temperature varies less

than 20% from its mean value and we may write approximately

and

so that
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and

Equation (2.131) is commonly used in astrophysics under the name
of the Rossdand mean. Equation (2.130) is not in common use in
astrophysics, although a similar mean with the weighting function Bv in
place of dBv/dO is called the Planck mean. Since the shapes of the two
weighting functions do not greatly differ, these two means are similar,
and we shall use the same name for (2.130). Since kv varies over a very
wide range in atmospheric spectra, the Planck and Rosseland means may
differ by very large factors.

2.4.4. The method of moments in three dimensions

From (2.12), the equation of transfer (2.85) can be written

where i = (x, y, z), §, is the direction cosine between the s direction and
the z axis, and the sum rule for repeated indices is employed.

/v(s) is a function of frequency, position, and direction, and it is this
multiple dependency that creates many of the difficulties of radiative
transfer problems. If we wish to calculate angle-averaged quantities such
as fluxes and heating rates we do not anticipate that details of the angular
variation of the intensity should be very important, and it is common
practice to approximate this aspect of the solution. We shall discuss one
particular method, known as the method of moments, because it can be
applied to three-dimensional geometry, enabling a comparison to be
made with the opaque and transparent approximations. Other techniques
have been restricted to stratified atmospheres but, unlike the present
derivation, most can be raised to higher degrees of approximation.

The method of moments is based on repeated application of the
operator J |" da), where n is a positive integer, to the equation of
transfer. Applied to equation (2.132), this operator leads to a relation-
ship between a moment of order n and a moment of order n + 1. If the
precise angular variation of /y(s) is not important, we may anticipate that
it will be possible to approximate a high-order moment in terms of
moments of lower order, in which case the hierarchy of moment
equations can be closed.

Multiply (2.132) by dto and integrate over all angles to obtain the
zero-order moment equation. From (2.3) and (2.9), we have, omitting v
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suffices for convenience,

The first moment equation is obtained by multiplying (2.132) by |, and
integrating over all angles, again using (2.3),

Equations (2.133) and (2.134) are correct for any angular distribu-
tion of the radiation field. In order to close the equations, however, we
shall calculate the second moment equation on the assumption that the
radiation field is approximately isotropic in each hemisphere independ-
ently, although the two hemispheres may differ. Since the cosine changes
sign in opposite hemispheres, the flux integral (2.3) involves contribu-
tions with different signs and the result may be a small residuum between
two large quantities. It is, therefore, important that the intensity not be
approximated when evaluating the flux. The second moment of /(s)
should, however, be less sensitive to the angular distribution because no
sign changes are involved in the angular integration. If (2.134) is
evaluated on the basis of an isotropic radiation field, there results [see the
derivation of (2.125)]

If we take (2.135) to be approximately valid under all conditions, the
required approximation to the equation of transfer can be stated in either
one of two forms:

or

The boundary conditions for these two equations are, in general,
awkward. If the flux vector were fully defined at each point on the
boundaries, (2.136) could be solved, but atmospheric problems are not
posed in this form. More typically, the given boundary condition is the
inward intensity at the boundary, from which neither F nor / can be
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obtained. An appropriate treatment will be given for a stratified
atmosphere in the next section.

We can now discuss the relationship between (2.136) and the
transparent and opaque approximations. If both F and J vary rapidly over
unit optical path the conditions are analogous to those for the transparent
approximation. Under these conditions, the two differentials in (2.136)
should be much larger than the first term on the right-hand side and if we
set d/dTj = 6 and make use of (2.10) we rederive the transparent
approximation (2.118).

In the opaque case, quantities vary only slowly over unit optical path
and the balance in (2.136) should be between the two terms on the
right-hand side. Making use again of (2.10), we obtain the opaque
approximation (2.127).

The important conclusion from this discussion is that, despite the
approximations made, (2.136) is exact in the transparent and opaque
limits and can be in error only for intermediate opacities. In practice, the
worst errors are not large and dependence upon physical parameters is
faithfully represented. Unfortunately, as might have been guessed from
the differences between the Rosseland and Planck means, equation
(2.136) cannot be integrated over frequency to give useful relationships
between frequency-integrated quantities, except, of course, for the case
of grey absorption.

A final application of the three-dimensional equations is to derive
the equation for radiative equilibrium; from (2.10) and (2.14) we have

so that (2.136) becomes

In vector form,

2.4.5. Approximations for a stratified atmosphere

For a stratified atmosphere, we set d/dTx = 3/dfy=Q and fz = T in
(2.136) to give



60 ATMOSPHERIC RADIATION

and, in (2.138), for radiative equilibrium

In this simplified geometry, we may derive the appropriate boundary
conditions, but to do so we must approximate the flux integral, so that
the attempt to preserve the exact form for the flux in (2.134) loses some
significance. When boundary conditions are applied, it will no longer
necessarily be the case that the result will be exact in the transparent and
opaque limits.

The flux and the mean intensity at the boundary must be evaluated
from the given boundary conditions on the inward intensity and an
approximation to the angular distribution. For this example, we choose
hemispheric isotropy, for which /+ and /~ are intensities independent of
the zenith angle in their appropriate hemispheres (| > 0 and £ < 0
respectively). This is consistent with, but more restrictive than, the
approximation (2.135).

From (2.3) and (2.9),

Substitute (2.142) and (2.143) in (2.133) and eliminate 7 and either I+ or
/". There results at r = TJ (lower boundary)

and at T = 0 (upper boundary)

As an illustration, consider the case of radiative equilibrium with
black bodies emitting B*(0) or 5*(r,) at the two boundaries. The third
terms on the right-hand side of (2.144) and (2.145) are now zero and

Equation (2.146) requires a discontinuity in the Planck function, implying
a discontinuity of temperature, at the boundary.

The class of approximation of which (2.140) is representative is
extensive and a large number of different names and terms are used to
describe members of the class: the Schwarzschild-Schuster
approximation, the Eddington approximations, Chandrasekhar's first
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approximation, and a variety of two-stream approximations. In addition,
the exponential-kernel approximation to the integral equations is com-
parable in intent. All employ a similar degree of approximation and the
differences between one method and another come down to coefficients
of order unity. These coefficients can be adjusted to give better results for
one particular application, but general statements that one technique is
better than another are difficult to justify.

In order to give a limited but consistent comparison between the
various approximations we shall apply each to the closure between
second- and zero-order moments as performed in (2.135). Eddington
introduced the idea of hemispheric isotropy, as expressed by (2.142) and
(2.143). Since the derivation of (2.135) was based upon the idea of
approximate isotropy, independently in each hemisphere, it follows that
Eddington's approximation leads to (2.140) for a stratified atmosphere.
The treatment in § 2.4.4 is more general than Eddington's, because it is
valid in three dimensions.

Eddington introduced another approximation that is more commonly
associated with his name,

This is a flexible approach because the approximation can be raised to
higher order by adding higher powers of %, although the method is rarely
used except in the first approximation, (2.147), which yields the closure
(2.135), without modification. This follows from the fact that the second
term in (2.147) vanishes in all even moments. There may be a change in
the approximate boundary conditions, however.

Chandrasekhar introduced Gaussian quadrature to evaluate the
integrals in (2.3) and (2.9). A typical angular integral is replaced by a
sum over 2m (j = ±1, ±2, . . . ±ra) ordinates,

where the a, are weighting factors that can be calculated when the §,- are
known, and

If /(§) is a polynomial of degree less than m, any method of numerical
quadrature can give exact results, but Gauss' method, for which the £,•
are zeros of the Legendre polynomial Pm(£), gives exact results for
polynomials of degree ^2m.

For Chandrasekhar's first approximation, we replace the radiation
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field by two components I+ and /~ with values of £ equal to +3~~1/2 and
— 3~1/2, respectively, and with weights equal to unity. It follows that

and, from (2.134),

identical to (2.135). Again, the stratified approximation (2.140) will be
unaltered, but the boundary conditions need not be the same as (2.144)
and (2.145).

In the first paper to introduce an equation of transfer, Schuster
attempted to represent the intensity by two antiparallel streams, an
approximation also used by Schwarzschild before he gave the correct
equation. We can state this approximation in the form

where

From (2.149) we obtain

and, from (2.134),

These relations are inconsistent with (2.140), although the dis-
crepancies can be reduced by redefining r, e.g., the substitution
T' = 31/2r would correctly introduce the factor 3 into the first term on the
right-hand side of (2.140) but, at the same time, would introduce an error
in the second term. The Schwarzschild-Schuster approximation is now of
historical interest only.

Closely connected to approximations to the equation of transfer for
stratified atmospheres is the exponential-kernel approximation to the
integral equations, known in the meteorological literature (see § 6.1.2) as
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the diffusivity approximation. In (2.106) we approximate

where r is an adjustable parameter.
The analogy to (2.140) can be demonstrated by differentiating twice

the approximate integral equation resulting from the substitution of
(2.150) in (2.106),

This equation cannot satisfy both the transparent and the opaque
limits: the former involves a balance between the two differentials in
(2.151) and (2.140) and requires r = 2; the latter involves a balance
between the two terms on the right-hand side and requires r = 3/2. In
practice, a value of r between these two limits is chosen (e.g., r = 1.66).

A final comment on approximations to the angular distribution of
the radiation field is that we may readily improve an approximation,
without a more elaborate differential equation. Suppose that we use the
stratified equations to solve for the source function B. This solution can
be substituted into the exact integral equation (2.87) to give an improved
solution for the intensity at any level in the atmosphere. Eddington used
this method to improve the solution for the outward intensity leaving a
stellar atmosphere, for which reason it is referred to as Eddington's
second approximation.
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VIBRATION-ROTATION SPECTRA OF
GASEOUS MOLECULES

3.1. Introduction

In this chapter we discuss the characteristics of absorption by gaseous
constituents of the earth's atmosphere. This is a complex topic and
atmospheric investigators may be disturbed by the idea that weather and
climate might be affected by details of the kind we shall discuss. But, as
yet, we lack criteria as to what is important and what is not, leaving little
alternative to developing a general understanding of the field.

A full description of the atmospheric absorption spectrum involves
the intensities, state dependence, and detailed line profiles of 10s to 106

lines of 20 or more different chemical species. Given the capabilities of
modern computers, it is possible to store, retrieve, and manipulate such
data and this is the method of choice for purposes such as the
identification of lines in high-resolution spectra. One of a number of
current attempts to assemble an up-to-date archive of molecular data is
the Air Force Geophysics Laboratory (AFGL) magnetic tape. Not only
does this tape provide an economical means of access to the best data
from a vast literature, but it also provides a convenient international
standard atmosphere. Two numerical climate models, both using the
AFGL data, cannot attribute their differences to the radiation data
employed.

We shall, therefore, address the subject of molecular spectroscopy in
the general context of the AFGL tape and many of our illustrations are
composed from the tape in preference to seeking out observed spectra.
As will be apparent by the end of this chapter, it may sometimes take an
expert to distinguish between the two.

Figure 3.1 offers an overview of the atmospheric absorption
spectrum. The six gases considered are the most important radiators,
although climate studies often involve more and rarer species. All six
gases are minor species (and therefore in dilute mixtures with nitrogen
and oxygen) and are very simple molecules (methane is the most
complex).

Figure 3.1 shows no visible or ultraviolet spectra. The missing
features are mainly electronic bands of oxygen and ozone; they will not

3
STATION !
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FIG. 3.1. Low-resolution absorption spectrum of the atmosphere. The top six panels are
the absorption spectra of important atmospheric species. The bottom panel is a simulated
absorption spectrum of the atmosphere. After Valley (1965).

be treated in this chapter since they are more complex theoretically but
easier to handle empirically than the bands shown in Fig. 3.1. Data for
electronic bands that are suitable for empirical calculations are discussed
in Chapter 5.

The absorptions shown in Fig. 3.1 take the form of discrete bands of
differing widths. Apart from the rotation band of water vapor, stretching
from 16 jam to the microwave spectrum, all involve a change in the
vibrational energy of the molecule. The differing widths of the bands are
the result of simultaneous changes in the rotational energy, and the
features are referred to as vibration—rotation bands.

The structures of selected vibration-rotation bands at much higher
spectral resolution are illustrated by Figs. 3.2, 3.3, 3.4, 3.5, 3.6, and 3.7.
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FIG. 3.2. Synthetic spectrum of CH4 near 3.44/jm. Spectral range: (a) 2874-2946cm"';
(b) 2904-2908 cm"1. Level of observation: 10km. Zenith angle of observation: 30°.
Terrestrial concentration x 1.

Each has been constructed by a computer for a single atmospheric
constituent. The absorption path reaches from outside the atmosphere
down to the level of observation at the given zenith angle of observation.
Terrestrial gas concentrations are employed or a given multiple of them,
if this makes for a clearer illustration.
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FIG. 3.3. Synthetic spectrum of N2O near 7.78jum. Spectral range: 1245-1325 cm"1.
Altitude of observation: 15 km. Zenith angle of observation: 30°. Terrestrial concentration
XI.

Figure 3.2a and Fig. 3.2b are both centered on a region in the wing
of the strong 3.31 /urn band of methane. Figure 3.2a shows eight groups
of lines (manifolds) while Fig. 3.2b shows details of one manifold. At the
high dispersion of spectrum (b), each line is seen to have a finite width.

Figure 3.3 shows the central region of the strongest band of nitrous

FIG. 3.4. Synthetic spectrum of CO near 4.67/im. Spectral range: 2102-2182cm '.
Altitude of observation: 10km. Zenith angle of observation: 30°. Terrestrial concentration
xl.
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FIG. 3.5. Synthetic spectrum of CO2 near 12.64 f t m . Spectral range: 786-796 cm 1.
Altitude of observation: 15 km. Zenith angle of observation: 30°. Terrestrial concentration
xlO.

oxide. The two very regular groups of lines are the P- and R-branches (to
the left and the right, respectively) and they are separated by a gap
caused by a missing line at the center of the band. A second, weaker
band is superimposed (an upper state band) with a slightly different band
center. Mixed in here, and also in most of the other spectra shown in this

FIG. 3.6. Synthetic spectrum of H2O near 14.9 pm. Spectral range: 630-710 cm ~\
Altitude of observation: Okm. Zenith angle of observation: 30°. Terrestrial concentration
xO.03.
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FIG. 3.7. Synthetic spectrum of O3 near 9.61 ̂ m. Spectral range: 1039-1041 cm '.
Altitude of observation: 30km. Zenith angle of observation: 30°. Terrestrial concentration
Xl . Unlike most of the other synthetic spectra shown in this chapter, individual rotation
lines are not resolved.

chapter, are weaker isotopic lines. In this spectrum, a few of the weak
lines are from 14N15N16O.

Carbon monoxide, like nitrous oxide, is a linear molecule and the
center of the 4.67 fj,m band shows a simple band structure (Fig. 3.4)
similar to that in Fig. 3.3. The lines are more widely spaced than for
nitrous oxide because the carbon monoxide molecule has a smaller
moment of inertia. Again there is a gap in the band center (characteristic
of a parallel band); a weak band of 13C16O is superimposed.

A high-resolution spectrum of a perpendicular band of a linear
molecule is shown in Fig. 3.5. This is a weak band on the wing of the
15 fim band of carbon dioxide. It is the result of a transition involving
two vibrational levels in close resonance (Fermi resonance), a cir-
cumstance that can greatly complicate the interpretation of a molecular
spectrum. The P- and R-branches of this band are represented by the
five, widely spaced, isolated lines. The gap between the bands is now
filled with a partially resolved Q-branch near 790 cm~'. Some weak
isotopic lines of 16O12C17O and 16O12C18O are also present.

Figures 3.3, 3.4, and 3.5 illustrate arrays of lines containing some
obvious order, but a glance at most regions of the atmospheric spectrum
is more suggestive of a completely disordered situation. Figure 3.6 shows
a region in the wing of the water vapor rotation band (this region is
usually dominated by a very strong carbon dioxide band but the
computer permits us to isolate species). The spectrum appears to be
completely disordered, both as regards line positions and line intensities.
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Figure 3.7 shows a section of the 9.6 ^im band of ozone at high
spectral resolution. The altitude of observation is 30 km. Little ozone lies
above this level and the pressure is low, so that lines are very narrow (see
§3.3.1); nevertheless, the ozone lines overlap strongly and are not
resolved. Each feature in Fig. 3.7 is a manifold of many unresolved
rotation lines.

3.2. Vibration-rotation spectra

3.2.1. The Hamiltonian for a semirigid molecule

The quantum-mechanical Hamiltonian operator, H, is obtained by
replacing variables by operators in the classical expression for the energy,
E, of a system, consisting, in this case, of the atomic nuclei and electrons
that make up a molecule. If ty is the wave function, Schroedinger's
equation is

We may separate the Hamiltonian into time-dependent and time-
independent terms,

(q represents the particle coordinates). We can deduce the stationary
states of the molecule from the time-independent term

This equation has discrete eigenvalues (energy levels), En, and eigen-
functions, !/>„. Transitions between energy levels result in the absorption
and emission of photons (frequency, v) following Planck's relation,

Provided that the time-dependent term in (3.2) is small, it may be
treated as a perturbation, from which the rate of change of the
probability that a stationary state is occupied can be calculated.

It is common practice to distinguish between different forms of
molecular energy, electronic, vibrational, rotational, translational, and
nuclear spin interactions, each with its own Hamiltonian, wave functions,
and energy levels. The total energy is then the sum of the different forms
of energy, the wave function the product of the individual wave
functions, and emitted or absorbed photons have energies equal to the
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sum of those for individual transitions. This view is not always correct,
but it is useful for a discussion of orders of magnitude.

With this caveat in mind it is useful to order the different forms of
energy. Nuclear spin energy is very small indeed and need not be
considered further at this stage (but see §3.3.3). Electronic levels are
commonly separated by a few electron volts (or a few x 104cm^1, if we
use the wavenumber as an energy unit, see Appendix 2 for discussion),
vibrational levels by 5 x 102 to 104cm"1, while rotational levels are
closer, l-HPcm"1.

Transitions between levels lead to electronic band systems in the
ultraviolet, visible, and near-infrared spectrum (ltf-W4 cm~l or 1CT1-
IjUm), vibrational bands in the near- to far-infrared (104-102cm~1 or
l-102jum), and rotational bands extending from the far-infrared to the
microwave region (1-10 cm"1 or 102-104

ium). From the relative mag-
nitudes of the energies involved, we may anticipate that vibrational and
rotational changes will accompany an electronic change, but not neces-
sarily vice versa and, similarly, rotational changes will accompany a
vibrational transition. These magnitudes account, in a general way, for
the appearance of the bands in Fig. 3.1; the bands themselves are
vibrational, while the finite width is caused by many simultaneous,
unresolved rotational transitions.

Translational energy does not have stationary states in an unlimited
spatial domain, but it is involved in establishing the equilibrium popula-
tions of energy levels. It is, therefore, important to note that a typical
translational energy (k0 with 9 = 300K) is 400 cirT1, much greater than
most rotational energies, smaller than most vibrational energies, and very
much smaller than electronic energies. Kinetic collisions can, therefore,
influence rotational levels strongly, vibrational levels slightly, and elec-
tronic levels scarcely at all.

Before considering stationary states further we need to discuss the
time-dependent term in the Hamiltonian, H2(q, t). There are two
different kinds of term. One results from the interaction of two molecules
during a collision. At atmospheric pressures, the time spent during
collisions is very small compared to the time spent between collisions.
The theory applicable to the small fraction of the time domain occupied
by collisions is outlined in § 3.3. For the majority of the time, molecules
may be treated as isolated and the important consideration is the
time-dependent interaction between a molecule and the ambient electro-
magnetic field. The strongest interactions occur if the molecule has an
electric dipole moment,

where E is the electric field vector. Electric dipole interactions give rise
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to the strongest bands in the terrestrial spectrum. Such bands are called
permitted, whereas other bands are loosely referred to as forbidden.

We shall mainly discuss permitted transitions. Magnetic dipole and
electric quadrupole interactions are, respectively, 105 and 108 times
weaker than electric dipole interactions and, although such transitions
may be detected, they are of little importance for energy transfer.

The probability of a dipole transition is proportional to the square of
the absolute value of the matrix element of the dipole moment

where dV is a volume element in configuration space, and the integral is
over all space. Subscripts i and / represent two quantum states and the
asterisk denotes complex conjugation. Since wave functions are
orthogonal,

If M is not a function of the configuration coordinates of the atoms
forming the molecule, it may be taken outside the integral in (3.6) and

For a dipole transition to be permitted, the dipole moment must change
with configuration coordinates and be different in the initial and the final
states. Since M transforms as a vector, it is usual to find that (3.6) is
identically zero for certain combinations of i and /. The rules that define
which pairs of states have nonzero matrix elements are called selection
rules. When selection rules depend upon the precise symmetry of the
wave function they can be readily violated if perturbations affect that
symmetry.

The matrix elements (3.6) and the Einstein coefficients (§ 2.2.3) are
related by

for nondegenerate levels. Orders of magnitude for Atj are K^s"1 for
permitted electronic transitions, about 10s"1 for vibrational transitions,
and 1 s~' for a pure rotational transition.
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The relationship between equilibrium line intensity and Einstein
coefficient given by (2.59) is valid for any single transition. For
nondegenerate states, (2.59) may be written in matrix notation,

Equation (3.10) provides the connection between the quantum-
mechanical formulation and the line and band intensities used elsewhere
in this book.

We now return to the time-independent part of the Hamiltonian
operator, //,. The nuclear spin energy has already been set aside, and we
may also separate both the electronic energy and the translational energy
of the center of mass. The latter is rigorously separable and the former to
a high degree of approximation (the Born—Oppenheimer approximation).
We are, of course, interested in electronic states, but they may be
regarded as stationary while a vibration-rotation transition takes place.
This leaves us to consider, independently, the Hamiltonian for motions
with respect to the center of mass.

The Hamiltonian for these motions can be separated into kinetic (T)
and potential (V) energy operators,

It is intuitively obvious that, given the aggregation of nuclei into a stable
molecule, it will be convenient to state the problem in terms of vibrations
of the nuclei with respect to each other and rotation of the entire
molecule. A subtle difficulty is that a separation cannot always be made
for the kinetic energy term. The potential energy, on the other hand, is
only a function of nuclear separations and can be expressed in terms of
normal coordinates (Qk), i-e., amplitudes of the independent normal
modes of vibration (classical frequencies, vk). A nonlinear molecule with
N atoms (A' > 2) has three rotational degrees of freedom and 3N — 6
normal modes of vibration; a linear molecule has one less rotational
degree of freedom and 3N - 5 normal modes.

For a molecule to have a stable equilibrium configuration (indicated
by the subscript or superscript, e), there must be a minimum in the
potential energy curve (Fig. 3.8). Near the position of equilibrium, the
most important term in the potential energy will be quadratic in the
normal coordinates,

where Xk is a force constant. The first term on the right-hand side of
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FIG. 3.8. Potential curve of the H2 molecule in its ground electronic state. The heavy,
solid line is the measured potential curve. The broken line is a commonly used
approximation to the measurements. The horizontal lines represent the vibrational energy
levels. The hatched area is the dissociation continuum and £>c is the dissociation energy.
After Herzberg (1950).

(3.12) is the potential energy of a harmonic oscillator, while the higher
order terms are anharmonic.

When we express the vibrational energy in terms of normal modes,
we are working in a noninertial frame, rotating with the molecule.
Transformation to a rotating frame automatically involves the appearance
of two fictitious forces, centrifugal force and Coriolis force, both of which
can affect the molecular vibrations. There is, therefore, a fundamental
coupling between vibration and rotation that cannot be completely
resolved.

The classical expression for the kinetic energy in terms of rotation
and the normal modes of vibration is

Here a and /3 refer to two orthogonal axes, fixed with respect to the
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molecule, Ja^ is a component of the total angular momentum, and Pk is
the momentum coordinate conjugate to Qk. jra>/8 is the vibrational
angular momentum. This is the essential coupling term between vibration
and rotation. For a linear molecule it may be pictured as angular
momentum associated with the rotary motion around the symmetry axis
resulting from the coupling of two orthogonal oscillations out of phase
with each other (§ 3.2.4). This term is zero for oscillations along the axis
of a linear molecule and it is therefore zero for diatomic molecules,
whose only vibration is of this type. It depends upon the amplitudes of
the normal vibrations involved, as does the second, vibrational term on
the left-hand side of (3.13). uafi are components of a modified reciprocal
inertia tensor. To second order, these coefficients depend upon the
displacements of the atoms from their equilibrium positions and each can
be written in the form

With a suitable choice of axes,

where /„ is a principal moment of inertia of the molecule in its
equilibrium configuration and 6afs is the Kronecker delta function.

The vibrational angular momenta are proportional to the amplitudes
of the normal modes of vibration, so that ^—^0 as all 6*— »0. If we set
Qk equal to zero in (3.13) in all terms except Pk, we obtain the
Hamiltonian for the harmonic-oscillator, rigid-rotator model:

This Hamiltonian is the sum of independent rotational and vibra-
tional Hamiltonians, without interacting terms. In §§3.2.2 and 3.2.3 we
look at this model further. It has played a central role in the development
of molecular spectroscopy and the nomenclature of the subject is derived
from it. It gives valuable qualitative insights into the behavior of real
molecules and it is a true first-order model for diatomic molecules (for
which the JT'S are exactly zero). It is, however, not a correct first-order
model for polyatomic molecules for the following reasons. First, we have
neglected terms in the normal coordinates in the rotational term and have
included terms of the same order in the vibrational terms. Second, while
H° can yield a valuable approximation to the energy levels, the presence
of the vibrational angular momentum in (3.13) can fundamentally alter
the symmetry of the wave functions and affect both state populations and
selection rules.
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Although (3.15) is flawed as a first-order approximation for poly-
atomic molecules it is still a useful mathematical form that can yield basis
functions for perturbation expansions. This is the approach of most
numerical methods. Perturbations have been carried out on such basis
functions up to fourth order. The higher order terms in the Hamiltonian
(there are many of them) are classed generically as interactions (§ 3.2.4).
Molecules for which such perturbation schemes converge rapidly, includ-
ing all of the principal atmospheric radiators, are termed semirigid.

3.2.2. The states of the harmonic-oscillator, rigid-rotator model

(i) Vibrational states. The Hamiltonian in (3.15) is separable and we
may deal with vibration and rotation independently, subsequently multi-
plying wave functions or adding energies for a combined state.

The energy levels for a harmonic vibrator are

where vk is the vibrational quantum number (an integer) while k denotes
the normal modes.

Diatomic molecules have only one normal mode, the stretching vl

frequency, shown in Fig. 3.9b. Carbon monoxide and nitric oxide fall into
this class of molecule. So does hydrogen but, for homonuclear diatomic
molecules, symmetry forbids the existence of any dipole moment and
vibration-rotation spectra are absent. The spacing of vibrational levels
for hydrogen is illustrated in Fig. 3.8. The spacing between the levels
v = 0 and v = 1 is approximately twice that between v = 9 and v = 10.
According to (3.16) the levels should be equally spaced. This reminds us
that the harmonic-oscillator model is an idealization.

A number of atmospheric molecules are triatomic. For nonlinear
molecules there are three normal modes, while for linear molecules there
are four but two orthogonal bending modes (v2a and v2b) are degenerate
(Fig. 3.9). Energy levels for triatomic molecules are specified by listing
the quantum numbers in the form (viV2v^).

Methane, with five nuclei, has nine normal modes, but when the
spherical symmetry of the molecule is taken into account, only four are
independent. Vibrational energy states for methane are specified by
listing the four quantum numbers.

The existence of isotopic lines was mentioned in our overview of
spectra in § 3.1. The frequency of a classical oscillator is given by

where A is a force constant and n is the reduced mass of the molecule.
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FIG. 3.9. Normal vibrations of a triatomic molecule, (a) H2O is an example of a nonlinear
triatomic molecule, (b) CO2 is an example of a linear triatomic molecule. After Herzberg
(1945).

The restoring force is caused by electronic forces that are not affected by
the isotopic species of the nuclei, so that A is the same for all species. If
the superscripts i and j refer to two isotopic species,

As a case in point, this calculation leads to a frequency shift for the
13C16O band shown in Fig. 3.4 of 47.7cm"1 with respect to the normal
species.

(ii) Rotational states. Turning now to the energy levels of a rigid
rotator, the nomenclature is based on the principal moments of inertia
and is given in Table 3.1. The angular momentum J is the sum from all
sources, electronic, vibrational, rotational, and is quantized. The quan-

80
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Table 3.1. Nomenclature based upon moments of inertia

Moments of inertia Class Examples

/A = 0, /B = /c*0 Linear CO2, N2O, CO, NO
/A ¥= 0, /B = /c =£ 0 Symmetric top CFC13

/A = /B = /c Spherical top CH4

/A^/B^'C Asymmetric top H2O,O3

tization is

where / is the rotational quantum number (an integer). For the
harmonic-oscillator, rigid-rotator model this quantization also applies to
the rotational angular momentum alone.

There are two constants of the rotational motion: the component of
the angular momentum along a unique symmetry axis (if there is one),
and the component in a fixed direction in space. The former, K, is
quantized

The quantization (3.20) is important only for symmetric tops. The
quantum number K has only positive values, so that for each value of
K ¥= 0 there are two vector directions of J that can give rise to the same
value. These levels are, therefore, doubly degenerate.

The second directional quantization is for the component of momen-
tum in a fixed spatial direction, but it gives rise to no energy interactions
except with polarized radiation, which we shall not consider. There are
2J + 1 values of this momentum component.

The energy levels for a rigid, symmetric top are

where

and the rotational constants are defined by

With these definitions, F, A, and B are all expressed in cm"1.
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FIG. 3.10. Energy levels of a symmetric top. (a) Prolate; (b) oblate. The + and — signs
indicate parity. After Herzberg (1945).

The energy levels (3.22) differ in general appearance according to
whether the top is prolate (A> B) or oblate (A<B). Examples of both
are shown in Fig. 3.10.

For spherical tops A = B, while for linear molecules K = 0. In both
cases, (3.22) reduces to

These energy levels appear in Fig. 3.10 in the left-hand columns, for
which K = 0. This apparent similarity between linear molecules and
spherical tops is, however, illusory. The spherical top is highly degener-
ate and, when the degeneracies are resolved, individual / levels turn into
multiplets.

This brings us to the complicated case of the asymmetric top. It
cannot be described in any simple terms but can be pictured as an
intermediate stage between a prolate and an oblate symmetric top (Fig.
3.11). Each / level of a symmetric top is split into J + 1 sublevels with
different K. For an oblate top, the energy decreases as K increases while
for a prolate top the order is reversed (see Fig. 3.10a and b). Each level
with K =£ 0 is doubly degenerate. The first deviation from a symmetric top
gives rise to a splitting of these levels and the levels for an asymmetric
top can be found, to a first approximation, by interpolating between the
prolate and oblate symmetric tops, as illustrated in Fig. 3.11. K now plays
an ambiguous role and is no longer a useful quantum number.



FIG. 3.11. Energy levels of an asymmetric top. The asymmetric top levels are correlated with those of prolate and
oblate symmetric tops. After Herzberg (1945).

83
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There are 2J +1 levels of the asymmetric top for each value of /.
The levels are often labeled arbitrarily in the order of their energies, with
an integer, T, ranging from —/ to +/. This integer is set as a subscript to
the / but is not a quantum number. Reference to Fig. 3.11 shows that
r = KA — Kc where KA and Kc are the related K values for the prolate
and oblate symmetric tops. Some writers set these two values of K as

FIG. 3.12. Energy levels of an idealized diatomic molecule. (A) and (B) represent two
electronic states of the molecule. After Herzberg (1950).
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subscripts to J, as a level designation, in preference to the arbitrary T
enumeration.

The energy levels for an asymmetric top are given by (3.21) with

where

Tables of E(J, T, K) are available in the literature.

(iii) Vibrational-rotational states. Figure 3.12 shows how vibrational
and rotational energy levels can combine in the case of a diatomic
molecule. Two electronic levels, A and B, are indicated. A general
absorption involves a transition from A, v", J" to B, v', J'. This simple
addition of energy levels is, of course, correct for the harmonic-oscillator,
rigid-rotator model, but does not carry over to polyatomic molecules.
Interactions will be discussed in § 3.2.4.

3.2.3. Selection rules and line intensities

To calculate the line intensity from (3.10) we must know the population,
njt of the lower state and the square of the matrix element of the dipole
moment of the transition, |R,y|2. From (2.45), HJ is proportional to the
statistical weight of the state, g;. This number is made up of enumera-
tions of the degeneracies of the electronic, vibrational, rotational, and,
we must now add, the nuclear spin states of the molecule. At first, we
consider the rotational and the vibrational states only.

The vibrational states of a molecule have equal statistical weights if
we treat each degenerate state independently. The rotational levels have
a fundamental degeneracy associated with the component of the angular
momentum in a fixed direction in space. There are 2J + 1 orientations
and they cannot be distinguished.

Other angular degeneracies are strict only for the harmonic-
oscillator, rigid-rotator model and are resolved in real molecules. Each K
level of a symmetric top, except for K = 0, is double. This degeneracy is
usually resolved, as is an additional factor of 2J + 1 in the degeneracy for
a J level of a spherical top. This latter factor owes its existence to the
indeterminacy of the direction of the angular momentum with respect to
the spherical molecule. When resolved, such levels appear as 2J + 1
manifolds; see the spectrum of methane in Fig. 3.2a.

To illustrate the calculation of vibrational and rotational state
populations, we use the example of a linear molecule. The fraction of
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molecules in the (v, /) level is the product of the fractions in the v level
and the / level separately. From (2.45), (3.16), and (3.24)

where

is the vibrational partition function, and

where QT is the rotational partition function. Under normal atmospheric
conditions, Bhc/kd « 1 and

Equations (3.16) and (3.18) are plotted as continuous functions of v
or / in Figs. 3.13 and 3.14, and Table 3.2 gives populations of certain
lowest excited vibrational states at two temperatures. The iodine mole-
cule, illustrated in Fig. 3.13, has an unusually low vibrational frequency.

FlG. 3.13. Thermal distribution of vibrational levels. The data correspond to the iodine
molecule, with vt = 213.2 cm"1, and for a temperature of 300 K. After Herzberg (1950).
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FIG. 3.14. Thermal distribution of rotational levels. The nuclear weights are assumed to be
the same for all J. B = 0.418 cm"1 (nitrous oxide) and the temperature is 300 K.

For most molecules at atmospheric temperatures, the population of the
first vibrational level is very small and varies rapidly with temperature.
The rotational states have a maximum population for a J value
approximately equal to

We have not considered nuclear spins up to this point. They

Table 3.2. Ratio of the populations of the lowest two
vibrational states for some molecules at 300 K and 1000 K

Gas

H2
HC1
N2

CO
02
C12

I2

(cm"1)

4160.2
2885.9
2330.7
2143.2
1556.4
556.9
213.2

exp(-hv,/k8)

2.
9
1.
3,
5,
6
3

300K

.16 x 10

.77 x 10

.40 x 10

.43 x 10

.74 x 10

.92 x 10

.60 x 10

1000 K

-9

-7

-5

~5

-4

-2

-1

2,.Six
1.57 x
3.
4
1
4
7

.50 x

.58 x

.07 x

.49x
,63x

10
10
10
10
10
10
10

-3

-2

— 2

-2

-1

-1

-1

Source: After Herzberg (1950).
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contribute a hyperfine structure to the energy levels that can be detected
in the microwave spectrum but does not concern us, except that these
levels contribute to the statistical weights. The nuclear spin weights for
linear molecules alternate from even to odd J creating an alternation in
rotational state populations.

A molecule must possess a symmetry axis before nuclear spins are
important, e.g., the two-fold axes of 16OC16O and ^O'H. Consider the
example of carbon dioxide, and rotate the molecule 180° about this
symmetry axis. There is no detectable change in the physical situation
and solutions to the wave equation should be the same. However, these
solutions involve only the square of the wave function, |i//|2, and it is
possible for the wave function itself to remain constant (a symmetric wave
function) or change sign (an antisymmetric wave function). The vibra-
tional wave function is always symmetric, but the symmetry of rotational
levels alternates and even / levels are antisymmetric while odd / levels
are symmetric. Nuclear spin levels can also be either symmetric or
antisymmetric; if / is the spin of each of the two identical nuclei that are
interchanged by the rotation, the number of symmetric wave functions is
(21 +!)(/ +1) while the number of antisymmetric wavefunctions is
(27+1)7. For our example of 16O, 7 is zero so that the antisymmetric
wave functions are missing.

The rotational and the nuclear wave functions are not independent
for the reason that the symmetry of the combined wave function is
known. The rotation is equivalent to the exchange of two identical nuclei
and, depending upon whether they follow Fermi-Dirac or Bose-Einstein
statistics, the overall wave function must be antisymmetric or symmetric,
respectively, with respect to the interchange. Oxygen nuclei follow
Bose—Einstein statistics and therefore symmetric (or antisymmetric)
nuclear wave functions combine with symmetric (or antisymmetric)
rotational wave functions, the net result of which is that odd-numbered /
levels of the carbon dioxide molecule are not populated. This strong
restriction will not apply to species such as 16OC18O that have no two-fold
symmetry axis. Asymmetric isotopic species of carbon dioxide do not
have alternating populations of rotational levels.

Nuclear weights can also be calculated for nonlinear molecules, but
the calculation can be quite complicated and we shall not discuss the
matter further, but turn instead to the question of transition probabilities.

According to (3.8), the electric dipole moment must be a function of
the configuration coordinates if the transition probability is to be
nonzero. To evaluate the vibrational matrix elements we need to express
this variation of the electric moment in terms of the normal coordinates.
We may expand each component of the molecule-fixed dipole moment,
Ma (a = 1, 2, 3) in a Taylor series,
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where Me
a is the equilibrium value of the component of the dipole

moment and the ju's are expansion coefficients. It is an additional
assumption of the harmonic-oscillator, rigid-rotator model that only the
first two terms on the right-hand side of (3.31) need to be considered. Of
these, the first does not change in a vibrational transition. The matrix
element for the linear term in (3.31) is zero unless one vibrational
quantum number changes and that by unity

This is the selection rule for a harmonic oscillator. Combined with the
known energy levels, (3.16), and Planck's relation, (3.4), it means that
allowed vibrational transitions give the same frequencies v1; v2, v3, etc.
as the classical normal modes. For real molecules these are not the only
transitions that occur, but they usually give rise to the strongest bands;
these are the fundamentals.

Not all of the normal modes may be active, however. There is still a
question as to the size of the expansion coefficients in (3.31). It is possible
for the molecular symmetry to be such that the linear coefficient is
identically zero, leading to an inactive fundamental mode. In the case of
methane, for example, there are nine normal modes but only four are
distinct (vt, nondegenerate; v2, doubly degenerate; v3 and v4 both triply
degenerate). Of these only v3 and v4 are active in the infrared spectrum.

The dipole moment is a vector quantity and dependence of resolved
components upon angle follows from this. Apart from a multiplicative
constant, (3.6) is readily evaluated and gives a strict selection rule,

For symmetric tops there is a strict rule related to the conservation
of angular momentum,

Finally, there is a parity rule whereby positive levels combine only
with negative levels and vice versa,

The parity rule refers to sign changes of the wave function for
reflection through the origin of coordinates. For a symmetric linear
molecule there is no distinction between reflection through the origin and
rotation of 180° about the symmetry axis. Even and odd / levels,
therefore, have opposite parity, with the important consequence that, for
such molecules, A/ = 0 is not permitted. These restrictions apply to the
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total angular momentum and are not necessarily true for the rotational
momentum alone.

For the harmonic-oscillator, rigid-rotator model these selection rules
apply to the rotational states and

For transitions (vk+l, J + l)*-(vk, J) we find, from (3.24), (3.36), (3.16),
and (3.32),

For a pure rotation band, set vk = 0; but, in this case, only the positive
sign in (3.37) is admissible.

Equation (3.37) represents two branches of lines equally spaced
about the vibrational frequency. The high-frequency branch (A/ = +1) is
the R-branch and the low-frequency branch (A/= — 1) is the P-branch.
Figures 3.3 and 3.4 show examples for nitrous oxide and carbon
monoxide, respectively. P- and R-branch lines are labeled with the /
value of the initial state in parentheses, e.g., R(0), R(l), R(2),. . . , P(l),
P(2),. . . etc.

Figure 3.5 has two R-branch and three P-branch lines of carbon
dioxide, but in the gap between the two branches there is a very strong,
partially resolved feature; this is the A/ = 0 transition, a Q-branch, not
allowed in the harmonic-oscillator, rigid-rotator model for a linear
molecule. The explanation for the occurrence of this branch must wait for
a discussion of interactions; but, even for our simple model, a Q-branch
is possible for a prolate symmetric top because the two degenerate K
levels (K = 0 excepted) have opposite parities and the parity rule no
longer forbids A/ = 0.

For an asymmetric rotator, the parity rule has no simple conse-
quences and all three branches intermingle with such a variety of line
spacings as to present an almost random appearance (Figs. 3.6 and 3.7).

Selection rules tell us whether or not a matrix element is zero. If it is
not, we need to be able to calculate its magnitude. For vibrational
transitions this calculation involves the expansion coefficients in (3.31),
but these must usually be obtained empirically. One of the important
applications of molecular spectroscopy is to establish the coefficients in
(3.31) and the potential curve, Fig. 3.8.

For a pure rotational band, or for the relative rotational intensities in
a vibration-rotation band, the situation is different. We only have to deal
with geometric factors and the magnitude of the permanent dipole
moment. Matrix elements can be calculated quite simply in the rigid-
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rotator approximation. For a linear molecule

If / » 1, both expressions become independent of / and relative line
intensities are, from (3.10), proportional to the populations of the lower
states. This is the quantity, with the rotational constant for nitrous oxide,
which is shown in Fig. 3.14. We now see that this is also what one branch
of a simple vibration-rotation band will look like. To obtain the full
appearance of a band, the P- and R-branches must be generated by
reflection in the vertical axis of Fig. 3.14 and the origin placed at the
vibrational frequency. This gives a remarkably good representation of the
band shown in Fig. 3.3.

3.2.4. Interactions

To calculate energy levels to the precision required by modern spectro-
scopic techniques requires fourth-order perturbation expansions using
basis functions that are usually provided by the harmonic-oscillator,
rigid-rotator model. Very many perturbation terms are required, involv-
ing higher order coefficients in the expansions of the potential energy,
(3.12), and the inertia matrix, (3.14), combined in complex products with
the vibrational angular momenta. No simple description of these terms is
possible except in very restricted circumstances. However, the history of
the subject has been one of attempts to identify successive corrections to
a noninteracting model with physical "explanations" of each different
interaction. The names of these interactions now form part of the
language structure of the subject and we shall introduce them in the
simplest possible contexts. The reader should be warned, however, that
this approach is fraught with confusing issues, and that the small space
allotted to the subject in this section is useful mainly as a glossary.

A starting point is provided by an expression for the energy levels of
a diatomic molecule, allowing a single anharmonic term in the potential
function, (3.12). If the rotational energy is small compared to the
dissociation energy (Fig. 3.8), the result is

The subscript e indicates the equilibrium configuration. ve is the
frequency of the normal mode, Be is the equilibrium rotational constant,
and v and / are the vibrational and rotational quantum numbers. Jte is an
expansion coefficient characterizing the first anharmonic term. In
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addition,

The first and third terms on the right-hand side of (3.39) are the
familiar energy levels of the harmonic-oscillator, rigid-rotator. The
second term on the right-hand side can be interpreted as an anharmonic
correction to the frequency of the normal mode. It is a function of the
vibrational quantum number, so that the frequencies of permitted
vibrational transitions with Av = 1 now depend on the quantum number
of the lower state. For example,

The second example, 2<— 1, is an upper-state band. It no longer has the
same frequency as the ground-state band, 1 <— 0. An example is shown in
Fig. 3.3; the weak, superposed band has the first v2 level as its lower
state.

Anharmonic corrections must be made to all vibrational levels.
Corrections to some of the energy levels of water vapor are shown in
Fig. 3.15.

Anharmonicity also changes the selection rules from those for a
harmonic oscillator, (3.32); all integral changes of the quantum numbers
are now allowed. Au = 2 gives the first overtone band, with twice the
frequency of the normal mode. Simultaneous changes in two different
vibrational quantum numbers give rise to combination and difference
bands, with frequencies that are sums or differences of the normal-mode
frequencies. This change in selection rules together with the unequal
spacings of the vibrational levels can lead to a rich variety of vibrational
bands from a term scheme such as that in Fig. 3.15. The apparent
preponderance of ground-state bands in the atmospheric spectrum is due
partly to low atmospheric temperatures and small upper-state populations
(Table 3.2), and partly to the fact that overtone and combination bands
normally have smaller transition probabilities than fundamentals.

The fourth term on the right-hand side of (3.39) can be rationalized
as a centrifugal stretching term modifying the rotational constant. It is not
an anharmonic term because it does not involve the anharmonic
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FIG. 3.15. Vibrational energy levels of water vapor. The solid lines represent the
measured energy levels while the broken lines indicate the levels anticipated in the absence
of anharmonicities. Because anharmonic terms do not combine in any simple way, a
separate term scheme is required for each combination of modes. Not all possibilities are
shown. After Herzberg (1945).

coefficient xc. It should have also appeared in the harmonic-oscillator,
rigid-rotator model if that model were fully consistent. It has the effect of
modifying the simple sequence of equally spaced P- and R-branch lines
for a linear molecule. In place of (3.37) we now obtain

The final term on the right-hand side of (3.39) can be combined with
the third term to give an effective rotational constant, Be — ac(v + \).
This treats the term as an anharmonic adjustment to the rotational
constant, an interpretation that is consistent for the first term on the
right-hand side of (3.41), because this term involves the anharmonic
constant, xe. But this is not consistent with the second term on the
right-hand side of (3.41), which is harmonic. This second term is better
described as the result of Coriolis interactions. One important conse-
quence of its presence is that it resolves the structure of a Q-branch, if
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that branch is permitted. The third and fourth terms on the right-hand
side of (3.39) are functions of / alone and they contribute nothing to the
energy change if / does not change (as is the case for a Q-branch). The
Coriolis term, on the other hand, contributes a term,

splitting the Q-branch into an array with a spacing increasing with the /
value. A carbon dioxide Q-branch in Fig. 3.5 shows this behavior.

The nature and importance of one aspect of Coriolis interactions can
be seen from Fig. 3.9b. The Coriolis force acts at right angles to the
motion. Applied to the v2a motions, this produces a pattern of forces that
reinforces the motions of v3. Each of these normal modes can therefore
force a response in the other.

We have seen that anharmonic terms and Coriolis interactions can
both give interactions between levels. Given an example, such as the
levels of water vapor in Fig. 3.15, and also considering the rotational
levels superposed on all of them, it is clear that many levels must be very
close to each other and that there is much opportunity for close
resonances. When resonances occur the idea of independent states of a
molecule breaks down and the resonating states, assuming that they can
combine, will form a single state with strongly perturbed energies.
Calculations of perturbed states present no difficulties for an approach
based upon perturbation expansions; but the questions can be very
difficult to understand in a framework of ideas based upon independent
levels, such that as outlined in §§3.2.2 and 3.2.3.

The best-known case of Fermi resonance, as this resonance is named,
is found in the carbon dioxide molecule. The 2v2 level lies very close to
the Vj level. Fermi resonance between these levels leads to two combined
levels, shifted from both vl and 2v2 [see the (100) and the (02°0) levels in
Fig. 3.16]. At the same time, the rotational constants of the two levels
are perturbed, but in such a way that the sum over the two levels is
unchanged.

The 2v2 level of the carbon dioxide molecule is doubly degenerate
because of the fundamental degeneracy of the v2 vibration (Fig. 3.9) but,
because of selection rules on the vibrational angular momentum, only
one of these can combine with v,, leaving the other, (0220) in Fig. 3.16,
unperturbed.

We now return to the question of the vibrational angular momen-
tum, the existence of which is fundamental to many issues in the
interactions of vibration and rotation. It appeared in the expression for
the classical kinetic energy, (3.13), and was subsequently omitted partly
because of the conceptual difficulties that it introduces. Its nature can be
illustrated from Fig. 3.9b. If the v2a and v2b vibrations combine with a
n/2 phase difference between them, the central atom will perform a
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FIG. 3.16. Fermi resonance in CO2. The broken lines go over to the solid lines indicated
by the arrows under the influence of Fermi resonance. After Herzberg (1945).

rotary motion about the symmetry axis and give rise to a component of
angular momentum along this axis. This momentum is quantized with a
quantum number / (positive integer) that is less than or equal to v2 and is
closely analogous to the quantum number K for the symmetric top. Since
the effect of the vibration is to transform a linear molecule into a
symmetric top, this is not a surprising result. The quantum number / is
sometimes added as a superscript to v2 in the designation of the
vibrational level, e.g., (Ol'O), (02°0), and (0220) in
Fig. 3.16.

The energy levels of a linear molecule (omitting centrifugal and
anharmonic terms) can be obtained from (3.22) by taking the limit A « B
(with K replaced by /),

Since (3.44) depends only upon I2, each level for l=£Q is doubly
degenerate, as we also saw to be the case for the quantum number, K.
This degeneracy is resolved by Coriolis interactions even in a harmonic-
vibrator model. For 1 = 1, the level shift has been given approximately by

This leads to a doubling of lines known as l-type doubling.
/-type doubling is illustrated in Fig. 3.17. The letters C and D denote

transitions involving the +1 and —/ levels, respectively. The spacing
between C, D pairs follows from (3.45) and the midpoint of each pair
from (3.43); both aspects of the Coriolis interaction are required to
explain the interesting structure shown in Fig. 3.17.

The vibrational angular momentum also plays a part in selection
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FIG. 3.17. /-type doubling in a Q-branch of N2O near 8.62,um. This is a synthetic
spectrum. All strong lines except for the three R-branch lines indicated belong to the
Q-branch of (0310)*-(0110). Four Q-branch lines are also labeled to assist with the
identification of pairs of lines caused by /-type doubling, such as Q(1C) and Q(1D), Q(11C)
and Q(11D). This spectrum is based on physical conditions very different from those
occurring in the earth's atmosphere.

rules and, for linear molecules in particular, it strongly influences the
appearance of a band. There is a strict selection rule,

Transitions with A / = ± l give rise to perpendicular bands. Since the
parities of odd and even / levels differ, a change in / can allow A/ = 0.
Perpendicular bands can therefore have strong Q-branches. The CO2

band shown in Fig. 3.5 results from the transition (1110)<— (02°0), and is
a perpendicular band.

Bands for which A/ = 0 are known as parallel bands. If the transition
is from / = 0 to / = 0 there is no relief from the parity rule and
Q-branches are forbidden. However, for / =£ 0 the doubly-degenerate
levels have opposite parities and weak Q-branches may be allowed.
Figure 3.17 is an example of a Q-branch in a parallel band.

3.3. The shape of a spectral line

3.3.1. Introduction

An excited molecule will decay spontaneously to a lower state with the
emission of a photon (§ 2.2.3), even it it is completely undisturbed. Each
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state (apart from the ground state) has a finite lifetime and, according to
the uncertainty principle, each must possess a finite but narrow range of
energies. When transitions take place to or from an excited state a
narrow band of frequencies results, constituting a spectral line of finite
width. If spontaneous emission were the only cause of line broadening
the width would be the natural line width, and the shape the natural line
shape.

Natural line widths do not concern us in practice, because they are
invariably small compared to the line widths of atmospheric lines. In
practice, lines are broadened for one of two other reasons, either because
of the Doppler shifts resulting from molecular thermal motions (Doppler
broadening), or because of interactions between pairs of molecules
(pressure broadening or collision broadening). Doppler broadening and
collision broadening are usually treated as independent phenomena
although, when we come to consider Dickers theory (§ 3.3.6), we shall
find that this is not strictly justifiable. Nevertheless, we shall follow this
course. Doppler effects, taken independently of collisional effects, are
comparatively easy to deal with. Collision broadening, on the other hand,
is a topic of extraordinary complexity.

Fortunately, collision broadening has some simple aspects when the
time spent in close interaction is very small compared to the time spent
between collisions (impact theories). Impact conditions are always found
in the earth's atmosphere. The paradigm of impact theories, is the
Michelson—Lorentz theory (§3.3.2); it is oversimplified according to
modern ideas, and we introduce it solely to illustrate principles.

When two molecules approach one another, a time-dependent term
appears in the Hamiltonian (3.2). Under the assumptions of impact
theory and a number of other simplifications, it is possible to calculate
the Michelson-Lorentz parameters from quantum theory. This is the
Anderson-Tsao-Curnutte theory, which is widely used to calculated line
widths that have not been directly measured.

If the interaction Hamiltonian is large the situation may be very
complicated. We may have to consider composite molecules (dimers);
energy levels may be distorted and symmetries may be destroyed,
allowing collision-induced transitions, not discussed in §3.2 (see §3.4).
Under less extreme conditions, the time spent during collisions and the
size of the interaction at that time may combine severely to distort the
wings of a line. Line-wing shapes may sometimes be treated by statistical
theories (§3.3.5) in which the interactions between stationary molecules
are considered.

None of the theories mentioned so far embraces the full range of
interactions in the time domain, and it is difficult for the nonspecialist to
understand how the different partial theories come together. There is,
however, one complete impact theory for collisions that involves no
transitions (adiabatic interactions); we shall discuss the Lindholm theory
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in § 3.3.3 because the connections between line centers and line wings are
displayed explicitly. The conditions under which this theory might be
applicable are, however, not encountered in atmospheric work.

We shall describe line profiles in terms of a line shape factor,
f(v — v0), defined by

where /tv is the absorption coefficient,

is the line intensity, v0 is the unperturbed frequency of the transition, and
the integral is over a single line, i.e., it includes contributions only from a
single vibrational-rotational transition.

3.3.2. The Michelson-Lorentz theory

The natural line shape for spontaneous decay can be obtained from a
solution to Schroedinger's equation; it is

where

is half the frequency width measured to half the maximum absorption
coefficient or, simply, the line width. T is the average lifetime of the
excited state. For spontaneous decay, it is equal to the reciprocal of the
appropriate Einstein coefficient, (2.71); as has already been pointed out,
the natural lifetime is usually too long, and the natural line width too
narrow to be important for atmospheric calculations.

Under conditions of spontaneous decay, transitions take place at
random time intervals about a mean value, T; that is to say, time intervals
(?) follow a Poisson distribution with the probability of occurrenc"

Almost identical circumstances exist for collisions under the com-
bined conditions (impact, diabatic, small interactions) that characterize
the Michelson-Lorentz theory. The only effect of collisions is to cause a
transition, otherwise the molecules are unchanged; and kinetic collisions
follow the Poisson distribution, (3.50), if the molecules possess a single
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velocity. The same line shape, (3.48), must result, with the only
difference that T is now the mean time between collisions.

Collisions are here defined in terms of their ability to cause
transitions (optical collisions). Since rotational energy changes are,
generally, smaller than translational energies, optical collisions are
usually more frequent than kinetic collisions, and T may be "expected to
be smaller than the average time between kinetic collisions (as obtained
from viscosity measurements, for example).

We return to examine a point that was glossed over. How is it
possible to have collisionally induced transitions (diabatic conditions)
while, at the same time, requiring that the energy interaction is
negligible? This is an insuperable difficulty in classical mechanics but is
resolved in quantum mechanics. During a collision the two molecules
form a joint mechanical system in which transitions may take place
simultaneously in both molecules. One molecule may make an upward
transition while the other makes a downward transition. If the collision is
between identical molecules, exact resonance can occur; even for
dissimilar molecules, so many joint transitions are possible that some will
be close to resonance and require only a very small interaction
Hamiltonian. Conditions under which the Michelson-Lorentz theory is
approximately obeyed are, therefore, common. Atmospheric calculations
make frequent use of the Lorentz line shape, (3.48), and the Lorentz line
width, (aL). From kinetic theory, the Lorentz width may be written

where n, is the number density of the ith species of perturber, mt is its
mass, m is the mass of the absorber, o, is the optical collision diameter,
and 6 is the temperature.

If the composition is held constant, all of the nt are proportional to
the total pressure and (3.51) gives the important result, common to all
impact theories, that the line width is proportional to the pressure. The
temperature variation indicated by (3.51) is dependent upon the details
of the collision, and is uncertain, but this is rarely a crucial factor in
thermal calculations.

The time between optical collisions for a typical atmospheric gas at
s.t.p. is approximately 10~10s. For this value we find 0^ = 0.05 cm"1 at
s.t.p. Figure 3.18 shows three Lorentz profiles for this line width, at
pressures of 1, 0.5, and 0.25 bar.

Before leaving the Michelson-Lorentz theory, two peripheral mat-
ters should be mentioned. One is that the distribution of collision times
(3.50) is correct only for a gas with a single molecular velocity. We
should take an average over a Maxwellian distribution of velocities. The
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FIG. 3.18. Lorentz profiles for three pressures. A line width of 0.05 cm l at a pressure of
1 bar is typical for vibration-rotation bands.

result depends upon the collisional model. For a billiard-ball model, it
results in deviations from the Lorentz profile amounting to a few percent.

The van Vleck-Weisskopf line shape is a correction to the Lorentz
line shape appropriate to the microwave region of the spectrum. This
spectral region is of little importance for thermal calculations, but the
theory may also be used for the very far wings of lines in the infrared
spectrum. We shall see, however, that other factors become important in
the far wings of lines and the significance of this particular matter is
moot.

Michelson's derivation of (3.51) implicitly assumes that conditions
are randomized after the collision. They should, however, be consistent
with Boltzmann statistics. When this is done correctly, we obtain the van
Vleck-Weisskopf profile,

For (v - v0) « v0, (3.52) reduces to the Lorentz profile. For v = 0 it
agrees with Debye's theory of static polarizability. When microwave
measurements can distinguish between this and the Lorentz profile it
appears to be an improvement.
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3.3.3. An adiabatic model

We have shown that vibrational-rotational transitions take place very
readily during kinetic collisions and, therefore, that adiabatic models
(models without transitions) have little direct relevance to atmospheric
calculations. The discussion of this section has a different purpose: it is to
illustrate a number of important concepts in a comparatively simple
framework.

Lindholm's theory is a complete, adiabatic impact theory valid for
large as well as for small energy interactions. This gives a consistent
model of a line for all displacements from the line center (the larger the
interaction energy the larger the frequency displacement).

Since we do not consider transitions, we may use a classical
approach, although a quantal analogue to the discussion exists. Use is
made of the phase-shift approximation, by which the encounter between
molecules is assumed to affect the phase of the vibration but not the
amplitude. This approximation can be shown to be satisfactory for all
circumstances applicable to the atmosphere. We may then write the
time-dependent oscillation in the form

where r](i) is the phase, the time variation of which is caused by the
interaction; according to the phase-shift approximation, a, the amplitude,
is constant.

The power in the Fourier components of this expression gives the
required line shape. After some manipulation, and making use of the
impact approximation, this power spectrum can be written

where 91 denotes the real part, and

is the correlation function.
Equations (3.54) and (3.55), or their quantal analogues, are a

common starting point for modern theories of spectral line shapes. This
statement of the problem has the advantage that approximations based
upon physical insight can be introduced directly into the correlation
function, from which the line shape follows. As an example, we may
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introduce an average phase shift fj(t) denned by the relationship

Whatever the exact meaning of f](i), it is reasonable to suppose that,
averaged over many events, an average phase shift should increase
linearly with time, or j)(f) = (A + iB)t where A and B are constants. With
this reasonable assumption,

Substituting (3.57) in (3.54),

a Lorentz profile with a line width, B, shifted by a frequency, A. The
simple assumption leading to (3.58) illustrates the reason for the wide
applicability of the Lorentz profile.

The coefficients A and B define the rate of change of the average
phase shift with time. Since phase shifts are caused by collisions, both
coefficients must be proportional to the frequency of collisions and hence
to the total pressure of the gas. Line shift and line width are both
proportional to the pressure and, although it cannot be concluded from
this analysis, they are often of similar magnitudes.

We now return to the complete theory of Lindholm for a van der
Waals energy interaction. Interpreted in terms of frequency shifts as a
function of approach distance, the van der Waals interaction is

where r is the distance between absorber and perturber and /? is an
interaction constant.

Lindholm obtained a correlation function for this van der Waals
interaction. His result can be stated in terms of a Lorentz width, orL, and
a frequency, vp, that measures the displacement from the line center
beyond which the Lorentz profile is no longer valid. The theory yields

where n is the number density of perturbers and u is the mean molecular
velocity. Equation (3.61) reinforces an earlier conclusion that collisional
widths are proportional to the pressure.
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It is instructive to calculate vp by eliminating /? between (3.60) and
(3.61) and using observed line widths. This suggests a vp~2cm~1 for
typical line widths. This result is of great practical importance. We have
already reached the conclusion that vibration— rotation lines should have
a shifted Lorentz line shape as a central core, the width and shift of which
are proportional to the pressure; now we have an indication of how far
out into the wings this profile will extend. vp is approximately 40 times
greater than the line width at 1 bar. According to (3.60), it does not
depend upon the pressure. This result is confirmed both by measure-
ments and by more elaborate theories.

The Lindholm profile can be expressed in terms of its ratio to a
Lorentz shape with line width aL and a center shifted by — 0.726o/

L. This
ratio (F = Lindholm/Lorentz) is expressed in terms of the dimensionless
parameter,

The numerical results correspond quite closely to the following algebraic
forms:

line center approximation —2.5 «£ fj. =s +1.5,

low-frequency wing approximation ju < —2.5,

high-frequency wing approximation ^ > 1.5,

There is a simple physical explanation for the shape of the
low-frequency wing. For very large displacements from the line center,
the first term on the right-hand side of (3.63) will dominate, giving a
factor proportional to (v - v0)

1/2. The Lorentz shape (3.48) contributes,
in the far wing, a term proportional to (v — v0)^

2 and the two, when
multiplied together, give a frequency variation (v — v0)~

3/2. This variation
follows from a simple statistical theory. If there were a frozen configura-
tion of molecules interacting with an inverse-m power law, statistical
theory gives a low-frequency wing with the frequency variation,
(v - Vo)~(m+3)/m For m = 6, as for (3.59), the statistical profile agrees with
(3.63). It is a valid inference that, far from the center of a line, a
statistical treatment may be relevant.



104 ATMOSPHERIC RADIATION

3.3.4. The Anderson-Tsao-Curnutte theory

Atmospheric absorbers and perturbers (principally nitrogen and oxygen)
both possess vibrational and rotational energy. A joint transition during a
collision may be close to resonance and, if permitted, should have a large
transition probability. The Anderson-Tsao-Curnutte (ATC) theory is a
quantum-mechanical treatment of collisions specialized to these condi-
tions and is the standard method for calculating line widths and line shifts
that have not been measured in the laboratory. The theory makes no
attempt to calculate the line profile.

Near-resonance implies that transitions will take place before mole-
cules approach too closely and it is a reasonable assumption that only the
far-field interaction between the dominant electric multipole moments
need be included in the perturbation Hamiltonian. These interactions are
comparatively easy to handle analytically, which is why they are used, but
they are the weak point of the theory. As an example, that we shall use
in the subsequent discussion, the interaction between the dipole moment
of a water molecule, /J,, and the quadrupole moment of a nitrogen
molecule, q, gives rise to an angle-dependent interaction proportional to

where r is the distance between the molecules.
If the energy interactions are small, both absorber and perturber will

follow straight-line paths with a distance of closest approach, or impact
parameter, rm. This is the classical-path approximation and, without it,
the calculation would be very difficult. Using it, the perturbation
Hamiltonian can be calculated along a path and the probability of
transition evaluated as a function of the impact parameter.

The water molecule (our example) can make radiative transitions
between an initial (i) and a final (/) state with the absorption or emission
of an unperturbed photon of frequency

Since we are considering one particular spectral line, i and/are given for
the calculation.

During a collision, both the water vapor and nitrogen molecules can
undertake a variety of nonradiating transitions, any one of which can
interrupt the i—»/transition. For water vapor z',/can go to i',f, while for
nitrogen the rotational levels can change /—»/'. The change in energy in
the transition is either

or
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Given all the possible choices of i', f, J, J' some A£'s are likely to
be very small indeed. The closeness to resonance is measured by the
parameter

where u is the approach speed.
Given the classical-path assumption and the interaction potential

(3.65) the perturbation Hamiltonian can be calculated and the probability
of transition integrated over the whole path. The independent variables
are the distance of closest approach, rm, and the various quantum
numbers. Of the latter, i,f are given and a sum can be taken over all of
the primed variables. This permits us to express the transition probability
Pj(rm) as a function of / and rm only. From the transition probability a
collision cross section can be denned,

The collision diameter is approximately equal to the approach
distance for which the transition probability is unity. The ATC theory is
an impact theory and it leads to a Lorentz profile with the real part of
(3.69) as the optical collision diameter. Equation (3.69) also has an
imaginary part that the discussion of §3.3.3 allows us to identify with a
line shift parameter. The ATC theory gives both line shift and line width
to the same degree of approximation.

At this point in the theory some serious numerical difficulties arise.
The integral in (3.69) runs from 0 to °o and yet the interaction potential is
certainly incorrect for small values of the impact parameter. Further, the
theory is not applicable to transition probabilities greater than unity but
there is nothing in the calculation to prevent such values from occurring.
So, for rm < r0, the transition probability is assumed to be constant with r0

taken to be the larger of either the kinetic collision diameter or the
impact parameter that gives unit transition probability.

For a dipole-quadrupole interaction the collision diameter is

where D and Q are the known dipole and quadrupole transition
probabilities for water and nitrogen, respectively, and F(/c0) is a
tabulated function of k(r = r()).
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The Lorentz width follows from (3.51)

where «(/) is the population of the perturber / state. The line width
depends upon the quantum numbers of the upper and lower states
through the dipole transition probabilities in (3.70) and line widths
therefore vary from line to line.

Figure 3.19 shows a comparison of measured and calculated widths
for some wider lines of water vapor in three different bands. The
agreement is fair, but the theory may be better than appears because
many of the errors could be in the measurements rather than in the
theory. There are significant discrepancies, however, particularly among
the narrow lines that occur for high / values. It is for these lines that the
choice of the impact parameter r0 is particularly important. Early
calculations with the ATC theory made use of the kinetic theory impact
parameter (3.2 A), which leads to a line width of O.OScnT1 at s.t.p.

FIG. 3.19. Measured and calculated widths of water vapor lines. The lines shown are
relatively wide and are from low-/ transitions. Agreement between measurement and
observation is not as good for high-/ lines. The solid line is drawn at 45° and is not intended
to be a best fit. These data are taken from Davies and Oli (1978).
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According to the theory, this should be the least line width in a band but
line widths as narrow as 0.007 cm"1 at s.t.p. have been measured. Better
agreement has been obtained using a smaller value of r0 but the
assumptions of the theory break down for collisions closer than kinetic
theory allows.

Relatively few measurements of line shifts are available but, from
those that do exist, it is clear that the agreement between theory and
observation is very poor. Measured shifts at s.t.p. have published in the
range —0.0066 to +0.0044 cm"1 with comparable theoretical values in the
range -0.0062 to +0.012 cm"1 but with little detailed correspondence
between the two. Many line shifts appear to be about half the
corresponding line widths.

Measurements and calculations are also available for the case of
water vapor self-broadening. The water molecule has a large dipole
moment and collisions between like molecules are resonant. For both
reasons, the line width for self-broadening of water vapor can be
expected to be very large. The average ratio of the line widths for
self-broadening to those for nitrogen broadening is about 5.

3.3.5. The far wings of pressure-broadened lines

The atmospheric absorption process is strongly nonlinear. In § 2.4.2 we
obtained different expressions for the heating under transparent and
opaque conditions. For very large absorption coefficients the heating rate
becomes very small, (2.127), as it also does for very small coefficients,
(2.120). The information that we require about molecular absorption
bands is not, therefore, restricted to the centers of strong lines. There are
circumstances that occur in the lower atmosphere for which the profile of
water vapor lines is important as far as 103 line widths from the line
centers.

A theoretical approach to far line wings involves large interaction
energies and very close collisions. Since we have little exact knowledge of
such circumstances, quantitative theoretical results cannot be expected.
Fortunately, a semiempirical approach is feasible.

Line-wing absorption has some simple features. The absorption
coefficient varies slowly with frequency compared to line centers, and it
may be defined by measurements made at a few frequencies. If theory
can offer some insight into the dependence of the absorption on the
physical state, laboratory data may be extrapolated to atmospheric
conditions. The most important state variable is the pressure; information
about the influence of pressure on absorption can be obtained from
order-of-magnitude considerations.

A number of recent studies have sought approximations to the
correlation function that can take account of close collisions. Equation
(3.57) is an approximation that is essentially equivalent to the impact
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approximation. In order to study line wings, it must be modified to
include information about the time, rc~ (ulrm)~l, that was spent during
the collision.

If we modify (3.57) to include times less than TC we change the
Fourier transform (3.54) for frequencies (v — v0) >2jt/Tc. This intro-
duces a new frequency scale

For (v — v0) < ac we anticipate a shifted Lorentz profile.
For (v — v0) > ac the frequency perturbations are greater than the

inverse transit time. Several oscillations can now take place in the
duration of the collision; in this sense, the interaction is slow and may be
approximately treated as static. For frequency displacements greater than
ac, we may anticipate that the results of statistical theory should apply.
Our qualitative picture of a spectral line now includes a shifted Lorentz
core (parameters calculated from ATC theory, for example) changing to
statistical wings at a frequency displacement equal to ac. Unlike orL, ac

should not depend on the number density of perturbers, because the
transit time spent in the collision does not do so. It will depend upon the
temperature, however, through the molecular velocity, if not for other
reasons.

The Lorentz line width is inversely proportional to the mean time
between collisions so that

where / is the molecular mean free path and o is the optical collision
diameter. For atmospheric gases at s.t.p., l/o~ 1-2 x 10~2 and ac should
be in the range 5-10 cm"1.

An important conclusion to be drawn from this discussion is that, in
line wings, whether the frequency displacement is greater or less than ac,
the absorption coefficient is proportional to the pressure. For the Lorentz
part of the wings

where orL is proportional to the collision frequency. For the statistical
section the absorption coefficient is proporitional to the probability of
occurrence of the spatial configuration of perturbers leading to that
particular frequency perturbation. This probability is proportional to the
number of perturbers at a given distance from an absorbing molecule
and, therefore, also proportional to the molecular number density.
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The two important results that we have achieved are an estimate of
the magnitude of ac together with the information that it does not
depend upon the pressure, and the prediction that line wing absorption
will be proportional to the pressure, whether the frequency displacement
is greater than or less than ac. These two results are of practical
importance for atmospheric calculations.

This qualitative discussion is supported by all aspects of the behavior
of the Lindholm model (§ 3.3.2). ac and vp are closely related, although
there is a discrepancy in magnitude that is within the uncertainty of the
discussion. Our present conclusions are not restricted to adiabatic
collisions, however. There is a quantal analogue to the correlation
function for which the foregoing discussion is equally valid.

To go further we turn to laboratory measurements. It is difficult to
make measurements a few cm"1 from a line because few are that far
away from other lines. Figure 3.20 shows one careful set of measure-
ments involving two isotopic lines of hydrochloric acid. Measurements
were made at a number of pressures and combined by plotting the

FIG. 3.20. The wings of the R(0) lines of the fundamental band of H3

two vertical lines indicate the centers and intensities of the two isotopic lines. The Lorentz
profile is indicated. The quantity plotted, k ( v ) / p , should not be a function of pressure
After Benedict et al. (1965a,b).
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absorption coefficient divided by the pressure. This method of plotting
demonstrates the anticipated dependence of absorption on pressure.
Departures from the Lorentz profile occur for frequency displacements
greater than about 2.5 cm"1; this transition frequency, as predicted, does
not depend upon pressure.

The far wings of the lines in Fig. 3.20 fall off more slowly than
expected from the Lorentz profile. An empirical fit is

The brief theoretical discussion of statistical profiles in § 3.3.3 suggests an
energy interaction varying as r~4.

Other laboratory studies have given different results for the far-wing
profile, both larger than and smaller than Lorentz. A well studied case is
the low-frequency wing of the v3 fundamental of carbon dioxide. There is
a convergence of lines in the wing so that, past a certain frequency, the
absorption coefficient is solely from line wings. One empirical fit gives the
ratio to a Lorentz profile,

where v is in cm"1.
An added complication is that, when line-wing profiles are impor-

tant, a large number of wings inevitably overlap. This implies energy
perturbations much larger than the energy gaps between rotational
energy levels. The rotational wave functions are no longer independent
and it is not permissible to add contributions from many lines calculated
on the assumption of independence. To take an example based upon the
Lorentz profile, if we treat the lines as independent the absorption
coefficient far from an array of lines is

where Sit <#L/, and v0 , are the parameters for the ith line.
A more acceptable approximation has been shown to be

The diagonal terms in (3.78) correspond to (3.77) but the off-
diagonal terms are also important for inelastic collisions.

This mixing of wave functions provides one more reason why we are
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unlikely, in the near future, to obtain absolute theories of line-wing
absorption. Equation (3.78) still indicates proportionality between the
absorption coefficient and the Lorentz widths (proportional to the
pressure), and this is the only important result that we require.

The temperature dependence of line intensity differs from line to
line. The two sums in (3.77) and (3.78) should give different results for
the temperature variation of the wing absorption. Again we may
conclude, for a different reason, that this aspect of the problem must be
treated empirically.

3.3.6. Doppler effects

In the absence of collisional effects, spectral lines have a finite width
because of the Doppler shifts from random molecular motions. The
probability that there is a relative velocity (w) between absorber and
observer is, from Maxwell's law,

If w/c« 1, the Doppler shift is

From (3.79) and (3.80), we obtain the Doppler profile,

where

is the Doppler line width. It is defined in terms of the half frequency
width to e"1 of the maximum of the profile, rather than to 2"1 as for the
Lorentz profile.

Typical Doppler widths are

1. the 5577 A forbidden line of atomic oxygen, at 300 K, orD =
a.axio^cnr1;

2. a water vapor rotation line near 200 cm"1, also at 300 K,
aD = 3.5xKT4cirT1.

The Doppler width does not depend upon the pressure and, at low
enough pressures, it must exceed the Lorentz width. For a Lorentz width
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FIG. 3.21. Doppler and Lorentz line shapes for the same intensities and widths.

of 0.05cm l at s.t.p. equal Doppler and Lorentz widths occur at a
pressure of 0.66 bar (at 3-4 km altitude) for case (1) and 7 mb (at 34 km)
for case (2).

The shapes of the two profiles are compared in Fig. 3.21. The
greatest difference is in the wings where the Doppler profile falls off
rapidly, as exp{-[(v - v0)/tfD]2}, while the Lorentz profile falls off much
more slowly, as (v - v0)

2.
If it were possible to treat collisional and Doppler broadening as

completely independent (we shall show that it is not strictly correct to do
so), the collision broadened line shape should be shifted by the Doppler
shift (3.80) and averaged over the Maxwell distribution (3.79). If this
procedure is applied to the Lorentz profile (3.48) we obtain the Voigt
profile,

The Voigt profile is extensively tabulated in the literature in terms of the
parameter d = 2aJaT> and fast numerical algorithms are available for its
computation (see Bibliography).

Figure 3.21 suggests the general nature of the Voigt profile. At high
pressures (d » 1), the Doppler profile is narrow compared to the Lorentz
profile and behaves in the convolution (3.83) as if it approximated a
5-function; under these conditions the Voigt and Lorentz profiles are
identical.
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At low pressures (d « 1) the situation is more complicated. Near the
line center, the core of the Lorentz line will approximate a 6-function in
the convolution (3.83) but in the wings the Lorentz profile will eventually
vary more slowly with the frequency displacement; then it will be the
Doppler profile that approximates to a 6-function. We are led to
anticipate a hybrid line with a Doppler center but with Lorentz wings.

The half intensity width for the Voigt profile, normalized to the
Doppler width, is shown by the uppermost curve in Fig. 3.22. The
independent variable, d/2 = <*L/orD, is proportional to the pressure. This
representation obscures the differences that exist between the Doppler,
Lorentz, and Voigt profiles and deals with a single parameter only, the
half width to half intensity, but it is convenient for a discussion of
departures from the Voigt profile. The uppermost curve represents the
Voigt profile with the Doppler width when d «1 and the Lorentz width,
proportional to the pressure, when d»l. The curves below the
uppermost in Fig. 3.22 show the normalized line width for the Dicke
profile, which takes account of the interaction between Doppler and
collisional broadening. The curves are distinguished by the size of the
parameter

where cr0 is the optical collision diameter and crk is the kinetic collision
diameter. For z « 1, and for d neither very large nor very small, the line

FIG. 3.22. The half width to half intensity for the Dicke profile. The parameter z is defined
in the text. After Fink and Belton (1969).
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is narrower than predicted by the Voigt profile; when it is narrower, the
profile is Lorentz, even if d < 1, when a Doppler core might be expected.

This curious behavior of the line width was unsuspected until line
widths less than the Doppler width were found in the microwave
spectrum. Dicke supplied the appropriate quantal explanation; but we
present here a simple qualitative discussion in terms of the correlation
function, (3.55).

The solution to the line broadening problem, as stated in (3.54) and
(3.55), requires an estimate of the average phase change after a given
time, see the definition of fj(i) in (3.56). If we make use of the average
phase shift caused by Doppler effects, fjD(t), this procedure will yield the
Doppler profile, (3.81). Collisions reorient velocities randomly and the
average Doppler phase can, therefore, evolve only over the time between
kinetic collisions, rk. If the mean molecular speed is u, we have, making
use of (3.82),

We may similarly approximate the collisional phase, in the manner
of (3.57). If we accept that A and B are of similar magnitude and both
approximately equal to aL, we have

where TO is the time between optical collisions. From (3.85) and (3.86),

When the line shape is determined from the phase-shift approxima-
tion, (3.54), the dominant mechanism will be that giving the largest phase
shift. Our treatment here is capable of giving information only about the
line center. For z ~ 1 we conclude from (3.87) that the line center is
dominated by collisions if a^/aD> 1 and by Doppler effects is aI./aD<
1. This is in full agreement with our previous discussion of the Voigt
profile, although there is almost no common ground between the two
treatments.

Dicke's line shape becomes important when z « 1, i.e., for optical
collision diameters much smaller than kinetic collision diameters or,
alternately stated, when many kinetic collisions occur during one optical
collision. Then, according to (3.87), collisions may dominate the line
center even when (XiJaD « 1 . The width of the resulting Lorentz line will
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then be less than the Doppler width appropriate to the gas temperature.
This is the phenomenon of line narrowing.

Our discussion explains some of the stranger features of Fig. 3.22. It
has a limited importance for atmospheric calculations. In § 3.3.4, we
noted that certain water vapor lines have widths less than predicted from
kinetic theory by a factor of three. For these lines z = 1/3 and the Voigt
profile may be slightly in error over a limited range of pressures. In
practice, the Dicke line shape has not been used for terrestrial applica-
tions, but there are cases in the laboratory and in planetary spectra of the
outer planets when it is important to use the correct formulation of the
interaction between Doppler and collisional phase shifts.

3.4. Collision-induced and polymer spectra

In § 3.3 we treated interactions between molecules in terms of perturba-
tions to permitted transitions of an otherwise isolated molecule. There
are, however, many other aspects to collisional interactions that fall
outside this simple prescription. For example, a homonuclear diatomic
molecule, such as oxygen or nitrogen, that has no dipole moment in an
isolated state, may have a dipole moment induced in it by a colliding
molecule, in which case dipole transitions may occur during the short
period occupied by the collision. Or, what amounts to the same thing, a
transition, forbidden by a selection rule because of a high degree of
symmetry, may be weakly permitted if that symmetry is destroyed during
a collision. Alternatively, depending upon the interaction potential,
colliding molecules may form a dimer or larger complex that can survive
a few collisions. Such a complex is, from an optical point of view, a new
species with its own vibration—rotation characteristics. Both cir-
cumstances, collision-induced spectra and dimers or polymers, have some
relevance to atmospheric calculations.

First we consider collision-induced, forbidden transitions. The sym-
metry of either the vibrational or rotational wave functions may be
altered in a collision. In the former category are such questions as the
forbidden Q-branches of parallel bands of linear molecules (§ 3.2.4) that
may appear as weak lines in spectra measured at high pressures. More
important are pressure-induced vibrational transitions in the abundant
oxygen and nitrogen molecules. These may need to be taken into account
in precise calculations of atmospheric heating. On the outer planets,
where hydrogen and helium are the dominant species and where
pressures can be very high, pressure-induced vibration-rotation absorp-
tions control the thermal state of the atmosphere.

The oxygen and nitrogen (forbidden) fundamental vibration bands
lie at 6.42 and 4.29 f^m, respectively. Laboratory spectra of the oxygen
band are shown in Fig. 3.23. Pressures are high, —10 bar for the spectra
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FIG. 3.23. The fundamental vibration—rotation band of oxygen. The path length is 40m.
The densities are as follows: for pure oxygen, 9.59Amagat; for the oxygen-nitrogen
mixture, oxygen 1.09 Amagat, nitrogen 56Amagat; for the oxygen-argon mixture, oxygen
1.12 Amagat, argon 56.9 Amagat (see Appendix 3 for the definition of the Amagat). The
vertical lines represent calculated rotation line intensities and positions. After Shapiro and
Gush (1966).

of pure oxygen and —60 bar for the gas mixtures. A dipole moment is
induced in the oxygen molecule by quadrupole-quadrupole interaction or
by overlap induction. In the former case, quadrupole selection rules
apply, A/ = -2, 0, +2, giving rise to an O-branch, a Q-branch, or an
S-branch, respectively. Transitions can take place in either molecule
(assuming both to have induced dipoles) and two simultaneous absorp-
tions can occur, e.g., a pure rotation band in addition to a vibration-
rotation band. The overlap induction contributes mainly to the Q-branch.

In Fig. 3.23, the theoretical spectrum shown is for a single,
quadrupole-quadrupole induced transition. No trace of the predicted
rotational structure can be seen in the observed spectrum for the reason
that the rotational lines have widths of about 30cm"1 and are merged
into one another. The cause of these broad lines is the very short time for
which the dipole exists, giving rise to a line width approximately equal to
the line parameter, ac, discussed in §3.3.4 and defined in (3.72). As was
the case for ac, this broadening is not a function of pressure and the lines
cannot be resolved under any conditions.

The band intensity of a pressure-induced band is, unlike a normal
band, proportional to the perturber pressure. The absorption intensity
depends upon the amount of time for which the dipole exists; that is to
the product of the time spent in a collision with the rate of collisions; the
latter factor brings in the perturber pressure. The volume absorption
coefficient is now proportional both to the number density of absorbers,
«A, and to the number density of perturbers, nf (or to the square of the
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number density of absorbers in the case of collisions between like
molecules). This is the same as the behavior in the far wings of a
pressure-broadened line, and there is some analogy between the two
situations. Because of this fact, it is usual to define binary absorption
coefficients for pressure-induced bands

Given information about the multipole interactions between mole-
cules, the induced dipole moment can be calculated. The following is the
first-order term in the absorption coefficient,

where QA is the quadrupole moment of the absorber, rA is the nuclear
separation, a is the electric polarizability, V(r) is the interaction
potential, r is the distance between the absorber and perturber, and m, c,
and k have their usual meanings. Note the Boltzmann term involving the
interaction potential. Since the interaction potential is negative, the effect
of this term is to cause the absorption coefficient to decrease as
temperature increases; in physical terms, the higher the molecular
velocities, the shorter is the time that the molecules are in close contact.

The necessary condition for dimer formation is the existence of
attractive forces for very close collisions. The resulting complex will then
survive until the next collision or possibly it may survive a few collisions.
The important difference from pressure-induced bands is that dimer
lifetimes are greater than or equal to the time between collisions and,
therefore, lines are not broadened as they are in Fig. 3.23. A dimer
possesses its own characteristic vibrational modes with little relationship
to those of the constituent molecules. It can have a resolvable vibration-
rotation structure and it was the presence of such a structure in
laboratory bands that led to the distinction between dimer bands and
pressure-induced bands in spectra of nitrogen and oxygen at high
pressures. The intensities of dimer bands, like those of pressure-induced
bands for like molecules, are proportional to the square of the concentra-
tion of the absorbing molecule. The only dimer absorption that has been
claimed to exist in the atmospheric spectrum is that of water vapor, in the
continuum absorption of the 10-jum window. The alternative explanation
of this continuum is absorption by the wings of strong lines in the 6.3 //m
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and rotation bands of water vapor, as discussed in § 3.3.5. Until this
controversy is resolved the importance of dimer absorption is moot.

3.5. Overview

Figures 3.24a and b, 3.25, and 3.26 show comparisons between solar
spectra measured by an interferometer installed on the Space Shuttle and
theoretical calculations based on the AFGL data and a Voigt line profile.
Figures 3.24 and 3.25 were recorded in orbit. The absorption paths were
tangential and the atmosphere was traversed twice; the tangent height is
indicated. Figure 3.26 was recorded on the ground.

The agreement between observed and synthetic spectra is remark-
able, but may be misleading because the eye emphasizes the near perfect
agreement between line positions. This agreement goes beyond the needs
of thermal calculations but is required for the identification and measure-
ment of trace gases.

Absorption intensities do not agree as well as do line positions.
Occasional features are to be seen in one spectrum but not the other and
the strong lines differ up to — 10% in absorption. No lines are strongly
absorbed and, for Figs. 3.25 and 3.26, the lines are dominated by
Doppler broadening, for which we may be confident about the profile.
Our knowledge of line profiles is not severely tested by these data. The
data on the AFGL tape were not assembled for the purpose of precise
absorption calculations. In order to form a judgment as to the reliability
of atmospheric calculations, we must rely heavily upon theoretical
conclusions drawn from §§ 3.2-3.4, as summarized below.

(i) Isolated molecules. Line positions and relative line intensities for a
vibration-rotation band of an isolated molecule can be calculated to any
desired precision, although high-order perturbation theory can be very
complex. Since atmospheric molecules spend at least 99% of the time in
isolation, the theory of isolated molecules forms an excellent basis for
atmospheric calculations. Vibrational transition probabilities cannot be
calculated accurately, but they can be determined from only a few
measurements in the laboratory. Line intensities have not been calculated
to the same precision as line positions, but this could be done. The
temperature variation of line intensities is known precisely once the lower
state has been assigned.

(ii) Collisional perturbations. Only the central core of a line profile can
be strictly interpreted as a perturbation to the theory of isolated
molecules. With some reservations, the profile of the core of a vibration-
rotation line can be treated in terms of a shifted Lorentz line convolved
with a Doppler profile. The Voigt profile is correct if the line is unshifted.
The theory of Lorentz widths is understood to first order, but the
measured and theoretical data available may be in significant error.



FIG. 3.24. Observed and calculated lines of the v2 band of water vapor in the solar
spectrum, (a) Spectral range, 1618 to 1682 cm~'. (b) Spectral range, 1651 to 1655cm"1.
Tangent height, 71.5km. The upper panels are observed and the lower panels are
calculated from the AFGL tape and an atmospheric model. In this figure and in Figs. 3.25
and 3.26, the scale for the observed transmission (upper spectrum) is indicated by the 0 and
the upper 1. The synthetic spectrum is shifted bodily downward by an amount equal to the
difference between the upper and the lower I's. A small frequency shift between the two
spectra is attributable to second-order uncorrected Doppler shifts from the spacecraft
motion. By permission of Dr. Crofton Farmer, Jet Propulsion Laboratory.
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FIG. 3.25. Observed and calculated lines in the Q-branch of the 3v2 band of carbon
dioxide in the solar spectrum. Spectral range, 1931 to 1939cm"'. Tangent height, 45.8km.
The upper panel is observed while the lower panel is calculated using the AFGL line
parameters and an atmospheric model. The Q-branch lines are separated by a strong Fermi
resonance. Even J values appear, from Q(2) at 1932.48 cm"1 to Q(60) at 1937.55 cm"1. By
permision of Dr. Crofton Farmer, Jet Propulsion Laboratory.

FIG. 3.26. Observed and calculated lines of the Vj band of ozone and the 2v2 band of
nitrous oxide in the solar spectrum. Spectral range, 1156 to 1164cm"1. Level of
observation, Okm. Zenith angle of observation, 60°. The upper panel is the observed
spectrum while the lower panel is calculated from the AFGL line parameters and an
atmospheric model. The 10 strong, regularly spaced lines are P(5) to P(14) of the 2v2 band
of nitrous oxide. The many ozone lines are weaker and unevenly spaced. By permission of
Dr. Crofton Farmer, Jet Propulsion Laboratory.
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Pressure shifts are poorly understood. Doppler widths can be calculated
precisely.

(iii) Close collisions. For close collisions, the theory of isolated mole-
cules is no more than an approximation. The most important question for
atmospheric calculations is the shape of the far wings of absorption lines.
All indications are that the absorption is proportional to the perturber
pressure and, on this basis, a semiempirical approach is possible.
Pressure-induced, forbidden transitions have been detected in atmos-
pheric spectra and may be handled approximately with a combination of
perturbation theory and empirical data. The possibility of contributions
from dimers has not yet been eliminated.
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4
BAND MODELS

4.1. Introduction

Radiative heating calculations in the atmosphere involve four distinguish-
able scales of frequency. First, there is the comparatively slow variation
with frequency of the Planck function and its derivative with respect to
temperature (see Fig. 2.3). About one-half of the radiation from a black
body at terrestrial temperatures lies in a wave number range of 500 cm"1.

The second scale is that of the unresolved contour of a band. For
atmospheric molecules other than water vapor, the Planck function is
effectively constant over a single band; water vapor bands must be
divided into sections of the order of 50 cm"1 wide before this is so.

For a rotating molecule, the next relevant scale of frequency is that
of the spacing between rotation lines, approximately 1-5 cm"1. Finally,
there is the monochromatic scale on which the absorption coefficient may
be treated as a constant, and for which Lambert's absorption law is
obeyed: of the order of one-fifth of a line width — 2 x 10"2 cm"1 for a gas
at atmospheric pressure, down to 2 x 10"4cm™1 for a Doppler line in the
middle atmosphere. This step takes us to a division of the frequency scale
that, when taken together with other features of the calculation, presents
a formidable computation task.

Calculations can, of course, be made and are made at this limiting
spectral resolution (line-by-line calculations) but, despite the fact that
they are technically feasible with modern computers, such calculations
are rare and are usually performed to provide a few reference cases. The
great majority of investigations make use of averages over many lines,
embracing spectral ranges that are small compared to a band contour
(narrow-band models), or over complete bands (wide-band models), or
over the entire thermal spectrum (emissivity models.)

There are a number of reasons for working with spectral averages.
Practical considerations are that important classes of laboratory measure-
ments, and most atmospheric observations (e.g., satellite radiometry) are
made with some spectral averaging, often comparable to that of
narrow-band models. On the numerical side, even if the computing
power exists to perform line-by-line calculations, there are usually other
aspects of the overall calculation upon which available resources may be
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better spent, e.g., by decreasing the grid size of time step for a general
circulation model. In fact, even though available computing power
increases rapidly with time there has been a simultaneous trend toward
the simplest class of radiation calculation — the emissivity methods (see
§6.4.2).

In this chapter we shall examine the theory of narrow-band models
in some detail; wide-band and emissivity models derive directly from this
treatment. We shall also discuss the k distribution technique, which is
closely related to band models, but which can be simply extended to
conditions for which band models cannot be used.

Narrow-band models deal with averages over spectral regions for
which the band contour and the Planck function are both approximately
constant, but that, nevertheless, contain a large number of rotation lines.
This situation is realized by the abstraction of an infinite array of
absorption lines of uniform statistical properties. An interval of this
infinite array is assumed, with a suitable choice of parameters, to
simulate the properties of the spectral region under consideration. In the
model, each interval is flanked by statistically similar intervals, but this
will not be so in a real band. This is a major source of discrepancy
between abstraction and actuality.

We shall limit our discussion to average transmissions, or
transmission functions,

where

is the width of the z'th frequency interval and

is the monochromatic transmission. All calculations involving thermal
source functions can be stated in terms of mean transmissions. If, for
example, we require the intensity integrated over all frequencies we may
write, from (2.87),
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where Bt is the (almost constant) value of the source function in the
j'th interval. All other properties of the radiation field can be obtained
from (4.2).

In this chapter, we shall limit discussion to homogeneous absorption
paths for which we may write TV = kvm, where m is the amount of
absorbing material in units that must be consistent with those of the
absorption coefficient (see the discussion in §2.1.2). For non-
homogeneous paths, the absorption coefficient varies along the path and
does so differently for each frequency. We shall defer consideration of
this problem until § 6.2; the usefulness of spectral averaging methods for
atmospheric applications depends upon the existence of satisfactory
solutions.

Before treating narrow-band models in more detail, we first consider
an important observed property of spectrally averaged transmissions, the
multiplication property. Figure 4.1 shows low-resolution absorption
spectra for the vt and v3 fundamentals of water vapor and for the
resonating combination bands of carbon dioxide near 2.7 ,um, for the two
gases separately, and also when they are mixed together in a single
absorption tube. The mean transmission of the mixture, averaged over
the spectrometer slit width, is shown to be the product of the transmis-
sions of the two components separately. It is not obvious that this should
be so. If we suppose that the two gases do not interact, then, for
monochromatic radiation, the transmission of the mixture will be the
product of the transmissions of the two components. If we distinguish the
two components by the numbers (1) and (2), we have

The multiplication property now implies that, for the ith spectral interval,

For (4.3) to be correct implies, as a matter of definition, that the two
spectra are uncorrelated, a condition that cannot be exact for any finite
frequency interval. However, if the width of the interval is great and if
the lines of either array are randomly arranged (random bands), (4.3)
may be correct to any required degree of accuracy. Many important
bands have this random property.

Another circumstance for which the correlation coefficient is small is
for two arrays with regularly spaced lines (regular bands) but with line
spacings that are noncommensurate. This condition can be realized in
practice with arrays that are almost regular, but with line spacings that
vary slowly over a band.

It is difficult to conceive of a state of affairs in which one or other of
these two conditions does not hold, and there is a great amount of
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FIG. 4.1. The multiplication property of band transmission. The upper spectra are for CO2
(broken line) and H2O (solid line) individually. The lower spectrum is for the mixture; the
solid line is observed and the points are obtained by multiplying together the two
transmissions in the upper panel. The absorption path is 88 m, the H2O partial pressure is
5mm Hg, the CO2 partial pressure is 4mm Hg, and the total pressure is made up to
140mm Hg with nitrogen. After Burch et al. (1956).

experimental evidence that bears this out. We shall, therefore, accept the
multiplication property for two different arrays as a fundamental property
of band transmission.

The two arrays mentioned above—regular and random—are the only
two-parameter arrays that are physically distinct.

4.2. Isolated lines

4.2.1. Single line of Lorentz shape

Before considering regular and random models, we discuss a condition
common to both, when lines are so far apart that they may be treated as
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isolated. The conditions sufficient for this asymptotic case to be valid
cannot be simply stated. Clearly there must be large gaps between lines
and the average absorption must be small,

But the question of sufficient conditions can be discussed only in the
context of models involving line overlap.

The monochromatic absorption for a homogeneous path is

If kv is contributed by a single line, the integral1 of (4.4) over all
frequencies (the absorption area) is finite. For historical reasons, con-
nected with astronomical spectroscopy, it is alternatively known as the
equivalent width2 of the line,

The relationship between W(m) and m is called the curve of growth.
These curious terms are now so deeply embedded in the literature that
they cannot be avoided.

W has the dimension of frequency. In the following treatment it is
convenient to work with the dimensionless average absorption,

where 6 is the average spacing between neighboring lines. The equivalent
width can be recovered from this expression for the average absorption
by setting 6 = 1 in dimensionless coefficients.

For the Lorentz shape (3.48),

Except where specifically stated, the zero frequency is placed at, v(), the center of a line or band.
The limits for the integral in (4.5) arc, therefore, — v() and +«, but for all cases of band models in the
infrared spectrum, there is negligible contribution to the integral from the lower limit, which may be
replaced by — °c; for microwave lines this might be incorrect.

The name refers to the width of a rectangular line, whose center is completely absorbed, having
the same absorption area.



130 ATMOSPHERIC RADIATION

Introducing dimensionless variables,

This integral may conveniently be expressed in terms of Bessel functions
of the first kind with imaginary arguments,

or

Some values of the Ladenburg and Reiche function, L(u), are given in
Appendix 7.

L(u) is a comparatively simple function of its argument. For small
values of u it is linear, while for large values of u it varies as u1'2. The
following series expansion is valid for small u :

For large u, there is an asymptotic expansion,

A number of approximations have been proposed for the rapid
computation of L(u). The following has maximum errors of about 1%
near u = 1:

Equation (4.12) may be approximated by its limit (2«/jr)1/2 for u > 3.
This is the square-root law, while u « 1 defines the linear law. The
changeover from one to the other is illustrated in Fig. 4.2.

We may write
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FIG. 4.2. Mean absorption by isolated Lorentz lines. Equation (4.10) corresponds to the
curve marked ^-function. The other three curves are for averages over arrays of isolated
lines (see § 4.3.2).

The physical significance of the two asymptotic laws is clearer if we
note from (4.7) and (4.8) that u is half the optical path at the line center.
Thus, for u«l, the optical path is small at all frequencies and the
exponential in (4.6) can be replaced by the first two terms in its
expansion,

Equation (4.14) has been derived without reference to the line shape
and is valid for all line shapes. It is also valid for overlapping lines
provided that kvm «1 for all v, and that some means is available to
identify the contribution from a single line. Thus (4.14) should be valid
for all band models; only the conditions for validity should differ from
one model to the other.

If u »1, the center of the line is strongly absorbed and the integral
in (4.9) becomes insensitive to changes in the integrand near x = 0,
provided that these changes increase the exponent. If we neglect y2 in the
denominator of the exponent in (4.9), the absorption is increased for all
x, but negligibly for x »y. If « »1, when the line is strongly absorbed
further out than the line width (Fig. 4.3), we may write approximately
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FIG. 4.3. The physical significance of the linear and square-root laws.

in agreement with the limit of (4.12).
This discussion suggests a more significant nomenclature for the two

asymptotic limits, namely the weak line and the strong line limits.
The nature of the absorption law for strong lines explains two

phenomena that perplexed the early investigators. It was observed that
band absorption tended to vary as a low power of the amount of
absorbing material rather than exponentially, as suggested by Lambert's
law, and that the amount of a neutral dilutant gas appeared to be just as
important as the amount of absorbing gas. From (4.15) we find

orL is, in dilute mixtures, proportional to the pressure of the dilutant gas
[see (3.52)], and (4.16) predicts that, for strong lines, the partial pressure
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of the absorber and the total pressure of the dilutant stand on the same
footing.

Agreement between (4.10) and laboratory data is one of the best
ways to test the Lorentz profile. Figure 4.4 shows a test for variable
amounts of carbon monoxide diluted to constant pressure. Agreement is
within the measurement errors. Comparisons of this nature are approprir
ate because they test a quantity of direct importance to atmospheric
calculations. From the two asymptotes in Fig. 4.4, (4.14) and (4.16) can
be used to determine the line intensity and the line width.

A specific test for the Lorentz profile can be made by enclosing a
pure gas in an absorption tube of fixed length and varying the pressure.
The amount of gas and the pressure are now proportional to each other
and the dimensionless parameter, u, is constant, from (4.9). According to
(4.10), therefore, the ratio of equivalent width to pressure should be
constant. This prediction can be put to a careful test and a number of
experimenters have done so. Within the experimental error it appears to
be correct, provided that the pressure is high enough to avoid Doppler
effects and low enough to avoid line overlap.

According to the discussion in § 3.3.4, the far wings of a pressure-
broadened line will normally differ from the Lorentz profile. As can be
inferred from the appearance of Fig. 3.20, these departures should begin
to be noticed when the equivalent width is comparable to the frequency
displacement ac or VP, beyond which the statistical wings begin to

FIG. 4.4. Absorption by the P(6) line of CO. The total pressure was held constant at
700mm Hg by adding dilutant gas. The solid line is from (4.10). After Shaw and France
(1956).
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develop. We may make a rough estimate of departures from the Lorentz
expression, (4.10), in the following way.

Suppose that a line has the Lorentz shape out to a frequency VP from
the line center, at which frequency a discontinuous change takes place to
a wing shape,

From (3.75), a possible value for n is 1.73. With this hybrid profile, the
equivalent width can be calculated to order orL/vP with the result

where WL is the Lorentz equivalent width (4.10). We shall return to
(4.17) when we consider line overlap.

4.2.2. Single line with a Voigt profile

If we substitute the Doppler profile, (3.81), in (4.6) we find

where x = v/orD and w = Sm/orDjr1/2 is the optical path at the line center.
Equation (4.18) can be expanded in ascending powers of w and
integrated term by term, but the expression converges slowly for large w,

If w —> 0,

which agrees, as it should, with (4.14).ch agrees, as it should, with 4.14).
For large w, there is an asymptotic expansion,

Equation (4.20) gives a very slow increase of absorption with
amount. The sharp cut off in the wings of the Doppler profile requires a
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FIG. 4.5. Absorption for a Voigt profile. The ordinate and abscissa are chosen to give an
instructive diagram but have no physical implications. After van der Held (1931).

very large increase of amount to bring about a significant increase in the
equivalent width.

The far wings of a Voigt profile are determined by molecular
collisions. If the absorption path is long enough, the absorption must
ultimately be dominated by the line-wing profile, and will be given by
(4.10).

Figure 4.5 is based upon numerical integration of (4.6) using the
Voigt profile (3.83). The parameter d was introduced in § 3.2.5 and is
equal to 2orL/orD. The ordinate and abscissa in Fig. 4.5 are chosen so that
weak lines are represented by a single line of unit slope. The inclusion of
the factor d in both axes means that the strong-line limit for Lorentz
lines, (4.15),is represented by a series of parallel lines of slope 1/2. The
curve for Doppler lines is labeled d = 0.

Let us follow the curve marked d — 0.001 in Fig. 4.5. For small u,
the absorption varies linearly with amount. When Jtud = Jtl/2w ~ 1, the
Doppler core begins to be strongly absorbed and, from (4.20), the
absorption varies very slowly with amount. When nud ~ 103 the entire
Doppler core is absorbed and the Lorentz wings start to be important.
For Jtud > 105 the curve of growth behaves as if there were no Doppler
core at all. For d > 1 the influence of the Doppler core on absorption is
negligible, under all conditions.

Equivalent widths for the Voigt profile (Wv) are tabulated in the
literature (see Appendix 7). For purposes of computational economy, a
number of approximations have been proposed to provide an interpola-
tion between the equivalent widths for Lorentz and Doppler broadening
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L and WD). One of the most satisfactory is

Equation (4.21) is compared with exact calculations in Fig. 4.6. The
maximum error in the equivalent width for the entire range of line
parameters is less than 8%.

An alternative approach is to modify the line profile so that the
equivalent width is integrable in terms of known functions. The following
approximation replaces the Doppler core by a rectangular profile, with

FIG. 4.6. Comparison of (4.21) with exact calculations for the Voigt profile (d = 0.2). Wv
is the exact equivalent width. W(, is calculated from (4.21). WL and Wn are Lorcntz and
Doppler equivalent widths, respectively. After Rodgers and Williams (1974).
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appropriate normalization,

where

The two numbers in the definition of v0 were chosen for a good fit to
exact calculations under practical circumstances.

With the line profile (4.22), the equivalent width can be integrated to
give

where erf[ ] is the error function. Excellent agreement has been
demonstrated between (4.23) and the exact expression for the Voigt
profile.

4.3. Distributed line intensities

In this section we shall discuss averages of the results obtained in § 4.2
over three distributions of line intensities. In this context, the results of
§ 4.2 can be looked upon as the case of a 6 -function distribution function.
The reason for generalizing this result will become clear in § 4.6.

We shall consider variations of line intensities from line to line, but
we shall not include variations of line width, even though line widths can
also vary significantly. There are two reasons, besides the desire to avoid
analytical difficulty, why this is common practice. First, as we shall show
later in this section, variations in line width can be incorporated exactly
into band parameters in the strong-line and weak-line limits. Second, the
range of variation of line widths is very small compared to the range for
line intensities. The important physical problem is caused by the
coexistence of lines with intensities differing by orders of magnitude. A
single study by Godson (1955) showed that line-width variations were of
trivial importance in comparison.



138 ATMOSPHERIC RADIATION

4.3.1 Distribution functions

Consider a range of frequencies, of width 7V<5, containing TV lines with
mean spacing 6. We assume that the lines do not overlap each other. If
the equivalent width of the ith line is Wh the total absorption of all the
lines is E/li Wt and the mean absorption is

where W is the arithmetic mean of the Wf. Our aim is to determine W for
certain distributions of line intensities in terms of their statistics.

Let p (S) dS be the fraction of lines having intensities between 5 and
S + dS. If we write

the mean equivalent width can be expressed in terms of the distribution
function

Three distribution functions have been studied:
exponential

Godson

Malkmus

To these we may add, formally,
d-f unction
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where <5 is the Dirac delta-function,

Each of the above distributions has the same mean line intensity,

With this normalization, (4.24) gives, in the limit of small m,

in agreement with expectation from the weak-line limit, (4.14).
The distributions (4.25), (4.26), and (4.27) each involve a range of

line intensities. The very strong lines will have most effect for short path
lengths while the weak lines will be important for long paths. Thus, the
behavior of gaseous transmission over all path lengths can be correctly
reproduced by a model only if the distribution function is correctly
chosen. The exponential distribution, (4.25), yields the simplest results
but it does not provide a good representation of the line intensities for
known atmospheric bands. The Godson distribution, (4.26), has been
shown to be appropriate for a number of bands but, despite its apparent
simplicity, it is difficult to handle. The Malkmus distribution, (4.27),
combines the simplicity of the exponential distribution with the realism of
the Godson distribution and is the most widely used for analytical studies
of band absorption.

Figure 4.7 illustrates the value of the Godson distribution for
selected regions of the water vapor spectrum. The function plotted is the
cumulative distribution,

The points in Fig. 4.7 were obtained from lists of spectral line intensities,
while the straight lines follow the Godson distribution. The exponential
distribution fails to account for the large number of weak lines that occur
in this spectrum.

If we exchange the order of integration in (4.24) and substitute the
expressions (4.25) to (4.28), we find

6 -function
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FIG. 4.7. Cumulative distributions of water vapor line intensities. Note the comparison of
two temperatures for the spectral range 100-125 cm^1. After Godson (1954).

exponential

Godson

Malkmus

4.3.2. Applications to the Lorentz profile

All of the expressions (4.31) to (4.34) are integrable for the Lorentz
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shape,

The results are
b-function

exponential

Godson

In the above expressions y has its usual meaning, (arL/<5),

and 70 and /! are Bessel functions of the first kind with imaginary
arguments.

In order to use these results we require numerical values for the
parameters ua, y, and Sm/6 (for the Godson distribution only). Since the
assumed distributions will not provide an exact fit to the observed line
intensities, a method for making a best fit is required. One way is to
require exact agreement in the asymptotic strong-line and weak-line
limits. When this is done, it is possible to make simultaneous allowance
for variations of line width.

We return to the sum form of (4.24) and assume that all lines are
simultaneously either strong or weak. There is a possible difficulty here
with the singularity at S = 0 for the Godson and Malkmus distributions,
(4.26) and (4.27). This turns out to be unimportant for a Lorentz profile
but it does give rise to a difficulty with the Doppler profile (§ 4.3.3). For

Malkmus
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the Lorentz profile, the strong-line and weak-line limits can be written
from (4.14) and (4.15),

If we take appropriate limits to (4.36), (4.37), and (4.38), and equate the
results to (4.41) and (4.42), we find

where

M0 and y0 are the appropriate values of ua and y to use with the
8 -function distribution.

The mean absorptions for all four distributions can now be written in
the form

The four forms of /(w0) were plotted in Fig. 4.2.

4.3.3. Application to the Doppler and Voigt profiles

Series expansions for short absorption paths and asymptotic expansions
for long paths are available for the Doppler profile and the distributions
discussed in § 4.3.1. We may write

6-f unction

exponential

Godson
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Malkmus

where

The expansions for w « 1 are

The asymptotic expansions for large w are

The functions D(x), E(x), G(x), and H(x} are plotted in Fig. 4.8,
for ICT^JC < 104. All have the same form for jc— »0 but, unlike the
comparable expressions for the Lorentz shape, they behave differently as
In jc— »°o. The Godson and Malkmus distributions give G(JC), H(x)—*
(4jr1/2/3)(ln^:)3/2, while the <5 -function and exponential distributions give
D(x), E(x)-*2xy2(lnx)1/2.
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FIG. 4.8. The functions D(x), E(x), G(x), and H(x). After Malkmus (1968).

The reason for this difference can be traced to the behavior of the
distribution functions as S-»0. If the absorption varies sufficiently rapidly
with the line intensity, the effect of many weak lines is unimportant. For
the Lorentz profile, strong-line absorption varies as S1'2 but, for the
Doppler profile, it varies as (InS)172. This is sufficient difference to alter
the asymptotic behavior for long paths, when weak lines are important.



BAND MODELS 145

FIG. 4.9. The average equivalent width (Wv) for an exponential distribution of line
intensities and a Voigt profile. After Gille and Ellingson (1968).

The Voigt profile was applied to the 6 -function distribution in
§4.2.2. Numerical integration of (4.32), (4.33), and (4.34) using the
Voigt profile presents no difficulties, but results are available only for the
exponential distribution. These are shown in Fig. 4.9 in the form of a plot
of Wv/orL as a function of the variables ua and d. The curve for d = oo in
Fig. 4.9 is the result for a Lorentz profile.

The approximate Voigt profile with a rectangular core, (4.22), can
also be applied to distributed line intensities. For the Malkmus distribu-
tion a rather complex expression is available, involving only elementary
functions (see Bibliography).

4.4. The effect of overlap

Attempts to modify the theory of isolated lines to include some effect of
line overlap have not, on the whole, proved to be fruitful. They have
been superseded in practice by models that treat an array of lines as a
statistical entity, rather than as a group of interacting individuals, but two
techniques are sufficiently interesting to warrant a brief account.

4.4.1. Schnaidfs model

Schnaidt assumed that the effect of line overlap was simply to terminate
each line at frequency displacements ±5/2 from its center. From (4.6)

This expression takes no account of contributions to the absorption
from lines outside the range ±6/2. One effect of this is that the weak-line
limit, (4.13), is no longer obtained in the limit m^»0.
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For a symmetrical line, (4.59) can be written in the form

For most atmospheric problems the line spacing greatly exceeds the
line width (y « 1). Since x > 1/2 in the integral in (4.61), we may neglect
y2 in the denominator of the exponent. After some rearrangement, there
results

In Fig. 4.10 the absorption according to (4.62) is compared to the
absorption from regular and random models with uniform line intensities
(see below, all for y = 0.05).

4.4.2. The method of Matossi, Meyer, and Rauscher

This is an attempt to increase indefinitely the number of overlapping
Lorentz lines. The equations are ingeniously reduced to a series of
approximate, simultaneous, partial differential equations having the
independent-line solution, (4.10), as a boundary condition.

The analysis is complicated and only the result will be stated. The
mean absorption over a frequency interval of width Av, containing N
overlapping, Lorentz lines is

where L is the function defined in (4.10), z and y are indices denoting
individual lines, and

For The Lorentz shape, we have, from (4.10),
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FIG. 4.10. Comparison of Schnaidt's model with regular and random models. All three
models utilize the Lorentz shape. The regular and random models have uniform line
intensities, y = 0.05 for all three models.

One restriction on this derivation is that y must be small. Other
restrictions also exist, but they are not stated explicitly in the original
paper. The effect of overlap occurs in the X factors. If all are zero, (4.63)
reduces, as expected, to

According to the authors (4.63) can be used to compute the mean
absorption for water vapor. However, the double sums are tedious and
the method is cumbersome; it has not, in fact, been exploited, although,
in principle, it is more general than the models discussed in the following
sections.
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4.5. Regular models

4.5.1. The Elsasser model for Lorentz lines

This model (Fig. 4.11) consists of an infinite array of Lorentz lines of
equal intensity, spaced at equal intervals. This condition is most closely
met for P- and R-branches of linear molecules; see, for example, the
spectrum of the 7.78 um band of nitrous oxide in Fig. 3.3. Even for linear
molecules, however, the situation is usually complicated by the presence
of upper state, combination, or difference bands that superimpose on the
fundamental band. Figure 4.12 shows a part of the v2 band of carbon
dioxide with the transitions differentiated. A band of this nature may
reasonably be treated as six independent Elsasser bands, to be combined
by multiplication (see §4.1).

For the Lorentz profile, the absorption coefficient at a frequency
displaced by v from the center of one line in the array is

where 6 is the line spacing; with the definitions (4.8),

Equation (4.67) can be summed with the help of the Poisson sum
rule. We may write

where

FIG. 4.11. The Elsasser model.
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FIG. 4.12. A section of the v2 band of carbon dioxide.

The sum in (4.68) may be evaluated from the Fourier transform of
/L, with n treated as a continuous variable (n - §),

The Poisson sum rule permits us to write,

from which, after some manipulation, we find

The average absorption can now be obtained by integrating (1 — Tx) with
respect to x from —1/2 to +1/2,
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where

is the Elsasser function. It must be evaluated numerically; some data are
given in Appendix 8. These may be extended with one of a number of
asymptotic forms.

In the limit y — » °°, sinh 2ny —> cosh 2ny — > °°, and

In this limit, lines strongly overlap and there is no line structure; further
increase of y (i.e., increase of pressure) has no effect upon this
continuum. The transmission is now exponential in amount and inde-
pendent of pressure (this is a special case of Lambert's law known as
Beefs law of absorption). This behavior is found for all band models
when the line width is greater than the line spacing (whatever the line
shape may be); it contains the weak-line limit, (4.14), as a special case,
for small u.

An approximation for the case of moderately large y (incompletely
overlapping lines) can be obtained by expanding (4.72) to give

where

The integral in (4.73) is now

Equation (4.76) tends to (4.74) as yor— »0.
This result is not true for all line shapes since explicit use was made

of the Lorentz profile. There are, however, analogous results for other
line profiles.

A second important asymptotic limit is that of isolated lines. As
discussed in § 4.2.1, A « 1 is a necessary condition for (4.10) to provide
an approximation to the behavior of a band. Another necessary
condition, to avoid overlap, is y « 1. The sufficient condition for an
Elsasser band to tend to the isolated line limit has, however, not been
given in a simple form.

The third asymptotic limit is the strong-line limit; it can be obtained,
as it was when we discussed isolated lines, by neglecting y2 in the
denominator of the Lorentz profile, (4.68). This is equivalent to allowing
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y to tend to zero in the expression (4.73) for the mean absorption. If we
write

the integral in the Elsasser function can be transformed (with a little
effort) into

or

These three asymptotic limits provide envelopes to experimental
measurements of mean absorption as a function of amount or of
pressure, if the axes are correctly chosen (Fig. 4.13). If A is plotted
against mp (<x«y2), the strong-line limit, (4.78), is an envelope. If A is
plotted against m, Beer's law, (4.74), is an envelope. If Ap or Aim is
plotted against m/p (<*«) the independent-line limit, (4.10), is an
envelope.

For most atmospheric conditions, spectral line widths are less than
line spacings and the limit y « 1 has important applications. When he
first introduced the idea of a regular band, Elsasser was under the
impression that (4.78) was the limit for y«l but, in reality, it is the
strong-line limit (u » 1). Because of its importance, there have been a
number of attempts to identify the limit for y « 1. One proposal starts
with the inverse of (4.78)

If the argument of the error function is small,

If we apply this operator to the weak-line limit (4.14), we find

Equations (4.79) and (4.80) can both be written in the form

which suggests that this general form may perhaps be valid over a wide
parametric range. If the absorption from the Elsasser model is plotted in



FIG. 4.13. Three methods of plotting the Elsasser lunction. (a) The left-hand curve is the
strong-line limit, (4.78). (b) The left-hand curve is Beer's law, (4.74). (c) The left-hand
curve is the isolated line limit, (4.10). After Plass (I960).
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the form (1/yw) erf 1A as a function of u, it immediately becomes clear
that curves coalesce when y « 1.

This identifies the appropriate asymptotic form for small y and it
now remains to find the function F(u). If we hold u constant and allow y
to tend to zero (this requires appropriate adjustments to both the
pressure and the amount), it is clear that lines will eventually cease to
overlap and that the isolated line limit, (4.10), will be reached. At the
same time A —> 0 and

where L is the function defined in (4.10). Although (4.82) need only be
true for y less than some function of u, the fact that it has the same form
as (4.81) ensures that it is valid for all u if y « 1. We conclude therefore
that the expression

is the asymptotic limit to the regular model for y « 1.
The approximation (4.83) is compared to the exact expression in

Table 4.1. Agreement is very good for y < 1. If, in addition, u «1, we
may also expect agreement with the isolated line limit, and this is shown
to be so in Table 4.1.

Table 4.1. Exact and approximate forms for the absorption of a
regular band when y ̂  1"

Mean absorption

login y
0

-0.2
-0.4

-0.6
-0.8
-1.0

-1.2
-1.4
-1.6

-1.8
-2.0
-2.2
-2.4

u =

Approx.

0.5464
0.3636
0.2344

0.1492
0.0946
0.0598

0.0378
0.0238
0.0150

0.0095
0.0060
0.0038
0.0024

0.1

Exact.

0.4665
0.3273
0.2210

0.1451
0.0934
0.0595

0.0377
0.0238
0.0150

0.0095
0.0060
0.0038
0.0024

u = 1 « = 10

Approx.

1.0000
0.9992
0.9652

0.8172
0.5992
0.4040

0.2622
0.1672
0.1060

0.0670
0.0423
0.0267
0.0169

Exact

0.9981
0.9809
0.9146

0.7718
0.5788
0.3975

0.2603
0.1668
0.1059

0.0670
0.0423
0.0267
0.0169

Approx.

—
—
—

0.9984
0.9512

0.7838
0.5648
0.3776

0.2440
0.1555
0.0984
0.0623

Exact

—
—

—
0.9972
0.9464

0.7811
0.5639
0.3774

0.2440
0.1555
0.0984
0.0623

" The approximate expression. (4.83) is compared with the exact form (4.73). Below the
double line the isolated-line limit. (4.10), is also valid to better than 0.01.
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An alternative proposal for the limit y«I, also based on a
nonrigorous argument, is

The differences between (4.83) and (4.84) are very small when y «1.
Tests of Elsasser's theory against laboratory data are rare. One

reason for this is that few bands are free from overlapping upper-state or
other weak bands. The carbon monoxide fundamental is one case for
which overlapping bands are unimportant at room temperature, and good
agreement between theory and measurement can be expected. Results of
a comparison at the R-branch maximum are shown in Fig. 4.14. The
method of plotting the results is such as to give a single curve if y «1; the
theoretical curve follows from (4.83). Pressures employed in Fig. 4.14
range from 5 to 3000 mm Hg. For the highest pressure, the value of y is
0.08. Not only does Fig. 4.14 show excellent qualitative agreement but
the line widths and line intensities derived from the intercepts are in good
agreement with high-resolution spectrographic data.

FIG. 4.14. A comparison between theory and measurement for the absorption at the
maximum of the R-branch of the fundamental band of CO. The amount of CO ranged from
0.00096 to 45.6cm s.t.p., the total pressure of the CO~N2 mixture from 5 to 3000 mm Hg,
and the path length from 1.55 to 400cm. The full line is given by (4.83).



BAND MODELS 155

4.5.2. The Curtis model

This model does not represent any known bands, but it has the
characteristic line spacings of a regular model and is conveniently
expressed in terms of tabulated functions.

Consider an array of Lorentz lines with the same widths, but
arbitrary intensities. Equation (4.67) can be modified to

The absorption at frequency v is

and its average value is

where p(S) is an intensity distribution function. With the exponential
distribution, (4.25), for the line intensities and with the definition of ua,
(4.39), we have

The Poisson sum rule can again be used to transform the infinite
product into an expression involving periodic and hyperbolic functions,

The average absorption is now obtained by integrating this expres-
sion with respect to x from —1/2 to +1/2, with the result
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It is of interest to compare asymptotic forms of (4.90) with those for
the Elsasser model. If y becomes large,

In the laboratory, this limit is achieved by increasing the pressure. If, at
the same time, the path length is not increased indefinitely ua must go to
zero and

in agreement with (4.74).
Now consider the limit to (4.90) as 2jty(l + 2ua)

r/2^>Q. It follows,
necessarily, that 2jry— »0 and

This is the isolated-line limit, (4.36), for an exponential distribution of
line intensities.

Finally, if ua—>°°, we have the strong-line case, equivalent to the
error function limit, (4.78). If the transmission is not to be vanishingly
small, the limit must be approached with 2ny(l + 2ua)

112 finite. Thus we
must let _y-H»0. Then,

This expression differs from (4.78) when the absorption is close to unity,
giving a smaller absorption.

4.5.3. The Elsasser model for the Voigt profile

The Poisson sum rule can be used to express the absorption for an
Elsasser array of Voigt lines in terms of periodic and hyperbolic functions
in the same way as for the Lorentz profile. With the Voigt profile, (3.83),
the expressions (4.69) and (4.70) become

and
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where

/v is a convolution of exp[—(/S§)2] with the Lorentz profile/L, (4.70), and
its Fourier transform is 2n times the product of the transforms of /L and

Using the Poisson sum rule, after some manipulation,

As y—*-°°, only the first term in the sum in (4.98) need be
considered. This yields the same expression for nearly overlapping lines

FIG. 4.15. Absorption for an Elsasser band with Doppler lines. The abscissa is equal to
Sm/d and is proportional to the amount of the gas. After Golden (1968).
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that was found for the Lorentz profile, (4.75), except that

The Lorentz result (4.76) is valid, as it should be, in the limit d—*°°.
In the Doppler limit (d—»0) the mean absorption,

has been evaluated numerically. Some results are shown in Fig. 4.15 and
further tabulations are available in the literature.

4.6. Random models

4.6.1. Introduction

In 1950, Cowling computed the average absorption in the rotation band
of water vapor by what would now be called a line-by-line method, using
theoretical line positions and intensities with the Lorentz profile. His
computations were for six independent frequency ranges, each covering
25 cm"1, and after he had performed them, he was led to the conclusion
that "in atmospheric work complication is avoided, and remarkably little
error is involved, if a single absorption curve is used at all wavelengths."
Inspection of the spectra in Figs. 3.6 and 3.24 suggests that the only
feature common to 25 cm^1 ranges is the apparently random line
positions, and, therefore, that we should enquire into the absorption of a
band with random line positions.

Two approaches have been made to the problem. The first considers
the average absorption at the center of a finite array of N lines and
examines the limit as N goes to infinity. The second takes as a starting
point any infinite array, such as the Elsasser model, and combines a
number of arrays by multiplication; in the limit of a large number of
arrays, the same result as the first method is achieved.

The main difference between the two methods is that with the
second, the intermediary stages, when a finite number of bands is
combined, are real physical situations whereas with the first approach, a
finite number of lines is a mathematical fiction. The essential feature
common to both is the existence of all possible phase relations between
lines, implying that lines or arrays are placed at random with respect to
frequency. The probability of a line lying between v and v + dv is then
proportional to dv, and the inverse of the proportionality factor is, by
definition, the mean line spacing 6.

This implies a Poisson distribution for the spacings between neigh-
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boring lines. Consider a band of frequencies between v = —Nd/2 and
v = +N6/2 containing N lines. Consider a subrange of frequencies of
width A. If one line is placed randomly in the larger range, the
probability that it will fall in the subrange is A/M5. The probability that it
will not fall in the subrange is 1 — A/TV6, and the probability that TV lines
will not do so is

But,

and, therefore, for a large number of lines in the interval, the probability
that there is a gap or spacing of width A is

When a limited number of lines is considered, (4.103) may not hold,
and even for 200 water vapor lines significant deviations from a Poisson
distribution have been found. In one investigation there was a significant
lack of very large gaps and, for very small mean transmissions, such gaps
can be of great importance. Since line positions are determined by
quantum-mechanical formulas, some order must be present in the line
spacings and the hypothesis of randomness can be judged only by the
results achieved.

4.6.2. Constant line intensity

Consider an array of identical lines whose shapes are described by the
absorption coefficient kv. Let TV lines be distributed randomly between
-Nd/2 and +N6/2. The absorption coefficient at the center of the array,
caused by lines at frequency displacements v,, is

The resultant transmission is

The probability that a line lies in the interval dvt is dv,/6 and the
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joint probability that there are lines between v1 and vl + dvv, v2 and
v2 + dv2, . . . , and VN and VN + dvN is

If we consider all possible arrangements of lines we must allow each
line to lie anywhere in the range —N6/2 to +N6/2, and the appropriate
average of (4.104) is

The N integrations in both numerator and denominator of
(4.105) are identical and

or

It is tempting not to proceed to the limit of large N, as we have done
here, but to adopt (4.106) as a generalized transmission function, that
includes (4.107) as a special case. The integral in the exponent of (4.106)
is available for the Lorentz profile and was discussed in § 4.4.1. However,
the derivation of (4.105) assumed all possible line positions and this can
be so only for an infinite number of lines. A finite number of lines is a
mathematical fiction.

No specific line profile was assumed in the derivation of (4.107)
which is, therefore, valid for all profiles. Thus, all of the theory of
isolated-line models can now be utilized in band models with overlapping
lines.

We may now compare the properties of random and regular models
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having a single line intensity. Both have independent-line and Beer's law
asymptotic limits, and a little consideration shows that the two models
must be identical in these limits, provided that the same line intensities
and widths are employed. The most important differences exist for strong
lines. If we substitute (4.15) into (4.108) we find, for the strong-line limit,

For the Elsasser model, the comparable expression is (4.78). If the
argument of the error function is large, we may use an asymptotic limit,
and (4.78) becomes

Equations (4.109) and (4.110) may be compared when A approaches
unity. There is little resemblance between them. In particular, the regular
model tends to unity much more rapidly than does the random model as
yu1'2— >°°. This difference arises from the occasional large gaps in a
random array that require very large amounts of absorbing material
before they cease to transmit.

There are no known cases of bands with random line spacings but
with only one line intensity. In observed spectra, intensities are distrib-
uted over a wide range, and this was the reason for the discussion of
distributed line intensities in §4.3. In the next section, we show that
(4.107) can be extended to any distribution of line intensities.

4.6.3. The general random model

A frequency range contains N lines, each a single member of a different
infinite array of random lines of equal intensity and line spacing N6. The
mean transmission of one of the N arrays is, from (4.107),

where W/ is the equivalent width of one line in the array under
consideration.

The conditions for the multiplication property (§4.1) are met for
random arrays and the N arrays can be combined by multiplication,
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where W is the average equivalent width for the N lines in the selected
frequency range.

Equation (4.112) was derived without reference to a line profile and
it is not even restricted to a single profile for all of the lines. The only
limitation is that the frequency interval should be large enough for the
multiplication property to be valid.

Evaluation of the argument of the exponential in (4.112) was the
purpose of § 4.3. Solutions are available for the Voigt profile and for four
different distributions of line intensities. All data discussed in that section
may be taken over and used in the appropriate random model. An
alternative approach is not to use the formal distributions discussed in
§ 4.3 but to calculate the equivalent widths of each line in an array, using
the isolated line result, (4.10). The average of these equivalent widths
may then be employed in (4.112). Although this may appear to be a
time-consuming procedure, it is very much less so than the line-by-line
methods in which the transmission is calculated at each frequency and
then averaged.

4.6.4. Verification of the theory

The hypothesis of random line positions can be tested by comparing
model transmission with line-by-line calculations in specific cases. Figure
4.16 shows Cowling's original calculations for the water vapor rotation
band. Best agreement is shown with the universal curve (a) which
represents an average over all the computed ranges. The agreement is
good, even bearing in mind that two free parameters can be adjusted to
give a best fit. The range 100-125 cm"1 was computed for four different
pressures and the agreement shown in (b) indicates how well the effect of
pressure broadening is taken into account by the model. The range
175-250 cm"1 is of interest because the three individual ranges of 25 cm"1

that were combined each failed to fit the model well, but, when averaged,
the fit is fairly good. The range 300-350 cm"1 contains only 14 lines and
agreement with the random model is not good as the transmission
approaches zero.

Other comparisons with line-by-line transmission calculations also
show that, under appropriate conditions, the random model can provide
a good approximation. In Fig. 4.17 the random model is derived from
line strengths and widths for the 9.6 (im band of ozone using the best-fit
parameters from (4.43), (4.44), and (4.45). The line-by-line calculations
use the same line parameters and are averaged over the same frequency
intervals (2.5 cm"1) as those used for the random model. The agreement
is excellent and similarly good agreement was found in the same study for
the 2.7 jum band of water vapor. Comparative calculations were also
made for both the exponential distribution (used in Fig. 4.17) and the
Malkmus distribution, with the appropriate best-fit parameters; very little
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FIG. 4.16. Comparison of a random model with line-by-line calculations for the water
vapor rotation band. The points are line-by-line calculations for the water vapor rotation
band by Cowling (1950), and the curves are for the random model (4.107) with an
exponential distribution of line intensities (4.36), with y and u chosen to give best fit. (a)
Cowling's universal curve, his estimate of the average behavior of all of the ranges
calculated by him; (b) 100 to 125cm"1, calculated for four line widths. The theoretical
curves use the same value of o and 6 in each case; (c) 175 to 250 cm"1; (d) 300 to 350 cm"1.

difference was found between the two. In the case of the 2.7 /xm band of
water vapor, laboratory measurements were also available. Line-by-line
and model calculations, while in agreement with each other, differed
considerably from the laboratory data. This makes the important point
that errors inherent in the adoption of a band model may not be very
important for atmospheric calculations, but that much remains to be done
to find the best band parameters from laboratory data.



FIG. 4.17. Comparison of a random model with line-by-line calculations for the 9.6 pm band of ozone. 1A and IB are
line-by-line calculations, while 2A and 2B use the same line parameters in a random model with an exponential distribution of
line intensities. Calculations are for overlapping intervals, each 25cm"1 wide; the line width is 0.08cm"1 at s.t.p. and the
temperature is 233 K. The upper curves are for a pressure of 0.197 bar and a path length of 0.2447 cm; the lower curves are for
0.0197 bar and 97.88cm. The model calculations are displaced downward by 20%. After Goldman and Kyle (1968).

1 6 4



FIG. 4.18. Comparison of the random model with laboratory measurements in water vapor bands. The left-hand curve is for
a pressure of 740 mm Hg of dilutant nitrogen and the right-hand curve is for 125 mm Hg. m0 is the amount of water required
to give a transmission of 0.5 at 740mm Hg. 6.3 f*m band: 740mmHg (D), 125mmHg (x) ; 2.6 and 3.2 ^im bands-
740mmHg (A), 125mmHg (V); 1.87, 1.38, and 1.1 ^m bands: 740mmHg (•), 125mmHg (O). After Howard et al
(1956).
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Figure 4.18 shows a comparison between laboratory data on water
vapor bands and a random model using an exponential distribution of
line intensities. The abscissa is m/m0, where m0 is the amount of water
vapor required to give an absorption of one-half at 740 mm Hg pressure.
Since amounts and line intensities always occur as a product, this method
of plotting eliminates differences from band to band, or between parts of
a band, that arise from differences in the mean line intensity. If ajd is
the same for all spectral ranges, all experimental points, from all bands,
should lie on the same curve. This is so within the experimental error,
although the introduction of m0 as an adjustable parameter makes this
test less discriminating than it may appear to be.

Comparison of theory and experiment for pressure-broadened
spectra is facilitated by a method of plotting that does not depend on the
distribution of line intensities. From (4.112) and (4.10),

If, in accordance with the Lorentz theory, we write at = a°p/p0, we have

regardless of the nature of the average represented by the overbar. If we
plot experimental results for log(—In f/m) as a function of \og(m/p) the
points should lie on a single curve.

The inherent plausibility of the random model, its simplicity, and the
many comparisons that have been made with line-by-line calculations and
with laboratory data have led to its wide adoption for atmospheric
computations. The most popular distribution of line intensities is that of
Malkmus, since it usually gives a better account of the weak lines in the
atmospheric spectrum than does the exponential distribution. Either
distribution can be used as an effective substitute for line-by-line
calculations; whichever method is used, the limiting factor in the accuracy
of a thermal calculation is likely to be the line parameters employed
rather than the precision of the model. If these parameters have not been
obtained by fitting to good low-resolution, laboratory transmission data,
there should be cause for concern.

4.7. Generalized transmission functions

4.7.1. Superimposed regular and random bands

In this and the next two sections, we discuss means for generalizing band
models. The simplest approach is to superimpose random and regular
bands, using the multiplication property in cases where analysis of the
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fine structure of a band shows this to be appropriate. For example, in the
case of the band illustrated in Fig. 4.12, the value of analyzing into
Elsasser subbands is self-evident.

This idea can be generalized to give a simple three-parameter model
that includes both random and regular models as asymptotic cases.
Consider the superimposition of n bands, each with a line spacing
6' = nd. The transmission of one array is

and the transmission for n superimposed arrays is

Regardless of the form of A(m, nd), we know from previous
discussion that a random model results in the limit n—»°°. Thus, we may
create a series of models lying between any model we choose and a
random model. The transition from an Elsasser model (n = 1) to a
random model with equal line intensities (n = oo) is illustrated in Table
4.2.

Although this connection between the two fundamental models is
interesting, its usefulness is restricted. There are an unlimited number of
three-parameter models that include random and regular models as
asymptotic limits. Equation (4.114) is perhaps the simplest, but its use
must be justified on either empirical or theoretical grounds.

Table 4.2. Transition from an Elsasser to a
random model"

Iog10u n 0 -0.4 -0.8 -1.2

-1.0

0.0

+ 1.0

1
10
GO

1
10
CO

1
10
00

0.273
0.267
0.260

2.729
2.200
1.836

_
—
—

0.109
0.105
0.103

1.068
0.797
0.731

_
—
—

0.043
0.042
0.041

0.376
0.301
0.291

2.550
1.215
1.077

0.017
0.016
0.016

0.131
0.118
0.116

0.660
0.450
0.429

" The quantity tabulated is log,0 T(n, u, y) from (4.114),
using the Elsasser model, (4.73).
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4.7.2. Deviations from the Voigt profile

The theory of band absorption can be developed for any line profile
although, in practice, it is worthwhile to do so only for the Voigt profile.
Interpretation of data would be greatly complicated should these results
not have wide validity. However, we have seen that the Voigt profile is
only an approximation, and it is important to understand the effect of
deviations from it.

Consider the equivalent width of a Lorentz line with modified wings,
(4.17), in the context of a random band with equal line intensities, and
compare the result to that obtained with the Lorentz profile. From
(4.112) we have

provided that the changes indicated by A are small. Using the first term
in (4.17), rc = 1.73 [see (3.75)], and W » orL (which applies to all but
trivial cases), we have

and

But,

and

Estimates of d/vp are 0.82 for H2O, 0.050 for O3, and 0.36 for the
7.6 jum CH4 band, for which the transmission errors will be less than 2.6,
0.16, and 1.1%, respectively. Detailed computations using the Lindholm
line shape and an exponential distribution of line intensities give almost
identical results.

Errors of this magnitude are probably not important for most
atmospheric calculations, particularly if band parameters are selected, or
at least adjusted, by fitting the model to precise low-resolution laboratory
data. When this is done, small errors in the model may be compensated
in the selection of model parameters.

This discussion should not, however, be taken to mean that
deviations from the Lorentz profile are always unimportant. If we are
working in a spectral region in which most of the absorption is caused by
line wings, the wing shape is evidently important. Such is the case for
continua between bands, such as the 10 fj,m water vapor window. If we
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had to depend upon a priori calculations for such windows we would
need to know much more about the physics of close collisions than we do
at the present time. However, a semiempirical approach is possible and
will be described in the next section.

4.7.3. Background continuum

When we attempt to represent a frequency interval in an actual band by
an infinite model an important source of error arises from the fact that,
for the real band, the statistics of the line intensities outside the interval
will differ from those inside the interval. The absorption coefficients
contributed by lines outside the interval are from line wings and may be
approximated by a structureless continuum. We may regard this particu-
lar source of error as equivalent to making an error in this continuum
absorption. We treat this situation empirically by adding or subtracting a
continuum coefficient from the absorption coefficient for the infinite
model.

The effect of a small continuum (positive or negative) may be very
large if the transmission is small (see Fig. 4.19). This figure has been
plotted in such a way [see (4.113)] that all data should lie on a single
curve for any random model. In this theoretical example, the random
model curve is the same as that shown for small absorber amounts
(m « 1). A continuum has been added with a coefficient proportional to
mXp, as we anticipate for pressure broadened line wings. With this
method of plotting, the deviations from the random model are obvious
and the data can be used to calculate the required continuum correction.
This appears to have been done only for a single band, the 9.6 ,um band
of ozone. It is important that it be done systematically for all relevant
atmospheric bands.

Note that this semiempirical approach deals equally well with
deviations from the Lorentz profile in line wings. It is irrelevant whether
the continuum is in error because of varying line statistics or because of
an incorrect line shape.

4.8. k distributions

4.8. 1. Band models and spectral representations

As far as band transmission is concerned, it is of no importance where in
a frequency interval, Av, a particular absorption coefficient occurs; it is
sufficient to know what fraction of the frequency domain, f ( k ) dk, is
occupied by absorption coefficients between k and k + dk. It is equally
acceptable to write the mean transmission for a homogeneous path in
either of the two forms
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FIG. 4.19. Random model for Lorentz lines with an added continum. (a) rc =
+0.l(2ny2u). (b) TC= -0.07(2jry2«). rc is the optical path of the continuum. The lines are
for constant values of Inyu, i.e., constant amount. After Walshaw (1954).

or

Equation (4.117) is the form appropriate to band model theory provided
that Av contains many lines. Equation (4.118) defines the spectral or h
distribution approach.

The k distribution has a long history in both the astrophysical and
meteorological literatures (see Bibliography). It was an obvious extension
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of the earliest work with grey models. A few terms in a series,

must be an improvement on a grey model, and, with ai=f(ki)dki,
(4.119) tends to the correct expression, (4.118), as N—»°°.

k distribution theory has been used relatively less than the theory of
band models for two main reasons. First, Elsasser's early work created an
impetus in favor of band models that was reinforced by the discovery of
the hierarchy of random models. Second, means were discovered to
extend band-model theory to the important case of nonhomogeneous
atmospheric paths. This question will be discussed in Chapter 6. At this
point, we need only comment that no comparable techniques were
known for the k distribution, until recently. With this difficulty removed,
the spectral approach has some important advantages over band models.

In order to discuss both advantages and disadvantages we must look
more closely at the relationship between the expressions (4.117) and
(4.118). This relationship can be looked upon in two different ways. The
first makes no reference to the details of the absorption spectrum. The
transmission function (4.117) is regarded as an established function of
amount, either from band model theory or as the result of low spectral
resolution measurements in the laboratory. Equation (4.118) then defines
f(k) as a spectral function that has f(m) as its Laplace transform,

Since f(m) may be taken to be continuous and analytic, we may invert
(4.120) to find f ( k ) ,

If (4.121) can be solved, it provides a convenient way to find the spectral
function.

The second way to look upon the relationship between (4.117) and
(4.118) is in terms of the details of the absorption spectrum. The
absorption coefficient has a large but finite number of maxima and
minima. We define the ith subrange as lying between the ith maximum
and the ith minimum, at which the absorption coefficients are /c,(max)
and fc,-(min). In this subrange we may make the change of variable

But this change of variable need not be restricted to evaluation of the
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transmission. The expression

where G is any analytic function, may be transformed to

with

where h is the step-function.
Equation (4.125) can be used in two ways. If we have an analytic

form for the frequency spectrum it can be differentiated directly. Two
examples for which this has been done are the Elsasser and Schnaidt
models, for both of which there is only one independent subrange and

This equation may be regarded as an ingenious way to evaluate the
inverse Laplace transform in certain special cases.

The second way to use (4.125) is more general, as a binning
algorithm for use with a spectral compilation, such as the AFGL tape.
The evaluation of each absorption coefficient requires a sum to be taken
over many neighboring and even distant lines and it is a major
computational task; but, if the distribution function f ( k ) can be reused
for many purposes, it may be worthwhile.

If we had stated the problem of this section only in terms of the
inverse Laplace transform (4.121), we would have missed the real
importance of the k distribution approach. As applied to the mean
transmission, the two techniques are alternatives, either of which may be
used, depending upon mathematical convenience. However, we see from
(4.124) that the same spectral function can be applied to any property of
the radiation field that is a function of the absorption coefficient. The
significance of (4.121) is that it allows us to exploit the theory of band
models to derive k distributions that may be applied to other situations.

We are now in a position to discuss some of the advantages and
disadvantages of band models and k distribution theory.
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1. Scattering problems can be treated by k distribution theory but
not by band models. To remind ourselves of the problem with
band models we return to the derivation of (4.2) in which we
replaced the mean value of a product BVTV by the product of
mean values B,T,-. This is acceptable for a thermal source function
since it may be treated as a constant over the ith spectral interval.
A scattering source function, (2.32), on the other hand, involves
the local radiation intensity, which is a function of the absorption
coefficient. Jv and Tv are now partially correlated, and (4.2) is
incorrect. But if G(k) is any function of the radiation field,
including the scattered intensity, that can be calculated for a
single value of k, (4.124) can be used to give the average over a
spectral interval.

2. k distribution theory can be used for wide spectral regions that
may not be statistically homogeneous. For example, the 15 jum
carbon dioxide band has wide P- and R-branches with a very
different Q-branch. Provided that the Planck function does not
vary significantly over the band, there is no reason not to apply a
numerical binning algorithm to the whole band. (In § 4.9 we shall
discuss entire bands in terms of band model theory.)

3. In practice, we always use approximations to the atmospheric
transmission. In the case of band models, approximations are
made to the behavior of the absorption coefficient as a function of
frequency. Since we do not need to know where, in a chosen
spectral interval, a particular absorption coefficient occurs, fre-
quency is usually not a very significant physical parameter, and
the importance of an approximation in frequency space can be
assessed only by trial and error. On the other hand, the k
distribution is approximated by replacing the integral, (4.118), by
a discrete sum. Here we are better able to assess the effect of
errors because the absorption coefficient is directly related to the
required radiation field. As an example, it is possible to find
simple analytic approximations for large and for small absorption
coefficients using the transparent and opaque limits (§ 2.4.2). This
involves an external length scale specific to a particular problem.
Given such knowledge, remarkable accuracy is possible for the k
distribution using as few as 10 well-chosen terms in the discrete
sum.

4. The other side of this is that band models are able to give an
explicit treatment of the important effects of pressure on absorp-
tion, just because they do treat the relationships between lines in
frequency space. With the frequency scrambling that accompanies
the calculation of a k distribution these relationships are de-
stroyed and, in the general case, the k distribution must be
recalculated for each value of the pressure (and the temperature).
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In those cases for which an inverse Laplace transformation of an
analytic transmission function can be made, explicit pressure
dependence can, of course, also be given for the k distribution.

5. The discussion in (4) also has relevance to the problem of
nonhomogeneous paths. We will consider the advantages and
disadvantages of band models and k distribution methods for
nonhomogeneous paths in Chapter 6.

4.8.2. Calculations of k distributions

The k distribution has been obtained for the Malkmus random model,
the Elsasser model with Lorentz lines, and the Schnaidt model, the first
by means of an inverse Laplace transformation and the other two from
the differential of the absorption coefficient, (4.126). The results are

Malkmus

Elsasser

for

Schnaidt

for

In these expressions k = S/d. For the Malkmus and Elsasser models k is
the mean absorption coefficient, but not for the Schnaidt model because
it is incorrectly normalized.

k distributions for the Malkmus ^and Elsasser models, (4.127) and
(4.128), are compared in Fig. 4.20. The differences between the two sets
of curves are striking, one being convex upward and the other convex



FIG. 4.20. k distributions, (a) Elsasser model, (b) Malkmus model.
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downward. There are similarities, however. For y»1 (overlapping
lines), both distributions tend to ^-functions, corresponding to a feature-
less continuum. The manner of doing so differs greatly. For y = 1 the
Elsasser model is essentially a continuum while the Malkmus model is not
for y = 10. This difference of behavior was discussed in § 4.6.2.

For well-separated lines (y « 1), both distributions show a region in
which

This distribution corresponds to the wings of Lorentz lines, for which

For both models, this region is bounded at both high and low
absorption coefficients. The behavior of the Elsasser model is obvious.
For the Malkmus model, the high-/: cutoff is caused by the exponential
term in the distribution of line intensities (4.27). The low-fc cutoff is a
consequence of the rarity of large gaps in the spectrum allowed by the
Poisson distribution (4.103) for a random band. The larger a gap the
lower can be the saddle in the absorption coefficient in between two
flanking lines, and the further can the k distribution extend to low values
of k. As a result, the Malkmus distribution gives some lower k values
than does the Elsasser model. But the Poisson distribution ensures that as
k tends to zero low saddles between lines will be so rare that f ( k ) will
tend to zero.

The data shown in Fig. 4.21 for the 15 jum band of carbon dioxide fit
the Malkmus model much better than the Elsasser model. However, the
Malkmus model appears to be deficient at low-fc, suggesting that the
number of wide gaps in the observed spectrum exceeds that allowed by
the Poisson distribution. It is also possible that the Malkmus distribution
of line intensities is deficient in weak lines. There is some evidence that
this is so for the 15 jum band, but it probably cannot account for the sharp
divergence at low-A: that is shown in Fig. 4.21. Since absorption
coefficients less than 10~2 k appear to have little effect on atmospheric
calculations, the Malkmus model is usually regarded as a very good fit for
the 15 pm band.

4.8.3. Overlapping bands

For thermal source functions, the transmission of overlapping bands can
be dealt with, as for band models, by calculating separate band
transmissions and subsequently multiplying them together. Attempts
have been made to treat overlapping bands in k space; if this could be
done, the results would apply to any source function and to some
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FIG. 4.21. Comparison between k distributions for the 15 fim CO2 band and the Malkmus
model. f ( k ) (thin line) is computed for the frequency range 550 to 800 cm"1, embracing
most of the band. The pressure is 0.1 bar and the temperature 296 K. The Malkmus model
(cf. Fig. 4.20b, y = 0.01) was fitted to line-by-line calculations of the transmission and the
curve shown is the inverse Laplace transform of that transmission function. After Lacis and
Oinas (1986).

complete bands. There is, however, no evidence that this is possible. For
any single gas mixture, a combined k distribution can be calculated, but it
cannot be related to the k distributions of the individual gases and must,
as matters now stand, be recalculated for each different mixture.

4.9. Models of complete bands

4.9.1. Band absorption areas

If the source function varies only slightly over a vibration-rotation band
contour, it is economical to treat the band as a whole, using an average
value of the source function. The relevant absorption is then the band
absorption area,

In §4.8 we mentioned the application of the k distribution to an
entire band; here we examine a large body of work from the point of
view of band-model theory, from the engineering and climate literatures.
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Three approaches are available, based, respectively, on approximate
theory, a combination of theory and laboratory measurements, and on
empirical measurements alone. All three have been used in numerical
climate models with somewhat similar results. The choice among them is
a matter for the preference of the individual investigator.

Absorption band areas are sometimes represented as a mean
absorption,

where s$0 is a measure of the width of the entire band. Since the wings of
bands can spread indefinitely as the amount of absorbing matter
increases, there is no rational choice for s$0 that allows ^4band to have
unity as an upper limit. In practice, s$0 is simply an additional and
arbitrary parameter. Abzind, as defined by (4.131), is called a wide-band
model (see §4.1).

4.9.2. Empirical models

A large body of laboratory data for atmospheric gases has been fitted to
the empirical expressions

M0, c, d, k, C, D, and K are all empirical, fitting parameters. Equations
(4.132) and (4.133) are awkward to use numerically because of the
discontinuity at sd = s40, and the following theoretical and semiempirical
models are designed to avoid this difficulty.

It is evident that (4.132) and (4.133) cannot correctly represent all
aspects of band absorption even though they may provide a good fit for a
limited range of parameters employed in the laboratory. If lines are very
wide, so that they overlap strongly, the absorption will cease to depend
upon the pressure and Beer's law is obeyed for limited regions in the
band. Both k and K are zero for this condition and yet there are other
circumstances under which the pressure will be an important parameter
and the data cannot be represented with k and K equal to zero.

4.9.3. Exponential band contour

An important feature of (4.133) is the logarithmic dependence of band
area on the amount of absorbing material. This is a very common
approximate behavior for band areas when absorption is intense; it is a
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FIG. 4.22. Narrow-band parameters for the 15 fim band of CO2. Band parameters have
been calculated from the AFGL tape using the relationships (4.43), (4.44), and (4.45). Line
widths are calculated at 1 bar and the line intensities for a temperature of 250 K. The
broken lines represent approximations used in the exponential contour model. The slight
rise in (a/6)v between 860 and 900 cm"1 is caused by an upper-state band at 10.4 ^m that is
not included in the discussion. After Crisp et al. (1986).

consequence of the shape of the P-, Q-, and R-branch contours of typical
vibration-rotation bands.

In Chapter 6, we shall apply band-model theory to spectral regions
that are narrow compared to a band and yet contain a large number of
lines. Figure 4.22 shows band parameters for the 15 fim band of carbon
dioxide, estimated from (4.43), (4.44), and (4.45), and applied to
overlapping spectral intervals, 5 cm"1 wide. These data suggest that each
half of the band may be taken to have a constant value of y and an
exponential dependence of (ff/<5) on frequency displacement from the
band center (subscript 0),

The subscript v is used here to represent the slow change of the 5 cm '
averages over the band contour, and not monochromatic conditions.
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If A[y, (o/6)v] is the mean absorption for the Malkmus model (for
example), we may write for each half of the band

Since (o/d)v is a monotonic function of v, (4.135) can also be
written in the form

With the mean absorption for a Malkmus model, (4.38) and (4.112), the
integration can be performed, with the result

where u0-m(o/d)0/2ny, EI is the first exponential integral, and y is
Euler's constant.

It is difficult to follow parametric dependence for an expression as
complicated as (4.137). The strong-line behavior («0»1) is shown in
Table 4.3.

Both dimensional and dimensionless forms are given in Table 4.3.
The empirical expression, (4.133), is accounted for in a general way in
rows (a) and (b), while (4.132) corresponds to row (d). Logarithmic
dependence upon the amount of absorber is shown by rows (a) and (b),
but the table also shows that there can be cases in which the absorber
amount is large, without such dependence. This is at variance with
statements in the engineering literature, based upon numerical studies, to
the effect that logarithmic dependence is the invariable limit for large
amounts of absorber.

We can obtain strong-line and weak-line limits to the exponential
contour model by writing A(y, old) in (4.136) in the appropriate limit,
before performing the integral. Since the integral extends to old = 0, this
procedure is consistent for the weak-line limit but not for strong lines. In
the latter case there is a remainder term.
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Table 4.3. Asymptotic forms for the exponential contour model
when un »1

ity(2ii0)
1/2 or

[ji(a/6)0(aLj0/6) y or Asymptotic
(p/po)m]lj2 (aL)0/S)(p/p0) form

(a) »1 »1 y + In(2jryu0)
= ln(m) + const.

(b) »1 «1
= ln(m) + ln(p) + const.

(c) «1 «1 Impossible

(d) «1 «1
= const (pm)y

The integrals can be performed in both limits with the help of the
expression

with the results

The following expansions are valid (Appendix 6):

The weak-line expression, (4.139), contains both a linear law and a
logarithmic law, as the argument of cj> goes from small values to large.
The strong-line expression, (4.140), exhibits the two limits (b) and (d) in
Table 4.3.

4.9.4. Semlempirical treatment

It has been proposed, based upon an examination of the results of
numerical computations, that the band area can be expressed approxi-
mately as a function of the sum of the equivalent widths of the lines
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forming the band,

This proposal draws some support from the general form for random
models, (4.112), and from the narrow-line limit to the Elsasser model,
(4.83).

In the limit of weak lines, the independent-line limit must be
achieved, so that for weak absorption

If, in addition, we require a logarithmic law for strong absorption, the
following form suggests itself:

where C is an adjustable constant.
We cannot expect any equation as simple as (4.143) to satisfy all

asymptotic forms of an expression such as that for the exponential band
contour, (4.137). We are free to choose C and the distribution of line
parameters by fitting to observed and theoretical data. Very good results
have been achieved by doing so, but the result can be accepted only for
the parametric range of the observations.

Figure 4.23 shows a comparison of (4.143), using the exponential
distribution of line intensities, (4.36), with a line-by-line calculation; in
this case, only C was adjusted to give a good fit. The agreement is
excellent; over this range of parameters no purpose is served in using the
full line-by-line calculation.

As we have already anticipated, the expression used in Fig. 4.23
cannot satisfy all asymptotic limits. In order to satisfy both (4.139) and
(4.140) in their logarithmic limits, we must identify C with M0 in (4.139)
and with 2M0 in (4.140). This discrepancy arises only if the parameter
Na^/C (in effect, this is the familiar parameter, y) can be both large and
small. For the data shown in Fig. 4.24, and for all pressures less than
1 bar for the 15 jum band of carbon dioxide, this parameter is small and
no problem arises.

Proposals have been made for modifying S, Wt in such a way that the
limits for both large and small NaJC are consistent. Such modifications
are ad hoc and can be justified only by fitting to an extended range of
empirical data. All expressions as simple as (4.143) will break down for
certain values of the parameters.
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FIG. 4.23. Comparison of a semiempirical model with line-by-line calculations for the
15 fim carbon dioxide band. The broken lines represent the independent-line expression
(4.142) and the solid lines are given by the approximation (4.143) with C chosen to be
55 cm"1. The points are line-by-line calculations made by Yamamoto and Sasamori (1957).
(a) »L = 0.064 cm"1 (Ibar), (b) <*L = 0.0128cm"1 (0.2bar). After Goody and Belton
(1967).
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ABSORPTION BY ATMOSPHERIC GASES

5.1. Introduction

Digital archives offer the investigator an up-to-date analysis of an
extensive and specialized literature. Periodic revisions are reported in the
open literature and it seems unlikely that future investigators will attempt
to use any other source where archives can provide the required data.

For this reason, we shall confine our comments on permitted
vibration-rotation transitions to describing the AFGL tape contents, but
we shall add two areas not contained in it: first, electronic bands, and
second, the related topics of forbidden transitions, collision-induced
transitions, and polymer spectra.

The AFGL tape lists data on one important set of electronic
transitions, those giving rise to the near-infrared atmospheric bands of
molecular oxygen. These bands behave in the same way as vibration-
rotation bands, except for the frequency displacement caused by the
change in electronic energy and the symmetry conditions imposed by the
electronic wave functions. Other electronic transitions usually involve
larger differences between energy levels and cannot be understood as
completely as the lower energy, vibrational and rotational transitions.
Fortunately, visible and ultraviolet bands of importance for atmospheric
problems are less complicated than vibration—rotation bands and they are
usually less affected by state parameters. Atmospheric absorption cal-
culations in the visible and ultraviolet spectrum are commonly made on
the basis of empirical data without requiring the level of understanding
developed in Chapters 3 and 4 for vibration-rotation bands.

The altitude of unit optical depth for ultraviolet atmospheric bands is
illustrated in Fig. 5.1. The intensity of solar radiation falls off rapidly with
decreasing wavelength in the spectral region shown (the irradiance at
2000 A compared to that at 3000 A is 10~2 whereas at 1000 A it is 10~5,
see Appendix 9). For heating rate calculations at altitudes less than
100km, only O2 and O3 are important, except under special conditions
when the atmosphere contains large amounts of volcanic aerosols, or
polar stratospheric clouds at high latitudes. All of the absorptions shown
in Fig. 5.1 are important for other reasons that do not directly concern us
here.
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FIG. 5.1. Depth of penetration of solar radiation in the ultraviolet spectrum as a function
of wavelength. The line shows the altitude of unit optical depth. The vertical arrows
indicate ionization limits. The broken line represents predissociation for molecular oxygen.
After Herzberg (1965).

Figure 5.1 does not show the near-ultraviolet Huggins bands or the
visible Chappuis bands of ozone. Both of these electronic bands are of
some importance, although they are weak, with optical depths at ground
level of the order of unity or less.

The second area to which we shall give some attention is that of
forbidden transitions, collision-induced transitions, and polymers. For-
bidden transitions, in the sense of magnetic dipole and electric quad-
rupole transitions, are as well understood as electric dipole transitions,
except that they are much weaker. Where relevant, we shall mention
such transitions. More important are transitions that are allowed during
collisions, but not otherwise. This is the topic of far wing line shapes and
pressure-induced transitions; the two subjects are related and it is
convenient to consider the more speculative question of polymers at the
same time.

We may briefly repeat the discussion in the overview to Chapter 3
(§ 3.5) because it is important. Results presented in that chapter (see
especially Figs. 3.24, 3.25, and 3.26) showed remarkable agreement
between observations and the AFGL data, under appropriate circum-
stances. As long as we are concerned with line center information for
isolated molecules, the theory of molecular spectra is impressively
accurate. However, if we are concerned with long paths and elevated
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pressures the underlying continuum can become important. This con-
tinuum is caused by far wings of lines, pressure-induced transitions, and,
possibly, polymers. The AFGL tapes have no information on these
matters.

The current AFGL listing is in two parts. The main listing is titled
"AFGL atmospheric absorption line parameters" and includes data for
seven major atmospheric absorbers: oxygen, water vapor, carbon
dioxide, ozone, nitrous oxide, carbon monoxide, and methane. The 1982
revision includes 181,000 vibration-rotation lines. The principal para-
meters tabulated for each line are frequency (cm"1 at zero pressure),
molecular line intensity (cm), Lorentz width (cm"1 at 1 bar), and energy
of the lower state (cirT1). In addition, the line is identified as to
molecule, isotope, and quantum numbers (including / value and Fermi
resonance parameters). Missing are pressure-shift coefficients and any
information on the line shape, except for the Lorentz core.

The second part of the AFGL listing ("AFGL trace gas compila-
tion") concerns the pollution problem. Data are listed (1982 edition) on
21 gases and their isotopes, from the millimeter region of the spectrum to
ljum. The gases are (numbers of lines in parentheses): NO (7385),
SO2 (18,169), NO2(9468), NH3(5556), HNO3 (12,777), OH (8490),
HF(62), HC1(199), HBr(256), HI (145), CIO (6020), OCS(737),
H2CO(2701), HOC1(7723), N2(117), HCN(772), CH3C1 (6687),
H2O2 (2389), C2H2 (306), C2H6 (4328), and PH3 (2886).

All of these gases can have minor effects on the atmospheric heat
balance and are commonly included in climate calculations, but we shall
discuss only the data on nitrogen.

5.2. Nitrogen

The symmetry of the 14N14N molecule forbids vibrational-rotational
electric dipole transitions. Because of the large amount of nitrogen in the
atmosphere, however, both forbidden and pressure-induced transitions
must be taken into account, although they are only strong enough to rate
an AFGL listing as a "trace gas"!

The fundamental vibration frequency of 14N14N lies at 2329.9cm"1;
the bond length is 109.76pm and the equilibrium rotational constant is
2.01cm"1.

Quadrupole transitions in the fundamental vibration band have been
detected in atmospheric spectra and are included in the AFGL listing
with a molecular band intensity of 6.4 x 10~27 cm (see Appendix 2 for
units). Even allowing for the large amounts of nitrogen in the atmos-
phere, this is a very small band intensity. The selection rule for a
quadrupole transition in a homonuclear molecule is
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This gives rise to three branches, O, Q, and S; the O- and S-branches
have twice the usual frequency spacing of P- and R-branches.

More important are the collision-induced bands of nitrogen. The
fundamental band overlaps the high-frequency wing of the v3 band of
carbon dioxide and affects the use of this band for the remote sounding of
atmospheric temperature (Chapter 6). In the stratosphere, where water
vapor concentrations are very low, the collision-induced rotation band of
nitrogen may be of some importance for thermal calculations (at lower
levels the water vapor absorption is overwhelming).

Figure 5.2 shows the rotation band for nitrogen-nitrogen collisions.
The rotation lines are not resolved because they are wider than the line
spacing. The absorption coefficient generally reflects the rotation line
intensities at the frequency concerned and the variation with temperature
follows the expected behavior of the underlying rotation lines. The lines
may be as wide as 50cm"1, however, and, for v>200cm~1, the
contribution from the wings of distant lines may exceed the contribution
from local lines. The rotational band intensity at 300 K is

The atmospheric absorption at the maximum of the rotation band
has been estimated for a stratospheric path from 12 km to space for a

FIG. 5.2. The collision-induced rotation band of pure nitrogen (nitrogen-nitrogen
collisions). The vertical axis is the binary absorption coefficient, as defined in (3.88). After
Stone et al. (1984).
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FIG. 5.3. The collision-induced fundamental band of pure nitrogen (nitrogen-nitrogen
collisions). The temperature is 290 K. After Shapiro and Gush (1966).

temperature of 220 K. The calculation gave 8% absorption for a zenith
angle of 25° and 38% absorption for a zenith angle of 80°, comparable to
absorption by the water vapor rotation band.

The pressure-induced fundamental band and first overtone band of
nitrogen have been measured in the laboratory; data for the fundamental
band are shown in Fig. 5.3. The first overtone band is of comparatively
small importance. No rotational structure appears for the same reasons as
for the rotation band. The band intensities are

For oxygen-nitrogen collisions, the binary coefficient is about 0.85
times that for nitrogen-nitrogen collisions.

5.3. Oxygen

Nitrogen and oxygen are both stable, homonuclear molecules and there
are many similarities between their spectra; nevertheless, the differences
that do exist make the spectrum of oxygen much more important for
atmospheric calculations than that of nitrogen.
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5.3.1. Ultraviolet, molecular absorptions

The ultraviolet absorption spectrum of 16O16O commences with the weak
Herzberg band at 2600 A. Below 2420 A the transition becomes dissocia-
tive, with end-products 16O(3P) + 16O(3P), and the weak Herzberg
continuum sets in. The molecular absorption coefficient is very small,
between 10~23 and 10~24 cm2 at the threshold, and of little importance for
energy absorption. It is, however, important for the formation of
atmospheric ozone.

The Schumann-Runge bands occupy the spectral region 1950 to
1750 A (Fig. 5.4). At 1750 A the bands merge into a stronger dissociation
continuum with the end-products 16O(3P) + 16O(1D), which extends to
1300 A and is the most important single feature of the absorption
spectrum of molecular oxygen (the Schumann-Runge continuum). The
three features at 1295, 1332, and 1352 A may indicate dissociation
products with more energetic end-products.

The bands between 1060 and 1280 A have not yet been identified.
Particular attention has been paid to the absorption coefficient at the
solar Lyman-a- line (1215.7 A), which happens to lie in a deep absorption
minimum. The absorption coefficient at low pressures is 1.00 X 10~20cm2

with a self-broadening coefficient of 1.47 X 10~23cm2mb~1. The mechan-
ism involved in this pressure effect is unclear but is unimportant for our
purposes.

FIG. 5.4. Absorption cross section of 16O16O in the ultraviolet spectrum. After Brasseur
and Solomon (1984).
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Between 850 and 1100 A are a series of distinct Rydberg bands,
known as the Hopfield bands, with peak cross sections near 950 A as
great as 5xlO"17cm2. Below 1026.5 A (12.08eV), the absorption is
partly caused by bound-free ionizing transitions.

Below 850 A, ionization dominates the absorption. Below 300 A, the
absorption is probably the same as that of two atoms of oxygen.

5.3.2. Forbidden bands in the vibration—rotation spectrum

Oxygen is a paramagnetic gas with an unusually large magnetic dipole
moment. Forbidden magnetic dipole transitions in the rotation band are
familiar to microwave spectroscopists who have made extensive studies of
some of the low-/ lines. The selection rules are the same as for electric
dipole transitions. Intensities can be calculated from the known magnetic
dipole moment. The band intensity for the rotation band is 7.23 X
10~24cm and 161 lines are given in the 1982 AFGL listing. The
equilibrium rotational constant in the ground electronic state is
1.4457cm"1, corresponding to an O-O bond length of 120.74pm.

An electric quadrupole transition in the fundamental vibration band
is barely observable in the atmospheric spectrum. The fundamental
frequency is 1556.379 cm"1 and the band intensity is 6.15 x 10~27 cm; 146
lines are listed in the 1982 AFGL compilation.

5.3.3. The "atmospheric" bands

The ground electronic state of molecular oxygen is a triplet with a ground
state designated X, and two excited states, a and b. The X—*a and
X—>b transitions involve energy changes of 7882 and 13,120cm"1,
respectively. These electronic transitions are accompanied by
vibrational-rotational transitions and give rise to two band systems, the
infrared bands and the red bands, respectively, some of which absorb
strongly in the atmospheric spectrum at ground level (particularly the
so-called A, B, and y bands). Details of eight bands that appear in the
AFGL listing are given in Table 5.1 and a synthetic spectrum of one is
shown in Fig. 5.5.

5.3.4. The collision-induced spectrum

Six collision-induced or dimer bands have been reported in the literature.
Three are in the visible spectrum and are responsible for the blue color of
liquid oxygen. In the infrared spectrum, the fundamental, the first
overtone, and the rotation band have been observed. Only the rotation
band and one of the visible bands have been observed in atmospheric
spectra; the remainder are laboratory identifications.

A question that has been debated without clear conclusions is
whether we are dealing with dimers of finite lifetime or complexes that
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Table 5.1. The strongest "atmospheric" bands of molecular oxygen

Band
Band origin Electronic Vibrational intensity

(cm ') transition transition (cm) Comment

6326.033
7882.425
9365.877

Infrared bands

0<-0

1.13 xl(T28

1.82 xlO~24 See Fig. 5.5
8.63 x 10~27

Red bands

11,564.516 b*-X
12,969.269 b ^X
13,120.909 b ̂ X
14,525.661 b +-X
15,902.418 b *-X

0<-1 7.80X10"27

1^1 9.42 xKT26

0<-0 1.95X10"22

1 ̂ 0 1.22 x 10"23

2^-0 3.78 xlO~2 S

A band
A band
B band
•y band

exist only during collisions. From the empirical point of view, both will
have absorption coefficients proportional to the ambient pressure.
Dimers should exhibit new vibrational modes, but all observed oxygen
bands can be accounted for in terms of modes of the monomer. Dimers
could also exhibit rotational structure. Some weak fine structure has been
reported in the visible bands. The question is unresolved, but unimpor-
tant for our purposes.

FIG. 5.5. The 7882cm ' infrared "atmospheric" band of molecular oxygen. This is a
synthetic spectrum prepared from the AFGL tape. Level of observation, 0 km. Zenith angle
of observation, 30°.

a    X
a    X
a    X

0    1

1    0
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FIG. 5.6. The collision-induced rotation spectrum of oxygen. The temperature is 300 K.
The vertical lines show the relative strengths of the underlying rotation lines. After
Bosomsworth and Gush (1965).

Of the three visible bands, two are very weak and correspond to
(2,0) and (3, 0) vibrational transitions of the red "atmospheric" system.
The third, at 21,000cm"1, shows an absorption of a few percent in the
spectrum of the zenith sun. It has been tentatively identified as two
transitions taking place simultaneously in the ground-state fine structures
of the two oxygen atoms, in contrast to a normal molecular transition.
The binary band intensity at 300 K is S°2°2 = 2.3 x 10~43 cm4.

Careful laboratory measurements are available on the fundamental,
the first overtone, and the rotation band of oxygen. Data on the
fundamental were shown in Chapter 3 (Fig. 3.23). The band contour,
which shows no fine structure, resembles that of the predicted intensities
of the underlying rotation lines, showing that, while the line widths are
large compared to the line spacing, they must be small compared to the
band contour. Measurements with nitrogen as the broadening gas show
almost identical binary absorption coefficients. The binary band inten-
sities for the fundamental and the first overtone are 9.5 x 10~~43 and
9.7 x 10~45 cm4, respectively.

The collision-induced rotation band for pure oxygen is shown in Fig.
5.6. The correspondence between the band contour and the underlying
rotational lines is less satisfactory than for the fundamental band (Fig.
3.23), suggesting that the lines are very broad indeed, broader than the
band contour. The band intensity at 300 K is 1.20 x 10~43 cm4.

5.3.5. Atomic oxygen

Oxygen atoms absorb in the far-ultraviolet spectrum but they also
possess an interesting absorption (or emission) in the infrared caused by
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transitions between fine-structure levels in the electronic ground state of
the atom.

The ground state of atomic oxygen is a triplet, with components 3P0,
3Pi, and 3P2. Magnetic dipole transitions can take place between 3P0 and
3P2, and between 3Pj and 3P2; the Einstein coefficient and energy gap are
1.7xlO~5s~1 and 226cm"1 for the former and 8.8xl0^5s~1 and
161 cm"1 for the latter. These are very small Einstein coefficients, but it is
the small sizes of the energy gaps that make these transitions important.
At a temperature of 300 K, the product k# is 208cm"1 and almost every
collision can excite or deexcite the fine-structure levels, giving rise to a
relaxation time approximately equal to the time between collisions (100 s
at 400 km).

If we use these numbers in the discussion of § 2.2.2, we conclude
that the fine-structure levels of atomic oxygen are in thermodynamic
equilibrium to far higher levels than any other thermal radiator that has
been discussed and that the 62 jum (161 cm"1) line of atomic oxygen will
be the most important thermal radiator over a large part of the upper
atmosphere.

5.4. Water vapor

5.4.1. The vibration—rotation spectrum

The water molecule is an asymmetric top with the oxygen atom in the
middle; the bond length is 95.8pm and the bond angle is 104.45°. The
water molecule has a large electric dipole moment, 6.16X
10"30 Coulomb-meter (C-m) in its equilibrium configuration, and has
strong rotation bands. The three moments of inertia differ greatly from
each other and they are all small, giving rise to a widespread and
apparently disorderly array of rotation lines. These properties combine
with the relatively large concentrations of water vapor in the lower
atmosphere to account for the ubiquitous water vapor lines in every
region of the solar spectrum and for the unique importance of this gas in
atmospheric radiation problems.

Four isotopic forms have identifiable lines in the solar spectrum:
H16OH, H18OH, H17OH, and H16OD are, according to Table 1.2,
present as 99.73, 0.2039, 0.0373, and 0.0298%, respectively. Each isotope
has a different vapor pressure and the abundances depend slightly on the
evaporation-condensation cycle.

The H18OH and the H17OH molecules have vibrational and rota-
tional constants differing very little from those of H16OH. Relative to the
normal molecule, H18OH lines are shifted by —11 to 1 cm"1, while shifts
for H17OH are half as great. H16OD stands out alone because the
vibrational frequencies differ markedly from those of the other isotopic
forms.
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Table 5.2. Observed frequencies of water vapor
fundamentals

Band center (cm ')

Band

Vl
V-,

V3

Transition

100 <- 000
010 <- 000
001*- 000

H16OH

3657.05
1594.75
3755.93

H16OD

2723.68
1403.49
3707.47

Table 5.3. Rotational constants for
water vapor in the ground vibra-
tional state (cm"1)

Axis H16OH H16OD

A
B
C

27.79
14.51
9.29

23.38
9.06
6.38

Water vapor has three fundamentals (see Fig. 3.9a for vibrations of
the nonlinear XY2 molecule), the v2 bending mode having the lowest
frequency and v1 and v3 both having approximately twice this frequency.
The close coincidence between v1; v3, and 2v2 leads to complex
interactions between vibrational states. Table 5.2 shows the observed
fundamental frequencies of H16OH and H16OD. The HOH bands are
type B if v3 changes by an even number; otherwise they are type A. The
lower symmetry of HOD allows hybrid bands of mixed type A and B.
Rotational constants are given in Table 5.3.

5.4.2. Listed data

The AFGL data are based upon a Hamiltonian having 25 adjustable
constants. The changes of the dipole moment with respect to the normal
coordinates are obtained from observed band intensities of the fun-
damental bands. Estimates of the precision of vibrational-rotational line
intensities vary from ±15% for most lines to a factor of two for high-/
lines.

Lines widths are obtained from a few direct measurements combined
with calculations based on a modified ATC theory (see Fig. 3.16).
Difficulties with narrow, high-/ lines were discussed in §3.3.3. Even for
this most carefully studied of all atmsopheric molecules, the line widths
are not known with great accuracy.

The important bands of water vapor fall into a number of distinct
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classes: the rotation band from 0 to 1000cm l; the v2 (6.3 /im) bands
from 900 to 2400cm"1; the 2.7 //m group, consisting of vlr v3, and 2v2,
from 2800 to 4400cm""1; the near-infrared bands, with six distinguishable
groups of lines between 4500 and 11, 000 cm"1; and the weak, visible
bands from 11,000 to 18,000cm"1. The 6. 3 /urn and the rotation bands
dominate the thermal region of the spectrum; the near-infrared bands,
although much weaker, absorb a great deal of solar radiation in the lower
atmosphere.

Table 5.4 shows the 2.7 jwm, the 6.3jum, and the rotation bands of
water vapor. The 1982 AFGL compilation includes eight rotation bands,
eleven 6.3 /im bands, and twenty-three 2.7 juni bands. In Table 5.4, an
arbitrary cut-off for the band intensity between 10"20 and 10"21 cm has
been imposed. No upper-state bands are included. These are generally
rather weak, but that depends upon the temperature, to which they are
very sensitive.

Table 5.5 shows some of the near-infrared and visible bands of water
vapor. The AFGL list contains 42 near-infrared bands (more have been
reported) and 27 visible bands. This list has been shortened by including
only bands with Sn greater than 10~2<)cm or the strongest band in each
group. As for Table 5.4, no upper-state bands are included.

Table 5.4. The strongest infrared bands of water vapor"

Region

Rotation

6.3 jum

2.7 ̂ m

Band
origin
(cm"1)

0.00
0.00
0.00

1588.28
1591.33
1594.75

3151.63
3657.05
3707.47
3741.57
3748.32
3755.93

Isotope

H16OH
H17OH
H18OH

H18OH
H17OH
H16OH

H16OH
H'6OH
H16OD
H18OH
H17OH
H16OH

Upper
state

000
000
000

010
010
010

020
100
001
001
001
001

Sn cm X 1021

at 296 K

52,700.0
19.4

107.0

21.0
3.82

10,400.0

75.4
486.0

1.42
13.9
2.52

6930.0

Number
of lines
listed

1728
622
766

852
668

1807

1146
1381
1651
711
529

1750

" The lower states are all 000. Sn for isotopes is calculated on the basis of the total number of
molecules of all isotopic species. Only the 12 most important bands are listed.
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Table 5.5. Overtone and combination bands of water vapor"

Region

a

V

4>

rc

ac

Pc

Visible

Band
origin
(cm'1)

5234.98
5331.27

6871.51
7201.48
7249.93

8807

10,239

10,613

11,032

13,653
13,828
13,831

to
17,458
17,496

Isotope

H16OH
H16OH

H16OH
H16OH
H16OH

H16OH

H16OH

H16OH

H16OH

H16OH
H16OH
H16OH

H16OH
H16OH

Upper
state

110
Oil

021
200
101

111

121

201

003

221
202
301

500
203

Sn cm X 1021

at 296 K

37.2
804.0

56.4
52.9

747.0

49.8

2.0

10.0

2.0

—

—
—

Number
of lines
listed

991
1306

b

— -

—

—

—

216
169
330

108
182

" 5n for isotopes is calculated on the basis of the total number of molecules of all species.
—indicates that the information is not available although some must exist on magnetic

tape.
c Not in the AFGL compilation.

5.4.3. Continuum absorption

The window between the water vapor 6.3 jum band and the rotation band
occurs close to the peak of the Planck function at atmospheric tempera-
tures and the transmission of thermal radiation through this window is of
crucial importance for some atmospheric problems. The window region
contains weak high-/ lines of both bands but these are superimposed on a
stronger continuum that absorbs about 10% of the incident radiation for
a vertical path through an atmosphere containing 1 g cm~~2 of water
vapor.

There is a debate about the reason for this continuum; as for the
collision-induced bands of oxygen (§5.3.4), the debate centers around
the alternatives of dimers of finite lifetime or events taking place only
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FIG. 5.7. Theoretical absorption coefficients for pure water vapor at 1 bar and 296 K. The
vertical axis is the molecular absorption coefficient divided by a "radiation term,"

which is approximately equal to v/c (the frequency in wave numbers) for v/c > 500 cm"1.
After Clough et al. (1980).

during collisions. Both yield binary absorption coefficients, although
results are sometimes given in terms of normal coefficients with linear
pressure dependence, which amounts to the same thing. To attribute the
continuum to events occurring during collisions is equivalent to saying
that it is caused by the far wings of strong lines positioned close to band
centers. This is the most popular explanation and there are reasonable
line shapes that give a good account of the observed continuum
absorption.

Figure 5.7 shows a calculation based upon a theoretical line shape.
The envelope beneath the curve is the continuum; the fine structure by
itself would normally be identified as rotation lines; but, in fact, both
continuum and lines result from the same data on line positions and line
shapes. The figure makes the point that continua occur at all frequencies.
Window regions are those in which continuum absorption is stronger than
line absorption (ca. 1000, 2400, and 4300 cnT1), but only the 1000cm"1

region is important for atmospheric calculations.
Laboratory measurements of binary absorption coefficients for the

1000 cm"1 window are shown in Fig. 5.8. These are for water-water
collisions. The same investigators found the coefficients for water-
nitrogen collisions to be so small that, despite the much larger concenta-
tion of nitrogen molecules, the contribution of water-nitrogen collisions
is probably unimportant in the atmosphere. This view corresponds to that
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FIG. 5.8. Binary absorption coefficients for water-water collisions in the 1000 cm^1

window. ns is Loschmidt's number. After Burch and Gryvnak (1980).

of some field investigators, based on studies of the correlation between
atmospheric absorption and water vapor pressure. The term e-type
absorption (from the meteorological symbol for water vapor pressure) is
often used to describe the self-broadening nature of this phenomenon.

The increase of absorption with decreasing temperature shown in
Fig. 5.8 has been cited as a reason to favor dimer theories of the
continuum, but this temperature variation is also consistent with far wing
line shapes, given appropriate interaction potentials.

Figure 5.9 shows binary absorption coefficients in the 2600 cm"1

FIG. 5.9. Binary absorption coefficients for water-water collisions in the 2500 cirT1

window. ns is Loschmidt's number. The data for 296 K are extrapolated. After Burch and
Gryvnak (1980).
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region of the spectrum. This region is not as free from rotation lines as is
the 1000 cm"1 window and the investigators have used numerical
methods to correct for the absorption by nearby lines, so that only
continuum absorption is represented.

The self-broadening coefficients shown in Fig. 5.9 are unimportant
for atmospheric calculations. However, water-nitrogen collisions are
more important than for the 1000cm"1 window, and it may be desirable
to take account of them under some circumstances. The ratio of
nitrogen-water to water-water coefficients is about 0.08, which is offset
by the large ratio of nitrogen to water molecular densities.

5.5. Carbon dioxide

5.5.1. The vibration—rotation spectrum

The carbon dioxide molecule is linear and symmetric (OCO), with a
bond length of 115.98pm in the ground vibrational state, and a
corresponding rotational constant of 0.3906cm"1. Because of the sym-
metry, the molecule has no permanent dipole moment and no permitted
rotation band.

The fundamental modes of vibration of a linear molecule were
discussed in § 3.2.2. Owing to the symmetry of the molecule, the vl

vibration involves no change in the dipole moment (Fig. 3.9) and is
inactive. It has a frequency close to twice that of the v2 vibration, with
the result that Fermi resonance occurs between groups of levels such as
(02°0, 10°0), (03'0, l^O), (04°1, 12°1, 20°1), etc.

The v2 bending frequency is degenerate and the selection rules
involve the quantized vibrational angular momentum. The v2 fundamen-
tal involves an / = 0 to / = 1 transition and is perpendicular. The v3

fundamental, on the other hand, involves an 1 = 0 to / = 0 transition,
which is parallel, and the band lacks a Q-branch.

The oxygen atom has zero nuclear spin and the statistical weights of
odd-/ levels are zero, so that alternate rotation lines are missing from the
spectrum. The same applies to the isotope 16O13C16O, forming 1.108% of
the total carbon dioxide. 16O12C17O and 16O12C18O are present in
concentrations of 0.0646 and 0.4078% and, being of lower symmetry,
have a rotational structure that is different from that of 16O12C16O.
Isotopic shifts can be estimated from the data in Table 5.6.

5.5.2. Listed data

The thermal spectrum of carbon dioxide is dominated by the very strong
15 ,um (v2) and 4.3/im (v3) bands (Table 5.6). Both bands are compli-
cated by Fermi resonances and by the fact that the first v2 level is
significantly populated at atmospheric temperatures. Bands with lower
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Table 5.6. The strongest vibration-rotation bands of carbon dioxide"

Band
origin

Region (cm"1) Isotope

15 urn 618.03 I6O12C'6O
647.06 16O'2C16O
648.48 16OI3C'6O
662.37 16O12C18O
667.38 16OI2C'6O
667.75 16O12C'6O
668.11 16O12C16O
688.68 16O'2C'6O
720.81 16O'2C'6O

4.3 urn 2271.76 16O'3C'5O
2283.49 160'3C'60
2311.68 16O'2C16O
2319.74 16O12C18O
2324.15 16O12C'6O
2326.59 16O'2C16O
2327.43 16O12C16O
2332.11 16O'2C180
2336.64 16O'2C16O
2349.15 16O12C'6O

2.7 urn 3580.33 '6O12C'6O
3612.84 16O12C"O
3632.92 16O13C16O
3714.78 '6O'2C'6O
3723.25 16O'2C'6O

2.0 ̂ ra 4977.83 16O'2C'6O
5099.66 16O12C'6O

Upper
state

10°0
ll'O
Ol'O
Ol'O
Ol'O
0220
0330
ll'O
10°0

Ol'l
00°1
0331
Ol'l
0221
10°1
10°1
00°1
Ol'l
00°1

ll'l
10°1
10°1
10°1
ll'l

20°1
20°1

Lower
state

Ol'O
10°0
00°0
00°0
00°0
Ol'O
0220
10°0
Ol'O

Ol'O
00°0
0330
Ol'O
0220
10°0
10°0
00°0
Ol'O
00"0

Ol'O
00°0
00"0
00°0
Ol'O

00°0
00"0

SncmX1020

at 296 K

14.4
2.22
8.60
3.30

826.0
64.9
3.82
1.49

18.5

8.18
96.0

1.23
2.58

30.8
11.8
19.3
33.3

766.0
9600.0

8.04
104.0

1.60
150.0
11.4

3.50
1.12

"The cut-off for 5n is 10 cm. Where bands have identical upper and lower states, they are
resonating members of a Fermi triplet. Band intensities for upper state and isotopic bands are
given in terms of the total number of molecules of all species and all levels.

states i>2=l, 2, or 3 and v1 = 1 occur in Table 5.6. The intensities of
these bands are, of course, strongly dependent upon temperature.

Also listed among the strong bands are two groups near 2.7 and
2.0 jiim. The former consists of a number of combination bands that
together have an intensity comparable to that of the fundamentals.

Table 5.7 shows data on some weaker bands of carbon dioxide that
are important because they appear in gaps between other strong bands in
the terrestrial spectrum. This is particularly true for the 10 ̂ m bands
(v3 - v,) because they appear in the middle of the water vapor window,
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Table 5.7. Some weaker vibration-rotation bands of carbon dioxide"

Region

10 ̂ m

5 jum

1.6^m

1.4/jm

Band
origin
(cm"1) Isotope

960.96 16O12C16O
1063.73 16O12C16O

1932.47 16O12CI6O
2076.87 O C O
2093.36 16O12C16O
2129.78 16O12C16O

6227.92 16O12C16O
6347.85 16012C16O

6935.15 16O12C16O
6972.58 16012C160

Upper
state

00°1
00°1

ll'O
ll'O
1220
20°0

30°1
30°1

01'3
00°3

Lower
state

10"0
10°0

00°0
00°0
01 '0
01*0

00°0
00°0

01 '0
00°0

Sa cm X 1022

at 296 K

4.9
6.3

4.1
22.0
4.0
1.3

4.3
4.3

1.1
15.0

" The cut-off for 5n is 10 cm. Where bands have identical upper and lower states they are
members of a resonating Fermi triplet. Band intensities for isotopic and upper-state bands are
calculated on the basis of the number of molecules of all species and in all levels.

close to the maximum of the Planck function at atmospheric tempera-
tures. Their temperature dependence leads to an important feedback
involving the atmospheric temperature.

The AFGL compilation contains 530 bands of carbon dioxide. The
listing terminates at 9611 cm"1 although weak bands have been reported
in the solar spectrum out to 12,774.4 cm"1 (10°5-00°0).

FIG. 5.10. The collision-induced rotation band of pure carbon dioxide at 293 K. The
spectral resolution is l.Ocm"'. The circles and crosses are two independent sets of
measurements. The vertical bars are error estimates. After Berries (1970).
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5.5.3. The collision-induced rotation spectrum

Figure 5.10 shows the collision-induced rotation band for carbon
dioxide-carbon dioxide collisions. No measurements are available for
nitrogen collisions so that their impact on atmospheric calculations is
difficult to gauge, but it is probably small. The effect of temperature has
been measured over the range 200 K to 373 K. The binary coefficients
vary in a manner consistent with the underlying rotational structure. The
binary band intensity £„ °2C°2 is independent of temperature and equal to
6.5xlO~42cm4.

5.6. Ozone

5.6.1. Electronic bands

The electronic spectrum of ozone is dominated by the Hartley bands,
centered at 2553 A, with a peak molecular absorption coefficient (cross
section) of 1.15 x 10~17cm2. A typical solar beam reaching the ground
traverses 1.4 x 1019 molecules of ozone cm"2 so that the transmission in
the band center is about 10~70.

The Hartley bands (Fig. 5.11) consist of some weak structure on a
very strong continuum. A slight temperature dependence of absorption
has been reported; compared to 291 K, the absorption coefficient at
2500 A is 0.98 at 243 K and 0.97 from 227 K to 201 K. Larger tempera-
ture variations may occur in the wings.

On the short-wave wing of the Hartley bands, the absorption
coefficient falls to a minimum of 3 x 10~19cm2 at 2000 A. Thereafter it

FIG. 5.11. The Hartley bands of ozone. The temperature is 303 K. After Griggs (1968).
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FIG. 5.12. The Huggins bands of ozone. After Vigroux (1953).

increases to a series of maxima, the highest being 2 x 10~17 cm2 at
1220 A.

On the long-wave wing of the Hartley bands lie a series of weak
bands (the Huggins bands) that appear in the spectrum of the low sun
and were responsible for the first positive identification of ozone in the
atmosphere. A large temperature variation occurs in the minima of the
Huggins bands (Fig. 5.12). There is probably no comparably important
pressure effect.

FIG. 5.13. The Chappuis bands of ozone at 291 K. After Vigroux (1953).
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Between 3400 and 4500 A lies a relatively transparent spectral
region. Absorption begins again at 4500 A with the Chappuis bands and
extends to 7500 A (Fig. 5.13). The maximum absorption coefficient in the
Chappuis bands is 5 x 10"21 cm2 and the peak absorption for solar
radiation traversing two air masses is about 7%. This absorption can be
significant under some circumstances because it occurs in the spectral
region of maximum solar emission. Temperature coefficients for these
bands appear to be negligible.

5.6.2. The vibration-rotation spectrum

Ozone is a nonlinear molecule with a bond length of 127.8pm, a bond
angle of 127°, and a permanent dipole moment of 1.77 x 10"30C-m. The
principal isotopic species 16O16O16O, 16O18O16O, and 16O16O18O are
present in proportions of 99.28, 0.203, and 0.406%, respectively, but only
i60i6Qi6Q jjas bands of importance for atmospheric calculations.

The 1982 AFGL listing contains 19 bands of ozone. Of these, 9 have
band intensities larger than 10~19cm and are listed in Table 5.8.

An unusual feature of the ozone molecule is that the va and v2

fundamentals, at 1103.14 and 700.93 cm"1, respectively, are very weak
compared to v3 at 1042.06cm"1, weaker in fact than the combination
band Vj + v3 at 2110.79cm"1. In addition, v, is very close to v3 and
strong resonances make it difficult to assign line positions and to calculate
good line intensities. The 1982 AFGL listing claims that most line

Table 5.8. The strongest vibration-rotation bands of '6O3
a

Region
Band origin

(cm"1)

Upper
state

Lower
state

(V1V2V3)

5n cm X1020

at 296 K

Rotation 0.00 000 000 41.3

14 ̂ m 700.93 010 000 62.8

9.6^m

Overtone and
combination

1015.81
1025.60
1042.08
1103.14

2057.89
2110.79
3041.20

002
Oil
001
100

002
101
003

001
010
000
000

000
000
000

17.4
45.0

1394.0
67.1

11.1
113.4

11.0

a Only bands with intensities greater than 10 cm are listed. Band intensities for upper-
state bands are calculated on the basis of the number of molecules in all levels.
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intensities for vl and v3 are known to better than 10%, but this may be
too optimistic.

5.7. Nitrous oxide, carbon monoxide, and methane

5.7.1. Nitrous oxide

The nitrous oxide molecule is linear, asymmetric (NNO), with N-N and
N-O bond lengths of 112.6 and 118.6pm, respectively, and a rotational
constant in the ground state of 0.4190 cm"1. The permanent dipole
moment is 0.557 X 10~30C-m. The three fundamentals are vl

(1284.907cm-1), v2 (558.767 cm^1), and v3 (2223.756cm-1). Since vl is
approximately equal to 2v2 there is a strong Fermi resonance between the
levels. The isotopic abundances are 14N14N16O (99.043%), 15N14N16O and
i4NisNi6O (Q.358%), 14N14N18O (0.199%), and 14N14N17O (0.040%), but
few lines from isotopic species are of significance.

The spectrum of nitrous oxide has been thoroughly investigated. The
AFGL listing includes 106 bands (not including the rotation bands)
arranged in 27 band systems. The 9 strongest are given in Table 5.9.

Table 5.9. The strongest band systems of nitrous oxide"

Region
Band origin

(cm"1)
Upper state Sn cm x 1020

at 296 K

Rotation 0.00 00°0 Not listed

17 ,um

7.8

588.77

1168.13
1284.91

01'0

02°0
10°0

118

39
996

4.5 fim 2223.76 00°1 5710

Combination
bands

2462.00
2563.34
3363.97
3480.82

12°0
20°0
02°1

33
135
11

197

" The lower states are all 00 0. Only the 4.5 fim band contains significant iso-
topic lines. The cut-off for 5n is 10 cm.

5.7.2. Carbon monoxide

The carbon monoxide molecule has a C-O bond length of 123 pm and an
equilibrium rotational constant of 1.9313cm~L. The permanent dipole
moment is 0.34 X 10"30C-m, giving rise to a weak rotation band.
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The AFGL listing contains lines from a number of isotopes from the
rotation band, the fundamental and the first and second overtones. Of
these, only the fundamental of the principal isotope is important. Its
origin is at 2143.27cm""1 and its band intensity is 9.81 x 10~18cm.

5.7.3. Methane

The methane molecule is a spherical top with a C-H bond length of
109.3pm. Of the nine fundamentals, only four are independent (vlt v2,
V3, v4), and only two are active in the infrared spectrum (v3 and v4);
these are both triply degenerate. Interactions resolve all of these
degeneracies and give rise to a line structure of exceptional complexity
(see, for instance, Fig. 3.2, which, in the absence of interactions, should
look more like the carbon monoxide band in Fig. 3.4). The strongest
bands of methane are given in Table 5.10.

Table 5.10. The strongest bands of methane"

Bands

Fundamentals

Overtone and
combination

Band origin
(cm"1)

1302.77
1310.76
1533.37
3009.53
3018.92

2612
2822
2830
3062
4223
4340
4540

Isotope

"CH4
I2CH4
12CH4
13CH4
12CH4

12CH4
13CH4
12CH4
12CH4
12CH4
12CH4
12CH4

Upper state
(i>jti2i>3i>4)

0001
0001
0100
0010
0010

0002
0101
0101
0201
1001
0011
0110

Sn cm X 10™
at 296 K

5.7
504.1

5.5
29.3

1022.0

5.4
4.3

38.0
16.4
24.0
40.8
6.2

" The ground states are all 0000. The intensities of isotope bands are based on the total
number of molecules of all species. C atoms form 1.108% of the total carbon.
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RADIATION CALCULATIONS IN A
CLEAR ATMOSPHERE

6.1. Introduction

6.1.1. Line -by -line calculations

This chapter is concerned with the requirements of numerical weather
prediction and general circulation models. These numerical models
always assume a stratified atmosphere and utilize a limited number of
grid points in the vertical direction. Computations are repeated at many
horizontal grid points and at frequent time intervals; a premium is placed
on computational economy. The nested integrals involved in radiative
flux and heating calculations, particularly the frequency integration, can
create an unacceptable computational burden unless approximated.

In this chapter we limit attention to clear-sky conditions, i.e., to
absorbing constituents and a thermal source function (§2.2). For a
Planck function, the formal solution, (2.86), is a definite integral
involving measurable quantities, temperatures, and gaseous densities.
Scattering problems, on the other hand, involve the intensity in the
source function and cannot be solved by a single application of this
integral. Scattering calculations will be discussed further in Chapter 8; it
will be shown that scattering can be neglected if the volume scattering
coefficient is not very much larger than the volume absorption coefficient.
This is usually the case for aerosols in the thermal region of the spectrum.

As regards boundary conditions, it is usual for clear-sky calculations
to assume that the earth's surface and the upper and lower surfaces of
clouds can be treated as black surfaces in the thermal spectrum.
Equations (2.86) and (2.87) are stated in terms of general boundary
conditions. In the flux and heating integrals, (2.106) and (2.110), these
conditions are specialized to a black surface at ground level, but they can
be generalized without difficulty to include a black surface at any level or
partial reflection from these surfaces, if appropriate.

The equations for which efficient algorithms are required are the flux
equations, (2.107) and (2.108), the heating equations, (2.110) or (2.111),

66
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and the solar flux equations, (2.115). The nested integrals are

1. the vertical integral, (2.92), for the optical depth;
2. the integral, (2.86), along the optical path;
3. the angular integral, (2.102);
4. an integral over all frequencies.

We may introduce the issues by considering a restricted example,
that of the intensity recorded outside the atmosphere by a downward
pointing satellite spectrometer. The spectrometer is approximately col-
limated, eliminating the angular integration. The calculation is made at
only one atmospheric level, reducing the work involved in (1) and (2)
together by the square of the number of vertical data points, and the
calculation need be performed only once rather than at frequent time
intervals. With these restrictions it is feasible to use a line-by-line
calculation without further approximation.

The appropriate equations are (2.92) and (2.98) evaluated at TV = 0,

and

The volume absorption coefficient can be expressed in terms of the
contributions by individual lines (suffix, j) of a number of chemical
species (index, /),

Sn is the line intensity, / is the normalized line profile, v0 is the line
frequency, and «' is the number density of molecules of species, /.

kl is a continuum coefficient that is handled differently by different
investigators. Given a complete knowledge of line profiles it may be
calculated as a part of the first term on the right-hand side of (6.3). As
discussed in § 3.3.4, however, there is a difference between our con-
fidence in our knowledge of the line profile close to the line center and
our knowledge of the far wings. It is common practice to include only the
line centers in the sum in (6.3) and to treat the remainder semiempirically
as an added continuum. However this situation may be handled, we shall
regard (6.3) as soluble, given the data on the AFGL or similar tape, and
some knowledge of line shapes. The line-by-line sum in (6.3) adds
another to the four nested operations already described.



FIG. 6.1.
spectrum

Observed and theoretical spectra for clear skies over the Gulf of Mexico, April 23, 1969. The observed
is displaced upward by 0.2 x 1CT5 W cm"2 steradiarT1 wave number^'. After Conrath et al. (1970).
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Given the temperature and densities of absorbing molecules at each
atmospheric level, (6.2) can be solved numerically for a single frequency.
Figures 6.1 and 6.2 show comparisons between observed and computed
spectra for measurements made on the meteorological satellite, Nimbus
3, at a time and place when good atmospheric data were available. The
spectra are averaged over the band-pass of the instrument (~5 cm"1),
sufficient to smooth out most of the fine spectral detail.

The agreement between theory and observation in Figs. 6.1 and 6.2
is generally within about 10%. It is surprising, at first sight, that it is not
better. Uncertainties in the spectroscopic data are partially responsible,
but it is difficult to assign all the errors to this source. Local variations in
temperature and departures from a strictly stratified atmosphere must
also contribute errors. The radiosonde data used may not correctly apply

FIG. 6.2. Detail from Fig. 6.1, with black-body curves. After Conrath et al. (1970).
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to the path of the radiation. The atmospheric temperatures could be
adjusted slightly to give better agreement, a step in the direction of
temperature inversions from observed intensities, a technique to be
discussed in § 6.5.

It is difficult to reach any firm conclusion about errors such as are
exhibited in Figs. 6.1 and 6.2. Line-by-line calculations are often adopted
as a standard against which to test certain approximations. Their value in
a relative context is indisputable, but that should not be taken to mean
that line-by-line calculations are necessarily of high absolute accuracy.

This comment is relevant to an implicit assumption in much of the
current literature: that more and more detailed physics encoded onto
larger and larger computers will eventually yield accurate weather and
climate predictions. This is more an article of faith than a demonstrable
proposition. It is also possible to argue that numerical complexity hides
or introduces its own sources of error, in addition to making it impossible
to penetrate the algorithms of another investigator. The utility of
radiation algorithms probably cannot be judged in general terms and is
better discussed in the context of specific atmospheric processes (Chap-
ters 9 and 10).

6.1.2. The angular integration

Given the intensity as a function of the directional cosine, %, the flux may
be calculated from (2.3) and (2.101). We distinguish between upward and
downward components in the manner of (2.107) and (2.108),

The computing time for a flux calculation is proportional to the
number of quadrature points used to calculate the integral in (6.4);
experience suggests that sufficient accuracy can often be obtained with a
single quadrature point. This class of approximation (a diffusivity
approximation) is employed in many radiation algorithms.

First-order Gaussian quadrature, (2.148), leads to
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For historical reasons, (6.5) is not employed in this form. Instead,
discussion has centered on the best value for the diffusivity factor, r, in
the approximations

r can be chosen to make (6.6) exact for any particular values of § and z.
The question is whether a value exists that makes (6.6) approximately
correct for averages over spectral intervals and for all values of z? The
consensus of many investigations is that errors in calculated heating rates
should not exceed 2% if we use r = 1.66, a value first proposed by
Elsasser in 1942 for a regular band.

The implication of (6.6) is that flux calculations can be reduced to
intensity calculations made at a specific zenith angle. Since | occurs only
as a divisor in the calculation of optical depth, (2.197), the intensity
calculation may be made for a vertical path through an atmosphere in
which absorber densities have been increased by a factor r.

A formal relationship between intensity and flux can also be
demonstrated from the exact equations for a stratified atmosphere. We
introduce a flux transmission,

to be compared to the normal transmission,

If we substitute (6.8) into (2.98) and (2.99), and change the
independent variables to z and z' (Fig. 2.5, but with z" = 0),
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If we now substitute (6.7) into (2.107) and (2.108) we find

and

The analogy between flux and intensity calculations is now explicit. If we
wish to adopt the diffusivity approximation, we write

In § 2.4.5 we stated that the diffusivity approximation leads to an
approximate differential equation, (2.151), similar to the two-stream
approximation. The two-stream approximation can be obtained from
first-order Gaussian quadrature, (6.5), while the diffusivity approxima-
tion results from (6.6). The close relationship between these two
equations accounts for the similarity between the two procedures.

6.1.3. The frequency integration

Thermodynamic calculations involve fluxes and heating rates integrated
over the entire spectrum. In Chapter 4, we approximated the frequency
integral by sums over discrete frequency ranges (suffix i, width Av,-) that
are narrow enough to neglect changes in the source function but wide
enough to contain many lines. By analogy with the intensity integral,
(4.2), the flux integrals (6.11) and (6.12) are, for a single spectral range,

where

It is plausible to employ band model theory (Chapter 4) to evaluate
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approximately integrals such as (6.16). This procedure, or a simplified
version of it, has been the most commonly used approach to the
frequency integral for about 40 years. It obliges us to look at another
problem.

Band model theory has been developed for homogeneous absorption
paths, usually in terms of two nondimensional variables involving the
pressure and the amount of absorbing matter in the path. Atmospheric
problems, on the other hand, involve paths along which pressure and
temperature vary continuously. There is no obvious connection between
these two circumstances, but if we wish to use the available theory of
band models a connection must be demonstrated. Approximate treat-
ments are examined in the next section.

6.2. Transmission through a nonhomogeneous atmosphere

6.2.1. Exact solutions for constant mixing ratio

A number of atmospheric gases have approximately constant mixing
ratios in the lower atmosphere. If, in addition, temperature effects upon
line intensity and width may be neglected exact solutions exist for
averaged transmissions. Although this situation is an idealization, the
effect of pressure varying along the path is correctly treated and the
results are useful as standards against which to test approximations.

For hydrostatic equilibrium,

where p and p are the air pressure and density and g is gravity. For an
absorbing gas with constant mixing ratio, c, the absorber density is cp. If
we adopt the Lorentz profile, (3.48), the optical path between two levels
z and z' is

where u = (p/a^)Smc/2pg is a constant because the Lorentz width is
proportional to the pressure.

The equivalent width for a single line evaluated over this atmos-
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pheric path is

The integral in (6.19) can be solved in terms of the hypergeometric
function. The special case for z' =°° (a path to space) can be given in
terms of gamma functions:

This result can be generalized to give the mean transmission for a random
model by substituting in (4.107).

An expression has also been derived for the mean transmission of an
Elsasser model (§ 4.5)

Equation (6.21) has been integrated numerically and can also be
expressed as a sum of hypergeometric functions.

6.2.2. Scaling approximations

The question posed in §6.1.3, was how well can the transmission of a
variable atmospheric path be represented by the transmission of a path at
constant temperature and pressure? Let m, p, and 8 be the parameters
for the optimum homogeneous path. It is usual to fix 9 by setting it equal
to the average temperature for the path of integration, for example, and
to seek the best values for the remaining two parameters. Before
examining such two-parameter approximations, however, we first con-
sider the one-parameter approximation for which the pressure is also
preassigned (e.g., p — 1 bar) and only ra remains to be chosen. This is
referred to as a scaling approximation.

A scaling approximation is exact if variables can be factorized in the
following way:

The optical path may then be written
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where

Given the factorization (6.22), (6.23) and (6.24) permit the optical
path to be calculated from that for a homogeneous atmosphere. If the
optical path is correct, so will be the fluxes and heating rates derived
from it, and a calculation for the most general atmosphere is reduced to
one for a homogeneous atmosphere with fixed pressure, p, and tempera-
ture, 6, with a change of variable from the amount, m, to the scaled
amount, m. The scaled amount can be calculated simply and independ-
ently from the rest of the calculation.

We must now discuss the function </>(/?, 9). We first consider its form
for isolated Doppler and Lorentz lines and show that although an
appropriate form exists for Doppler lines, different forms are required for
strong and weak Lorentz lines. If a result is correct for an isolated line,
then it is also correct for a random array of identical lines [see (4.108)]
and for an important asymptotic limit of the Elsasser model [see (4.83)].
For a random array of differing lines, (j)(p, 0) must be chosen to give the
best estimate of the average equivalent width for the lines in a given
spectral range; this will satisfy requirements for all random models [see
(4.112)] and for the semiempirical band model (4.143).

First consider the Doppler profile, (3.81). The Doppler width
depends not at all upon pressure and only weakly on the temperature.
Line intensities, on the other hand, can vary rapidly with temperature. It
is, therefore, appropriate to identify <f>(p, 6) with the line intensity. For a
finite spectral interval, an average line intensity is required. For weak
lines, we shall demonstrate that a linear average is correct and it is
usually adopted for all Doppler lines, either strong or weak,

where the subscript, /, represents one of the N lines in the spectral
interval.

Now consider the important case of the Lorentz profile. Equation
(6.22) is not even approximately correct although we can obtain two
different expressions independently for strong and for weak lines.
Equations (4.41) and (4.42) are general expressions for the average
absorption for arrays of independent strong and weak lines, respectively.
These two equations can also be written for an optical path in a
nonhomogeneous atmosphere. If we equate the homogeneous and
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nonhomogeneous expressions we find

for strong lines, and

for weak lines. or?,,/ is the line width at pressure p0. Equation (6.27) is
identical to (6.24) and (6.25), and is the method of averaging already
chosen for weak Doppler lines.

We now consider the strong-line limit. If all the lines in the spectral
interval are identical, (6.26) becomes

For an array of unequal lines we look for an expression analogous to
(6.28), but with S(9)a(^(6) replaced by an average over all the lines in a
spectral interval. The following has been proposed:

where

Equation (6.30) has the correct form for identical lines. For lines of
differing intensities, it gives each line a weight proportional to its
equivalent width [see (4.16)]. This is a reasonable hypothesis. It was first
made by W. L. Godson in an unpublished paper, but there appears to be
no more rigorous derivation than has been given here. This is not to
imply that the use of (6.30) will lead to errors in heating or flux
calculations. Errors may well be very small, but no theoretical or
numerical demonstration of its applicability has yet been given.
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In § 6.4.2, we discuss "emissivity" techniques for evaluating directly
quantities integrated over the entire thermal spectrum. Although pres-
sure dependence is the same for all lines in the thermal spectrum, the
temperature dependance can be in either direction in different spectral
intervals. If we wish to use a scaling approximation with an emissivity
calculation it is necessary to omit the temperature dependence from
(6.27) and (6.29), with the results

for weak lines and

for strong lines.
The scaling approximation, applied to Lorentz lines, leaves us with

the choice of two alternative procedures, one for weak lines and one for
strong lines. Since strong lines are usually more important than weak
lines, recent work has invariably made use of (6.28) or (6.29) with (6.30).
Some of the early literature sought a compromise between these two
possibilities. We may write both (6.31) and (6.32) in the form

where /? = 0 for weak lines and 1 for strong lines. A common compromise
was to set (3 = \.

The accuracy of scaling approximations, as is also the case for the
more elaborate approximations that follow, can be judged only by means
of numerical comparisons between fluxes and heating rates calculated
with and without the approximation. For some gases, numerical calcula-
tions based on (6.29) with a fixed p (e.g., 1 bar) have proved to be
remarkably accurate, because the important lines are strongly absorbed.
This need not always be the case, however.

6.2.3. The H—C-G approximation

We do not need to choose between strong- and weak-line limits if we
allow two parameters to vary. Equations (6.24) and (6.29) can be solved
for both m and p. This procedure was proposed independently by van de
Hulst, Curtis, and Godson. It ensures that a correct result is obtained for
strong Lorentz lines, for Doppler lines, and for all weak lines.
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We may repeat the results of the previous section in the form usually
quoted for the H-C-G approximation,

where

and

where

If we neglect temperature dependence, the H-C-G approximation
becomes

and

In this approximation, the amount of absorbing matter is unchanged,
while an effective pressure is obtained by weighting pressures along the
path by amounts. The effective pressure for a constant mixing ratio
follows from (6.17), from which dp <*• p dz = dm; hence,

where pt and p2 are the pressures at the two ends of the path.
The physical situation for pressure-broadened lines may be described

as follows. A ray passing through a nonhomogeneous atmosphere forms
an absorption line from the superimposition of many Lorentz profiles,
which is inconsistent with any single Lorentz profile. The H-C-G
approximation tells us how to choose the absorber amount and the line
width so that the profile of a single Lorentz line corresponds as well as
possible with the superimposed profile.
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FIG. 6.3. Optical paths for an isothermal, mixed layer. The path is vertical, through an
isothermal layer with a basal pressure three times that of the upper boundary. The
absorbing gas is mixed evenly through the atmosphere. The broken line is an exact
calculation from (6.18). The solid line is based on the H-C-G approximation.

Figure 6.3 illustrates the H-C-G approximation, applied to a mixed
layer with a pressure ratio from bottom to top of 3:1. The exact result
was obtained from (6.18). The approximation provides for the profiles to
coincide in the wings (the strong-line limit) and assures that the areas are
the same (the weak-line limit).

The H-C-G approximation is widely accepted as the best available
technique for numerical models short of line-by-line calculations. Two
studies of its effect upon heating rate calculations have reached the
following conclusions.

For carbon dioxide, the H-C-G approximation is very accurate.
Since carbon dioxide is the principal radiator in the mesosphere, this is an
important result for middle-atmosphere calculations. Since the ap-
proximation is satisfactory for both Lorentz and Doppler lines, it also
applies to the Voigt profile.

The approximation may, however, be unnecessarily complicated for
mesopheric carbon dioxide. For very strong lines, the radiation fluxes at a
particular level all originate from very close levels. For such paths, the
H-C-G mean pressure is very close to the pressure of the level itself. For
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very strong absorptions, we may avoid the effort of calculating the
H-C-G mean pressure by substituting the pressure at the level of
calculation.

For water vapor, heating rates calculated with the H-C-G ap-
proximation are satisfactory, but can be in error by about 10% for
spectral regions in which the lines are neither strong nor weak. Such
regions are more important for water vapor than for carbon dioxide.

Ozone is the least likely candidate for the use of the H-C-G
approximation. The combination of large amounts of ozone at low
stratospheric pressures with small amounts of ozone at high tropospheric
pressures ensures that, for a ray traversing the whole atmosphere, the
resulting line profile will differ greatly from that of a single Lorentz line.
Errors of 10% in ozone heating rates are common.

There have been a number of attempts to improve the H—C—G
approximation by introducing a third variable parameter; for example,
the Doppler width in a Voigt profile may be treated as an independent
variable for which a best fit is sought, or two Lorentz lines may be
superimposed with a relationship expressed between the two intensities in
order to reduce the number of variables from four to three. It is possible
to obtain good results for ozone with any one of a number of
three-parameter models. References to some treatments are given in the
Bibliography. They all involve much more effort than the H-C-G
approximation, and have, therefore, not proved to be attractive for
atmospheric calculations.

Figure 6.4 shows calculations analogous to those of Fig. 6.1, except
that band models and the H-C-G approximation were used in place of
line-by-line calculations. The spectral intervals were 40cm"1 wide. There
are significant differences between observed and theoretical spectra, but
these differences are not obviously larger than those shown in Fig. 6.1. It
is possible that common errors arising from the meteorological and
spectroscopic data exceed those arising from approximations in the
calculation.

6.2.4. Correlated k

In this section we discuss extension of the k distribution technique to
nonhomogeneous paths. Scaling approximations involve modifications to
the amount of absorbing material without changing the frequency
distribution of the absorption coefficient [see (6.22)]. The results can be
as well applied to the k distribution as to band models. The k distribution
is formed for a standard pressure and the amount of absorbing matter
scaled by (6.27) or (6.29) for weak or strong lines, respectively; from the
experience gained with band models, the strong-line scaling (6.29) is most
useful.
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FIG. 6.4. Observed and theoretical spectra for clear skies over the Gulf of Mexico, June 1,
1969. The data were observed under similar conditions to those for Fig. 6.1. They have
been averaged over 40cm~1 spectral intervals for convenient comparison with calculations
based upon band models and the H-C-G approximation. After Ellingson and Gille (1978).

There is, however, no direct analogy to the H-C-G approximation.
The spectral information is scrambled in the k distribution method and
there is no simple way to refer to the relationship between different parts
of the same line without recalculating the k distribution.

The correlated k (c-k) method is a very effective alternative to the
H-C-G approximation. It is also based upon exact results in certain
asymptotic limits. Numerical calculations are required to establish the
accuracy for intermediate cases.

The circumstances under which c-k gives exact results are

1. Whenever the similarity condition, (6.22), is valid, in particular,
for Doppler lines and for strong Lorentz lines;

2. for weak absorption, regardless of the line shape;
3. for an isolated line, for the Schnaidt model, or for an Elsasser

band, again, regardless of the line shape.

Conditions (1) and (2) are the same as those for the H-C-G
approximation. The third condition additionally applies to intermediate
absorptions that are neither strong nor weak and to any line shape. This
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additional constraint upon errors appears to give the c-k method distinct
advantages over the H-C-G approximation.

The c-k method employs the cumulative distribution function,

[see §4.8.1 for the definition of
With this definition, the average transmission, (4.129), can be

written

g is a monotonic function of k, and the relationship between them
can be inverted; this is the significance of the use of a g subscript for kg.
Typical k ~ g relationships are shown in Fig. 6.5. The smooth curves are
obtained by inverting the Malkmus model for the mean transmission,
(4.138), for three widely spaced pressures. These curves are illustrative of
the data that might be available for three atmospheric layers in a
numerical calculation.

The division of the g axis in Fig. 6.5 into 10 intervals illustrates a
computational advantage enjoyed by this technique. For these examples,

FIG. 6.5. Cumulative k distributions. The curves are obtained from the expression,
(4.138), for the Malkmus model, with k = 1. After Lacis and Oinas (1986).
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high precision in computing the integral, (6.32), was obtained by
numerical quadrature using these intervals of g only. Moreover, the same
intervals may be used for all atmospheric layers. The use of g as an
independent variable for integrations along nonhomogeneous paths is a
useful numerical procedure, but its use must be justified on physical
grounds, as we shall show to be possible.

The mean transmission over a spectral interval, Av, (4.128), may be
written in the form

The close analogy between (6.35) and (6.36) suggests that v/Av, and g
may be treated as interchangeable variables for homogeneous paths.

Turning now to nonhomogeneous paths, the physically appropriate
independent variable is the radiation frequency, v, since all of the
processes that we consider are frequency coherent. Atmospheric prob-
lems involve the exchange of photons of a particular frequency between
one layer and another. But, by working with frequency as an independ-
ent variable, we have been obliged to expend a lot of effort because the
frequency spectrum of atmospheric gases is so complicated. If g can
replace v as an independent variable, an immense numerical simplifica-
tion is possible, in which thousands of frequency intervals may be
replaced by a few g intervals. The question is whether this is possible for
a nonhomogeneous atmospheric path?

Write (6.36) in the form appropriate to a vertical atmospheric path
in the discrete form of a sum over a number of atmospheric layers
(subscript /)

The hypothesis underlying the c-k method is that, following the
analogy between (6.35) and (6.37), we may write (6.37) in the form

From our discussion of Fig. 6.5, it is clear that the c-k method will be
very convenient, if justified. All that is then required for a numerical
evaluation of (6.38) is a g ~ k relationship for each atmospheric layer. It
is unimportant how this relationship comes about; line shapes and
temperature variations are important only to the degree that they
influence this relationship. In practice, it may be convenient to use
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analytic forms based upon the Lorentz profile, such as the Malkmus
model, (4.138), but it is not necessary to do so.

We now examine the conditions under which (6.38) may be valid.

(i) A scaling approximation is obeyed. Equation (6.22) can be written in
the discrete form, /cvy = /cv0^, where the subscript, 0, indicates one
particular layer, and (6.37) becomes

The equality between (6.35) and (6.36) holds for any value of m.
Consequently, (6.39) can be written in the form

where kv>0 and kg,0 apply to the same atmospheric layer. It is straightfor-
ward to show that kgj = kgi0fj, so that (6.40) is identical to (6.38); the c-k
method is correct whenever conditions for a scaling approximation occur,
in particular, for strong Lorentz lines and for Doppler lines (see § 6.2.2).

(ii) In the weak-line limit. From (4.123), (4.124), and (6.34), the
following relationship is true for any analytic function, G,

Expand (6.37) and (6.38) term by term,

The linear terms in (6.42) and (6.43) are the terms that occur in the
weak-line limit. According to (6.41) they are identical. For any weak-line
condition, the c-k method is exact.

Equation (6.41) also implies that some higher order terms in (6.42)



RADIATION CALCULATIONS IN A CLEAR ATMOSPHERE 235

and (6.43) are equal since, for example,

The validity of the c-k method extends over a wider range of conditions
than does the weak-line approximation.

(iii) Regular and Schnaidt models. For an isolated line, or for a regular
band, we shall show that

from which it follows that the suffices v and g can be interchanged and
that (6.37) and (6.38) are identical.

For the two situations shown in Fig. 6.6, kv is a mono tonic function
of v between a line center and 6/2 from the center; according to (4.126),
we may write

From (6.34)

FIG. 6.6. Regular and Schnaidt models. If the Schnaidt line is wholly within the spectral
interval Av,, or if many of the regular band lines occur in the same interval, an average
over the band is, apart from a multiplying factor, equivalent to an average over the range 0
to 6/2.
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FIG. 6.7. Heating rates for ozone (975-1175 cm 1). The solid line is the result of a
line-by-line calculation. The dotted line uses the c-k method. After Lacis and Oinas (1986).

where fcmin is the minimum value of kv. If the integrand in (6.47) has no
singularities,

and (6.45) is satisfied exactly (the sign is unimportant).
There is a question of singularities associated with zeros of dkv/dv

(one for the Schnaidt model and two for the regular model). The integral
may be carried as close to them as we please. Equation (6.48) applies
over all but a negligible part of the frequency domain.

The comparisons with line-by-line calculations in Figs. 6.7 and 6.8
show that the c-k method is remarkably accurate, as well as being
convenient for numerical methods. The agreement is particularly good
for ozone, which gave difficulties for the H-C-G approximation. The
region of disagreement above 60 km in Fig. 6.8 is concerned with a single
atmospheric level.

6.3. Topics concerning heating rates

We have discussed the steps necessary to calculate fluxes and heating
rates in an absorbing, stratified atmosphere. It is usual for such
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FIG. 6.8. Heating rates for carbon dioxide (500-1000 cm '). The solid line is the result of
a line-by-line calculation. The dotted line uses the c-k method. Only one data point is used
above 60km. After Lacis and Oinas (1986).

calculations to be made numerically, but with different approximations
depending upon the choice and resources of the investigator; comments
on some investigations are made in the Bibliography.

In the remainder of this section we shall discuss some special topics;
in § 6.4 we shall consider drastic approximations that change the nature
of the investigation.

6.3.1. The Chapman layer

Here we consider the transmission of solar radiation through an
atmosphere in which only absorption occurs. The thermal source function
can be neglected for wavelengths less than 3 or 4 (Um. There is, however,
an observable amount of scattering in the atmosphere, even for a clear
sky, and the scattering source function cannot be omitted without further
discussion.

We shall show in Chapter 9 that, in an atmosphere that both absorbs
and scatters, scattering may be neglected if the volume absorption
coefficient is not small compared to the volume scattering coefficient.
When the optical depth for absorption is larger than the optical depth for
scattering, it is usually satisfactory to treat the absorption alone. For two
important circumstances this condition is satisfied: absorption by ultra-
violet bands in the upper atmosphere and absorption by the near-infrared
bands of water vapor in the troposphere.

We consider the first component of the irradiance Stokes vector,
(2.115). The energy flux (negative) is the product of the irradiance
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(positive) and the direction cosine, £0 (negative). In terms of the spectral
intervals, Av,-, introduced in § 6.1.3,

We have introduced a change of sign by using the absolute value, |£0|,
because it is common practice to do so in the atmospheric literature (the
reader should be warned, however, that the literature is full of sign
inconsistencies). Equation (6.49) can be solved numerically but it is
important also to be familiar with a simple analytic approximation
introduced by Chapman in his early investigations of the ionosphere.

If we calculate the heating rate, (2.10) from (2.115),

Now assume that the molecular absorption coefficient is constant and that
the number density of absorbers follows a barometric law with scale
height, H,

The heating rate has a maximum value /imax at a level zmax where the
number density is «max. After some manipulation,

The v suffices are omitted. The larger the absorption coefficient and the
larger the zenith angle (the smaller |£0|) the smaller is nmax and the higher
is the Chapman layer.

Equation (6.52) is shown in graphical form in Fig. 6.9. The figure
illustrates the important qualitative result that monochromatic solar
radiation is deposited in a layer whose thickness is approximately two scale
heights, the height of which varies with the absorbing molecule and the
incidence angle of the solar beam. When a range of values of the
absorption coefficient is involved in the absorption, the heating function
will be a superimposition of a number of elementary Chapman layers and
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FIG. 6.9. A Chapman layer. In this example, zmax is far above the earth's surface.

will probably also exhibit a layered structure, but wider than that
illustrated in Fig. 6.9.

6.3.2. The Curtis matrix

The flux equations, (6.11) and (6.12), are stated in terms of continuous
variables but, for numerical applications, the integrals are replaced by
discrete sums. The number of vertical grid points must be kept to a
minimum and will usually be set by the requirements of some other
feature of the calculation, e.g., by the dynamic equations.

The Curtis matrix offers the best approach to this numerical
problem, paticularly when the mean free path of the radiation is small
compared to the grid spacing. It is a useful technique under other
circumstances but it is the only self-consistent treatment for opaque
atmospheres.
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The numerical difficulty with opaque atmospheres lies in the
cancellation between upward and downward flux components [(2.107)
and (2.108)] and the corresponding components of heating rates. Since
the upward and downward components have different boundary condi-
tions, they are often calculated independently and care must be taken to
give consistent treatments to the canceling terms.

The importance of this question is illustrated by (2.127), for the
opaque approximation. The heating rate is proportional to the curvature
of the Planck function. Much larger terms, proportional to the Planck
function (for fluxes) or its first derivative (for heating rates), must cancel
between the upward and downward integrals. In order to calculate the
second derivative to the Planck function, we must use data points both
above and below the level of calculation. If the two halves of the integral
are approximated independently, there is no guarantee that this informa-
tion will be correctly incorporated.

Even though the Curtis matrix provides the optimum solution to this
problem, it is not generally used in weather prediction or general
circulation models. Terrestrial calculations can obtain sufficient accuracy
from independent upward and downward flux calculations because the
most important contributions to radiative heating come from translucent
spectral regions. The reason will be further discussed in §6.4.1. For
atmospheres with no translucent regions, such as the atmospheres of
Venus or the outer planets, the Curtis matrix is irreplaceable.

We start from (2.111), with the altitude included explicitly

E2 does not exist over the entire range of both integrals in (6.55), but
does so if we define

for

and
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for

This statement bears the same relationship to (2.111) that (2.87) does to
(2.86).

We now introduce the assumption that /„ is constant over the ith
spectral interval, and we define a new function

Kt(z' , z) is proportional to the derivative of the flux transmission
(§6.1.2). With this definition, (6.55) becomes

Equation (6.59) displays the relationship between heating function and
source functions in the simplest possible form.

Any numerical approximation to an integral gives its value as a
linear function of the values of the integrand at a chosen set of points.
For the sake of discussion, we identify these points with the integers
(r, s), equal to — 5 logw[p(z)/p(0)], where p(0) is 1 bar. The two
integrals in (6.55) can now be combined into a single sum

Since pressure is the independent variable, the matrix elements A\r'5)

are functions of absorber densities and temperature only. Their values
depend on the chosen method of numerical integration, but they combine
consistently data from above and from below the reference level, and any
cancellation of terms is correctly taken into account when the A\r's) are
evaluated.

Table 6.1 illustrates the use of one column of a Curtis matrix. Any
source functions may be entered into the third column; the heating
function is then the sum of the fourth column. The entry marked "space"
is the sum of the matrix elements and can be shown to equal — K,-(z, °°).
Multiplied by //(2.4), it gives the contribution to the heating function
arising from the exchange of radiation between the reference level and
space. Since it has already been included in the calculation, it is assigned
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Table 6.1. Curtis' scheme for CO2 illustrated for
one level"
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° The reference level is r = 12. The argument of the source func-
tion is log,0[p(z)/p(0)].

zero source function. This radiation-to-space term is discussed in more
detail in §6.4.1.

The Curtis matrix separates the source function from the transmis-
sion in a heating calculation. To the degree that the matrix elements do
not change from one set of circumstances to another, it provides an
economical and accurate means of calculation, and it is often used for
carbon dioxide calculations in the middle atmosphere. Carbon dioxide is
usually assumed to have a fixed mixing ratio and gaseous densities can be
taken into account in the matrix coefficients, once and for all. Tempera-
ture influences the transmission, however, and were this effect large it
would require recalculation of the matrix elements for each different
distribution of temperature, in which case the value of the method would
be reduced. Fortunately, as is illustrated by the computations shown in
Fig. 6.10, the first-order effect of temperature is on the source function
rather than the transmission. For carbon dioxide, accurate interpolation
schemes have been developed based upon calculations for a few standard
distributions of atmospheric temperature.

6.3.3. Calculations for the middle atmosphere

The calculations in Fig. 6.10b use the two-level source function (2.75).
For carbon dioxide below 75km, this source function is effectively the
Planck function, but at higher levels it is given by (2.79), an incoherent
scattering source function, exhibiting no net heating. To examine this
situation further we consider (2.74), with the suffix i used to denote the

s

11

1 2 ) = r )

+2.0142 J ( - 2 . 0 )

-23.3593

14

J ( - 2 . 4 )



FIG. 6.10. Illustrating the effect of temperature on Curtis matrix elements, (a) Assumed temperatures (the height scale applies only to
the U.S. Standard Atmosphere). Solid line: U.S. Standard Atmosphere (1962). Broken line: arctic night, 70°N, 1 January, (b) Heating
rates. Solid line: source function, U.S. Standard Atmosphere; transmission, U.S. Standard Atmosphere. Broken line: source function,
U.S. Standard Atmosphere; transmission, arctic night. The heating rates closely reflect the variation of source function with height but
are little influenced by the effect of the large change of temperature on the transmission. After Williams (1971).
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(«, /) band,

If we substitute (2.74) into (6.60) we find

where H$ is the heating function that would result if the source function
were the Planck function at every level. H$ can be calculated, given the
temperature at each level, and the heating function can be obtained from
(6.61) by means of a matrix inversion. To do so requires a good first
approximation with the correct asymptotic properties at high levels. This
is provided by the radiation-to-space term

giving, as a first approximation,

Table 6.2 shows an early calculation of the heating function for
thermodynamic equilibrium, (H0), the first approximation, (Hi), and the
actual heating function, (H), for the 15 pm CO2 band. The interesting
comparisons are between the source function and the Planck function and
between the three heating functions. There are only small differences, as
expected, below 75 km. Above this level the two source functions, and
the heating functions derived from them, diverge rapidly. The heating
rate, H, tends to zero at high levels in marked contrast to H0. The first
approximation, HI, provides a remarkably good approximation at all
levels, although it is expected to do so only at the highest levels.

The two-level source function offers valuable insights into the effects
of the breakdown of thermodynamic equilibrium among vibrational
levels. Elaboration of the model to include other departures from
thermodynamic and thermochemical equilibrium leads gradually into a
different class of studies from those considered in this book, because
lower atmosphere studies (which we emphasize) usually take equilibrium
states for granted. The constraints imposed by equilibrium assumptions
are very powerful; chemical species are conserved, and only macroscopic
quantities such as the temperature, pressure, and the density need be
included in the thermal and dynamic equations.

At the opposite extreme are aeronomical studies that are specifically
concerned with ionized, excited, and disequilibrium atomic and molecu-
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Table 6.2. Middle atmosphere calculations for the 15 fim CO2
band"

togioP
(dyne cm 2)

3.0
2.8
2.6
2.4
2.2

2.0
1.8
1.6
1.4
1.2

1.0
0.8
0.6
0.4
0.2

0.0
-0.2
-0.4
-0.6
-0.8

-1.0
-1.2

z
(km)

49.2
52.9
56.5
60.1
63.4

66.6
69.8
72.7
75.6
78.5

81.3
84.2
87.1
90.1
93.1

96.3
99.6

103.0
106.5
110.1

114.1
118.4

JtB

329.1
317.3
291.5
252.0
208.4

169.4
139.0
121.6
111.6
105.2

101.5
99.9

101.5
106.4
113.1

121.9
132.9
144.5
159.2
185.7

227.3
299.0

-*//0

5.4
5.0
4.2
3.2
2.2

1.4
0.7
0.6
1.3
2.3

4.2
6.8

12.2
21.6
35.0

54.2
(73.8)
(94.1)

(116.9)
(149.0)

(194.5)
(268.0)

-*#!

5.4
5.0
4.2
3.2
2.2

1.4
0.7
0.6
1.3
2.2

3.7
5.2
7.0
7.9
7.3

6.1
(4.5)
(3.2)
(2.2)
(1.7)

(1.3)
(1.1)

-nH

5.4
5.0
4.2
3.2
2.2

1.4
0.7
0.8
2.0
3.8

5.9
7.3
7.7
7.2
6.0

4.7
(3.7)
(2.7)
(2.0)
(1.5)

(1.2)
(1.0)

it/

329.1
317.3
291.5
252.0
208.2

169.2
138.9
121.2
110.2
101.0

91.2
79.6
67.6
56.4
47.1

39.7
(31.4)
(24.9)
(19.0)
(15.1)

(11.8)
(9.1)

" B is the Planck function at 667 cm '. The units of B, H, and J are erg cm 2 s '
steradian ' wavenumber *. In these units, rcH = 1 corresponds to a temperature
change of approximately 1.1 K day . Values in parentheses depend upon doubtful
values of the CO2 concentration. The Planck functions are based upon tempera-
tures that differ somewhat from those in Fig. 6.10a. After Curtis and Goody
(1956).

lar species, the main cause of which is the absorption of high-energy
photons from the sun. Solar photons, particularly those with wavelengths
less than 2000 A, can dissociate molecules, ionize atoms and molecules,
and excite electronic, vibrational, and rotational levels to disequilibrium
distributions. In an equilibrium context, absorbed solar energy is
transformed entirely into translational energy, the state of which is
defined by the temperature. An aeronomical perspective considers
instead a collisionally interacting ensemble of electrons, neutral and
ionized atoms, and molecules in all modes of electronic, vibrational, and
rotational excitations, in a steady state with a flux of photons of many
wavelengths. The species possess translational energies that, for reasons
discussed in § 2.2.2, may be close to thermodynamic equilibrium at a
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kinetic temperature. Given this situation, the microscopic steady state
can be expressed in terms of the law of mass action applied to all possible
interactions, with temperature-dependent rate coefficients. Given the rate
coefficients, a specification of all possible reaction paths, and a large
enough computer, the steady-state equations can usually be solved.
There is, however, sufficient controversy about some of the data that
investigators often differ significantly, and the complexity of the calcula-
tion may make the origin of discrepancies hard to trace.

If we are concerned with a specific transition, such as the («, /)
transition in Fig. 2.4, the aeronomical calculations are required to
determine the populations of the "other levels" and hence the transitions
to the upper and lower levels, other than those exclusively between the
two. Given these transitions, we may then use a radiative transfer
formulation by denning the source function from (2.61). This source
function is defined in terms of the two-level populations; of these, the
upper is usually the most variable and there is some equivalence between
the source function and the upper state population.

A systematic discussion of all of these issues is not yet possible and
would raise many questions outside the scope of this book. Instead, we
briefly discuss a few results from a recent study of radiative transfer in the
v2 fundamental of CO2, including all upper-state transitions and isotopic
bands.

The interacting levels chosen for this particular study are shown in
Fig. 6.11. On the left are the v2 levels. The central region shows v3

levels, which may be excited by solar absorption. On the right are levels
of N2, O2, and H2O that are also involved only under daytime conditions.

Figure 6.12 shows the nighttime heating rate broken down into
ground-state, upper-state, and isotopic contributions. Below 70 km, all
transitions have the same source function (i.e., the same ratio of upper to
lower state populations). Above 70km, the source functions differ, but
only transitions connected with the ground state are important. The same
source function could be used for all levels without error.

Figure 6.12 illustrates a question of crucial importance for middle-
atmosphere calculations, namely their sensitivity to the presence of
atomic oxygen. When atomic oxygen is abundant it dominates collisional
excitation and deexcitation of the v2 band, probably because of its
chemical reactivity; in its absence the heating rate differs greatly (see the
two curves in Fig. 6.12, calculated with and without atomic oxygen). The
presence of atomic oxygen does not bring about thermal equilibrium,
however, and the heating rate depends critically on poorly known rate
coefficients.

The absorption of solar radiation can affect the v2 level populations
by transitions in v3 levels and levels of N2, O2, and H2O (the intensity of
solar radiation at 15 fim is, in itself, negligible). The net effect upon the
v2 transitions is, however, small. A more important question is whether



FIG. 6.11. Communicating states for CO2, v2 transitions. The solid lines indicate radiating transitions (they can
also be caused by collisions). The broken lines are nonradiating interactions with other excitations or species.
The isotope code is 16O12C16O, (626); 16O13C16O, (636); 16O12C18O, (628). The left side of the diagram shows
the v2 fundamental bands (Au2= ±1). The ground-state transition (010) <^ (000) is unique, but the upper-state
bands involve Fermi triplets. After Lopez-Puertas et al. (1986).
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FIG. 6.12. Heating rates for CO2, v2 transitions, nighttime conditions. The total heating
rate is broken down into contributions from ground-state, upper-state, and isotopic
transitions. A calculation of the ground-state contribution in the absence of atomic oxygen
is also shown. The differences between these results and those in Table 6.2, above 100 km,
are principally attributable to different temperatures used in the two calculations. After
Lopez-Puertas et al. (1986).

all absorbed solar radiation ends up as translational energy, as has been
tacitly assumed in previous chapters, or whether the energy is partially
reemitted from other excited energy levels? The latter turns out to be
very important. Figure 6.13 shows that, above 80km, most of the
radiation absorbed in the important 2.7 fim band (vt + v3) is reemitted in
v2 and v3 bands.

6.4. Approximate methods

6.4.1. Exchange of radiation with the boundaries

The heating rate expression, (6.59), exhibits the relationship between the
heating at a level, z, and the conditions at another level z'. From the
symmetry of this equation, the mutual effect of two atmospheric levels is
equal but opposite; if 7,(z) =/,(z'), their mutual effect is zero.

A contribution to each integral also comes from the exchange of
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FIG. 6.13. Redistribution of solar energy absorbed by CO2 at 2.7 fim. The 2.7 pm band is
the v, + v2 transition. The curves marked v2 and v3 show reemissions in these bands. The
net energy that goes into translation is shown by the heavy curve. After Lopez-Puertas et
al. (1986).

radiation between z and the boundaries. We may isolate these terms by
setting Jj(z') = Ji(z) at all levels in the atmosphere. From (6.56), (6.57),
and (6.59), with a thermal source function,

The first term on the right-hand side involves exchange of radiation with
the lower boundary. Its sign depends on the relationship between the
ground temperature and the temperature at z. If the atmosphere is colder
than the surface it will be positive. The second term on the right-hand
side involves exchange of radiation with space. It is always negative and
usually larger in absolute value than the first term, partly because Bt(z)
and Bf(d*) may not differ greatly and partly because Kt(z, co) exceeds
Ki(Q, z), except near to the ground. The importance of the term
involving K^z, °°) has already been mentioned in connection with the
calculation in Table 6.2. Equation (6.64) is an important approximation
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to the heating rate equations, which we may call the boundary exchange
approximation.

If we use the definitions (2.21), (6.7), (6.58), and a property of
exponential integrals (Appendix 6), the surface and space terms may be
separately written

These expressions can be extended to include the effect of an opaque
cloud. If the lower surface of the cloud is at a level zc > z, and if it emits
with a Planck function B,-(c), (6.66) becomes

Equation (6.66), used by itself, is the cooling-to-space approxima-
tion. As a simplification to the equation of transfer for the earth's
atmosphere, its importance cannot be overstated. Its accuracy in one
context has been demonstrated by the agreement between H and /fj in
Table 6.2. Comparisons with exact calculations for carbon dioxide,
ozone, and water vapor under a number of conditions are shown in Fig.
6.14. The agreement between exact and approximate calculations shown
in Table 6.2 and in Fig. 6.14, is imperfect but remarkably good in view of
the simplicity of the cooling-to-space approximation. The most serious
disagreement in Fig. 6.14 is near to the ground under mid-winter, arctic
conditions. This is hardly surprising, for there is a very large ground
inversion in the arctic winter. The data employed show a ground
temperature of —45.8°C and an 850mb temperature of — 19.5°C. In
addition, the lower atmosphere is unusually transparent and the surface
term (6.65) must be large; it was not, however, included in the
calculation.

The importance of radiative exchange with the boundaries can be
related to our discussion of transparent and opaque conditions in § 2.4.2.
It is assumed in the derivation of the opaque approximation that the
radiation field originates near the point of reference and that none comes
from the boundaries. Such opaque conditions are encountered for all
wavelengths in the lower atmosphere of Venus, for example, and the
approximations (6.65) and (6.66) are simply irrelevant. In many spectral
regions, the terrestrial atmosphere is also opaque. The conclusion to be
drawn from the computations shown in Fig. 6.14 is that it is the relatively



FIG. 6.14. Cooling to space compared to total cooling. The solid lines include all terms in
the heating equation; the dotted line is calculated from the approximation (6.66). The
vertical scale is —ln[p(z)/p(Q)]. (a) CO2 15 ftm band for a mid-latitude temperature profile,
(b) O3 9.6/j.m band for a tropical temperature profile, (c) H2O for a mid-latitude
temperature profile with wet and dry stratospheres, (d) H2O for a tropical temperature
profile, (e) H2O for a mid-winter, arctic temperature profile. For details of the temperature
and water vapor distributions, see Rodgers and Walshaw (1966).
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transparent regions of the spectrum that contribute most strongly to the
heating rate.

Consider the expressions (2.120) and (2.127), for heating under the
transparent and opaque approximations, respectively. From the form of
their dependence on the absorption coefficient, it is anticipated that
regions of intermediate opacity should contribute most strongly to the
heating. For the present discussion it is the opacity to the boundaries that
is important. Since atmospheric gases possess a wide range of absorption
coefficients there are always some spectral ranges for which the optical path
to the surface or to space is of the order of unity, and it is these regions that
contribute strongly to heating in the earth's atmosphere. The particular
wavelengths involved will change with the pressure, the temperature, and
the reference level, but, since the transparent approximation always has
the same form, the only variable will be a multiplying factor denning the
extent of the nearly transparent region of the spectrum; that, in
qualitative terms, is the significance of the derivative of the flux
transmission in the approximations (6.65), (6.66), and (6.67).

A quantitative comparison between radiation-to-space and the
transparent approximations is possible if we write (6.66) in monochroma-
tic form and allow the optical depth to tend to zero. From the definition
of the flux transmission, (6.7), and properties of the exponential integrals
(Appendix 6),

If we apply a small perturbation to the Planck function, (6.68) becomes
one-half of (2.120); the other half comes from the surface contribution,
(6.65).

The approximations (6.65) and (6.66) are of great importance for
hydrodynamic theories because they make it possible to express a
radiative heating perturbation linearly in terms of the local temperature
perturbation (Newtonian cooling, see also §2.4.2 and §10.1). This
relationship can be expressed in terms of a radiative relaxation time, frad,

where

p and cp are the density and specific heat at constant pressure of the air.
There is an interesting relationship between the Chapman layer,

(6.50), and the radiation-to-space approximation, (6.66). If, in (6.50),
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%ol is replaced by the diffusivity factor, if (6.66) is written in the form for
a single frequency, and if the source function is assumed to vary only
slowly over a scale height, the two equations are the same except for a
numerical factor. Radiation to space, from a single frequency, takes place
from a Chapman layer (Fig. 6.9). Radiation to space from a band will be
represented by the superimposition of a number of Chapman layers, that
will still form a layer, albeit broader than a single Chapman layer.
Equation (6.66) and its layered structure will appear again in § 6.5, when
we consider sampling functions for the inversion of satellite data.

6. 4. 2. Use of emissivities

We have discussed the computation of fluxes by means of line-by-line
calculations and the use of narrow-band transmission functions; we now
consider the approximations that must be made in order to perform the
entire frequency integration (or sum over spectral intervals) once and for
all. Before the ready availability of fast computers, there was little option
but to attempt such a simplification because it was impractical to calculate
fluxes independently for many spectral ranges. We shall show that the
spectrally integrated functions that must be employed are closely related
to laboratory measurements of gas emissivities. To the extent that good
laboratory data exist, and that they are in an appropriate form for the
calculation of fluxes, this avoids the need to go into the details of gaseous
absorption. With the help of empirical adjustments and compromise
methods, there is evidence that emissivity methods can be almost as
accurate as much more elaborate schemes.

We first define the gas emissivity, as measured in the laboratory, in
terms of quantities used in earlier sections. Consider a slab of gas,
amount m per unit area, at constant temperature (6) and constant
pressure (p), backed by a cold boundary. Equation (6.14) with 0* = 0
and Ji(z') = Bi(8) gives

The emissivity e(m, p, 6) is the total flux from the slab divided by the
black-body emission

Closely related to the emissivity is a second quantity,
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This quantity cannot be measured in the laboratory but is almost as well
determined as is the gas emissivity. The two quantities differ only in the
weighting functions B,(0) and dBi(6)/dd, which are similar functions of
frequency. If the flux transmissions are sufficiently well known to give
results in agreement with laboratory emissivity measurements, they
should allow us to determine e* with similar precision. It is, in fact, not a
drastic approximation to assume that the two quantities are the same.

We now restrict attention to water vapor because it has wide bands
extending over most of the thermal spectrum. Other gases have relatively
narrow bands, over which the Planck function can usually be regarded as
constant. The contribution of an isolated, narrow band to the gas
emissivity is simply the band area, si (§ 4.9), multiplied by BJB.

One form of the flux equations is obtained by integrating (6. 14) and
(6.15) by parts

These equations have been written in a form appropriate to a finite
discontinuity of temperature at the ground [6(0) 3= d*] and at an altitude,
z=H, above which there is no emission [0(z') = 0]. The second
statement is required for any numerical calculation with a finite grid but
there are alternatives to the first. The form of (6.74) and (6.75) has been
selected because it is convenient for extracting the radiation-to-
boundaries term.

In the spirit of the approximations discussed in § 6.2.2, we may write

We did not discuss an optimum value for 0 in § 6.2.2 but took it to have a
presassigned value, e.g., 6> = 273K. Better choices can be made. One is
to assume 6(z, z') = 6(z). Another is to use a weighted average
temperature for the path (z, z'), for example, a mass-weighted
temperature,
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To go further, it is now necessary to assume that the evaluations of
rhj and pf are dominated by the densities and pressures in the sums (6.26)
and (6.27) and, therefore, that they are the same for each spectral
interval, so that we may omit the suffix; essentially, and this is the crux of
the emissivity formulation, we must accept some degree of approximation
to the influence of temperature on flux transmission. This approximation
can be stated in the form of the requirement

Given (6.78), the sums of (6.74) and (6.75) over all spectral intervals
become

In (6.79) and (6.80), we have extended the definitions of e and e* to
include two different temperatures, one, 0P, in the argument of the
transmission, and the other, 9, in the argument of the Planck function.
This takes us away from the use of measured emissivities, but the
quantities involved can be calculated if the transmissions are known.

Many different approaches have been taken to (6.79) and (6.80).
Among them are the following:

1. Tabulate e and e* as functions of both 6V and 6. Depending upon
the method used to introduce a homogeneous path, this involves
either three or four independent variables. Very good results
have been reported from this approach.

2. The isothermal emissivity approximation assumes 6f = 6. This
assumption has been widely used in the construction of radiation
charts (§6.4.3).

3. Manual calculations are greatly simplified by assuming that e and
e* are equal to each other, and that both are independent of
temperature (these assumptions are mutually consistent).

It is important to realize that the presence of two functions, e and
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e*, can be avoided if we introduce thermal boundary layers to make a
steady transition between the temperatures of the atmosphere and its
boundaries. Provided that we maintain consistency, we may then write
0(0) = 0* and 6(H) = 0 so that terms involving e vanish from (6.79) and
(6.80). In this discussion, we allow a boundary discontinuity so that we
may obtain the boundary-exchange limit to these equations by allowing
6(z')^> 9(z), except at the boundaries. The integrals in (6.79) and (6.80)
then vanish and we are left with terms in e only.

The heating rate is

from which the boundary contribution can be obtained

Equation (6.82) corresponds to the sum over spectral intervals of
(6.65) and (6.66) and should, therefore, account for most of the flux
divergence. The difference between the total flux divergence calculated
from (6.79) and (6.80) and the boundary term (6.82) represents the
exchange with other atmospheric layers, which will normally be small.
But this small term is the only one for which we must use the
approximation, (6.78), inherent in the emissivity method. The correct
boundary terms (6.65) and (6.66) can be calculated without approxima-
tion. The exchange terms can be calculated from (6.81) and (6.82) using
consistent emissivity approximations; the quantity [(6.81) — (6.82) +
(6.65) + (6.66)] is then an expression for the heating rate that makes
optimum use of both emissivity and boundary exchange approximations.

Figure 6.15 shows errors for two emissivity calculations, assessed
against an "exact" calculation (a line-by-line calculation). The emissivity
calculations make consistent use of the same data: the first is the
isothermal emissivity approach; the second is the same, but modified with
an exact cooling-to-space term. The errors involved in the second
calculation are small.

6.4.3. Radiation Charts

Prior to the ready availability of large computers, radiation charts offered
the best way to calculate fluxes or heating rates. Although they are no
longer commonly used it is desirable that they be understood because
they provide a visualization of the process of flux calculation.



RADIATION CALCULATIONS IN A CLEAR ATMOSPHERE 257

FIG. 6.15. Errors in emissivity calculations with and without corrections for cooling-to-
space. The two lines give errors with respect to "exact" (line-by-line) calculations. The
broken line uses an isothermal emissivity procedure; the solid line corrects the isothermal
emissivity procedure with an exact radiation-to-space term. After Pels and Schwartzkopf
(1975).

With a graphical method, we may use continuous vertical variables
and it is possible to apply the continuous boundary conditions that
eliminate terms in e from (6.79) and (6.80). In addition, we make use of
isothermal emissivities and the scaling approximation (§ 6.2.2) for the
nonhomogeneous path. With these approximations (6.79) and (6.80)
become

The limits of the integral in (6.83) have been reversed to emphasize
the similarity to (6.84). Both expressions can evaluated from a graphical
device with orthogonal axes jtB and 1 - e*. The particular procedure
represented by (6.83) and (6.84) is employed in the Yamamoto chart,
shown in Fig. 6.16.
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FIG. 6.16. Yamamoto's flux chart. The light vertical lines are isotherms. The light, curved
lines are isopleths for water vapor with amounts in gem"2. The original chart has been
modified by omitting constructions used to evaluate the radiation flux from carbon dioxide;
as the chart stands it yields the water vapor flux, as if carbon dioxide were absent. (I)
Ascent curve for evaluating the downward flux at the surface. (II) Ascent curve for the
upward flux component at 6.7km. (Ill) Ascent curve for the downward flux component at
6.7 km. Ascent curves Ha, lib, Ilia, and Illb are modified to include the effect of cloud (see
text). After Yamamoto (1952).

Many other radiation charts have been proposed; all are transforms
of, or approximations to, (6.83) and (6.84) and they differ only in
convenience for specific problems. Flux divergence charts can also be
constructed on similar principles.

In order to use Yamamoto's chart it is desirable to add curvilinear
axes for d ( z ' ) and m(z, z'). The isotherms are vertical lines with
nonlinear spacing. The isopleths (ra = constant) are almost logarithmi-
cally spaced and with strong curvature only at low temperatures.

Relationships between 9 and m (ascent curves) must be evaluated
separately for the upward and downward radiation fluxes. For both, m is
zero for z = z' and increases monotonically as z' moves away from the
reference level, z. At the same time, #(z') will change; in the
troposphere it will generally increase as m increases for the upward flux
component (from the atmosphere below z) and decrease as m increases
for the downward flux component (from the atmosphere above z). In the
example shown in Fig. 6.18, the two limits are 6* = 283 K (the surface
temperature) for the upward flux and 6(H) = 223 K (the stratosphere
temperature) for the downward flux.
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Upward and downward branches of an ascent curve are illustrated in
Fig. 6.16. The reference level is at 6.7km, where the temperature is
243 K. Curve II is the ascent curve for the upward flux component. The
surface is reached at m = 1.34 g cm"2. Continuation of the ascent curve to
m = oo along the isotherm 8 = 283 K adds nothing to the integral, but
allows us to complete the contour. F+(z) is the area to the left of curve
II.

The ascent curve for F~ terminates in the stratosphere at 8(H) =
223 K, m(z, H} = 1.38gcirT2 (the kink is the tropopause). The ascent
curve must now be terminated with a boundary layer containing a
negligible amount of water vapor, bridging the gap between 223 K and
0 K. The ascent curve must follow the m = 1.38 g cm"2 isopleth to the 0 K
isotherm, as shown in the radiation chart. F~(z) is now the area to
the left of curve III. The net flux, F+ - F~, is the area between curves II
and III.

I is the ascent curve for the downward flux at the surface.
The effects of clouds (treated as black bodies) on the flux at 6.7 km

are indicated by the ascent curves Ha, lib, Ilia, and Illb. A cloud at
z = 5 km has an upper-surface temperature of 253 K; a cloud at 8.3 km
has a lower-surface temperature of 233 K. When a black surface is
encountered, the ascent curve goes to m = °o along the isotherm
corresponding to the surface temperature. A large influence of clouds
upon radiation fluxes is demonstrated.

6.5. The inverse problem for thermal radiation

6.5.1. The Kernel functions

(i) The retrieval equations. All methods of remote sensing from satel-
lites involve observations of electromagnetic radiation scattered by,
absorbed by, or emitted from the atmosphere. The most important single
application of remote sensing has been the recovery of atmospheric
temperature using the 15 jum and the 4.3 jum fundamentals of CO2 and
the 60 GHz line of molecular oxygen. Temperature retrieval provides an
exemplar for the entire field and we shall restrict our discussion to this
topic. Many other techniques of remote sensing are mentioned in
references in the Bibliography.

In the earlier sections of this chapter we discussed how to calculate
the radiation field, given data on atmospheric temperatures and absorber
concentrations. We are now concerned with the inverse problem: Given
the radiation field, how well may we infer atmospheric parameters from
this information? The theory of this class of problem is retrieval theory;
atmospheric remote sensing is only one of a number of fields for which
retrieval theory is an important topic.

An observed satellite spectrum was shown in Figs. 6.1 and 6.2. This
is not the usual way soundings are made; it is more common to record a
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number a discrete spectral intervals but the continuous data in these
figures are instructive. The spectral resolution of 5 cm"1 smooths out
most of the fine structure in the carbon dioxide and ozone bands and
some in the water vapor bands. For the most part, remote sensing
involves spectral averages over many lines, although in the microwave
spectrum monochromatic observations are possible and have some
advantages.

Both oxygen and carbon dioxide have almost constant mixing ratios
at all levels in the lower and middle atmosphere. Since this is where
outgoing thermal radiation originates, the intensities shown in Figs. 6.1
and 6.2 can be expressed as a functional of the atmospheric tempera-
tures, the radiation frequency, and the zenith angle of observation. These
latter two are the variables available as a basis for performing tempera-
ture inversions.

In terms of Fig. 6.2, the problem is one of finding a temperature
distribution that is most consistent with the observed frequency spectrum
of CO2. That such a distribution probably exists is demonstrated by the
agreement between observations and the theoretical spectrum shown in
that figure. But there are a limited number of completely independent
pieces of information in the spectrum and this, together with the
existence of instrument noise, gives rise to problems of uniqueness,
optimum solutions, and their errors.

The fundamental retrieval equation for monochromatic radiation is
(2.98), with T = 0. For a thermal source function, this may be written

where the transmission is

For an optically thick atmosphere, the first term on the right-hand
side of (6.85) may be neglected. If not, we may formally regard it as a
quantity to be evaluated approximately from measurements made in
some other, transparent spectral region, where it will dominate; we may
then define a transformed intensity

However we may choose to handle this problem, we may adopt as the
retrieval equation
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In practice, coordinate transformations, z— *p or z— » Inp, where p is the
air pressure, are often used.

For a finite spectral interval («'), narrow compared to variations of
the Planck function, the expression consistent with the treatment of
§6.1.3 is

Equations (6.88) and (6.89) are Fredholm integral equations of the
first kind. The left-hand side, /,, and the kernel function, 37](z, f)/3z,
are known functions. The unknown function to be solved for, B,[d(z)], is
under the integral sign. The mathematical difficulties encountered in
solving these equations will be discussed in §6.5.3. Since the difficulties
are rooted in the nature of the physics of the problem, no amount of
mathematical ingenuity alone can circumvent them. Instead, we must
give up the conventional concept of a rigorous and unique solution and
be content with a nonunique solution, estimated from the equations,
within the errors of measurement, and consistent with our a priori
knowledge of the solution. We shall discuss these questions qualitatively
at first, followed by a convergent numerical technique that derives from a
physical view of the problem (§6.5.2) and, finally, in a more general
framework provided by linear theories (§ 6.5.3).

Table 6.3 summarizes the most useful spectral features for remote
sensing in the earth's atmosphere. As we have discussed, temperature
retrievals require an absorber whose concentation is known. Nitrogen
cannot be used because it has no convenient spectral signature. Oxygen
has absorption lines in the microwave region, while CO2 has two strong
fundamentals in the infrared spectrum. The abundance of species may be
determined if we know the temperature. Water vapor soundings are of
great importance for meteorology and may be made using the 6.3 ̂ m or
the rotation band beyond 10 um. Ozone is important for the thermal
balance of the middle atmosphere. Remote sounding of ozone densities
can be performed in the infrared (9.6 |um), the visible, and the ultraviolet
spectrum. For the visible and ultraviolet spectrum a scattering source
function is necessary. Historically, ozone retrievals in the ultraviolet
spectrum were the first remote soundings made in the earth's atmosphere
(see the Bibliography). There are many trace constituents, such as N2O,
CH4, CFC13, and CF2C12, some of which have a fairly simply chemistry
that can confidently be computed. These species may be important in
their own right but they are also of increasing importance as tracers of
atmospheric motions.
(ii) Temperature retrieval. The characteristics of atmospheric inversions
(or retrievals) are determined by the properties of the kernel function;
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Table 6.3. Spectral features for remote sensing

Gas

02

CO2

H2O

03

03

N2O

CH4

CC12F2

CC13F

Surface

Wavelength

5 mm

15 and 4.3 pm

6.3 /im, 10fim-°o

9.6 fim

UV, visible

7.8 ̂ m

1.1 urn

9.1, 8.7, 10.9 ̂ m

9.2, 11.8 urn

~10, -3.8 ,um
windows

Transition

Magnetic dipole

Vibration— rotation

Vibration— rotation

Vibration— rotation

Electronic

Vibration-rotation

Vibration-rotation

Vibration-rotation

Vibration-rotation

Continua

Parameter

Atmospheric
temperature

Atmospheric
temperature

Gas density

Gas density

Gas density

Gas density,
tracer

Gas density,
tracer

Gas density,
tracer

Gas density,
tracer

Surface
temperature

Source: After Rodgers (1971).

for (6.88) and (6.89), the kernel function is

where K stands for Kt or for Kv and T for Tt or Tv. If Kt(z, £) were a
Dirac 6-function, d(z — z,_g), the solution to the integral equation would
be

Given that z, g varies with i and §, intensities measured at different zenith
angles, or in different spectral intervals, lead directly to temperatures at
known atmospheric levels.

Quantitative ideas about temperature retrievals can make use of the
fact that real kernel functions usually have a single maximum; for both
transparent paths (7J = 1) and for opaque paths (7^ = 0) transmission is
constant and the kernel function is zero. For monochromatic radiation,
the height dependence of the kernel function, based upon (6.86), is
identical to the height dependence of solar heating given by (6.50). The
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Chapman function, Fig. 6.9, is, with suitable normalization, the kernel
function for a gas with constant mixing ratio, constant atmospheric
temperature, and an absorption coefficient independent of pressure. The
shapes of realistic monochromatic kernel functions are influenced by
temperature and pressure as well as by the vertical variation of mixing
ratio; nevertheless, the Chapman function displays many of the important
characteristics of a realistic kernel function. We have already discussed,
in connection with Fig. 6.9, how the peak of the Chapman function
moves when the absorption coefficient and the zenith angle vary. If we
look at the Chapman function as an approximation to a 6-function, we
may now interpret Fig. 6.2. Radiation in the center of the 15 fim band
originates from a level of unit optical depth for which the temperature is
220 K. This is the highest level from which temperature information is
available. The lowest level is the earth's surface, with a temperature close
to 295 K.

Intermediate points on the flank of the 15 jitm band can be used to
construct the temperature profile between the 220 K and 295 K tempera-
ture levels. If the temperature changes monotonically with height, this
solution should be unique. However, with a kernel function as wide as
the Chapman function, the vertical resolution cannot be much better than
one scale height, and details on a smaller scale will be unrecoverable,
regardless of the retrieval technique.

For real gases and finite spectral intervals, there are offsetting
influences on the kernel function. A finite spectral interval leads to a
broadening of the kernel function because the effect is to average over a
number of Chapman functions. Pressure broadening, on the other hand,
can lead to a narrowing of the kernel function. If absorption were
proportional to the pressure, the scaled gas density for use with a scaling
approximation would vary as the pressure squared with half the atmos-
pheric scale height, and the kernel function would narrow by the same
factor. Temperature can also affect the kernel function and can lead to
either broadening or narrowing. The net effect on kernel functions for
the 4.3 jUm CO2 band, as shown in Fig. 6.17, is to give a breadth close to
that of a Chapman function.

(iii) Angular scans. The peak of the Chapman function moves upward or
downward as § decreases or increases (i.e., as zenith angle increases or
decreases). This change in the kernel function can be used as a basis for
temperature retrievals.

For mechanical reasons, it is not easy to perform angular scans from
satellites, but the variation of emergent intensity with zenith angle has
played an important role in studies of the sun and the planets. Emission
from these extended objects appears, to a terrestrial observer, to be
approximately symmetrical with respect to the center of the disc (£ = 1),
with a uniform change toward the limb (£ = 0), called limb darkening or
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FIG. 6.17. Kernel functions for the 4.3 f*m (2349cm ') CO2 band. Values of v, for the
spectral intervals used are indicated against each curve. After Chahine (1977a).

limb brightening. The implication is that the vertical profile of tempera-
ture is more or less uniform over the disc, and that we are observing the
effect of changing zenith angle,

where r is the distance from the center and rn is the limb radius.
Early measurements on the planet Venus gave limb darkening in the

10 ;um atmospheric window of the form
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The following solution may be confirmed by substitution in (6.88),

For uniform limb darkening, B must increase as r increases, i.e., as
height decreases; radiation originates from a region in which temperature
decreases with height. For limb brightening, on the other hand, radiation
originates from a region of increasing temperature with height.

This is not a sophisticated inversion. The series (6.93) and (6.94)
must be terminated after a few terms to avoid numerical instabilities,
negative intensities, and other undesirable features. The solution assumes
monochromatic absorption, which is probably incorrect, but it illustrates
in simple terms the principle of inversions by means of angular scans.

(iv) Limb scans. A collimated radiometer or spectrometer, viewing
horizontally, receives radiation from a path for which the closest
approach to the surface is the tangent height, ZT. Equations (6.88) and
(6.89) are valid expressions for the intensity, except that the path is
doubled and there is no contribution from below the tangent height; the
kernel function is strongly influenced by the curved geometry. Figure
6.18 shows limb kernel functions for a wide spectral interval (585—
705 cm"1) in the 15 fim CO2 band. The kernel functions for tangent

FIG. 6.18. Limb kernel functions. Calculations are for an infinitely narrow instrumental
field of view. The lowest level for each curve is the tangent height. The spectral region
585-705 cm"1 takes in most of the 15 ̂ m CO2 hand. After Gille and House (1971).
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heights of 30 km or more display the advantage of this technique. The
optical paths are all small and the kernel functions are similar in shape,
with most of the contribution coming from within 3 km of the tangent
height. With such a narrow kernel function the inversion is a relatively
simple task. We may assume the source function to be constant where the
kernel function is significant and the only information required for the
retrieval is, from the integration of (6.89), the absorption over the entire
tangent path. This path can be very long. For a well-mixed layer of scale
height H = 10 km and a planet of radius R = 6000 km, the effective
absorption path length is (2nRH)l/2 = 630 km. Limb scans are sensitive to
very small concentrations of absorber in the middle atmosphere.

Vertical profiles are obtained by scanning the radiometer over a very
small angle, giving a continuous range of tangent heights. The kernel
functions for tangent heights less than 20 km tend toward those from
nadir viewing instruments, and are less useful for retrievals. If the
temperature is known, limb scans yield absorptions, from which densities
can be calculated. If mixing ratios are approximately constant over a
scale height, the density inversion is essentially trivial.

Limb scans present many advantages for middle atmosphere obser-
vations, both for temperature and for gaseous density soundings. There
are, however, some compensating disadvantages in the difficulties in-
volved in construction of the instrument, and of the poor horizontal
resolution of the measurements.

6.5.2. A "physical" approach to retrieval

Out of a number of inversion techniques in common use, we shall discuss
results from only one, that of Chahine. This technique derives from the
qualitative discussion in §6.5.1(i), in which we treated a typical kernel
function as an approximation to a Dirac <5-function. Because of this
simple idea, the method is easy to visualize and to extend to new
circumstances, and it converges rapidly to useful solutions. It does not
have a rigorous basis, however, and it must be tested numerically for
each set of differing circumstances.

Equation (6.89) may be written

Equation (6.95) may be regarded as a mapping transformation relating
9(z) as a function of z to 7, as a function of v,. Chahine's method is based
on the observation that K/(z) usually has a maximum at z = z,, the
neighborhood of which gives rise to most of the contribution to the
integral in (6.95). The discrete relationship v,-—>z,- is assumed to be the
mapping from v to z; the task is to find the mapping from /, to $(z,).
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It is approximately true that

where C is an unknown constant. This approximation can be justified by
the use of the mean value theorem or may be accepted as physically
obvious from the dominance of the kernel function near z,.

We start from an intelligent guess, 0(0)(z,), for the temperatures.
From the same reasoning that led to (6.96), we find,

In general, 40) ¥=It because 0(0)(z,) is not the exact solution. However, we
may use the ratio of (6.96) to (6.97) to obtain an improved estimate,

In (6.98), 40) was obtained from the integral in (6.97). Given 0(1), a
new integral can be performed and the same procedure used to obtain an
improved approximation. This procedure usually converges rapidly upon
what we may hope to be the correct solution. A continuous profile is
obtained from a suitable interpolation scheme. The success of this last
step depends on the smoothness of the profile; the method is incapable of
resolving details on a scale less than the separation of the z,, but this
limitation is shared, in some degree, by all inversion techniques.

Chahine's method could, in principle, fail to converge or converge to
the wrong solution. Failure to converge will be obvious and the solution
can be rejected. Only numerical experiments can show whether the
method converges to correct solutions. An example of a numerical
retrieval experiment is shown in Fig. 6.19. The kernel functions
employed are those for the 4.3 /urn CO2 band, shown in Fig. 6.17. From
the continuous "exact profile" in Fig. 6.19, discrete intensities are
calculated. A random "error" is added to simulate measurement errors
and Chahine's method is used to recover the discrete temperatures
shown. The results are strikingly good. On the basis of numerical
experiments with 30 temperature profiles, it appeared that a 2%
measurement error should give rise to a 1 K error in the retrieved
temperature.



FIG. 6.19. Temperature retrieval using Chahine's method. This is a theoretical investiga-
tion. Outgoing intensities were calculated for the kernel functions shown in Fig. 6.17 and
the continuous temperature distribution shown by the broken line. These intensities were
modified by random errors with amplitudes between 4.8 and 9.6%. The mean difference
between retrievals with and without the errors was 1.5 K. The numbers against each curve
represent the v, (cm"1) that map onto the zt, given by the altitudes of the plotted points
After Chahine (1977a).

268
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The foregoing discussion was appropriate to a clear sky, but there
are often clouds in the field of view of a satellite radiometer. Chahine's
method can be readily extended to a partly cloudy field. No assumption is
made as to the nature of the clouds, which may be thin or thick, black or
gray, and at any level.

We assume that there is a fixed difference in intensity, G(v, p},
between cloudy and cloud-free sections of the field; p is the pressure of
the cloud surface, introduced so that we may consider multiple cloud
layers. Consider first a single cloud layer. If N^(p) is the fraction of
clouds at the level, p, in a field designated by the subscript (1), we may
write the clear column intensity in the form

where the tilde indicates the measured intensity. We do not know
G(v, p) but we can eliminate it if we may assume that a neighboring field
(subscript 2) differs from the first only in the cloud fraction N2(p),

We further assume that the clear column intensities are the same in the
two fields,

Eliminating Ilt I2, and G from (6.99), (6.100), and (6.101),

where

For this procedure to be useful, the cloud fractions in the two fields must
differ, the more the better.

Since NI and N2 should not depend upon the frequency, rj can be
determined from measurements at another frequency v',

9(p) and q can now be obtained simultaneously from a coupled iterative
scheme involving the two frequencies and the results from two fields.

The method outlined above can be extended to deal with multiple
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FIG. 6.20. Temperature retrieval in the presence of cloud. This is a theoretical reconstruc-
tion. The broken line is the assumed temperature profile. Intensities were calculated for 10
frequencies in the 4.3 jura band of CO2 and for three in the 15 fim band. Four percent
random errors were added to the calculated intensities. The fractional cloud amounts in
four fields of view (FOV) are given. The method described in the text was used to obtain
the clear column intensities and retrieved temperatures are shown by the points. Average
errors in the temperature retrieval are 0.80K. After Chahine (1977b).

cloud layers. A numerical illustration of the success of the method using
synthetic data is shown in Fig. 6.20. The temperature field is retrieved in
the presence of four cloud decks. Data were employed from four
adjacent fields, and from both the 4.3 pm and the 15 jum CO2 bands.

Despite these striking results, it must again be emphasized that
success with Chahine's method is not guaranteed. The rapidity of the
convergence depends greatly on the sharpness of the maximum of the
kernel function; without a single maximum in the kernel function, the
method may not converge or converge to an incorrect solution.

6.5.3. Linear analysis

Chahine's method introduces no approximations into the retrieval
equation, (6.89). If we accept two reasonable approximations, however,
the equation can be linearized and the retrieval problem can be posed in
a more rigorous framework. The required approximations are that the
Planck function be independent of the frequency and that the kernel
function be independent of temperature. The former is satisfactory for
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most single bands but not for the water vapor bands nor for coupled
schemes that use information from more than one band; the latter
approximation is less acceptable, but may be improved by iterating the
solution with improved temperatures in the calculation of the
transmission.

Unlike Chahine's method, a linear solution gives a definite result,
but that result may be physically unacceptable; Chahine's method is more
constrained and there is less possibility of unreasonable solutions. Both
approaches have strong supporters.

(i) Noise amplification. Measurements are made at discrete frequencies
YI, v2, . . . vh . . . VM. We assume 5, = B and that the kernel functions,
Ki(z) = dTj(z)/dz, are independent of temperature. We then have the
linear relation,

It is convenient to express B(z) in a series,

where bt(z) are suitable basis functions, such as polynomials, harmonic
functions, or empirical functions, and *, are unknown coefficients.
Substituting (6.106) into (6.105) we have

Inversion of (6.107) yields xh

by (6.108). Substituting (6.108) into (6.106), we have
Wwhere a is the inverse of the matrix a , the elements of which are given
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where

is the contribution function. Dj(z) weighs the contribution of the specific
intensity yt to the solution B(z). From (6.105) and (6.110), the
contribution function must satisfy the relation

where 6,y is the Kronecker d -function.
In subsequent sections we will consider what needs to be done to

avoid the possibility that Atj is ill conditioned. An error e, in the
measurement y,- will introduce an error D,(z)e, into the solution. If the
measurements, y,-, have associated noise variances a?, the noise variance
o2

B of the solution B(z) is

If of = a2, we have

where

is a noise amplification factor.
As an illustration of the behavior of the linear equations we consider

a numerical example that simulates the essential features of remote
temperature soundings. Eight idealized kernel functions are shown in
Fig. 6.21. With polynomials as the basis functions, bt(z), we may
compute the contribution functions, D,(z) using (6.108) and (6.110). The
results are displayed in Fig. 6.22. According to (6.113), these contribu-
tion functions imply very high sensitivity of the solution to noise.

It can be argued that the choice of polynomials as basis functions is
arbitrary and that a more judicious choice would lead to less noise
amplification. This is certainly the case. Formally, it is possible to ask
what representation of B(z) would lead to a minimum in the average
value of the noise amplification factor, subject to the constraint (6.112).



FIG. 6.21. Idealized kernel functions. The kernel functions are Chapman functions, based
upon In(pressure) as the independent variable. After Houghton et al. (1984).

FIG. 6.22. Contribution functions. The contribution functions are computed for the kernel
functions shown in Fig. 6.21 with polynomials as basis functions (curve 1 is the uppermost
kernel function). The scale of the abscissa corresponds to the middle section. For the upper
and lower sections the amplitude of the contribution function is 1000. After Houghton et al
(1984).
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The minimum contribution functions can be shown to be

where L,^1 is the inverse of the matrix

Optimum contribution functions for the kernel functions in Fig. 6.21
are shown in Fig. 6.23. They are a marked improvement over the results
shown in Fig. 6.22, but the noise sensitivity is still poor. An error of e in
an intensity measurement can lead to an error as large as 15 e in the
retrieved Planck function.
(ii) A least-squares solution. It is possible to reduce the noise amplifica-
tion factor by choosing a representation of the source function with fewer
terms than the number of measurements. In place of (6.106) we write

FIG. 6.23. Optimum contribution functions. The kernel functions in Fig. 6.21 are used
with (6.116) and (6.117). After Houghton ct al. (1984).
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We observe the convention that latin indices run from 1 to M (the
number of measurements) while greek indices run from 1 to N (the
number of terms in the solution).

Using (6.105), we obtain the analog of (6.107)

Equation (6.119) cannot be inverted directly because there are more
equations than there are unknowns, i.e., the system is overdetermined.
The standard approach to such problems is the method of least squares.
The difference between the left-hand side and the right-hand side of
(6.119) is

The least-squares solution minimizes the quantity

where summation over repeated indices is implied.
A2 is always positive or zero; in the latter case the solution is exact.

The minimum condition on (6.121) is obtained by setting the partial
derivatives of A2 with respect to xa (a = 1, 2, . . . N) equal to zero. After
some straightforward algebra, we find

or, in vector notation,

where x = (xl, x2, . . . XN), y = ( y1; y2, . . . yM), A is an M X N matrix
whose elements are given by (6.108), and AT, the transpose of A, is an
N XM matrix. Equation (6.123) contains the same number of equations
as unknowns and can be inverted for x

This is the least-squares solution or the Penrose pseudoinverse. It is the
same as (6.108) for N - M. With a suitable choice of N and of b,(z), the
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least-squares solution can be much less sensitive to noise than are direct
solutions.

(iii) Smooth solutions. The discussion in the previous two sections
illustrates the difficulties in obtaining a good temperature inversion from
the measurements alone. Additional information, based upon a priori
knowledge, is, however, available and should be incorporated into the
solution. For example, the basis functions, b,(2)> may be chosen to be
empirical orthogonal functions of the climatological data. The technique
of Twomey concentrates, instead, upon the smoothness of the tempera-
ture field; whether or not the temperature is smooth in the sense that is
imposed on the solution, the use made of the temperature field in
numerical weather forecasts does involve a smoothness assumption.
Twomey defines "smoothness" in a number of different ways; we
consider one of them.

We construct a quantity corresponding to the second derivative of
the unknown function, x,

A squared form of this "derivative" can be shown to be xTHx, where

H is a symmetric N x N matrix; XT is the transpose of x. One way to
ensure that the solution is smooth is to require that this quadratic
quantity be a minimum. This condition can be combined with (6.121).
Consider the functional

where y is an arbitrary smoothing constant. Requiring the functional to
be stationary simultaneously solves (6.119) in the least-squares sense and
guarantees that the solution is smooth. The derivation of the solution
follows that from (6.121) to (6.124) and the result is

For y = 0, (6.128) reduces to (6.124). The smoothness requirement
(y =£0) makes the matrix (ATA + yH) more diagonally dominant.
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(iv) Statistical solutions. Both the measured intensities and the derived
source functions are members of statistical ensembles; statistical methods
are, therefore, appropriate to their study. In addition, information theory
may be used with the statistical data to give objective measures of the
value of different protocols.

The coefficients xa in (6.107) are members of an ensemble whose
mean value, xa, is the climatological mean for the specified observational
period. If each xa is normally distributed with a variance a2 (for
simplicity, we do not distinguish between different o2

a), the joint a priori
probability density of N values of xa is

The measured quantities, yt (i = 1 to M}, are subject to errors e,,
also assumed to be normally distributed about a zero mean, with a single
variance s2. The joint probability density of the errors is

Since y,- is subject to the error eit we must replace (6.107) by

The probability density for the measurement y is now the joint
probability of x and e. After some algebra this can be shown to be
proportional to exp[— F(x)/2], where

We now seek the distribution, xp, that leads to the most probable
distribution of y, i.e., that for which (6.132) is a minimum. The result can
be shown to be

where I is the identity matrix. In the limit s2/a2-»0, this solution is the
same as that obtained using Twomey's method (6.128), with H =
(s2/oz)I.

Many of the eigenvalues of ATA may be very small. For example,
the eigenvalue is identically zero for redundant measurements. This is the
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reason for the unsatisfactory noise amplification of the least-squares
solution, since small eigenvalues may occur in the denominator of
(6.124). The term (s2/a2) in (6.133) suppresses the influence of these
small eigenvalues. This term serves the same function as does Twomey's
empirical smoothing term, but is derived from a more secure foundation
of climatological and measurement statistics.

We now turn to the information content of the measurements. For a
statistical variable xf with a probability density P(XJ), the amount of
information is usually measured by the change in the entropy,

resulting from the performance of the measurement. The entropy may be
regarded as the number of bits required to represent the number of
distinct measurements that could have been made leading to the same Xj.
For a gaussian distribution of a single variable [a single term in (6.129)],

The definition of entropy can be extended to many normally
distributed variables,

For the most probable solution, (6.133), the increase in information over
that which previously existed in the climatological data can be shown to
be

where Aa is an eigenvalue of ATA.
From (6.137), we see that the information content is not necessarily

increased by having a large number of measurements or discrete levels
for the inverted data. Increasing the size of the matrix A, and thereby
increasing the number of eigenvalues, may have little influence upon the
information available if many of the eigenvalues, Aa, are small. In fact,
given the measurement errors and the kernel functions, it is not possible
to increase the information available over that given by the few largest
eigenvalues. We may regard Chahine's method of inversion as an
ingenious way to construct A such that most of the information available
can be easily extracted. By choosing to invert the unknown quantities at
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the maxima of the kernel functions, we are guaranteed a diagonally
dominant matrix. The problem of redundancy is avoided and that of the
mixing of unknowns is minimized. The solution is, therefore, stable.
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Chou, M-D., and Arking, A., 1980, "Computation of infrared cooling rates in
the water vapor bands," /. Atmos. Sci., 37, 855.

Rodgers, C. D., and Walshaw, C. D., 1966, "The computation of infra-red
cooling rate in planetary atmospheres," Quart. J. Roy. Meteorol. Soc. 92, 67.

6.2.3. The H-C-G approximation
The H-C-G approximation was first proposed in a little known paper by

van de Hulst, H. C., 1945, "Theory of absorption lines in the atmosphere of the
Earth," Ann. Astrophys. 8, 1.

van de Hulst obtained his result both by the method given here and also by
means of an ingenious expansion of the fourier transform of the optical depth.
The fourier technique was used to give higher order approximations by

Goody, R. M., 1964, "The transmission of radiation through an inhomogeneous
atmosphere," /. Atmos. Sci. 21, 575.

The H-C-G approximation was later proposed for an isothermal atmos-
phere by

Curtis, A. R., 1952, "Contribution to a discussion of 'A statistical model for
water vapour absorption', by R. M. Goody," Quart. J. Roy. Meteorol. Soc. 78,
638.

The appropriate form for a nonisothermal atmosphere was given by

Godson, W. L., 1953, "The evaluation of infra-red radiative fluxes due to
atmospheric water vapour," Quart. J. Roy. Meteorol. Soc. 79, 367.

Errors arising from the H-C-G approximation have been studied by Goody
(1964) and by

Walshaw, C. D., and Rodgers, C. D., 1963, "The effect of the Curtis-Godson
approximation on the accuracy of radiative heating-rate calculations," Quart. J.
Roy. Meteorol. Soc., 89, 122.
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Approximations of higher order than H-C-G have been proposed by Goody
(1964) and by

Armstrong, B. H., 1968, "Analysis of the Curtis-Godson approximation and
radiation transmission through inhomogeneous atmospheres," J. Atmos. Sci. 25,
312.

Yamamoto, G., Aida, M., and Yamamoto, S., 1972, "Improved Curtis-Godson
approximation in a non-homogeneous atmosphere," /. Atmos. Sci. 29, 1150.

Kurian, J. G., Mitra, S. K., and Ueyoshi, K., 1978, "Heating due to the 9.6,um
ozone band in an inhomogeneous atmosphere—a new approximation," J. Quant.
Spectrosc. Radial. Transfer 20, 245.

Lindquist, G. H., and Simmons, F. S., 1972, "A band model formulation for very
nonuniform paths," /. Quant. Spectrosc. Radiat. Transfer 12, 807.

Young, S. J., 1975, "Band model formulation for inhomogeneous optical paths,"
/. Quant. Spectrosc. Radiat. Transfer 15, 483.

The final two papers are concerned with an engineering problem involving
very large temperature differences along an absorbing path.

The paper by Armstrong (1968) derives the H-C-G approximation from a
first-order Gaussian quadrature to a pressure integral. This method, and van de
Hulst's fourier transform technique, can both be taken to higher orders of
approximation.

The calculations in Fig. 6.4 are from

Ellingson, R. G., and Gille, J. C., 1978, "An infrared radiative transfer model.
Part 1: Model description and comparison of observations with calculations," /.
Atmos. Sci. 35, 523.

6.2.4. Correlated k
Although this method has been used for some years by the Institute of Space
Studies, New York, very few details have been published. Brief mention is to be
found in

Hansen, J., Russell, G. G., Rind, D., Stone, P., Lacis, A., Lebedeff, S., Ruedy,
R., and Travis, L., 1983, "Efficient three-dimensional models for global climate
studies: Models I and II," Man. Wea. Rev. Ill, 609.

A more detailed treatment by Lacis and Oinas (1986, § 4.8) was available in
draft form when Chapter 6 was revised.

6.3. Topics concerning heating rates
For many years the following paper provided a standard against which to test
approximations to radiation algorithms:

Rodgers, C. D., and Walshaw, C. D., 1966, "The computation of infra-red
cooling rate in planetary atmospheres," Quart. J. Roy. Meteorol. Soc. 92, 67.
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A recent survey of six major numerical models is by

Stephens, G. L., 1984, "The parameterization of radiation for numerical weather
prediction and climate models," Man. Wea. Rev. 112, 826.

This paper has an extensive and valuable bibliography.

6.3.1. The Chapman layer
The theory was first advanced to explain the nature of ionized layers in the
atmosphere in

Chapman, S., 1939, "The atmospheric height distribution of band-absorbed solar
radiation," Proc. Phys. Soc. London 51, 93.

6.3.2. The Curtis matrix
First used by

Curtis, A. R., 1956, "The computation of radiative heating rates in the
atmosphere," Proc. Roy. Soc. London Ser. A 236, 156.

The following papers develop a perturbation scheme for the effect of
temperature upon the diffuse transmission of radiation by carbon dioxide between
given pressure levels, from which the Curtis matrix elements can be obtained:

Pels, S. B., and Schwarzkopf, M. D., 1981, "An efficient, accurate algorithm for
calculating CO2 15 um band cooling rates," /. Geophys. Res. 86, 1205.

Schwarzkopf, M. D., and Pels, S. B., 1985, "Improvements to the algorithm for
computing CO2 transmissivities and cooling rates," /. Geophys. Res. 90, 10,541.

The calculations in Fig. 6.10 are by Williams (1971) (§ 2.2).

6.3.3. Calculations for the middle atmosphere
The data in Table 6.2 are from Curtis and Goody (1956), (§ 2.2). The remainder
of this section follows the work of Lopez-Puertas et al. (1986), (§ 2.2), and

Lopez-Puertas, M., Rodrigo, R., Lopez-Moreno, J. J., and Taylor, F. W.,
1986, "A non-LTE radiative transfer model for infrared bands in the middle
atmosphere. II. CO2 (2.7,um and 4.3jum) and water vapour (6.3jum) and N2(l)
and O2(l) vibrational levels," J. Atmos. Terr. Phys. 48, 749.

Other important papers are by Dickinson (1984), Kuhn and London (1969)
(see § 2.2 for both), and

Kutepov, A. A. and Shved, G. M., 1978, "Radiative transfer in the 15 um CO2

band with non-LTE in the earth's atmosphere," Atmos. Ocean. Phys. 14, 28.

Houghton, J. T., 1969, "Absorption and emission by carbon-dioxide in the
mesosphere," Quart. J. Roy. Meteorol. Soc. 95, 1.

Wehrbein, W. M., and Leovy, C. B., 1983, "An accurate radiative heating and
cooling algorithm for use in a dynamical model of the middle atmosphere," /.
Atmos. ScL, 39, 1532.

Apruzese, J. P., Strobel, D. F., and Schoeberl, M. R., 1984, "Parameterization
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of IR cooling in a middle atmosphere dynamics model, 2, non-LTE radiative
transfer and globally averaged temperature of the mesosphere and lower
thermosphere," J. Geophys. Res. 89, 4917.

6.4. Approximate methods
6.4.1. Exchange of radiation with the boundaries
The first use of radiation-to-space as an approximation was by Curtis (1956),
(§6.3.2). The importance of the approximation for all atmospheric gases and at
all atmospheric levels was demonstrated by Rodgers and Walshaw (1966),
(§6.2.2).

The following paper draws a formal distinction between exchange of
radiation with the boundaries and exchange with other layers of the atmosphere:

Green, J. S. A., 1967, "Division of radiative streams into internal transfer and
cooling to space," Quart. J. Roy. Meteorol. Soc. 93, 371.

An assessment of the importance of both boundary exchange terms has been
made by

Pels, S. B., and Schwarzkopf, M. D., 1975, "The simplified exchange approxima-
tion: A new method for radiative transfer calculations," /. Atmos. Sci. 32, 1475.

Boundary exchange approximations can be improved, without a serious
increase in complexity, by employing a trapezoidal approximation for the integral
over atmospheric layers:

Gierasch, P., and Goody, R., 1967, "An approximate calculation of radiative
heating and radiative equilibrium in the martian atmosphere," Planet. Space Sci.
15, 1465.

6.4.2. Use of emissivities
Before the advent of large computers all investigators made some use of
emissitivies. Elsasser (1943), (§4.5), tabulates e*. Improved data were given by

Elsasser, W. M., and Culbertson, M. F., 1961, Atmospheric radiation tables.
Boston, Mass.: American Meteorological Society, Meteorological Monographs 4,
No. 23.

A careful study of the relationship between e, e*, and empirically derived
emissitivities is by

Rodgers, C. D., 1967, "The use of emissivity in atmospheric radiation calcula-
tions," Quart. J. Roy. Meteorol. Soc. 93, 43.

Different calculations of e and e* are compared by

Sasamori, T., 1986, "The radiative cooling calculation for application to general
circulation experiments," J. Appl. Meteorol. 7, 721.

Tabulations of emissivities for water vapor, carbon dioxide, and ozone,
together with overlap corrections, are given by

Staley, D. O., and Jurica, G. M., 1970, "Flux emissivity tables for water vapor,
carbon dioxide and ozone," /. Appl. Meteorol. 9, 365.



284 ATMOSPHERIC RADIATION

For the use of emissivities in numerical radiation models, see Stephens
(1984), (§ 6.3). One example is

Ramanathan, V., Pitcher, E. J., Malone, R. C., and Blackmon, M. C., 1983,
"The response of a spectral general circulation model to refinements in radiative
processes,"/. Atmos. Sci., 40, 605.

The importance of nonisothermal emissivities is discussed by

Ramanathan, V., and Downey, P., 1986, "A non-isothermal emissivity and
absorptivity formulation for water vapor," /. Geophys. Res. 91, 8649.

The data for Fig. 6.15 are from Pels and Schwarzkopf (1975), (§ 6.4.1).

6.4.3. Radiation charts
The first radiation chart was proposed by

Miigge, R., and Moller, F., 1932, "Zur Berechnung von Strahlungsstromen und
Temperaturanderungen in Atmospharen von beliebigem Aufbau," Z. Geophys.
8,53.

It was put into a practical form by

Moller, F., 1943, Das Strahlungsdiagram. Reichsampt fur Wetterdienst
(Luftwaffe).

The first chart available in the English language was by Elsasser (1943),
(§ 4.3). Details of an earlier soviet chart, prepared in 1940 by Dimitriev, are not
available.

Yamamoto's chart is described by

Yamamoto, G., 1952, "On a radiation chart," Sci. Rep. Tohoku Univ., Ser. 5,
Geophys. 4(1), 9.

An example of a heating rate chart is

Yamamoto, G., and Onishi, G., 1953, "A chart for the calculation of radiative
temperature changes," Sci. Rep. Tohoku Univ., Ser. 5, Geophys. 4(3), 108.

The simplest chart on record (the Kew chart) uses emissivities that are
independent of temperature and, consequently, has linear isopleths:

Robinson, G. D., 1950, "Notes on the measurement and estimation of atmos-
pheric radiation," Quart. J. Roy. Meteorol. Soc. 76, 37.

6.5. The inverse problem for thermal radiation

6.5.1. Kernel functions
The fundamental ideas in remote sensing were developed by solar astronomers
during the 1940s and 1950s. Conclusions were drawn from solar limb darkening
and, when the absorption spectrum of negative hydrogen became known, spectral
methods could also be used. The solar problem is more difficult than that
discussed in this chapter because absorber concentrations are not known a priori,
and must be calculated self-consistently, and also because thermodynamic
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equilibrium cannot be assumed. For references, see any book on solar physics,

e.g.,

Athay, R. G., 1976, The Solar Chromosphere and Corona. Dordrecht: Reidel.

The first systematic attempts to perform remote sensing in the earth's
atmosphere were for the purpose of obtaining the vertical distribution of ozone
from twilight scattering measurements (Gotz's Umkehr method). For references,
see

Goody, R. M., 1954, The physics of the stratosphere. London: Cambridge
University Press.

The first attempts to perform inversions on the atmospheric thermal
spectrum were also for the purpose of measuring atmospheric ozone:

Epstein, E. S., Osterberg, C., and Adel, A., 1956, "A new method for the
determination of the vertical distribution of atmospheric ozone from a ground
station," J. Meteorol. 13, 319.

Goody, R. M., and Roach, W. T., 1956, "The determination of the vertical
distribution of ozone from emission spectra," Quart. J. Roy. Meteorol. Soc. 82,
217.

Walshaw, C. D., 1960, "The accuracy of determination of the vertical distribution
of atmospheric ozone from emission spectrophotometry in the 1043 cm"1 band at
high resolution," Quart. J. R. Meteorol. Soc. 86, 519.

At the same time, discussion began on the possibility of remote soundings
from satellites. The following book contains two important articles, the first by S.
F. Singer on ozone soundings in the ultraviolet spectrum and the second by J. I.
F. King on the use of angular scans in the thermal spectrum:

van Allen, J. A. (Ed.), 1956, Scientific uses of earth satellites. Ann Arbor:
University of Michigan Press.

The first proposal to use the spectral properties of the 15 ,um CO2 band, the
method that forms the basis of most meteorological soundings, was by

Kaplan, L. D., 1959, "Inference of atmospheric structure from remote radiation
measurements," J. Opt. Soc. Am. 49, 1004.

The following three books treat the subject of remote sensing in detail:

Houghton, J. T., Taylor, F. W., and Rodgers, C. D., 1984, Remote sounding of
atmospheres. London: Cambridge University Press.

Deepak, A. (Ed.), 1977, Inversion methods in remote atmospheric sounding. New
York: Academic Press.

Twomey, S., 1977, Introduction to the mathematics of inversion in remote sensing
and indirect measurements. Amsterdam: Elsevier.
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Table 6.3 follows

Rodgers, C. D., 1971, "Some theoretical aspects of remote sounding in the
earth's atmosphere," /. Quant. Spectrosc. Radial. Transfer 11, 767.

The discussion of angular scans on Venus is from

Goody, R., 1965, "The structure of the Venus cloud veil," J. Geophys. Res. 70,
5471.

Limb scans are discussed by

Gille, J. C., and Bailey, P. L., 1977, "Inversion of infrared limb emission
measurements for temperature and trace gas concentrations," Deepak (1977),
§6.5.1, 195.

Gille, J. C., and House, F. B., 1971, "On the inversion of limb radiance
measurements: I. Temperature and thickness," /. Atmos. Sci. 28, 1427.

6.5.2. A "physical" approach to retrieval
Chahine's method was developed in a series of articles

Chahine, M. T., 1968, "Determination of the temperature profile in an
atmosphere from its outgoing radiance," J. Opt. Soc. Am. 58, 1634.

, 1970, "Inverse problems in radiative transfer: Determination of atmos-
pheric parameters," /. Atmos. Sci. 27, 960.

, 1972, "A general relaxation method for inverse solution of the full
radiative transfer equation," J. Atmos. Sci. 29, 741

Barcilon, V., 1975, "On Chahine's relaxation method for the radiative transfer
equation," J. Atmos. Sci. 32, 1626.

Figures 6.17 and 6.19 are from

Chahine, M. T., 1977a, "Generalization of the relaxation method for the inverse
solution of nonlinear and linear transfer equations," Deepak (1977), § 6.5.1, 67.

The theory of remote sensing in the presence of clouds was developed by M.
T. Chahine in another series of papers:

Chahine, M. T., 1977b, "Remote sounding of cloudy atmospheres. II. Multiple
cloud formations," J. Atmos. Sci. 34, 744.

Aumann, H. H., and Chahine, M. T., 1976, "An infrared multidetector
spectrometer for remote sensing of temperature profiles in the presence of
clouds," Appl. Opt. 15, 2091.

Chahine, M. T., Aumann, H. H., and Taylor, F. W., 1977, "Remote sounding of
cloudy atmospheres. III. Experimental verifications," /. Atmos. Sci. 34, 758.

6.5.3. Linear analysis
The presentation closely follows a review article by

Rodgers, C. D., 1975, "Retrieval of atmospheric temperature and composition
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from remote measurements of thermal radiation," Rev. Geophys. Space Phys. 14,
609.

Figures 6.21, 6.22, and 6.23 are all from Houghton et al. (1984), § 6.5.1.
The method of least squares for ill-conditioned matrices is discussed by

Penrose, R., 1955, "A generalized inverse for matrices," Proc. Camb. Phil. Soc.
51, 406.

Twomey's method was developed by

Twomey, S., 1963, "On the numerical solution of Fredholm integral equations of
the first kind by the inversion of the linear system produced by quadrature," J.
Assoc. Comput. Much. 10, 97.

, 1965, "The application of numerical filtering to the solution of integral
equations encountered in indirect sensing measurements," J. Franklin Inst. 279,
95.

Tikhonov, A. N., 1963, "On the solution of incorrectly stated problems and a
method of regularization," Dokl. Akad. Nauk. USSR 15, 501 (p. 1035 in the
English edition).

See also Twomey's book, § 6.5.1.
The concept and the implemenation of the statistical method are by

Westwater, E. R., and Strand, O. N., 1968, "Statistical information content of
radiation measurements used in indirect sensing," /. Atmos. Sci. 25, 750.

Turchin, V. F., and Nozik, V. Z., 1969, "Statistical regularization of the solution
of incorrectly posed problems," Atmos. Ocean. Phys. 5, 14.

Rodgers, C. D., 1970, "Remote sounding of the atmospheric temperature profiles
in the presence of cloud," Quart. J. Roy. Meteorol. Soc. 96, 654.

DeLuisi, J. J., and Mateer, C. L., 1971, "On the application of the optimum
statistical inversion technique to the evaluation of Umkehr observations," /.
Appl. Meteorol. 10, 328.

See also, Rodgers (1977), § 6.5.1.
The application of information theory to measurements, as described in this

section, follows

Wiener, N., 1948, Cybernetics. Cambridge, Mass.: MIT Press.
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EXTINCTION BY MOLECULES AND DROPLETS

7.1. The problem in terms of the electromagnetic theory

The formal theory developed in Chapter 2 assumed the Stokes para-
meters to be additive. The sufficient condition for additivity is that the
radiation fluxes in the atmosphere shall have no phase coherence.
Thermal emission from independently excited molecules is necessarily
incoherent with respect to phase. Atmospheric scattering centers are
widely and randomly spaced, and they can be treated as independent and
incoherent scatterers. The situation differs, however, when we consider
details of the scattering process within a single particle, and in order to
derive the extinction coefficient and the scattering matrix (see § 2.1.3) we
must make use of a theoretical framework that involves the phase
explicitly.

The problem of the interaction between an electromagnetic wave
and a dielectric particle can be precisely formulated using Maxwell's
equations. For a plane wave and a spherical particle, Mie's theory
provides a complete solution (see §7.6). But the general problem is
complicated and our understanding is rendered more difficult by precon-
ceptions based on the approximations of elementary optics. This chapter
provides a brief survey of the important results and the underlying
concepts.

The geometry of the problem is illustrated in Fig. 7.1. An isolated
particle is irradiated by an incident, plane electromagnetic wave. The
plane wave preserves its character only if it propagates through a
homogeneous medium; the presence of the scattering particle, with
electric and magnetic properties differing from those of the surrounding
medium, distorts the wave front. The disturbance has two aspects: first,
the plane wave is diminished in amplitude; second, at distances from the
particle that are large compared with the wavelength and particle size,
there is an additional, outward-traveling spherical wave. The energy
carried by this spherical wave is the scattered energy; the total energy lost
by the plane wave corresponds to extinction; the difference is the
absorption.

The properties of the spherical wave in one particular direction (the
line of sight) will be considered. This direction can be specified by the
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FIG. 7.1. Definition of scattering angle 6.

scattering angle 6 (see Fig. 7.1) in a plane containing both the incident
and scattered wave normals (the plane of reference), and the azimuth
angle <j) between the plane of reference and a plane fixed in space. For
spherical particles, from symmetry considerations, scattering will be
independent of the azimuth angle.

An electromagnetic wave is characterized by electric and magnetic
vectors E and H that form an orthogonal set with the direction of
propagation of the wave (i.e., the direction of the wave normal). In any
one medium |E| and |H| are related and, since we will examine the
properties of the radiation in air surrounding a scattering particle, we
may, without loss of generality, speak in terms of the electric vector only.
The direction of polarization is defined as the direction of the electric
vector.

Let I and r be two unit vectors that form an orthogonal set with the
direction of propagation, respectively, parallel to and perpendicular to
the plane of reference.l Note that this defines two directions that depend
upon the direction of the line of sight and are not fixed in space. If £w and
£w are the complex amplitudes of the parallel and perpendicular

/ and r are the last letters of the words paralle/ and perpendicular, respectively.
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components then

and, for a general (elliptically polarized) wave,

where 6 is the phase difference between the two components and s is the
distance along the direction of propagation. A varies from medium to
medium and may be written A0/m, where m is the refractive index.2 In
general m is complex,

where n and n' are both real. From (7.3) and (7.2), the complex index
leads to an attenuation factor e~

2""'s'^} in the amplitude of the electric
vector.

The energy carried by an electromagnetic wave is measured by the
Poynting vector, directed along the wave normal, whose magnitude is

Since it is irrelevant to our discussion, no constant of proportionality is
included in (7.4), thus avoiding questions associated with the choice of
electromagnetic units.

It is a straightforward matter to show that there is a vector
N(2\ N(3), Nw) corresponding to (/, Q, U, V) dw, with components

where the asterisk denotes the complex conjugate.
If we apply these definitions to the elliptically polarized wave (7.2),

The tilde denotes the optical properties of the particle. Properties of the entire medium, consisting
of small particles in space or suspended in a gas, will he designated m, n, and n'.
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we obtain

If the direction of polarization happens to be r or 1, then |jEw| or
|£w| is zero, and W(3) = W(4) = 0. Natural or unpolarized light can be
looked upon as an incoherent sum of two beams polarized at right angles.
We may, for convenience, take these two beams to be polarized in the I
and r directions. If there is no phase coherence, the Stokes parameters
add, and W(2), W<3), and Nm, are, therefore, all zero for natural light.

7.2. Scattering functions

Let the components of the electric vector be £$' and ^0° f°r the incident
wave and Ew and £(r) for the scattered spherical wave. For distances (d),
large compared with the wavelength and the particle size, £(/) and E(r)

fall off as d~*. Moreover, the scattered wave will possess a phase
difference 2m(d — s)/h from the incident wave (see Fig. 7.1). When
writing a formal relationship between incident and scattered amplitudes it
is convenient to take out a factor

According to Maxwell's equations, a linear relationship exists
between scattered and incident amplitudes. We can write in matrix form

unusual numbering of elements follows established convention. For
homogeneous, spherical scatterers (the only case that we will consider in
detail) S3 and S4 vanish. Our discussion will therefore be limited to S2 and
Si; for spherical scatterers these are functions of scattering angle (9)
only.

A particularly important role is played in the theory by the matrix
coefficients for 9 = 0. Consider a thin slab of material of thickness ds
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containing N scattering centers per unit volume, and a wave incident
from one side. The electric field on the far side can be found by
compounding the incident wave with all scattered waves, taking due
account of the phase. Consider a scalar wave, with a one-component
scattering matrix. The resultant amplitude E'0 can be shown to be

Looking at the problem from a different viewpoint we may now suppose
the slab to have a complex refractive index m = n — in'. The amplitude
can be written (7.2)

since ds is infinitesimally small. Comparing (7.8), (7.9), and (7.3), we find

where 3£ and $ denote real and imaginary components. Relations similar
to (7.10) and (7.11) can be shown to hold for vector waves, but, in the
case of spherical particles, it is clear from symmetry considerations that
for 0 = 0 both states of polarization will be similarly affected, and
therefore Si(0) = S2(0). Equations (7.10) and (7.11), therefore, also apply
to spherical particles. Since intensity is proportional to the square of the
amplitude, it involves an attenuating factor e~4jin' ds'^° . From the defini-
tion of extinction coefficient, (2.15), it follows that

Since the theory of Chapter 2 is given in terms of the phase matrix,
we must show how this quantity can be related to the amplitude
scattering matrix. From (7.5) and (7.7) we can derive a linear relation
between scattered and incident Poynting vectors. Extracting a factor
(K0l2nd)2, we may write

where the sum convention for repeated indices is employed. Equation
(7.13) can be compared with (2.29) and (2.30) if we bear in mind that
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(7.13) applies to a single particle only. Make the transformation

and take account of the spherical nature of the scattered wave by writing
da>d = d"2. There results

where sn is the scattering coefficient per particle (see Appendix 2).
The scattering coefficient can be evaluated independently by apply-

ing the first law of thermodynamics to the intensity. Let us suppose that
the incident light is unpolarized {(Nff\ N$\ A^4)) = 0} and inquire about
the scattered intensity (Nw). From (7.13)

Now integrate over the surface of a sphere of radius d to discover the
total scattered component of the Poynting vector. The fraction scattered
by a single particle can be equated to sn, and hence

sn has the dimensions of an area, and is conveniently made
nondimensional by dividing by the cross-sectional area of the particle
(jtr2, where r = radius of the particle). The result is a scattering efficiency
factor

where x-2nr/X0. Similarly, from (7.12) and (7.11), we can define an
extinction efficiency factor

The difference,

is the absorption efficiency factor.
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Now let

and let 6 be the phase difference between S1 and 52 (both complex in the
general case). Substituting (7.7) in (7.5), with S3 = S4 = 0, we find

The transformation matrix is, therefore,

7.3. Rayleigh's solution for small particles

One confusing aspect of scattering theory is that a complete formal
solution (Mie's theory) exists for homogeneous spheres, which sometimes
seems to differ from approximate solutions applicable in certain limiting
cases. Examples of such limiting cases are ray optics, Huygens' principle,
Fresnel's theory of diffraction, and Rayleigh's theory of molecular
scattering. Mie's theory contains all the diverse phenomena of classical
optics, and is difficult to comprehend in simple terms. Despite its
generality, the complete theory cannot always replace simple asymptotic
forms. We first consider the limit of very small particles.

The phase change along the radius of a sphere is 2na |m|/A0. If this
is small, i.e., if \mx\«l, then the impressed electric field is constant
throughout the particle and equal to E0. If the polarizability tensor is a,
then the induced dipole moment is, by definition,
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We now assume that the scattered radiation corresponds to that
emitted by the dipole. This neglects interactions between the dipole and
the radiation field, with consequences that appear later. The classical
solution by Hertz for the wave propagating in space for d » A0 is

where y is the angle between M and the direction of observation, and we
have replaced the operator 31 dt by 2niv = 2mc/k0.

Rayleigh's original theory assumed a scalar polarizability (a), which
is correct for a sphere. Then M and E0 are parallel and the cross terms in
the scattering matrix are zero. Since r is, by definition, perpendicular to
the plane of reference it follows that this component corresponds to
viewing the induced dipole sideways (see Fig. 7.2) and sin y(r) = 1. For
parallel polarization on the other hand

Combining (7.23) and (7.24)

giving a scattering matrix

FIG. 7.2. Dipole scattering. By definition, 1, s, and the line of sight all lie in the plane of
reference. From the definition of scattering angle, 0 + y(/) = |JT and y(r) = |?r.
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and a transformation matrix

An alternative form of the transformation matrix, often quoted in the
literature, is

This is the appropriate form if (I(l), 7(r), U, V) are chosen in place of
(/, Q, U, V) as Stokes parameters. The apparent advantage of simplicity
is illusory, but it makes more obvious the complete perpendicular
polarization of scattered radiation for 8 = \n.

In Fig. 7.3, the results are shown graphically on a scattering diagram.
Incidence is from left to right. The length of a radius vector at the
scattering angle 8 from the central point gives the scattered intensity. The
scattering depends upon the polarization of the incident radiation. Three
possibilities are shown: for polarization in the r or / directions, and for
natural or unpolarized radiation. Note that the scale is not the same in
each case. According to (7.27), the only relevant matrix element for
natural radiation (Q = U=V = Q) is (2;r/A0)

6 | of 1(1 + cos2 8), while,
according to (7.28), the matrix elements for parallel and perpendicular
polarization are (2jr/A0)

6 |a|2cos2 8 and (2jr/A0)
6 \a\2, respectively. The

factor 1/2 means that, for natural light, half of the intensity is to be
attributed to each state of polarization.

FIG. 7.3. Scattering diagram for small particles. Solid line = /(r) + 7W; broken line =
dotted line = /(/).
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Using a prime to denote scattering of natural light

This is all that is required for primary scattering of solar radiation,
multiplying (7.29) by da> and integrating over all solid angles

The scalar phase function for incident unpolarized radiation is, therefore,

According to (7.26) S is imaginary, and according to (7.11) m is real.
Eliminating 5i(0) or S2(0) between (7.10) and (7.26), we find

(7

and, for m close to unity, as for a gas

This is the usual form of Rayleigh's inverse fourth-power law of
scattering. Its important application is to molecular scattering. Only
spherical top molecules have a scalar polarizability, however, and a
small, but significant, correction term must therefore be included for
nonspherical molecules. Let the tensor components of a, as referred to
the three principal axes, be a^, a2, and a3. We define

Since in meteorological problems we are interested in the combined
effect of many randomly oriented particles, it is permissible to take
suitable averages of the transformation matrix. The matrix F'tj (7.28)
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becomes

The most important difference between (7.28) and (7.35) lies in the
polarization at a scattering angle 6 = \n. For incident natural light
(#> = /JP), (7.35) gives

where A is the depolarization factor, a quantity that lends itself relatively
easily to measurement in the laboratory.

For natural light (but not for other polarizations), the scattering
coefficient and phase function can be specified in terms of A alone,

Depolarization factors of atmospheric constituents are as follows:
A(O2) = 0.054, A(N2) = 0.0305, A(CO2) = 0.0805, and A(A) = 0, with an
effective mean of A (air) = 0.0350. At s.t.p. (7.37) and (7.38) give

The refractive index of air depends upon wavelength, varying from
m - 1 = 3.4187 x 10~4 at A0 = 0.2 ̂ m and 0°C to m - 1 = 2.8757 x 10~4 at
A0 = 20 fim and 0°C. This gives rise to slight departures from a simple
inverse fourth-power law for the wavelength dependence of the Rayleigh
scattering coefficient.

In the following sections we will discuss the properties of single
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particles rather than an assembly of particles and the equations must be
rewritten in terms of the optical properties of the particle itself. For a
sphere, the Lorentz relation states

where r is the drop radius, and m is complex and not necessarily close to
unity. There results from (7.30)

From (7.18) and (7.26) we have

Equation (7.43) is paradoxical. It implies that if a is real, Qe = 0. But we
expect <2e = <2S if a is real and, from (7.42), both must be nonzero.
Radiation reaction is neglected in the Rayleigh theory and because of this
the phase of the scattered wave is incorrect; as a result only the absorbed
component is properly accounted for, and it can be shown that (7.43)
gives <2a — the absorption efficiency — and not the extinction efficiency.

Under certain conditions small elements of a large particle of
arbitrary shape can be treated as independent Rayleigh scatterers whose
amplitudes can be summed on the scattered wave front, provided due
account is taken of the phase, van de Hulst calls this the Rayleigh-Gans
approximation and shows the appropriate conditions to be

These conditions can be satisfied in the X-ray spectrum, but not in the
visible spectrum for any circumstances encountered in the earth's
atmosphere. While the approximation has no applications, it is interest-
ing to note some of the properties of Rayleigh-Gans scattering by a
sphere, because they are typical of large-particle scattering in general.

First, the scattering efficiency factor tends to (7.42) in the limit
x « I , as is expected. For x»l, however, we have
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In place of Rayleigh's fourth-power law, scattering now varies as A^2,
i.e., the scattering is "whiter."

Second, owing to destructive interference, the phase matrix can have
zeros for certain values of the scattering angle. The scattering diagram
can therefore exhibit lobes.

Third, for 9 = 0 the scattering is the same as for the Rayleigh case
but, for all other scattering angles, the intensity is diminished. The
scattering has a strongly forward component, and the scattering
coefficient is less than predicted by the Rayleigh theory.

In subsequent sections we will find all three properties to be typical
of scattering by large, dielectric spheres in contrast to Rayleigh's theory.

7.4. Large particles as |m|-»l

The condition x »1 does not, by itself, uniquely define an important
asymptotic form of the exact electromagnetic theory. Clearly, there some
connection with the laws of refraction and reflection of geometric optics,
since these are usually effective for large surfaces. Also, the concept of a
ray becomes meaningful. If the particle is very much larger than the first
few Fresnel zones, then we may look upon a ray as localized in these
central zones. A complete wave description then ceases to be necessary,
although this does not mean that the wave character (i.e., the properties
of amplitude and phase) can be neglected.

The concept of localization enables us to make a useful distinction
between diffraction on the one hand and reflection and refraction on the
other. In the context of a complete electromagnetic theory the distinction
is not meaningful, all phenomena being aspects of a single solution of
Maxwell's equations. However, if we recognize the localization principle,
we can refer to the shadow area of an obstacle and consider rays outside
it to be diffracted while those inside are reflected or refracted. The
distinction is, however, fraught with paradoxes. For example, for
absorbing spheres with moderate values of x, Qa can exceed unity. Now,
since absorption can occur only if a photon actually strikes the scattering
particle, we appear to have the situation whereby more quanta strike the
particle than pass through the shadow area. But the complete theory is so
complex that despite such difficulties we cannot pass over the opportunity
of utilizing the large body of optical theory based on the localization
principle, even if some risk of confusion is entailed.

We know from theory and observation that the diffracted light can be
accounted for approximately on the basis of Fresnel's theory. Narrow
diffraction rings are observed, which become narrower as the particle size
is increased. On a scattering diagram, these diffraction rings appear as
strong, forward lobes, but they will not necessarily be detectable
experimentally. If the scattered light is viewed with an instrument of
large angular dispersive power, the diffraction rings will be resolved and
distinguished from the incident beam. In this case a measurement of the



EXTINCTION BY MOLECULES AND DROPLETS 301

extinction will include the diffraction term. If, however, we picture a
small water drop close to, and in front of a pyrheliometer or other
non-image-forming device, it is obvious that the diffracted radiation
cannot be distinguished from undisturbed incident radiation, and the
Fresnel diffraction should not be included in an extinction computation
(see § 2.4.7).

A relationship between the two components is provided by Babinet's
principle. Consider a beam of light falling on an opaque obstacle of
shadow area G, and also consider the complementary experiment
whereby all of the wave front is obscured except the area G. The
amplitudes in the two cases must add up to the original, undisturbed
wave front. It follows that the diffracted wave amplitudes are equal and
opposite in the two cases; since intensity is proportional to the square of
the amplitude, diffracted intensities are, therefore, the same in the two
experiments. Now, in the case of the opening G in the otherwise opaque
wave front, we know that all of the radiation is disturbed by diffraction to
a greater or lesser extent. The same, therefore, applies to the opaque
obstacle of area G, which must therefore have a diffraction cross section
G. Since it also has a cross section G for interception of photons in the
shadow zone, it follows that the total cross section is 2G. As has already
been shown, the result of an experiment with limited angular resolution
may be to measure G only, but the expected theoretical result is <2e~*2
as x —» o°.

We shall now state the familiar theory of Fresnel diffraction at an
aperture (Fig. 7.4) in the formal language adopted in this chapter, so that
it can later be applied to the problem of a sphere with refractive index

FIG. 7.4. Fresnel diffraction.
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(m) close to unity. Fresnel diffraction involves no phase change and no
change in the state of polarization. It follows that Sl — 52 and that both
are real quantities. Moreover, foreseeing the result that diffraction effects
are important only for small scattering angles, and considering distances
large compared to the aperture, we may regard each element of the
aperture G as an isotropic scatterer, contributing an intensity propor-
tional only to its area. The only factor distinguishing the scattering in
different directions is that caused by destructive interference. Thus,

A little consideration shows that D(9, </>) is a function only of Q, <j), and
G and not of d. For real 5(0), (7.18) can be written

and we have already shown that Qe = 2 for a large obstacle. By Babinet's
principle, the ratio (7.46) is the same for obstacle and aperture;
consequently for an obstacle

If G is circular, as for a sphere, (7.46) can be evaluated in terms of
Bessel functions of integral order

Let us briefly review the meaning of (7.49). It refers to the
diffraction component of the amplitude scattering matrix (Sd) for a very
large sphere, whether opaque or transparent. To obtain the complete
matrix it must be added (taking account of phase) to the matrix resulting
from rays in the shadow zone (Ss). This result has been obtained by a
very loose argument based on Babinet's principle, together with the
conclusion that Qe = 2 for an opaque aperture or screen. However, the
localization principle permits us to distinguish between Sd and Ss, and
therefore the result should be true for any kind of obstacle. For a
translucent obstacle, however, we need not expect to find Qc = 2; indeed,
in the limit m = 1 we have no screen at all and therefore Qc must
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obviously be zero. For values of m between 1 and °°, some light will
penetrate the sphere and interfere with the diffracted component, leading
to a phenomenon called anomalous diffraction by van de Hulst.

In one circumstance, namely \m\—>-l, the problem of anomalous
diffraction can be treated very simply. Since we now have two parameters
(viz. x and m) going to limits, we must be careful to define their mutual
behavior. Let us assume m to be real. The important parameter is then

the phase lag of a ray passing through the centre of the sphere. We
require that this parameter remain finite but it need no longer be small,
as in the Rayleigh-Gans case. The importance of this condition is that
the ray suffers a phase change as it passes through the sphere, but (since
m — 1 is small and real) is not reflected, refracted, or absorbed. The
amplitude of a wave reaching dn (Fig. 7.5) is the same as if the sphere
were not there, but the phase is shifted by p sin i.

From (7.47), we can write the diffraction component of the
amplitude matrix in the form

By Babinet's principle

FIG. 7.5. Geometry of a sphere as \rh\-* 1.
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is the amplitude factor for the transmitted ray through a sphere with
m — 1 = 0 (i.e., an aperture). The sphere depicted in Fig. 7.5 introduces a
phase shift p sin r for the ray passing through dn, and therefore we have
to modify (7.52) to

Adding (7.52) and (7.53), setting dn = 2G cos r sin idi, and performing
the integration, we find

where

Hence,

For real m, (7.55) is

Figure 7.6 shows a comparison between this equation and exact com-
putations for ra = 0.8, 0.93, 1.33, and 1.5 (see §7.6). The agreement is
remarkably good, even though m is far from unity. Maxima and minima
appear at the predicted values of p, indicating that these features of the
extinction curve are the result of interference between the transmitted
and diffracted rays. If ra ¥= 1 the curves have a fine structure, which is
clearly not of fundamental importance in natural systems, for the
inevitable mixture of particle sizes will blur over any such detail. There is
a systematic increase in the heights of the maxima and minima as m
increases that is not given by the approximate theory. It has been
proposed, as an empirical correction, that approximate extinction
efficiencies should be multiplied by a factor

We have already seen from the case of Rayleigh-Gans scattering
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FIG. 7.6. Extinction by large dielectric spheres. The solid line in the lower panel follows
the approximate equation (7.56). The other four curves are computed from Mie's theory
(§7.6) for the values of in shown. The accuracy of computation for m = 0.8 and 0.93 is
somewhat lower than for m = 1.5 and ra = 1.33. After van de Hulst (1957).

how increase of particle size leads to more neutral scattering. Figure 7.6
shows how this trend continues, and how Qe hardly varies with A for
p > 10. Of interest for atmospheric optical phenomena are the portions
of the efficiency curve that slope downward to the right, particularly that
section for 4.09<p<7.63. In this region, close to an octave in extent,
long wavelengths are scattered more strongly than short wavelengths.
Such behavior is occasionally observed for natural aerosols.

For spheres with a complex refractive index, we may redefine p
using only the real part of the refractive index and introduce the new
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variable

Thus, j8 = 0 denotes a nonabsorbing medium and /3 = \n a black medium.
Equation (7.56) becomes

Accepting the localization principle, we know the ray paths through the
drop, and can calculate the absorption from first principles. We find

Equations (7.59) and (7.60) are illustrated in Fig. 7.7. We have seen
that the maxima and minima on the curve /? = 0° owe their existence to

FIG. 7.7. Extinction and absorption efficiencies for a medium with refractive index
m = 1 + e - ie tan /3 (e « 1). After van de Hulst (1957).
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interference between rays penetrating and passing the sphere. As the
absorption coefficient increases, this interference decreases and the wave
structure disappears, while preserving the asymptotic value Qe = 2 as
p—-.00.

Finally, we wish to know the angular distribution of the scattered
light. This involves a straightforward application of the principles that we
have already established. The integrals in (7.51) and (7.53) give the
amplitude of the wave front in the area dn of Fig. 7.5. The amplitude

FIG. 7.8. Altitude chart of the amplitude function \A\ = \x 2S\. after van de Hulst (1957).
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factor in a direction 6 can now be found by vectorial addition, as for
(7.46).

Integrating over the wave front for a sphere with real refractive
index, we find in a straightforward manner

This integral has to be computed by numerical quadrature, and the
results are displayed in the form of ar> altitude chart in Fig. 7.8. In Fig.

FIG. 7.9. Amplitude function A =x 2S for m = 4/3. The points and heavy solid lines are
exact calculations. The less heavy solid line is the approximation m—> 1. The broken line is
the Fraunhofer diffraction pattern. Values of 8 are given against some points. After van de
Hulst (1957).
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7.9, a cross section of this diagram, appropriate to water drops, is
compared with exact computations, and also with the Fraunhofer
diffraction pattern of an aperture.

The agreement between the approximation and exact computations
shown in Fig. 7.9 is good both qualitatively and quantitatively, except
that the approximation predicts no polarization effects at all. As regards
the results displayed in Fig. 7.9, this is a good prediction, for the
difference between Si and S2 would not be visible on this scale. This is
because the computations are restricted to scattering angles of 20° and
less, but for larger scattering angles polarization is an important feature
of the scattering pattern.

A solution has been proposed that reduces to that discussed in this
section for 6 = 0, but that permits polarization effects at other angles.
This is a mathematical approximation to the complete Mie theory (see
§ 7.6), which replaces the internal electromagnetic field in the droplet by
the WKBJ approximation, and proceeds analytically from this point. The
degree of polarization for large scattering angles is predicted with
reasonable accuracy, but the absolute magnitude of the scattered
intensities is less satisfactory.

7.5. Geometric optics

The elementary rainbow theory of Descartes and other early theories of
droplet scattering are based upon the principles of geometric optics. This
is an inclusive term for a number of assumptions of which the localization
principle is one, but not the only one. It is assumed in addition that the
disturbance is scalar and that the energy flux is proportional to the
density of rays. Thus, if the incident wave front is represented by an
equidistant set of rays, the scattering matrix is proportional to the angular
density of rays leaving the scattering centre, the path of each having been
traced by the laws of reflection and refraction (an attenuating factor,
dependent upon the path length, can be added if absorption has to be
taken into account). As we have already discussed, the concept of a ray
(i.e., the localization principle) is sound, but rays can be considered to be
independent only as long as two or more do not meet, when, according to
the assumptions of geometric optics, the intensity is infinite. Since the
waves are now in a position to interfere the concept of a scalar ray is
inadequate, and phase must be taken into account. At these singular
points Fresnel's theory can be used to modify the simple concepts of
geometric optics. Applying the theory to the wave front before a focal
point, a system of diffraction rings results. The focal point of principal
interest is the final image, which is formed at infinity from an emergent
parallel bundle of rays. Interest in intermediate foci is restricted to the
phase changes that may take place; the diffraction blurring is too small to
matter. It is a well-known result of Fresnel's theory that on passing
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through a focus there is a phase advance of \n. At a reflection there can
be shown to be a phase shift of jt, while refraction involves no phase
shift. With these results we can determine the phase at any point on an
emergent ray.

There is a variety of different situations in which the phase is
important. Figure 7.10 shows a familiar diagram illustrating the formation
of the first rainbow. Because there is a ray whose deviation is a minimum
(ray 3), there must be flanking rays that are parallel. These can interfere
at the image formed in the eye or telescope. The nature of the image in
the vicinity of this minimum deviation can be estimated by constructing
the wave front B and applying Fresnel's theory. Other less obvious
singular points are when a ray intersects the line XY or runs parallel to it.
Since the incident wave front is unlimited in size, the net effect of wave
fronts such as A is obtained by rotating the figure about the axis XY. A
ray intersecting this axis will therefore intersect others, and a ray parallel
to the axis (9 = 0 or JT) will form a parallel bundle.

It is scarcely necessary to add that geometric optics takes no account
of diffraction of light that is not incident upon the scatterer. For large
particles, this diffracted component is all in a strongly forward direction.
If it is not to interfere with transmitted rays these latter must be strongly

FIG. 7.10. Drawing in correct proportion of five equidistant rays that contribute to the first
rainbow (m = 4/3). Inset is a schematic drawing of the cubic wave front at O. After van de
Hulst (1957).
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deflected. The requirement is that m — 1 shall not be vanishingly small.
Then we can consider the diffracted component separately and, if the
particle is large enough, neglect its deviation entirely.

The most important and successful application of geometric optics is
to the problem of the rainbow, i.e., to scattering by a raindrop, which
typically has a value of x = 5 X 103 in the visible spectrum. Although it is
possible to sum the Mie series numerically to obtain an exact result, only
geometric optics, with all the associated doubts as to its validity, can
provide an intuitive understanding.

Except for the singular directions at 6 = 0 and n, and the rainbow
angles (at minimum or maximum deviation), geometric optics should be
satisfactory. Ignoring diffraction effects entirely, we obtain Qs= 1 and a
phase function that does not depend upon particle size. This phase
function was first computed by Wiener in 1909 and is named after him.

A number of different rays have to be distinguished, identified by the
ordinal numbers p = 0, 1, 2, 3, • • • . p = 0 is the externally reflected ray,
which does not enter the drop, p = 1 is the ray that leaves the drop after
two refractions, but no reflections, p = 2 is the ray that suffers one
internal reflection, p = 3 suffers two, and so on. In terms of the angles 9
and T (defined in Fig. 7.5), it is straightforward to show that

where

and other symbols are defined below.
In (7.62) the factor d~2 accounts for the divergence of light leaving

the raindrop. The factor er, involving the Fresnel reflection coefficient qr,
accounts for the loss of light at the reflections and refractions that take
place along the path. The index r refers to perpendicular polarization; the
same expression with appropriate indices holds for the parallel case.
Absorption in the drop has been neglected. Finally, the total deflection
6' is defined to take account of the fact that the outgoing ray may have
rotated through one or more multiples of 2n by means of internal
reflections.

It is convenient to write
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Table 7.1. Rainbow angles and degree of polarization

1.3200 1.3250 1.3300 1.3350 1.3400

Source: After Shifrin and Rabinovich (1957).

1.3450

2

3

4

e
p
6
P
0
P

135°59'36"
0.8995

132°34'38"
0.7832

46°35'58"
0.7573

136°44'40"
0.9087

131°13'44"
0.7929

44°42'34"
0.7658

137°29'00"
0.9185

129°53'58"
0.8017

42°50'40"
0.7752

138°12'24"
0.9277

128°34'12"
0.8108

41°00'12"
0.7838

138°55'46"
0.9364

127°17'30"
0.8193

39°09'48"
0.7922

139°38'08"
0.9446

126W48"
0.8277

37°23'28"
0.8004

where Gw is the gain relative to isotropic scattering. It is a well-known
property of a spherical drop that for p^2, d9'/dr = 0 at certain angles,
known as the rainbow angles. Thus, geometric optics gives Gw = °° at the
rainbow, but if the gain factor is averaged over a small but finite angle,
the result is finite. Table 7.1 shows rainbow angles and degree of
polarization [P = (G(r) - G(/))/(G(r) + G(/))J for the first, second, and
third rainbows (p =2, 3, and 4, respectively; p = 1 gives no rainbow).
The first rainbow has a minimum deviation, while the second and third
rainbows are maxima. The dispersion of ra gives different edges for each
color, leading to the familiar rainbow effect. The color sequence in the
second and third rainbows reverses that of the first. An extract from an
extensive computation of gain factors is shown in Table 7.2. Also shown
in Table 7.2 are the degree of polarization (PN) and gain factor (GN) for
incident natural (unpolarized) light. Calculations are made at integral
numbers of degrees and not at the actual rainbow angles; therefore there
are no infinities except for 9 = 0, p = 4. Averaged over a degree, the
contribution from this intensity is negligible and it is not included in GN.

We now have to consider the singularities in the light of Fresnel's
theory of diffraction. At 8 = 0 we are concerned with the diffraction rings
for rays passing close to, but not through, the raindrop. The theory for
large x has been given in § 7.4 and the result for a sphere is given by
(7.49). The Bessel function has zeros at x sin 9 = 3.83, 7.02, 13.32, etc.,
so that the diffraction rings close in as x increases. For x = 104 (a
raindrop) the first zero is at 9 = 1.4', and no distinct rings will be seen
around a source as large as the sun. For mists of very small droplets the
rings may sometimes be sufficiently far apart to be be seen around either
the sun or moon.

Near the rainbow angles a full theory involves asymptotic solutions
to the Mie theory for large x (x »1000). There has been considerable
progress in this direction (see Bibliography). However, in this section we
shall restrict our discussion to the Airy theory, which applies Fresnel's
theory to the outgoing wave front, assuming it to have a cubic form.



Table 7.2. Gain factors and polarization for water drops (n = 1.3350)

e

0
2
5
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180

P =

G«

1.0000
0.9246
0.8211
0.6746
0.4582
0.3152
0.2208
0.1580
0.1158
0.0873
0.0674
0.0534
0.0435
0.0364
0.0312
0.0275
0.0247
0.0228
0.0217
0.0208
0.0206

= 0

Gw

1.0000
0.8696
0.7034
0.4931
0.2389
0.1108
0.0473
0.0171
0.0043
0.0002
0.0005
0.0028
0.0059
0.0091
0.0121
0.0146
0.0168
0.0185
0.0197
0.0214
0.0206

P =

G(D

15.2339
15.1147
14.5377
12.7009
7.9051
4.1517
1.9692
0.8312
0.2787
0.0527
0.0007
—
—
—
—
—
—
—
—
—
—

= 1

G«

15.2339
15.0947
14.6077
12.9462
8.4030
4.7692
2.5256
1.2320
0.4955
0.1169
0.0016
—
—
—

——
—
—
—
—
—

p = 2 p =

G<" G« G<"

— — 0.0003
— — 0.0003
— — 0.0003
— — 0.0003
— — 0.0003
— — 0.0003
— — 0.0004
— — 0.0004
— — 0.0005
— — 0.0007
— — 0.0010
— — 0.0016
— — 0.0025
— — 0.0053
— — 0.0310
— —

1.1239 0.1545
0.2983 0.2021
0.1133 0.0995
0.0839 0.0768
0.0795 0.0795

= 3

G">

0.0003
0.0003
0.0003
0.0003
0.0002
0.0002
0.0002
0.0002
0.0002
0.0001
0.0001
—
—

0.0000
0.0192
—
—
—
—
—
—

p=4

G« G<»

(CO) (CO)

0.0102 —
0.0052 —
0.0028 —
0.0026 —
0.0055 —
0.0933 0.0184

— —
— : —

— —

— —
— —
— —

— —
— —
— —
— —
— —

— —
— —
— —

Total

2GN

32.4684
32.0144
30.6757
26.8182
17.0083
9.3529
4.8752
2.2389
0.8950
0.2579
0.0713
0.0578
0.0519
0.0508
0.0935
0.0421
1.3199
0.5417
0.2542
0.2019
0.2002

PN

0.0000
0.00265
0.00172

-0.00227
-0.0162
-0.0436
-0.0631
-0.1606
-0.1173
0.0911
0.9383
0.9031
0.7726
0.6417
0.3305
0.3064
0.7404
0.1855
0.0622
0.0371
0.0000

Source: Extracted from the tables of Shifrin and Rabinovicb (1957).
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Airy's theory is illustrated in Fig. 7.10. The insert shows details of
the virtual wave front at O, obtained by considering path lengths along
the various rays. The fundamental assumption is that the equation of the
wave front is approximately

where the constant h is 4.89 for the first rainbow and 27.86 for the
second, if m = 1.3333. Applying Fresnel's principle at an angle (9 - 90)
to the rainbow direction gives an amplitude factor proportional to

which can be written in the form of the Airy integral,

FIG. 7.11. The Airy rainbow integral for m = 4/3. (a) f2(Z) from (7.65). (b) Averaged
over naturally occurring drop-size distributions. I, light shower rain; II, warm front rain;
III, drizzle. Z is computed for a mean droplet radius of 0.5 mm, since the maximum
contribution to the rainbow intensity comes from drops of approximately this size. After
Volz (1961).
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where 90 is the rainbow angle. The integral has been computed
numerically and its square (proportional to the scattered intensity) is
shown in Fig. 7.11. It has a series of maxima that, under ideal conditions,
can be seen inside the first rainbow and outside the second.

Rain has a wide spectrum of drop sizes, which smooths out the
diffraction pattern. Figure 7. lib illustrates three typical cases. The finite
angular diameter of the sun leads to further averaging, and as a result it is
rare that the diffraction rings (supernumerary bows) are seen in nature.

7.6. The Mie theory

The Mie theory is a complete, formal theory of the interaction of a plane
wave with a dielectric sphere. Its results can be given in the form of an
infinite series, but the convergence is slow for large values of x. It can be
shown that the minimum number of terms that must be retained in the
series to ensure reasonable accuracy is about x. However, with modern
computers, this is not a serious defect and a large number of computa-
tions of scattering functions has now been made for both real and
complex m. In addition, asymptotic series for large x are now available,
and this greatly extends the domain of practical numerical computations.

The derivation of the solution is a straightforward application of
classical electrodynamics, and here we shall quote only the results (see
Bibliography for further references). The two amplitude functions have
the symmetrical form

where

P\ is an associated Legendre polynomial, and the coefficients an and bn

are given by
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where

are Riccati-Bessel functions and Jn+V2 and H^IV2 are spherical Bessel
functions. The Bessel functions have zeros that increase in number with
the size of the argument, with the result that 5j and S2 can change rapidly
for very small variations of x.

If extinction and scattering efficiencies alone are required these can
be obtained from the expressions

van de Hulst has attempted to list all the calculations prior to 1957 in
his monograph; computations that have appeared since that date, and
some of particular importance for water droplets in the visible and
infrared spectrum, are noted in the Bibliography. Some results for real

FIG. 7.12. Scattering diagrams from Mic theory. The solid curves are for /, = |5,|2 and the
broken curves for i'2 = |S2| . The vertical scale is logarithmic, with 1 div = a factor 10. Values
of i, and /2 at 0° and 180° (where they are equal) are given beside the diagram. The results
are taken from the tables of Lowan (1949). After van de Hulst (1957).
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refractive indices, close to that of water, have already been given in Figs.
7.6 and 7.9. Further results for all scattering angles and m = 1.33, 1.5,
and 2.0 are shown in Fig. 7.12. These do not lend themselves to any
simple discussion. The curves for x = 1 show some of the features of
Rayleigh scattering, with large, positive polarization (i.e., il>i2) near
90°. For x > 2, however, both positive and negative polarizations occur,
with changes from one to another occurring more frequently as x
increases. For large particles, the forward lobe often has a net negative
polarization.

Some results for complex refractive indices are shown in Figs. 7.13
and 7.14. Figure 7.13 shows the qualitative features of the approximate

FIG. 7.13. Qc and Qa for n = 1.315 according to the Mie theory (points and solid line) and
the approximate theory for |m|-»l (broken line), (a) n'=0.0143i, (b) rc'= 0.4298;. After
Deirmendjian et al. (1961).



FIG. 7.14. j,(0) (broken line) and /2(0) (solid line) for x = 3, n = 1.315. (a) n' = 0.0, (b) n' = 0.4298*. After Deirmendjian et al. (1961).
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theory for |m|—»1; in fact, the quantitative agreement between com-
parable curves is also good if the empirical factor (7.57) is applied. The
extinction maximum near p = 4 is damped out as the absorption increases
and the asymptotic limits as p—»°° (Qc—*2, Qa—* 1) are approached
more rapidly. A weak maximum near p = 1 appears when absorption is
large; this feature does not appear in the approximate theory. Com-
parison with the curves in Fig. 7.6 shows that the fine structure is
completely eliminated, even for small absorptions. The curves in Fig.
7.14 illustrate the large changes that result from a variation in the
complex component of the refractive index.

Mie theory results, with m - 1.33 and 1.50, for intermediate and
large spheres, are shown in Fig. 7.15. The upper figure gives the phase
function (GN) and the lower figure gives the polarization (PN) for
scattering of natural light. These computations are averaged over a
particle size distribution

where n(x)dx is the number of particles with size parameter between x
and x + dx, and xm is an adjustable parameter. The effect of this
averaging is to wash out the fine structure due to resonance and
interference and to facilitate comparison with geometric optics (see Table
7.2). Geometric optics (dotted lines) predicts that the primary and the
secondary rainbows should occur at scattering angles 137.5° and 157.2°,
respectively, for m = 1.33, and at 129.9° and 93.1° for m = 1.5. The Mie
calculations for large spheres (xm = 400) reproduce these features and the
polarizations quite well.

Referring to Fig. 7.15 we note the sharp increase in scattering (GN)
near the backward direction (d = 180°) for large spheres with m = 1.33.
This strong enhancement in intensity, often accompanied by colored
rings, is the glory. The glory cannot be explained by a combination of
geometric optics and Fresnel theory. One major contributor to glory
scattering comes from tangential rays (such as IT in Fig. 7.16). These give
rise to a surface wave along TA critically refracted to the inside at A,
"totally reflected" at B, and critically refracted to the outside at C,
traveling as a surface wave CT' and finally emerging as the scattered
tangential ray T'S. Mie theory fully accounts for the "surface waves,"
TA and CT', although they have no place in geometric optics.

In the discussion of stratified atmospheres in §2.4.5, the relevant
properties of scatterers could be summed up in terms of the single
scattering albedo (a = s/e) and the asymmetry factor (g). In terms of the
symbols Qs, Qc, G

(r\ and G(l), they may be written as



FIG. 7.15. Comparison between geometric optics and Mie theory. The phase function
(GN, upper figure) and polarization (PN) lower figure) are for single scattering of
unpolarized light by spheres. Results are shown for two real refractive indices and three
values of *m, which is the effective size parameter. After Hansen and Travis (1974).
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FIG. 7.16. Formation of the glory. "Surface" waves are a major contributor to the glory.
After Nussenzveig (1979).

Using (7.66), we can express (7.69) in a series

For isotropic and Rayleigh scattering, g = 0; g is positive or negative
according as the particle scatters more energy into the forward or
backward direction, a is unity for a real index of refraction and less than
unity for complex m. Numerical values for g and a are presented in Figs.
7.17 and 7.18, respectively. It is clear from Fig. 7.17 that g ~ 0.8 is a good
approximation for cloud droplets, and, from Fig. 7.18, that a large sphere
(x = 1000) can be quite dark for n' as small as 10~3. The asymptotic
behavior of a as x—»°° in Fig. 7.18 can be understood if we recall that a
metallic sphere is totally reflecting.

It is now possible to compute scattering functions using (7.66) for
spheres with size parameter x as large as 1000. But such efforts do not
reveal how to recover analytically the geometric optics limit from (7.66).
Recent work indicates that this goal can be accomplished.

The series in (7.66) are both of the form



FIG. 7.17. Asymmetry factor, g is plotted as a function of x for m = 1.33. After Hansen
and Travis (1974).

FIG. 7.18. Single scattering albedo, a is plotted as a function of the imaginary part of the
index of refraction m = h ~~ in', with n = 1.33. After Hansen and Travis (1974).
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Applying the Poisson sum formula to (7.71), we have

Note that the m = 0 term corresponds to approximating the discrete sum
(7.71) by an integral. Using the Watson transformation, the integral over
the whole real axis can now be replaced by a contour integral in the
complex A plane.

For a large dielectric sphere, ^(A) can be expanded into a Debye
series of surface waves and their multiple reflections. It turns out that the
combination of these two transformations, together with the proper
choice of the path of integration, is sufficient to produce a rapidly
convergent series whose leading terms are the same as those given by
geometric optics and the Airy theory. Furthermore, the rays with
complex angular momentum (A) can tunnel into the geometrically
forbidden regions and these rays give rise to the glory. Thus, a
satisfactory connection between Mie theory and the phenomena of the
rainbow and the glory scattering has been established.

For practical computations in radiative transfer it is often convenient
to approximate the Mie phase function (GN) by the Henyey-Greenstein
phase function

where 9 = scattering angle and P/(x) is a Legendre polynomial. The
asymmetry factor of this phase function is g. Figure 7.19 shows a
comparison between Mie phase functions and Henyey-Greenstein phase
functions for particles with m = 1.33. While the Henyey-Greenstein
phase functions reproduce the forward peak of Mie scattering quite well,
they fail to reproduce the backscattering behavior. This situation can be
readily remedied by using a double Henyey—Greenstein phase function,

where b is a positive fraction, and g2 can be assigned a negative value to
account for the backscattering peak. For instance, the choice g t = 0.824,
g2 = —0.55, and b = 0.9724 provides a realistic simulation of scattering by
maritime haze at 0.7 j
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FIG. 7.19. Mie and Henyey-Greenstein phase functions. Broken lines are Mie phase
functions for m = 1.33 and x = 2.4 and 3.6. Solid lines are Henyey-Greenstein phase
functions for g = 0.50 and 0.75. After van de Hulst (1980).

7.7. Nonspherical particles

The Mie theory for dielectric spheres (§7.6) can be generalized to
spheroids. Figure 7.20 shows the scattering efficiency Qs, defined with
respect to the geometrical shadow area, for an incident beam parallel to
the symmetry axis. The results are similar to those obtained for a sphere.
In the limit of a small spheroid, the behavior corresponds to Rayleigh
scattering. For larger spheroids, characteristic features arising from
interference and resonance effects become evident. The sharp increase in
<2s for highly prolate spheroids is attributed to surface phenomena.

The general problem of scattering of light by an object of arbitrary
shape can be formulated as a Fredholm integral equation

where E0(r) is the incident plane wave, G(r, r') is the dyadic Green's
function given by

I is the identity operator, and y(r) is related to the index of refraction



FIG. 7.20. Extinction by spheroids. The incident light is parallel to the symmetry axis. The
projected area relative to which Qs is defined is nb2 or naz, respectively, for prolate and
oblate spheres. After Asano (1979).

325



326 ATMOSPHERIC RADIATION

(which can be a function of r)

The integration in (7.75) is restricted to the volume of the object V.
Solving (7.75), usually by numerical inversion, yields the electric field
inside V. All the important physical quantities are simply related to the
integral

where s is a unit vector.
The main advantage of (7.75) versus Mie theory is that there are no

explicit boundary conditions; all the effects of arbitrary geometry are
absorbed by integration over V. The chief disadvantage of (7.75) is that
its solution is a formidable task, although considerable progress has been
made by approximating the integral by a large number of discrete dipole
elements.
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8
RADIATIVE TRANSFER IN A SCATTERING

ATMOSPHERE

8.1. Introduction

The source function for scattering, (2.32), is more complicated than a
thermal source function on two accounts: it is not a function of local
conditions alone, but involves conditions throughout the atmosphere,
through the local radiation field, and the phase function, /#(s, d), may be
an extremely complex function of the directions, s and d, and the states
of polarization, i and/. The general solution, (2.87), is still valid, but it is
now an integral equation, involving the intensity both on the left-hand
side and under the integral on the right-hand side. Successive approxima-
tions, starting with the first-order scattering term [third term on the
right-hand side of (2.116)], are an obvious approach, and would lead to a
solution, but there are more efficient and more accurate ways to solve the
problem.

Many methods are available because their fundamental theory has
proved to be mathematically interesting and because there are important
applications in neutron diffusion theory and astrophysics. These motiva-
tions are extraneous to atmospheric science, but the availability of the
methodology has led to its adoption and extension to atmospheric
problems.

Solutions to scattering problems can be elaborate and mathemati-
cally elegant; they can also be numerically onerous but, with access to
modern computers, "exact" solutions are feasible, given the input
parameters rv, av (=sv/ev), and Ptj. For monochromatic calculations with
simple phase functions, numerical solutions present few difficulties.
Nevertheless, the combination of unfamiliar formalism with inaccessible
and undocumented algorithms can be daunting for those with only a
peripheral interest in radiation calculations. It is, therefore, relevant to
note that available data are imprecise and virtually never require the
accuracy available from exact methods. Easily visualized two-stream
approximations, combined with similarity relations to handle complex
phase functions (see §§8.4.4 and 8.5.6), are often more than adequate,
and some angular information can be added, if required, from the use of
Eddington's second approximation (§ 2.4.5).
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It is not the purpose of this book to discuss observations or
numerical calculations, but in § 8.6 we briefly summarize some of the
observational data and uses that have been made of scattering theory.
The purpose of these examples is to motivate studies of atmospheric
scattering and to provide some perspective on the awkward conjunction
between elegant theory and imprecise data. We leave this until the end of
the chapter so that some theoretical results are available, but the reader
may benefit from treating it as introductory material.

The methods described in this chapter fall into two broad categories.
The first involves formal solutions to the integrodifferential equation of
transfer (§ 2.3.3). The alternative approach seeks simple relations for the
radiation field, not derived directly from the equation of transfer, but of
equal physical validity. It leads to the doubling and adding method, the
most efficient and accurate method capable of dealing with realistic
atmospheric problems.

Polarization is a subject of interest for some special problems, but to
alleviate the burden of too many indices we shall make no formal
reference to it. All results derived in this chapter can be extended to
include polarization by using Stokes' parameters and scattering matrices.

8.2. Integrodifferential equation

8.2.1. Fourier series expansion

The integrodifferential equation for the scattered component of non-
polarized monochromatic radiation in a plane-parallel atmosphere is,
from (2.113),

where a(r) = s(r)/e(r) is the albedo for single scattering and S(T; §, <£) is
the primary source of radiation, such as the third term on the right-hand
side of (2.116). Equation (8.1) does not include a term for the direct solar
beam. Following the treatment of § 2.3.4 the direct beam is estimated
independently, (2.115).

The phase function P(T; £, 0; £', $') is generally assumed to be a
function of the scattering angle 6 only. The latter is related to the
incident direction (f', <£') and the emergent direction (I-, 0) by the
expression

With this restriction on the functional form, the phase function admits a
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series expansion,

where P/(x) are Legendre polynomials and O/(T) are expansion
coefficients. Note that (8.3) is exact in the limit N— »°°. In practice, N is
taken to be a finite number, determined by the anisotropy of the phase
function (see Chapter 7). From the addition theorem for spherical
harmonics, the Legendre polynomials in (8.3) can be expanded in a
Fourier series in the azimuthal variable

where Pf(x) are associated Legendre polynomials. Substituting (8.4) into
(8.3), we have

where

and <50m, is the Kronecker 6-function. From the fact that

we can derive two important symmetry properties for pm(r; f, §'):

In view of (8.5) we may expand the other functions in (8.1) as
Fourier series in the azimuthal variable
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where 00 is a reference angle. Upon substituting (8.5), (8.10), and (8.11)
into (8.1), and using the orthogonality of Fourier series, (8.1) splits up
into N + l independent equations:

We have succeeded in reducing an integrodifferential equation in
three variables (r, %, 0) to a set of uncoupled integrodifferential equa-
tions in two variables (T, !•). Since (8.12) is to be solved separately for
each m, no confusion should arise by dropping the index m in subsequent
discussion, and we shall consider an equation of the type

8.2.2. Discrete ordinates

This method is a natural generalization of the two-stream approximation
discussed in §2.4.8. Starting with (8.10), we keep T as a continuous
variable, but approximate the angle variable £ (— 1 =£ £ =£ 1) by 2n values
%±i (i = I , 2, . . . n), where f,- > 0 and £_, = -§,-. The usual choice for £±,
is the 2n roots of the Legendre polynomial P2n(^). With this choice we
can replace the integral over £' in (8.13) by the extremely accurate
Gaussian quadrature formula and obtain a discretized version of (8.13),

where a; are Gaussian weights (a Gaussian quadrature using In points
evaluates the integral exactly for all polynomials of degree less than 4n).
It should be noted that in order to achieve the high accuracy of the
Gaussian quadrature formula the total number of Gaussian divisions, 2n,
must exceed the number of terms in the expansion of the phase function
using Legendre polynomials (8.3).

Equation (8.14) is a system of 2n first-order nonhomogeneous
differential equations, and can be written more compactly in vector
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notation

where

The symmetry relations (8.8) and (8.9) have been used in deriving these
equations. Physically, I+(T) and I~(T) represent upward traveling and
downward traveling beams, respectively.

A simplification of (8.14) occurs if the atmosphere is vertically
homogeneous [a and P independent of r, so that o> is also independent of
T from (8.3)]; from (8.6) p(r; £, |,-) = p(|,-, |,.). In this case (8.14)
becomes 2n first-order differential equations with constant coefficients
plus nonhomogeneous terms. Let us first consider the homogeneous
equations

where the matrices M* are now independent of T. Let the solutions be of
the form I* = gVT. We have, from (8.21) and (8.22),

which may be solved as a standard eigenvalue problem. It has been

and the matrix elements of the n x n matrices are given by
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shown that all the eigenvalues are real and that they occur in pairs
The latter property enables us to transform the eigenvalue problem
(8.23) into an equivalent one in k2 and thus reduce the order of the
problem by 2. This can be accomplished as follows. From (8.23) we have

Add and subtract (8.24) and (8.25), and we have

Substituting (8.27) into (8.26) yields

Equation (8.28) is an eigenvalue problem of order n. Once we obtain the
eigenvectors g+ + g~ from (8.28), we can use (8.27) to find the vectors
g+ — g~ and thus the eigenvectors of the original system g* can be
obtained from those of the reduced system.

The homogeneous solution can now be written

where kf and gy(£) are the eigenvalues and eigenf unctions, respectively,
of (8.23), and the Ly are constants. Let IP(T, f ) be the particular solution.
Then the general solution is

The In constants L, are to be determined by 2n boundary conditions
imposed on I* at the upper and lower boundaries.

We will give two specific solutions as illustrations of the discrete
ordinate method. The solution for a conservative, iso tropically scattering
infinite atmosphere (a = 1, P = 1) with constant flux, F, is

where Q and L±j are constants of integration. The source function for
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this solution is

where q(r) is Hopf's function. In a nonconservative, isotropically
scattering atmosphere illuminated by sunlight, we have a primary source,
(2-116),

The solution in this case is

where a ¥ = l , Lj are constants of integration, and H is Chandrasekhaf 's H
function ; in the nth approximation H is

The primary advantages of the discrete ordinate method are as
follows:

1. The solution for specific intensity can be derived explicitly, and
includes both the emergent as well as the internal radiation field.

2. The principal concepts such as streams and eigenvalues can be
grasped intuitively. An eigenvalue kt may be interpreted as a
diffusivity factor such that k{t represents an effective optical path
for a stream in the §,- direction.

3. The smallest eigenvalue corresponds to the dominant mode of
propagation, and this is called the diffusion mode (§ 8.5.1). Partly
because of this, the low-order approximations such as the
two-stream and other multistream solutions, which can be derived
in closed forms, are quite accurate (§8.5.6) and particularly
useful for radiation flux calculations.

Closely related to the discrete ordinate method is the moment
method, which uses a sequence of moments,
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and the spherical harmonic method, which employs the series expansion,

where P/(|) are Legendre polynomials. However, the boundary condi-
tions for these two methods are more complicated.

The primary shortcoming of the discrete ordinate eigenfunction
method is the requirement of vertical homogeneity. This restriction can
be overcome by assuming that a nonhomogeneous atmosphere is
composed of a series of adjacent homogeneous layers in which the
scattering and absorption properties are allowed to vary from layer to
layer. In the following section we shall describe a method that explicitly
takes into account the vertical nonhomogeneity of the atmosphere.

8. 2. 3. Feautrier method

The two first-order equations (8.15) and (8.16) can be converted into a
second-order equation in r as follows. Adding and subtracting (8.15) and
(8.16) lead to

where

and the elements of the n X n matrices are [see (8.6), (8.19) and (8.20)
for definitions]
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Note the similarity between U(T) and V(T) and / and F as given by (2.143)
and (2.142). Indeed we may regard the Feautrier method as the
multistream generalization of (2.140).

From (8.38) we have

substituting (8.46) into (8.39) yields

Since A(r) and B(r) are positive definite matrices, (8.47) can be
interpreted as the multicomponent generalization of the steady-state
diffusion equation. For isotropic scattering in an atmosphere illuminated
by sunlight, we have

and (8.47) becomes

which can be recognized as a generalized steady-state diffusion equation
with a source (see § 2.4.4 and § 2.4.5).

The analogy between radiative transfer and diffusion is not only
mathematical. There is a deeper physical reason. We can intuitively
regard u(r) = [I+(T) + I~(T)]/2 as the "density" of radiation, and V(T) =
[I+(r) - I~(f)]/2 as the "flux". From (8.46), the "flux" is proportional to
the gradient of the "density" [let us ignore for the moment the source
term VO(T)]. This result is what we would expect if the photons perform
random motion back and forth as molecules do in kinetic theory of gases,
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and this type of transport is known as diffusion. Equation (8.39) states
that the "density" is controlled by the divergence of the "flux" and a
source term, an alternative form of the continuity equation.

All the usual mathematical techniques for solving the steady-state
diffusion equation can now be applied to (8.47). A convenient method is
discretization in T. The resulting equation may be written in block
tridiagonal form and can be easily and accurately inverted. The chief
advantage of this method is the ability to deal with nonhomogeneous
atmospheres. The main restriction of this method is that the atmosphere
must not vary too rapidly in the vertical because of the occurrence of the
term A.~I(T) under the derivative sign in (8.47).

8.3. Interaction principle

The integrodifferential equation approach described in the previous
sections may be regarded as a "microscopic" view of radiative transfer.
The master equation (8.1) relates the radiation field at r to that at T + dr,
where dt is infinitesimally small. There is, however, an alternative
approach to radiative transfer, which may be regarded as the "macro-
scopic" approach. The key relationship, the equivalent to (8.1), is the
interaction principle. This is a conservation relationship that equates the
radiation emerging from an arbitrary layer to the incident fluxes on the
boundary and the source distribution within the layer. Thus, we are
interested only in the overall transfer properties of the layer. It can be
shown that these two different approaches to radiative transfer are, in
fact, equivalent.

In a plane parallel atmosphere, the physical properties depend upon
a single variable T. At any level we may define the upward and downward
directed specific intensities I+(r) and I~(r) as given by (8.17). Consider a
layer of optical depth, ra, bounded by surfaces T = TI and T = T2

(*a
 = T2~ Ti> see Fig. 8.1). The interaction principle states that there is a

linear conservation principle that relates the radiation emerging from the
layer, I+(TJ) and I~(f2), to the incident radiation, I~(T,) and I+(T2), and
to the source

where Ra and T0 are reflection and transmission operators for the
downward directed incident stream of radiation, R* and T* are the
corresponding operators for the upward directed incident stream, and £*
represent emission of radiation originating in the layer. The discrete
ordinate representations of the reflection and transmission operators
remain to be specified (see §8.3.3). Note that in general R^R* and
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FIG. 8.1. The interaction principle. The figure illustrates the quantities and definitions
introduced in the text.

Ta ^T*. Equations (8.50) and (8.51) may be written compactly as

where,

8.3.1. Adding two layers

Repeated applications of the interaction principle enables us to find the
rule for combining two layers. This can be shown as follows. Figure 8.2
shows a schematic of two adjacent layers of optical depths r(, and rh,
respectively, bounded by the planes T= TV, r2 and T3. For the first layer,
the interaction principle gives (8.52). A similar relation is obtained for
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FIG. 8.2. Combining two layers. The two layers, a and b, can together be treated as a
single layer, c.

the second layer,

where

We can eliminate I±(r2) from (8.52) and (8.54), and obtain a
relation for the combined layer of optical depth ra + Th,
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where

I is the identity operator. Since the interaction principle is com-
pletely general, we can apply it to the combined layer rc = ra + rb =
T3 — TI and obtain

where

It follows that (8.56) and (8.59) must be identical, that is

Equating the individual components of (8.61), we obtain the rule for
combining the reflection and transmission operators,

The physical meaning of (8.63)-(8.66) becomes clear from Fig. 8.2.
Consider the incident stream I~(T I). The reflected stream can be written
as a superposition of streams that have undergone single and multiple
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reflections. By inspection,

and, in general,

Therefore, the total reflected intensity is

This explains the meaning of (8.63). Similarly, inspection of Fig. 8.2
yields

where

and

Substituting (8.72)-(8.74) into (8.71) leads to (8.64). A straightforward
extension of the above reasoning to an upward directed stream I+(r3)
provides a similar physical interpretation of (8.65) and (8.66).

8.3.2. The star semigroup

Given the operator S(a) for layer a, as defined by (8.53), and S(4>) for
layer b, as defined by (8.55), (8.57) states a rule for computing S(a + b)
for the combined layer a + b. This simple binary composition rule may be
formally defined as a star product,
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where the order of adding the layers is important. In general S(« + b) ¥=
S(b + a), and the star multiplication is noncommutative, except for the
special case in which the combined layer is homogeneous. It can be
shown that the star product is associative for the combination of three
layers a, b, and c,

For a layer of zero optical thickness we define

It is clear from (8.57) that

for any layer a. Note that S(0) plays the role of an identity operator for
star multiplication.

Let A be an arbitrary collection of plane-parallel slabs. Then the set
of operators {S(a):aeA} forms a semigroup with respect to star
multiplication. Note that the essential elements of the semigroup
structure are the binary composition rule (8.75), the associative law
(8.76), and the existence of an identity operator. The semigroup differs
from the group in that the inverse of S(a) generally does not exist, i.e.,
for an arbitrary operator S(a) we cannot find an S(/>) such that

The physical reason is obvious. In multiple scattering, the entropy of
radiation always increases, except in the trivial case of scattering by a
layer of zero optical thickness, which conserves entropy. Hence no
combination of nontrivial layers can simulate the net effect of a trivial
layer.

8. 3. 3. Doubling and Adding

The results of the previous sections, §8.3, §8.3.1, and §8.3.2, suggest
that there is an alternative approach to study the equation of radiative
transfer. Instead of solving for the specific intensities, we can study the
reflection and transmission properties of a medium using the simple
combination laws derived from the interaction principle. We shall first
give a precise definition of the diffuse reflection and transmission
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functions for a plane-parallel layer bounded by T^ and T2 (^fl = r2 — TI,
see Fig. 8.1),

where /^(r^jU, 0) and /^(T^JU, 0) are the reflected and transmitted
streams at the upper boundary, and I~(r2; ft, 0) and /r(r2; /*, 0) are the
corresponding streams at the lower boundary. In previous chapters and
sections we have maintained a consistent vector notation for f, except
when we discussed discrete ordinates, ±£,, defined for §,>0 only. Since
intensities, reflection, and transmission functions are now defined separ-
ately for upward and downward streams we no longer need the automatic
signing provided by the signed £, and it is convenient to define ju = |£| as
the continuous variable associated with £,-.

As an illustration of the above formulas, consider sunlight incident
on top of a layer with TJ = 0 and T2 = ra. According to the discussion of
the solar beam in § 2.3.4, it may be approximated by the product of Dirac
<5-functions,

where ;U0 = |£©| and 00 = 0Q. Note that /o denotes a downward traveling
beam and |U0 is a positive quantity. Using (8.80) and (8.81), we obtain

and
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For an optically thin layer ra « 1, it can be shown (see § 8.4.1)

Similar results are obtained for R* and T* by considering a narrow beam
incident on the lower boundary,

Each specific intensity in (8.80)-(8.83) can be expanded as a Fourier
series according to (8.10), and each reflection or transmission function
admits a similar Fourier decomposition

where X = R, T, R*, or T*. Replacing the relevant functions in



RADIATIVE TRANSFER IN A SCATTERING ATMOSPHERE 347

(8.80)-(8.83) by their appropriate Fourier series, we have for each
Fourier component

where the azimuthal index m (which should label all the specific
intensities and the reflection and transmission functions) has been
omitted for simplicity. Following the standard procedure of discretizing
the angle variable \n using Gaussian divisions and replacing the integrals
by Gaussian quadratures (see § 8.2.2), we obtain the following vector
equations,

where the vectors I±(r) are defined by (8.17), and the reflection and
transmission operators, first defined in (8.50) and (8.51), are n x n
matrices whose elements are given by

for Ya = Ta or T*. Note that in the expression for the transmission
operator (8.101), we have included the direct, as well as diffuse
transmission. Also, the right-hand side of (8.100) may be viewed as the
multiplication of two matrices 2X(ra; fiit fif) and (,6ikaknk) where the
second matrix is diagonal. The same viewpoint applies to (8.101). Since a
nontrivial diagonal matrix can be inverted, we may use (8.100) and
(8.101) to express X(ra; fif, fij) and Y(ra; \iit //,•) in terms of Xaij and Yaij.
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From the formulas for reflection and transmission functions (8.87)-
(8.90), we can accurately compute the S operator, i.e., the reflection and
transmission operators, using (8.100) and (8.101) for an extremely thin
layer, e.g., ra = 2~20T0, where TO is of order of unity. Repeated
application of (8.63)-(8.66), putting together two identical layers, allows
us to generate the S operator for an homogeneous layer of finite optical
thickness. Since

we may generate S(TO) in 20 steps in this case, compared with 220 steps
required for the direct adding method (8.61). The algorithm (8.102) is
known as the doubling method. This algorithm works only for a
homogeneous layer. For a nonhomogeneous atmosphere, the usual
strategy is to divide the atmosphere into a large number of thin but finite
homogeneous layers. The doubling method is applied to generate the S
operator for each homogeneous layer from an infinitesmal layer. The
distinct finite layers are then combined, using the adding method. The
boundary conditions at the upper and lower boundaries are simulated by
layers with special properties. Having obtained the S operators for the
entire atmosphere, it is straightforward to apply them to calculate the
source terms using (8.58).

The chief advantages of the doubling and adding method are (1)
simple physical interpretation, (2) simple mathematical operations such
as matrix multiplications, (3) the reflection and transmission operators
are obtained for all incident and emergent angles at once, (4) there is no
difference in principle in the computations for isotropic and anisotropic
phase functions, although in practice more Gaussian points are needed
for the latter case, and (5) results are obtained for a range of optical
thickness between the final value and the starting value. The main
drawback of the method seems to be the somewhat artificial manner of
dealing with nonhomogeneous atmospheres. This criticism is of course
academic, since we can always approximate the properties of a non-
homogeneous atmosphere to arbitrary accuracy using a finite number of
homogeneous layers. However, there is an alternative method, which is
based on a natural and elegant extension of the present method to a
nonhomogeneous atmosphere. This will be the subject of the following
section.

8.3.4. Invariant imbedding

Consider the combination of two layers a and b, as shown in Fig. 8.3, in
which the top layer is infinitesimally thin (ra = AT) and the bottom layer
is of finite optical depth (rh = T). The reflection and transmission
operators for the combination can be computed from (8.63)-(8.66). Let
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FIG. 8.3. Adding an infinitesimal layer to a finite layer. There is, at most, one scattering in
the infinitesimal layer. A dashed line represents diffusive transmission (scattering). The five
processes are described in the text.

us first consider (8.63). If we expand the operator (I —R^R*)""1, we
obtain an infinite series in RbR*. Since R* is proportional to AT, the
result is an infinite series in AT. Keeping only the terms to order AT,
(8.63) becomes

This equation will enable us to derive a differential equation in T for the
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reflection and transmission functions. From (8.100), (8.101), and (8.87)-
(8.90), the reflection and transmission operators can be expressed in
terms of the corresponding functions to order AT,

Substituting (8.104)-(8.109) into (8.103) and simplifying the algebra, we
have, to order AT,

On taking the limit Ar-^0 and n— >&>, we obtain a nonlinear
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integrodifferential equation for R(T; \i, n0),

This is known as the invariant imbedding equation for the reflection
function. The physical meaning of (8.111) is clear from an inspection of
Fig. 8.3a. The five terms on the right-hand side of (8.111) correspond to
the five processes marked A, B, C, D, E in the same order in the figure.

Starting from (8.64), and applying the same procedure as above, we
obtain an integrodifferential equation for the transmission function,

The physical meaning of the five terms on the right-hand side of (8.112) is
illustrated by A, B, C, D, E in Fig. 8.3b. Note that (8.111) is a nonlinear
integrodifferential equation in R(T; fi, jU,,). We can start from the lower
boundary, where the reflection function ^(TJ; ,u, (U0) must be prescribed,
and use (8.112) to integrate upward to obtain the reflection function for
all values of r. In contrast, (8.112) is a linear integrodifferential equation
in T(T; p, jW0). However, the function R(T; fj,, jit,,) must be computed first.

We have derived (8.111) and (8.112) by adding an infinitesimal layer
to the top of a finite layer. Obviously we can accomplish the same
purpose by placing an infinitesimal layer at the bottom of the finite layer.
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This gives rise to two more equations,

These two equations do not provide additional information on the
reflection and transmission functions. In fact, (8.113) and (8.114) are
coupled nonlinear integrodifferential equations and are more difficult to
solve than (8.110) and (8.112). Except for the simple cases referred to in
§ 8.3.5, the invariant imbedding method has not been as extensively used
as the doubling and adding method. Based on limited available informa-
tion, the method is almost as efficient as the doubling method for a
homogeneous atmosphere but can be ,/V times faster than the adding
method for a nonhomogeneous atmosphere approximated by N
homogeneous layers.

8.3.5. X, Y, and H functions

The invariant imbedding equations derived in the previous section are
applicable to an arbitrary nonhomogeneous atmosphere with anisotropic
scattering. In this section we shall examine the particularly simple case of
isotropic scattering in a homogeneous atmosphere. Setting P([i, //0) = 1
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and a(r) = a in (8.111)-(8.114) we have

where Chandrasekhar's X and Y functions are defined by

Eliminating dR/dTirom (8.115) and (8.116), we obtain

and, eliminating dT/dr from (8.117) and (8.118), we have

The equations governing the A" and Y functions can be derived by
inserting (8.121) and (8.122) into (8.119) and (8.120),

Thus the reflection and transmission functions can be expressed in
closed form using the X and Y functions, which are governed by a pair of
coupled nonlinear integral equations. The existence of a scattering or
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reflecting surface at the lower boundary can be handled simply. An extra
intensity can be defined that adds to the existing solutions, and that, in
most cases, can be expressed in terms of the X and Y functions already
computed for the standard problem.

For a semiinfinite atmosphere, Y = 0, and the X function is
equivalent to the Chandrasekhar's H function, first introduced in
approximate form in (8.35). The reflection function is now given by

and the integral equation for H is

The method of X, Y, and H functions can, in principle, be applied to
scattering problems with arbitrary phase functions. In practice, the
amount of algebraic manipulations is too great, and not much progress
has been made beyond the Rayleigh phase function (§ 7.3).

8.4. Miscellaneous methods

In this section we shall briefly examine methods that are not as commonly
used as those discussed in the previous sections, but are nevertheless
important for their theoretical ideas. These methods are generally less
efficient for solving problems of radiative transfer in a plane-parallel
atmosphere than the standard methods, but they have the advantage of
being adaptable to arbitrary geometry.

8.4. 1. Successive orders of scattering

The specific intensity can be considered to be composed of a series,

where /* is the partial intensity that has been scattered n times. For a
plane-parallel atmosphere of optical depth rl (see Fig. 2.7), we can use
(2.86), (2.98), and (2.99) to derive expressions for each order /„,
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The corresponding term of the source function is given by

where S±(T; p, $) is the primary source term and IO(T', p, $) = 0.
The equations (8.128)-(8.130) can be used recursively to obtain

higher order partial intensities and source functions. In principle this
method is intuitive and computationally simple, and can be applied to
homogeneous as well as nonhomogeneous atmospheres. In practice, the
series (8.127) converges very slowly for t^\ unless a(r)«1. So the
most useful computation that can be performed by this method is for
scattering by an optically thin layer. In this case the first-order solution is
sufficient.

Consider illumination by sunlight. The primary source is due to the
first scattering of incident radiation as defined by (2.116) and (8.84),

Inserting (8.131) into (8.128) and (8.129), we obtain the reflected and
transmitted intensities,

where the phase function is averaged over the entire layer. From these
expressions the reflection and transmission functions (8.84)-(8.88) can be
obtained.

8.4.2. The integral equation

The integral equation for the specific intensity inside a medium of
arbitrary shape and volume V may be derived using arguments similar to
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those presented in § 2.3.1,

where SPP> is a unit vector directed from P' to P, and P" is the boundary.
This equation may be regarded as a generalization of (2.86) and (2.90).
The first term on the right-hand side of (8.136) arises from photons that
are scattered from all other points P' in the volume into P. The second
term comes from radiation incident on V from outside the system. A
complete solution of (8.136) provides detailed information on the internal
and external radiation fields. The boundary conditions are incorporated
and the integral equation is applicable to any type of geometry.
However, solving the general equation numerically is a formidable task.
Consequently, the full potential of this method has not been realized. To
date, only solutions involving special geometries, such as plane-parallel
and spherical, have been obtained.

8.4.3. Monte Carlo

The absorption and scattering of photons in an atmosphere can be
considered as stochastic processes. The phase function may be regarded
as a probability density function for the redistribution of photons in
different directions. Taking this point of view, we can simulate the
solution to the equation of radiative transfer by following the history of a
large number of photons on a computer. In the simplest version of the
Monte Carlo method, the photons are first released from the source. The
subsequent events that may happen to each photon are determined by
suitable probability distributions. A set of random numbers is then used
to make a particular choice of the outcome of each event. The number of
photons reaching the detector is recorded. Because of its conceptual
simplicity, this method is extremely flexible and can be applied to
complicated problems that are virtually insolvable by any other method.

However, the Monte Carlo method has a serious drawback. The
computed results are subject to statistical fluctuations, which decrease in
magnitude only as the square root of the number of photons used in the
calculation. Hence enormous amounts of computer time may be required
to obtain results of modest accuracy. There are at least two ways to
improve the performance of this method. One is using backward Monte
Carlo, that is, to start with the photon at the detector and carry out a
time-reversed path tracing back to the source. The other way to optimize
the statistics is not to terminate a simulated photon history when it is
absorbed or escapes from the atmosphere. Instead, a weighting factor is
assigned to the photon and the "renormalized" photon continues its path.
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Eventually a given photon history is terminated if its weighting falls
below a predetermined lower limit, e.g., 1CT5. The use of the Monte
Carlo method is currently at a developing stage. With the expected
improvement in the capabilities of computers, we anticipate that this
versatile method will realize its full potential.

8.4.4. Distribution of path lengths

An alternative approach based on the distribution of photon path lengths
is widely used in the study of spectral lines in the presence of a
homogeneous conservative scattering haze (scattering albedo, a = 1). It is
convenient to introduce a probability distribution p(X; T; n, <j>), where
p(A) dA is the probability that a photon contributing to 4=i(r; ju, $) = 7j
has traveled an optical path between A and A + dX since entering the
atmosphere. If /?(A) and /j are known, it can be shown that the
monochromatic intensity for arbitrary absorption coefficient kv will be
given by

It is clear that (8.135) gives a simple relation between the solution for a
conservative atmosphere and the solution for an atmosphere that is
physically identical except for the addition of molecular absorption. The
first moment,

is the mean optical path traveled by radiation in a conservative
atmosphere. In practice, we must first obtain /j using any of the standard
methods discussed in this chapter. The function p(A) is usually deter-
mined by Monte Carlo techniques, although in simple cases analytic
solutions are available.

8.4.5. Low-order approximations for anisotropic scattering

We now extend the low-order approximations introduced in § 2.4.5 to the
case of anisotropic phase functions. In § 2.4.5 we showed that these
methods are equivalent to the use of a single discrete ordinate, a subject
that was treated generally in § 8.2.2. Nevertheless, because of the great
popularity of low-order approximations we shall examine them in greater
detail.

The approximate equations for a stratified atmosphere have their
simplest forms for isotropic source functions (§2.4.4, §2.4.5). Despite



358 ATMOSPHERIC RADIATION

the obvious difficulties of handling a strongly anisotropic source function
in a one-term approximation, there have been many attempts to do so,
because the result is much easier to understand than a complete
numerical solution to the equations.

When we introduce anisotropic phase functions we bring in new
parameters, with the consequence that different low-order scattering
approximations proliferate. As for isotropic phase functions, however,
the successful treatments are essentially the same, and ours is typical.

We shall restrict attention to scattering alone, although mixed
conditions of thermal emission and scattering are a straightforward
extension. We start from (2.116), consider only the first Stokes' para-
meter (the intensity), omit the variable v, and write a in place of s/e,

where/(T) is given by (2.115).
In the spirit of the method of moments, as used in § 2.4.4, we shall

operate on (8.137) with the integral operators J dco and J ^dco and make
use of the normalization (2.33). We must also make use of the fact that,
for spherical particles or for a random array of nonspherical particles, the
phase function is a function only of the scattering angle, 6, the angle
between an incident direction designated by (£', 0') or (§©, $0) and a
scattered direction (£, 0) (see Chapter 7, Fig. 7.1 for further discussion).

In (7.69) we defined the asymmetry factor g in terms of gains (7.63).
In terms of the phase function, the definition becomes

If we multiply (8.137) by da>, integrate, and use the normalization (2.33),
we find
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Now multiply (8.137) by %da) and integrate to give

As in § 2.4.4, we now approximate

It is reasonable to assume that the intensity is diffuse because, in (2.149),
/ excludes the direct solar beam. If we wish to consider the total flux of
solar radiation, scattered plus direct, we must introduce

where the second term on the right-hand side is the vertical flux of direct
solar radiation; it is directed downward (£©<0) and is therefore
negative.

Equation (8.140) can be simplified with the relationship

This far-from-obvious result will not be derived here: it follows from the
symmetry of P(cos 9) and the geometric identity (8.2)

Substituting (8.142) in (8.140) gives

and, from (8.139),
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For the sum of the direct plus diffuse flux the relationship is

As an example of a boundary condition we may take I" = 0 at T = 0.
From (2.142), (2.143), and (8.139) there results

and

We now consider two related topics concerned with the nature of the
phase function and the asymmetry factor:

1. The similarity relations of van de Hulst that seek to approximate
solutions for complex phase functions in terms of solutions for
simpler phase functions (specifically isotropic phase functions).

2. The d-approximations that draw attention to the importance of
sharp forward peaks in the phase function.

The question posed under (1) is as follows. If ¥(e, a, g) is a solution
to a problem involving the optical parameters e, a, and g, how may we
choose e', a', and g', where g' represents a more tractable phase
function than g, such that

As far as the approximate equations (8.146) and (8.163) are concerned,
the question is moot because they are no more difficult to solve for one
value of g than for another. We may, however, use these equations to
derive the similarity relations, to be applied, in practice, to a comparison
between numerical solutions.

We argue that the nonhomogeneous term in (8.146) is less important
than the homogeneous terms. The nonhomogeneous term changes sign as
£0 varies between 0 and —1 and is zero for £® = — l/\/3. For climatic
averages over all solar zenith angles, therefore, it may be small.
Moreover, in the interior of a cloud the direct solar flux |Q/ becomes
rapidly smaller than the diffuse flux F as the optical depth increases. This
follows because the-solution to the homogeneous part of (8.144) involves
the term exp(-/?r) where /? is the inverse scattering path for diffuse
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radiation,

The direct solar beam, on the other hand, attenuates as exp(r/§0), so
that when a is close to unity, as it is for all interesting cases of
atmospheric scattering, the attenuation of the direct beam is more rapid
(possibly very much more rapid) than that of the diffuse radiation.

Similar solutions for the homogeneous terms are ensured if f i r
remains constant. Since T is proportional to the extinction coefficient, e,
this condition is satisfied if

The boundary condition (8.148) scales exactly with (1 — a)r, so that
similarity also requires

Equations (8.150) and (8.151) can be written in the following form, that
is commonly used to express the similarity relations:

Turning now to topic (2), there is a sense in which it is an artifact of
numerical methods. The scattering phase function for cloud droplets has
a very sharp forward, "diffraction" peak containing as much as half of the
scattered energy (see the discussion of Babinet's principle in § 7.4). Since
exactly forward scattering is equivalent to no scattering at all, one might
be tempted simply to ignore this diffraction peak entirely and this is, in
effect, what the d-approximations do. Before the advent of large
computers experimenters did so without seriously considering the matter
because their laboratory equipment generally had insufficient angular
resolution to resolve the diffraction peak.

With the availability of large computers it has become standard
practice to use theoretical phase functions calculated from electromag-
netic theory (§7.6). Unlike the laboratory experimenter, the computer
misses very little and the forward scattering peak is explicitly included in
any calculated phase function. There was a short period, at the time
when numerical methods first came into general use, when this dis-
crepancy of a factor 2 between measured and theoretical coefficients was
a matter for concern. Since some aspects of this debate continue, we shall
look at the question more closely.



362 ATMOSPHERIC RADIATION

Let us compare two scattering media characterized by the para-
meters (a, e, g) and (a', e', g'), where the former has a fraction b of its
scattered energy concentrated in a narrow forward peak, while the latter
has no such singular behavior.

Since scattering into the forward peak is equivalent to no scattering
at all, the two sets of scattering parameters must be related by

But the absorption process is independent of the scattering so that

These two relationships require that

and

We now require that the asymmetry factor g be unchanged and, since a
forward peak makes a contribution equal to b, it follows that

Equations (8.153), (8.154), and (8.155) together comprise the 6-
approximation. As we have already pointed out, they deal more with an
illusion than with a physical phenomenon. But, if we wish to modify
numerical phase functions that have energy in a forward peak, we require
a number for b in order to do so. This is best assessed from the data, by
inspection. But it is also possible to take a different view of the situation.

Suppose that a particular phase function under consideration scatters
strongly forward but not so sharply as implied by the foregoing discussion
of diffraction peaks. It may prove advantageous to replace the phase
function by a more symmetric function plus a peak in the sense that we
have used; the peak can then be treated exactly in the manner described,
while a smoother phase function may be chosen so as to be compatible
with a particular set of approximate equations.

If the approximate equations are defined by the Eddington ap-
proximation (2.147), and if the original forward phase function is the
Henyey-Greenstein function (§ 7.75), it has been demonstrated that g2 is
a good choice for b. This defines the 6-Eddington approximation. Its
significance is unclear because, if we eliminate b from (8.153), (8.154),
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and (8.155), we obtain, after some awkward manipulation, van de Hulst's
similarity relations, (2.147). van de Hulst's relations therefore include the
information contained in the d -approximations regardless of the presence
or magnitude of the forward scattering peak. Since the two approaches
are quite distinct, their agreement suggests that the range of validity is
wider than either derivation would indicate.

Numerical models of stratified atmospheres usually employ two
coupled, first-order differential equations in preference to second-order
equations, such as (8.145). In order to form these coupled equations,
integrations are performed independently over both hemispheres in the
spirit of the integral equation (2.106). The resulting equations are known
as two-stream equations.

The two-stream equations involve approximations in addition to
those employed in the derivation of (8.145), but the extent of these
additional approximations is no more than those employed to derive the
boundary conditions using (2.142) and (2.143), and there is probably
little to choose between these equations and those of § 2.4.5 and § 2.4.6.
In order to demonstrate this relationship we derive the two-stream
equations from (8.139) and (8.144), using the further approximations
(2.142) and (2.143). If we write F+ for nl+ and F~ for nl~ and then add
and subtract (8.139) and (8.144) we obtain

where

The general form of (8.156) is valid for all two-stream approximations
but with different values for the coefficients depending upon the
approximation applied to the radiation field and the approximation
applied to the phase function. The coefficients (8.157) give the "standard
Eddington approximation," as it has been called. Applied to an optically
thin atmosphere with a black lower boundary, the approximation leads to
negative albedos for g>2/(3 |£©|). While this is an unsatisfactory result,
it does not mean that the coefficients (8.157) give results that are worse
than others, on the average. All of the stratified atmosphere approxima-
tions that we have discussed have errors of the same order of magnitude,
although some manage to avoid such egregious problems as negative
albedos.
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8.5. Numerical results

It is not the purpose of this chapter to conduct a thorough examination of
the numerical results obtained by various methods. However, we shall
present representative results that demonstrate the advantages of par-
ticular methods, and provide insight into the radiative transfer problem.
Also, having developed more powerful and more accurate methods in
this chapter, we can now check the accuracy of the two-stream and other
low-order multistream approximations, first discussed in § 2.4.

8.5.1. The diffusion exponent

In the method of discrete ordinates, § 8.2.2, we consider solutions of the
form I* = g±efcT. Different values of k represent different modes of
propagation of photons in an unbounded homogeneous medium. It can
be shown that the characteristic equation derived from (8.23) for
isotropic scattering is

The eigenvalues correspond to the roots of (8.158). Each value is known
as a diffusion exponent and may be physically interpreted as a diffusivity
factor that, when multiplied by the normal optical depth, represents an
equivalent optical path in each discrete stream. Figure 8.4 illustrates a
distribution of eigenvalues for isotropic scattering with a single scattering
albedo a = 0.9, using four ordinates (2n = 4).

The mode that corresponds to the smallest diffusion exponent is
known as the fundamental mode, and is the one which is least damped.
For this mode, the diffusion length (^k~l) is the largest. The smallest
diffusion exponent may be computed for the n = co limit of (8.158),

The result, k versus a, is summarized by the curve g = 0 in Fig. 8.5. Note
that as a approaches unity, the value of k becomes smaller. Physically this
implies that the diffusion length k~l increases and the photons can
penetrate deeper into the medium via multiple scattering. Equation
(8.159) can be generalized to include the case of multiple scattering with
anisotropic phase functions. The results for three choices of the asym-
metry factor # for a Henyey-Greenstein phase function are also
summarized in Fig. 8.5. It can be seen that the net effect of forward
scattering, for a given single scattering albedo, is a reduction of the value
of k. This is the basis for the similarity relation discussed in § 8.4.5.



FIG. 8.4. Eigenvalues of (8.158). Four ordinates are used. The single scattering albedo is
0.95. The eigenvalues are given by the intercepts on the k axis. After Liou (1980).

FIG. 8.5. Smallest diffusion exponent, k, for the limit n = °°. The curve marked g = 0 is for
isotropic scattering; the other curves are for a Henyey-Greenstein phase function with
three choices of the asymmetry parameter, g = 0.5, 0.8, and 0.95. After Irvine (1975).
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8.5.2. X, Y, and H functions

We consider the special case of a homogeneous, isotropically scattering
slab of optical thickness TJ = 4. Figure 8.6 presents values of X(fji) and
F(» for single scattering albedos a = 0.6, 0.9, and 1.0. The dashed curve
gives the value for H(n) for a = 1.0. From § 8.3.5, we know that H((i) is
the limit of X(ii) as TI—»oo. There is a simple expression,

which reproduces the true values of H(n) to better than 3% everywhere.
As ri-H»°o, Y(ju)-*0. For ra = 4 and a = 0.6, the values of Y(n) are of
the order of KT3, and are not plotted in Fig. 8.6.

FIG. 8.6. A' and V functions for optical thickness T, = 4. Values of y(^j) for a = 0.6 and
a = 0.0 are close to 0 and are not shown. The dashed line, the asymptotic limit of X([t) as
T,—»°°, is the // function. Numerical values are taken from Caldwcll (1971).
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FIG. 8.7. Reflection and transmission functions. R(ft) (solid lines) and T(,u) (broken lines)
are computed using values of X and Y functions given in Fig. 8.6. Unless otherwise
indicated, the optical depth is rl = 4.

Using (8.121), (8.122), and (8.125) we can compute the reflection
and transmission functions. The results are shown in Fig. 8.7.

8.5.3. Internal radiation field

The X, Y, and H functions provide detailed information on reflected and
transmitted radiation. They do not provide information on the internal
radiation field. Figure 8.8a shows the internal radiation field, I(T, |),
computed using the Feautrier method, for an isotropically scattering slab
with optical depth T, = 4. For comparison, we also present in Fig. 8.8b
results for the azimuthally independent component of specific intensity
[m =0 in (8.10)] for scattering by a Henyey-Greenstein phase function
with g = 0.5. The isotropic and anisotropic cases are approximately



FIG. 8.8. Specific intensity as a function of angle at various depths inside a finite slab, (a)
Optical depth r, = 4, isotropic scattering, a = 0.9, and |£e| = 1. The incident solar flux is
chosen to be /(O) = 1. (b) T, = 8, a = 0.95, and asymmetry factor g = 0.5. The values of r,
a, and g in (a) and (b) satisfy the similarity relation (8.151) exactly, and (8.152) almost
exactly. Specific intensities for similar lines in the two diagrams are very close. The
similarity argument developed in § 8.4.5 can readily be extended to the m = 0 term in
(8.10),
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related via the similarity transformation (§ 8.4.5). These results demon-
strate how well this approximation works.

8.5.4. Scattering by haze

Figure 8.9 shows the reflected and transmitted intensities for a medium
with the optical properties of a natural haze computed using a discrete-
ordinate method and a doubling method. The phase function used is a
double Henyey-Greenstein phase function with an effective asymmetry
factor, g = 0.786. Only the azimuthally independent intensities are
plotted in the figure.

8. 5. 5. Convergence of successive scatterings

From § 8.4.1 we may compute the reflection function by

where Rn(Ti; M, MO) represents the contribution from «th order multiple

FIG. 8.9. Comparison of doubling and discrete ordinate methods. The points are
calculated using 16 discrete ordinates. The solid and broken lines are for the doubling
method. The solid lines are for a double Henyey-Greenstein phase function with an
effective asymmetry factor g = 0.786. Broken lines are for an isotropic phase function After
Liou (1973).
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FIG. 8.10. Reflection functions, ^(co; fi> Mo) f°r " times scattered light. Conservative,
isotropic scattering is assumed in a semiinfinite atmosphere. After Uesugi and Irvine (1970).

scattering. Numerical experiments have been performed with conserva-
tive isotropic scattering in an infinite atmosphere. The results are
summarized in Fig. 8.10 for jito=l and 0.7071. It is clear that conver-
gence of (8.161) is extremely slow. The 50th order scattering can still
contribute about 1% to the total reflection function.

8.5.6. The accuracy of low-order approximations

The two-stream equations (8.156) for a homogeneous atmosphere can be
solved analytically. For a slab of optical thickness rt illuminated by solar
radiation, the reflectivity, R = [F+(0)]/[ju0/(0)], and transmissivity, T =

are (with HQ = — £0)
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where the parameters yt, y2, and y3 have been denned by (8.157), and
the new parameters are

One use of the accurate methods described in § 8.2 and § 8.3 is to
check the accuracy of simplified but useful solutions such as (8.162) and

FIG. 8.11. Reflectivity R for two-stream approximations. The solid curves are exact
calculations for a plane-parallel atmosphere. The standard Eddington (short dashes) and
modified Eddington (long dashes) approximations are given for comparison. The scattering
is conservative, and the phase function is Henyey-Greenstein with g = 0.75. After Meador
and Weaver (1980).
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(8.163). Figure 8.11 shows the comparison between exact calculations
and approximate solutions given by the standard Eddington and a
modified Eddington approximation [for which YI and 72 are unchanged
but y3=i-a/2) jsp(£0,r)<*r].

Simple formulas, analogous to (8.162) and (8.163), may also be
derived for a four-stream approximation. The details will not be
discussed here. The accuracy of this method may be appreciated by
inspection of Fig. 8.12. It is clear that such low-order multiple-stream
approximations are correct to about 10% in most representative cases.
Now, inexact knowledge of the fundamental physical parameters such as
extinction coefficients, phase functions, and atmospheric properties are
often responsible for even greater uncertainties and in many practical
computations, these low-order approximations are adequate.

8.6. Applications

The austere and formal character of scattering theory is relieved by the
variety of interesting applications that can be made of it. We conclude
this chapter with a brief account of a few areas for which good
observations and satisfactory theory exist.

8.6.1. Solar and thermal fluxes in stratocumulus clouds

Figures 8.13 and 8.14 show aircraft measurements of the radiation field in
stratocumulus clouds. The solar flux must be dominated by scattering
because, in the absence of scattering, the upward flux component would
be unmeasurable. The measured solar heating rate in Fig. 8.14 just
exceeds the root-mean-square error but it also exceeds the theoretical
prediction at most levels. The theory employs Mie calculations with
measured drop size distributions and liquid water contents. A two-stream
approximation was used with coefficients adjusted to fit certain doubling
and adding calculations on model clouds. The discrepancy between
theory and observation appears to be typical for this type of observation,
and throws doubts on the common assumption that the optical properties
of cloud drops are those of pure water.

The thermal flux observations show outgoing fluxes at both bound-
aries corresponding to black bodies at the cloud surface temperature
confirming, in this instance, a classical assumption in the meteorological
literature. The thermal heating data in Fig. 8.14 emphasize the low
precision obtainable even for high-quality observations. The observed
data do not show the strong cooling that is predicted near the cloud top.

The theoretical calculation of thermal flux employs an emissivity
model (§ 6.4.2) with emissivities derived from "exact" calculations
involving liquid water and water vapor. This implies that, to first order,
only the droplet absorption matters and that scattering may be neglected.
The reason for this can be seen from the approximate equation, (8.145).



FIG. 8.12. Fractional error of the emergent intensity for a four-stream (two discrete
ordinates) approximation. The calculations are for a = 0.9, Henyey-Greenstein phase
function g = 0.75, and underlying surface reflectivity = 0.3. The solid curves are results from
the delta four-stream method; dashed curves are results from the delta two-stream method.
After Cuzzi et al. (1982).

373



374 ATMOSPHERIC RADIATION

FIG. 8.13. Thermal and solar flux components measured in stratocumulus clouds.
F| = upward solar component, F^ = downward solar component, F]_ = upward thermal
component, F^ = downward thermal component, FB = o64, 9 = local temperature. After
Stephens et al. (1978).

If a thermal radiation term were used in place of scattering from the
direct solar beam, the difference between including and not including
scattering would lie in the value of the diffusion factor j3. For absorption
alone, an emissivity treatment is appropriate; then, a = 0 and (8 = 31/2,
corresponding to the diffusivity factor, r, of §6.1.2. For thermal

FIG. 8.14. Thermal and solar heating rates in stratocumulus clouds. The points were
obtained by differencing data similar to those shown in Fig. 8.13. The horizontal lines show
root mean square errors. The solid lines are based on theoretical calculations. After
Stephens et al. (1978).
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radiation, scattering from small particles will be close to isotropic (g = 0),
and for absorbing droplets, Qs«= <2a=" 1; then, a — 0.5 and j3 = 1.51/2. In
fact, the single-scattering albedo will be smaller than 0.5 because of the
additional gaseous absorption. The difference between diffusivity factors
with and without scattering is, in the light of other uncertainties, rather
small and is, to first order, taken up in an empirical determination of
emissivities.

This conclusion can be generalized. If, at any level, the optical depth
for scattering is smaller than that for absorption, the possibility exists that
scattering may be neglected. This statement applies to clear-sky absorp-
tion of solar radiation in the near infrared bands of water vapor and in
the ultraviolet bands of oxygen and ozone. These gases are the major
sources of solar heating in the lower and middle atmospheres; there are
good physical reasons why successful atmospheric calculations could be
made before the ready availability of modern scattering protocols.

8.6.2. Polarization of light reflected from Venus

A classical series of measurements by Lyot showed the polarization of
reflected light from Venus to vary in a complicated manner with
wavelength and phase angle (the sun-Venus-earth angle). The data are
reproducible and, clearly, carry important information about the nature
of the Venus clouds. One set of measurements, for a single wavelength,
is shown in Fig. 8.15.

The data in Fig. 8.15 show vestiges of a rainbow (~15° phase angle)
and a glory (—155° phase angle). The latter will be observed only if there
is a very narrow distribution of drop sizes (a variance of 0.07 gives the
best fit), and the polarization in the rainbow is very sensitive to the mean
particle size (a radius of 1.05 ^m gives the best fit).

The theoretical calculations shown in Fig. 8.15 are based on a
doubling method with a matrix formulation for the Stokes parameters
and Mie theory calculations for the assumed particle sizes and refractive
indices. In addition to the particle radius and variance, the best fit
between theory and observations gave a value for the pressure (more
precisely, the volume scattering coefficient) at the cloud top; and the
variation of particle refractive index with wavelength led to a tentative
identification of sulfuric acid for the droplet composition.

8.6.3. Scattered light in the stratosphere

A calculation of photolysis rates of oxygen and ozone in the stratosphere
requires a knowledge of the total density of actinic photons, both direct
and scattered. Most early calculations included only the contribution
from the direct beam, but scattering, particularly from the lower
atmosphere, should also be included. Figure 8.16 shows the results of
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FIG. 8.15. Polarization of reflected light from Venus. The wavelength is 0.55 ,um. The
crosses and circles are observations by two different observers. Theoretical calculations
(solid, dotted, and broken lines) are for spheres with refractive index, m = 1.44, and a size
distribution with mean radius, a, and variance, b. After Hansen and Hovenier (1974).

balloon measurements of the two components for the spectral range
190-310 nm.

A theoretical calculation was made by a matrix multiplication
method (§8.3.1), combining a number of homogeneous layers in which
there was molecular scattering and absorption by oxygen and ozone. The
ozone distribution was unknown a priori and could be adjusted for best
fit to the observations. With this degree of freedom the agreement
between theory and observation (as shown in Fig. 8.16) was exceptionally
good.

In the light of the discussion of single-scattering albedos in § 8.6.1, it
is instructive to calculate this quantity for the atmosphere at 40 km (Table
8.1). The calculated albedos are small, consistent with the small fraction
of scattered light that is observed; the shape of the curve in Fig. 8.16
follows, more or less, the shape of the absorption coefficient in the
Hartley bands of ozone and the Schumann-Runge bands of oxygen.

Although the fraction of scattered light is small, it is not negligible;



RADIATIVE TRANSFER IN A SCATTERING ATMOSPHERE 377

FIG. 8.16. Ratio of scattered to direct beam solar photons at 40 km. The solar zenith angle
was 41.6°. After Herman and Mentall (1982).

near 300 nm it amounts to about 20% of the total and has a small but
significant effect upon the calculated equilibrium ozone concentration.

8.6.4. Scattered light in clear water

Closely related to atmospheric scattering is the diffusion of light in the
upper layers of deep waters; and we may take advantage of the relatively

Table 8.1. Single-scattering albedos at 40 km"

Wavelength

(nm)

300
250
200

sn Mem2)

(cm2) Ozone Oxygen

5.7 x Ur26 3xlO- ' 9 —
1.3xl(T25 l . lxNT 1 7 —
3.6xlO~2 5 2 x l O ~ 1 9 1.5xl(T23

n(O3)/«(M) = 7x 10~6

n(O2)/«(M) = 2x 10"'

Albedo

2.5 x 1(T2

1.6 xKT3

8x 10 2

For absorption coefficients of oxygen and ozone, sec Figs. 5.4 and 5.11. For number
densities, see Appendix 3, Fig. 1.7, and Table 1.1.



378 ATMOSPHERIC RADIATION

placid conditions in lakes and oceans to obtain better data than are
available for mists and clouds. One set of observations, to a depth of
275 m in the Mediterranean, is shown in Fig. 8.17.

The cusp on the 50 m curve and the vertical bars in Fig. 8.17 indicate
the intensity of the direct solar beam. At 100m depth and below, the

FIG. 8.17. Normalized intensities in the solar vertical in the Mediterranean. The data were
observed in clear water. The zenith angle of the sun changed during the course of the
observations; its value is given on the right-hand side of the figure. The angular resolution
of the radiometer is 1.3°. Readings taken in the solar direction are indicated by vertical
bars. After Jerlov (1976).
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direct beam has vanished, leaving only the diffuse radiation field, which
preserves its angular distribution at all greater depths. This asymptotic
state is the fundamental mode, discussed in § 8.5.1. It corresponds to the
term varying as exp(-jSr) in the solution to (8.144) where, from (8.149),
/3 = [3(1 - a)(l - ag)]m. The direct solar beam, on the other hand,
attenuates more rapidly, as exp(— T/UO). These attenuation coefficients
can be determined approximately from Fig. 8.17: they are 1.4 X 10"1 m"1

and 4.6 x 10~2m~1 for the direct and diffuse components, respectively.
For a vertical sun and small particles (g = 0), we may calculate an
approximate value for the single-scattering albedo, a = 0.964.

8.6.5. CO2 lines in the reflection spectrum of Venus

Figure 8.18a shows an observed reflection spectrum of Venus for one of
the combination bands of carbon dioxide, and Fig. 8.18b shows a
synthetic spectrum that provides an acceptable fit to the data. The
synthetic spectrum is for a semiinfinite, homogeneous, iso tropically
scattering atmosphere using a two-stream approximation and Eddington's
second approximation to obtain angular dependence for the reflected
radiation.

Lines (intensity Iv) are superimposed on a continuum (intensity /c).
The variables are the single-scattering albedos for the cloud alone (ac)
and for the mixture of cloud and carbon dioxide (av). The following
expression may be obtained,

and is used in Fig. 8.18b. fi and u0 are the direction cosines for the
observed and solar beams, respectively. The properties of the cloud are
defined by the quantity M = n(CO2)/scns, where sc is the scattering
coefficient of the cloud and ns is Loschmidt's number. From the best fit to
the data, the cloud appears to be very tenuous, with a scattering mean
free path of 4 km (under the assumption of isotropic scattering).

8.6.6. The color and polarization of skylight

The color and polarization of the daytime sky are paradigms of the
scattering problem. The fundamental reason for both color and polariza-
tion was given by Rayleigh in 1871 with his theory of scattering by
molecules, but a full account of the multiple scattering problem had to
await Chandrasekhar's method of discrete ordinates and his recognition of
the way to handle the polarization, using Stokes parameters. Numerical
compilations of the Stokes parameters for scattering in a molecular
atmosphere are available for all conditions encountered on earth.
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FIG. 8.18. The reflection spectrum of Venus in the v1 + 2v2 + 3v3 band of carbon dioxide at 10,500 A. (a) The observed
spectrum. The vertical lines indicate overlapping spectral regions from which the entire band was put together. Fraunhofer lines
are indicated by the symbol 0. (b) a synthetic spectrum. Based on a two-stream approximation for a semiinfinite, homogeneous
atmosphere and the parameters indicated. The Fraunhofer lines and the upper state band [hot band in (a)] are omitted. After
Belton et al. (1968).
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There are a large number of ways to compare theory and observa-
tion. One is to compare the degree of polarization in the sun's vertical.
Figure 8.19 shows observations at a wavelength of 3200 A, while Fig. 8.20
shows theoretical results with which they may be compared. The
agreement is fair except for the negative polarizations near to the sun.
The data are for clear conditions. For turbid conditions or for longer
wavelengths (for which the haze is relatively more important), there may

FIG. 8.19. Calculated degree of polarization in the sun's vertical. Calculations are
presented for a molecular atmosphere with three optical depths. The solar zenith angle is
53.1°. The underlying surface is assumed to be nonreflecting. After Sekara (1956).
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FIG. 8.20. Measured degree of polarization in the sun's vertical. The solar elevations
(90° - zenith angle) are marked on the curves. The wavelength is 3200 A and the optical
depth for molecular scattering is approximately unity. Compare the left-hand curve with the
lowest curve in Fig. 8.19. The agreement is fair except for the negative polarizations near to
the sun angle. After Coulson (1971).

be large discrepancies between observations and theoretical results for a
molecular atmosphere.
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Figure 8.8a and b were computed by the Feautrier method using 90 levels, 20
streams, and 10 Fourier components.

The approximate expression for the //-function (8.160) is from

Hapke, B., 1981, "Bi-directional reflectance spectroscopy I. Theory," J.
Geophys. Res. 86, 3039.

Figure 8.9 is from Liou (1973), § 8.2. Figure 8.10 is from

Uesugi, A., and Irvine, W. M., 1970, "Multiple scattering in a plane-parallel
atmosphere I. Successive scattering in a semi-infinite medium," Astrophys. J. 159,
12.

Figure 8.11 and Table 8.1 are from Meador and Weaver (1980), § 8.4. The
four stream solution was first derived by

Liou, K.-N., 1974, "Analytic two-stream and four-stream solutions for radiative
transfer," /. Atmos. Sci. 31, 1473.

8.6. Applications

8.6.1. Solar and thermal fluxes in stratocumulus clouds
This section follows

Stephens, G. L., Paltridge, G. W., and Platt, C. M. R., 1978, "Radiation profiles
in extended water clouds. Ill: Observations," J. Atmos. Sci. 35, 2133.

8.6.2. Polarization of light reflected from Venus
Many investigators contributed to this important work on the nature of the Venus
clouds. Figure 8.15 is from

Hansen, J. E., and Hovenier, J. W., 1974, "Interpretation of the polarization of
Venus,"/. Atmos. Sci. 31, 1137.

8.6.3. Scattered light in the stratosphere
The measurements described are by

Herman, J. R., and Mentall, J. E., 1982, "The direct and scattered solar flux
within the stratosphere," J. Geophys. Res. 87, 1319.

8.6.4. Scattered light in clear water
A modern text on scattering in sea water is

Jerlov, N. G., 1976, Marine optics. New York: Elsevier.

8.6.5. CO2 lines in the reflection spectrum of Venus
This presentation follows
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Belton, M. J. S., Hunten, D. M., and Goody, R. M., 1968, "Quantitative
spectroscopy of Venus in the region 8,000-11,000 A," The atmospheres of Mars
and Venus (J. C. Brandt and M. B. McElroy, Eds.). New York: Gordon and
Breach, p. 69.

8.6.6. The color and polarization of skylight
The outstanding contributions to this problem by Chandrasekhar (1960), §8.1,
set the stage for many of the advances in the theory of multiple scattering
described in this chapter.

A compendium of Stokes parameters for a molecular atmosphere is

Coulson, K. L., Dave, J. V., and Sekara, Z., 1960, Tables related to radiation
emerging from a planetary atmosphere with Rayleigh scattering. Berkeley and Los
Angeles: University of California Press.

Figure 8.19 is from

Sekara, Z., 1956, "Recent developments in the study of polarization of skylight,"
Adv. Geophys. 3, 43.

The observed data in Fig. 8.20 are from

Coulson, K. L., 1971, "On the solar radiation field in a polluted atmosphere," /.
Quant. Spectrosc. Radiat. Transfer 11, 739.



9
ATMOSPHERES IN RADIATIVE EQUILIBRIUM

9.1. Introduction

In this chapter we discuss radiative equilibrium models of the earth's
atmosphere and the closely related radiative—convective models, for
which small-scale convection is included in a highly parameterized form.
In both cases, heat transports by planetary-scale motions are neglected.

Despite their limitations, radiative equilibrium and radiative-
convective studies have provided stimuli for many of the fundamental
ideas discussed in this book. Their value is principally heuristic. The
radiative equilibrium state is one conceivable state of a planetary
atmosphere that may be analyzed so that the implications of parameteric
changes can be understood in simple terms (e.g., changes in atmospheric
composition, earth orbital elements, solar emission, etc.). The same
cannot yet be said of any dynamic model. While numerical solutions are
available from general circulation models, their behavior is often no
easier to interpret than that of the atmosphere itself.

For studies that are not based on the existence of day-to-day
observations, radiative equilibrium considerations provide the irreplace-
able first step in a number of fields: the atmospheres of other planets,
stellar atmospheres, the earth's primitive atmosphere; and much of the
progress in studies of climate change has been based on the simplest
energy balance models. In addition to their value in examining general
principles, there is a recurrent, although disputed theme that radiative
equilibrium has direct relevance to the observed atmospheric structure.
This proposition embraces a number of instructive ideas but, before
examining them, we consider some of the observational evidence that
motivates them.

From the earliest days following the discovery of the stratosphere,
theoretical workers assumed that the stratosphere, unlike the tropo-
sphere, was in radiative equilibrium. The reasoning was that no forms of
heat transport, other than radiative, could be important in a highly stable
atmosphere. Since nothing was known about planetary-scale motions at
that time, this conclusion was premature.

If we turn to modern data, Fig. 9.la presents the observed
climatological temperatures in the middle atmosphere, to be compared



FIG. 9.1. Radiative equilibrium temperatures in the middle atmosphere, (a) Observed
zonal mean temperatures for January, (b) Theoretical calculation for average conditions on
January 15. Ozone concentrations are also calculated in a time-marching radiative-
convective-photochemical model. Allowance must be made for the different vertical scales.
The agreement is fair between 90°S and 30°N. Part of the disagreement may be attributable
to the photochemical model. Discrepancies in the winter polar regions would be larger but
for the fact that the calculation assumes the observed lower atmosphere temperatures.
After Pels (1985).

389
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FIG. 9.2. Globally averaged heating and cooling rates in the middle atmosphere. The solid
line is solar heating, while the broken line is cooling by thermal radiation. Calculations are
for the month of January. Observed values are used for absorber densities. After Kiehl and
Solomon (1986).

with radiative equilibrium calculations shown in Fig. 9.1b. Agreement
between theory and observation is fairly good except in the region of the
polar winter. Better agreement exists for horizontal averages over the
entire planet. Figure 9.2 shows calculations of globally averaged solar
heating rates and thermal cooling rates; the differences between the two
are small compared to either individually.

Tropospheric radiative-convective calculations of atmospheric tem-
perature also exhibit good agreement with observations. Later in this
chapter, in Fig. 9.13, we show agreement for averages over the entire
globe, at all altitudes between the surface and 40km. It is, however,
important to emphasize that the apparent agreement in the troposphere
has little substance. The tropospheric temperature gradient for the model
has been assumed to be equal to the observed global average, and most
of the radiation to space originates in the troposphere. These two facts,
taken together with a requirement for flux balance at the top of the
atmosphere, imply that the height of the tropopause is the only
undetermined parameter, and this may be calculated from a condition of
continuity of temperature at the tropopause, given the stratospheric
temperature. The only important question is, therefore, why is the
stratosphere close to radiative equilibrium, given the existence of strong
atmospheric motions throughout the middle atmosphere? A complete
answer to this question has not yet been given but the following are some
of the considerations.

1. We shall show in § 10.4 that a meridional, Hadley circulation
driven by radiative imbalance will have temperatures close to
radiative equilibrium if the atmospheric mass is small enough.
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Stratospheric motions are more complicated than this, although
the strong zonal winds blow orthogonally to the average tempera-
ture gradient, and transport no heat. Consequently, it is reason-
able to anticipate that, above a certain level, for which the
overlying mass is small enough, temperatures should be close to
radiative equilibrium.

2. Tropospheric motions act to decrease the equator-to-pole tem-
perature difference in the lower atmosphere. The equator-to-pole
difference in thermal radiation passing upward into the strato-
sphere is thereby decreased. Strong motions in the troposphere
can act to decrease the thermally driven motions in the middle
atmosphere.

3. For reasons that may not be independent from those discussed in
(1) and (2), isentropic surfaces in the middle atmosphere are
often continuous over the globe and, for some levels, the surfaces
are approximately horizontal. It can be demonstrated that, for
averages over isentropic surfaces, contributions to the heating
from vertical and horizontal motions cancel, to first order. Source
functions, averaged over these quasihorizontal surfaces, are,
therefore, principally determined by radiative balance.

The significance of these rationalizations is hard to assess but,
together, they probably account for the important place occupied by
radiative-convective models in the meteorological literature.

9.2. An elementary solution

The two-stream solution for a grey-absorbing atmosphere, (2.141) and
(2.146), can be applied to a planetary atmosphere; we assume no
incoming thermal radiation from space (at T = 0) and include heating by
solar radiation at the ground and in the atmosphere.

The total flux of radiation is

where Fs is the solar flux and F^ is the thermal flux. For radiative
equilibrium in a stratified atmosphere, FR is constant and equal to zero,
because there is flux balance at the upper boundary. As a result,

9.2.1. Without solar absorption

In the absence of solar absorption the solar flux is constant (negative).
The equilibrium condition is now
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We use Planck's source function because we are mainly interested in the
lower atmosphere. From (2.141) we have

and, from (2.146),

At the surface (r = TJ),

The solution is

where 6g is the ground temperature.
If we wish to write (9.5) with height as the independent variable we

require a relationship between T and z. The relationship,

applies approximately to many gases. In particular, it is approximately
true for water vapor in the troposphere with H = 2 km.

The solution, (9.5), although based upon many simplifications, has
features that are instructive for planetary atmospheres.

1. The ground temperature 6g is always greater than it would be if
the atmosphere were transparent (T, = 0). This elevation of
surface temperature is known as the greenhouse effect. There is
some debate as to whether this is an appropriate term (does it
account for the behavior of a domestic greenhouse?), but there
can be no argument about its importance. It is, for example, the
fundamental cause for the 730 K surface temperature that we find
on Venus.
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2. There are discontinuities,

at both boundaries. At the upper boundary, this leads to a finite
temperature as the atmosphere merges with space (the skin
temperature),

3. The temperature lapse rate can be written

The lapse rate increases with t and has its greatest value at the
surface where the temperature is highest, a point of importance
when we come to consider free convection.

We shall continue to use the two-stream approximation because its
simplicity is a valuable aid to understanding. We should, therefore,
compare its results to those for an exact solution. This is done for a
semiinfinite atmosphere (i.e., no lower surface) in Fig. 9.3. Unless we are
dealing with fine points that require high precision, the comparison is
satisfactory. The two-stream approximation contains, in approximate
form, all the physics of the complete equations; for a discussion of
general principles it can be used with few reservations.

9.2.2. Absorption of solar radiation

We now consider an atmosphere with an absorption coefficient for solar
radiation a times that for thermal radiation. Equation (2.115) can be
written

where T is the optical depth for thermal radiation. For radiative
equilibrium,
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FIG. 9.3. Comparison of a two-stream solution for a semiinfinite atmosphere with the
exact solution.

The two-stream equation, (2.140), now yields

or

The boundary condition (2.145) is, for 7~(0) = 0,

The solution is then
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FIG. 9.4. Source functions calculated from (9.13) for £Q = —1/4.

The lower boundary condition does not influence the solution above the
boundary.

The curve for a = 0 in Fig. 9.4 is for no solar absorption and is the
same as the two-stream curve in Fig. 9.3 (a greenhouse solution). For
finite a, solar radiation is absorbed in the upper layers, which heat up,
while lower layers cool. This behavior corresponds qualitatively to that of
the warm layer at about 50km in the earth's atmosphere. For this layer,
the absorbing gas is ozone. The similarity to the earth's atmosphere
becomes more apparent if height rather than optical depth is used as the
independent variable. From the barometric law, it may be demonstrated
that the temperature gradient tends to zero as z —> °° for all the profiles in
Fig. 9.4, as is observed in the earth's upper atmosphere (Fig. 1.4).
Solutions for a > 1 are thermosphere solutions.

If solar radiation is absorbed in the upper atmosphere, the lower
atmosphere is, not surprisingly, cooled. In the limit a—»o°, for which the
skin temperature tends to infinity, the lower atmosphere temperature is
the same as the skin temperature corresponding to the greenhouse
solution. For earth this temperature is about 200 K.

The lower atmosphere of the grey thermosphere solution differs
greatly from earth as it is now. Ozone absorbs enough solar energy to
form a high-altitude, high-temperature layer, but not enough to prevent
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the surface from being strongly heated by the sun. It would be different
for the nuclear winter. Then, solar radiation of all wavelengths is
absorbed by dust and the surface may be screened entirely. At high levels
the atmosphere will be heated but low temperatures may develop at the
surface. Such events have been observed on Mars during a global dust
storm. Details of the solution depend upon the optical properties of the
dust, and upon scattering, which we have omitted.

9.3. Nongrey atmospheres

Radiative equilibrium calculations for nongrey atmospheres are usually
performed numerically. Before discussing such work we look at formal
treatments based on simple spectral models.

9.3.1. Models without pressure broadening

For a grey atmosphere, the k distribution function/(/c) (§ 4.8) is a Dirac
<5-function. For a nongrey atmosphere, the distribution function is
broadened and there are characteristic differences between random and
regular models (Fig. 4.20a and b). It is reasonable to anticipate a close
relationship between the shape of the k distribution and the equilibrium
temperature distribution.

Figure 9.6 shows radiative equilibrium solutions for the illustrative
regular models displayed in Fig. 9.5. The grey solution (GR) corresponds
to (9.5), but with a different presentation. None of the regular models
differs radically from the grey solution. With some rescaling of the
effective temperature (e.g., by scaling the incident solar radiation) and
minor rescaling of the mean absorption coefficient, the curves could be
made to correspond closely.

The nongrey solutions in Fig. 9.6 all have finite skin temperatures.
Comparison of Figs. 9.5 and 9.6 shows the skin temperature decreasing
as the k distribution broadens.

Random models have k distributions that, other things being equal,
are broader than those of regular models (§ 4.8). The comparison
between equilibrium curves for random and regular models shown in Fig.
9.7 bears out the general conclusion that the wider the k distribution the
greater the difference in equilibrium conditions from those for grey
absorption.

9.3.2. Pressure broadening

The effect of pressure upon line width is not included in the foregoing
models. There is, however, an important difference in the skin tempera-
ture between models with and without pressure broadening; for pressure-
broadened lines the skin temperature can be zero.

Figure 9.8 deals with this question in the context of the k distribution
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FIG. 9.5. k distributions for regular band models. The bands are shown on the left side.
GR is grey absorption, SQ is square lines, TR is triangular lines, LO is the Schnaidt model
with Doppler lines, and EL is the Elsasser model for Lorentz lines (§ 4.5.1). Each band has
the same ratio of line width to line spacing (y = 0.25) and the same average absorption
coefficient (k = 2). For the grey model, the k distribution is a 6-function at k=2. For
square lines, the k distribution consists of two <5-functions at k = 0 and 4. After Arking and
Grossman (1972).

technique for regular bands. The lines are square and their width is
varied while maintaining the same mean absorption coefficient. The skin
temperature decreases as the lines narrow.

The same general result is demonstrated in Fig. 9.9 for a single line
of Lorentz shape. This was obtained by an ingenious analytic technique
using the expression, (6.19), for the equivalent width of a single line for a
gas of constant mixing ratio. A diffusivity factor r = 1.66, (6.6), may be
included in the definition of u to allow for the diffuse character of the
radiation. It can be shown that the heating rate equation (6.60), when
equated to zero, has exact solutions for integral values of u. These are
tedious to evaluate, however, and results for only « = 1, 2, and 3 are
shown in Fig. 9.9. The result for u »1 was obtained by an approximate
numerical method.

Vanishing skin temperatures for lines of all intensities are shown in
Fig. 9.9. This result can be explained in the following simple terms.
Consider a very thin layer above the rest of the atmosphere. If no
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FIG. 9.6. Radiative equilibrium for the band models in Fig. 9.5. 8e is the effective
temperature, (1.2). In terms of quantities used previously in this chapter,

r is the optical depth based on the mean absorption coefficient. The model is transparent to
solar radiation and has a black surface at r = 2. After Arking and Grossman (1972).

thermal radiation is incident from above, the layer absorbs radiation from
one direction only, but emits in two. For grey absorption, this leads
directly to the relationship,

where 9S is the skin temperature and f9e is the effective temperature. This
result is the same as (9.7) because the outward flux is, by definition,
equal to od*.

For line absorption, on the other hand, the only radiation that affects
the skin layer is that emitted by intense line centers; but most of the flux,
which determines dc, comes from the line wings. Emission in line centers
takes place high in the atmosphere where the temperature, in the absence
of solar absorption, is well below the effective temperature. The
temperature used on the right-hand side of (9.14) should, under these
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FIG. 9.7. Radiative equilibrium for random and regular bands. RLO is a random Lorentz
model. RSQ is a random model of square lines. EL and SQ are the same as for Fig. 9.6.
k = 2 and y = 0.25 for all models, k distributions for random and regular models are
compared in Fig. 4.20. The random model has an exponential distribution of line
intensities. All calculations are without absorption of solar radiation and for a black surface
at T = 2. After Arking and Grossman (1972).

circumstances, be replaced by a temperature lower than 6e and the
calculated skin temperature will be lower. The greater the contrast
between line centers and wings, the lower the skin temperature. If the
Lorentz shape is used down to zero pressure (as in this calculation), the
skin temperature is zero.

9.3.3. Numerical methods

Numerical methods for calculating heating rates for both solar and
terrestrial radiation are discussed in Chapter 6. In an appropriate
algorithm the temperature can be adjusted until the net heating is less
than a predetermined value. Two iterative techniques have been
employed. Both start from an assumed initial state. The first method then
calculates the net heating at each level and uses the heating rate to
determine an adjustment to the temperature at that level. For example,
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FIG. 9.8. Equilibrium temperatures for a regular array of square lines. The mean
absorption coefficient is the same for each profile (k = 2). The absorption coefficient
between lines is fixed at zero while the coefficient at the line center (&max) is varied, and is
shown against each curve. The line width varies inversely with the coefficient at the line
center. After Arking and Grossman (1972).

the temperature, 6(z), may be adjusted in one time step, At, to

For this time-marching or relaxation method, the temperature has a
physical meaning at each time step. But such methods are very slow,
requiring 200 or more days to reach a steady state in the troposphere.
With a time step every 8 hours and a detailed radiative computation at
each step, this can be a lengthy process.

A more economical technique involves inversion of the Curtis
matrix, (6.60). This yields directly an equilibrium source function for
each level. To make matters simpler the source functions J, can be
expanded to first order in the temperature, about a mean state. Equation
(6.60) then becomes a matrix equation involving the temperature, but
with modified matrix elements.
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FIG. 9.9. Source functions for a single Lorentz line. pn is the surface pressure. B* is the
source function for the lower surface. The ratio B(p)/B* is equivalent to the quantity
plotted in Figs. 9.3 and 9.4.; the outward flux has no significance for an atmosphere
containing only a single absorption line. After King (1952).

Efficient algorithms for matrix inversions are available. A single
inversion is not sufficient because the matrix elements are functions of
temperature and must be recalculated whenever the temperatures are
changed. They are not sensitive functions of temperature, however, and
four iterations are normally enough for the calculation to converge. This
has obvious advantages over the 1-2 X 103 iterations required for the
time-marching technique.

Figure 9.10 shows the first well-known radiative equilibrium calcula-
tion for the earth's atmosphere made with a digital computer. Figure 9.11
shows a breakdown into solar and terrestrial components for each of the
three gases considered. More refined calculations, published sub-
sequently, do not change the general nature of these results.

In Fig. 9.10, the equilibrium temperature distribution below 15km
corresponds quite closely to that for a grey atmosphere, (9.5) and (9.6),
with T, = 4. There are also differences between the grey and nongrey
solutions. The grey solution has a temperature discontinuity at the
surface of 11.3K, while the numerical calculation has a discontinuity of
only 0.06 K. This discrepancy is not as important as appears at first sight.
The temperature gradients near to the surface also differ in the two
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FIG. 9.10. Radiative equilibrium in the earth's atmosphere. Conditions correspond to the
annual average at 40°N and a mean |0=-0.5. Full line ( ) = clear sky conditions;
dash-dot line ( ) = cloudiness. After Moller and Manabe (1961).

solutions. For the numerical model, the gradient is 90 K km *; for the
grey model, it is 36Kkm~1. The grey discontinuity has been exchanged
for a steeper gradient in the lowest few kilometers in the numerical
model. When free convection is introduced into the calculation there is
relatively little difference between these two cases.

Between 15 and 30km, Fig. 9.10 shows an increase of temperature
with height. This is caused by solar absorption by ozone; the balance is
cooling by water vapor and carbon dioxide in roughly equal amounts. In
the troposphere, water vapor is the single most important gas, dominat-
ing both the thermal and the solar radiation fields.

9.4. The troposphere and the stratosphere

9.4.1. Introduction

The discovery of the stratosphere by Teisserenc de Bort in the year 1900
led to a historic series of papers on radiative equilibrium in planetary
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FlG. 9.11. Contributions to radiative balance. L and S refer to long-wave (terrestrial) and
short-wave (solar) radiation. H2O, CO2, and O3 refer to the three gaseous components.
The conditions are similar to those for Fig. 9.10 but are not identical. After Manabe and
Moller (1961).

atmospheres, all based on the hypothesis that the lower stratosphere is
close to radiative equilibrium. In this section we shall pursue the ideas of
Emden (1913), who showed that a state of radiative equilibrium in a grey
atmosphere is unstable in its lower layers and that convective activity
must develop near the planet's surface. This was the first attempt to
account for the existence of the convective troposphere. We shall show
that a remarkably good first approximation to the thermal state of the
atmosphere results from models that contain a simple parametric
treatment of the convective layer. In these models it is convenient to use
the terms stratosphere and troposphere to refer to the radiative and
convective layers even though the correspondence between atmosphere
and model may be imperfect.

A historical note should draw attention to the work of Humphreys
(1909) and E. Gold (1909), who approached the problem simultaneously
but from two different points of view. Humphreys regarded the strato-
sphere as a manifestation of the finite skin temperature of an atmosphere
in radiative equilibrium, (9.7).1 This temperature is related to the

To be consistent with the global average solar flux that was used in § 1.1, we must write

where, from (1.1) and (1.2), |e = —0.25. With the numbers employed in § 1.1,
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effective emission temperature by (9.14). The skin temperature cor-
responding to an effective temperature of 255.5 K is 214.8 K, close to the
average observed temperature of the lower stratosphere.

Gold, on the other hand, made no attempt to explain the existence
of an isothermal stratosphere but, assuming it to exist and to have the
temperature of the tropospheric layer in contact with it, he computed
where the base must lie in order to maintain an overall radiative heat
balance for the stratosphere. He found a basal pressure equal to p0/4,
where p0 is the surface pressure (in good agreement with the tropopause
pressure in middle latitudes). Milne (1922) criticized a number of aspects
of Gold's work, including the assumption of an isothermal layer in the
lower stratosphere, since, for a grey-absorbing atmosphere, the tempera-
ture must decrease with height if the outgoing thermal flux is to be
positive (2.141).

An interesting review of these early contributions was written by
Pekeris (1932). It throws light on the progress of thought in this subject
and its relationship to early astrophysical enquiries. We may note that
Gold's work is not a theory but a test for self-consistency. Gold does not
show why there should be an isothermal layer in equilibrium with the
troposphere immediately below, but an extension of Emden's ideas leads
to criteria similar to those adopted by Gold, as we shall show.

9.4.2. The troposphere and the stratosphere

Figure 9.12 and Table 9.1 present the radiative equilibrium solution,
(9.5), in geometric coordinates by assuming an exponential distribution
with height of the optical depth, (9.6). The data shown in Fig. 9.11
suggest that water vapor is the dominant thermal radiator in the
troposphere, so we adopt a scale height of 2 km, similar to that observed
for water vapor in the troposphere.

All of the profiles shown in Fig. 9.12 have large negative tempera-
ture discontinuities at the surface. A negative temperature discontinuity
is hydrostatically unstable and convection will ensue for all models. This
instability is reinforced for TI >0.5 by lapse rates near to the surface that
are also unstable. Following most investigators in the field, we assume
that convection is so efficient that it constrains the lapse rate to a
maximum value equal to the neutral, marginally stable lapse rate. While
it would be reasonable to use the adiabatic lapse rate for the neutral
condition, it is more common to use the observed average lapse rate in
the troposphere, 6.5Kkm~1. This has the illusory advantage of ensuring
a degree of similarity between the solutions and the earth's atmosphere.
The column labeled z65 shows the height to which the lapse rate is
unstable under this criterion.

We now seek a condition governing the height of the convective
layer. The first point to note is that, for a grey atmosphere, the solution



ATMOSPHERES IN RADIATIVE EQUILIBRIUM 405

FIG. 9.12. Temperature profiles for radiative and radiative-convective states. The solid
lines are radiative equilibrium profiles while the broken lines are the modified profiles after
6.5 K km"1 convective lapse-rate adjustment. The chain line will be discussed in the text.
The heavy lines on the abscissa show the surface temperature discontinuity, A 6(0).

in the radiative region does not depend at all upon the region below it.
The solution, (9.5), follows from the upper boundary condition alone;
the lower boundary condition is only needed to determine the surface
conditions. This behavior is not followed by nongrey models but it
simplifies the present discussion.

Consider a point, located in the radiative region, but separated from
the convective region by an infinitesimally small distance. The thermal
heat flux in the radiative region is equal to -Fs. The downward
component of the thermal heat flux is unchanged by events in the
convective region because the conditions in the radiative region are
unchanged. Consequently, the convective region is required to deliver to
the radiative region the same upward flux component as did the
atmosphere that it replaces.
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Table 9.1. Numerical data for Fig. 9.12"

«1
0.5
1.0
2.0
4.0

0(0)
(K)

206.6
237.5
259.7
292.1
335.9

-A6(0)

(K)

39.1
28.4
22.8
16.7
11.3

-(5).
(KknT1)

0.0
12.0
19.5
27.4
36.0

Z6.5

(km)

0.0
1.8
3.2
4.6
6.0

t(s)

0
0.0159
0.0212
0.0239
0.0243

z(s)
(km)

6.02
6.90
7.70
8.87
10.20

0(s)
(K)

206.6
207.2
208.2
208.3
208.4

O'(0)
(K)

245.7
252.0
258.2
265.9
274.7

* Definitions:
0(0) = atmospheric temperature at z = 0

-A0(0) = temperature discontinuity at z — 0

f d d \ . n V Under radiative equilibrium— I -T- I = temperature lapse rate at z = 0 I M

\<3Z/0

Z6 5 = height at which lapse rate = 6.5 K km"
T(S) == optical depth of radiative layer ^
z(s) = height of radiative-convective transition I Under radiative-convective
0(s) = temperature at transition f equilibrium

9'(0) = temperature at ground level J

For rt» 4
„, 0.0245,z, = -2 In km,Ti

6(s) = 208.5 K,
0'(0) = 208.5 + 6.5z(s) K.

Vs/2(7=1.82x 109K4; absorption scale height = 2 km. The solar flux used in this
table and in Fig. 9.12 is 17% lower than the value adopted elsewhere in this book.
The higher value would give 0(0) = 214.8 K and -A0(0) = 40.7K in the first row of
the table.

In Fig. 9.12, the profile for r1 = 1 is unstable below 3.2km because
the lapse rate exceeds 6.5 Kkm"1. The chain line represents a hypotheti-
cal atmosphere in which the lapse rate has been adjusted to 6.5 K km"1

below 3.2km without a temperature discontinuity at the transition
between the radiative and the convective regions. This profile does not
satisfy the upward flux requirement. The temperature at every level in
the convective region is lower than that at a corresponding level in the
radiative region that it has replaced. It, therefore, delivers too small an
upward flux component at the transition. The first effect of this will be
cooling in the radiative region and the development of a negative
temperature discontinuity at the transition.

This negative discontinuity is itself unstable. Convection will start
above the transition and the top of the convective layer will rise. It must
continue to rise until it can deliver the correct upward flux without an
unstable, negative temperature discontinuity at the transition. This
condition has been applied numerically to establish the broken curve
marked rl = l. This is the solution to the problem as posed. Solutions for
TI = 4 and for Tl« 1 are also given in Fig. 9.12 and Table 9.1.

The solution for rt = 4 is remarkably close to the average conditions
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in the terrestrial atmosphere. The calculated surface temperature is
274.7 K, greatly reduced from the radiative equilibrium value of 335.9 K.
Convection has carried heat up into regions where it can more easily
radiate to space. More efficient convective processes would further
reduce the ground temperature.

Note that a convective layer is always required in Emden's treat-
ment. Even for a transparent atmosphere, a convective layer must extend
to 6.02 km. In the limit of zero opacity, however, the convective heat flux
is zero and the solution is trivial.

Nongrey radiative-convective calculations have been performed
numerically on many occasions. Different numerical procedures are used
to converge on a solution for the convective layer, but the essential
requirements are the same as for the grey model: the convective region
must deliver the required upward flux component to the radiative region,
and there must be no discontinuity of temperature at the transition. The
temperatures in the radiative region are now no longer independent of
events in the convective region, but that creates no difficulties for an
iterative numerical procedure.

Early nongrey calculations are shown in Fig. 9.13. The agreement
with the U.S. Standard Atmosphere is remarkable. The surface tempera-
ture for the more realistic, cloudy model is 286.9 K and the tropopause
height is 13 km. Although these two figures are close to those for a grey
model with r\ = 4, the transition region differs from the grey models in
being gradual rather than sharp. This is not obvious in Fig. 9.13 because
of the wide spacing of the data levels. It is much clearer in Fig. 9.14 in
which three methods of convective parameterization are compared (see
§ 9.4.3 for discussion). Although no sharp feature occurs on these profiles
there is, in fact, a level of transition between the convective and the
radiative regions. For the 6.5KktrT1 adjustment model this level is
13.93 km; for the cumulus convection model it is 9.40 km. Above the
transition level, the lapse rate starts to decrease with height, but so
gradually that the change of gradient is hardly noticeable.

9.4.3. Convective models

The results given by radiative-convective models depend, as might be
expected, on the convective model employed. The 6.5 Kkm'1 lapse-rate
adjustment, as used in previous sections, may be regarded as the simplest
possible convective model. There are, however, theories of convection
that give the convective flux explicitly in terms of macroscopic variables;
combined with the radiative transfer equation, these theories can lead to
complete numerical solutions for the radiative-convective system. In this
section we briefly discuss the influence of the convective model. Although
such discussion is instructive, its value is uncertain because the convective
models are of debatable value.



408 ATMOSPHERIC RADIATION

FIG. 9.13. Radiative-convective profiles in the earth's atmosphere. The lapse rate for
convective adjustment is 6.5 K km~'. The chain line is without clouds and a net solar flux of
299 W m~2. The broken line is for the cloud layers indicated at the bottom right (cloud
amounts in parentheses) and a net solar flux of 228 Wm~2 . The solar zenith angle is taken
to be 60°. The U.S. Standard Atmosphere represents a global average of observed
temperatures. After Manabe and Strickler (1964).

We distinguish between convection in the free atmosphere and
boundary layer convection. The latter refers to the lowest 10-100 m of
the atmosphere, where the presence of the surface strongly influences the
mixing processes. First, we consider the free atmosphere. This has
typically been treated by means of mixing-length theories, for which the
convective heat flux may be expressed by

KH is a heat diffusivity and T is the neutral lapse rate for marginal
stability. A consistent theory would use either the dry adiabatic lapse rate



FIG. 9.14. Radiative-convective states compared for three convective models. The
conditions are tropical, with a net solar flux equal to 353 W m ~ 2 . The three convective
models are discussed in § 9.4.3. The cumulus profile is the same in the two panels. After
Lindzen et al. (1982).
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(Fd = 9.8 K km""1) or the moist adiabatic lapse rate (Tm), depending upon
whether condensation occurs. For low temperatures and low water vapor
densities, the moist adiabatic lapse rate tends to the dry adiabatic lapse
rate but, for surface conditions in the tropics, it can be as small as
SKkirT1.

The diffusivity KH is central to mixing-length theories. It has been
given in terms of thermal parameters alone (free convection), mechanical
parameters alone (shear flow turbulence), or both together. The instruc-
tive feature of such theories is that KH is usually very large in the sense
that, for any reasonable flux of heat, (9.17) gives 98/dz T. This is the
justification for the lapse-rate adjustment models.

Of greater current interest to theoretical meteorology are attempts
to base theories of convection on macroscopic phenomena, most impor-
tantly on cumulus convection. Convection is assumed to take place in
narrow buoyant columns that entrain ambient air until the warm air has
lost its buoyancy. Ascent ceases at the detrainment level. Below that
level, convective heating, according to one theory (there are several), is
given by

where Mc is the vertical mass flux of air in the cumulus columns.
In the context of numerical calculations using 1 km vertical grids, the

boundary layer is a discontinuity. We may approach boundary layer
theory with somewhat more confidence than that of the free atmosphere
because a large body of measurements exists for this accessible region of
the atmosphere, and predictions can be tested. Depending upon the
stability of the boundary layer, it may be treated as a phenomenon in
shear flow or as free convection or as a combination of the two.

A variety of free atmosphere and boundary layer models has been
used in radiative-convective theories. A comparison between a cumulus
convection model, a 6.5Kkm~1 convective adjustment model, and a
moist adiabatic adjustment model is given in Fig. 9.14. The cumulus
model and the moist adiabatic adjustment model are both influenced by
the water vapor density and have smaller lapse rates at low levels than
does the 6.5 Kkm"1 adjustment model. This has the effect of decreasing
the sensitivity of radiative-convective models to externally imposed
changes, such as changes in the incident solar radiation or changes in
gaseous densities, for the reason illustrated in Fig. 9.15. Let us assume
that absorption is strong and that radiation lost to space comes from a
restricted layer or emission level [see the discussion of (6.66)]. If the solar
radiation increases, the atmosphere must respond by increasing the
temperature of the emission layer from 6*c to 0e + A#. For a convective
layer with a fixed lapse rate, the surface temperature must change by the
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FIG. 9.15. Illustration of different model sensitivities. The "alternate surface" is a device
for changing the amount of absorber while maintaining the emission to space.

same amount. For a moist adiabatic atmosphere, on the other hand, the
surface temperature change may be much less than Af3.

A modern paradigm for climate models is the effect of doubling
atmospheric carbon dioxide. Figure 9.15 illustrates a way to hold the
emission constant while changing the amount of gas in the atmosphere,
namely by moving the surface relative to the emission level. Again, the
effect upon surface temperatures is greater for the dry adiabatic than for
the moist adiabatic model.

9.4.4. Nonlocal dissipation

Apart from a single study of the martian atmosphere, all radiative-
convective models involve the implicit assumption that free convection
always carries heat upward. This statement is correct only if convective
motions are generated and dissipated in the same region. Nonlocal
dissipation has, however, been shown to be important for other meteoro-
logical phenomena and may have relevance to theories of the tropopause.
Convective velocities may be large enough for their inertia to carry hot
air from the convective region into the overlying radiative region
(convective overshoot); the convective motions must now be destroyed
by working on the stable region, where they will cause a downward
convective heat flux.

An approximate treatment of this problem has been made by
assuming the complete absence of viscous dissipation. The only external



412 ATMOSPHERIC RADIATION

heating is radiative. Motions carry enthalpy and entropy from one part of
the system to another and, integrated over the whole atmosphere, their
contributions vanish. The enthalpy and entropy conservation relations
are

where s is the specific entropy and/>0 is the surface pressure.
In the radiative region there is no transport, and both enthalpy and

entropy are locally balanced; consequently the lower limits in (9.19) and
(9.20) can both be replaced by the pressure at the radiative-convective
boundary. If we now assume that the lapse rate in the convective region
is known, (9.19) and (9.20) provide two relations from which the average
temperature of the convective region and its vertical extent can be
calculated.

A calculation for the martian atmosphere, based upon these ideas, is
shown in Fig. 9.16. The low-dissipation case is that discussed here; the
high-dissipation case is the dry adiabatic lapse-rate adjustment model
discussed in previous sections. Comparison of the two cases is compli-
cated by the large time dependence of temperature in the martian
atmosphere. However, the effect of convective overshoot in the region of
the radiative-convective transition is apparent.

9.4.5. Semiconvection

Clouds are an important factor for climate because they strongly
affect both thermal and solar radiation. Here we look at one unusual
aspect of cloud models, namely the nature of the transition region
between convective and radiative regions when clouds are present.

The condensed phase, whether it be water or ice, appears initially as
micron-sized particles. Before precipitation commences, cloud particles
fall very slowly and even weak convection will bring about an approxima-
tion to a constant mixing ratio of aerosol to air. This implies a
discontinuity of aerosol properties at the top of the convective region; the
sharp tops observed for many cloud types support this idea. Since aerosol
particles absorb solar radiation, this model has a discontinuity of solar
heating at the transition, with more heating in the convective region.

When we discussed the steady states at the tropopause in Fig. 9.12,
there was an implicit assumption that all heating mechanisms were
continuous at the transition between the radiative and convective regions.
If we introduce a discontinuity into the solar heating, the earlier
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FIG. 9.16. Diurnal extreme radiative-convective profiles for Mars for both high and low
dissipation. Conditions appropriate to the equatorial equinox have been chosen. The 1700 h
profile has a dry adiabatic lapse rate in the convective region. The 0800 h profile is not yet
unstable. After Gierasch (1971).

discussion is no longer correct. To satisfy the radiative and convective
equations a temperature discontinuity is now required at the transition,
with the lower temperature in the stratosphere. We have already
remarked, however, that this temperature configuration is hydrostatically
unstable; consequently, we are led to the conclusion that no steady-state
solution exists to the problem, as posed.

A solution to this paradox is illustrated in Fig. 9.17. In place of a
surface of transition between convective and radiative regions there is
now an extended transition region. This region has an adiabatic lapse
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FIG. 9.17. The transition region at a cloud top. After Gierasch and Goody (1970).

rate, but is in radiative equilibrium, maintained by variable aerosol
mixing ratio and, consequently, a variable solar heating. An important
point is that the convection required to maintain this distribution of
micron-sized particles is too small to influence the heat balance. This
state of semiconvection can be realized in approximation.

FIG. 9.18. A radiative-convective model of the Venus clouds. After Gierasch and Goody
(1970).
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Figure 9.18 shows a calculation for the Venus clouds. The model is
time dependent and is based upon constraints imposed by spectroscopic
observations. Two convective regions occur and, in this model, clouds,
can exist in a nonconvective region.

9.5. The runaway greenhouse

9.5.1. History of ideas

The vapor pressure of water is observed to be, on the average, one-half
of its saturated value throughout the troposphere (a constant relative
humidity of 50%). If we accept this statement as characteristic of the
earth's atmosphere, we are assuming a coupling between temperatures
and vapor concentrations that can lead to an instability known as the
runaway greenhouse effect.

A number of numerical investigations have been concerned with the
change in ground temperature accompanying imposed perturbations,
such as the doubling of the carbon dioxide concentration. The model
sensitivity depends upon the behavior of the water vapor. Fixed relative
humidity models (i.e., models in which temperatures and humidities are
coupled) have been reported to be 2 to 10 times more sensitive than
those with fixed vapor density. This suggests the possibility of a runaway
greenhouse effect but outside the range of parameters normally encoun-
tered on earth.

The ideas behind the runaway greenhouse effect have been put
forward independently on several occasions. The first was connected with
an early criticism of Emden's theory of the troposphere. Hergesell (1919)
pointed out that Emden's temperature profiles were supersaturated under
the assumed conditions (for TI = 1 in Fig. 9.12 the temperature is very
low between 1 and 6km and the atmosphere could support very little
water vapor). Hergesell performed an iterative calculation in which water
vapor was limited by its saturated vapor pressure, and concluded that the
self-consistent solution was a cold, dry atmosphere, similar to that for
TJ «1 in Fig. 9.12. HergeselPs calculation contained numerical errors,
but he was correct in pointing to the great importance of the feedback
between water vapor density and temperature.

The next contribution to this discussion was part of a series of
important ideas about atmospheric radiation put forward by G. C.
Simpson. In 1927, Simpson pointed to a paradox: an atmosphere
dominated by water vapor could not emit to space a flux greater than
certain critical value. If the incident solar flux were to exceed this value,
the atmosphere could not respond. For earth, Simpson concluded that
the critical flux is exceeded by the solar flux in tropical regions. He
decided that his radiative model must be in error and he developed a
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more satisfactory nongrey model that did not exhibit this unacceptable
behavior. The paradox remains, however, but not for conditions close to
those presently occurring on earth.

For the next 30 years, the runaway greenhouse received little
attention. In 1964, T. Gold raised the possibility that a runaway process
has occurred on Venus and is responsible for the high surface tempera-
tures on that planet, but he gave no details.

The physical state of the atmosphere of Venus also stimulated the
enquiries of Ingersoll (1969) and Rasool and de Bergh (1970). Ingersoll
saw the problem, as did Simpson, in terms of a limit to the outgoing
radiation flux in the existing atmosphere, while Rasool and de Bergh
employed the context of planetary evolution. We shall briefly describe
the latter approach.

Theories of planetary evolution envisage the formation of the
atmospheres of the inner planets by slow emission of gases from the crust
by tectonic processes. The emergent gases are those found in the
present-day atmosphere, or loosely bound to the planet in the oceans and
in crustal carbonaceous rocks, principally water and carbon dioxide.
Rasool and de Bergh studied the successive equilibrium states in an
atmosphere created slowly by tectonic emission. The amounts of water
vapor and carbon dioxide are limited not only by the amount emitted but
also by surface interactions, the water by condensation or sublimation
and the carbon dioxide by chemical reactions with the surface rocks.
Both interactions are characterized by an equilibrium pressure that is a
function of temperature only; if, for a given temperature, the equilibrium
vapor pressure is exceeded, the gas concerned, whether it be carbon
dioxide or water vapor, will be incorporated into the surface and will not
pass into the atmosphere.

In the beginning, the atmosphere was cold (TI «1 in Fig. 9.12) but
the pressure was low and water vapor, at first, resided solely in the
atmosphere. As TI approaches unity for water vapor, the greenhouse
effect starts to raise the surface temperature. The important question is
whether this occurs before or after the vapor pressure has risen to the
equilibrium value for a condensed phase. In the former case, gases will
continue to enter the atmosphere and the temperature will continue to
increase; in the latter case, the additional tectonic gases will pass into the
crust and the surface temperature will remain constant. The earth is now
in the latter state; almost all of the water vapor and carbon dioxide reside
in the crust rather than in the atmosphere. The interesting question is
what changes might lead to the alternate condition. According to Rasool
and de Bergh the important difference between earth and Venus is that
earth is further from the sun and had a lower surface temperature at the
beginning of the evolutionary process. In the following sections we
examine the theoretical basis for these ideas.
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9. 5. 2. Simpson 's paradox

The outgoing radiation from a stratified atmosphere is given by (6.11)
with z = oo or, alternately, by the integral of the "radiation-to-space"
term in the heating rate, (6.66). In connection with the derivation of
(6.66), it was pointed out that, for monochromatic (or grey) absorption
and for a constant source function, the integrand corresponds to the
Chapman layer (Fig. 6.9). The scale height for water vapor in the
troposphere is approximately 2km and the full width of the Chapman
layer is, therefore, about 4km; for a layer of this thickness it is not
unreasonable to replace the Planck function by its value, B(zmax), at the
level of the maximum of the Chapman layer. The integral in (6.11) can
now be performed (O^Tf

v^ 1) to give

zmax is the level, (6.54), for which the slant optical path is unity. For
diffuse radiation, we may use the diffusivity approximation (§ 6.12)

where km is the mass absorption coefficient, r is the diffusivity factor
(—1.66), H is the scale height, and p is the absorber density.

The condition for fixed relative humidity can be written

where psat is the saturated vapor density and rj is the relative humidity.
Since the saturated vapor density varies very rapidly with temperature, it
is possible to treat the product r)kmrH as approximately constant, so that
(9.22) and (9.23) approximately determine the temperature 0(zmax) at the
peak of the Chapman function. In which event, the emitted flux (9.21) is
also determined.

Simpson, and others of his time, used a grey atmosphere that
absorbed 90% of incident thermal radiation. Combined with other
available information this led to a maximum emission temperature of
about 250 K, slightly less than that obtained in (1.1) and (1.2) for the
global average insolation. Within the uncertainties of this calculation, it
appears to be possible to balance the incoming solar radiation averaged
over a cloudy earth, but not in the tropics and not for a cloud-free earth
or (even less) for a cloud-free Venus.

If we reexamine Simpson's paradox for a nongrey atmosphere it still
has substance. The distribution with height of the outgoing thermal
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radiation from a strong band has a layered character, similar to but
broader than a Chapman layer. If atmospheric emission were entirely
from strong water vapor bands Simpson's paradox would still hold. The
only new factor would be the pressure broadening of spectral lines, which
modifies but does not destroy the above argument. As we see from the
recorded spectrum of outgoing radiation in Fig. 6.1, however, most
radiation comes from the water vapor window, modified by emission in
the v2 band of carbon dioxide and the v3 band of ozone. This window is
translucent and most of the outgoing radiation originates at the ground
(or cloud tops). This is not the condition for Simpson's paradox to occur.
The numerical models discussed earlier establish that there is still some
positive feedback between temperatures and water vapor densities but
not with the cataclysmic character that Simpson identified (and rejected).
However, the situation envisaged by Simpson should arise if the water
vapor window were to become opaque. A minimum mass absorption
coefficient in the window for ground-level conditions is about 1 g"1 cm2.
For »j=0.5, r = 1.66, and //air/#water = 4, (9.22) and (9.23) lead to a
saturation vapor pressure of 78 mb and a saturation temperature of
314 K. Equation (9.21) then gives 551 WnT2 for the outgoing radiation,
about twice the global average for earth. The surface temperature for this
condition would be higher than 314 K by an amount depending upon the
assumed tropospheric lapse rate; clearly the surface would be very hot
indeed.

9.5.3. An evolving atmosphere

Simpson was anxious to avoid a paradoxical result, while Ingersoll and
Rasool and de Bergh were looking for such a result to account for the
differences between the atmospheres of earth and Venus; both found
what they looked for.

In the following discussion we use TI as an independent variable. It is
related to the surface temperature in two different ways. For a saturated
atmosphere with a constant scale height, H,

If all of the other parameters can be treated as constants, (9.24) defines a
relationship between 0g and TJ. Since vapor pressure varies approxi-
mately exponentially with temperature, this relation gives close to a
straight line on a plot of 0g against In TJ (see the broken line in Fig. 9.19).
This line is a vapor pressure equilibrium curve. Above the line only the
vapor can exist; below, only the condensed phase. The two phases are in
equilibrium for points on the line itself.

The second relationship between T, and 9e is the radiative equi-
librium condition, (9.5). This relationship is plotted as solid lines in Fig.
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FIG. 9.19. The runaway greenhouse effect. The broken line represents (9.24). The solid
lines are from (9.5) with differing amounts of incident solar radiation. Points A, B, and C
are possible solutions that are discussed in the text.

9.19 for a series of values of the initial temperature,

Where the broken and solid lines intersect conditions are defined
under which a saturated atmosphere can be in radiative equilibrium; the
amount stored in the surface is undetermined.

When the radiative equilibrium curve lies above the phase curve, on
the other hand, all the absorbing gas is in the vapor phase. Radiative
equilibrium solutions can exist at any point on the curve.

From an evolutionary standpoint, the abscissa may also be inter-
preted as a nonlinear time scale. In the beginning, the atmosphere was



420 ATMOSPHERIC RADIATION

unsaturated and evolution developed along the radiative equilibrium
curves. Curve 1 represents an atmosphere for which none of the tectonic
emission is ever returned to the crust. The temperature can increase
indefinitely with time. On curve 3, point A gives the time at which
surface incorporation commences, for that particular value of the solar
constant. When A is reached, the temperature and saturation vapor
pressure no longer change with time, and further gaseous emission goes
directly into the surface.

Solution C is inaccessible by the evolutionary route and is, more-
over, unstable. This can be seen by considering a series of solutions for
different solar constants connecting the points B and C. They represent a
thermodynamically unacceptable relationship between increasing solar
radiation and decreasing surface temperature. The temperature cor-
responding to the tangent point, B, is the highest for which a stable
solution, involving a condensed phase, exists.

9.5.4. Influence of the tropospheric lapse rate

Figure 9.20 shows the results of nongrey calculations for two convective
models of the earth's atmosphere, with variable insolation. The
6.5 K km"1 adjustment model shows an increase of ground temperature
with increase of insolation, consistent with a runaway condition. The

FIG. 9.20. Surface temperature as a function of solar flux. The models employed are the
same as those used to derive the profiles shown in Fig. 9.14. The circles and the crosses are
terrestrial climatological data, illustrating both the validity of the model and the relationship
of conditions on earth to those that could lead to a runaway condition. After Lindzen et al.
(1982).
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cumulus convection model (discussed in § 9.4.3), on the other hand, does
not appear to exhibit a runaway behavior.

Earlier discussion of cumulus convection and moist adiabatic models
led to an expectation of smaller sensitivity to external change for models
with smaller tropospheric lapse rates. In the limit of an isothermal
convective region (unknown but imaginable) the surface temperature
would equal the effective emission temperature and would increase with
the fourth root of the insolation. Such an atmosphere cannot escape the
Simpson paradox, however, the existence of which did not depend on the
tropospheric lapse rate. If the solar flux exceeds the Simpson limit, the
model breaks down because it contains no compensating sink to take up
the excess radiation.
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phere with a given distribution of relative humidity," /. Atmos. Sci. 24, 241.

Coakley, J. A., Jr., 1977, "An efficient approach to radiative-convective
equilibrium," /. Atmos. Sci. 34, 1402.

Ramanathan, V., 1976, "Radiative transfer within the earth's troposphere and
stratosphere: A simplified radiative-convective model," J. Atmos. Sci. 33, 1330.

Figure 9.14 is from

Lindzen, R. S., Hou, A. Y., and Farrell, B. F., 1982, "The role of convective
model choice in calculating the climate impact of doubling CO^," /. Atmos. Sci.
39, 1189.
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Some fundamental ideas concerning the thermal equilibrium at the tropo-
pause are to be found in

Goody, R. M., 1949, "The thermal equilibrium at the tropopause and the
temperature of the lower stratosphere," Proc. Roy. Soc. London Ser. A 197, 487.

Dobson, G. M. B., Brewer, A. W., and Cwilong, B. M., 1946, "Meteorology of
the lower stratosphere," Proc. Roy. Soc. London Ser. A 185, 144.

9.4.3. Convectlve models
The effect upon climate calculations of different neutral gradients in the
convective region is discussed by

Chylek, P., and Kiehl, J. T., 1981, "Sensitivities of radiative-convective models,"
/. Atmos. Sci. 38, 1105.

A shear-flow convection model has been investigated by

Liou, K.-N., and Ou, S.-C. 1983, "Theory of equilibrium temperatures in
radiative-turbulent atmospheres," /. Atmos. Sci. 40, 214.

9.4.4. Nonlocal dissipation
An example of the treatment of a meteorological problem involving nonlocal
dissipation is

Lilly, D. K., 1968, "Models of cloud-topped mixed layers under a strong
inversion," Quart. J. R. Meteorol. Soc. 94, 292.

The only application of these ideas to radiative-convective models is by

Gierasch, P. J. 1971, "Dissipation in atmospheres: The thermal structure of the
martian lower atmosphere with and without viscous dissipation," /. Atmos. Sci.
28, 315.

9.4.5. Semiconvection
An example of a numerical calculation for an evolving cloud is

Herman, G., and Goody, R., 1976, "Formation and persistence of summertime
arctic stratus clouds," J. Atmos. Sci. 33, 1537.

Figure 3 in this paper shows the cooling at the cloud top and the consequent
rising of the cloud top, as discussed in the text.

The discussion of semiconvection follows Gierasch and Goody (1970), § 9.2.
Semiconvection in stars is reviewed by

Spiegel, E. A., 1969, "Semiconvection," Comm. Astrophys. Space Phys. 1, p. 57.

9.5. The runaway greenhouse
The following paper demonstrated the temperature-water vapor feedback in
climate models:

Moller, F., 1963, "On the influence of changes in the CO2 concentration in air on
the radiation balance of the earth's surface and on the climate," /. Geophys. Res.
68, 3877.
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A more restricted treatment by Manabe and Wetherald (1967), see § 10.4.2.,
gave a smaller increase. The following paper gives sensitivity increases between 2
and 10:

Ramanathan, V., 1981, "The role of ocean-atmosphere interaction in the CO2

climate problem," /. Atmos. Sci. 38, 918.

Early work on the runaway greenhouse effect is reviewed by Pekeris (1932),
§ 9.1. Some original references are

Hergesell, H., 1919, "Die Strahlung der Atmosphare unter Zugrundelegung vom
Lindenbergen Temperatur- und Feuchtigheitsmessungen," Arb. preuss. aero.
Obs. 13.

Simpson, G. C., 1927, "Some studies in terrestrial radiation," Mem. R. Meteorol.
Soc. II, #16.

, 1928, "Further studies of terrestrial radiation," Mem. R. Meteorol. Soc.
Ill, #21.

-, 1929, "The distribution of terrestrial radiation," Mem. R. Meteorol. Soc.
Ill, #23.

Later papers on the runaway greenhouse effect are by

Gold, T., 1964, "Outgassing processes on the Moon and Venus," The origin and
evolution of atmospheres and oceans, (P. J. Brancazio and A. G. W. Cameron,
Eds.). New York: John Wiley, p. 249.

Ingersoll, A. P., 1969, "The runaway greenhouse: A history of water on Venus,"
/. Atmos. Sci. 26, 1191.

Rasool, S. I., and de Bergh, C., 1970, The runaway greenhouse and the
accumulation of CO2 in the Venus atmosphere," Nature (London) 226, 1037.

A more recent discussion is by

Matsui, T., and Abe, Y., 1986, "Impact-induced atmospheres and oceans on
earth and Venus," Nature (London) 322, 526.

Figure 9.20 is from Lindzen et al. (1982), §9.4.1.
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EVOLUTION OF A THERMAL DISTURBANCE

10.1. Introduction

The thermodynamic equation for an ideal gas is

where pcv6 is the internal energy per unit volume and &R is the radiative
heating rate.1 For the sake of clarity we omit diabatic terms additional to
the radiative heating.

We may expand the left-hand side of (10.1) and write it in the form
of an enthalpy equation,

where

and cp is the specific heat at constant pressure. The left-hand side of
(10.2) includes both internal and potential energy, d is the dynamic
heating. If the vertical coordinate is pressure, dp/dt = Q and all terms in
d tend to zero as the velocities tend to zero.

Solutions to (10.2) in conjunction with the equations of motion, the
equation of continuity, and the gas law are the matter of dynamic
meteorology. In this chapter, we look at a single aspect, namely the
coupling between radiation and dynamics as expressed by the thermo-
dynamic equation, (10.2).

The expressions for HR developed in Chapter 6 were static. In order to use these expressions in the
time-dependent equation (10.1), we must assume the travel time of radiation to be zero and we must
neglect Doppler shifts from fluid motions. The former assumption is always justified but there are
occasions, e.g., when considering line shapes, when Doppler effects cannot be ignored. For fluid motions
much slower than the speed of sound, however, the neglect of Doppler shifts due to atmospheric motions
is also justified.



EVOLUTION OF A THERMAL DISTURBANCE 427

We shall use the methods of perturbation theory. Assume the
existence of a basic, steady-state (suffix 0) for which

This basic state could be a state of radiative equilibrium or a state
dominated by dynamic transports. We assume

where (d1, h'R, d')«(60, hR#,d0). Equation (10.2) can then be written
formally,

where

are radiative and dynamic relaxation rates.
NR and ND represent the stiffness of the system for radiative or

dynamic processes, respectively. The larger N indicates which process is
more effective in restoring the system to its steady state, after a
perturbation.

The usefulness of this approach depends upon the ease and accuracy
with which NR and ND can be calculated. As far as ND is concerned, we
shall use only order-of-magnitude arguments. For example, if the system
has a horizontal extent, y, and fluid velocity, v,

To go further with N& requires that we solve the full Navier-Stokes
equations and we shall not attempt to do so. We shall, however, look
closely at NR. Since h'R is made up of contributions from different
frequencies, it is convenient also to define a spectral relaxation rate such
that
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Studies of the radiative relaxation rate follow two distinct protocols,
the eigenvalue problem and the Newtonian cooling approach, confusing
because of their similarity, but with different objectives. The former
seeks a formal solution to (10.5) for d'(f) as a function of time. In
principle, the solution could and should include both radiative and
dynamic terms, but we are not yet able to do so, and in §§ 10.2 and 10.3
we consider the radiation only case, ND = 0.

We seek separable solutions of the form

where s is a position vector. Equations (10.9) and (10.6) have solutions
only for certain specific functions ty'(s), and for these eigenfunctions
there are discrete eigenvalues each with a specific value of the relaxation
rate N'. Each eigenstate is associated with a different scale of distur-
bance. Because the solutions are separable, the eigenfunctions are form
preserving. If they form a complete set, an arbitrary initial disturbance
can be expressed in terms of them, and the time evolution of the
disturbance can be discovered from (10.9).

A special case is that of an infinite, homogeneous medium (the
Spiegel problem). The eigenfunctions are harmonic (wavenumber, ri) and
the spectrum of eigenfunctions, N(n), is continuous. Fourier integral
techniques are applicable in this case (§ 10.3).

This formal approach to radiation problems has found little direct
application to practical atmospheric problems. Nevertheless, the theoret-
ical results are important for order-of-magnitude considerations. The
relaxation rate, N(n), may be taken to be representative for any
disturbance of scale, n~l. An example is given in § 10.4.

The Newtonian cooling approximation has become popular for a
specific application, the damping of gravity waves in the middle atmos-
phere. The implicit assumption is made that the form of the thermal
disturbance is determined by events in the troposphere, and that
radiation is a perturbation that does not affect the form. The gravity
waves are not exact eigenfunctions for the problem and are, therefore,
not form preserving. Given the form of the disturbance, (10.6) can be
solved to give an empirical relaxation rate N'(n), a function of position
as well as the scale of the gravity wave. Given the relaxation rate, (10.6)
may then be used as a heat equation,

This is Newton's law of cooling, the simplest and perhaps the most
important of all physical laws of heat transport.

This definition of the Newtonian approximation is more general than
is used by many investigators. The term is commonly applied to the
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special case W(0), for which the perturbation is not a function of
position, n = 0 is also the condition for the boundary-exchange ap-
proximation, 7VBE(§ 6.4.1), the dominant term of which is usually the
radiation-to-space term, Nsv. It is Nsp that is sometimes referred to as
the scale -independent Newtonian approximation.

We now discuss two approximations that are widely used, although,
with additional effort, both can be avoided. From (2.18), for a thermal
source function, to first order in the primed quantities,

I'v is a function of B'v everywhere in the medium. Everywhere, we
may write

Since 90 varies throughout the medium, so does (dBv/d6)gfi, but in all
that follows we shall treat (dBv/39) as a constant.

The second approximation involves the neglect of the first term on
the right-hand side of (10.11) in comparison to the second. If the
unperturbed state is close to radiative equilibrium, the first term is close
to zero when integrated over the entire spectrum (exactly so for grey
absorption). In addition,

is positive for some lines and negative for others. On both counts, the
approximation is plausible. Estimates of the error involved have been
made by a number of investigators, who generally reach the conclusion
that the error is small but not negligible.

In § 10.6, we shall discuss the absorption of solar radiation in the
middle atmosphere. The source function is no longer thermal and the
volume absorption coefficient is strongly influenced by temperature-
dependent photochemistry. In this case, the first term in (10.11) exceeds
the second in magnitude.

Radiative relaxation is simple to treat in the transparent and opaque
limits, introduced in § 2.4.2. In the transparent limit (with the consistent
assumption k'vv = 0), (2.120) gives
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Hence

where

is the mass mixing ratio of the absorber, and pa is the absorber density.
The spectral integral of (10.15) is

where £P>m is the Planck mean absorption coefficient. The parenthesis (°°)
indicates that (10.15) and (10.17) are valid for small spatial scales, less
than the mean free path of the radiation. This limit for small scales is
common to all relaxation rates, whether for eigenf unctions or for
empirical perturbations. It provides the fundamental rate scale for
radiative processes, independently of the particular problem or
circumstances.

In the opaque limit, (2. 127), we have

This expression cannot be evaluated without knowing the form of
the perturbation. For the harmonic form,

we find

where kRv is the Rosseland mean absorption coefficient.
To conclude this section we review the different radiative relaxation

rates that have been mentioned, and introduce additional rates that
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appear in later sections:

NR = TV = —h'R/pcpd', a general definition, (10.6)
yV1 = relaxation rate for the z'th eigenmode

N(n) = Spiegel's solution for an infinite, homogeneous medium
N'(n) = empirical relaxation rate, (10.10)

NBB = N'(O) = boundary-exchange approximation
/Vsp = radiation-to-space term in /VBE

/V(oo) = transparent limit, (10.15)
NE = any rate calculated with an equilibrium (Planck) source

function, § 10.3.4
N = planetary relaxation rate, § 10.4.1

Np(n) = photochemical-radiative rate, § 10.6.

10.2. The radiation eigenvalue problem

10. 2. 1. The integral equation

General solutions for radiative relaxation rates have been obtained only
in geometries with plane-parallel symmetry. As far as the atmosphere is
concerned, this restricts us to a stratified model, with disturbances that
vary in the vertical direction only. This limitation is important only for
intermediate scales of disturbance because the transparent and opaque
limits are not so restricted. We use (2.103) and (2.18) with (10.12) to give

In (10.21), we have included v suffices and a lower boundary
perturbation 0*'. The upper boundary cannot be perturbed. In the
following treatment, we shall assume the same for the lower boundary,
and omit 6*' . The treatment given here can be extended to include a
lower boundary perturbation, but without knowledge of conditions inside
the lower boundary we cannot predict either its amplitude or its phase.

With NO = 0 in (10.5) (radiation only),



432 ATMOSPHERIC RADIATION

The independent variable has been changed to the absorber amount,

We seek solutions that are separable in the variables m and t. For
solutions that satisfy (10.9), we cannot accept the indefinite increase with
time indicated by the positive sign in the exponential. We accept only the
decaying solutions,

If we substitute (10.24) into (10.22), we obtain the integral equation,

where the kernel function is

and N(°°) is given by (10.17).
If K(m, m') is symmetric, (10.25) is a Fredholm equation, for which

standard methods of solution are available. Some asymmetries can be
accommodated by redefining i/>(ra) but no asymmetries exist for a
homogeneous atmosphere. The required conditions for a homogeneous
atmosphere (besides constancy of dBv/dd) are a constant mixing ratio
and a constant Planck mean mass absorption coefficient. These conditions
are restrictive and limit the value of the method of eigenvalues for
practical problems.

Given these conditions, (10.25) can be evaluated by standard
methods. For finite values of ml, the solutions are discrete, with
eigenvalues Ar(°°)/2[Ar(°o) — N']. The eigenvalues of the Fredholm equa-
tion are real, positive, and constitute a denumerably infinite set, while
the eigenf unctions are orthogonal. These conditions allow us to express
an arbitrary disturbance as a weighted sum of the eigenf unctions.

mi = 0 corresponds to the transparent limit. From (10.25), the only
solution is N = jV(°°). In the transparent limit the relaxation rate does not
depend upon the form of the disturbance.
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10.2.2. Spiegel's solution

Spiegel's solution for an infinite medium is central to most discussions of
radiative relaxation. The integral in (10.25) can be split into two ranges,
0 =£ \m — m ' | =£ m and 0^\m — nt'l^nii — m, corresponding to the levels
above and below the level of interest, respectively. For an infinite
atmosphere, both integrals are the same, with the limits 0 and °°.

The eigenfunctions of (10.25) depend upon the spatial variation of
rv(m). This variation differs from frequency to frequency requiring, in
principle, a different solution for each frequency. This difficulty can be
avoided if we can assume that the mass absorption coefficient is
independent of position (we have already assumed that the Planck mean
is independent of position, so that this is not a major new restriction,
although it does further limit the use of the formal theory),

m is now the only independent variable. The continuous spectrum of
eigenfunctions can now be written

where n* is related to the geometric wavenumber by

The purpose of introducing n* is to be able to accommodate vertical
variations of density, provided that the mixing ratio remains constant.

If we expand the exponential integrals and make use of the
substitution f = [Tv(m) — Tv(m')]l %, where § is the vertical direction
cosine, (10.25) and (10.28) become

Note the use of the tilde to denote the infinite domain.
Spiegel's solution is, for grey absorption,
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FIG. 10.1. Radiative relaxation rates for grey absorption. The broken line is obtained from
a two-stream approximation (see § 10.2.3).

Equation (10.32) is plotted in Fig. 10.1. It has the asymptotic forms,

Equations (10.33) and (10.34) correspond to the transparent,
(10.17), and the opaque, (10.20), limits, respectively. The important
independent variable n*/km is the optical path of a wavelength divided by
2n.

Because there is a continuum of solutions, the time evolution of an
arbitrary disturbance can be studied by means of Fourier transforms.
Figure 10.2 shows a calculation of 9'(r', t)/8'(i;', 0) for an initial
symmetric disturbance,

The Fourier decomposition of (10.35) has some power at transparent
frequencies (n*/km > 1). The initial decay rate is about one-half N(°°); at
later times, as the disturbance spreads, the power moves to opaque
frequencies and the decay rate becomes progressively slower.
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FIG. 10.2. Decay of the central temperature for a symmetric disturbance. The initial
disturbance is

After Spiegel (1957).

10.2.3. Two-stream solution for a scattering atmosphere

A two-stream solution for the radiative relaxation rate is compared with
an exact solution in Fig. 10.1. The asymptotic regimes agree, and the
correspondence is good for all scales. It bears repeating that two-stream
approximations contain all of the essential physics of radiative transfer
and that they are exact in transparent and opaque limits. We now derive
the two-stream result for a mixed scattering and absorbing atmosphere,
having a single-scattering albedo av.

From (2.23) and (2.32), the source function for mixed scattering and
absorption is

If we use this source function in (8.137), and perform the same
operations as those used to obtain (8.144), we obtain an equation for the
flux,

Differentiating (10.37) with respect to z and equating perturbation terms
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(/v is not perturbed),

If we define Nv from (10.10) and use the spatial perturbation (10.28),
we find

jVv(°°) is defined from (10.15) with kv y = (1 - av)ev v.
For av = 0 (no scattering), (10.39) gives the broken line in Fig. 10.1.

In a later section, we shall obtain a similar result using a diffusivity
approximation to the integral equations. As discussed in § 2.4.5, the
two-stream approximation and the diffusivity approximation give similar
results. In this particular case, the two approaches agree for the
diffusivity factor r = 31/2. The same result is obtained for gv = 1 (forward
scattering) as for av = 0. There is no formal distinction between strict
forward scattering and no scattering at all.

10.2.4. Effect of boundaries

In a finite domain, eigenvalues and eigenfunctions are discrete. The
eigenfunctions form a complete basis set and can be used to describe
the time evolution of an arbitrary disturbance in a finite atmosphere. The

FIG. 10.3. The first even eigenvalues, A'', for a perturbation between two boundaries. Tt is
the optical depth for a medium contained between two boundaries (the optical depth at the
line center for a single Lorentz line). N(°°) is the transparent rate (10.17). After Gay and
Thomas (1981).
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FIG. 10.4. Decay of a temperature perturbation between two boundaries. The initial
perturbation is 8 (r, 0) = 1. The optical depth T, is 50 in both cases. The elapsed times for
the successive curves are, from top to bottom, tNl — l/4, 1/2, 1, 2, 4. From Fig. 10.3,
NlJN(<x>) is 1/800 for grey absorption and 1/14 for the Lorentz line. After Gay and Thomas
(1981).

decay of an initially uniform disturbance between two thermal boundaries
is illustrated in Figs. 10.3 and 10.4.

Results are shown for grey absorption and for a single Lorentz line.
In the latter case, TI refers to the optical depth at the line center. The
solutions are obtained by successive approximations. An analytic fit is
made to the kernel function, and a first approximation to the eigenfunc-
tions is based on an analytic solution to a related problem.

The calculation is performed separately for odd and even parts of the
eigenf unction; for this problem only even functions are involved. The
lowest eigenvalues for the even eigenfunctions are shown in Fig. 10.3.
These correspond to the smallest possible rates and are related (inex-
actly) to boundary-exchange terms. The highest eigenvalues are for the
smallest disturbances and correspond to the lower horizontal axis in Fig.
10.3. Other eigenvalues lie on intermediary curves.
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For an infinite medium, the chosen perturbation would not decay.
All of the behavior of the solutions shown in Fig. 10.4 is attributable to
the presence of the boundaries. The ripple is caused by truncating the
series used to represent the eigenf unctions.

10.3. Numerical results

10.3. 1. A^(QO) for atmospheric bands

Partial relaxation rates may be calculated for individual atmospheric
bands. Since relaxation rates are proportional to heating rates, they are
additive and, for several bands,

The appropriate Planck mean is (2.130)

where 5m , is the band intensity per unit mass.
Values for 5m; and jV(-(°°) for six atmospheric bands are shown in

Table 10.1. For typical surface mixing ratios, the maximum total
relaxation rate is about 3 X 10~3 s"1 and is dominated by the water vapor
rotation band. At higher temperatures, the 6.3 /im band would be more
important. In the middle atmosphere, the 15 fim carbon dioxide band is
the most important, and the maximum radiative rate is ~10~4s~1 at all
levels.

Table 10.1. Radiative rates for six atmospheric bands, at 250 K"

Band

H2O, rot.
H2O, 6.3 /im
H2O, 2.7 ftm
CO2, 15 fim
CO2, 4.3 fim
O3, 9.6 ̂ m

v/c
(cm"1)

-150
1595
3756
677

2349
1042

(cm)

5.27 x 10~17 1
1.04x 10" lv [
7.5 x HT 18 J

9.41 x 10"18 j
1.05 x HT16/
1.52 xlO"17

1.

6xlQ-3

to
2 x 10"5

5 x 10~4

1.3X10"5

(•'-")

2x 10"2 to 8x 10"6

5 x 10~4 to 2 x 10"6

4 x KT6 to 1 x 10"ln

1 X ID"4

1 x 10"5

3 x 10-*

"Data in the first three columns arc from Chapter 5. The two mixing ratios given for water vapor
correspond to ground level and mesospheric conditions. The ozone mixing ratio is the maximum,
which occurs at about 36km. For bands with frequencies greater than 1000 cm^1, A^(^) is very
sensitive to temperature. For * = hv/kf l» l , the Planck function varies as exp(-jc). For the 6.3 |um
band at 250 K, x = 9.2.
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10.3.2. Special absorption laws

A useful form for (10.30) is obtained by performing the frequency
integral before the path integral. After one partial integration we find

where

is related to the modified emissivity, introduced in (6.73), and can be
calculated with equal confidence (T replaces ff). Given the necessary
data, the quadrature in (10.42) is very simple to perform.

For a power law,

For a transparent path, absorption is linear in the amount of absorber
(a = 1) and N(n*) is constant. For independent, saturated, Lorentz lines
(4.15), a = 0.5 and N(n*) <* (n*)°5.

Equation (10.42) has been integrated for an Elsasser band using a
diffusivity approximation. For a diffusivity factor, r, the equivalent
expression to (10.39), with av — 1, is

This provides a comparison for the Elsasser band, for which

where

In the limit of strongly overlapping lines (y-* °°), (10.47) and (10.46) are
the same.
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FIG. 10.5. Radiative relaxation rates for an Elsasser band. A diffusivity approximation has
been used, with the diffusivity factor r = 2. After Sasamori and London (1966).

The complete expression (10.47), with r = 2, is plotted in Fig. 10.5.
The curve for y = °° differs slightly from the broken line in Fig. 10.1
because of a different diffusivity factor. The difference is within the
uncertainties inherent in the two-stream and diffusivity approximations.
In addition to the transparent and opaque limits, Fig. 10.5 shows, for
y«l, an intermediate region with 7V(«*)«(«*)1/2 characteristic, as we
have shown, of strongly absorbed Lorentz lines.

Strong-line limits for absorption by complete bands were discussed in
§ 4.9. Theory and measurement suggest a logarithmic dependence on
path length for path lengths beyond a threshold (see Table 4.3)

With this emissivity, (10.42) gives

N(n*)_Jtb n

In this logarithmic regime, N(n) [but not N(n*)] is independent of
the absorber density pa, because both yV(<=°) and (n*)~l are proportional
to it.
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10.3.3. Radiative relaxation for earth and Mars

As examples of relaxation rates, we may look at data for water vapor in
the earth's lower atmosphere, for water drops, and at a comparison
between the lower atmospheres of earth and Mars.

Figure 10.6 shows that for water vapor the entire range of scales may
be divided into transparent, logarithmic, and opaque regimes. The
transition between transparent and logarithmic regimes lies at n*lk?m =
20 and that between logarithmic and opaque regimes lies at n*/kPm =
1 x 10~~4. Based on a water vapor partial pressure of 3 mb, these data
correspond to length scales (n"1) of 3m and 100km, respectively. Since
the vertical scale of water vapor is about 2 km in the troposphere, we do
not expect ever to encounter the opaque limit. The transparent regime

FIG. 10.6. Radiative relaxation rates for water vapor. Calculations are for 1 bar and 273 K..
The curve for the opaque limit follows (10.20); we used kP/kR = 103. The logarithmic region
follows (10.49), with b = 0.067, from data given by Rodgers (1967, § 6.4.2). The points
were calculated by numerical quadrature from (10.42), using the data of Elsasser and
Culbertson (1960, §6.4.2). The air pressure has no influence on the transparent region and
only a second-order influence on the logarithmic region. The opaque region is dominated by
the water vapor continuum that depends upon both the air pressure and the partial pressure
of the vapor (§ 5.4.3). The dotted lines represent schematically the effect of reducing either
pressure below typical ground-level values. n*/kmP is dimensionless. To obtain a
dimensional wavenumber, use n = (n*JkmP)p.lkm f, where Am P = 200g~' cm2 and pa =
8 x 10 'gem"'1 for 1 mb partial pressure at 273 K. The broken lines on the right-hand side
of the figure are cooling-to-space asymptotes, calculated from Elsasser and Culbertson's
data (see § 10.4.2 for details).
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will also rarely be encountered except in the boundary layer; the lower
atmosphere is dominated by the logarithmic regime.

In the middle atmosphere, carbon dioxide is the dominant gas.
Numerical calculations by a number of authors suggest that the transpar-
ent limit is valid for n~l less than 100 m at an altitude of 70 km, and for
n~l less than 500 m at 80 km.

The Planck mean mass absorption coefficient is much larger for
water in the liquid phase than in the vapor phase. If we wish to compare
the relaxation rates for the same amount of water in the liquid and vapor
phases, however, this is not the relevant comparison. We need to know
both the absorption and scattering coefficients per unit volume and,
unlike the vapor, the liquid is aggregated into droplets that occupy only a
small fraction of the volume. To compare the effect of equal amounts of
water per unit volume we must know the size of the droplets and
calculate their optical properties by the methods of Chapter 7. Figure
10.7 shows radiative rates for the same amount of water, in the form of
droplets of radius 3 or 10 fj,m, or in the form of vapor. For scales less
than about 50m, the relaxation rate for the droplets exceeds the
relaxation rate for the vapor by a factor up to 10.

In Fig. 10.8 we compare the relaxation times (N~l) for earth and
Mars in dimensional terms. Other things being equal relaxation times are
inversely proportional to the absorber mixing ratio. For Mars, the mixing
ratio of carbon dioxide is unity and this is one reason why the relaxation

FIG. 10.7. Relaxation rates for water as droplets or as vapor. The absorber density, pa, is
the mass of water per unit volume of air whether in the vapor or in the liquid phase. The
droplet data arc taken from Irvine and Pollack (1968). The presentation is equivalent to
that in Fig. 10.4, with a reversal of the horizontal axis and shifts along both axes, equal to
ln[&mP]. For pa = 8 X 10 7 gcm 3, the vertical line corresponds to n = 0.18m '. After
Coantic and Simonin (1984).
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FIG. 10.8. Radiative relaxation times tor earth and Mars. Note the use of relaxation times
rather than rates ((= A/"1). The martian data are for 3 mb (the center of mass of the
atmosphere) and a water vapor mixing ratio of 10~3. The terrestrial data are for 3 mb of
water vapor at s.t.p. After Goody and Belton (1967, § 4.9).

times are, on the average, 30 times less for Mars than for earth. This
difference has profound effects on the diurnal response of the atmos-
phere. For earth, the radiative response time of the entire atmosphere
(see § 10.4) is about 100 days. The sol (the solar day) is approximately
equal on the two planets. For earth, the day is too short for the
atmosphere to respond to diurnal forcing with significant amplitude, but
for Mars the meteorology has a strongly tidal character.

10.3.4. Nonequilibriwn source functions

For a two-level model, the source function involves two time constants,
(j)(l, u) and r\(l, u), which are given in terms of molecular constants by
(2.72) and (2.73). For a time-dependent problem, the rate equations
should be solved, in place of the steady-state treatment given in § 2.2.
This can be complicated enough with only two time constants; if more are
involved the problem can become intractable. Fortunately, we can show
that, for radiative relaxation, the two-level problem is quasistatic and that
the source function developed in § 2.2 is valid. This statement does not
apply to all time-dependent problems. The effect of vibrational relaxation
on the transmission of ultrasound is not quasistatic, and leads to an
established method of measuring vibrational relaxation times.
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We may establish the quasistatic condition by demonstrating that the
natural lifetime of the excited state is always much less than the least
radiative relaxation time. Both N(°°), (10.17), and <j>~1, (2.72), are
proportional to the band intensity. The relationship between the two can
be made explicit by introducing the vibrational contribution to the
specific heat,

where n is the number of molecules per unit mass and f(9) is the
vibrational partition function for a single vibrational mode,

g is the upper-state degeneracy ( = gu/g/ in the symbols of § 2.2).
With this definition of cvib, it can be shown that

The right-hand side of (10.52) is the ratio of the volume heat
capacity of the vibrational modes of the absorbers alone to that for all
modes of energy (including gravitational potential energy) of all mole-
cules, neutral or absorbers. Even for a pure absorber, this ratio is less
than unity and, for low temperatures, it may be very much less than
unity. For all atmospheres, but particularly for earth's with its small
absorber mixing ratios,

Vibrational and rotational state populations adjust much more rapidly
than the radiative relaxation process, and they may be treated
quasistatically.

The 15 jUm band of carbon dioxide is the most important band
involving nonequilibrium source functions. This band is narrow, and the
thermal source function may be treated as constant over the band. From
(2.74) and (2.21), we may write a perturbation equation (omitting all i
suffices),
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From (10.6), (10.12), (10.15), and (10.41), we may write

The subscript (E) is used to indicate the use of the equilibrium
(Planck) source function.

In both the transparent and the opaque limits, (10.15) and (10.18), N
is proportional to (9B/d6). For a more general source function, it is only
necessary to replace this term by dJ/99. Hence,

There is a question about intermediary scales. To the extent that
3B/39 is a constant, it can be taken outside the integral in (10.30), and
(10.56) is still valid. However, ?j varies inversely with the pressure and
3J/dd is not necessarily constant, even if 3B/36 is. We may, neverthe-
less, expect that (10.56) is a fairly good approximation at all times. It may
be written

with the special case

We may recall that, well below 70km, r]/<j>«l and thermodynamic
equilibrium prevails. Well above 70km, where »j/0»l, N(^) has an
upper limit (0 / ̂ )./VE(°°) « NE(°o).

Numerical calculations for an infinite medium, having the properties
of the earth's atmosphere at altitudes of 70 and 80 km, are shown in Fig.
10.9. A very large decrease in the radiative rate accompanying break-
down of thermodynamic equilibrium is shown at 80km. The values of
rj/^) were not given in the referenced paper, but they should be close to
2.5 at 80 km and 0.5 at 70 km.

Although this discussion has been presented in the context of an
infinite medium, the result, (10.57), is quite general.
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FIG. 10.9. Radiative relaxation times for carbon dioxide in the middle atmosphere. LTE
indicates calculations using the Planck function (incorrect at these altitudes). NLTE uses
the correct source function. After Pels (1984).

10.4. Planetary-scale relaxation

The formal results of §§ 10.2 and 10.3 are valuable for order-of-
magnitude arguments. One interesting application is to the scale analysis
of planetary-scale, steady-state circulations. Radiation is the fundamental
atmospheric drive and can never be neglected, but we may still anticipate
that circumstances will occur when the atmosphere is closer to an
adiabatic state (strong dynamic influence) rather than to radiative
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equilibrium. We may develop criteria for whether temperatures are
closer to radiative equilibrium or to an adiabatic state in terms of the
radiative and the dynamic relaxation rate.

10. 4. 1. The planetary relaxation rate

We first require an estimate of the globally averaged radiative relaxation
rate. The average solar flux [Fs = —/(I — a)/4] is distributed throughout
the atmosphere by radiative and dynamic processes and balanced by
emission to space equal to ad*, where #e is the effective emission
temperature (we also use 0e as a measure of the general level of
temperature over the planet). The planetary mean relaxation rate (N) is
the incoming solar flux divided by the enthalpy of the entire atmosphere
(p0cpdjg per unit area),

p0/g is the mass per unit area of the atmosphere. The surface
pressure for planets varies from that of Mercury (10~15 bar) to that of
Jupiter (108 bar). Even among the terrestrial planets it varies from 102 bar
for Venus to about 10~2bar for Mars. The surface pressure, through its
effect on the radiative relaxation rate, is a dominant parameter for
assessing differences in the average thermal state of planetary
atmospheres.

The planetary relaxation rate is interestingly related to the relaxation
rate, (10.32), for an infinite medium. The right-hand side of (10.32) has a
flat maximum at &m v /n* = 0.65. The upper limit to N(n*) for a given
value of n( = n*pa) is

As far as global-scale motions are concerned, the relevant length
scale is the shortest distance between branches of the circulation, which
we shall take to be the atmospheric scale height, H. With n = H~l,
(10.60) becomes

In order to achieve the maximum radiative relaxation rate, the
absorption coefficient must be such as to make the optical depth
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(pa&m,v# = Pa^m,v/«) approximately unity. If a significant fraction of the
atmospheric spectrum has optical depths between, say, 0,1 and 10, we
may expect the relaxation rate to approach N. This is the case for earth
and also for some other planets, and it is the reason why the planetary
relaxation rate is a valuable concept. Note that provided that the
atmosphere is sufficiently nongrey, the planetary relaxation rate depends
neither upon its absorption spectrum nor upon its composition, but only
on its mass. In this respect a nongrey absorber differs fundamentally from
a grey absorber.

10.4.2. The temperature of a nonrotating atmosphere

Two extremes for the temperature distribution for a nonrotating atmos-
phere are illustrated in Fig. 10.10. Very strong mixing, as a result of
intense dynamic activity, will cause the temperature to be horizontally
uniform, at 0e. On the other hand, the radiative equilibrium tempera-
ture, 0re, is high in the tropics and zero at the poles (at an equinox). The
observed state should lie somewhere between these extremes.

For a nonrotating planet, the global dynamic relaxation rate has
been shown to be

where r is the specific gas constant and R0 is the radius of the planet. We
may expect that the overall thermal state of the planet should be
governed by the ratio N&/N. The following result has been obtained:

for strong radiative control, N&/N «I, 0-* 0re, and

FIG. 10.10. Schematic global distribution of atmospheric temperature.



EVOLUTION OF A THERMAL DISTURBANCE 449

for weak radiative control, ND/N » 1, 9—> 6C, and

The angle brackets indicate global averages.
For Venus, ND~3 x 10~5s~1, N~7 x 10~5s~1, and the planet is

under weak radiative control with a nearly adiabatic atmosphere.
Substituting in (10.64) gives (\6 — 9e\) —0.1 K. Observations confirm
that there are only small latitudinal variations of temperature on Venus.

10.5. The Newtonian cooling approximation

10.5.1. Transparent and boundary -exchange approximations

We have made references to Newtonian cooling in two previous chapters:
in §2.4.2 and (2.120), in connection with the transparent approximation,
and in §6.4.1 and (6.69), in connection with boundary-exchange and
cooling-to-space approximations. The transparent limit, N(<*>), has al-
ready been derived, (10.17). This limit is valid under all circumstances for
all disturbances, whether or not they are eigenmodes of the problem. The
derivation is consistent with the integral formulation (10.25); since i/>(m)
is finite, by definition, the limit ml—>Q can be reached only if N—>N(<*>).

All other disturbances that we consider in this section are not form
preserving but are imposed by extraneous circumstances. Consistency
requires that, in each instance, radiative damping must be small enough
that the form is not disturbed. An example is the boundary-exchange
approximation, for which we assume a constant perturbation, ip(m) =
ip(m') = constant. If this is substituted in (10.25), ip(m) can be taken
outside the integral and we find

After some manipulation, and making use of the recurrence relations
for exponential integrals (Appendix 6), (10.65) can be put into the form

where Tf
v(x) =2£3[rv(jc)].

Equation (10.66) can also be obtained from the boundary-exchange
equations (6.65) and (6.66) if they are put into perturbation form. The
radiation-to-space component, jYsp, is given in terms of transmission
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functions in (6.70); it corresponds to the first term in square brackets in
(10.66).

For (10.66) to be a useful approximation, we require either that
«*— »0 (the condition under which it was obtained), or else that one of
the terms in the square brackets be so large that internal exchange terms
can be neglected in comparison; this latter condition requires that the
transmission to one of the boundaries not be small.

10.5.2. Internal gravity waves

The damping of internal gravity waves in the middle atmosphere is a
central concern for studies of the dynamic state of that region. Vertically
propagating gravity waves, generated in the troposphere, carry fluxes of
heat and momentum into the stratosphere. If these waves are damped,
the fluxes diverge, and sources of heat and momentum are created.

Gravity waves have frequencies less than approximately 2 x 10~2 s~J

and, as the name implies, involve gravitational restoring forces. Radiative
damping has been included in the thermodynamic equation by many
investigators, but only in the Newtonian approximation, and only when
this damping is small. Wavelengths are measured in hundreds or
thousands of meters and are not negligible compared to a scale height.
As a result, radiation exchange with the boundaries must be considered.
A debate has centered around the question of whether it is sufficient to
use a cooling-to-space term, (10.66), or whether scale-dependent terms
are also involved. Numerical computations have resolved this debate in
favor of the importance of scale-dependent terms.

We assume the form of the wave to be

where co is real, but n*( = n* + in*) may be imaginary. The real and
imaginary parts of the refractive index must be calculated in terms of the
frequency, a>, and the atmospheric structure.

Numerical calculations of relaxation rates start from (10.21), or from
an equivalent expression. The rate, N'(n*), is defined as a Newtonian
coefficient by substituting (10.21) into (10.10), and using the harmonic
disturbance (10.67). The result may be written

The two integrals with respect to m' are over the atmosphere above and
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below the level of interest, respectively. We write N'(n*, m) for the
empirical rate to indicate that it is now a function of m and m}, and not
of n* alone.

The numerical evaluation of (10.68) is straightforward, even includ-
ing vertical variations of qa and 9Bv/dd or, for that matter, a nonhar-
monic form for the disturbance. The equation can be written in many
convenient forms; one that is suitable for our discussion uses the modified
emissivity, e*; from (6.73) and (6.7)

Integration of (10.69) gives complex values for N'(n*, m); the
perturbed heating and the perturbed temperature are not in phase. This
difficulty is commonly avoided by taking the real part of (10.69),
equivalent to using the perturbation cos«*(m' — m).

The results of two calculations are shown in Fig. 10.11. One is for
radiation-to-space alone while the other makes use of numerical integra-
tions of equations similar to (10.69). The latter results, for an infinite
wavelength, correspond well with the radiation-to-space calculation (the
differences are probably accounted for by differences in the data used).
However, even for a wavelength as long as 12.6km, the radiation-to-
space term is not dominant and the structure of the disturbance affects
the relaxation rate. We examine these results more closely in terms of
results obtained in previous sections.

For the infinite-domain result, (10.31), the two terms in (10.68) and
(10.69) are equal. We now take the lower atmosphere to be semiinfinite
and evaluate the term for the upper levels. We find

Very high in the atmosphere, we may set m = 0 and

The radiative rate is the average of the rates for the transparent upper
layers and that for the semiinfinite lower atmosphere.
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FIG. 10.11. Newtonian relaxation rates in the middle atmosphere. Av (= 2jc/n) is the
vertical wavelength. The broken lines are from a numerical calculation by Pels (1982). The
solid line is a cooling-to-space calculation by Dickinson (1973).

The radiation-to-space limit is found by allowing n* and N(n*} both
to tend to zero. Using the result Limm^0 ^*(m)/3m = 2kmf, (10.70)
becomes

N'(Q, m) can be shown to equal /VSP, (10.66).
Approximations to (10.70) have been proposed. The following was

used to draw the broken asymptotes in Fig. 10.6:
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Equation (10.73) is correct in the limits ra—»°° and n*—»0. For m—>0,
ArSp^A^(oo)/2 and (10.73) differs from (10.71), and is incorrect.

The harmonic disturbance, (10.67), is not a good representation of
an upward-propagating gravity wave. Such waves are closer to being
harmonic in a space coordinate rather than in the amount of absorber
and, to first order, their amplitude varies as exp(z/2//), where H is the
scale height of the neutral atmosphere. These features can be included in
a numerical integration of (10.70). If they are not, certain limitations
must be placed on the use of the results. The correct limits are
complicated but they are expressed qualitatively by pa//»(n*)~1 and
paH»m. The first condition requires that the wavelength be less than
the scale height; the second requires that the absorber amount above the
level of interest exceed an amount, m, defined to be equal to the range of
(m-m') that includes most of the integrands in (10.68). The second
condition appears to be satisfied for carbon dioxide in the middle
atmosphere. The first is rendered less important by the dominance of the
radiation-to-space term for long wavelengths.

10.6. Solar radiation in the middle atmosphere

Temperature dependence of chemical coefficients involved in the forma-
tion of ozone causes its steady-state density to vary with air temperature.
This, in turn, affects the absorption of solar radiation and couples heating
and temperature in ways different from that discussed in previous
sections.

The volume absorption coefficient is proportional to the absorber
density. If it is perturbed by the amount k^vT the solar heating
perturbation is, from (6.50),

hv(z) has the form of a Chapman layer, as shown in Fig. 6.9, for
wavelengths that do not penetrate to the surface. The most important
ozone absorption is between 2430 and 2770 A in the Hartley bands and it
gives rise to a Chapman layer with a maximum heating rate (for vertical
incidence) close to 40 km.

The effect of temperature upon either the molecular or mass
absorption coefficient is relatively small compared to the effect of
temperature upon absorber density. We therefore attribute all variations
of the volume absorption coefficient to variations in ozone density,
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If we use the harmonic perturbation (10.28), the photochemical relaxa-
tion rate becomes

The relaxation rate is scale dependent and imaginary, indicating phase
differences between temperature and heating rate perturbations.

The in-phase component has the following transparent and opaque
limits. As n*— »°°,

The relaxation rate, (10.78), changes sign when mfcm v(m)/|§©| = 1,
the same level at which the Chapman function has its maximum. This
sign change is associated with the atmospheric absorption above the level
under consideration; an increase in absorption coefficient decreases the
solar radiation available for heating, which may offset the increase of
heating caused by a local increase of absorption coefficient. The second
term in square brackets in (10.78) has been called the extinction term.

The nature of the ozone perturbation may be discussed in terms of a
simplified chemical scheme involving only the oxygen allotropes, as
shown in Table 10.2.

For a steady state the ozone density is given by

The rate constants are very sensitive to temperature,
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Table 10.2. Ozone photochemistry"

Reaction

1. O2 + hv2^2O
2. O2 + O + M->O, + M
3. O, + /iv3->O2 + O
4. O, + O-»2O2

Rate of reaction

A[02]
^,j[0][02][M]

JJP3]
^[OHO,]

The square brackets indicate number densities. Jl and 73 are photodissocia-
tion rates per molecule. K2 , and K3 , are reaction rate coefficients.

If the photochemical reactions take place quickly, so that equi-
librium is maintained, (10.79) and (10.80) lead to a negative value for
dlnpjdd and a positive photochemical relaxation rate (if the extinction
is small). Thermal relaxation by carbon dioxide occurs simultaneously
and the two rates must be added to give the net relaxation rate. Most
calculations suggest that the photochemical relaxation rate is of similar
magnitude to the radiation-to-space rate in the neighborhood of 50km.
Figure 10.12 shows the radiation-to-space rate alone and combined with

FIG. 10.12. Relaxation rates for n* = 0. (a) Thermal relaxation alone (cf. Fig. 10.11).
(b) Thermal plus photochemical relaxation, (c) As for (b), but without the extinction term.
After Hartmann (1978).
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the photochemical rate, with and without the extinction effect. This figure
gives a good impression of the magnitudes of the different rates under
discussion.

In the foregoing discussion, we assumed photochemical reactions to
be instantaneous, but the reaction rates depend strongly upon the
intensity of solar radiation and rates may be slow at low altitudes. Above
45 km, a quasistatic treatment is a good approximation; below 35 km
ozone behaves more like an inert gas. The simplest treatment assumes
that there is a single rate-limiting step in the chemistry. Then we may
write

In these equations, Np is the limiting chemical rate and N' is the
thermal relaxation rate, discussed in previous sections. ap_fl and flp e are
density-temperature interaction coefficients, representing the effect of
temperature upon density and the effect of density on temperature
(through the volume absorption coefficient), respectively.

The quasistatic case is represented by the limit Np large. Equations
(10.81) and (10.82) becomes

where

In the general case, however, (10.81) and (10.82) must be solved as
simultaneous, second-order differential equations with complex solutions
for the temperature and density perturbations.

In addition to these photochemical relaxation effects, ozone is
involved in another coupling between temperature perturbations and
heating perturbations through the motions that occur in gravity waves,
and the effect of those motions on the ozone density. If the ozone mixing
ratio varies with height, vertical motions convect ozone and change the
solar heating. The coupling can be made explicit only in a dynamic
model, a description of which would take us beyond the scope of this
chapter; what follows is a summary of one approach.
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The linear equations governing propagating gravity waves can be
solved in terms of an attenuation coefficient (amplitude varies as
exp[—az]). This coefficient is proportional to the combined thermal and
photochemical rates,

In (10.86), nh is the horizontal wave number, 7VB is the Brunt-Vaisala
frequency, a> is the Doppler-shifted wave frequency, and / is the Coriolis
parameter. There are now two photochemical rates,

q3 is the absorber mixing ratio and T is the adiabatic lapse rate. Both of
these rates involve the interaction coefficients introduced in (10.81) and
(10.82). The second term, 7Vp2 is, apart from a frequency-dependent
attenuation, the same as the photochemical relaxation rate in (10.85).
Np! is a dynamic rate. It is proportional to the vertical gradient of the
mixing ratio and would be zero in a well-mixed atmosphere.

FIG. 10.13. Photochemical and dynamic relaxation rates. Midlatitude, summer conditions
with 6) = UT4s~' . After Zhu and Holton (1986).
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Results of a calculation of Npa and NPa are shown in Fig. 10.13 for a
wave frequency of 10~4 s"1. The extinction term was omitted from these
calculations but, where TVp is significant, it is of little importance. For
comparison, see the term N' in Fig. 10.12a. All of the effects discussed in
this section appear to have some importance at this wave frequency.
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APPENDIX 1

PHYSICAL CONSTANTS

General constants
Stefan-Boltzmann constant, a = 5.67032 X 1(T8 W m~2 K"4

Speed of light in vacua, c = 2.997924580 X 10s m s"1

Boltzmann constant, k = 1.380662 x 10~23 J K"1

Planck constant, h = 6.626176 x 10~34 J s
Radiation constants:

Atomic mass unit, amu = 1.6605654 x 10~27 kg
Avogadro number, L = 6.022045 x 1023 g-moP:

Molar gas constant, R = 8.31441 J K"1 g-mol"1

Triple-point temperature of water, 6S = 273.16 K

Sun

Equatorial radius = 6.599 x 108 m
Effective emission temperature = 5783 K
Mean angle subtended by photosphere at earth = 31.988 arc min

Earth

Equatorial radius = 6.378388 x 106 m
Mean earth-sun distance, AU = 1.4960 x 1011 m
Eccentricity of orbit = 0.016750
Inclination of rotation axis = 23.45 deg
Standard surface gravity, g = 9.80665 m s~2

Earth's atmosphere

Standard surface pressure, ps = 1.01325 bar
Loschmidt number, «s = 2.686754 x 1025 m~3 (at s.t.p.)
Density at s.t.p. ps = 1.2925 kg m~3

Specific gas constant, Ra = 2.8700 x 102 J KT1 kg"1
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Mean molecular mass, M = 28.964 amu
Specific heats at s.t.p.:

The above data are for dry air. For data on water vapor, see
Appendix 4.

BIBLIOGRAPHY

Kaye, G. W. C., and Laby, T. H., 1973, Tables of physical and chemical
constants and some mathematical functions, 14th Edition. London: Longman.

Allen, C. W., 1973, Astrophysteal quantities. London: The Athlone Press.



APPENDIX 2
SPECTROSCOPIC UNITS

Wavelength
The use of wavelength, Table A.2.1, to specify the quality of electromag-
netic radiation suffers from the defect that the wavelength is inversely
proportional to the refractive index of the medium in which it is
measured. Wavelengths are commonly corrected to vacuum, but the
correction is negligible for most atmospheric studies.

Table A.2.1. Wavelength units

Unit Symbol Size Spectral region

Angstrom unit
Nanometer

Micron

Millimeter
Centimeter
Meter

A
nm

Htn

mm
cm
m

HT10rn\ Soft X-ray,
10~9m/ ultraviolet, visible

10~6m Visible, infrared

1(T3 m -I
10~2 m > Radio waves

I m J

Wavenumber and frequency

Since the energy of a photon is proportional to its frequency, it is
convenient to perform spectral analysis in frequency rather than wave-
length units. Frequency is not a function of the medium in which it is
measured and there is no confusion as to whether vacuum corrections
have or have not been applied. The symbol, v, is universal and the unit is
the hertz (Hz or s^1).

The hertz, kilohertz, megahertz, etc. are used by radio engineers.
Spectroscopists, however, have shown a strange aversion to the use of
this simple and unambiguous unit, preferring the wavenumber or
reciprocal wavelength, v/c'. This practice is too widely adopted to
attempt to go against it; however, two difficulties should be noted. First,
the refractive index of the medium has reappeared through its influence
on c', the local speed of light. Second, there is no general agreement as
to the name or unit for this quantity. Some authors use the symbol v for
both frequency and wavenumber and refer to both as "frequencies." But
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quantities with different physical dimensions deserve distinct symbols and
units, and there have been attempts to introduce the symbol, k, and the
unit kayser for wavenumber. This proposal has not been widely adopted,
however, and the symbol, k, is generally preempted in quantitative
spectroscopy to denote the absorption coefficient. We shall take the term
wavenumber to imply its vacuum value, and we shall use the symbol v/c
and the unit cm"1.

Energy

One of the great achievements of physical science has been the
recognition of the unity of different forms of energy. For all, one unit
(the joule) should suffice. But the trend of physics has been to adopt a
different unit of energy for each field of study; nowhere is this profusion
of units richer than in spectroscopy. The four units in Table A.2.2 are not
the only units that may be encountered; of the four, only the joule is
defined in a straightforward way. The energy unit, cm"1, denotes the
energy (he) of a photon of unit wavenumber; the electron volt (eV) is the
electrical potential energy of an electron with respect to a potential drop
of 1 volt; k kelvin is the thermal energy (k<?) associated with two degrees
of freedom of a molecule at a temperature of 1 K.

Table A.2.2. Numerical conversion factors for energy units

Unit

1cm"1

1 joule

leV

1 k kelvin

cm"1

1

5.034036
xlO22

8.065478
XlO 3

6.950302
xlO"1

joule

1.986478
x 10"23

1

1.602189
x 10" 19

1.380662
x 10"23

eV

1.239852
xlO"4

6.241460
xlO1 8

1

8.617346
x 10"5

k kelvin

1.438786

7.242902
xlO22

1.160450
XlO 4

1

Extinction coefficient

In Chapter 2, the extinction coefficient is defined in four different ways
according to the definition of the amount of matter in the optical path.
Table A.2.3 shows the dimensions of these quantities and the relation-
ships between them (cgs units are used because they are more commonly
used in the literature than are MKS).
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Table A.2.3. Dimensions and conversion factors for extinction
coefficients"

Symbol ev em ea es

Name

Dimensions

« v = l

em= 1

*n=l

«. = !

Volume
e.c.

cm^1

1

P

n

n(ns

Mass Molecular
e.c. e.c.

g^'cm2 cm2

p-1 ii-1

1 m

m'1 1

P.-

e.c. per
em s.t.p.

cm"1

njn

Ps

«s

1

" p = density of absorbing gas (g cm ).

ps = density of absorbing gas at s.t.p. (g cm ).

n = molecular number density (cm ).

n, = molecular number density at s.t.p. (Loschmidt number, cm ').

m ~ molecular mass (g).

The volume extinction coefficient, ev, is the quantity entering
atmospheric calculations when distance is the independent variable. Data
cannot be presented in this unit, however, without specifying the density
of absorbing material and tabulations must use one of the other three
units. Of these, es is the popular choice of spectroscopists. It is an
unfortunate unit because, through Loschmidt's number, it contains a
standard temperature in its definition, even when the measurements may
be made at an entirely different temperature. Thus, it is possible to
encounter such ambiguous statements as "the extinction coefficient per
centimeter at s.t.p., at a temperature of 400K, i s . . . . " This same
coefficient is also given in units of (cm-Amagat)""1. The Amagat is a
dimensionless measure of density in terms of the density at s.t.p. (p/ps).
For the highest precision, the conversion takes account of the small
variation in Loschmidt's number from one gas to another, but the
distinction is not important for atmospheric applications.

The most satisfactory unit is en (unit, cm2), and its alternative name,
extinction cross section, conveys a valuable picture of the extinction
process in terms of the collision cross section between photon and
absorbing molecule. In Chapter 7, we also use en to mean the extinction
coefficient per particle, for the case when the absorbing matter is
aggregated into particles. The relationships in Table A.2.3 remain the
same except that n is now the particle rather than the molecular density.

Some authors use decadic coefficients,
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Related to the decadic coefficient is the power loss in db km"1,

Band and line intensities

The integrated absorption coefficient over a line or band has the
dimensions of an extinction coefficient times a wavelength, a wavenum-
ber, or a frequency. em, en, and es are equally suitable for the extinction
coefficient and, as a consequence, we have nine different definitions of
intensity; fortunately, these may be readily distinguished because they all
have different dimensions (Table A.2.4).

Table A.2.4. Physical dimensions of intensities

Wavelength, cm
Wavenumber, cm"1

Frequency, Hz

(g-'cm2)

g"1 cm3

g"1cm
g-'cn^s"1

(cm2)

cm3

cm
cm2s"'

(cm-1)

1
cm"2

cm"1 s"1



APPENDIX 3
A MODEL ATMOSPHERE

Table A.3.1. U.S. Standard Atmosphere, 0 to 30 km

Altitude
(km)

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

Table A

Altitude
(km)

30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Temperature
(K)

288.150
275.154
262.166
249.187
236.215
223.252
216.650
216.650
216.650
216.650
216.650
218.574
220.560
222.544
224.527
226.509

Pressure
(mb)

1.01325 X 103

7.9501 X 102

6. 1660 XlO 2

4.7217 X 102

3.5651 x 102

2.6499 X 102

1.9399 XlO2

1.4170 XlO2

1.0352 xlO2

7.5652 x 101

5.5293 X 101

4.0475 X 101

2.9717 X 101

2.1883 XlO 1

1.6161 x 10*
1.1970 XlO 1

Density s
(gem-3)

1.2250 XlO"3

1.0066 xlO"3

8. 1935 X 10~4

6.6011 X 10~4

5.2579 XlO"4

4.1351 X 10~4

3. 1194 XlO"4

2.2786 x 10""4

1.6647 xlO""4

1.2165 X 10"4

8.8910 x 10"5

6.4510 x 10~5

4.6938 x 10~3

3.4257 X KT5

2. 5076 x 10~5

1.8410X 10"5

.3.2. U.S. Standard Atmosphere, 30 to

Temperature
(K)

226.509
236.513
250.350
264.164
270.650
260.771
247.021
233.292
219.585
208.399
198.639
188.893
186.870
188.420
195.080

Pressure
(mb)

1.1970 xlO1

5.7459
2.8714
1.4910
7.9779 XlO"1

4.2525 X KT1

2.1958 xUT1

1.0929 X 10*'
5.2209 x 10~2

2.3881 x 10"2

1.0524 x l O " 2

4.4568 x 10 "3

1.8359 X 10" 3

7. 5966 x Hr4

3.2011 x 10 ~4

Density
(gem-3)

1.8410 Xl0~ 5

8.4634 X 10~6

3.9957XKT6

1.9663 xlO"6

1.0269 XlO"6

5.6810 x 1(T7

3.0968 x 10""7

1.6321 X KT7

8.2829 X 10"8

3.9921 x 10~8

1.8458X 10"K

8.2196 x 10 "
3.4160 X 10"9

1.3930X 10"'
5.6040 x 10" 10

Pressure
icale height

(km)

8.4345
8.0592
7.6836
7.3078
6.9317
6.5554
6.3656
6.3696
6.3736
6.3776
6.3816
6.4423
6.5049
6.5675
6.6302
6.6929

100km

Pressure
scale height

(km)

6.6929
6.9995
7.4206
7.8423
8.0474
7.7658
7.3678
6.9691
6.5699
6.2449
5.9617
5.6780
5.6360
5.7270
6.0090

Number Molecular
density
(cnT3)

2.5470 X 1019

2.0928 X 1019

1.7036 X 1019

1.3725 x 1019

1.0932 XlO1 9

8.5976 X 1018

6.4857 x 1018

4.7375 X 1018

3.4612 X 1018

2.5292 X 1018

1.8486 x 1018

1.3413 XlO1 8

9.7591 X 1017

7. 1225 XlO1 7

5.2138 X 1017

3.8278 X 1017

Number
density
(cm-3)

3. 8278 XlO17

1.7597 x 1017

8.3077 X 1016

4.0882 X 1016

2.1351 x 1016

1.1812 xlO16

6.4387 X 1015

3.3934 X 1015

1.7222 XlO1 5

8.3003 x 1014

3.8378 x 1014

1 .7090 x 1014

7.1 160 x 10°
2.9200 x 1013

1.1890X 1013

weight
(amu)

28.964
28.964
28.964
28.964
28.964
28.964
28.964
28.964
28.964
28.964
28.964
28.964
28.964
28.964
28.964
28.964

Molecular
weight
(amn)

28.964
28.964
28.964
28.964
28.964
28.964
28.964
28.964
28.964
28.964
28.964
28.964
28.910
28.730
28.400
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Table A.3.3. U.S. Standard Atmosphere, 100 to 1000 km

Altitude
(km)

100
120
140
160
180
200
300
400
500
600
800

1000

Temperature
(K)

195.080
360.000
559.630
696.290
790.070
854.560
976.010
995.830
999.240
999.850
999.990

1000.000

Pressure
(mb)

3.2011 x
2.5382 x
7.2028 x
3.0395 x
1.5271 x
8.4736 x
8.7704 x
1.4518X
3.0236 x
8.2130 x
1.7036X
7.5138 x

io-4

io"5

IO"6

IO"6

IO"6

IO"7

10"8

IO"8

10""
IO"10

IO"10

10"n

Density
(gem"3)

5.6040 x
2.2220 x
3.8310 x
1.2330X
5. 1940 x
2.5410 x
1.9160 x
2.8030 x
5.2150 x
1.1370X
1.1360X
3.5610 x

10"
10"
10"
10"
10"
10"
10"
10"
10"
10"
10~
10"

10

11
12

12

13

13

14

15

16

16

17

18

Pressure
scale height

(km)

6.0090
12.
20
26.
31.
36.
51.
59,
68,
88.

193.
288.

.0910

.0250

.4140

.7030
,1830
.1930
.6780
.7850
.2440
.8620
.2030

Number
density
(cm'3)

1.1890X
5. 1070 x
9.3220 x
3. 1620 X
1.4000X
7. 1820 x
6.5090 x
1.0560X
2. 1920 x
5.9500 x
1.2340X
5.4420 x

IO13

10"
IO10

IO10

IO10

IO9

IO8

IO8

IO7

IO6

IO6

IO5

Molecular
weight
(amu)

28.400
26.200
24.750
23.490
22.340
21.300
17.730
15.980
14.330
11.510
5.540
3.940

BIBLIOGRAPHY

U.S. Standard Atmosphere, 1976, Publication NOAA-S/T76-1562. Washington
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APPENDIX 4
PROPERTIES OF WATER VAPOR

Molecular mass = 18 amu
Density at s.t.p., pw = 8.031 x KT1 kg nT3

Specific gas constant, /?w = 4.618 x 102 J K"1 kg"1

Table A.4.1. Saturated vapor pressure (mb) over pure liquid water

"C

0
+1
+2
+3
+4
+5
+6
+7
+8
+9

-30

0.5088
0.5589
0.6134
0.6727
0.7371
0.8070
0.8827
0.9649
1.0538
1.1500

-20

1.2540
1.3664
1.4877
1.6186
1.7597
1.9118
2.0755
2.2515
2.4409
2.6443

-10

2.8627
3.0971
3.3484
3.6177
3.9061
4.2148
4.5451
4.8981
5.2753
5.6780

0

6.1078
6.5662
7.0547
7.5753
8.1294
8.7192
9.3465

10.013
10.722
11.474

+10

12.272
13.119
14.017
14.969
15.977
17.044
18.173
19.367
20.630
21.964

+20

23.373
24.861
26.430
28.086
29.831
31.671
33.608
35.649
37.796
40.055

+30

42.430
44.927
47.554
50.307
53.200
56.236
59.422
62.762
66.264
69.934

+40

73.777
77.802
82.015
86.423
91.034
95.855

100.89
106.16
111.66
117.40

BIBLIOGRAPHY

Publication No. 79 of the International Meteorological Organization, 1961,
Definitions and specifications of water vapour in the atmosphere.



Table A.4.2. Saturated vapor pressure (mb) over pure ice

°c

0
+1
+2
+3
+4
+5
+6
+7
+8
+9

-100

1.403xl(T5

1.719xl(T5

2.101xl(Ts

2.561 x 1(T5

3.117XUT5

3.784 x 1(T5

4.584 x 10~5

5.542 x 1CT5

6.685 x 10~5

8.049 x 1(T5

-90

9.672 x 1(T5

1.160 xl(T4

1.388XUT4

1.658xlO~4

1.977XHT4

2.353 x 10~4

2.796 x 1(T4

3.316 x 10~4

3.925 x 1(T4

4.638 x 10~4

-80

5.472 x 1(T4

6.444 x 10~4

7.577 x 10~4

8.894 x 1(T4

1.042XHT3

1.220X10"3

1.425 x 10"3

1.662X 10~3

1.936XMT3

2.252 x 10^3

-70

2.618 X10~3

3.032 x 10~3

3.511 x 10" 3

4.060 x 1(T3

4.688 x 10~3

5.406 x 1(T3

6.225 x 10~3

7.159 x 10~3

8.228 x 10~3

9.432 x 10~3

-60

1.080X10"2

1.236X10"2

1.413xl0^2

1.612 xlO"2

1.838X10'2

2.092 x 10'3

2.380 x 10^2

2.703 x 10'2

3.067 x 10~2

3.476 x 10'2

-50

3.935 x 1(T2

4.449 x 10"2

5.026 x 10^2

5.671 x 10~2

6.393 x 10~2

7.198 xlO"2

8.097 x 10~2

9.098 x 10~2

1.021 xlO"1

1.145X10"1

-40

1.283X10'1

1.436X10'1

1.606 xlO'1

1.794X10'1

2.002 x 10~'
2.233 x ID""1

2.488 XlO'1

2.769 x 10'1

3. 079x10''
3.421 XHT 1

-30

3.798 XHT 1

4.213 x 10"1

4.669 xlO^1

5.170X 10"1

5.720 x 10"1

6.323 x lO'1

6.985 x ID"1

7.709 x lO^1

8.502 x 10" '
9.370 xlO"1

-20

1.032
1.135
1.248
1.371
1.506
1.652
1.811
1.984
2.172
2.376

-10

2.597
2.837
3.097
3.379
3.685
4.015
4.372
4.757
5.173
5.623

0

6.107

471



APPENDIX 5

THE PLANCK FUNCTION



Table A.5.1. and Bv"

<£> *-eyw KWB */«*>_ ujWU- *,W_

1.0 xlO"4

5.0x10""
1.0 xlO"3

2.0 xlO"3

3.0 xlO"3

5.0 xlO"3

1.0 xlO"3

2.0 xlO"2

1.0x10"'
1.0

Large x
1.438786 xlO2

2.877573 x 101

1.438786 x 101

7.193932
4.795954
2.877573
1.438786
7.19393x10"'
1.43879x10"'
1.43879 x 10"2

Small x

*V*/6. 49394
1.53064 xlO"57

1.29849 xlO"9

3.20745 x 10"4

6. 67279 xlO"2

2.73225 x 10"2

6.33722 xlO"1

9.14156x10"'
9.85554 xlO"1

9. 998552 xlO"1

9.999998 x 10" ]

1.0 -5. 132991 xlO"2-*3

*VA721. 20144 x 10
9.504319 x 10"54

2.962286 x 10"7

1.640767 xlO"2

6.831367 x 10"1

9.971416 x 10"1

5.548877 x 10"'
9. 043926 x 10"2

8. 628998 xlO"3

1.880270 xlO"5

2. 006819 xlO"9

4.7167X10"2-*4

x4e~*/4. 779841
2.930061 x 10"55

4.566176 x 10"s

5.058275 x 10~3

4.212047 x 10"1

9.222183 x 10"1

8.553239 x 10" 1

2. 788128 xlO"1

5. 320422 xlO"2

5. 793770 xlO"4

6. 186710 xlO"7

2.09212 x 10"1 • x3

x3e~x/l.42U36
6. 848045 xlO"57

5. 335962 xlO"9

1.182204 xlO"3

1.968853 xlO"1

6. 466139 x 10"1

9.995179 x 10" '
6.516326 xlO"1

2. 486945 xlO"1

1.354098 x 10"2

1.445925 xlO"4

7.03514 xlO"1-*2

Radiation constants:

B B

473
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Table A.5.2. dBJdd, Wnr'KT'Hz'1 x 10'

Temperature (°C)

v(Hz X 10~12) -80 -40 0 +40

v^O ~2kv2/c2

1.0
5.0

10.0
15.0
20.0
30.0
40.0
50.0
60.0
70.0

V — > oo

3.056630 x 10"2

6.764917x10"'
1.881657x10°
2.426266 x 10°
2.138275 x 10°
8.908868 x 10"'
2.344571 x 10"'
4.771029 x 10"2

8.246716 x 10"3

1. 273547 xlO"3

3. 061563 XlO"2

7.037438 x 10"'
2.183814 X 10°
3.300150 x 10°
3.507859 x 10°
2.202970 x 10°
8.856262 x 10"'
2.759017 x 10"1

7.303295 x 10"2

1.727300 xlO"2

~(2kv2/

3.064496 x 10"2

7.205500 x 10"1

2.390559 x 10°
3.994135 x 10°
4.800749 x 10°
3.988937 x 10°
2.157125 x 10°
9.074976x10"'
3.246597 x 10"1

1.037921x10"'
c2)*2e"*

3.066381 x 10~2

7.315918x10"'
2.535594 x 10°
4.530919 x 10°
5.926128 x 10°
6.009889 x 10°
4.037826 x 10"
2. 121944 x 10°
9.496615x10"'
3.799418X10"'

' dBjdd = (2kv2/c2)*V/V - I)2, x = C2/A0 = hv/k0.

BIBLIOGRAPHY

Weast, R. C. (Ed.), 1983, Handbook of chemistry and physics, 63rd Edition.
Boca Raton, Florida: CRC Press Inc.



APPENDIX 6
THE EXPONENTIAL INTEGRALS

Two recurrence formulas:

The following expansion always converges, but is useful only for small
values of the argument:

where y = 0.5772156 is Euler's constant.

Table A.6.1. Numerical values of the exponential
integrals

X

0
0.01
0.05
0.10
0.50
1.00
1.50
2.00
2.50
3.00
3.50

£,(*)

CO

4.037929
2.467898
1.822924
0.559774
0.219384
0.100020
0.048901
0.024915
0.013048
0.006970

E2(x)

1.000000
0.949671
0.827835
0.722545
0.326644
0.148496
0.073101
0.037534
0.019798
0.010642
0.005802

E3M

0.500000
0.490277
0.454919
0.416292
0.221604
0.109692
0.056739
0.030133
0.016295
0.008931
0.004945
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From the recurrence relations,

An asymptotic expansion for large x is

BIBLIOGRAPHY

Kourganoff, V., 1952, Basic methods in transfer problems. Oxford: Clarendon
Press.
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APPENDIX 7
THE LADENBURG AND REICHE FUNCTION

Table A.7.1. L(u) = u exp(-«)[/0(u) + /,(M)]

u

0.0
0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8
0.9

1.0
1.1
1.2
1.3
1.4

1.5
1.6
1.7
1.8
1.9

2.0
2.1
2.2
2.3
2.4

2.5
2.6
2.7
2.8
2.9

3.0
3.1

0

0.0000
0.0952
0.1818
0.2610
0.3337

0.4007
0.4629
0.5208
0.5749
0.6258

0.6737
0.7190
0.7620
0.8030
0.8422

0.8797
0.9157
0.9504
0.9839
1.0162

1.0476
1.0780
1.1075
1.1362
1.1642

1.1916
1.2183
1.2444
1.2699
1.2949

1.3195
1.3436

1

0.0099
0. 1042
0.1900
0.2685
0.3406

0.4071
0.4689
0.5264
0.5801
0.6307

0.6783
0.7234
0.7662
0.8070
0.8460

0.8834
0.9193
0.9538
0.9872
1.0194

1.0506
1.0809
1.1104
1.1391
1.1670

1.1943
1.2209
1.2470
1.2725
1.2974

1.3219
1.3459

2

0.0198
0.1132
0. 1982
0.2760
0.3475

0.4135
0.4748
0.5319
0.5853
0.6356

0.6829
0.7278
0.7704
0.8110
0.8498

0.8870
0.9228
0.9572
0.9904
1.0226

1.0537
1.0839
1.1133
1.1419
1.1698

1.1970
1.2235
1.2495
1.2750
1.2999

1.3243
1.3483

3

0.0295
0.1220
0.2063
0.2834
0.3543

0.4198
0.4807
0.5374
0.5905
0.6404

0.6875
0.7322
0.7746
0.8150
0.8536

0.8907
0.9263
0.9606
0.9937
1.0257

1.0568
1.0869
1.1162
1.1447
1.1725

1. 1997
1.2262
1.2521
1.2775
1.3024

1.3268
1.3507

4

0.0392
0.1308
0.2143
0.2908
0.3611

0.4261
0.4865
0.5429
0.5956
0.6452

0.6921
0.7365
0.7787
0.8189
0.8574

0.8943
0.9298
0.9639
0.9969
1.0289

1.0598
1.0899
1.1191
1.1475
1.1753

1.2023
1.2288
1.2547
1.2800
1.3048

1.3292
1.3531

5

0.0488
0.1395
0.2223
0.2981
0.3678

0.4324
0.4923
0.5483
0.6007
0.6500

0.6966
0.7408
0.7828
0.8228
0.8612

0.8979
0.9332
0.9673
1.0002
1.0320

1.0629
1.0928
1.1220
1.1503
1.1780

1.2050
1.2314
1.2572
1.2825
1.3073

1.3316
1.3554

6

0.0583
0.1482
0.2302
0.3053
0.3745

0.4386
0.4981
0.5537
0.6058
0.6548

0.7012
0.7451
0.7869
0.8267
0.8649

0.9015
0.9367
0.9706
1.0034
1.0351

1.0659
1.0958
1.1248
1.1531
1. 1807

1.2077
1.2340
1.2598
1.2850
1.3097

1.3340
1.3578

7

0.0676
0. 1567
0.2380
0.3125
0.3811

0.4447
0.5038
0.5591
0.6108
0.6596

0.7057
0.7494
0.7910
0.8306
0.8686

0.9051
0.9402
0.9740
1.0066
1.0383

1.0689
1.0987
1.1277
1.1559
1.1835

1.2103
1.2366
1.2623
1.2875
1.3122

1.3364
1.3601

8

0.0769
0.1652
0.2457
0.3196
0.3877

0.4508
0.5095
0.5644
0.6158
0.6643

0.7101
0.7536
0.7950
0.8345
0.8723

0.9086
0.94.". 5
0.9773
1.0098
1.0414

1.0719
1.1016
1.1305
1.1587
1.1862

1.2130
1.2392
1.2649
1.2900
1.3146

1.3388
1.3625

9

0.0861
0.1735
0.2534
0.3267
0.3942

0.4569
0.5152
0.5697
0.6208
0.6690

0.7146
0.7578
0.7990
0.8364
0.8760

0.9122
0.9470
0.9806
1.0130
1.0445

1.0750
1.1046
1.1334
1.1615
1.1889

1.2156
1.2418
1.2674
1.2925
1.3171

1.3412
1.3649



Table A.7.1. L(w) = u exp(--w)[/0(H) + /,(«)] (Continued)

u

3.2
3.3
3.4

3.5
3.6
3.7
3.8
3.9

4.0
4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8
4.9

5
6
7
8
9

10
11
12
13
14

0

1.3672
1.3904
1.4132

1.4357
1.4578
1.4796
1.5010
1.5222

1.5430
1.5636
1.5839
1.6039
1.6237

1.6432
1.6625
1.6816
1.7005
1.7191

1.7376
1.9123
2.0722
2.2206
2.3597

2.4910
2.6157
2.7347
2.8487
2.9584

1

1.3695
1.3927
1.4155

1.4379
1.4600
1.4817
1.5032
1.5243

1.5451
1.5656
1.5859
1.6059
1.6256

1.6452
1.6644
1.6835
1.7023
1.7210

1.7558
1.9288
2.0875
2.2349
2.3731

2.5037
2.6278
2.7463
2.8599
2.9691

2

1.3719
1.3950
1.4178

1.4402
1.4622
1.4839
1.5053
1.5264

1.5471
1.5677
1.5879
1.6079
1.6276

1.6471
1.6663
1.6853
1.7042
1.7228

1.7739
1.9453
2.1027
2.2491
2.3865

2.5164
2.6399
2.7579
2.8710
2.9798

3

1.3742
1.3973
1.4200

1.4424
1.4644
1.4861
1.5074
1.5285

1.5492
1.5697
1.5899
1.6099
1.6296

1.6490
1.6683
1.6872
1.7061
1.7247

1.7918
1.9616
2.1178
2.2632
2.3998

2.5290
2.6519
2.7694
2.8821
2.9905

4

1.3765
1.3996
1.4223

1.4446
1.4666
1.4882
1.5095
1.5305

1.5513
1.5717
1.5919
1.6118
1.6315

1.6510
1.6702
1.6891
1.7079
1.7265

1.8095
1.9778
2.1328
2.2772
2.4130

2.5416
2.6639
2.7809
2.8931
3.0011

1.
1.
1.

1.
1.
1.
1.
1.

1.
1.
1.
1.
1.

1.
1.
1.
1.
1.

1.
1,
2,

5

3789
4019
4245

4468
4687
4903
5116
5326

,5533
5738
5939
6138
,6335

,6529
,6721
.6910
.7098
,7284

.8270

.9938

.1477
2.2912
2,

2
2
2
2
3

.4262

.5541

.6758

.7923

.9041

.0117

6

1.3812
1.4042
1.4268

1.4490
1.4709
1.4925
1.5137
1.5347

1.5554
1.5758
1.5959
1.6158
1.6354

1.6548
1.6740
1.6929
1.7117
1.7302

1.8444
2.0097
2.1625
2.3050
2.4393

2.5665
2.6877
2.8037
2.9150
3.0223

7

1.3835
1.4064
1.4290

1.4512
1.4731
1.4946
1.5159
1.5368

1.5574
1.5778
1.5979
1.6178
1.6374

1.6567
1.6759
1.6948
1.7135
1.7321

1.8616
2.0255
2.1771
2.3188
2.4523

2.5789
2.6995
2.8150
2.9259
3.0328

8

1.3858
1.4087
1.4312

1.4534
1.4753
1.4968
1.5180
1.5389

1.5595
1.5798
1.5999
1.6197
1.6393

1.6587
1.6778
1.6967
1.7154
1.7339

1.8786
2.0412
2.1917
2.3325
2.4653

2.5912
2.7113
2.8263
2.9368
3.0433

9

1.3881
1.4110
1.4335

1.4556
1.4774
1.4989
1.5201
1.5409

1.5615
1.5818
1.6019
1.6217
1.6413

1.6606
1.6797
1.6986
1.7173
1.7357

1.8955
2.0568
2.2062
2.3461
2.4781

2.6035
2.7230
2.8375
2.9476
3.0537

15 3.0641 3.0745 3.0848 3.0951 3.1054 3.1156 3.1258 3.1360 3.1461 3.1562
16 3.1663 3.1763 3.1863 3.1963 3.2063 3.2162 3.2261 3.2359 3.2457 3.2555
17 3.2653 3.2750 3.2847 3.2944 3.3041 3.3137 3.3233 3.3328 3.3424 3.3519
18 3.3614 3.3708 3.3803 3.3897 3.3990 3.4084 3.4177 3.4270 3.4363 3.4456
19 3.4548 3.4640 3.4732 3.4823 3.4914 3.5006 3.5096 3.5187 3.5277 3.5367

20 3.5457 3.6344 3.7210 3.8055 3.8883 3.9693 4.0487 4.1266 4.2030 4.2781
30 4.3519 4.4244 4.4958 4.5660 4.6352 4.7034 4.7706 4.8369 4.9022 4.9667
40 5.0304 5.0933 5.1554 5.2168 5.2775 5.3374 5.3968 5.4554 5.5135 5.5709
50 5.6277
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APPENDIX 8

THE ELSASSER FUNCTION

The intervals in Table A.8.1 are close enough to permit interpolation to
four-figure accuracy. The table may be extended by means of the
asymptotic forms,

y—»co equation (4.74),

M—>oo equation (4.78),

M—»0 equation (4.14),

_y-^0 equation (4.83).

BIBLIOGRAPHY

Table A.8.1 has been taken from an unpublished report (1952).
Other tabulations have been given by

Kaplan, L. D., 1953, "Regions of validity of various absorption-coefficient
approximations," J. Meteorol. 10, 100.

Wark, D. Q., and Wolk, M., 1960, "An extension of a table of absorption for
Elsasser bands," Mon. Weather Rev. 88, 249.

Zachor, A. S., 1967, "Absorptance and radiative transfer by a regular band," J.
Quant. Spectrosc. Radial. Transfer 7, 857.



Table A.S.I. E(y, u) = J*}/2 exp[-2xyu sinh 2;ry/(cosh 2ny - cos 2nx)] dx

logio « °

-1.5 0.819803
-1.25 0.702345
-1.0 0.533489
-0.75 0.327154
-0.5 0.137119
-0.25 0.029209

0 0.001867

+0.25
0.5
0.75
1.0
1.25
1.5
1.75

2.0
2.25
2.5
2.75
3.0
3.25
3.5
3.75
4.0

-0.2 -0.4

0.882179 0.923986
0.800180 0.868912
0.672748 0.779021
0.494204 0.641798
0.285620 0.455299
0.107790 0.248226

0.019086 0.085420

0.000883 0.013262
0.000529

-0.6

0.951422
0.915393
0.854938
0.757900
0.613677
0.425665

0.228257

0.080820
0.014694
0.000876

-0.8

0.969151
0.946005
0.906613
0.841751
0.740791
0.597505

0.421162

0.243257
0.103825
0.026680
0.002818

-1.0

0.980480
0.965756
0.940540
0.898540
0.831771
0.733211

0.602472

0.449996
0.292971
0.152201
0.053621
0.009639
0.000532

logic?

-1.2

0.987671
0.978348
0.962342
0.935548
0.892574
0.828071

0.739704

0.629960
0.502665
0.361635
0.218853
0.099128
0.027379
0.003209

-1.4

0.992216
0.986328
0.976204
0.959223
0.931887
0.890574

0.833225

0.760129
0.671077
0.563239
0.436054
0.296179
0.162295
0.061940

0.012711
0.000866

-1.6

0.995088
0.991369
0.984976
0.974242
0.956942
0.930716

0.894115

0.846978
0.788405
0.714958
0.622565
0.509169
0.377192
0.238134

0.115335
0.035641
0.005068
0.000186

-1.8

0.996901
0.994557
0.990522
0.983751
0.972824
0.956223

0.933025

0.903021
0.865454
0.817674
0.755982
0.676843
0.577164
0.456400

0.320145
0.184674
0.076825
0.018276
0.001647

-2.0

0.998046
0.996564
0.994017
0.989737
0.982839
0.972364

0.957700

0.938706
0.914854
0.884390
0.844510
0.792512
0.724935
0.638321

0.530375
0.402508
0.264119
0.136381
0.046995
0.008074
0.000411

-2.2

0.998768
0.997849
0.996225
0.993526
0.989174
0.982558

0.973300

0.961130
0.946211
0.927064
0.901565
0.868168
0.824284
0.766765

0.692162
0.597320
0.481019
0.347295
0.210050
0.094610
0.025806
0.002952

-2.4

0.999222
0.998648
0.997617
0.995912
0.993164
0.988996

0.983149

0.975573
0.966040
0.953903
0.937750
0.916591
0.888580
0.851541

0.802726
0.738889
0.656585
0.553160
0.429006
0.291546
0.159558
0.060695
0.012373
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APPENDIX 9

THE PHYSICAL STATE OF THE SUN

A.9.1 The quiet sun

The sun is a typical main-sequence dwarf star of apparent visual
magnitude —26.74 and spectral type G2V. The visible disk, or
photosphere, has a radius R& = 6.599 x 10s km and the solar mass is
1.989 X 1030 kg. The chemical composition of the outer layers is (by mass)
71% hydrogen, 26.5% helium, and 2.5% heavier elements. The sun
derives its energy from thermonuclear reactions between hydrogen atoms
in the core (0 to 0.25K0) at a temperature of about 107 K. The energy is
transferred outward by the radiation field to about 0.77?© where the
temperature is about 106 K. The final Q.3R& (an uncertain figure) is
accomplished by convective mixing processes maintaining the outer layers
of the sun in a state of violent small-scale motion that exhibits itself, in
high quality images, as surface granulation, rapidly varying structures of
diameters approximately 1000km and lifetimes of approximately 8min.

At the mean sun-earth distance (1.495979 x 108km), the spectrally
integrated irradiance is a slightly variable quantity, corresponding to a
black-body emission temperature of 5783 ± 20 K. The average angular
diameter of the photosphere as measured at earth is 31.988 arc min,
varying by ±1.7% over the year, as the earth follows its elliptic orbit.

The sun rotates at a rate that is variable with depth and with
latitude. As measured by the motion of sunspots (other features give
slightly different values), the synodic period (as seen from earth) is
[26.90 + 5.2 sin2 (latitude)] days. The quiet sun has a general magnetic
field with a value of 1-2 G at the surface near the poles.

The sun is entirely gaseous and the term solar atmosphere is no more
than a convenient term for that part of the sun from which we receive
measurable electromagnetic radiation, of any wavelength from y rays to
radio waves. The variation of temperature with height in the photosphere
and chromosphere, measured from a zero level defined in terms of the
opacity at 5000 A, is shown in Fig. A.9.1. After falling to 4200 K in the
reversing layer, the temperature rises to 20-50,000 K in the transition
region (TR) between chromosphere and corona. In the corona, the
temperature rises to about 1,800,000 K at a height equal to R&.
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FIG. A.9.1. Temperature in the quiet photosphere and chromosphere. Compare these
data to those of Allen (1973), Table 77. According to Allen, heights are usually measured
from the level at which the optical depth at 5000 A is unity and the temperature is about
6430 K. On this basis, the zero altitude in this figure corresponds to -90km, and would
have a 5000 A optical depth equal to 20. According to Allen, the gas pressures are about
2 x 10~' bar at the base of the photosphere and 10~2bar at the base of the chromosphere.
At the base of the corona the electron pressure is about 10~l dyne cm"2. The levels
indicated by arrows correspond to unit optical depth for the named lines or continua. Note
the 3-cm radio level at 2000km. After Lean (1987).

A.9.2. The solar spectrum

The solar spectrum consists of a continuous emission with a superim-
posed line structure that, relative to the continuum, can appear in either
absorption or in emission. The visible and infrared spectrum of the
photosphere shows absorption lines only (the Fraunhofer spectrum), the
strongest of which are caused by H, Na, Mg, Fe, Ca, Si, and singly
ionized Ca and Mg. At 0.185 ,um, the photospheric spectrum changes and
most of the lines at shorter wavelengths are exhibited in emission. Light
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from the chromosphere and the corona has emission lines at all
observable wavelengths.

Most of the solar energy is carried by the continuum. This owes its
existence to nonquantized electronic transitions, both bound-free (ioniz-
ing) and free-free. The most important single contributor is hydrogen,
both in its neutral state and as negative ions. Neutral hydrogen has
ionization continua starting at the limits of the Lyman, Balmer, Paschen,
Brackett, and Rydberg series; the Balmer discontinuity at 0.3646 jum is
prominent in observational data (e.g., Fig. A.9.4). Metallic atoms
contribute to the continuum in the ultraviolet spectrum and are respon-
sible for the maximum absorption coefficient at O.lSjUm in Fig. A.9.2.
Through the visible and infrared spectrum, however, the continuum
absorption is by negative hydrogen ions. Between 0.4 and 1.7 ̂ m, the
main contribution is from the bound-free transition; at longer wave-
lengths the absorption coefficient varies as (wavelength)2, and is caused
by a free-free transition.

The effect of the smoothed-out absorption by Fraunhofer lines is
indicated by the broken line in Fig. A.9.2. At wavelengths less than

FIG. A.9.2. Spectrum of solar emission and photospheric absorption, (a) Solar spectrum
compared to that of a 5785 K. black body. The method of plotting gives areas
(^Ailog]0 A/100) proportional to energy flow (/x dK). (b) Mass absorption coefficient for
the photosphere at a temperature of 5785 K. After Allen (1958).
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0.3 pm more than half of the continuum is reabsorbed by lines. Under
these circumstances, empirical separation of lines and continua in the
observational data is no longer possible. At infrared wavelengths, line
absorption can be neglected for practical purposes.

In terms of the discussion of § 6.5.1, emission by each feature in the
solar spectrum has a kernel function, similar to the Chapman function,
with a maximum emission taking place from the level of unit optical
depth; the emission is approximately equal to the source function at that
level. Emission levels are indicated in Fig. A.9.1 for ultraviolet continua
and certain important ultraviolet lines. For the 168.2 nm (0.1682 ^um) Si I
line and for longer wavelengths, the continuum level has a temperature
higher than the overlying line, and Si I appears in absorption. For the
HOnmCI line, on the other hand, the overlying line emits at a
temperature higher than the continuum, and the line appears in emission.
It is consistent with this interpretation that, when chromospheric and
photospheric light are briefly separated during an eclipse, the former
shows the Fraunhofer lines in emission, at wavelengths longer than
185 nm.

The increase of absorption toward both long and short wavelengths
shown in Fig. A.9.2 causes continuum emission in both the X ray and
radio wave regions to originate in the rarified corona. Line emission from
the corona, where the temperature exceeds 106 K, is principally from the
0.5303 /j.m line of iron, 13 times ionized.

A.9.3. The intensity of solar radiation

The irradiance of the quiet sun at mean solar distance for the wavelength
range 0.3-5 jum can be read from Fig. A.9.2. An extended range is
shown in Fig. A.9.3. The emissions at wavelengths shorter than 0.1 pm
and longer than 1 cm are coronal, and are highly variable (see below).

Table A.9.1 gives tabulated data from 0.2 to 5/zm. Shorter
wavelengths are important for their effect on the temperature and
composition of the upper earth's atmosphere and will be discussed
further in § A.9.4. The irradiance for wavelengths between 5 fim and
1 cm can be calculated from the effective emission temperatures given in
Table A.9.2.

The foregoing data refer to emission from the entire solar disk. For
most wavelengths, the sun shows wavelength-dependent limb darkening.
From the curves in Fig. A.9.4 it is possible to calculate the intensity at
each point on the disk. Following the discussion in §6.5.1(iii), limb
darkening corresponds to emission from a region in which temperature
decreases with height (the photosphere, Fig. A.9.1); for chromospheric
emissions (A<150nm), limb brightening occurs. Limb darkening for
visible wavelengths can be seen in the photograph in Fig. A.9.5.

The integrated or total irradiance is the quantity that is most
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FIG. A.9.3. The solar irradiance from 10 7 to 103cm. Spectral features are smoothed out
by averaging over intervals containing many Fraunhofer lines. Areas are not proportional to
energy, as was the case in Fig. A.9.2. "Outburst" indicates a radio disturbance (see
§ A.9.4). After Allen (1958).

important for meteorological and climatological studies. Values quoted in
the literature vary from time to time, partly perhaps because the quantity
is intrinsically variable but partly also because of the difficulties of
absolute measurements. The most widely accepted figure, ca 1980, is

corresponding to an emission temperature

A.9.4. Solar variability

The sun is a variable star. At times there have been claims that all
weather and climate changes are caused by changes in the solar
irradiance, countered at other times by the assertion that solar variations
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Table A.9.1. Solar irradiance, 0.2-5.0 /im"

Wavelength

0.20
0.22
0.24
0.26
0.28

0.30
0.32
0.34
0.36
0.38
0.39

0.40
0.42
0.44
0.46
0.48

Irradiance

0.1
0.7
3
14
24

55
74
89
104
118
125

144
182
202
216
217

Wavelength
(urn)

0.50
0.55
0.60
0.65
0.70

0.80
0.90
1.00
1.10
1.20

1.4
1.6
1.8
2.0

2.5
3.0

4.0
5.0

Irradiance
(erg cm"2 A"1 s"1)

210
196
185
164
146

114
89
71
58
48

32
21
15
10.8

4.9
2.6

0.9
0.4

" The spectrum is smoothed by averaging over spectral intervals wide compared to Fraunhofer lines.
Absolute spectral measurements are difficult to make and there is some disagreement between
different observers. For details, consult the exhaustive reviews in White (1977). Source: After Allen
(1973).

Table A.9.2. Effective temperatures for
infrared and radio emissions

Wavelength Emission temperature
(K)

5 //m
10,um
2Qftm
50 jim

100 urn
1 mm
1 cm

5500
5050
4740
4500
4370
5500
8200

Source: After Allen (1973).
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FIG. A.9.4. Solar limb darkening. |f is the cosine of the zenith angle at the sun's surface.
1 = 1 corresponds to the center of the disk. After Allen (1958).

are irrelevant as far as the lower atmosphere is concerned. To put the
problem into perspective, we note that large changes in the corona are
well established and that coronal ultraviolet emission is the heat source
for levels in the upper atmosphere where the density is very low. The
thermosphere, above 150km, is greatly influenced by variable conditions
on the sun.

The greater part of the solar irradiance comes from the photosphere,
however, where pressures are high and variability is low. Such variations
as are observed are small compared to other familiar effects, e.g., diurnal
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FIG. A.9.5. The photosphere in white light showing two large sunspot groups observed on
April 8, 1980. Courtesy of the Big Bear Solar Observatory, California Institute of
Technology.

and seasonal variations in the geometry of the insolation and variations in
cloudiness, surface albedo, and aerosols. Variations in the earth's orbital
elements can give rise to variations of insolation of a few percent with
periods between 21,000 and 90,000 years (the Milankovitch effect). For
the climatologist, all variations in insolation are equally important and
total irradiance changes on the order of a few tenths of a percent do not
command much attention.

The most striking visual disturbances on the photosphere are the
sunspots, patches varying in diameter from a few thousand to a hundred
thousand kilometers, with an emission temperature in the center about
1500 K lower than that of the undisturbed photosphere. An unusually
large spot group, that could be seen with the unaided eye, is shown in
Fig. A.9.5. The fraction of the photosphere covered by spots is never
more than 0.2%, and their average persistence is about a week.

The Wolf sunspot number is an index of solar activity based on the
numbers of sunspots and sunspot groups. The sunspot number for the
period 1610 to 1976 AD (estimates only for the first 100 years) is shown
in Fig. A.9.6. For most of this period, there was a sunspot cycle with an
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FIG. A.9.6. The sunspot cycle. After Eddy (1977).

average period of 11.04 years. During the late seventeenth century,
however, evidence suggests that there were no sunspots to be seen (the
Maunder minimum)', there may have been earlier events of a similar
nature. The number of spots is only one characteristic feature of the sun
that changes in this rhythmic manner. Just after the minimum, spots first
appear near latitude 27° in both hemispheres. As the cycle proceeds, they
drift equatorward and disappear close to latitude 8°. They are rarely
observed at latitudes higher than 30° or lower than 5°.

Other types of disturbance are associated with sunspots. When a
spot is near to the limb it can be seen to be surrounded by a network of
enhanced photospheric emission, patches of which are called faculae.
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FIG. A.9.7. The photosphere in Ha light. This photograph was taken at the same time as
that shown in Fig. A.9.5 and shows the same features. It was taken through a narrow filter
centered on the Ha line of hydrogen. Courtesy of the Big Bear Solar Observatory,
California Institute of Technology.

These have longer lifetimes than the associated spot group, appearing
before and disappearing after the spots themselves.

When the sun is viewed in monochromatic light from a single
element, other disturbances can be seen. Figure A.9.7 illustrates typical
features in Ha light. The spots are visible on the monochromatic images
but surrounding bright areas, known as flocculi or plages, are now the
most prominent features, and they also occur at high latitudes, where
spots do not. Occasionally, a hydrogen flocculus near a spot will brighten
up, in extreme cases to the extent that the brightening is visible to the
eye. These brightenings are known as solar flares, and they are associated
with great increases of Lyman a and other ultraviolet radiations that
influence the upper atmosphere.

Prominences are photospheric eruptions, extending into the chromo-
sphere, that can be seen on the limb of the sun if precautions are taken to
cut out the intense photospheric light. Many different forms occur, but a
typical prominence might be 30,000km high and 200,000km long, with a
temperature of 5000 K. Since this temperature is less than that of the
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photosphere, prominences may be seen in Ha light as dark filaments on a
bright background. More prominences occur at solar maximum than at
solar minimum.

Coronal disturbances are closely related to the sunspot cycle. In
visible light the corona appears more jagged at sunspot maximum than at
minimum. Solar radio emission from the corona shows a marked
variation with the sunspot cycle and is also correlated with shorter period
changes in sunspot number. The intensity of radio emission from
occasional outbursts suggests local condensations with temperatures of
107 K; outbursts are accompanied by large increases in the far-ultraviolet
and X-ray emission from the sun.

All of these variations are associated with magnetic activity, resulting

FIG. A.9.8. The solar ultraviolet spectrum and its variability, (a) The average spectral
irradiance. (b) Ratio of average maximum to average minimum in a solar cycle, (c) This is
the same as Fig. 5.1. It shows the level at which each spectral component is principally
absorbed and it indicates ionization thresholds. After Lean (1987).
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from interactions between convective motions, the solar rotation, and the
general magnetic field of the sun. Sunspots contain magnetic fields up to
4000 G. The polarity in spot pairs reverses in successive sunspot cycles so
that the complete cycle is sometimes taken to be 22.08 years. Magnetic
fields and electric currents penetrate the chromosphere and corona,
where magnetic variations have far greater influence because of the low
densities.

Solar variations are now routinely monitored in a certain chromos-
pheric lines (Ca IIH and K at 3875-3933 A and He I at 10,830 A) and at
10,7cm in the radio region, in addition to observations of sunspots,
faculae, and plages. These indices all show a general correlation with the
sunspot cycle, although they usually differ from each other on shorter
time scales. This information is now supplemented, less systematically, by
rocket and satellite measurements of the total irradiance and also of
ultraviolet and X-ray emissions, not detectable at the earth's surface.

Solar cycle variability in the ultraviolet spectrum is illustrated in Fig.
A.9.8b. The greatest changes occur at wavelengths that are absorbed in
the thermosphere, where they give rise to large changes of temperature
(see Fig. 1.4) and of ionization. Larger changes may be associated with
solar flares and other short-period disturbances, especially at wavelengths
less than 20 nm (Fig. A.9.9).

FIG. A.9.9. Spectral irradiance between 10 and 300 A. Three states of solar activity are
shown for the region 10 to 31 A. The effect of a 2B flare is indicated for the spectral region
100-170 A. The shaded areas include all known data in the absence of flares and give some
indication of the extent of the solar-cycle changes. After Manson (1977).
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FIG. A.9.10. Percentage variation of solar irradiance corrected to mean solar distance.
The measurements were made with a cavity radiometer on the Solar Maximum Mission.
The mean irradiance for this period was 1367.6 Wm~2 . After Willson (1984).

Figure A.9.10 shows variations in the total irradiance measured from
space, over a period of 3 years. Short-period changes up to 0.3%
occurred, together with a long-term drift of 0.09%. The long-term drift
may be part of a solar cycle change; there is some evidence for a slow
increase of irradiance between 1967 and 1980, and recent, unpublished
results for 1985 and 1986 show a leveling out with variations around
1366.8 Wm~2. Short-period changes are accounted for, in part, by the
geometric shadowing by sunspots, but there are additional correlations
with the extent of faculae.

Theories of climatic changes on geological time scales draw attention
to inevitable changes that must have taken place during the lifetime of
the sun. The sun is now about 5 X 109 years old. According to widely
accepted theories, it was 6% smaller, 300 K cooler, and its irradiance was
40% lower than present-day values when it formed. For the next few
billion years variation may be approximated by

where / and t are the irradiance and the age of the sun and zero suffices
indicate present-day values.
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A (argon), 2, 9
depolarization factor for, 298

Absorption, 24, 288
area, 129
atmospheric, 4, 67, 89
average, 129, 142, 178
band, integral over, 21
continuum, 56
efficiency factor, 293
path, homogeneous, 127
path, nonhomogeneous, 127

Absorption coefficient
definition, 24
mean value of, 177, 397, 398, 400
measurement of, 51
molecular, 338
for pressure-induced bands, 116-17
in scattering theory, 173
in thermodynamic equilibrium, 35
not in thermodynamic equilibrium, 30, 35
units of, 127

Adiabatic interactions, 97
Adiabatic lapse rate, 457. See also Lapse

rate
Adiabatic state of the atmosphere, 447
Aeronomical calculations, 246
Aeronomical studies, 244, 245
Aerosols

abnormal scattering by, 305
in clouds, 412-14
influence on radiation streams, 13, 216,

489
volcanic, 189

AFGL tape or archive, 67, 118, 110, 119,
189-215, 217

main listing, 191
trace gas compilation, 191

Agricultural activity, 11
Air

depolarizing factor for, 298
refractive index of, 298

Aircraft measurements, 372
Airglow, 1
Airy's theory of the rainbow, 312-14, 323
Albedo, 1, 2, 50, 489

for single scattering, 319-22, 365, 375-79

Amplitude function, 307-8, 315
Amplitude scatting matrix, 290-92

angular distribution of, 307
Anderson-Tsao-Curnutte Theory, 41, 97,

104-7. See also ATC Theory
Angular scans, 263-64
Angular integrations, 220
Angular momentum

component in a fixed direction, 81
component along a symmetry axis, 81
rotational, 80
total, 78
vibrational, 78

Anharmonic oscillator, 77, 91
Anharmonic corrections to normal mode

frequencies, 92
Anomalous diffraction, 303
Approximate absorption coefficients, 56-57
Approximate methods

for scattering source functions, 53,
357-63

for thermal source functions, 52-55
Ascent curves, 258-59
Asymmetric top, 81

energy levels for, 82-84, 90
Asymmetry factor, 319-22, 358-68
ATC theory, 104-8,

for water vapor lines, 199
"Atmospheric bands" of oxygen, 18

Babinet's principle, 301-3, 361
Band areas, 177-83

empirical treatment, 178
exponential contour, 178-80
logarithmic dependence, 178-82
contribution to emissivity, 254
semiempirical treatment, 181-83

Band contour, 125
exponential model of, 178-79
slow variation of, 125-26
width of, 178

Band intensity, 36, 76
dimensions of, 467
for pressure-induced bands, 116
vibrational, measured, 118

Band models, 125-88, 222, 230
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Band models (cont.)
Curtis, 155-56
Elsasser, 148-58
emissivity, 125-26
empirical, 178
grey absorption, 171
and k distributions, 169
Matossi, Meyer, and Rauscher, 146
narrow, 125-27,177-79
random, 127
regular, 127
Schnaidt, 145
three-parameter, 167
whole (or complete), 173, 177-83
wide, 125-26, 177-78

Barometric law, 238
Basis functions, 271-76
Beer's law, 150-52
Binary absorption coefficient, 117
Biological processes, 11
Black-body curves, 4
Black-body radiation, 27-43. See also

Enclosed radiation, Planck function
at boundaries, 60
from the sun, 482-84
wavelength distribution, 30, 219

Black scatterer, 306
Black surface, 399
Boltzmann

constant, 31
law, 31-34
term, 117

Born-Oppenheimer approximation, 76
Bose-Einstein statistics, 88
Bouguet's law. See Lambert's law
Boundary conditions for radiative transfer,

for approximate equations, 360-63
for integral equation, 356, 431
isotropic, 43
lower, 47, 345, 351, 394-95, 405
for method of moments, 58-60, 360
perturbed, 431
and similarity relations, 36
in a stratified atmosphere, 50-52, 60-62
upper, 43, 49, 50, 345, 391-93, 405

Boundary exchange, 248-56, 431, 449. See
also Cooling to space, Radiation to
space, Newtonian cooling

Boundary layer, 442
Brunt-Vaisala frequency, 457
12C, 10
13C, 10
Carbonaceous rocks, 416
Carbon dioxide, 11. See also CO2.

atmospheric absorber, 191
band area of 15 pm band, 182-83
collision-induced rotation band, 206-7
combination band at 10,500 A, 379-81
cooling-to-space, 250-51

Coriolis splitting of Q-branch, 94
doubling of amount, 411, 415
Fermi resonance, 94-95, 204
Fermi triplets, 205
fundamental modes, 204
H-C-G approximation, 229-30
heating rate, 237, 402-453
importance of, 3, 442, 453
isotopic bands, 204-5
k distribution for 15 /urn band, 176-77
middle atmosphere, 242
narrow-band parameters for 15 [im band,

179
observed and calculated lines compared,

120
permanent dipole moment, 204
parallel and perpendicular bands, 204
P-, Q-, and R-branches of 15 /urn band,

176-77
Q-branch, 90
radiation chart, 258
radiative relaxation, 438—55
relaxation rates, 438, 453
remote sensing, 260-65
1.4|umband, 206
1.6jumband, 206
2.0 fim band, 205
2.7,umband, 127,205
4.3 urn band, 204-5, 438
5 ftm band, 206
10 urn bands, 205-6
15 fim band, 72,173, 179, 204-5, 438
v2 band, 148-49, 418
3v2 band in the solar spectrum, 120

Carbon monoxide. See also CO
atmospheric absorber, 191
absorption bands, 210
band absorption, theory and

measurement, 154
first and second overtone bands, 211
fundamental, 154, 211
linear molecule, 72, 210
normal modes, 79
P- and R-branches, 90
photochemical and combustion product,

13
rotation band, 210-11
4.67 jum band, 72

Centrifugal force, 87
Centrifugal stretching, 92
CF2C12 or CC12F2, 9

remote sensing of, 261-62
CFC13 or CC13F, 9, 81

remote sensing of, 261-62
CH4, 2, 9, 211. See also Methane

moments of inertia, 81
remote sensing, 261—62
3.31 ,um band, 69, 70

CfL2, 191
,,, 191
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CH3C1,191
Chahine

retrieval in the presence of cloud, 269-70
retrieval technique, 266-70

Chandrasekhar
first approximation, 60-62
H function, 336, 352-54
method of discrete ordinates, 379
X and Y functions, 352-54

Chapman
function, 263, 454, 485
layer, 237-39, 252-53, 417-18, 453

Chemical composition
of the atmosphere, 3-8
of the sun, 482

Chemical reactions, 42
Chromosphere, 482-85, 491-93
Circulation of planetary scale, 446
c-A: Method, 231-36. See also Correlated k
C\2 population of vibrational states, 87
Classical oscillator,

isotopic effect, 79
Classical-path approximation, 104
Clear atmosphere, 216, 237

radiation calculations, 216
Climate,

change, 388
effect of clouds, 412

Climatological data, 5, 277-78
empirical orthogonal functions, 276

CIO, 191
Cloud, 3-5, 13

black surface, 216, 259
climatology, 14
cooling at tops, 372
effect on insolation, 489
fraction, 269
-free earth, 417
interior, 360
layers, 270
nonconvecting, 415
opaque radiator, 250, 258-59
physics, 14
radiative equilibrium temperatures, 402,

408
scattering, 3, 378
semiconvection at top, 412-14
temperature retrieval, 269
types, 3

CO, 2, 9. See also Carbon monoxide
moments of inertia, 81
P(6) line of fundamental, 133
population of rotational states, 87
spectrum near 4.67 fim, 70

13C O. See also Carbon monoxide
isotope shift, 80
weak bands, 72

CO2, 2, 9. See also Carbon dioxide
Curtis' matrix applied, 242
depolarization factor, 298

ground-state transitions, 246-48
heating function for 15 fim band, 244-45
isotope bands, 246-48
lines in Venus spectrum, 379
molecular concentration, 13
moments of inertia, 81
normal vibrations, 80
reemission from 2.7 /^m band, 249
remote sensing in 15 pm and 4.3 (im

bands, 259
solar excitation of v2 and v3

fundamentals, 246-48
spectrum near 12.64 fim, 71
upper-state transitions, 246-48
2.7 urn band, 248-49
15 ftm band, 40
v2 fundamental, 246-49
v3 levels, 246-49

Collision broadening, 97. See also Pressure
broadening

Collision cross-section, 105
Collision diameter, 105
Collisional excitation and deexcitation,

37-43
Collisional perturbations, 118
Collisional rate, 32-39
Collisional relaxation time, 32-38, 40
Collisional population of rotational levels,

41
Collision-induced transitions, 33-36

97-99, 105, 115
coefficients, 33-43

Combination bands, 92, 148
Combustion product, 9
Composition of the atmosphere, 388
Compton scattering, 23
Condensation of water vapor, 8
Continuum absorption, 150, 168-76, 191,

217, 262
Continuum emission from the sun, 483-85
Contribution functions, 273-74
Convection, 404-6

boundary layer, 408
cumulus, 407-11, 421
free, 393, 402-3, 408-11

Convective adjustment, 405, 408, 420
layer, 407
regions, 406

Convective mixing on the sun, 482
Convective heating, 410
Convective models, 407-11
Convective overshoot, 411
Convective parameterization, 407-11
Cooling to space, 250, 256-57, 441, 449. See

also Boundary Exchange, Radiation
to Space, Newtonian Cooling

Coriolis
force, 77
interaction and energy levels, 93-95
1-type doubling, 95
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Coriolis (cont.)
parameter, 457
term in frequency, 94

Corona, 482-85, 489, 493
Correlated k, 230-33. See also c-k method
Correlation

close collisions, 107
function, 101-9
line arrays, 127

Coupling between vibration and rotation,
76

Cowling
line-by-line calculations, 158, 162-63
universal curve, 162-63

Cumulative k distribution, 232
Curtis matrix, 239-40
Curtis model, 155. See also Band models
Curve of growth, 129
2D, 10
Deactivation, 24
Debye's theory of static polarizability, 100
Degeneracy

nuclear spin, 85
rotational, 81
spherical top, 82, 85
strict, 85
symmetric top, 85
vibrational, 444

Delta ((^-approximations, 360-63
Delta (<5)-Eddington approximation, 362
"Density" of radiation, 338
Depolarization factor, 298
Descartes' theory of the rainbow, 309

singular points, 309, 312
Detrainment level, 410
Diabatic conditions, 98
Diabatic heating, 5, 43, 426
Diatomic molecules

anharmonic terms in energy levels, 91
energy levels, 84
normal modes, 79
vibrational angular momentum, 78

Dicke line shape, 97, 113-15
microwave spectrum, 115
outer planet spectra, 115

Difference bands, 92, 148
Diffracted ray, 300, 304, 308
Diffraction, 300-1

in the amplitude scattering matrix, 302-3
peak in phase function, 361
in the rainbow, 311

Diffusion, 32, 339
equation, 338-39
exponent, 364-65
length, 364
mode, 336

Diffusive separation, 9
Diffusivity approximation, 63, 220-22, 417,

439-40

Diffusivity factor, 221, 336, 364, 374-75,
397, 417, 440

Dilutant gas, 132
Dimers, 97, 115, 121

formation of, 117
vibrational modes, 117
of water vapor, 117

Dipole moment. See also Electric dipole
moment, Magnetic dipole
interactions

induced by electric field, 294
induced in collisions, 115
matrix elements, 85, 90
scattering, 295

Discrete ordinates, 333, 336, 369
Disequilibrium states, 30-32.

of atomic and molecular species, 244
electronic, vibrational and rotational

levels, 245
Dissipation, 412-13
Dissociation of molecules, 245
Distribution of line intensities, 137-45

cumulative, 139—40
Dobson unit, 12
Doppler

broadening, 97, 111-15, 135
equivalent width, 135-36
core, 135-36
limit, 158
line, 125, 135, 225-34, 397
line in an Elsasser band, 156
line width, 111, 121
and Lorentz line shapes, 112
profile, 111, 134-35, 141, 144, 479
shift, 97, 119, 426
shift in gravity waves, 457

Doubling and adding method, 331, 344-48,
369, 373, 375

Downward beams, 47
Downward flux component, 240, 258, 334
Downward intensities, 339
Dry air, 8, 9
Dust, 3, 5, 13
Dynamic equations, 239
Dynamic meteorology, 426
Dynamic processes, 1, 14, 52, 446, 456

Earth
physical data, 462
radius, 266

Eddington approximation
delta, 363
modified, 371-72
second, 63, 330, 379
standard, 363, 371-72

Effective temperature, 398, 404. See also
Emission temperature

Eigenfunctions
radiative relaxation, 428-34
of Schroedinger's equation, 73
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Eigenvalues
inversion matrix, 277-78
radiative relaxation, 428-34
radiative transfer, 334-36, 364-65

Einstein
coefficients, 33, 75-76, 98
relations, 34-35
theory of thermal radiation, 30-31

Electric dipole moment, 74
matrix elements, 75
permitted bands, 75
transition probabilities, 88
transitions, 75

Electric field, 75
Electric polarizability, 117
Electric quadrupole moment, 75
Electromagnetic waves

general theory, 288-91
interactions with molecules, 75
phase, 25
polarization, 25
propagating, 25
vector properties, 25

Electronic energy, 73-76. See also Internal
energy

Electronic levels (states), 73-74
Electronic transitions, 189

permitted, 40
radiative lifetime, 40

Elsasser
model, 148-61, 167, 171-72, 221, 224,

397, 439-40. See also Regular models
band, 150, 157

and c-k method, 231
and k distribution, 174—76
for Voigt profile, 156-57

function, 150-52, 480-81
limit for narrow lines, 182, 225
subbands, 167
theory, 154

Emden, 403-7, 415
Emergent radiation, 336
Emission, 21-25

level, 410-11
Emission temperature, 2, 404, 447. See also

Effective temperature
of the sun, 482-87

Emissivity, 253-54, 375
calculations, 257
method, 227, 253-59
model, 372-74
modified, 439

Enclosed radiation, 28-30, 39. See also
Black-body radiation

Energy density of radiation, 16
Energy levels, 73

harmonic vibrator, 79
rigid rotator, 81
symmetric top, 81

Energy units, 465

Enthalpy, 412, 426
Entropy of atmosphere, 412
Entropy of radiation, 344
Equation of continuity, 426
Equation of transfer, 22, 26, 43

for direct solar beam, 51
microscopic processes, 35-43
in a stratified atmosphere, 46

Equations of motion, 426. See also
Navier-Stokes equations

Equilibrium molecular configuration, 76
Equilibrium vapor pressure, 418—19
Equivalent width, 129, 133, 161, 223

average, 162
sum of, 181

Error function limit to Elsasser function,
151, 156

Excited atomic and molecular species,
244-45

Exitance, 16
Exosphere, 32
Exponential integrals, 48-50, 475-76
Exponential kernel approximation, 61-62
Extinction, 21-25, 288

coefficient, 22, 465-67
cross section, 466
efficiency factor, 293, 316
by large spheres, 305
by molecules and droplets, 288-91
by nonspherical particles, 324-26
by spheroids, 325-26
term, 454-58

Faculae, 490-94
Far-infrared spectrum, 74
Fermi resonance, 72, 94-95, 120, 191
Fermi triplets, 246
Fermi-Dirac statistics, 88
Feautrier method, 337-39, 367
Filaments, solar, 492
Fine structure, spectral, 33
Flocculi, 491. See also Plages
Flux, radative, 16, 338

at a boundary, 60
calculations, 216, 220-27, 236, 256
divergence, 19, 256
downward component, 220-22
horizontal, 49
by the method of moments, 57
transmission, 221, 241, 252-53, 255
upward component, 220-22
vertical, 49

Force constants, 76
Four-stream approximation, 372-73
Fraunhofer diffraction, 308-9
Fraunhofer lines, 381, 483-87
Fredholm integral equation, 261, 324
Frequency

displacement, 179
of electromagnetic radiation, 464
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Frequency (cant.)
integration for flux and heating rate,

222-23
interval, 169
range, 222

Fresnel
diffraction, 294, 300-2, 309, 312-14
polarization of diffraction, 302
reflection coefficient, 311
zones, 300

Frost point, 11
Fundamental bands, 89, 148

inactive, 89
Fundamental mode of radiative diffusion,

364, 379

Gaps in a spectrum, 129, 159, 161
Gas mixtures treated theoretically, 176
Gaussian quadrature, 61, 333
Gaussian weights, 333
General circulation models, 126, 216, 388
Geometric optics, 309-15, 319-21
Glory, 319-23

in light reflected from Venus, 375
Godson

approximation for a nonhomogeneous
atmosphere, 226-30. See also H-C-G
approximation

study of variable line widths, 137
Gold, E., 403-4
Gold, T., 416
Granulation, 482
Gravity waves, 428, 450-57
Greenhouse effect, 392

solutions, 395
Grey absorption, 56, 171, 391, 396-97, 429,

448
Ground level conditions, 438
Ground-state band, 92
Ground-state transitions, 33

of CO2, 246-48

H2, 9. See also Hydrogen
population of vibrational states, 87
potential energy curve, 87

Hadley circulation, 390
Hamiltonian operator, 73-79

higher-order terms, 79
perturbations for classical path, 104-5
with respect to center of mass, 76
for a semirigid molecule, 73-79
time-dependent terms, 73-74, 97
time-independent terms, 73, 76
for water vapor, 199

Harmonic oscillator (vibrator), 77
energy levels, 79

Harmonic-oscillator, rigid-rotator model, 78
centrifugal stretching, 93
degeneracies, 85
energy levels, 92

no Q-branch, 90
provides basis functions, 91
selection rules, 90
states of, 79, 81,85

Haze, 3, 5, 13, 369
scattering by, 3, 323, 382

HBr, 191
H-C-G approximation, 227-230

mean pressure for, 230
HC1, 191

line shape, 109
population of vibrational levels, 87

HCN, 191
H2CO, 191
HDO, 10
He, 9
Heating function, 23, 50, 241, 244-45
Heating rate, 19, 23, 37

approximate methods of calculation,
52-56

atmospheric calculations, 189, 216
dynamic, 426
emissivity method, 227-29
in line wings, 107
by the method of moments, 57
for a nonequilibrium source function,

40-42
on the outer planets, 115
by pressure-induced transitions, 115
radiation chart for, 256
in thermal disturbances, 426
topics, 236-48
in the upper atmosphere, 488

Henyey-Greenstein phase function, 323—24,
362-73

double, 323
Hergesell, 415
Hertz (frequency unit), 464
Hertz solution for an oscillating dipole, 295
HF, 191
H functions, 366-67. See also

Chandrasekhar H function
HI, 191
HNO3, 191
H2O, HHO, 2, 10. See also Water, Water

Vapor
excited states, 246
moments of inertia, 81
normal vibrations, 246
nuclear spin weights, 88
spectrum near to 14.9 fim, 71

H2O2, 191
HOC1, 191
H16OH, H17OH, H18OH, H16OD, 198-204.

See also H2O
Homogeneous absorption path, 222-24, 233
Homogeneous atmosphere, 334
Hopf s function, 336
Humphreys, 403
Huygen's principle, 294
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Hydrodynamic processes, 5, 52
Hydrodynamic theories, 252
Hydrogen, 10. See also H2

normal modes, 79
vibrational levels, 77-79

Hyperflne structure, 88

I2, 87. See also Iodine
Impact

approximation, 101
parameter, 104
theories, 97-98

Independent lines, 146, 151, 161, 182-83.
See also Isolated lines

Induced emission, 30-36. See also Einstein
Industrial processes, 11
Inertia tensor, 78

expansion coefficients of, 91
Ingersoll, 416-18
Insolation, 420, 489. See also Irradiance
Integral equations of radiative transfer,

43-50,355-56, 431
with Eddington's second approximation,

330
Integrodifferential equation for scattering,

331
Intensity

definitions, 16, 19
mean, 45, 48, 60
of solar radiation, 485-94
a statistical ensemble, 277
volume integral for mean, 45

Intensity transformation matrix, 26, 294-97
Interaction coefficients for temperature and

ozone concentration, 456—57
Interaction principle, 339-42
Interactions, 85, 90-96

between molecules, 98, 104
between molecules and the radiation

field, 74
between rotation, translation and

vibration, 32-33
in the Hamiltonian operator, 79

Internal energy, 426
electronic, 23, 73
nuclear spin, 73
rotational, 23, 72
translational, 23, 31,73
vibrational, 23, 73

Internal radiation field, 326-27
Invariant imbedding, 349-52
Inverse problem, 5, 259. See also Retrieval
Inversion

effect of instrument noise, 260
of temperature, 260-79
optimum solutions, 260
uniqueness, 260

Iodine, 86. See also I2
lonization

effect of Sun, 483

limits, 190
Ionized atoms and molecules, 244-45
Ionosphere, 9
Irradiance, 1, 16, 18, 189, 237, 482-94

spectral, 493
variation on geological time scales, 494

Isentropic surfaces in the stratosphere, 391
Isolated lines, 128-37, 150-53, 162, 225.

See also Independent lines
in c-k method, 231,235
effect of overlap, 145
limit, 152, 156
of Lorentz shape, 128-37

Isopleths, 258
Isothermal emissivity, 255-57
Isotherms, 258
Isotopic abundances, 10
Isotopic components (species), 8, 80
Isotopic lines, bands, 72, 79, 109
Isotopes, 8

Jupiter, 447

Kayser. 465
k distribution, 126, 169-77, 230-31, 397-

99. See also Spectral representations
Elsasser band, 174-75, 397
function, 173
Malkmus band, 174-75
Schnaidt band, 174, 397

Kernel function in retrieval equations,
259-66,485

effect of temperature, 263
for limb scans, 265

Kinetic collisions, 74, 114
Kinetic energy, 24, 43. See also

Translational energy
Hamiltonian for, 76-77

Kinetic temperature, 8, 32, 246
Kinetic theory of gases, 99
Kirchhoff s laws, 3, 21, 28, 39
Kr, 9

Laboratory data
compared to band models, 163, 166, 168
inverse Laplace transform of, 171

Ladenburg and Reiche function, 130,
477-78

approximations to, 130
Lakes, scattering in, 378
Lambert's law, 21-22, 26, 44, 125, 132, 140
Lapse rate, 393

adiabatic, 404
convective adjustment of, 405-7, 410
dry adiabatic, 408
moist adiabatic, 410
tropospheric, 420

Large particle scattering, 300-9
Level populations, 41. See also State

populations
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Lifetime of an excited state, 23, 98
Limb

brightening, 264-65
darkening, 263-65
kernel functions, 265
scans, 265-66
of the sun, 485, 488

Lindholm
theory of line shape, 97, 101, 109
profile, 103, 168

Linear law, 130-32, 181. See also Weak line
Linear molecules, 72, 81

line intensities, 91
nuclear spin weights, 88
P- and R-branches, 148
state populations, 85-86

Line absorption, 398
Line-by-line calculations, 125, 160, 177

compared to c-k method, 236-37
compared to observations, 217-220
correction to emissivity method, 256-57
test H-C-G approximation, 229-30
verify theory, 163-66

Line intensities, 67, 98, 161, 233
equilibrium, 76
mean, 139
measurement of, 154
physical dimensions, 467
and selection rules, 85
state dependence, 67, 225

Line intensity distribution functions, 155,
161-62,166

delta (6)-function, 131, 137-43, 161
exponential, 131, 138-43, 155, 164, 168
Godson, 131, 138-43
Malkmus, 131, 138-43, 166

Line of sight, 288
Line overlap, 129, 133, 145-46, 176
Line

centers, 190, 217
and cumulative k, 233
positions, 158
profiles, 98, 217
-shape factor, 98
shift, 102-3
spacings, 127, 129, 148, 158
wing shapes, 97, 100, 107-11, 169,

190-91,217
Lobes, scattering, 300, 317
Localization principle, 300, 306, 309
Local thermodynamic equilibrium, 31-33.

See also LTE
Logarithmic regime, 440-41
Lorentz

broadening, 135
departures from line shape, 110, 223
equivalent width, 134-36
line shape, 99, 129-35, 142, 146-47, 166,

174, 191,225
line width, 99, 223

line wings, 135, 176
lines, 146-48, 155, 168-70, 225-34,

397-401,439
profile, 99-102, 133, 141-50, 157-60,

168-69, 228, 234, 479
relation for static polarizability, 299
shifted shape, 103, 118
tests for profile, 133

Lower atmosphere, 3, 7, 11, 260, 392, 488
temperature, 389-91
radiative equilibrium, 395
relaxation rates, 441-42

Low-order approximations for radiative
transfer, 357-64

accuracy, 370-72
LTE, 31-32, 446. See also Local

thermodynamic equilibrium
1-type doubling, 95-96
1-value, 191

in CO2, 204

"Macroscopic" approach to radiative
transfer, 339

Magnetic dipole interactions, 75
Magnetic field of the sun, 482
Malkmus model, 176-77, 180, 232-34. See

also Band models
Manifolds, 70, 85. See also Multiplets
Mapping transformations in remote sensing,

266
Mars

global dust storms, 396
radiative-convective profiles, 413
radiative relaxation, 440-43

Martian atmosphere, 411-12
Maunder minimum, 490
Maxwell's distribution of molecular

velocities, 31-32, 99, 112
Maxwell's equations, 25-27, 288, 291, 300
Mean free path,

of molecules, 32, 108
of radiation, 53, 239, 430

Mediterranean, scattering in, 378-79
Mercury, 447
Mesosphere, 3, 7, 9, 41, 438. See also

Middle atmosphere
Methane, 8, 11, 67. See also CH4

absorption bands, 211
an atmospheric absorber, 191
fundamentals, 211
interactions, 211
isotope bands, 211
manifolds, 85
normal modes, 79, 89
overtone and combination bands, 211
a spherical top, 211
7.6,um band, 168

Michelson-Lorcntz theory, 97-100
"Macroscopic" approach to radiative

transfer, 339
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Microwave spectrum, 74, 129
line narrowing, 115
remote sensing, 260

Middle atmosphere, 7, 11, 242, 260, 438.
See also Mesosphere

calculations for, 242, 246
Doppler lines in, 125
gravity waves in, 428, 450-53
heating rate, 390, 429
limb scans, 266
radiative relaxation, 438, 442, 446,

450-53
solar heating, 453

Mie theory, 288, 294, 305, 311, 315-26
calculations from, 372
compared to geometric optics, 319—20
extinction and absorption efficiencies, 317
phase function, 316, 319-20, 324
polarization, 319—20
related to the rainbow and glory, 323
WKBJ approximation, 309

Milankovitch effect, 489
Millimeter spectrum, 191
Milne, 404
Milne's treatment of thermodynamic

equilibrium, 30-43
Mists

diffraction by, 312
scattering by, 378

Mixing-length theories, 408
Mixing processes, 10
Mixing ratio, 223-24, 430, 438

of absorber, 457
Model atmosphere, 6, 468-69
Molecular absorption, 5
Molecular atmosphere, scattering by, 382-

83
Molecules, scattering by, 3
Moments, method of, 57-59

zero order, 57
first moment, 58
second moment, 58

Monochromatic radiative equilibrium, 20,
23

Monte Carlo, 256-57
backward, 256

Motions, 3, 5, 53
Multiplets. See also Manifolds

of the spherical top, 82
Multiplication property of band

transmission, 127-28, 148, 158, 161-
62, 166, 176

Multistream solutions, 336-38
14N, 15N, 10
N2, 2, 9, 191. See also Nitrogen

population of rotational states, 87
excited levels, 246

Natural lifetimes of excited states, 32-43,
97-8

Natural light, 26. See also Unpolarized light
scattering coefficients and phase function

for, 298, 319
Natural line shape, 97, 98
Navier-Stokes equations, 427
Ne, 9
Neutron diffusion, 330
Newton's law of cooling, 52, 428. See also

Newtonian cooling
Newtonian cooling, 252, 428-29, 449-50.

See also Newton's law of cooling,
Cooling to space, Radiation to space

relaxation rate, 450-52
scale-dependent, 429

NH3, 9, 191
Nimbus, 219
Nitric oxide. See also NO

normal modes, 79
Nitrogen, a main atmospheric constituent,

67
Nitrogen molecule, See also N2

absorption spectra, 191-93
collisions with oxygen molecules, 197
collisions with water molecules, 202
depolarization factor, 298
forbidden fundamentals, 115, 119
fundamental frequency, 191
pressure-induced bands, 191
quadrupole moment, 104
symmetry destroyed by collisions, 115

NLTE, 446
Nitrous oxide, 8, 11, 70. See also N2O,

NNO
as an atmospheric absorber, 191
combination bands, 210
Fermi resonance, 210
line intensities, 91
linear symmetric molecule, 210
observed and calculated lines, 120
P- and R-branches, 90
population of rotational levels, 87
rotation band, 210
4.5 pm band, 210
7.78 fim band, 148
7.8 nm band, 210
17 /im band, 210
2 v2 band in the solar spectrum, 120

NNO. See also Nitrous oxide, N2O
isotopic variants, 72, 210

NO, 9, 191. See also Nitric oxide
moments of inertia, 81

NO2, 191
N2O, 2, 9. See also NNO, Nitrous oxide

1-type doubling near 8.62 fim, 96
moments of inertia, 81
remote sensing in the 7.8 jj.m band,

261-62
7.78 fim band, 70

Noise amplification in retrieval algorithms,
271-72, 278
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Noise variance, 272
Nonequilibrium conditions, 2
Nonequilibrium source functions, 444
Nongrey atmospheres, 396, 407, 448
Nonhomogeneous absorption paths, 171,

174, 223-36, 257
Nonhomogeneous atmospheres, 339, 348,

352
Nonlocal dissipation, 411
Nonrotating atmospheres, 448
Normal coordinates, 76
Normal modes, 76, 89
Nuclear spin energy, 76
Nuclear spin levels or states, 73-74, 88

statistical weights, 88
Nuclear winter, 396
Numerical solutions

to the integral equation, 48
approximate, 52-3

Numerical weather prediction
radiation calculations for, 216
smoothness of data, 276

160, "0, 180, 10
nuclear spin weights, 88
5577 A line, 111

02, 2, 9. See also Oxygen
contribution to heating, 189
depolarization factor, 298
excited states, 246
population of rotational states, 87

03, 2, 9. See also Ozone
contribution to heating, 189
moments of inertia, 81

O-branch for quadrupole transitions, 116
Oceans, scattering in, 378
OCO, 72. See also Carbon dioxide

absorption bands, 204-6
alternate rotational levels unpopulated, 88
isotope code, 247

OCS, 191
OH, 191
One-parameter approximation. See Scaling

approximation
OOO. See Ozone
Opaque approximation (limit), 54-63, 173,

240, 250-52, 430-33, 440-44, 454
effect of boundaries, 54

Opaque atmosphere, 239-40
Opaque conditions, 107, 250
Optical collision diameters, 99, 108, 114
Optical depth, 46, 237, 339, 447

in solar atmosphere, 485
Optical path, 43, 47

at a line center, 131, 134
mean, 357
measurement, 52
in a nonhomogeneous atmosphere, 224-

25
Orbital elements of earth, 388

Outbursts, 492
Outer planets, 240
Overlapping lines, 439
Overtone bands, 92
Oxygen

airglow, 1
allotropes, 454
atmospheric absorber, 191
a broadening gas, 197
ionizing transitions, 195
isotopes, 10
photolysis in stratosphere, 375-76

Oxygen, atomic, 197-98. See also O.
collisional excitation by, 246-48
Einstein coefficients, 198
electronic ground state, 198
ground state, 40
radiative lifetime, 40
relaxation time, 198
62 fim line, 198

Oxygen, molecular, 3, 8. See also O2
A, B, and y bands, 195-96
"atmospheric bands," 198, 195-96
binary band intensities, 197
collision induced vibration-rotation

bands, 195
dimer transitions, 196
dissociation, 11
electric quadrupole transitions, 195
first overtone, 197
forbidden bands, 115-16, 195
fundamental bands, 195-97
Herzberg band, 194
Herzberg continuum, 194
Hopfield bands, 195
"infrared bands," 195-96
intensity of fundamental band, 195
magnetic dipole transitions in the rotation

band,195
microwave spectrum, 260-61
optical properties, 193-98
principal atmospheric constituent, 67
"red bands", 195-96
remote sensing in the 60 GHz line, 259,

262
rotational constant, 195
rotation band, 197
rotation band intensity, 195
Schumann-Runge bands, 194, 376
Schumann-Runge continuum, 194
single-scattering albedo, 377
symmetry destroyed in collisions, 115
ultraviolet absorptions, 194
visible bands, 197
21000cm"1 band intensity, 197

Ozone
amount, 11-2
as an atmospheric absorber, 195, 395, 403
concentration, 389
cooling to space, 250-51
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density, 453
equilibrium concentration, 377
electronic bands, 207
and the H-C-G approximation, 230
heating rate, 230, 236, 403
importance of, 3
photochemistry, 455-56
photochemical-radiative relaxation, 456
photolysis in the stratosphere, 375-76
radiative relaxation, 438
remote sensing, 260-62

in visible and ultraviolet spectrum,
261

satellite spectrum, 260
ultraviolet spectrum, 67
vertical distribution, 10

Ozone molecule. See also O3
absorption bands, 207
Chappuis bands, 190, 208-9
Hartley bands, 3, 207-8, 376, 453, 457
Huggins bands, 3, 190, 208
moments of inertia, 81
nonlinear molecule, 209
overtone and combination bands, 209
resonances, 209
rotation band, 209
single-scattering albedo, 376
upper-state bands, 209
vibration-rotation spectrum, 209—10
9.6//m band, 73, 162-64, 169, 209, 438
9.61 fim band, 72
14 (im band, 209
vt band in the solar spectrum, 120
v3 band, 418

Parallel band, 72, 97
Parity, 89, 90
Path lengths, distribution, 357
P-branch, 71,90-91, 148
Pekeris, 404
Penrose pseudoinverse, 275
Permitted transitions, 75
Perpendicular band, 72, 96
Perturbations

basis functions for expansions, 79, 91
to the Hamiltonian, 73
high order, 118
to radiative heating, 427
from resonances, 94
violate symmetry, 75

PH3, 191
Phase angle, 373
Phase coherence, 288
Phase function, 330

anisotropic, 348, 364
isotropic, 348

Phase matrix, 26-27, 292
Phase shift

approximation, 101, 114
average, 102

Photochemical alteration, 8
Photochemical dissociation

CFC13, CF2C12, 9
CO2, 9
N2, 9
02,9
water vapor, 41

Photochemical model, 389
Photochemical origin, 9
Photochemical product, 9
Photochemistry, 1, 429, 455-57
Photodissociation, 1
Photoionization, 1
Photons, random motion, 338
Photosphere, 482-92
Physical constants, 462
Plages, 491-93. See also Flocculi
Planck mean absorption coefficient, 57-59,

430-33, 438,442
Planck function

errors in retrieved values, 274
expressions for, 29-31
for ground states of O, 41
in heating calculations, 240-45
maximum of, 201
numerical values for, 473-74
perturbation, 254
slow variation with frequency, 125-26,

173, 270
solutions of the radiative transfer

equation, 60, 393
in thermodynamic equilibrium, 35, 445
variance with temperature, 438

Plane of reference, 289
Plane-parallel atmosphere, 43, 331, 339,

345, 354, 371, 431. See also Stratified
atmosphere

Planetary atmospheres, 388
Planetary boundary layer, 8, 11
Planetary evolution, 416
Planetary radiation, 2
Planetary scale motions, 388
Poisson distribution of line spacings,

158-59, 176
Polarizability, 294
Polarization, 331

components, 25
degree of, 382-83
direction of, 289
ellipse, 25
elliptical or general, 25, 290
of electromagnetic waves, 25
of light from Venus, 375-76
negative, 383
of skylight, 379
natural, 292, 296

Polar night, 11
Polar stratospheric clouds, 189
Polyatomic molecules

bands and lines of, 3
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Polyatomic molecules (cont.)
harmonic-oscillator, rigid rotator

approximation, 78
independence of rotational and

vibrational energies, 33, 79
Polymers. See also Dimers

continuum formed by, 191
spectra of, 115

Potential energy
of the atmosphere, 426
expansion coefficients, 91
for H2, 77
Hamiltonian for, 76

Poynting vector, 290-93
Pressure broadening, 21, 97, 162-163, 166,

173, 228, 396. See also Collision
broadening

Pressure-induced transitions, 115, 121
and atmospheric heating, 115
in oxygen and nitrogen, 115

Primary source of scattering, 331-54
Primitive atmosphere of the earth, 388
Prominences, 491

Q-branch, 79, 90
forbidden, appearing at high pressure,

115
in parallel and perpendicular bands, 96
split by Coriolis interactions, 94

Quadrupole
moment, 117
-quadrupole interactions, 116
selection rules, 116, 191

Quantized states, 23-43
Quantum numbers

rotational, 81
vibrational, 79
for vibrational angular momentum, 95

Quasistatic chemistry, 456
Quasistatic source function, 443—44
Quiet sun, 482

Radiant energy, 4
Radiant intensity, 16
Radiance, 16
Radiation charts, 256-59

for flux divergence, 258
Radiation constants, 29
Radiation reaction, 299
Radiation to space, 242, 252-53, 390, 417,

451-55. See also Cooling to space,
Newtonian cooling

Radiative control, 448-49
Radiative-convective equilibrium, 5, 388-90
Radiative-convective models, 391, 407-8,

411,414
model sensitivities, 411

Radiative-convective states, 405, 409

Radiative equilibrium, 4, 5, 20, 388-421
as a basic state, 427
-convective models, 388-421
corresponds to conservative scattering,

25,27
in the middle atmosphere, 398
models, 388
regions, 406
in a saturated atmosphere, 418—19
states, 405
in a stratified atmosphere, 43, 59, 60
in the stratosphere, 391

Radiative lifetime, 41
Radiative relaxation time, 38, 352

for droplets, 440
Radiative transitions, 33-36, 42
Radiometry

from satellites, 125
solar, 494
underwater, 378

Rain, scattering by, 314
Rainbow

Airy integral, 312-14
angles, 312
geometric optics compared to Mie theory,

320, 323
diffraction at a drop, 312
first, primary bow, 310, 319
gain factor for natural light, 312-13
in light reflected from Venus, 375
polarization, 312
second, secondary bow, 312, 319
theory, 309-15
third, 312

Random line arrays, 225
Random models, 146-47, 158-67, 169-71,

224-25, 396, 399. See also Band
models

and band areas, 182
constant line intensity, 159, 168
with continuum, 170
errors in, 162
general model, 161
verification of, 162-64

Rasool and de Bergh, 416, 418
Rate coefficients, 246
Rate limiting step, 456
Ray, 300
Rayleigh-Gans scattering, 299, 303-4
Rayleigh-Jeans distribution, 30
Rayleigh scattering

asymmetry factor, 321
inverse fourth-power law, 297-98
molecular scattering, 294-99, 317, 324,

379
phase function, 297, 354

R-branch, 71,90-91, 148
Reaction rate, 455-56
Reduced mass of a molecule, 79
Reflected intensity, 343, 355
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Reflected light, 300, 309
Reflection

functions, 344, 347-54, 367, 370
operators, 339, 342, 347-50

Reflectivity, 370-71
of a surface, 373

Refracted light, 300, 309
Refractive index, 290

complex, 292, 319
approaching unity, 300-9

Regular models, 146-58, 221. See also Band
models

compared to random models, 160-61
for correlated k, 235-36
for nonLorentz lines, 397, 400
numerical data, 480
in radiative equilibrium, 396, 399
transition to a random model, 187

Relative humidity, 8, 9, 13, 417
Relaxation

level, 32, 41
method, 400
rotational, 40-41
time for oxygen atoms, 198
vibrational, 40-41

Relaxation rate
boundary exchange, 431
dynamical, 427, 448, 457
empirical, 428, 431, 450-53
partial, 438
planetary, 431, 444, 446-47
photochemical-radiative, 431, 454-57
radiative, 427-58
radiation to space, 431
transparent limit, 431

Remote sensing, 192, 259-66
Resonances, 94

in close collisions, 105
Retrieval

of atmospheric parameters, 5
equations, 259-79
horizontal resolution, 266
least-squares solution, 274-75
linearization, 270
smooth solutions, 276
statistical solutions, 277
of temperature, 259-79
in the presence of cloud, 269-70
theory, 259-79
Twomey's method, 276-78

Reversing layer, 482
Rn, 9
Rosseland mean absorption coefficient, 56,

59, 430
Rotational constant, 81

effect of centrifugal stretching, 93
Rotational energy, 32-33, 74. See also

Internal energy
Rotational levels (states), 73-74, 80-85
Rotational partition function, 86

Rotational transitions, 75
in pressure-induced bands, 116

Rotation band
line intensities, 90
selection rules, 90

Rotation lines, 125
spacing between, 125

Runaway greenhouse effect, 415-19

Satellite
inversion of data, 253
radiometers, 269
remote sensing from, 263
spectrometers, 217

Saturated atmosphere, 418-19
S-branch of quadrupole transitions, 116
Scaled amount, 225-27
Scale height, 32, 238, 263, 266, 447, 453
Scale of a disturbance, 428
Scales, characteristic, 53-54, 173
Scaling approximation, 224-27, 234, 257
Scattered radiation, 1, 173
Scattering

angle, 289, 331, 358
anisotropic, 357
atmosphere, 330
in band models, 173
centers, 288
coefficient, 24, 26, 293
coherent, 23
conservative, 27, 335
definition, 23, 288
diagram, 296, 316
efficiency factor, 293, 316
first order, 330, 355
functions, 291-94
incoherent, 23, 40
isotropic, 27, 321, 335-36
in k distribution theory, 173
lobes, 317
matrix, 291-95, 309, 331
molecular, 297, 377
nonconservative, 336
phase functions, 357
primary, 297
in radiative transfer, 22
resonant, 40
simple, 23-27
successive orders, 354
source function, 173, 216, 330
theory and observations compared, 331

Scattering by small particles, 5, 24, 27, 50,
288

nonspherical molecules, 297
nonspherical particles, 324-26
by spheroids, 324-25

Schnaidt's model, 145, 231-36. See also
Band models

compared to regular and random models,
147
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Schnaidt's model (cont.)
k distribution for, 172-74, 397

Schroedinger's equation, 73
Schwarzschild-Schuster approximation, 60-

62
Selection rules, 75, 85

effect of anharmonicity, 92
for a harmonic oscillator, 89
for resolved angular momentum, 89
for rotation. 90
for total angular momentum, 89

Semiconvection, 412-14
Semiempirical band model, 225. See also

Band models
Semigrey absorption, 56
Semirigid molecules, 79
Shadow area, 300
Similarity relations, 330, 360-61, 368
Similarity transformation, 369
Simpson, 415

paradox, 417-18, 421
SI nomenclature, 16
Skin temperature, 393-98, 404
Skylight, color and polarization, 379-83
SO2, 9, 191
Sol, 443
Solar and terrestrial radiation

(independence), 2, 30, 50
Solar atmosphere, 482-94. See also

Chromosphere, Corona,
Photosphere

Solar absorption, 42, 391
Solar constant, 1,2,420
Solar emission, 388
Solar flares, 491-93
Solar flux, 374, 420
Solar heating, 372, 374, 390, 395
Solar radiation, 1-3, 13, 18, 42-43

absorbed at the ground, 391
absorption of, 393, 399, 429
absorption coefficient for, 393
depth of penetration, 190
diffuse, 379
direct beam, 331, 378-79
flux, 359, 391
ionizing and dissociating, 245
light, 377
parallel beam, 51
ratio of scattered to direct, 373-77
in a stratified atmosphere, 50

Solar spectrum, 483—84
variability, 486
water vapor lines in, 199

Source term, 338
Source function

for black-body radiation, 27-30
constant over the 15 fim CO2 band, 444
in a collisionless medium, 31
definition, 22
not a function of frequency, 223

frequency-integrated, 56
for incoherent scattering, 242
in the integral equation, 44, 50, 241
isotropic, 48
many interacting levels, 42
nonequilibrium, 443-47
quasistatic, 443-47
in radiative equilibrium, 395, 401
for scattering, 23, 26, 43, 237, 335
for scattering and absorption, 24
and state populations, 31-43
as a statistical ensemble, 277
for successive orders of scattering, 354-55
thermal, 126, 176
not in thermodynamic equilibrium, 30,

35-43, 245
two-level model, 242-46
in the volume integral, 45

Space. See also Radiation to space
energy scattered to, 1
term in Curtis matrix, 241

Space shuttle, 118
Spectra

absorption, 2
correlated, 127
observed and calculated for clear skies,

218, 231
Spectral representations of bands, 169-72.

See also k distributions
Spectrographic data, 5
Spectroscopic units, 464
Spherical tops, 81

degeneracies, 85
energy levels, 82

Spiegel problem, 428-31
Spontaneous emission, 34—35, 38, 96. See

also Natural lifetimes of excited
states

Square root law, 130-32. See also Strong
line

Standard compilation of spectrographic
data, 67

Star semigroup, 343-44
State. See also Quantized states

degeneracies, 85
energies, 31
populations, 31-36, 40-42, 85-87
statistical weights, 31, 85
vibrational, 34

Stationary states, 73
Statistical fluctuations, 356
Statistical line wings, 133. See also Line

wing shapes
Statistical properties of line arrays, 145
Statistical theories of line shape, 97, 103,

108,110
Statistical weights

of vibrational states, 85
of rotational states, 85

Statistics, spectral, 5
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Stefan-Boltzmann
constant, 2, 28
radiation law, 28

Stellar atmospheres, 388
Stochastic processes, 356
Stokes parameters, 25-27, 289-91, 296,

331, 358, 375-79
Stokes vector, 237
Stratified atmosphere, 46-52, 319, 363. See

also Plane-parallel atmosphere
method of moments, 57-59
radiation calculations, 216-20
solar radiation, 50

Stratocumulus cloud, radiation
measurements in, 372-74

Stratosphere, 2-9, 13, 192, 259, 402-15
discovery of, 388
lower, 403
motions in, 391
pressure, 230
radiative equilibrium, 390
scattered light in, 379
temperature, 258, 390

Strong line, 225-31. See also Square-root
law

absorption, 144
and correlated k, 230-31
and the Curtis model, 156
distributed line intensities, 140—45
Elsasser model, 150-55
for the exponential band contour model,

180-181
limit, 132
in a nonhomogeneous atmosphere, 227-

30
and radiative relaxation, 441
random and regular bands compared,

161
scaling approximation for, 225-26, 230
for the Voigt profile, 135-37

Sulfuric acid, 375
Sun, 1, 51

physical data, 462
physical state, 482-94

Sunspots, 489-94
cycle, 489-92
magnetic field, 493
number, 489-90

Sunlight, 345
Surface temperature, 258-63, 418-40

conditions, 405
discontinuities, 401
related source function, 392, 401

Surface wave, 319, 321, 324
Symmetric tops, 81

degeneracies, 85
energy levels, 81
oblate, 82-83
prolate, 82-83

Synodic period of solar rotation, 482

Tangent height, 265
Tectonic processes, 416
Teisserenc de Bort, 402
Temperature

discontinuities, 254
inversions, 220
mass weighted, 254

Terrestrial radiation, 2, 13, 43
Thermal boundary layers, 256
Thermal conductivity of air, 7
Thermal disturbances, 426-58
Thermal emission, 24, 27-43
Thermal flux, 374, 391
Thermal heating, 374
Thermal radiation, 1

dominated by water vapor, 200
Einstein's theory of, 30
in a stratified atmosphere, 46

Thermal source function, 330. See also
Planck function

Thermochemical equilibrium, 244
Thermodynamics

atmospheric, 20
second law, 27

Thermodynamic equation, 426, 450
Thermodynamic equilibrium, 24, 27-30

for atomic oxygen, 198
breakdown of, 30-43, 244-45
in fine structure, 34-35
Milne's analysis, 30-43

Thermosphere, 7, 488, 493
solutions, 395

Three-parameter band models, 230
Tidal motions, 443
Time-marching method, 400-1
Time spent in collisions, 108
Total flux, 391
Transitions between quantum states, 23-43

allowed during collisions, 115
collision-induced, 190
forbidden, 190
nonradiating, 24
in polymers, 190
pressure-induced, 190-91
probabilities, 88, 92, 118
rotational, 41
vibrational, 118

Translational energy, 32, 41, 74-6, 244-49.
See also Internal energy

Translational modes, 40
Transmission

mean, 127, 167-69, 224, 232-33
monochromatic, 126
operators, 339-42, 347-50

Transmission functions, 126
diffuse, 344, 347-51
generalized, 166
inverse Laplace transform of, 171
narrow band, 253

Transmissivity, 370
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Transmitted intensities, 355
Transparent approximation, 449
Transparent conditions, 107, 250
Transparent limit, 54-63, 173, 250-52,

431-54
Transparent path, 439
Transport processes, 10
Triatomic molecules

normal modes, 79-80
vibrational quantum numbers, 79

Tropopause, 4-6, 259, 390, 404-15
Troposphere, 2-3, 7-9, 13, 237, 402-15,

441
convective, 4, 403
generates gravity waves, 428
heating rates, 402
motions, 391
pressure, 230

Turbulence, 410
Two-level model, 37, 443
Two-stream equations

accuracy, 370-72
approximations, 61, 222, 320, 363, 391
discrete ordinates, 333-36
for thermal disturbances, 440
in use, 379-81,393-94

Twomey. See Retrieval
Two-parameter approximation, for

nonhomogeneous paths, 224

Ultraviolet spectrum, 74, 189-90, 237
Unpolarized light, 26. See also Natural light
Upper atmosphere, 1, 7, 189, 237, 395,

485-91
Upper-state, bands, 92, 148, 154, 381
Upper-state degeneracy, 444
Upper-state transitions, 33, 246-48
Upward beams, 47, 334
Upward flux component, 50, 240, 258
Upward intensities, 339, 343
U.S. Standard Atmosphere, 243, 407-8,

468-69

van der Hulst, 227, 299, 316. See also
H-C-G Approximation

similarity relations, 360-63
van der Waals Interaction, 102
van Vleck-Weisskopf line shape, 100
Vector properties of electromagnetic

radiation, 24-25
Venus

limb darkening, 264
lines in reflection spectrum, 379—81
model of clouds, 414-15
nonrotating atmosphere, 449
polarization of reflected light, 375-76
runaway greenhouse, 416-19
surface pressure, 447
surface temperature, 393

Vibrational angular momentum, 91, 94. See
also Angular momentum

in CO2, 204
selection rules for, 96

Vibrational energy, 32-33, 73-74. See also
Internal energy

contribution to specific heat, 444
Vibrational states, 33, 73-74, 79

populations, 86
Vibrational partition functions, 86, 444
Vibrational relaxation

time, 40
for ultrasound, 443

Vibrational transitions, 75, 118
probabilities, 118

Vibration-rotation
appearance of bands, 33, 68
energy levels, 85
P-, Q-, and R-branch contours, 179
spectra, 67, 189
transitions, forbidden, collision-induced,

polymer, 189
Viscous dissipation, 411
Visible spectra, 74, 189
Visual range, 13
Voigt profile, 112-18, 145, 229-30, 479

approximations to equivalent width, 135
deviations from, 168
in an Elsasser band, 156
equivalent width, 135-36, 145, 162
single line, 134—35

Warm layer in the upper atmosphere, 395
Water, liquid, 377-78, 342

absorption by, 442
saturated pressure over, 470
scattering by drops, 3

Water vapor, 3. See also H2O
an atmospheric absorber, 191
collisions with N2, 104-5
cooling to space, 250-51
dimers, 117, 201-3
dipole moment, 104
dipole-quadrupole interactions with N2,

105
heating rate, 230, 402-3
lines in the solar spectrum, 119
mixing ratio, 443
nitrogen-water and water-water

collisions, 204
saturated vapor pressure, 415
scale height, 392, 404
Simpson's paradox, 418
remote sensing, 260-62

Water vapor absorption bands, 198-204
absorption near 3700 cm"1, 128
amharmonicity correction, 92-93
an asymmetric top, 198
binary coefficients for 1000 and 2500 cm"1

windows, 203
collisions and the continuum, 202
continuum absorption, 201-5, 441
deviation from Lorentz profile, 168
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emissivity, 254
e-type absorption, 203
fundamentals, 199
interactions between states, 199
interaction potentials, 203
lines, 159
lines broadened by N2, 105-7
line widths, 199
near infrared bands, 200, 237
observed and calculated spectra

compared, 119
overtone and combination bands, 201
radiative lifetime, 41
radiative relaxation, 441-42
rotational constants, 199
rotational relaxation, 41
self-broadening of line, 107
theoretical continuum, 202
upper-state bands, 200
visible bands, 200-1
window between 6.3 fim and rotation

bands, 201,418
2.7 nm band, 162-63, 208, 438
6.3 nm band, 200, 438
6.3, 3.2, 2.6, 1.87, 1.38, 1.1 fim bands,

theory, and measurement compared,
165-68

10 jum window, 168
Q, y>, (j>, r, a, p, bands, 201
Vj and V2 fundamentals, 127

Water vapor rotation band
compared to nitrogen absorption near

90 cnT1, 193
Cowling's line-by-line calculations, 163
Doppler width of a line, 111
effect on the continuum, 118

radiative relaxation rate, 438
spectrographic data for, 198-204
spectrum near 14.9 fim, 71-2
wide spectral range, 36, 68

Wave function, 73
combination of nuclear and rotational, t
mixing of, 110
symmetric and antisymmetric, 88
symmetry of, 75
orthogonality of, 75

Wavelength of electromagnetic radiation,
464

Wavelength of gravity waves, 453
Wavenumber, 457, 464
Weak lines, 144, 225
Weak line limit, 132. See also Linear law

and correlated k, 231, 234
for distributed lines, 139
to the Elsasser function, 150-51
for the exponential contour model,

180-82
fit to distributed lines, 141-42
and the H-C-G approximation, 227-30
Voigt profile, 135-37

Wien distribution, 30
Wien's displacement law, 28

Xand Y functions, 352-54, 366-67. See
also Chandrasekhar

Xe, 9
X-ray spectrum, 299

Yamamoto chart, 257-58

Zonal winds in the stratosphere, 391




