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MODES OF HEAT TRANSFER

Heat is energy transferred due to a difference in temperature.
There are three modes of heat transfer: conduction, convection,
and radiation. All three may act at the same time. Conduction is the
transfer of energy between adjacent particles of matter. It is a local
phenomenon and can only occur through matter. Radiation is the
transfer of energy from a point of higher temperature to a point of
lower energy by electromagnetic radiation. Radiation can act at a
distance through transparent media and vacuum. Convection is the
transfer of energy by conduction and radiation in moving, fluid
media. The motion of the fluid is an essential part of convective
heat transfer.

HEAT TRANSFER

HEAT TRANSFER BY CONDUCTION

FOURIER’S LAW

The heat flux due to conduction in the x direction is given by Fourier’s
law

Q
.
= −kA (5-1)

where Q
.

is the rate of heat transfer (W), k is the thermal conductivity
[W�(m⋅K)], A is the area perpendicular to the x direction, and T is
temperature (K). For the homogeneous, one-dimensional plane
shown in Fig. 5-1a, with constant k, the integrated form of (5-1) is

Q
.
= kA (5-2)

where ∆x is the thickness of the plane. Using the thermal circuit
shown in Fig. 5-1b, Eq. (5-2) can be written in the form

Q
.
= = (5-3)

where R is the thermal resistance (K/W).

T1 − T2
�

R

T1 − T2
�
∆x�kA

T1 − T2
�

∆x

dT
�
dx

THERMAL CONDUCTIVITY

The thermal conductivity k is a transport property whose value for a
variety of gases, liquids, and solids is tabulated in Sec. 2. Section 2 also
provides methods for predicting and correlating vapor and liquid ther-
mal conductivities. The thermal conductivity is a function of temper-
ature, but the use of constant or averaged values is frequently
sufficient. Room temperature values for air, water, concrete, and cop-
per are 0.026, 0.61, 1.4, and 400 W�(m ⋅ K). Methods for estimating
contact resistances and the thermal conductivities of composites and
insulation are summarized by Gebhart, Heat Conduction and Mass
Diffusion, McGraw-Hill, 1993, p. 399.

STEADY-STATE CONDUCTION

One-Dimensional Conduction In the absence of energy source
terms, Q

.
is constant with distance, as shown in Fig. 5-1a. For steady

conduction, the integrated form of (5-1) for a planar system with con-
stant k and A is Eq. (5-2) or (5-3). For the general case of variables k (k
is a function of temperature) and A (cylindrical and spherical systems
with radial coordinate r, as sketched in Fig. 5-2), the average heat-
transfer area and thermal conductivity are defined such that

Q
.
= k

⎯
A
⎯

= (5-4)

For a thermal conductivity that depends linearly on T,

k = k0 (1 + γT) (5-5)

T1 − T2
�

R

T1 − T2
�

∆x

FIG. 5-1 Steady, one-dimensional conduction in a homogeneous planar wall
with constant k. The thermal circuit is shown in (b) with thermal resistance
∆x�(kA).
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FIG. 5-2 The hollow sphere or cylinder.
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A Area for heat transfer m2

Ac Cross-sectional area m2

Af Area for heat transfer for finned portion of tube m2

Ai Inside area of tube
Ao External area of bare, unfinned tube m2

Aof External area of tube before tubes are
attached = Ao m2

AT Total external area of finned tube m2

Auf Area for heat transfer for unfinned portion of
finned tube m2

A1 First Fourier coefficient
ax Cross-sectional area of fin m2

b Geometry: b = 1, plane; b = 2, cylinder;
b = 3, sphere

bf Height of fin m
B1 First Fourier coefficient
Bi Biot number, hR/k
c Specific heat J�(kg⋅K)
cp Specific heat, constant pressure J�(kg⋅K)
D Diameter m
Di Inner diameter m
Do Outer diameter m
f Fanning friction factor
Fo Dimensionless time or Fourier number, αt�R2

gc Conversion factor 1.0 kg⋅m�(N⋅s2)
g Acceleration of gravity, 9.81 m2/s m2/s
G Mass velocity, m. �Ac; Gv for vapor mass velocity kg�(m2⋅s)
Gmax Mass velocity through minimum free area

between rows of tubes normal to the fluid
stream kg�(m2⋅s)

Gz Graetz number = Re Pr
h Heat-transfer coefficient W�(m2⋅K)
h
⎯

Average heat-transfer coefficient W�(m2⋅K)
hf Heat-transfer coefficient for finned-tube

exchangers based on total external surface W�(m2⋅K)
hf Outside heat-transfer coefficient calculated

for a bare tube for use with Eq. (5-73) W�(m2⋅K)
hfi Effective outside heat-transfer coefficient

based on inside area of a finned tube W�(m2⋅K)
hi Heat-transfer coefficient at inside tube surface W�(m2⋅K)
ho Heat-transfer coefficient at outside tube surface W�(m2⋅K)
ham Heat-transfer coefficient for use with

∆Tam, see Eq. (5-33) W�(m2⋅K)
hlm Heat-transfer coefficient for use with

∆TIm; see Eq. (5-32) W�(m2⋅K)
k Thermal conductivity W�(m⋅K)
k
⎯

Average thermal conductivity W�(m⋅K)
L Length of cylinder or length of flat plate

in direction of flow or downstream distance.
Length of heat-transfer surface m

m Fin parameter defined by Eq. (5-75).
m. Mass flow rate kg/s
NuD Nusselt number based on diameter D, hD/k
N⎯u⎯D Average Nusselt number based on diameter D, h

⎯
D�k

Nulm Nusselt number based on hlm

n′ Flow behavior index for nonnewtonian fluids
p Perimeter m
pf Fin perimeter m
p′ Center-to-center spacing of tubes in a bundle m
P Absolute pressure; Pc for critical pressure kPa
Pr Prandtl number, ν�α
q Rate of heat transfer W
Q Amount of heat transfer J
Q
.

Rate of heat transfer W
Q/Qi Heat loss fraction, Q�[ρcV(Ti − T∞)]
r Distance from center in plate, cylinder, or

sphere m
R Thermal resistance or radius K/W or m

Rax Rayleigh number, β ∆T gx3�να
ReD Reynolds number, GD�µ
S Volumetric source term W/m3

S Cross-sectional area m2

S1 Fourier spatial function
t Time s
tsv Saturated-vapor temperature K
ts Surface temperature K
T Temperature K or °C
Tb Bulk or mean temperature at a given K

cross section
T
⎯

b Bulk mean temperature, (Tb,in + Tb,out)/2 K
TC Temperature of cold surface in enclosure K
Tf Film temperature, (Ts + Te)/2 K
TH Temperature of hot surface in enclosure K
Ti Initial temperature K
Te Temperature of free stream K
Ts Temperature of surface K
T∞ Temperature of fluid in contact with a solid K

surface
U Overall heat-transfer coefficient W�(m2⋅K)
V Volume m3

VF Velocity of fluid approaching a bank of finned m/s
tubes

V∞ Velocity upstream of tube bank m/s
WF Total rate of vapor condensation on one tube kg/s
x Cartesian coordinate direction, characteristic m

dimension of a surface, or distance from
entrance

x Vapor quality, xi for inlet and xo for outlet
zp Distance (perimeter) traveled by fluid across fin m

Greek Symbols

α Thermal diffusivity, k�(ρc) m2/s
β Volumetric coefficient of expansion K−1

β′ Contact angle between a bubble and a surface °
Γ Mass flow rate per unit length perpendicular kg�(m⋅s)

to flow
∆P Pressure drop Pa
∆t Temperature difference K
∆T Temperature difference K
∆Tam Arithmetic mean temperature difference, K

see Eq. (5-32)
∆TIm Logarithmic mean temperature difference, K

see Eq. (5-33)
∆x Thickness of plane wall for conduction m
δ1 First dimensionless eigenvalue
δ1,0 First dimensionless eigenvalue as Bi

approaches 0
δ1,∞ First dimensionless eigenvalue as Bi

approaches ∞
δS Correction factor, ratio of nonnewtonian to

newtonian shear rates
ε Emissivity of a surface
ζ Dimensionless distance, r/R
θ�θi Dimensionless temperature, (T − T∞)�(Ti − T∞)
λ Latent heat (enthalpy) of vaporization J/kg

(condensation)
µ Viscosity; µl, µL viscosity of liquid; µG, µg, µv kg�(m⋅s)

viscosity of gas or vapor
ν Kinematic viscosity, µ�ρ m2/s
ρ Density; ρL, ρl for density of liquid; ρG, ρv for kg/m3

density of vapor
σ Stefan-Boltzmann constant, 5.67 × 10−8 W�(m2⋅K4)
σ Surface tension between and liquid and N/m

its vapor
τ Time constant, time scale s
Ω Efficiency of fin

Nomenclature and Units—Heat Transfer by Conduction, by Convection, and with Phase Change

Symbol Definition SI units Symbol Definition SI units
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and the average heat thermal conductivity is

k
⎯
= k0 (1 + γT

⎯
) (5-6)

where T
⎯
= 0.5(T1 + T2).

For cylinders and spheres, A is a function of radial position (see Fig.
5-2): 2πrL and 4πr2, where L is the length of the cylinder. For con-
stant k, Eq. (5-4) becomes

Q
.
= cylinder (5-7)

and

Q
.
= sphere (5-8)

Conduction with Resistances in Series A steady-state temper-
ature profile in a planar composite wall, with three constant thermal
conductivities and no source terms, is shown in Fig. 5-3a. The corre-
sponding thermal circuit is given in Fig. 5-3b. The rate of heat trans-
fer through each of the layers is the same. The total resistance is the
sum of the individual resistances shown in Fig. 5-3b:

(5-9)Q. = =

Additional resistances in the series may occur at the surfaces of the
solid if they are in contact with a fluid. The rate of convective heat
transfer, between a surface of area A and a fluid, is represented by
Newton’s law of cooling as

Q
.
= hA(Tsurface − Tfluid) = (5-10)

where 1/(hA) is the resistance due to convection (K/W) and the heat-
transfer coefficient is h[W�(m2⋅K)]. For the cylindrical geometry
shown in Fig. 5-2, with convection to inner and outer fluids at tem-
peratures Ti and To, with heat-transfer coefficients hi and ho, the
steady-state rate of heat transfer is

Q
.
= Ti − To = (5-11)

+ +

where resistances Ri and Ro are the convective resistances at the inner
and outer surfaces. The total resistance is again the sum of the resis-
tances in series.

Example 1: Conduction with Resistances in Series and Paral-
lel Figure 5-4 shows the thermal circuit for a furnace wall. The outside sur-
face has a known temperature T2 = 625 K. The temperature of the surroundings

1
�
2πr2Lho

ln(r2�r1)
�

2πkL
1

�
2πr1Lhi

Ti − To
��
Ri + R1 + Ro

Tsurface − Tfluid
��

1�(hA)

T1 − T2
��
RA + RB + RC

T1 − T2
����

�
∆
kA

X
A

A� + �
∆
kB

X
A

B� + �
∆
kC

X
A
C�

T1 − T2
��
(r2 − r1)�(4πkr1r2)

T1 − T2
��
[ln(r2�r1)]�(2πkL)

Tsur is 290 K. We want to estimate the temperature of the inside wall T1. The wall
consists of three layers: deposit [kD = 1.6 W�(m⋅K), ∆xD = 0.080 m], brick
[kB = 1.7 W�(m⋅K), ∆xB = 0.15 m], and steel [kS = 45 W�(m⋅K), ∆xS = 0.00254 m].
The outside surface loses heat by two parallel mechanisms—convection and
radiation. The convective heat-transfer coefficient hC = 5.0 W�(m2⋅K). The
radiative heat-transfer coefficient hR = 16.3 W�(m2⋅K). The latter is calculated
from

hR = ε2σ(T2
2 + T2

sur)(T2 + Tsur) (5-12)

where the emissivity of surface 2 is ε2 = 0.76 and the Stefan-Boltzmann con-
stant σ = 5.67 × 10−8 W�(m2⋅K4).

Referring to Fig. 5-4, the steady-state heat flux q (W/m2) through the wall is

q = = = (hC + hR)(T2 − Tsur)

Solving for T1 gives

T1 = T2 + � + + 	(hC + hR)(T2 − Tsur)

and

T1 = 625 + � + + 	(5.0 + 16.3)(625 − 290) = 1610 K

Conduction with Heat Source Application of the law of con-
servation of energy to a one-dimensional solid, with the heat flux given
by (5-1) and volumetric source term S (W/m3), results in the following
equations for steady-state conduction in a flat plate of thickness 2R
(b = 1), a cylinder of diameter 2R (b = 2), and a sphere of diameter 2R
(b = 3). The parameter b is a measure of the curvature. The thermal
conductivity is constant, and there is convection at the surface, with
heat-transfer coefficient h and fluid temperature T∞.

�rb−1 	 + rb−1 = 0

= 0 (symmetry condition) (5-13)

−k = h[T(R) − T∞]

The solutions to (5-13), for uniform S, are


 �1 � � 	
2

��

(5-14)

where Bi = hR/k is the Biot number. For Bi << 1, the temperature in
the solid is uniform. For Bi >> 1, the surface temperature T(R) 
 T∞.

Two- and Three-Dimensional Conduction Application of the
law of conservation of energy to a three-dimensional solid, with the

b 
 1, plate, thickness 2R

�b 
 2, cylinder, diameter 2R

b 
 3, sphere, diameter 2R

1
�
bBi

r
�
R

1
�
2b

T(r) � T∞
��

SR2�k

dT
�
dr

dT(0)
�

dr

S
�
k

dT
�
dr

d
�
dr

0.00254
�

45
0.15
�
1.7

0.080
�

1.6

∆xS
�
kS

∆xB
�
kB

∆xD
�
kD

T1 � T2
��

��
∆
k
X

D

D
� + �

∆
k
X

B

B
� + �

∆
k
X

S

S
�

Q
.

�
A
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FIG. 5-3 Steady-state temperature profile in a composite wall with constant
thermal conductivities kA, kB, and kC and no energy sources in the wall. The ther-
mal circuit is shown in (b). The total resistance is the sum of the three resis-
tances shown.

T2
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.

FIG. 5-4 Thermal circuit for Example 1. Steady-state conduction in a furnace
wall with heat losses from the outside surface by convection (hC) and radiation
(hR) to the surroundings at temperature Tsur. The thermal conductivities kD, kB,
and kS are constant, and there are no sources in the wall. The heat flux q has
units of W/m2.
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heat flux given by (5-1) and volumetric source term S (W/m3), results
in the following equation for steady-state conduction in rectangular
coordinates.

�k 	 + �k 	 + �k 	 + S = 0 (5-15)

Similar equations apply to cylindrical and spherical coordinate sys-
tems. Finite difference, finite volume, or finite element methods are
generally necessary to solve (5-15). Useful introductions to these
numerical techniques are given in the General References and Sec. 3.
Simple forms of (5-15) (constant k, uniform S) can be solved analyti-
cally. See Arpaci, Conduction Heat Transfer, Addison-Wesley, 1966,
p. 180, and Carslaw and Jaeger, Conduction of Heat in Solids, Oxford
University Press, 1959. For problems involving heat flow between two
surfaces, each isothermal, with all other surfaces being adiabatic, the
shape factor approach is useful (Mills, Heat Transfer, 2d ed., Prentice-
Hall, 1999, p. 164).

UNSTEADY-STATE CONDUCTION

Application of the law of conservation of energy to a three-dimen-
sional solid, with the heat flux given by (5-1) and volumetric source
term S (W/m3), results in the following equation for unsteady-state
conduction in rectangular coordinates.

ρc = �k 	 + �k 	 + �k 	 + S (5-16)

The energy storage term is on the left-hand side, and ρ and c are the
density (kg/m3) and specific heat [J�(kg � K)]. Solutions to (5-16) are
generally obtained numerically (see General References and Sec. 3).
The one-dimensional form of (5-16), with constant k and no source
term, is

= α (5-17)

where α 
 k�(ρc) is the thermal diffusivity (m2/s).
One-Dimensional Conduction: Lumped and Distributed

Analysis The one-dimensional transient conduction equations in
rectangular (b = 1), cylindrical (b = 2), and spherical (b = 3) coordi-
nates, with constant k, initial uniform temperature Ti, S = 0, and con-
vection at the surface with heat-transfer coefficient h and fluid
temperature T∞, are


 �rb�1 	
for t , 0, T 
 Ti (initial temperature)

at r 
 0, 
 0 (symmetry condition)

(5-18)

at r 
 R, � k 
 h(T � T∞)

The solutions to (5-18) can be compactly expressed by using dimen-
sionless variables: (1) temperature θ�θi = [T(r,t) − T∞]�(Ti − T∞); (2)
heat loss fraction Q�Qi = Q�[ρcV(Ti − T∞)], where V is volume; (3) dis-
tance from center ζ = r�R; (4) time Fo = αt�R2; and (5) Biot number Bi =
hR/k. The temperature and heat loss are functions of ζ, Fo, and Bi.

When the Biot number is small, Bi < 0.2, the temperature of the
solid is nearly uniform and a lumped analysis is acceptable. The solu-
tion to the lumped analysis of (5-18) is

= exp�− t	 and = 1 − exp�− t	 (5-19)

where A is the active surface area and V is the volume. The time scale
for the lumped problem is

τ = (5-20)
ρcV
�
hA

hA
�
ρcV

Q
�
Qi

hA
�
ρcV

θ
�
θi

∂T
�
∂r

∂T
�
∂r

b 
 1, plate, thickness 2R

�b 
 2, cylinder, diameter 2R

b 
 3, sphere, diameter 2R
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∂
�
∂r

α
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∂2T
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∂x2

∂T
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∂t

∂T
�
∂z

∂
�
∂z

∂T
�
∂y

∂
�
∂y

∂T
�
∂x

∂
�
∂x

∂T
�
∂t

∂T
�
∂z

∂
�
∂z

∂T
�
∂y

∂
�
∂y

∂T
�
∂x

∂
�
∂x

The time scale is the time required for most of the change in θ�θi or
Q/Qi to occur. When t = τ, θ�θi = exp(−1) = 0.368 and roughly two-
thirds of the possible change has occurred.

When a lumped analysis is not valid (Bi > 0.2), the single-term solu-
tions to (5-18) are convenient:

= A1 exp(− δ2
1Fo)S1(δ1ζ) and = 1 − B1 exp(−δ2

1Fo) (5-21)

where the first Fourier coefficients A1 and B1 and the spatial functions
S1 are given in Table 5-1. The first eigenvalue δ1 is given by (5-22) in
conjunction with Table 5-2. The one-term solutions are accurate to
within 2 percent when Fo > Foc. The values of the critical Fourier
number Foc are given in Table 5-2.

The first eigenvalue is accurately correlated by (Yovanovich, Chap.
3 of Rohsenow, Hartnett, and Cho, Handbook of Heat Transfer, 3d
ed., McGraw-Hill, 1998, p. 3.25)

δ1 
 (5-22)

Equation (5-22) gives values of δ1 that differ from the exact values by
less than 0.4 percent, and it is valid for all values of Bi. The values of
δ1,∞, δ1,0, n, and Foc are given in Table 5-2.

Example 2: Correlation of First Eigenvalues by Eq. (5-22) As
an example of the use of Eq. (5-22), suppose that we want δ1 for the flat plate
with Bi = 5. From Table 5-2, δ1,∞ 
 π�2, δ1,0 
 �Bi� 
 �5�, and n = 2.139. Equa-
tion (5-22) gives

δ1 
 
 1.312

The tabulated value is 1.3138.

Example 3: One-Dimensional, Unsteady Conduction Calcula-
tion As an example of the use of Eq. (5-21), Table 5-1, and Table 5-2, con-
sider the cooking time required to raise the center of a spherical, 8-cm-diameter
dumpling from 20 to 80°C. The initial temperature is uniform. The dumpling is
heated with saturated steam at 95°C. The heat capacity, density, and thermal
conductivity are estimated to be c = 3500 J�(kg�K), ρ = 1000 kg�m3, and k = 0.5
W�(m�K), respectively.

Because the heat-transfer coefficient for condensing steam is of order 104, the Bi
→ ∞ limit in Table 5-2 is a good choice and δ1 = π. Because we know the desired
temperature at the center, we can calculate θ�θi and then solve (5-21) for the time.

= = = 0.200

For Bi → ∞, A1 in Table 5-1 is 2 and for ζ = 0, S1 in Table 5-1 is 1. Equation
(5-21) becomes

= 2 exp (−π2Fo) = 2 exp �−π2 	αt
�
R2

θ
�
θi

80 − 95
�
20 − 95

T(0,t) − T∞
��

Ti − T∞

θ
�
θi

π�2
���
[1 � (π�2/�5�)2.139]1�2.139

δ1,∞
��
[1 � (δ1,∞�δ1,0)n]1�n

Q
�
Qi

θ
�
θi

TABLE 5-1 Fourier Coefficients and Spatial Functions for Use
in Eqs. (5-21)

Geometry A1 B1 S1

Plate cos(δ1ζ)

Cylinder J0(δ1ζ)

Sphere
sinδ1ζ
�
δ1ζ

6Bi2

��
δ2

1(δ2
1 + Bi2 − Bi)

2Bi[δ2
1 + (Bi − 1)2]1�2

���
δ2

1 + Bi2 − Bi

4Bi2

��
δ2

1(δ2
1 + Bi2)

2J1(δ1)
��
δ1[J2

0(δ1) + J2
1(δ1)]

2Bi2

��
δ2

1(Bi2 + Bi + δ2
1)

2sinδ1
��
δ1 + sinδ1cosδ1

TABLE 5-2 First Eigenvalues for Bi Æ 0 and Bi Æ • and
Correlation Parameter n
The single-term approximations apply only if Fo ≥ Foc.

Geometry Bi → 0 Bi → ∞ n Foc

Plate δ1 → �Bi� δ1 → π�2 2.139 0.24
Cylinder δ1 → �2Bi� δ1 → 2.4048255 2.238 0.21
Sphere δ1 → �3Bi� δ1 → π 2.314 0.18



Solving for t gives the desired cooking time.

t = − ln = − ln = 43.5 min

Example 4: Rule of Thumb for Time Required to Diffuse a
Distance R A general rule of thumb for estimating the time required to dif-
fuse a distance R is obtained from the one-term approximations. Consider the
equation for the temperature of a flat plate of thickness 2R in the limit as Bi →
∞. From Table 5-2, the first eigenvalue is δ1 = π�2, and from Table 5-1,

= A1exp�−� 	
2

�cosδ1ζ

When t 
 R2�α, the temperature ratio at the center of the plate (ζ 
 0) has
decayed to exp(�π2�4), or 8 percent of its initial value. We conclude that diffu-
sion through a distance R takes roughly R2�α units of time, or alternatively, the
distance diffused in time t is about (αt)1�2.

One-Dimensional Conduction: Semi-infinite Plate Consider
a semi-infinite plate with an initial uniform temperature Ti. Suppose
that the temperature of the surface is suddenly raised to T∞; that is, the
heat-transfer coefficient is infinite. The unsteady temperature of the
plate is

= erf� 	 (5-23)
x

�
2�αt�

T(x,t) − T∞
��

Ti − T∞

αt
�
R2

π
�
2

θ
�
θi

0.2
�
2

(0.04 m)2

���
1.43 × 10−7(m2�s)π2

θ
�
2θi

R2

�
απ2

where erf(z) is the error function. The depth to which the heat pene-
trates in time t is approximately (12αt)1�2.

If the heat-transfer coefficient is finite,

= erfc� 	 −exp� + 	 erfc� + 	 (5-24)

where erfc(z) is the complementary error function. Equations (5-23)
and (5-24) are both applicable to finite plates provided that their half-
thickness is greater than (12αt)1�2.

Two- and Three-Dimensional Conduction The one-dimen-
sional solutions discussed above can be used to construct solutions to
multidimensional problems. The unsteady temperature of a rect-
angular, solid box of height, length, and width 2H, 2L, and 2W, respec-
tively, with governing equations in each direction as in (5-18), is

� 	
2H�2L�2W

= � 	
2H
� 	

2L
� 	

2W

(5-25)

Similar products apply for solids with other geometries, e.g., semi-
infinite, cylindrical rods.

θ
�
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θ
�
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�
θi
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�
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h�αt�
�
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�
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x
�
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��

Ti � T∞
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HEAT TRANSFER BY CONVECTION

CONVECTIVE HEAT-TRANSFER COEFFICIENT

Convection is the transfer of energy by conduction and radiation in
moving, fluid media. The motion of the fluid is an essential part of
convective heat transfer. A key step in calculating the rate of heat
transfer by convection is the calculation of the heat-transfer coeffi-
cient. This section focuses on the estimation of heat-transfer coeffi-
cients for natural and forced convection. The conservation equations
for mass, momentum, and energy, as presented in Sec. 6, can be used
to calculate the rate of convective heat transfer. Our approach in this
section is to rely on correlations.

In many cases of industrial importance, heat is transferred from one
fluid, through a solid wall, to another fluid. The transfer occurs in a
heat exchanger. Section 11 introduces several types of heat exchangers,
design procedures, overall heat-transfer coefficients, and mean tem-
perature differences. Section 3 introduces dimensional analysis and
the dimensionless groups associated with the heat-transfer coefficient.

Individual Heat-Transfer Coefficient The local rate of con-
vective heat transfer between a surface and a fluid is given by New-
ton’s law of cooling

q 
 h(Tsurface � Tfluid) (5-26)

where h [W�(m2�K)] is the local heat-transfer coefficient and q is the
energy flux (W/m2). The definition of h is arbitrary, depending on
whether the bulk fluid, centerline, free stream, or some other tem-
perature is used for Tfluid. The heat-transfer coefficient may be defined
on an average basis as noted below.

Consider a fluid with bulk temperature T, flowing in a cylindrical
tube of diameter D, with constant wall temperature Ts. An energy bal-
ance on a short section of the tube yields

cpm
.


 πDh(Ts � T) (5-27)

where cp is the specific heat at constant pressure [J�(kg�K)], m. is the
mass flow rate (kg/s), and x is the distance from the inlet. If the tem-
perature of the fluid at the inlet is Tin, the temperature of the fluid at
a downstream distance L is


 exp�� 	 (5-28)
h
⎯
πDL
�

m. cp

T(L) � Ts
��

Tin � Ts

dT
�
dx

The average heat-transfer coefficient h
⎯

is defined by

h
⎯ = �L

0
h dx (5-29)

Overall Heat-Transfer Coefficient and Heat Exchangers A
local, overall heat-transfer coefficient U for the cylindrical geometry
shown in Fig. 5-2 is defined by using Eq. (5-11) as

= = 2πr1U(Ti − To) (5-30)

where ∆x is a short length of tube in the axial direction. Equation
(5-30) defines U by using the inside perimeter 2πr1. The outer
perimeter can also be used. Equation (5-30) applies to clean tubes.
Additional resistances are present in the denominator for dirty
tubes (see Sec. 11).

For counterflow and parallel flow heat exchanges, with high- and
low-temperature fluids (TH and TC) and flow directions as defined in
Fig. 5-5, the total heat transfer for the exchanger is given by

Q
.
= UA ∆Tlm (5-31)

where A is the area for heat exchange and the log mean temperature
difference ∆Tlm is defined as

∆Tlm = (5-32)

Equation (5-32) applies to both counterflow and parallel flow exchang-
ers with the nomenclature defined in Fig. 5-5. Correction factors to
∆Tlm for various heat exchanger configurations are given in Sec. 11.

In certain applications, the log mean temperature difference is
replaced with an arithmetic mean difference:

∆Tam = (5-33)

Average heat-transfer coefficients are occasionally reported based on
Eqs. (5-32) and (5-33) and are written as hlm and ham.

Representation of Heat-Transfer Coefficients Heat-transfer
coefficients are usually expressed in two ways: (1) dimensionless rela-
tions and (2) dimensional equations. Both approaches are used below.
The dimensionless form of the heat-transfer coefficient is the Nusselt

(TH − TC)L + (TH − TL)0
���

2

(TH − TC)L − (TH − TL)0
���

ln[(TH − TC)L − (TH − TL)0]

Ti − To
���
�
2π

1
r1hi

� + �
ln(

2
r
π
2�

k
r1)� + �

2π
1
r2ho

�

Q
.

�
∆x

1
�
L



number. For example, with a cylinder of diameter D in cross flow, the
local Nusselt number is defined as NuD = hD/k, where k is the thermal
conductivity of the fluid. The subscript D is important because differ-
ent characteristic lengths can be used to define Nu. The average Nus-
selt number is written N

⎯
u
⎯

D 
 h
⎯

D�k.

NATURAL CONVECTION

Natural convection occurs when a fluid is in contact with a solid surface
of different temperature. Temperature differences create the density
gradients that drive natural or free convection. In addition to the Nus-
selt number mentioned above, the key dimensionless parameters for
natural convection include the Rayleigh number Rax 
 β ∆T gx3�
να and the Prandtl number Pr 
 ν�α. The properties appearing in Ra
and Pr include the volumetric coefficient of expansion β (K�1); the dif-
ference ∆T between the surface (Ts) and free stream (Te) tempera-
tures (K or °C); the acceleration of gravity g(m/s2); a characteristic
dimension x of the surface (m); the kinematic viscosity ν(m2�s); and
the thermal diffusivity α(m2�s). The volumetric coefficient of expan-
sion for an ideal gas is β = 1�T, where T is absolute temperature. For a
given geometry,

N
⎯

u
⎯

x 
 f(Rax, Pr) (5-34)

External Natural Flow for Various Geometries For vertical
walls, Churchill and Chu [Int. J. Heat Mass Transfer, 18, 1323 (1975)]
recommend, for laminar and turbulent flow on isothermal, vertical
walls with height L,

N
⎯

u
⎯

L 
 �0.825 � �2
(5-35)

where the fluid properties for Eq. (5-35) and N
⎯

u
⎯

L 
 h
⎯

L�k are evalu-
ated at the film temperature Tf = (Ts + Te)/2. This correlation is valid
for all Pr and RaL. For vertical cylinders with boundary layer thickness
much less than their diameter, Eq. (5-35) is applicable. An expression
for uniform heating is available from the same reference.

For laminar and turbulent flow on isothermal, horizontal cylinders
of diameter D, Churchill and Chu [Int. J. Heat Mass Transfer, 18,
1049 (1975)] recommend

N
⎯

u
⎯

L 
 �0.60 � �2
(5-36)

Fluid properties for (5-36) should be evaluated at the film tempera-
ture Tf = (Ts + Te)/2. This correlation is valid for all Pr and RaD.

0.387RaD
1�6

���
[1 � (0.559�Pr)9�16]8�27

0.387RaL
1�6

���
[1 � (0.492�Pr)9�16]8�27

For horizontal flat surfaces, the characteristic dimension for the
correlations is [Goldstein, Sparrow, and Jones, Int. J. Heat Mass
Transfer, 16, 1025–1035 (1973)]

L 
 (5-37)

where A is the area of the surface and p is the perimeter. With hot sur-
faces facing upward, or cold surfaces facing downward [Lloyd and
Moran, ASME Paper 74-WA/HT-66 (1974)],

N
⎯

u
⎯

L



0.54RaL
1�4 104 , RaL , 107 (5-38)

0.15RaL
1�3 107 , RaL , 1010 (5-39)

and for hot surfaces facing downward, or cold surfaces facing upward,

N
⎯

u
⎯

L 
 0.27RaL
1�4 105 , RaL , 1010 (5-40)

Fluid properties for Eqs. (5-38) to (5-40) should be evaluated at the
film temperature Tf = (Ts + Te)/2.

Simultaneous Heat Transfer by Radiation and Convection
Simultaneous heat transfer by radiation and convection is treated per
the procedure outlined in Examples 1 and 5. A radiative heat-transfer
coefficient hR is defined by (5-12).

Mixed Forced and Natural Convection Natural convection is
commonly assisted or opposed by forced flow. These situations are
discussed, e.g., by Mills (Heat Transfer, 2d ed., Prentice-Hall, 1999,
p. 340) and Raithby and Hollands (Chap. 4 of Rohsenow, Hartnett, and
Cho, Handbook of Heat Transfer, 3d ed., McGraw-Hill, 1998, p. 4.73).

Enclosed Spaces The rate of heat transfer across an enclosed
space is described in terms of a heat-transfer coefficient based on the
temperature difference between two surfaces:

h
⎯


 (5-41)

For rectangular cavities, the plate spacing between the two surfaces L
is the characteristic dimension that defines the Nusselt and Rayleigh
numbers. The temperature difference in the Rayleigh number,
RaL 
 β ∆T gL3�να is ∆T 
 TH � TC.

For a horizontal rectangular cavity heated from below, the onset of
advection requires RaL > 1708. Globe and Dropkin [J. Heat Transfer,
81, 24–28 (1959)] propose the correlation

N
⎯

u
⎯

L 
 0.069RaL
1�3 Pr0.074 3 × 105 < RaL < 7 × 109 (5-42)

All properties in (5-42) are calculated at the average temperature 
(TH + TC)/2.

For vertical rectangular cavities of height H and spacing L, with
Pr ≈ 0.7 (gases) and 40 < H/L < 110, the equation of Shewen et al. [J.
Heat Transfer, 118, 993–995 (1996)] is recommended:

N
⎯

u
⎯

L 
 �1 � � �
2�

1�2

RaL < 106 (5-43)

All properties in (5-43) are calculated at the average temperature
(TH + TC)/2.

Example 5: Comparison of the Relative Importance of Natural
Convection and Radiation at Room Temperature Estimate the
heat losses by natural convection and radiation for an undraped person standing
in still air. The temperatures of the air, surrounding surfaces, and skin are 19, 15,
and 35°C, respectively. The height and surface area of the person are 1.8 m and
1.8 m2. The emissivity of the skin is 0.95.

We can estimate the Nusselt number by using (5-35) for a vertical, flat plate
of height L = 1.8 m. The film temperature is (19 + 35)�2 = 27°C. The Rayleigh
number, evaluated at the film temperature, is

RaL = = = 8.53 × 109

From (5-35) with Pr = 0.707, the Nusselt number is 240 and the average heat-
transfer coefficient due to natural convection is

h
⎯
= N

⎯
u
⎯

L = (240) = 3.50
W

�
m2�K

0.0263
�

1.8
k
�
L

(1�300)(35 − 19)9.81(1.8)3

���
1.589 × 10−5(2.25 × 10−5)

β ∆T gL3

�
να

0.0665RaL
1�3

��
1 � (9000�RaL)1.4

Q
.
�A

�
TH � TC

�

A
�
p
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x = 0

x = 0

x = L

x = LTC

TC

TH

TH

(a)

(b)

FIG. 5-5 Nomenclature for (a) counterflow and (b) parallel flow heat exchang-
ers for use with Eq. (5-32).



The radiative heat-transfer coefficient is given by (5-12):

hR = εskinσ(T2
skin + T2

sur)(Tskin + Tsur)

= 0.95(5.67 × 10−8)(3082 + 2882)(308 + 288) = 5.71

The total rate of heat loss is

Q
.
= h

⎯
A(Tskin − Tair) + h

⎯
RA(Tskin − Tsur)

= 3.50(1.8)(35 − 19) + 5.71(1.8)(35 − 15) = 306 W

At these conditions, radiation is nearly twice as important as natural convection.

FORCED CONVECTION

Forced convection heat transfer is probably the most common mode
in the process industries. Forced flows may be internal or external.
This subsection briefly introduces correlations for estimating heat-
transfer coefficients for flows in tubes and ducts; flows across plates,
cylinders, and spheres; flows through tube banks and packed beds;
heat transfer to nonevaporating falling films; and rotating surfaces.
Section 11 introduces several types of heat exchangers, design proce-
dures, overall heat-transfer coefficients, and mean temperature dif-
ferences.

Flow in Round Tubes In addition to the Nusselt (NuD = hD/k)
and Prandtl (Pr = ν�α) numbers introduced above, the key dimen-
sionless parameter for forced convection in round tubes of diameter D
is the Reynolds number Re = GD�µ, where G is the mass velocity
G = m.

�Ac and Ac is the cross-sectional area Ac = πD2�4. For internal
flow in a tube or duct, the heat-transfer coefficient is defined as

q = h(Ts − Tb) (5-44)

where Tb is the bulk or mean temperature at a given cross section and
Ts is the corresponding surface temperature.

For laminar flow (ReD < 2100) that is fully developed, both hydro-
dynamically and thermally, the Nusselt number has a constant value.
For a uniform wall temperature, NuD = 3.66. For a uniform heat flux
through the tube wall, NuD = 4.36. In both cases, the thermal conduc-
tivity of the fluid in NuD is evaluated at Tb. The distance x required for
a fully developed laminar velocity profile is given by [(x�D)�ReD] ≈
0.05. The distance x required for fully developed velocity and thermal
profiles is obtained from [(x/D)�(ReD Pr)] ≈ 0.05.

For a constant wall temperature, a fully developed laminar velocity
profile, and a developing thermal profile, the average Nusselt number
is estimated by [Hausen, Allg. Waermetech., 9, 75 (1959)]

N
⎯

u
⎯

D = 3.66 + (5-45)

For large values of L, Eq. (5-45) approaches NuD = 3.66. Equation (5-
45) also applies to developing velocity and thermal profiles conditions
if Pr >>1. The properties in (5-45) are evaluated at the bulk mean
temperature

T
⎯

b = (Tb,in + Tb,out)�2 (5-46)

For a constant wall temperature with developing laminar velocity
and thermal profiles, the average Nusselt number is approximated by
[Sieder and Tate, Ind. Eng. Chem., 28, 1429 (1936)]

N
⎯

u
⎯

D = 1.86� ReD Pr	
1�3

� 	
0.14

(5-47)

The properties, except for µs, are evaluated at the bulk mean temper-
ature per (5-46) and 0.48 < Pr < 16,700 and 0.0044 < µb�µs < 9.75.

For fully developed flow in the transition region between laminar
and turbulent flow, and for fully developed turbulent flow, Gnielinski’s
[Int. Chem. Eng., 16, 359 (1976)] equation is recommended:

NuD = K (5-48)

where 0.5 < Pr < 105, 2300 < ReD < 106, K = (Prb/Prs)0.11 for liquids
(0.05 < Prb/Prs < 20), and K = (Tb/Ts)0.45 for gases (0.5 < Tb/Ts < 1.5).
The factor K corrects for variable property effects. For smooth tubes,
the Fanning friction factor f is given by

f = 0.25(0.790 ln ReD − 1.64)−2 2300 < ReD < 106 (5-49)

(f�2)(ReD − 1000)(Pr)
���
1 + 12.7(f�2)1�2 (Pr2�3 − 1)

µb
�
µs

D
�
L

0.0668(D�L) ReD Pr
���
1 + 0.04[(D�L) ReD Pr]2�3

W
�
m2⋅K

For rough pipes, approximate values of NuD are obtained if f is esti-
mated by the Moody diagram of Sec. 6. Equation (5-48) is corrected
for entrance effects per (5-53) and Table 5-3. Sieder and Tate [Ind.
Eng. Chem., 28, 1429 (1936)] recommend a simpler but less accurate
equation for fully developed turbulent flow

NuD = 0.027 ReD
4�5 Pr1�3� 	

0.14
(5-50)

where 0.7 < Pr < 16,700, ReD < 10,000, and L/D > 10. Equations (5-
48) and (5-50) apply to both constant temperature and uniform heat
flux along the tube. The properties are evaluated at the bulk temper-
ature Tb, except for µs, which is at the temperature of the tube. For
L/D greater than about 10, Eqs. (5-48) and (5-50) provide an estimate
of N

⎯
u
⎯

D. In this case, the properties are evaluated at the bulk mean
temperature per (5-46). More complicated and comprehensive pre-
dictions of fully developed turbulent convection are available in
Churchill and Zajic [AIChE J., 48, 927 (2002)] and Yu, Ozoe, and
Churchill [Chem. Eng. Science, 56, 1781 (2001)].

For fully developed turbulent flow of liquid metals, the Nusselt num-
ber depends on the wall boundary condition. For a constant wall tem-
perature [Notter and Sleicher, Chem. Eng. Science, 27, 2073 (1972)],

NuD = 4.8 + 0.0156 ReD
0.85 Pr0.93 (5-51)

while for a uniform wall heat flux,

NuD = 6.3 + 0.0167 ReD
0.85 Pr0.93 (5-52)

In both cases the properties are evaluated at Tb and 0.004 < Pr < 0.01
and 104 < ReD < 106.

Entrance effects for turbulent flow with simultaneously developing
velocity and thermal profiles can be significant when L/D < 10. Shah
and Bhatti correlated entrance effects for gases (Pr ≈ 1) to give an
equation for the average Nusselt number in the entrance region (in
Kaka, Shah, and Aung, eds., Handbook of Single-Phase Convective
Heat Transfer, Chap. 3, Wiley-Interscience, 1987).

= 1 + (5-53)

where NuD is the fully developed Nusselt number and the constants C
and n are given in Table 5-3 (Ebadian and Dong, Chap. 5 of
Rohsenow, Hartnett, and Cho, Handbook of Heat Transfer, 3d ed.,
McGraw-Hill, 1998, p. 5.31). The tube entrance configuration deter-
mines the values of C and n as shown in Table 5-3.

Flow in Noncircular Ducts The length scale in the Nusselt and
Reynolds numbers for noncircular ducts is the hydraulic diameter,
Dh = 4Ac/p, where Ac is the cross-sectional area for flow and p is the
wetted perimeter. Nusselt numbers for fully developed laminar flow
in a variety of noncircular ducts are given by Mills (Heat Transfer, 2d
ed., Prentice-Hall, 1999, p. 307). For turbulent flows, correlations for
round tubes can be used with D replaced by Dh.

For annular ducts, the accuracy of the Nusselt number given by
(5-48) is improved by the following multiplicative factors [Petukhov
and Roizen, High Temp., 2, 65 (1964)].

Inner tube heated 0.86 � 	
−0.16

Outer tube heated 1 − 0.14 � 	
0.6

where Di and Do are the inner and outer diameters, respectively.

Di
�
Do

Di
�
Do

C
�
(x�D)n

N
⎯

u
⎯

D
�
NuD

µb
�
µs
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TABLE 5-3 Effect of Entrance Configuration on Values of C
and n in Eq. (5-53) for Pr ª 1 (Gases and Other Fluids with Pr
about 1)

Entrance configuration C n

Long calming section 0.9756 0.760
Open end, 90° edge 2.4254 0.676
180° return bend 0.9759 0.700
90° round bend 1.0517 0.629
90° elbow 2.0152 0.614



Example 6: Turbulent Internal Flow Air at 300 K, 1 bar, and 0.05
kg/s enters a channel of a plate-type heat exchanger (Mills, Heat Transfer, 2d
ed., Prentice-Hall, 1999) that measures 1 cm wide, 0.5 m high, and 0.8 m long.
The walls are at 600 K, and the mass flow rate is 0.05 kg/s. The entrance has a
90° edge. We want to estimate the exit temperature of the air.

Our approach will use (5-48) to estimate the average heat-transfer coeffi-
cient, followed by application of (5-28) to calculate the exit temperature. We
assume ideal gas behavior and an exit temperature of 500 K. The estimated bulk
mean temperature of the air is, by (5-46), 400 K. At this temperature, the prop-
erties of the air are Pr = 0.690, µ = 2.301 × 10−5 kg�(m⋅s), k = 0.0338 W�(m⋅K),
and cp = 1014 J�(kg⋅K).

We start by calculating the hydraulic diameter Dh = 4Ac/p. The cross-sectional
area for flow Ac is 0.005 m2, and the wetted perimeter p is 1.02 m. The hydraulic
diameter Dh = 0.01961 m. The Reynolds number is

ReD
h
= = = 8521

The flow is in the transition region, and Eqs. (5-49) and (5-48) apply:

f = 0.25(0.790 ln ReDh
− 1.64)−2 = 0.25(0.790 ln 8521 − 1.64)−2 = 0.008235

NuD = K

= � 	
0.45

= 21.68

Entrance effects are included by using (5-53) for an open end, 90° edge:

N
⎯

u
⎯

D = �1 + � NuD = �1 + � (21.68) = 25.96

The average heat-transfer coefficient becomes

h
⎯
= N

⎯
u
⎯

D = (25.96) = 44.75

The exit temperature is calculated from (5-28):

T(L) = Ts − (Ts − Tin)exp�− 	
= 600 − (600 − 300)exp�− � = 450 K

We conclude that our estimated exit temperature of 500 K is too high. We could
repeat the calculations, using fluid properties evaluated at a revised bulk mean
temperature of 375 K.

Coiled Tubes For turbulent flow inside helical coils, with tube
inside radius a and coil radius R, the Nusselt number for a straight tube
Nus is related to that for a coiled tube Nuc by (Rohsenow, Hartnett, and
Cho, Handbook of Heat Transfer, 3d ed., McGraw-Hill, 1998, p. 5.90)

= 1.0 + 3.6�1 − 	� 	
0.8

(5-54)

where 2 × 104 < ReD < 1.5 × 105 and 5 < R/a < 84. For lower Reynolds
numbers (1.5 × 103 < ReD < 2 × 104), the same source recommends

= 1.0 + 3.4 (5-55)
a
�
R

Nuc
�
Nus

a
�
R

a
�
R

Nuc
�
Nus

44.75(1.02)0.8
��

0.05(1014)

h
⎯

pL
�
m. cP

W
�
m2⋅K

0.0338
�
0.01961

k
�
Dh

2.4254
��
(0.8�0.01961)0.676

C
�
(x�D)n

400
�
600

(0.008235�2)(8521 − 1000)(0.690)
����
1 + 12.7(0.008235�2)1�2 (0.6902�3 − 1)

(f�2)(ReD − 1000)(Pr)
���
1 + 12.7(f�2)1�2(Pr2�3 − 1)

0.05(0.01961)
���
0.005(2.301 × 10−5)

m
.
Dh

�
Acµ

External Flows For a single cylinder in cross flow, Churchill and
Bernstein recommend [J. Heat Transfer, 99, 300 (1977)]

N
⎯

u
⎯

D = 0.3 + �1 + � 	
5�8

�
4�5

(5-56)

where N
⎯

u
⎯

D = h
⎯

D�k. Equation (5-56) is for all values of ReD and Pr,
provided that ReDPr > 0.4. The fluid properties are evaluated at the
film temperature (Te + Ts)/2, where Te is the free-stream temperature
and Ts is the surface temperature. Equation (5-56) also applies to the uni-
form heat flux boundary condition provided h

⎯
is based on the perimeter-

averaged temperature difference between Ts and Te.
For an isothermal spherical surface, Whitaker recommends

[AIChE, 18, 361 (1972)]

N
⎯

u
⎯

D = 2 + (0.4ReD
1�2 + 0.06ReD

2�3)Pr0.4� 	
1�4

(5-57)

This equation is based on data for 0.7 < Pr < 380, 3.5 < ReD < 8 × 104,
and 1 < (µe�µs) < 3.2. The properties are evaluated at the free-stream
temperature Te, with the exception of µs, which is evaluated at the sur-
face temperature Ts.

The average Nusselt number for laminar flow over an isothermal
flat plate of length x is estimated from [Churchill and Ozoe, J. Heat
Transfer, 95, 416 (1973)]

N
⎯

u
⎯

x = (5-58)

This equation is valid for all values of Pr as long as Rex Pr > 100 and Rex

< 5 × 105. The fluid properties are evaluated at the film temperature
(Te + Ts)/2, where Te is the free-stream temperature and Ts is the surface
temperature. For a uniformly heated flat plate, the local Nusselt num-
ber is given by [Churchill and Ozoe, J. Heat Transfer, 95, 78 (1973)]

Nux = (5-59)

where again the properties are evaluated at the film temperature.
The average Nusselt number for turbulent flow over a smooth,

isothermal flat plate of length x is given by (Mills, Heat Transfer, 2d
ed., Prentice-Hall, 1999, p. 315)

N
⎯

u
⎯

x = 0.664 Recr
1�2 Pr1�3 + 0.036 Rex

0.8 Pr0.43�1 − � 	
0.8

� (5-60)

The critical Reynolds number Recr is typically taken as 5 × 105, Recr <
Rex < 3 × 107, and 0.7 < Pr < 400. The fluid properties are evaluated at
the film temperature (Te + Ts)/2, where Te is the free-stream tempera-
ture and Ts is the surface temperature. Equation (5-60) also applies to
the uniform heat flux boundary condition provided h

⎯
is based on the

average temperature difference between Ts and Te.
Flow-through Tube Banks Aligned and staggered tube banks are

sketched in Fig. 5-6. The tube diameter is D, and the transverse and lon-
gitudinal pitches are ST and SL, respectively. The fluid velocity upstream

Recr
�
Rex

0.886 Pr1�2 Rex
1�2

���
[1 + (0.0207�Pr)2�3]1�4

1.128 Pr1�2 Rex
1�2

���
[1 + (0.0468�Pr)2�3]1�4

µe
�
µs

ReD
�
282,000

0.62 ReD
1�2 Pr1�3

��
[1 + (0.4�Pr)2�3]1�4
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FIG. 5-6 (a) Aligned and (b) staggered tube bank configurations. The fluid velocity upstream of
the tubes is V∞.

(a) (b)

D
STV∞

SL

D
ST

SL



of the tubes is V∞. To estimate the overall heat-transfer coefficient for the
tube bank, Mills proceeds as follows (Heat Transfer, 2d ed., Prentice-
Hall, 1999, p. 348). The Reynolds number for use in (5-56) is recalculated
with an effective average velocity in the space between adjacent tubes:

= (5-61)

The heat-transfer coefficient increases from row 1 to about row 5 of
the tube bank. The average Nusselt number for a tube bank with 10 or
more rows is

N
⎯

u
⎯

D
10+ = ΦN

⎯
u
⎯1

D (5-62)

where Φ is an arrangement factor and N
⎯

u
⎯1

D is the Nusselt number for
the first row, calculated by using the velocity in (5-61). The arrange-
ment factor is calculated as follows. Define dimensionless pitches as
PT = ST/D and PL/D and calculate a factor ψ as follows.

ψ =
1 − if PL ≥ 1

1 − if PL < 1
(5-63)

The arrangement factors are

Φaligned = 1 + (5-64)

Φstaggered = 1 + (5-65)

If there are fewer than 10 rows,

N
⎯

u
⎯

D = N
⎯

u
⎯1

D (5-66)

where N is the number of rows.
The fluid properties for gases are evaluated at the average mean

film temperature [(Tin + Tout)/2 + Ts]/2. For liquids, properties are
evaluated at the bulk mean temperature (Tin + Tout)/2, with a Prandtl
number correction (Prb/Prs)0.11 for cooling and (Prb/Prs)0.25 for heating.

Falling Films When a liquid is distributed uniformly around the
periphery at the top of a vertical tube (either inside or outside) and
allowed to fall down the tube wall by the influence of gravity, the fluid
does not fill the tube but rather flows as a thin layer. Similarly, when a
liquid is applied uniformly to the outside and top of a horizontal tube,
it flows in layer form around the periphery and falls off the bottom. In
both these cases the mechanism is called gravity flow of liquid layers
or falling films.

For the turbulent flow of water in layer form down the walls of
vertical tubes the dimensional equation of McAdams, Drew, and
Bays [Trans. Am. Soc. Mech. Eng., 62, 627 (1940)] is recommended:

hlm = bΓ1/3 (5-67)

where b = 9150 (SI) or 120 (U.S. Customary) and is based on values of
Γ = WF = M

.
/πD ranging from 0.25 to 6.2 kg/(m�s) [600 to 15,000 lb/

(h�ft)] of wetted perimeter. This type of water flow is used in vertical
vapor-in-shell ammonia condensers, acid coolers, cycle water coolers,
and other process-fluid coolers.

The following dimensional equations may be used for any liquid
flowing in layer form down vertical surfaces:

For > 2100 hlm = 0.01 � 	
1/3

� 	
1/3

� 	
1/3

(5-68a)

For < 2100 ham = 0.50 � 	
1/3

� 	
1/4

� 	
1/9

(5-68b)

Equation (5-68b) is based on the work of Bays and McAdams [Ind.
Eng. Chem., 29, 1240 (1937)]. The significance of the term L is not
clear. When L = 0, the coefficient is definitely not infinite. When L
is large and the fluid temperature has not yet closely approached
the wall temperature, it does not appear that the coefficient should
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V
⎯
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necessarily decrease. Within the finite limits of 0.12 to 1.8 m (0.4
to 6 ft), this equation should give results of the proper order of
magnitude.

For falling films applied to the outside of horizontal tubes, the
Reynolds number rarely exceeds 2100. Equations may be used for
falling films on the outside of the tubes by substituting πD/2 for L.

For water flowing over a horizontal tube, data for several sizes of
pipe are roughly correlated by the dimensional equation of McAdams,
Drew, and Bays [Trans. Am. Soc. Mech. Eng., 62, 627 (1940)].

ham = b(Γ/D0)1/3 (5-69)

where b = 3360 (SI) or 65.6 (U.S. Customary) and Γ ranges from 0.94
to 4 kg/(m⋅s) [100 to 1000 lb/(h⋅ft)].

Falling films are also used for evaporation in which the film is both
entirely or partially evaporated (juice concentration). This principle is
also used in crystallization (freezing).

The advantage of high coefficient in falling-film exchangers is par-
tially offset by the difficulties involved in distribution of the film,
maintaining complete wettability of the tube, and pumping costs
required to lift the liquid to the top of the exchanger.

Finned Tubes (Extended Surface) When the heat-transfer
coefficient on the outside of a metal tube is much lower than that on
the inside, as when steam condensing in a pipe is being used to heat
air, externally finned (or extended) heating surfaces are of value in
increasing substantially the rate of heat transfer per unit length of
tube. The data on extended heating surfaces, for the case of air flow-
ing outside and at right angles to the axes of a bank of finned pipes,
can be represented approximately by the dimensional equation
derived from

hf = b � 	
0.6

(5-70)

where b = 5.29 (SI) or (5.39)(10−3) (U.S. Customary); hf is the coeffi-
cient of heat transfer on the air side; VF is the face velocity of the air;
p′ is the center-to-center spacing, m, of the tubes in a row; and D0 is
the outside diameter, m, of the bare tube (diameter at the root of the
fins).

In atmospheric air-cooled finned tube exchangers, the air-film coef-
ficient from Eq. (5-70) is sometimes converted to a value based on
outside bare surface as follows:

hfo = hf = hf (5-71)

in which hfo is the air-film coefficient based on external bare surface;
hf is the air-film coefficient based on total external surface; AT is total
external surface, and Ao is external bare surface of the unfinned tube;
Af is the area of the fins; Auf is the external area of the unfinned por-
tion of the tube; and Aof is area of tube before fins are attached.

Fin efficiency is defined as the ratio of the mean temperature dif-
ference from surface to fluid divided by the temperature difference
from fin to fluid at the base or root of the fin. Graphs of fin efficiency
for extended surfaces of various types are given by Gardner [Trans.
Am. Soc. Mech. Eng., 67, 621 (1945)].

Heat-transfer coefficients for finned tubes of various types are given
in a series of papers [Trans. Am. Soc. Mech. Eng., 67, 601 (1945)].

For flow of air normal to fins in the form of short strips or pins,
Norris and Spofford [Trans. Am. Soc. Mech. Eng., 64, 489 (1942)] cor-
relate their results for air by the dimensionless equation of
Pohlhausen:

� 	
2/3

= 1.0 � 	
−0.5

(5-72)

for values of zpGmax/µ ranging from 2700 to 10,000.
For the general case, the treatment suggested by Kern (Process

Heat Transfer, McGraw-Hill, New York, 1950, p. 512) is recom-
mended. Because of the wide variations in fin-tube construction, it is
convenient to convert all coefficients to values based on the inside
bare surface of the tube. Thus to convert the coefficient based on out-
side area (finned side) to a value based on inside area Kern gives the
following relationship:

hfi = (ΩAf + Ao)(hf /Ai) (5-73)

zpGmax
�

µ
cpµ
�

k
hm

�
cpGmax

AT
�
Ao

Af + Auf
�

Aof

p′
�
p′ − D0

VF
0.6

�
D0

0.4
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in which hfi is the effective outside coefficient based on the inside
area, hf is the outside coefficient calculated from the applicable equa-
tion for bare tubes, Af is the surface area of the fins, Ao is the surface
area on the outside of the tube which is not finned, Ai is the inside area
of the tube, and Ω is the fin efficiency defined as

Ω = (tanh mbf)/mbf (5-74)

in which

m = (hf pf /kax)1/2 m−1 (ft−1) (5-75)

and bf = height of fin. The other symbols are defined as follows: pf is
the perimeter of the fin, ax is the cross-sectional area of the fin, and k
is the thermal conductivity of the material from which the fin is
made.

Fin efficiencies and fin dimensions are available from manufactur-
ers. Ratios of finned to inside surface are usually available so that the
terms Af, Ao, and Ai may be obtained from these ratios rather than
from the total surface areas of the heat exchangers.

JACKETS AND COILS OF AGITATED VESSELS

See Secs. 11 and 18.

NONNEWTONIAN FLUIDS

A wide variety of nonnewtonian fluids are encountered industrially.
They may exhibit Bingham-plastic, pseudoplastic, or dilatant behavior

and may or may not be thixotropic. For design of equipment to handle
or process nonnewtonian fluids, the properties must usually be mea-
sured experimentally, since no generalized relationships exist to pre-
dict the properties or behavior of the fluids. Details of handling
nonnewtonian fluids are described completely by Skelland (Non-
Newtonian Flow and Heat Transfer, Wiley, New York, 1967). The gen-
eralized shear-stress rate-of-strain relationship for nonnewtonian
fluids is given as

n′ = (5-76)

as determined from a plot of shear stress versus velocity gradient.
For circular tubes, Gz > 100, n′ > 0.1, and laminar flow

Nu
lm
= 1.75 δs

1/3Gz1/3 (5-77)

where δs = (3n′ + 1)/4n′. When natural convection effects are consid-
ered, Metzer and Gluck [Chem. Eng. Sci., 12, 185 (1960)] obtained
the following for horizontal tubes:

Nu
lm
= 1.75 δ s

1/3 �Gz + 12.6 � 	
0.4

�
1/3

� 	
0.14

(5-78)

where properties are evaluated at the wall temperature, i.e., γ =
gcK′8n′ −1 and τw = K′(8V/D)n′.

Metzner and Friend [Ind. Eng. Chem., 51, 879 (1959)] present
relationships for turbulent heat transfer with nonnewtonian fluids.
Relationships for heat transfer by natural convection and through
laminar boundary layers are available in Skelland’s book (op. cit.).

γb
�
γw

PrGrD
�

L

d ln (D ∆P/4L)
��

d ln (8V/D)
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HEAT TRANSFER WITH CHANGE OF PHASE

In any operation in which a material undergoes a change of phase,
provision must be made for the addition or removal of heat to provide
for the latent heat of the change of phase plus any other sensible heat-
ing or cooling that occurs in the process. Heat may be transferred by
any one or a combination of the three modes—conduction, convec-
tion, and radiation. The process involving change of phase involves
mass transfer simultaneous with heat transfer.

CONDENSATION

Condensation Mechanisms Condensation occurs when a satu-
rated vapor comes in contact with a surface whose temperature is
below the saturation temperature. Normally a film of condensate is
formed on the surface, and the thickness of this film, per unit of
breadth, increases with increase in extent of the surface. This is called
film-type condensation.

Another type of condensation, called dropwise, occurs when the
wall is not uniformly wetted by the condensate, with the result that 
the condensate appears in many small droplets at various points on the
surface. There is a growth of individual droplets, a coalescence of
adjacent droplets, and finally a formation of a rivulet. Adhesional force
is overcome by gravitational force, and the rivulet flows quickly to the
bottom of the surface, capturing and absorbing all droplets in its path
and leaving dry surface in its wake.

Film-type condensation is more common and more dependable.
Dropwise condensation normally needs to be promoted by introduc-
ing an impurity into the vapor stream. Substantially higher (6 to 18
times) coefficients are obtained for dropwise condensation of steam,
but design methods are not available. Therefore, the development of
equations for condensation will be for the film type only.

The physical properties of the liquid, rather than those of the vapor,
are used for determining the coefficient for condensation. Nusselt
[Z. Ver. Dtsch. Ing., 60, 541, 569 (1916)] derived theoretical relation-
ships for predicting the coefficient of heat transfer for condensation of
a pure saturated vapor. A number of simplifying assumptions were
used in the derivation.

The Reynolds number of the condensate film (falling film) is
4Γ/µ, where Γ is the weight rate of flow (loading rate) of condensate
per unit perimeter kg/(s�m) [lb/(h�ft)]. The thickness of the conden-
sate film for Reynolds number less than 2100 is (3µΓ/ρ2g)1/3.

Condensation Coefficients
Vertical Tubes For the following cases Reynolds number < 2100

and is calculated by using Γ = WF /πD. The Nusselt equation for
the heat-transfer coefficient for condensate films may be written in
the following ways (using liquid physical properties and where L is the
cooled length and ∆ t is tsv − ts):

Nusselt type:

= 0.943 � 	
1/4

= 0.925 � 	
1/3

(5-79)*

Dimensional:

h = b(k3ρ2D/µbWF)1/3 (5-80)*

where b = 127 (SI) or 756 (U.S. Customary). For steam at atmospheric
pressure, k = 0.682 J/(m�s�K) [0.394 Btu/(h�ft�°F)], ρ = 960 kg/m3

(60 lb/ft3), µb = (0.28)(10−3) Pa�s (0.28 cP),

h = b(D/WF)1/3 (5-81)

where b = 2954 (SI) or 6978 (U.S. Customary). For organic vapors at
normal boiling point, k = 0.138 J/(m�s�K) [0.08 Btu/(h�ft�°F)], ρ =
720 kg/m3 (45 lb/ft3), µb = (0.35)(10−3) Pa�s (0.35 cP),

h = b(D/WF)1/3 (5-82)

where b = 457 (SI) or 1080 (U.S. Customary).
Horizontal Tubes For the following cases Reynolds number

< 2100 and is calculated by using Γ = WF /2L.

L3ρ2g
�

µΓ
L3ρ2gλ
�
kµ ∆ t

hL
�
k

* If the vapor density is significant, replace ρ2 with ρl(ρl − ρv).



Nusselt type:

= 0.73 � 	
1/4

= 0.76 � 	
1/3

(5-83)*

Dimensional:
h = b(k3ρ2L/µbWF)1/3 (5-84)*

where b = 205.4 (SI) or 534 (U.S. Customary). For steam at atmo-
spheric pressure

D3ρ2g
�

µΓ
D3ρ2gλ
�
kµ ∆t

hD
�

k

h = b(L/WF)1/3 (5-85)

where b = 2080 (SI) or 4920 (U.S. Customary). For organic vapors at
normal boiling point

h = b(L/WF)1/3 (5-86)

where b = 324 (SI) or 766 (U.S. Customary).
Figure 5-7 is a nomograph for determining coefficients of heat

transfer for condensation of pure vapors.
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FIG. 5-7 Chart for determining heat-transfer coefficient hm for film-type condensation of pure vapor, based on Eqs. (5-79)
and (5-83). For vertical tubes multiply hm by 1.2. If 4Γ/µf exceeds 2100, use Fig. 5-8. �

4
λ�ρ�2k�3/�µ� is in U.S. Customary units;

to convert feet to meters, multiply by 0.3048; to convert inches to centimeters, multiply by 2.54; and to convert British
thermal units per hour–square foot–degrees Fahrenheit to watts per square meter–kelvins, multiply by 5.6780.

* If the vapor density is significant, replace ρ2 with ρl(ρl − ρv).



Banks of Horizontal Tubes (Re < 2100) In the idealized case of
N tubes in a vertical row where the total condensate flows smoothly
from one tube to the one beneath it, without splashing, and still in
laminar flow on the tube, the mean condensing coefficient hN for the
entire row of N tubes is related to the condensing coefficient for the
top tube h1 by

hN = h1N−1/4 (5-87)

Dukler Theory The preceding expressions for condensation are
based on the classical Nusselt theory. It is generally known and con-
ceded that the film coefficients for steam and organic vapors calcu-
lated by the Nusselt theory are conservatively low. Dukler [Chem.
Eng. Prog., 55, 62 (1959)] developed equations for velocity and tem-
perature distribution in thin films on vertical walls based on expres-
sions of Deissler (NACA Tech. Notes 2129, 1950; 2138, 1952; 3145,
1959) for the eddy viscosity and thermal conductivity near the solid
boundary. According to the Dukler theory, three fixed factors must be
known to establish the value of the average film coefficient: the termi-
nal Reynolds number, the Prandtl number of the condensed phase,
and a dimensionless group Nd defined as follows:

Nd = (0.250µL
1.173µG

0.16)/(g2/3D2ρL
0.553ρG

0.78) (5-88)

Graphical relationships of these variables are available in Document
6058, ADI Auxiliary Publications Project, Library of Congress, Wash-
ington. If rigorous values for condensing-film coefficients are desired,
especially if the value of Nd in Eq. (5-88) exceeds (1)(10−5), it is sug-
gested that these graphs be used. For the case in which interfacial
shear is zero, Fig. 5-8 may be used. It is interesting to note that,
according to the Dukler development, there is no definite transition
Reynolds number; deviation from Nusselt theory is less at low
Reynolds numbers; and when the Prandtl number of a fluid is less
than 0.4 (at Reynolds number above 1000), the predicted values for
film coefficient are lower than those predicted by the Nusselt theory.

The Dukler theory is applicable for condensate films on horizontal
tubes and also for falling films, in general, i.e., those not associated
with condensation or vaporization processes.

Vapor Shear Controlling For vertical in-tube condensation
with vapor and liquid flowing concurrently downward, if gravity con-
trols, Figs. 5-7 and 5-8 may be used. If vapor shear controls, the 
Carpenter-Colburn correlation (General Discussion on Heat Transfer,
London, 1951, ASME, New York, p. 20) is applicable:

hµl /klρl
1/2 = 0.065(Pr)l

1/2Fvc
1/2 (5-89a)

where Fvc = fG2
vm /2ρv (5-89b)

Gvm = � 	
1/2

(5-89c)

and f is the Fanning friction factor evaluated at

(Re)vm = DiGvm /µv (5-89d)

Gvi
2 + GviGvo + Gvo

2

���
3

and the subscripts vi and vo refer to the vapor inlet and outlet, respec-
tively. An alternative formulation, directly in terms of the friction factor, is

h = 0.065 (cρkf/2µρv)1/2Gvm (5-89e)

expressed in consistent units.
Another correlation for vapor-shear-controlled condensation is the

Boyko-Kruzhilin correlation [Int. J. Heat Mass Transfer, 10, 361
(1967)], which gives the mean condensing coefficient for a stream
between inlet quality xi and outlet quality xo:

= 0.024 � 	
0.8

(Pr)l
0.43 (5-90a)

where GT = total mass velocity in consistent units

� 	
i
= 1 + xi (5-90b)

and � 	
o
= 1 + xo (5-90c)

For horizontal in-tube condensation at low flow rates Kern’s
modification (Process Heat Transfer, McGraw-Hill, New York, 1950)
of the Nusselt equation is valid:

hm = 0.761 � �
1/3

= 0.815 � �
1/4

(5-91)

where WF is the total vapor condensed in one tube and ∆ t is tsv − ts .
A more rigorous correlation has been proposed by Chaddock [Refrig.
Eng., 65(4), 36 (1957)]. Use consistent units.

At high condensing loads, with vapor shear dominating, tube orienta-
tion has no effect, and Eq. (5-90a) may also be used for horizontal tubes.

Condensation of pure vapors under laminar conditions in the pres-
ence of noncondensable gases, interfacial resistance, superheating,
variable properties, and diffusion has been analyzed by Minkowycz
and Sparrow [Int. J. Heat Mass Transfer, 9, 1125 (1966)].

BOILING (VAPORIZATION) OF LIQUIDS

Boiling Mechanisms Vaporization of liquids may result from
various mechanisms of heat transfer, singly or combinations thereof.
For example, vaporization may occur as a result of heat absorbed, by
radiation and convection, at the surface of a pool of liquid; or as a
result of heat absorbed by natural convection from a hot wall beneath
the disengaging surface, in which case the vaporization takes place
when the superheated liquid reaches the pool surface. Vaporization
also occurs from falling films (the reverse of condensation) or from the
flashing of liquids superheated by forced convection under pressure.

Pool boiling refers to the type of boiling experienced when the heat-
ing surface is surrounded by a relatively large body of fluid which is not
flowing at any appreciable velocity and is agitated only by the motion of
the bubbles and by natural-convection currents. Two types of pool boil-
ing are possible: subcooled pool boiling, in which the bulk fluid temper-
ature is below the saturation temperature, resulting in collapse of
the bubbles before they reach the surface, and saturated pool boiling,
with bulk temperature equal to saturation temperature, resulting in net
vapor generation.

The general shape of the curve relating the heat-transfer coefficient
to ∆ tb, the temperature driving force (difference between the wall
temperature and the bulk fluid temperature) is one of the few para-
metric relations that are reasonably well understood. The familiar
boiling curve was originally demonstrated experimentally by Nukiyama
[J. Soc. Mech. Eng. ( Japan), 37, 367 (1934)]. This curve points out
one of the great dilemmas for boiling-equipment designers. They are
faced with at least six heat-transfer regimes in pool boiling: natural
convection (+), incipient nucleate boiling (+), nucleate boiling (+),
transition to film boiling (−), stable film boiling (+), and film boiling
with increasing radiation (+). The signs indicate the sign of the deriv-
ative d(q/A)/d ∆ tb. In the transition to film boiling, heat-transfer rate
decreases with driving force. The regimes of greatest commercial
interest are the nucleate-boiling and stable-film-boiling regimes.

Heat transfer by nucleate boiling is an important mechanism in
the vaporization of liquids. It occurs in the vaporization of liquids in

k l
3ρl(ρl − ρv)gλ
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Lk l
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FIG. 5-8 Dukler plot showing average condensing-film coefficient as a func-
tion of physical properties of the condensate film and the terminal Reynolds
number. (Dotted line indicates Nusselt theory for Reynolds number < 2100.)
[Reproduced by permission from Chem. Eng. Prog., 55, 64 (1959).]



kettle-type and natural-circulation reboilers commonly used in the
process industries. High rates of heat transfer per unit of area (heat
flux) are obtained as a result of bubble formation at the liquid-solid
interface rather than from mechanical devices external to the heat
exchanger. There are available several expressions from which reason-
able values of the film coefficients may be obtained.

The boiling curve, particularly in the nucleate-boiling region, is sig-
nificantly affected by the temperature driving force, the total system
pressure, the nature of the boiling surface, the geometry of the system,
and the properties of the boiling material. In the nucleate-boiling
regime, heat flux is approximately proportional to the cube of the tem-
perature driving force. Designers in addition must know the minimum
∆t (the point at which nucleate boiling begins), the critical ∆t (the ∆t
above which transition boiling begins), and the maximum heat flux (the
heat flux corresponding to the critical ∆t). For designers who do not
have experimental data available, the following equations may be used.

Boiling Coefficients For the nucleate-boiling coefficient the
Mostinski equation [Teplenergetika, 4, 66 (1963)] may be used:

h = bPc
0.69 � 	

0.7

�1.8 � 	
0.17

+ 4 � 	
1.2

+ 10 � 	
10

� (5-92)

where b = (3.75)(10−5)(SI) or (2.13)(10−4) (U.S. Customary), Pc is the
critical pressure and P the system pressure, q/A is the heat flux, and h
is the nucleate-boiling coefficient. The McNelly equation [J. Imp.
Coll. Chem. Eng. Soc., 7(18), (1953)] may also be used:

h = 0.225 � 	
0.69

� 	
0.31

� − 1	
0.33

(5-93)

where cl is the liquid heat capacity, λ is the latent heat, P is the system
pressure, kl is the thermal conductivity of the liquid, and σ is the sur-
face tension.

An equation of the Nusselt type has been suggested by Rohsenow
[Trans. Am. Soc. Mech. Eng., 74, 969 (1952)].

hD/k = Cr(DG/µ)2/3(cµ/k)−0.7 (5-94a)
in which the variables assume the following form:

� �
1/2

= Cr � � 	
1/2

�
2/3

� 	
−0.7

(5-94b)

The coefficient Cr is not truly constant but varies from 0.006 to 0.015.*
It is possible that the nature of the surface is partly responsible for the
variation in the constant. The only factor in Eq. (5-94b) not readily
available is the value of the contact angle β′.

Another Nusselt-type equation has been proposed by Forster and
Zuber:†

Nu = 0.0015 Re0.62 Pr1/3 (5-95)
which takes the following form:

� 	
1/2

� 	
1/4

= 0.0015 � � 	
2

�
0.62

� 	
1/ 2

(5-96)
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where α = k/ρc (all liquid properties)
∆p = pressure of the vapor in a bubble minus saturation pres-

sure of a flat liquid surface

Equations (5-94b) and (5-96) have been arranged in dimensional form
by Westwater.

The numerical constant may be adjusted to suit any particular set of
data if one desires to use a certain criterion. However, surface condi-
tions vary so greatly that deviations may be as large as �25 percent
from results obtained.

The maximum heat flux may be predicted by the Kutateladse-
Zuber [Trans. Am. Soc. Mech. Eng., 80, 711 (1958)] relationship,
using consistent units:

� 	
max

= 0.18gc
1/4ρv λ � �

1/4

(5-97)

Alternatively, Mostinski presented an equation which approximately
represents the Cichelli-Bonilla [Trans. Am. Inst. Chem. Eng., 41, 755
(1945)] correlation:

= b � 	
0.35

�1 − 	
0.9

(5-98)

where b = 0.368(SI) or 5.58 (U.S. Customary); Pc is the critical pres-
sure, Pa absolute; P is the system pressure; and (q/A)max is the maxi-
mum heat flux.

The lower limit of applicability of the nucleate-boiling equations is
from 0.1 to 0.2 of the maximum limit and depends upon the magni-
tude of natural-convection heat transfer for the liquid. The best
method of determining the lower limit is to plot two curves: one of 
h versus ∆ t for natural convection, the other of h versus ∆ t for nucle-
ate boiling. The intersection of these two curves may be considered
the lower limit of applicability of the equations.

These equations apply to single tubes or to flat surfaces in a large
pool. In tube bundles the equations are only approximate, and design-
ers must rely upon experiment. Palen and Small [Hydrocarbon
Process., 43(11), 199 (1964)] have shown the effect of tube-bundle
size on maximum heat flux.

� 	
max

= b ρv λ � �
1/4

(5-99)

where b = 0.43 (SC) or 61.6 (U.S. Customary), p is the tube pitch, Do

is the tube outside diameter, and NT is the number of tubes (twice the
number of complete tubes for U-tube bundles).

For film boiling, Bromley’s [Chem. Eng. Prog., 46, 221 (1950)]
correlation may be used:

h = b � �
1/4

(5-100)

where b = 4.306 (SI) or 0.620 (U.S. Customary). Katz, Myers, and
Balekjian [Pet. Refiner, 34(2), 113 (1955)] report boiling heat-transfer
coefficients on finned tubes.
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INTRODUCTION

Heat transfer by thermal radiation involves the transport of electro-
magnetic (EM) energy from a source to a sink. In contrast to other
modes of heat transfer, radiation does not require the presence of an
intervening medium, e.g., as in the irradiation of the earth by the sun.
Most industrially important applications of radiative heat transfer
occur in the near infrared portion of the EM spectrum (0.7 through
25 µm) and may extend into the far infrared region (25 to 1000 µm).
For very high temperature sources, such as solar radiation, relevant
wavelengths encompass the entire visible region (0.4 to 0.7 µm) and
may extend down to 0.2 µm in the ultraviolet (0.01- to 0.4-µm) por-
tion of the EM spectrum. Radiative transfer can also exhibit unique
action-at-a-distance phenomena which do not occur in other modes
of heat transfer. Radiation differs from conduction and convection
not only with regard to mathematical characterization but also with
regard to its fourth power dependence on temperature. Thus it is
usually dominant in high-temperature combustion applications. The
temperature at which radiative transfer accounts for roughly one-half
of the total heat loss from a surface in air depends on such factors as
surface emissivity and the convection coefficient. For pipes in free
convection, radiation is important at ambient temperatures. For fine
wires of low emissivity it becomes important at temperatures associ-
ated with bright red heat (1300 K). Combustion gases at furnace tem-
peratures typically lose more than 90 percent of their energy by
radiative emission from constituent carbon dioxide, water vapor, and
particulate matter. Radiative transfer methodologies are important in
myriad engineering applications. These include semiconductor pro-
cessing, illumination theory, and gas turbines and rocket nozzles, as
well as furnace design.

THERMAL RADIATION FUNDAMENTALS

In a vacuum, the wavelength λ, frequency, ν and wavenumber η for
electromagnetic radiation are interrelated by λ = c�ν = 1�η, where c is
the speed of light. Frequency is independent of the index of refraction
of a medium n, but both the speed of light and the wavelength in the
medium vary according to cm = c/n and λm = λ�n. When a radiation
beam passes into a medium of different refractive index, not only does
its wavelength change but so does its direction (Snell’s law) as well as
the magnitude of its intensity. In most engineering heat-transfer cal-
culations, wavelength is usually employed to characterize radiation
while wave number is often used in gas spectroscopy. For a vacuum,
air at ambient conditions, and most gases, n ≈ 1.0. For this reason this
presentation sometimes does not distinguish between λ and λm.
Dielectric materials exhibit 1.4 < n < 4, and the speed of light
decreases considerably in such media.

In radiation heat transfer, the monochromatic intensity Iλ ≡ Iλ(rÆ,
W
Æ

, λ), is a fundamental (scalar) field variable which characterizes EM
energy transport. Intensity defines the radiant energy flux passing
through an infinitesimal area dA, oriented normal to a radiation beam
of arbitrary direction W

Æ
. At steady state, the monochromatic intensity

is a function of position rÆ, direction W
Æ

, and wavelength and has units
of W�(m2⋅sr⋅µm). In the general case of an absorbing-emitting and
scattering medium, characterized by some absorption coefficient
K(m−1), intensity in the direction W

Æ
will be modified by attenuation

and by scattering of radiation into and out of the beam. For the special
case of a nonabsorbing (transparent), nonscattering, medium of constant
refractive index, the radiation intensity is constant and independent of
position in a given direction W

Æ
. This circumstance arises in illumination

theory where the light intensity in a room is constant in a given direction
but may vary with respect to all other directions. The basic conservation
law for radiation intensity is termed the equation of transfer or radiative
transfer equation. The equation of transfer is a directional energy bal-
ance and mathematically is an integrodifferential equation. The rele-
vance of the transport equation to radiation heat transfer is discussed in
many sources; see, e.g., Modest, M. F., Radiative Heat Transfer, 2d ed.,
Academic Press, 2003, or Siegel, R., and J. R. Howell, Thermal Radiative
Heat Transfer, 4th ed., Taylor & Francis, New York, 2001.

Introduction to Radiation Geometry Consider a homoge-
neous medium of constant refractive index n. A pencil of radiation

originates at differential area element dAi and is incident on differen-
tial area element dAj. Designate nÆi and nÆj as the unit vectors normal
to dAi and dAj, and let r, with unit direction vector W

Æ
, define the dis-

tance of separation between the area elements. Moreover, φi and φj

denote the confined angles between W
Æ

and nÆi and nÆj, respectively [i.e.,
cosφi ≡ cos(W

Æ
, rÆi) and cosφj ≡ cos(W

Æ
, rÆj)]. As the beam travels toward

dAj, it will diverge and subtend a solid angle

dΩj = dAj sr

at dAi. Moreover, the projected area of dAi in the direction of W
Æ

is
given by cos(W

Æ
, rÆi) dAi = cosφi dAi. Multiplication of the intensity Iλ ≡

Iλ(r
Æ, W

Æ
, λ) by dΩj and the apparent area of dAi then yields an expres-

sion for the (differential) net monochromatic radiant energy flux dQi,j

originating at dAi and intercepted by dAj.

dQi,j ≡ Iλ(W
Æ

, λ) cosφi cosφj dAi dAj�r2 (5-101)

The hemispherical emissive power* E is defined as the radiant
flux density (W/m2) associated with emission from an element of sur-
face area dA into a surrounding unit hemisphere whose base is copla-
nar with dA. If the monochromatic intensity Iλ(W

Æ
, λ) of emission from

the surface is isotropic (independent of the angle of emission, W
Æ

), Eq.
(5-101) may be integrated over the 2π sr of the surrounding unit hemi-
sphere to yield the simple relation Eλ = πIλ, where Eλ ≡ Eλ(λ) is defined
as the monochromatic or spectral hemispherical emissive power.

Blackbody Radiation Engineering calculations involving thermal
radiation normally employ the hemispherical blackbody emissive
power as the thermal driving force analogous to temperature in the
cases of conduction and convection. A blackbody is a theoretical ideal-
ization for a perfect theoretical radiator; i.e., it absorbs all incident radia-
tion without reflection and emits isotropically. In practice, soot-covered
surfaces sometimes approximate blackbody behavior. Let Eb,λ = Eb,λ(T,λ)
denote the monochromatic blackbody hemispherical emissive power
frequency function defined such that Eb,λ(T, λ)dλ represents the fraction
of blackbody energy lying in the wavelength region from λ to λ + dλ. The
function Eb,λ = Eb,λ(T,λ) is given by Planck’s law

= (5-102)

where c1 = 2πhc2 and c2 = hc/k are defined as Planck’s first and second
constants, respectively.

Integration of Eq. (5-102) over all wavelengths yields the Stefan-
Boltzman law for the hemispherical blackbody emissive power

Eb(T) = �∞

λ=0
Eb,λ(T, λ) dλ = n2σT4 (5-103)

where σ = c1(π�c2)4�15 is the Stephan-Boltzman constant. Since a
blackbody is an isotropic emitter, it follows that the intensity of black-
body emission is given by the simple formula Ib = Eb�π = n2σT4�π. The
intensity of radiation emitted over all wavelengths by a blackbody is
thus uniquely determined by its temperature. In this presentation, all
references to hemispherical emissive power shall be to the blackbody
emissive power, and the subscript b may be suppressed for expediency.

For short wavelengths λT → 0, the asymptotic form of Eq. (5-102)
is known as the Wien equation

≅ c1(λT)−5e−c2�λT (5-104)

The error introduced by use of the Wien equation is less than 1 percent
when λT < 3000 µm⋅K. The Wien equation has significant practical
value in optical pyrometry for T < 4600 K when a red filter (λ = 0.65
µm) is employed. The long-wavelength asymptotic approximation for
Eq. (5-102) is known as the Rayleigh-Jeans formula, which is
accurate to within 1 percent for λT > 778,000 µm⋅K. The Raleigh-
Jeans formula is of limited engineering utility since a blackbody emits
over 99.9 percent of its total energy below the value of λT = 53,000
µm⋅K.

Eb,λ(T, λ)
��

n2T5

c1(λT)−5

�
ec2�λT − 1

Eb,λ(T,λ)
�

n2T5

cosφj
�

r2
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*In the literature the emissive power is variously called the emittance, total
hemispherical intensity, or radiant flux density.



a,ag,ag,1 WSGG spectral model clear plus gray weighting
constants

C
⎯

p, C
⎯

P,Prod Heat capacity per unit mass, J⋅kg−1⋅K−1

i
⎯
j
⎯
= s⎯i

⎯s⎯j Shorthand notation for direct exchange area
A, Ai Area of enclosure or zone i, m2

c Speed of light in vacuum, m/s
c1, c2 Planck’s first and second constants, W⋅m2 and m⋅K
dp, rp Particle diameter and radius, µm
Eb,λ = Eb,λ(T,λ) Monochromatic, blackbody emissive power,

W�(m2⋅µm)
En(x) Exponential integral of order n, where n = 1, 2, 3,. . .
E Hemispherical emissive power, W/m2

Eb = n2σT4 Hemispherical blackbody emissive power, W/m2

fv Volumetric fraction of soot
Fb(λT) Blackbody fractional energy distribution
Fi,j Direct view factor from surface zone i to surface zone j
F⎯⎯

i,j Refractory augmented black view factor; F-bar
Fi,j Total view factor from surface zone i to surface zone j
h Planck’s constant, J⋅s
hi Heat-transfer coefficient, W�(m2⋅K)
Hi Incident flux density for surface zone i, W/m2

H Enthalpy rate, W
H
.
F Enthalpy feed rate, W

Iλ ≡ Iλ(r
Æ

, W
Æ

, λ) Monochromatic radiation intensity, W�(m2⋅µm⋅sr)
k Boltzmann’s constant, J/K
kλ,p Monochromatic line absorption coefficient, (atm⋅m)−1

K Gas absorption coefficient, m−1

LM, LM0 Average and optically thin mean beam lengths, m
m
.

Mass flow rate, kg�h−1

n Index of refraction
M, N Number of surface and volume zones in enclosure
pk Partial pressure of species k, atm
P Number of WSGG gray gas spectral windows
Qi Total radiative flux originating at surface zone i, W
Qi,j Net radiative flux between zone i and zone j, W
T Temperature, K
U Overall heat-transfer coefficient in WSCC model
V Enclosure volume, m3

W Leaving flux density (radiosity), W/m2

Greek Characters

α, α1,2 Surface absorptivity or absorptance; subscript 1
refers to the surface temperature while subscript
2 refers to the radiation source

αg,1, εg, τg,1 Gas absorptivity, emissivity, and transmissivity
β Dimensionless constant in mean beam length

equation, LM = β⋅LM0

∆Tge ≡ Tg − Te Adjustable temperature fitting parameter for WSCC
model, K

ε Gray diffuse surface emissivity
εg(T, r) Gas emissivity with path length r
ελ(T, Ω, λ) Monochromatic, unidirectional, surface emissivity
η = 1�λ Wave number in vacuum, cm−1

λ = c�ν Wavelength in vacuum, µm
ν Frequency, Hz
ρ = 1 − ε Diffuse reflectivity
σ Stefan-Boltzmann constant, W�(m2⋅K4)
Σ Number of unique direct surface-to-surface direct

exchange areas
τg = 1 − εg Gas transmissivity
Ω Solid angle, sr (steradians)
Φ Equivalence ratio of fuel and oxidant
Ψ(3)(x) Pentagamma function of x
ω Albedo for single scatter

Dimensionless Quantities

Deff = Effective firing density

NCR = Convection-radiation number

NFD = H
.

f�σT4
Ref ⋅A1 Dimensionless firing density

ηg Gas-side furnace efficiency
η′g = ηg(1 − Θ0) Reduced furnace efficiency
Θi = Ti�TRef Dimensionless temperature

Vector Notation

nÆi and nÆj Unit vectors normal to differential area elements
dAi and dAj

rÆ Position vector
W
Æ

Arbitrary unit direction vector

h
�
4σT

⎯3
g,1

NFD
��
(S�1�G��R�A1) + NCR

Matrix Notation

1M Column vector; all of whose elements are unity. [M × 1]
I = [δi,j] Identity matrix, where δi,j is the Kronecker delta;

i.e., δi,j = 1 for i = j and δi,j = 0 for i ≠ j.
aI Diagonal matrix of WSGG gray gas surface zone

a-weighting factors [M × M]
agI Diagonal matrix of gray gas WSGG volume zone

a-weighting factors [N × N]
A = [Ai,j] Arbitrary nonsingular square matrix
AT = [Aj,i] Transpose of A
A−1 = [Ai,j]−1 Inverse of A
DI = [Di⋅δi,j] Arbitrary diagonal matrix
DI−1 = [δi,j�Di] Inverse of diagonal matrix
CDI CI⋅DI = [Ci⋅Di⋅δi,j], product of two diagonal matrices
AI = [Ai⋅δi,j] Diagonal matrix of surface zone areas, m2 [M × M]
εI = [εi⋅δi,j] Diagonal matrix of diffuse zone emissivities [M × M]
ρI = [ρi⋅δi,j] Diagonal matrix of diffuse zone reflectivities [M × M]
E = [Ei] = [σTi

4] Column vector of surface blackbody hemispherical
emissive powers, W/m2 [M × 1]

EI = [Ei⋅δi,j] = [σT4
i⋅δi, j] Diagonal matrix of surface blackbody emissive powers,

W/m2 [M × M]
Eg = [Eg,i] = [σT4

g,i] Column vector of gas blackbody hemispherical
emissive powers, W/m2 [N × 1]

EgI = [Ei⋅δi,j] = [σT4
i⋅δi,j] Diagonal matrix of gas blackbody emissive powers,

W/m2 [N × N]
H = [Hi] Column vector of surface zone incident flux

densities, W/m2 [M × 1]
W = [Wi] Column vector of surface zone leaving flux

densities, W/m2 [M × 1]
Q = [Qi] Column vector of surface zone fluxes, W [M × 1]
R = [AI − s

⎯
s
⎯
⋅ρI]−1 Inverse multiple-reflection matrix, m−2 [M × M]

KIp = [δi, j⋅Kp,i] Diagonal matrix of WSGG Kp,i values for the ith
zone and pth gray gas component, m−1 [N × N]

KIq Diagonal matrix of WSGG-weighted gray gas
absorption coefficients, m−1 [N × N]

S′ Column vector for net volume absorption, W [N × 1]
s⎯s⎯ = [s⎯i

⎯s⎯j
⎯] Array of direct surface-to-surface exchange areas, m2

[M × M]
s⎯g⎯ = [s⎯i

⎯g⎯j] = g⎯s⎯
T

Array of direct gas-to-surface exchange areas, m2

[M × N]
g⎯g⎯ = [g⎯i

⎯g⎯j
⎯] Array of direct gas-to-gas exchange areas, m2 [N × N]

S⎯S⎯ = [S⎯i
⎯S⎯j] Array of total surface-to-surface exchange areas, m2

[M × M]
S
⎯
G
⎯

= [S
⎯

i
⎯
G
⎯

j] Array of total gas-to-surface exchange areas, m2

[M × N]
G
⎯

S
⎯
= G

⎯
S
⎯T

Array of total surface-to-gas exchange areas, m2

[N × M]
G
⎯

G
⎯

= [G
⎯

i
⎯
G
⎯

j] Array of total gas-to-gas exchange areas, m2 [N × N]

SSq = [SiSi
q] Array of directed surface-to-surface exchange

areas, m2 [M × M]
SGq = [SiGi

q ] Array of directed gas-to-surface exchange areas, m2

[M × N]
GSq ≠ SGq

T

Array of directed surface-to-gas exchange areas, m2

[N × M]
GGq = [GiGi

q ] Array of directed gas-to-gas exchange areas, m2

[N × N]
VI = [Vi⋅δi,j] Diagonal matrix of zone volumes, m3 [N × N]

Subscripts

b Blackbody or denotes a black surface zone
f Denotes flux surface zone
h Denotes hemispherical surface emissivity
i, j Zone number indices
n Denotes normal component of surface emissivity
p Index for pth gray gas window
r Denotes refractory surface zone
s Denotes source-sink surface zone
λ Denotes monochromatic variable
Ref Denotes reference quantity

Abbreviations

CFD Computational fluid dynamics
DO, FV Discrete ordinate and finite volume methods
EM Electromagnetic
RTE Radiative transfer equation; equation of transfer
LPFF Long plug flow furnace model
SSR Source-sink refractory model
WSCC Well-stirred combustion chamber model
WSGG Weighted sum of gray gases spectral model

Nomenclature and Units—Radiative Transfer



The blackbody fractional energy distribution function is defined by

Fb(λT) = (5-105)

The function Fb(λT) defines the fraction of total energy in the black-
body spectrum which lies below λT and is a unique function of λT.
For purposes of digital computation, the following series expansion
for Fb(λT) proves especially useful.

Fb(λT) = 

∞

k=1
�ξ3 + + + 	 where ξ = (5-106)

Equation (5-106) converges rapidly and is due to Lowan [1941] as ref-
erenced in Chang and Rhee [Int. Comm. Heat Mass Transfer, 11,
451–455 (1984)].

Numerically, in the preceding, h = 6.6260693 × 10−34 J⋅s is the
Planck constant; c = 2.99792458 × 108 m�s is the velocity of light in
vacuum; and k = 1.3806505 × 10−23 J�K is the Boltzmann constant.
These data lead to the following values of Planck’s first and second
constants: c1 = 3.741771 × 10−16 W⋅m2 and c2 = 1.438775 × 10−2 m⋅K,
respectively. Numerical values of the Stephan-Boltzmann constant σ
in several systems of units are as follows: 5.67040 × 10−8 W�(m2⋅K4);
1.3544 × 10−12 cal�(cm2⋅s⋅K4); 4.8757 × 10−8 kcal�(m2⋅h⋅K4); 9.9862 ×
10−9 CHU�(ft2⋅h⋅K4); and 0.17123 × 10−8 Btu�(ft2⋅h⋅°R4) (CHU = centi-
grade heat unit; 1.0 CHU = 1.8 Btu.)

c2
�
λT

6
�
k3

6ξ
�
k2

3ξ2

�
k

e−kξ

�
k

15
�
π4

�λ

λ= 0
Eb,λ(T, λ) dλ

���∞

λ=0
Eb,λ(T, λ) dλ

Blackbody Displacement Laws The blackbody energy spectrum

is plotted logarithmically in Fig. 5-9 as × 1013

versus λT µm⋅K. For comparison a companion inset is provided in
Cartesian coordinates. The upper abscissa of Fig. 5-9 also shows the
blackbody energy distribution function Fb(λT). Figure 5-9 indicates
that the wavelength-temperature product for which the maximum
intensity occurs is λmaxT = 2898 µm⋅K. This relationship is known as
Wien’s displacement law, which indicates that the wavelength for
maximum intensity is inversely proportional to the absolute temper-
ature. Blackbody displacement laws are useful in engineering prac-
tice to estimate wavelength intervals appropriate to relevant system
temperatures. The Wien displacement law can be misleading, how-
ever, because the wavelength for maximum intensity depends on
whether the intensity is defined in terms of frequency or wavelength
interval. Two additional useful displacement laws are defined in
terms of either the value of λT corresponding to the maximum
energy per unit fractional change in wavelength or frequency, that is,
λT = 3670 µm⋅K, or to the value of λT corresponding to one-half the
blackbody energy, that is, λT = 4107 µm⋅K. Approximately one-half
of the blackbody energy lies within the twofold λT range geometri-
cally centered on λT = 3670 µm⋅K, that is, 3670��2� < λT < 3670�2�
µm⋅K. Some 95 percent of the blackbody energy lies in the interval
1662.6 < λT < 16,295 µm⋅K. It thus follows that for the temperature
range between ambient (300 K) and flame temperatures (2000 K or

W
��

m2⋅µm⋅K5

Eb,λ(λT)
�

n2 T5
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FIG. 5-9 Spectral dependence of monochromatic blackbody hemispherical emissive power.



3140°F), wavelengths of engineering heat-transfer importance are
bounded between 0.83 and 54.3 µm.

RADIATIVE PROPERTIES OF OPAQUE SURFACES

Emittance and Absorptance The ratio of the total radiating
power of any surface to that of a black surface at the same tempera-
ture is called the emittance or emissivity, ε of the surface.* In gen-
eral, the monochromatic emissivity is a function of temperature,
direction, and wavelength, that is, ελ = ελ(T, W

Æ
, λ). The subscripts n

and h are sometimes used to denote the normal and hemispherical
values, respectively, of the emittance or emissivity. If radiation is inci-
dent on a surface, the fraction absorbed is called the absorptance
(absorptivity). Two subscripts are usually appended to the absorp-
tance α1,2 to distinguish between the temperature of the absorbing
surface T1 and the spectral energy distribution of the emitting surface
T2. According to Kirchhoff’s law, the emissivity and absorptivity of a
surface exposed to surroundings at its own temperature are the same
for both monochromatic and total radiation. When the temperatures
of the surface and its surroundings differ, the total emissivity and
absorptivity of the surface are often found to be unequal; but because
the absorptivity is substantially independent of irradiation density, the
monochromatic emissivity and absorptivity of surfaces are equal for all
practical purposes. The difference between total emissivity and
absorptivity depends on the variation of ελ with wavelength and on the
difference between the temperature of the surface and the effective
temperature of the surroundings.

Consider radiative exchange between a real surface of area A1 at
temperature T1 with black surroundings at temperature T2. The net
radiant interchange is given by

Q1,2 = A1�∞

λ= 0
[ελ(T1, λ)⋅Eb,λ(T1,λ) − αλ(T1,λ)⋅Eb,λ(T2,λ]) dλ (5-107a)

or Q1,2 = A1(ε1σT4
1 − α1,2σT4

2) (5-107b)

where ε1(T1) = �∞

λ= 0
ελ(T1,λ)⋅ dλ (5-108)

and since αλ (T,λ) = ελ(T,λ),

α1,2(T1,T2) = �∞

λ= 0
ελ (T1,λ)⋅ dλ (5-109)

For a gray surface ε1 = α1,2 = ελ. A selective surface is one for which
ελ(T,λ) exhibits a strong dependence on wavelength. If the wave-
length dependence is monotonic, it follows from Eqs. (5-107) to (5-
109) that ε1 and α1,2 can differ markedly when T1 and T2 are widely
separated. For example, in solar energy applications, the nominal
temperature of the earth is T1 = 294 K, and the sun may be repre-
sented as a blackbody with radiation temperature T2 = 5800 K. For
these temperature conditions, a white paint can exhibit ε1 = 0.9 and
α1,2 = 0.1 to 0.2. In contrast, a thin layer of copper oxide on bright alu-
minum can exhibit ε1 as low as 0.12 and α1,2 greater than 0.9.

The effect of radiation source temperature on low-temperature
absorptivity for a number of representative materials is shown in Fig.
5-10. Polished aluminum (curve 15) and anodized (surface-oxidized)
aluminum (curve 13) are representative of metals and nonmetals,
respectively. Figure 5-10 thus demonstrates the generalization that
metals and nonmetals respond in opposite directions with regard to
changes in the radiation source temperature. Since the effective solar
temperature is 5800 K (10,440°R), the extreme right-hand side of Fig.
5-10 provides surface absorptivity data relevant to solar energy appli-
cations. The dependence of emittance and absorptance on the real
and imaginary components of the refractive index and on the geometric

Eb,λ(T2,λ)
��

Eb(T2)

Eb,λ(T1,λ)
��

Eb(T1)

structure of the surface layer is quite complex. However, a number of
generalizations concerning the radiative properties of opaque surfaces
are possible. These are summarized in the following discussion.

Polished Metals 
1. In the infrared region, the magnitude of the monochromatic

emissivity ελ is small and is dependent on free-electron contributions.
Emissivity is also a function of the ratio of resistivity to wavelength r�λ,
as depicted in Fig. 5-11. At shorter wavelengths, bound-electron con-
tributions become significant, ελ is larger in magnitude, and it some-
times exhibits a maximum value. In the visible spectrum, common
values for ελ are 0.4 to 0.8 and ελ decreases slightly as temperature
increases. For 0.7 < λ < 1.5 µm, ελ is approximately independent of
temperature. For λ > 8 µm, ελ is approximately proportional to the
square root of temperature since ελ-�r� and r - T. Here the Drude
or Hagen-Rubens relation applies, that is, ελ,n ≈ 0.0365�r�λ�, where r
has units of ohm-meters and λ is measured in micrometers.

2. Total emittance is substantially proportional to absolute temper-
ature, and at moderate temperatures εn = 0.058T�rT�, where T is
measured in kelvins.

3. The total absorptance of a metal at temperature T1 with respect
to radiation from a black or gray source at temperature T2 is equal to
the emissivity evaluated at the geometric mean of T1 and T2. Figure 5-
11 gives values of ελ and ελ,n, and their ratio, as a function of the prod-
uct rT (solid lines). Although Fig. 5-11 is based on free-electron
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FIG. 5-10 Variation of absorptivity with temperature of radiation source. (1)
Slate composition roofing. (2) Linoleum, red brown. (3) Asbestos slate. (4) Soft
rubber, gray. (5) Concrete. (6) Porcelain. (7) Vitreous enamel, white. (8) Red
brick. (9) Cork. (10) White dutch tile. (11) White chamotte. (12) MgO, evapo-
rated. (13) Anodized aluminum. (14) Aluminum paint. (15) Polished aluminum.
(16) Graphite. The two dashed lines bound the limits of data on gray paving
brick, asbestos paper, wood, various cloths, plaster of paris, lithopone, and
paper. To convert degrees Rankine to kelvins, multiply by (5.556)(10−1).

*In the literature, emittance and emissivity are often used interchangeably.
NIST (the National Institute of Standards and Technology) recommends use of
the suffix -ivity for pure materials with optically smooth surfaces, and -ance for
rough and contaminated surfaces. Most real engineering materials fall into the
latter category.



contributions to emissivity in the far infrared, the relations for total
emissivity are remarkably good even at high temperatures. Unless
extraordinary efforts are taken to prevent oxidation, a metallic surface
may exhibit an emittance or absorptance which may be several times
that of a polished specimen. For example, the emittance of iron and
steel depends strongly on the degree of oxidation and roughness. Clean
iron and steel surfaces have an emittance from 0.05 to 0.45 at ambient
temperatures and 0.4 to 0.7 at high temperatures. Oxidized and/or
roughened iron and steel surfaces have values of emittance ranging
from 0.6 to 0.95 at low temperatures to 0.9 to 0.95 at high temperatures.

Refractory Materials For refractory materials, the dependence
of emittance and absorptance on grain size and impurity concentra-
tions is quite important.

1. Most refractory materials are characterized by 0.8 < ελ < 1.0 for the
wavelength region 2 < λ < 4 µm. The monochromatic emissivity ελ
decreases rapidly toward shorter wavelengths for materials that are white
in the visible range but demonstrates high values for black materials such
as FeO and Cr2O3. Small concentrations of FeO and Cr2O3, or other col-
ored oxides, can cause marked increases in the emittance of materials
that are normally white. The sensitivity of the emittance of refractory
oxides to small additions of absorbing materials is demonstrated by the
results of calculations presented in Fig. 5-12. Figure 5-12 shows the
emittance of a semi-infinite absorbing-scattering medium as a function
of its albedoω ≡ KS�(Ka + KS), where Ka and KS are the scatter and absorp-
tion coefficients, respectively. These results are relevant to the radiative
properties of fibrous materials, paints, oxide coatings, refractory materi-
als, and other particulate media. They demonstrate that over the rela-
tively small range 1 − ω = 0.005 to 0.1, the hemispherical emittance εh

increases from approximately 0.15 to 1.0. For refractory materials, ελ
varies little with temperature, with the exception of some white oxides
which at high temperatures become good emitters in the visible spec-
trum as a consequence of the induced electronic transitions.

2. For refractory materials at ambient temperatures, the total emit-
tance ε is generally high (0.7 to 1.0). Total refractory emittance
decreases with increasing temperature, such that a temperature
increase from 1000 to 1570°C may result in a 20 to 30 percent reduc-
tion in ε.

3. Emittance and absorptance increase with increase in grain size
over a grain size range of 1 to 200 µm.

4. The ratio εh�εn of hemispherical to normal emissivity of polished
surfaces varies with refractive index n; e.g., the ratio decreases from a
value of 1.0 when n = 1.0 to a value of 0.93 when n = 1.5 (common
glass) and increases back to 0.96 at n = 3.0.

5. As shown in Fig. 5-12, for a surface composed of particulate

matter which scatters isotropically, the ratio εh�εn varies from 1.0 when
ω < 0.1 to about 0.8 when ω = 0.999.

6. The total absorptance exhibits a decrease with an increase in
temperature of the radiation source similar to the decrease in emit-
tance with an increase in the emitter temperature.

Figure 5-10 shows a regular variation of α1,2 with T2. When T2 is not
very different from T1, α1,2 = ε1(T2�T1)m. It may be shown that Eq.
(5-107b) is then approximated by

Q1,2 = (1 + m�4)εav A1 σ(T4
1 − T4

2) (5-110)

where εav is evaluated at the arithmetic mean of T1 and T2. For metals
m ≈ 0.5 while for nonmetals m is small and negative.

Table 5-4 illustrates values of emittance for materials encountered
in engineering practice. It is based on a critical evaluation of early
emissivity data. Table 5-4 demonstrates the wide variation possible in
the emissivity of a particular material due to variations in surface
roughness and thermal pretreatment. With few exceptions the data in
Table 5-4 refer to emittances εn normal to the surface. The hemi-
spherical emittance εh is usually slightly smaller, as demonstrated by
the ratio εh�εn depicted in Fig. 5-12. More recent data support the
range of emittance values given in Table 5-4 and their dependence on
surface conditions. An extensive compilation is provided by Gold-
smith, Waterman, and Hirschorn (Thermophysical Properties of Mat-
ter, Purdue University, Touloukian, ed., Plenum, 1970–1979).

For opaque materials the reflectance ρ is the complement of the
absorptance. The directional distribution of the reflected radiation
depends on the material, its degree of roughness or grain size, and, if
a metal, its state of oxidation. Polished surfaces of homogeneous
materials are specular reflectors. In contrast, the intensity of the radi-
ation reflected from a perfectly diffuse or Lambert surface is inde-
pendent of direction. The directional distribution of reflectance of
many oxidized metals, refractory materials, and natural products
approximates that of a perfectly diffuse reflector. A better model, ade-
quate for many calculation purposes, is achieved by assuming that the
total reflectance is the sum of diffuse and specular components ρD and
ρS, as discussed in a subsequent section.

VIEW FACTORS AND DIRECT EXCHANGE AREAS

Consider radiative interchange between two finite black surface area
elements A1 and A2 separated by a transparent medium. Since they are
black, the surfaces emit isotropically and totally absorb all incident
radiant energy. It is desired to compute the fraction of radiant energy,
per unit emissive power E1, leaving A1 in all directions which is inter-
cepted and absorbed by A2. The required quantity is defined as the
direct view factor and is assigned the notation F1,2. Since the net
radiant energy interchange Q1,2 ≡ A1F1,2E1 − A2F2,1E2 between surfaces
A1 and A2 must be zero when their temperatures are equal, it follows

5-20 HEAT AND MASS TRANSFER

FIG. 5-11 Hemispherical and normal emissivities of metals and their ratio.
Dashed lines: monochromatic (spectral) values versus r/λ. Solid lines: total val-
ues versus rT. To convert ohm-centimeter-kelvins to ohm-meter-kelvins, multi-
ply by 10−2.

FIG. 5-12 Hemispherical emittance εh and the ratio of hemispherical to nor-
mal emittance εh/εn for a semi-infinite absorbing-scattering medium.
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TABLE 5-4 Normal Total Emissivity of Various Surfaces

A. Metals and Their Oxides

Surface t, °F* Emissivity* Surface t, °F* Emissivity*

Aluminum Sheet steel, strong rough oxide layer 75 0.80
Highly polished plate, 98.3% pure 440–1070 0.039–0.057 Dense shiny oxide layer 75 0.82
Polished plate 73 0.040 Cast plate:
Rough plate 78 0.055 Smooth 73 0.80
Oxidized at 1110°F 390–1110 0.11–0.19 Rough 73 0.82
Aluminum-surfaced roofing 100 0.216 Cast iron, rough, strongly oxidized 100–480 0.95
Calorized surfaces, heated at 1110°F. Wrought iron, dull oxidized 70–680 0.94

Copper 390–1110 0.18–0.19 Steel plate, rough 100–700 0.94–0.97
Steel 390–1110 0.52–0.57 High temperature alloy steels (see Nickel

Brass Alloys).
Highly polished: Molten metal

73.2% Cu, 26.7% Zn 476–674 0.028–0.031 Cast iron 2370–2550 0.29
62.4% Cu, 36.8% Zn, 0.4% Pb, 0.3% Al 494–710 0.033–0.037 Mild steel 2910–3270 0.28
82.9% Cu, 17.0% Zn 530 0.030 Lead

Hard rolled, polished: Pure (99.96%), unoxidized 260–440 0.057–0.075
But direction of polishing visible 70 0.038 Gray oxidized 75 0.281
But somewhat attacked 73 0.043 Oxidized at 390°F. 390 0.63
But traces of stearin from polish left on 75 0.053 Mercury 32–212 0.09–0.12
Polished 100–600 0.096 Molybdenum filament 1340–4700 0.096–0.292
Rolled plate, natural surface 72 0.06 Monel metal, oxidized at 1110°F 390–1110 0.41–0.46
Rubbed with coarse emery 72 0.20 Nickel

Dull plate 120–660 0.22 Electroplated on polished iron, then
Oxidized by heating at 1110°F 390–1110 0.61–0.59 polished 74 0.045

Chromium; see Nickel Alloys for Ni-Cr steels 100–1000 0.08–0.26 Technically pure (98.9% Ni, + Mn),
Copper polished 440–710 0.07–0.087

Carefully polished electrolytic copper 176 0.018 Electroplated on pickled iron, not
Commercial, emeried, polished, but pits polished 68 0.11

remaining 66 0.030 Wire 368–1844 0.096–0.186
Commercial, scraped shiny but not mirror- Plate, oxidized by heating at 1110°F 390–1110 0.37–0.48

like 72 0.072 Nickel oxide 1200–2290 0.59–0.86
Polished 242 0.023 Nickel alloys
Plate, heated long time, covered with Chromnickel 125–1894 0.64–0.76

thick oxide layer 77 0.78 Nickelin (18–32 Ni; 55–68 Cu; 20 Zn), gray
Plate heated at 1110°F 390–1110 0.57 oxidized 70 0.262
Cuprous oxide 1470–2010 0.66–0.54 KA-2S alloy steel (8% Ni; 18% Cr), light
Molten copper 1970–2330 0.16–0.13 silvery, rough, brown, after heating 420–914 0.44–0.36

Gold After 42 hr. heating at 980°F. 420–980 0.62–0.73
Pure, highly polished 440–1160 0.018–0.035 NCT-3 alloy (20% Ni; 25% Cr.), brown,

Iron and steel splotched, oxidized from service 420–980 0.90–0.97
Metallic surfaces (or very thin oxide NCT-6 alloy (60% Ni; 12% Cr), smooth,

layer): black, firm adhesive oxide coat from
Electrolytic iron, highly polished 350–440 0.052–0.064 service 520–1045 0.89–0.82
Polished iron 800–1880 0.144–0.377 Platinum
Iron freshly emeried 68 0.242 Pure, polished plate 440–1160 0.054–0.104
Cast iron, polished 392 0.21 Strip 1700–2960 0.12–0.17
Wrought iron, highly polished 100–480 0.28 Filament 80–2240 0.036–0.192
Cast iron, newly turned 72 0.435 Wire 440–2510 0.073–0.182
Polished steel casting 1420–1900 0.52–0.56 Silver
Ground sheet steel 1720–2010 0.55–0.61 Polished, pure 440–1160 0.0198–0.0324
Smooth sheet iron 1650–1900 0.55–0.60 Polished 100–700 0.0221–0.0312
Cast iron, turned on lathe 1620–1810 0.60–0.70 Steel, see Iron.

Oxidized surfaces: Tantalum filament 2420–5430 0.194–0.31
Iron plate, pickled, then rusted red 68 0.612 Tin—bright tinned iron sheet 76 0.043 and 0.064

Completely rusted 67 0.685 Tungsten
Rolled sheet steel 70 0.657 Filament, aged 80–6000 0.032–0.35
Oxidized iron 212 0.736 Filament 6000 0.39
Cast iron, oxidized at 1100°F 390–1110 0.64–0.78 Zinc
Steel, oxidized at 1100°F 390–1110 0.79 Commercial, 99.1% pure, polished 440–620 0.045–0.053
Smooth oxidized electrolytic iron 260–980 0.78–0.82 Oxidized by heating at 750°F. 750 0.11
Iron oxide 930–2190 0.85–0.89 Galvanized sheet iron, fairly bright 82 0.228
Rough ingot iron 1700–2040 0.87–0.95 Galvanized sheet iron, gray oxidized 75 0.276

B. Refractories, Building Materials, Paints, and Miscellaneous

Asbestos Carbon
Board 74 0.96 T-carbon (Gebr. Siemens) 0.9% ash 260–1160 0.81–0.79
Paper 100–700 0.93–0.945 (this started with emissivity at 260°F.

Brick of 0.72, but on heating changed to
Red, rough, but no gross irregularities 70 0.93 values given)
Silica, unglazed, rough 1832 0.80 Carbon filament 1900–2560 0.526
Silica, glazed, rough 2012 0.85 Candle soot 206–520 0.952
Grog brick, glazed 2012 0.75 Lampblack-waterglass coating 209–362 0.959–0.947
See Refractory Materials below.



thermodynamically that A1F1,2 = A2F2,1. The product of area and view
factor s⎯1

⎯s⎯2 ≡ A1F1,2, which has the dimensions of area, is termed the
direct surface-to-surface exchange area for finite black surfaces.
Clearly, direct exchange areas are symmetric with respect to their sub-
scripts, that is, s⎯i

⎯s⎯j = s⎯j
⎯s⎯i, but view factors are not symmetric unless the

associated surface areas are equal. This property is referred to as the
symmetry or reciprocity relation for direct exchange areas. The
shorthand notation s⎯1

⎯s⎯2 ≡ 1
⎯
2
⎯
= 2

⎯
1
⎯

for direct exchange areas is often
found useful in mathematical developments.

Equation (5-101) may also be restated as

= (5-111)

which leads directly to the required definition of the direct exchange
area as a double surface integral

s⎯i
⎯s⎯j =

—
Ai

—
Aj

dAj dAi (5-112)

All terms in Eq. (5-112) have been previously defined.
Suppose now that Eq. (5-112) is integrated over the entire confining

surface of an enclosure which has been subdivided into M finite area
elements. Each of the M surface zones must then satisfy certain conser-
vation relations involving all the direct exchange areas in the enclosure



M

j=1

s⎯i
⎯s⎯j = Ai for 1 ≤ i ≤ M (5-113a)

or in terms of view factors



M

j=1
Fi,j = 1 for 1 ≤ i ≤ M (5-113b)

Contour integration is commonly used to simplify the evaluation
of Eq. (5-112) for specific geometries; see Modest (op. cit., Chap. 4)

cosφicosφj
��

πr2

cosφicosφj
��

πr2

∂2s⎯i
⎯s⎯j

�
∂Ai ∂Aj

or Siegel and Howell (op. cit., Chap. 5). The formulas for two particu-
larly useful view factors involving perpendicular rectangles of area xz
and yz with common edge z and equal parallel rectangles of area xy
and distance of separation z are given for perpendicular rectangles
with common dimension z

(π�X)�FX,Y = X tan−1 + Y tan−1 − �X2 + Y�2� tan−1�


+ ln� � �
X2

� �
Y2

�
(5-114a)

and for parallel rectangles, separated by distance z,

� 	�FX,Y = ln� �
1�2

+ X�1 + Y2� tan−1

+ Y�1 + X2� tan−1 − X tan−1X − Y tan−1Y

(5-114b)

In Eqs. (5-114) X and Y are normalized whereby X = x/z and Y = y/z
and the corresponding dimensional direct surface areas are given by
s⎯x

⎯s⎯y = xzFX,Y and s⎯x
⎯s⎯y = xyFX,Y, respectively.

The exchange area between any two area elements of a sphere is
independent of their relative shape and position and is simply the
product of the areas, divided by the area of the entire sphere; i.e., any
spot on a sphere has equal views of all other spots.

Figure 5-13, curves 1 through 4, shows view factors for selected
parallel opposed disks, squares, and 2:1 rectangles and parallel rectan-
gles with one infinite dimension as a function of the ratio of the

Y
�
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X
�
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��
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TABLE 5-4 Normal Total Emissivity of Various Surfaces (Concluded)

B. Refractories, Building Materials, Paints, and Miscellaneous

Surface t, °F* Emissivity* Surface t, °F* Emissivity*

Same 260–440 0.957–0.952 Oil paints, sixteen different, all colors 212 0.92–0.96
Thin layer on iron plate 69 0.927 Aluminum paints and lacquers
Thick coat 68 0.967 10% Al, 22% lacquer body, on rough or

Lampblack, 0.003 in. or thicker 100–700 0.945 smooth surface 212 0.52
Enamel, white fused, on iron 66 0.897 26% Al, 27% lacquer body, on rough or
Glass, smooth 72 0.937 smooth surface 212 0.3
Gypsum, 0.02 in. thick on smooth or Other Al paints, varying age and Al

blackened plate 70 0.903 content 212 0.27–0.67
Marble, light gray, polished 72 0.931 Al lacquer, varnish binder, on rough plate 70 0.39
Oak, planed 70 0.895 Al paint, after heating to 620°F. 300–600 0.35
Oil layers on polished nickel (lube oil) 68 Paper, thin

Polished surface, alone 0.045 Pasted on tinned iron plate 66 0.924
+0.001-in. oil 0.27 On rough iron plate 66 0.929
+0.002-in. oil 0.46 On black lacquered plate 66 0.944
+0.005-in. oil 0.72 Plaster, rough lime 50–190 0.91
Infinitely thick oil layer 0.82 Porcelain, glazed 72 0.924

Oil layers on aluminum foil (linseed oil) Quartz, rough, fused 70 0.932
Al foil 212 0.087† Refractory materials, 40 different 1110–1830
+1 coat oil 212 0.561 poor radiators � 0.65}– 0.75 �+2 coats oil 212 0.574 0.70

Paints, lacquers, varnishes good radiators 0.80}–{0.85
Snowhite enamel varnish or rough iron 0.85 – 0.90

plate 73 0.906 Roofing paper 69 0.91
Black shiny lacquer, sprayed on iron 76 0.875 Rubber
Black shiny shellac on tinned iron sheet 70 0.821 Hard, glossy plate 74 0.945
Black matte shellac 170–295 0.91 Soft, gray, rough (reclaimed) 76 0.859
Black lacquer 100–200 0.80–0.95 Serpentine, polished 74 0.900
Flat black lacquer 100–200 0.96–0.98 Water 32–212 0.95–0.963
White lacquer 100–200 0.80–0.95

*When two temperatures and two emissivities are given, they correspond, first to first and second to second, and linear interpolation is permissible. °C =
(°F − 32)/1.8.

†Although this value is probably high, it is given for comparison with the data by the same investigator to show the effect of oil layers. See Aluminum, Part A of this
table.



smaller diameter or side to the distance of separation. Curves 2
through 4 of Fig. 5-13, for opposed rectangles, can be computed with
Eq. (5-114b). The view factors for two finite coaxial coextensive cylin-
ders of radii r ≤ R and height L are shown in Fig. 5-14. The direct view
factors for an infinite plane parallel to a system of rows of parallel
tubes (see Fig. 5-16) are given as curves 1 and 3 of Fig. 5-15. The view
factors for this two-dimensional geometry can be readily calculated by
using the crossed-strings method.

The crossed-strings method, due to Hottel (Radiative Transfer,
McGraw-Hill, New York, 1967), is stated as follows: “The exchange
area for two-dimensional surfaces, A1 and A2, per unit length (in the
infinite dimension) is given by the sum of the lengths of crossed
strings from the ends of A1 to the ends of A2 less the sum of the
uncrossed strings from and to the same points all divided by 2.” The
strings must be drawn so that all the flux from one surface to the other
must cross each of a pair of crossed strings and neither of the pair of
uncrossed strings. If one surface can see the other around both sides
of an obstruction, two more pairs of strings are involved. The calcula-
tion procedure is demonstrated by evaluation of the tube-to-tube view
factor for one row of a tube bank, as illustrated in Example 7.

Example 7: The Crossed-Strings Method Figure 5-16 depicts the
transverse cross section of two infinitely long, parallel circular tubes of diameter
D and center-to-center distance of separation C. Use the crossed-strings
method to formulate the tube-to-tube direct exchange area and view factor s⎯t

⎯s⎯t

and Ft,t, respectively.
Solution: The circumferential area of each tube is At = πD per unit length in

the infinite dimension for this two-dimensional geometry. Application of the
crossed-strings procedure then yields simply

s⎯t
⎯s⎯t = = D[sin−1(1�R) + �R2 − 1� − R]

and Ft,t = s⎯t
⎯s⎯t�At = [sin−1(1�R) + �R2 − 1� − R]�π

where EFGH and HJ = C are the indicated line segments and R ≡ C�D ≥ 1. Curve
1 of Fig. 5-15, denoted by Fp,t, is a function of Ft,t, that is, Fp,t = (π/R)(�12� − Ft,t).

The Yamauti principle [Yamauti, Res. Electrotech Lab. (Tokyo),
148 (1924); 194 (1927); 250 (1929)] is stated as follows; The exchange
areas between two pairs of surfaces are equal when there is a one-to-one
correspondence for all sets of symmetrically positioned pairs of differen-
tial elements in the two surface combinations. Figure 5-17 illustrates the
Yamauti principle applied to surfaces in perpendicular planes having a
common edge. With reference to Fig. 5-17, the Yamauti principle states
that the diagonally opposed exchange areas are equal, that is, (

⎯
1
⎯
)
⎯
(
⎯
4
⎯
)
⎯
=

(
⎯
2
⎯
)
⎯
(
⎯
3
⎯
)
⎯
. Figure 5-17 also shows a more complex geometric construction

for displaced cylinders for which the Yamauti principle also applies. Col-
lectively the three terms reciprocity or symmetry principle, conservation

2(EFGH − HJ)
��

2
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FIG. 5-13 Radiation between parallel planes, directly opposed.

(a) (b)

FIG. 5-14 View factors for a system of two concentric coaxial cylinders of equal length. (a) Inner surface of outer
cylinder to inner cylinder. (b) Inner surface of outer cylinder to itself.

FIG. 5-15 Distribution of radiation to rows of tubes irradiated from one side.
Dashed lines: direct view factor F from plane to tubes. Solid lines: total view fac-
tor F� for black tubes backed by a refractory surface.



principle, and Yamauti principle are referred to as view factor or
exchange area algebra.

Example 8: Illustration of Exchange Area Algebra Figure 5-17
shows a graphical construction depicting four perpendicular opposed rectangles
with a common edge. Numerically evaluate the direct exchange areas and view
factors for the diagonally opposed (shaded) rectangles A1 and A4, that is, (
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4
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,

as well as (
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)
⎯
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3
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+
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4
⎯
)
⎯
. The dimensions of the rectangular construction are shown

in Fig. 5-17 as x = 3, y = 2, and z = 1.
Solution: Using shorthand notation for direct exchange areas, the conserva-

tion principle yields
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Now by the Yamauti principle we have (
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. Combination of these

two relations yields the first result (
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For (
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, again conservation yields (
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tution of the expression for (
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just obtained yields the second result, that is,
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]�2.0. All three required direct

exchange areas in these two relations are readily evaluated from Eq. (5-114a).
Moreover, these equations apply to opposed parallel rectangles as well as rec-
tangles with a common edge oriented at any angle. Numerically it follows from
Eq. (5-114a) that for X = �13�, Y = �23�, and z = 3 that (
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)
⎯
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= 0.95990; for X =

1, Y = 2, and z = 1 that (
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)
⎯
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⎯
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= 0.23285; and for X = 1⁄2, Y = 1, and z = 2 that

(
⎯
2
⎯
)
⎯
(
⎯
4
⎯
)
⎯
= 0.585747. Since A1 = 1.0, this leads to s

⎯
1
⎯
s
⎯

4 = F1,4 = (0.95990 − 0.23285 −
0.584747)�2.0 = 0.07115 and s

⎯
1
⎯
s
⎯

3+4 = F1,3+4 = (0.95990 + 0.23285 − 0.584747)�
2.0 = 0.30400.

Many literature sources document closed-form algebraic expressions
for view factors. Particularly comprehensive references include the
compendia by Modest (op. cit., App. D) and Siegel and Howell (op. cit.,
App. C). The appendices for both of these textbooks also provide a
wealth of resource information for radiative transfer. Appendix F of
Modest, e.g., references an extensive listing of Fortan computer codes
for a variety of radiation calculations which include view factors. These
codes are archived in the dedicated Internet web site maintained by the
publisher. The textbook by Siegel and Howell also includes an extensive
database of view factors archived on a CD-ROM and includes a refer-
ence to an author-maintained Internet web site. Other historical
sources for view factors include Hottel and Sarofim (op. cit., Chap. 2)
and Hamilton and Morgan (NACA-TN 2836, December 1952).

RADIATIVE EXCHANGE IN
ENCLOSURES—THE ZONE METHOD

Total Exchange Areas When an enclosure contains reflective
surface zones, allowance must be made for not only the radiant energy
transferred directly between any two zones but also the additional
transfer attendant to however many multiple reflections which occur
among the intervening reflective surfaces. Under such circumstances,

it can be shown that the net radiative flux Qi,j between all such surface
zone pairs Ai and Aj, making full allowance for all multiple reflections,
may be computed from

Qi,j = σ(AiF i,jTj
4 − AjF j,iTi

4) (5-115)

Here, Fi,j is defined as the total surface-to-surface view factor from Ai

to Aj, and the quantity S
⎯

i
⎯
S
⎯

j ≡ AiFi,j is defined as the corresponding total
surface-to-surface exchange area. In analogy with the direct
exchange areas, the total surface-to-surface exchange areas are also sym-
metric and thus obey reciprocity, that is, AiFi,j = AjF j,i or S

⎯
i
⎯
S
⎯

j = S
⎯

j
⎯
S
⎯

i. When
applied to an enclosure, total exchange areas and view factors also must
satisfy appropriate conservation relations. Total exchange areas are func-
tions of the geometry and radiative properties of the entire enclosure.
They are also independent of temperature if all surfaces and any radia-
tively participating media are gray. The following subsection presents a
general matrix method for the explicit evaluation of total exchange
areas from direct exchange areas and other enclosure parameters.

In what follows, conventional matrix notation is strictly employed as
in A = [ai,j] wherein the scalar subscripts always denote the row and
column indices, respectively, and all matrix entities defined here are
denoted by boldface notation. Section 3 of this handbook, “Mathe-
matics,” provides an especially convenient reference for introductory
matrix algebra and matrix computations.

General Matrix Formulation The zone method is perhaps the
simplest numerical quadrature of the governing integral equations for
radiative transfer. It may be derived from first principles by starting
with the equation of transfer for radiation intensity. The zone method
always conserves radiant energy since the spatial discretization uti-
lizes macroscopic energy balances involving spatially averaged radia-
tive flux quantities. Because large sets of linear algebraic equations
can arise in this process, matrix algebra provides the most compact
notation and the most expeditious methods of solution. The mathe-
matical approach presented here is a matrix generalization of the orig-
inal (scalar) development of the zone method due to Hottel and
Sarofim (op. cit.). The present matrix development is abstracted from
that introduced by Noble [Noble, J. J., Int. J. Heat Mass Transfer, 18,
261–269 (1975)].

Consider an arbitrary three-dimensional enclosure of total volume V
and surface area A which confines an absorbing-emitting medium (gas).
Let the enclosure be subdivided (zoned) into M finite surface area and
N finite volume elements, each small enough that all such zones are
substantially isothermal. The mathematical development in this section
is restricted by the following conditions and/or assumptions:

1. The gas temperatures are given a priori.
2. Allowance is made for gas-to-surface radiative transfer.
3. Radiative transfer with respect to the confined gas is either

monochromatic or gray. The gray gas absorption coefficient is denoted
here by K(m−1). In subsequent sections the monochromatic absorp-
tion coefficient is denoted by Kλ(λ).

4. All surface emissivities are assumed to be gray and thus inde-
pendent of temperature.

5. Surface emission and reflection are isotropic or diffuse.
6. The gas does not scatter.

Noble (op. cit.) has extended the present matrix methodology to the
case where the gaseous absorbing-emitting medium also scatters
isotropically.

In matrix notation the blackbody emissive powers for all surface and
volume zones comprising the zoned enclosure are designated as
E = [Ei] = [σTi

4], an M × 1 vector, and Eg = [Eg,i] = [σT4
g,i], an N × 1 vec-

tor, respectively. Moreover, all surface zones are characterized by three
M × M diagonal matrices for zone area AI = [Ai⋅δi,j], diffuse emissivity
εI = [εi⋅δi,j], and diffuse reflectivity, ρI = [(1 − εi)⋅δi,j], respectively . Here
δi,j is the Kronecker delta (that is, δi,j = 1 for i = j and δi,j = 0 for i ≠ j).

Two arrays of direct exchange areas are now defined; i.e., the matrix
s⎯s⎯ = [s⎯i

⎯s⎯j] is the M × M array of direct surface-to-surface exchange
areas, and the matrix s⎯g⎯ = [s⎯i

⎯g⎯j] is the M × N array of direct gas-to-
surface exchange areas. Here the scalar elements of s⎯s⎯ and s⎯g⎯ are
computed from the integrals

s⎯i
⎯s⎯j =

—
Ai

—
Aj

cos φi cos φj dAj dAi (5-116a)
e−Kr

�
πr2
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FIG. 5-16 Direct exchange between parallel circular tubes.

FIG. 5-17 Illustration of the Yamauti principle.



s⎯i
⎯g⎯j =

—
Ai

™
Vj

K cos φi dVj dAi (5-116b)

Equation (5-116a) is a generalization of Eq. (5-112) for the case K ≠ 0
while s⎯i

⎯g⎯j is a new quantity, which arises only for the case K ≠ 0.
Matrix characterization of the radiative energy balance at each sur-

face zone is facilitated via definition of three M × 1 vectors; the radia-
tive surface fluxes Q = [Qi], with units of watts; and the vectors
H = [Hi] and W = [Wi] both having units of W/m2. The arrays H and
W define the incident and leaving flux densities, respectively, at each
surface zone. The variable W is also referred to in the literature as the
radiosity or exitance. Since W ∫ eI◊E + rI◊H, the radiative flux at
each surface zone is also defined in terms of E, H, and W by three
equivalent matrix relations, namely, 

Q = AI◊[W - H] = eAI◊[E - H] = rI-1◊eAI◊[E - W] (5-117)

where the third form is valid if and only if the matrix inverse ρI-1 exists.
Two other ancillary matrix expressions are

eAI◊E = rI◊Q + eAI◊W and AI◊H = sæsæ◊W + sægæ◊Eg (5-117a,b)

which lead to

eI◊E = [I - rI◊AI−1◊sæsæ]◊W - rI◊AI-1 sægæ◊Eg. (5-117c)

The latter relation is especially useful in radiation pyrometry where
true wall temperatures must be computed from wall radiosities.

Explicit Matrix Solution for Total Exchange Areas For gray
or monochromatic transfer, the primary working relation for zon-
ing calculations via the matrix method is

Q = eI◊AI◊E - S
æ
S
æ◊E - S

æ
G
æ◊Eg [M × 1] (5-118)

Equation (5-118) makes full allowance for multiple reflections in an
enclosure of any degree of complexity. To apply Eq. (5-118) for design
or simulation purposes, the gas temperatures must be known and sur-
face boundary conditions must be specified for each and every surface
zone in the form of either Ei or Qi. In application of Eq. (5-118), phys-
ically impossible values of Ei may well result if physically unrealistic
values of Qi are specified.

In Eq. (5-118), S
æ
S
æ

and SS
æ
G
æ

are defined as the required arrays of
total surface-to-surface exchange areas and total gas-to-surface
exchange areas, respectively. The matrices for total exchange areas
are calculated explicitly from the corresponding arrays of direct
exchange areas and the other enclosure parameters by the following
matrix formulas:

Surface-to-surface exchange S
æ
S
æ = eI◊AI◊R◊sæsæ◊eI [M × M] (5-118a)

Gas-to-surface exchange S
æ
G
æ = eI◊AI◊R◊sægæ [M × N] (5-118b)

where in Eqs. (5-118), R is the explicit inverse reflectivity matrix,
defined as

R = [AI - s⎯s⎯ �ρI]−1 [M × M] (5-118c)

While the R matrix is generally not symmetric, the matrix product ρI◊R
is always symmetric. This fact proves useful for error checking.

The most computationally significant aspect of the matrix method is
that the inverse reflectivity matrix R always exists for any physically
meaningful enclosure problem. More precisely, R always exists pro-
vided that K ≠ 0. For a transparent medium, R exists provided that
there formally exists at least one surface zone Ai such that εi ≠ 0. An
important computational corollary of this statement for transparent
media is that the matrix [AI − sæsæ] is always singular and demonstrates
matrix rank M − 1 (Noble, op. cit.).

Finally, the four matrix arrays s⎯s⎯, g⎯s⎯, S
⎯
S
⎯

, and S
⎯
G
⎯

of direct and total
exchange areas must satisfy matrix conservation relations, i.e.,

Direct exchange areas AI◊1M = ss⎯s⎯◊1M + s⎯g⎯⋅1N (5-119a)

Total exchange areas eI◊AI◊1M = S
⎯
S
⎯◊1M + SS

⎯
G
⎯◊1N (5-119b)

Here 1M is an M × 1 column vector all of whose elements are unity. If
eI = I or equivalently, ρI = 0, Eq. (5-118c) reduces to R = AI−1 with

e−Kr

�
πr2

the result that Eqs. (5-118a) and (5-118b) degenerate to simply S
⎯
S
⎯
=

ss⎯s⎯ and S
⎯
G
⎯

= s⎯g⎯. Further, while the array S
⎯
S
⎯

is always symmetric, the
array S

⎯
G
⎯

is generally not square.
For purposes of digital computation, it is good practice to enter all

data for direct exchange surface-to-surface areas ss⎯s⎯ with a precision of
at least five significant figures. This need arises because all the scalar
elements of ss⎯g⎯ can be calculated arithmetically from appropriate direct
surface-to-surface exchange areas by using view factor algebra rather
than via the definition of the defining integral, Eq. (5-116b). This
process often involves small arithmetic differences between two num-
bers of nearly equal magnitude, and numerical significance is easily lost.

Computer implementation of the matrix method proves straightfor-
ward, given the availability of modern software applications. In partic-
ular, several especially user-friendly GUI mathematical utilities are
available that perform matrix computations using essentially algebraic
notation. Many simple zoning problems may be solved with spread-
sheets. For large M and N, the matrix method can involve manage-
ment of a large amount of data. Error checks based on symmetry and
conservation by calculation of the row sums of the four arrays of direct
and total exchange areas then prove indispensable.

Zone Methodology and Conventions For a transparent
medium, no more than Σ = M(M − 1)�2 of the M2elements of the sæsæ array
are unique. Further, surface zones are characterized into two generic
types. Source-sink zones are defined as those for which temperature is
specified and whose radiative flux Qi is to be determined. For flux
zones, conversely, these conditions are reversed. When both types of
zone are present in an enclosure, Eq. (5-118) may be partitioned to pro-
duce a more efficient computational algorithm. Let M = Ms + Mf repre-
sent the total number of surface zones where Ms is the number of
source-sink zones and Mf is the number of flux zones. The flux zones are
the last to be numbered. Equation (5-118) is then partitioned as follows:

� �=� ��� �−� ��� �−� �⋅Eg

(5-120)

Here the dimensions of the submatrices εAI1,1 and SSS
⎯

1,1 are both Ms ×
Ms and S

⎯
G
⎯

1 has dimensions Ms × N. Partition algebra then yields the
following two matrix equations for Q1, the Ms × 1 vector of unknown
source-sink fluxes and E2, the Mf × 1 vector of unknown emissive pow-
ers for the flux zones, i.e.,

E2 = [εAI2,2 − S
⎯
S
⎯

2,2]−1⋅[Q2 + SS
⎯
S
⎯

2,1◊E1 + S
⎯
G
⎯

2◊Eg] (5-120a)

Q1 = εAI1,1◊E1 − S
⎯
S
⎯

1,1◊E1 − S
⎯
S
⎯

1,2◊E2 − SS
⎯
G
⎯

1◊Eg (5-120b)

The inverse matrix in Eq. (5-120a) formally does not exist if there is at
least one flux zone such that εi = 0. However, well-behaved results are
usually obtained with Eq. (5-120a) by utilizing a notional zero, say, εi ≈
10−5, to simulate εi = 0. Computationally, E2 is first obtained from Eq.
(5-120a) and then substituted into either Eq. (5-120b) or Eq. (5-118).

Surface zones need not be contiguous. For example, in a symmetric
enclosure, zones on opposite sides of the plane of symmetry may be
“lumped” into a single zone for computational purposes. Lumping
nonsymmetrical zones is also possible as long as the zone tempera-
tures and emissivities are equal.

An adiabatic refractory surface of area Ar and emissivity εr, for
which Qr = 0, proves quite important in practice. A nearly radiatively
adiabatic refractory surface occurs when differences between internal
conduction and convection and external heat losses through the
refractory wall are small compared with the magnitude of the incident
and leaving radiation fluxes. For any surface zone, the radiant flux is
given by Q = A(W − H) = εA(E − H) and Q = εA�ρ(E − W) (if ρ ≠ 0).
These equations then lead to the result that if Qr = 0, Er = Hr = Wr for
all 0 ≤ εr ≤ 1. Sufficient conditions for modeling an adiabatic refractory
zone are thus either to put εr = 0 or to specify directly that Qr = 0 with
εr ≠ 0. If εr = 0, S

⎯
r
⎯
S
⎯

j = 0 for all 1 ≤ j ≤ M which leads directly by defini-
tion to Qr = 0. For εr = 0, the refractory emissive power Er never enters
the zoning calculations. For the special case of K = 0 and Mr = 1, a sin-
gle (lumped) refractory, with Qr = 0 and εr ≠ 0, S

⎯
r
⎯
S
⎯

j ≠ 0 and the refrac-
tory emissive power may be calculated from Eq. (5-120a) as a
weighted sum of all other known blackbody emissive powers which

S
æ
G
æ

1

S
æ
G
æ

2

E1

E2

S
æ
S
æ

1,1 S
æ
S
æ

1,2

S
æ
S
æ

2,1 S
æ
S
æ

2,2

E1

E2

εAI1,1 0
0 εAI2,2

Q1

Q2
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characterize the enclosure, i.e.,

Er = with j ≠ r (5-121)

Equation (5-121) specifically includes those zones which may not have
a direct view of the refractory. When Qr = 0, the refractory surface is
said to be in radiative equilibrium with the entire enclosure. Equa-
tion (5-121) is indeterminate if εr = 0. If εr = 0, Er does indeed exist and
may be evaluated with use of the statement Er = Hr = Wr. It transpires,
however, that Er is independent of εr for all 0 ≤ εr ≤ 1. Moreover, since
Wr = Hr when Qr = 0, for all 0 ≤ εr ≤ 1, the value specified for εr is irrel-
evant to radiative transfer in the entire enclosure. In particular it fol-
lows that if Qr = 0, then the vectors W, H, and Q for the entire
enclosure are also independent of all 0 ≤ εr ≤ 1.0. A surface zone for
which εi = 0 is termed a perfect diffuse mirror. A perfect diffuse mir-
ror is thus also an adiabatic surface zone. The matrix method automati-
cally deals with all options for flux and adiabatic refractory surfaces.

The Limiting Case of a Transparent Medium For the special
case of a transparent medium, K = 0, many practical engineering
applications can be modeled with the zone method. These include
combustion-fired muffle furnaces and electrical resistance furnaces.
When K → 0, sægæ → 0 and S

æ
G
æ

→ 0. Equations (5-118) through (5-119)
then reduce to three simple matrix relations

Q = εI◊AI◊E − S
æ
S
æ◊E (5-122a)

S
⎯
S
⎯
= εI◊AI◊R◊sæsæ◊εI (5-122b)

with again

R ≡ [AI − sæsæ◊ρI]−1 (5-122c)

The radiant surface flux vector Q, as computed from Eq. (5-
122a), always satisfies the (scalar) conservation condition 1T

M⋅Q = 0 or



M

i=1
Qi = 0, which is a statement of the overall radiant energy balance.

The matrix conservation relations also simplify to

AI◊1M = sæsæ◊1M (5-123a)

εI◊AI◊1M = S
æ
S
æ◊1M (5-123b)

And the M × M arrays for all the direct and total view factors can be
readily computed from

F = AI−1◊sæsæ (5-124a)

and

F = AI−1◊SæS
æ

(5-124b)



Ms

j = 1
S
⎯

r
⎯
S
⎯

j⋅Ej

��



Ms

j = 1
S
⎯

r

⎯
S
⎯

j

where the following matrix conservation relations must also be satisfied,

F◊1M = 1M (5-125a)

and

F ◊1M = εI◊1M (5-125b)

The Two-Zone Enclosure Figure 5-18 depicts four simple
enclosure geometries which are particularly useful for engineering
calculations characterized by only two surface zones. For M = 2, the
reflectivity matrix R is readily evaluated in closed form since an
explicit algebraic inversion formula is available for a 2 × 2 matrix. In
this case knowledge of only Σ = 1 direct exchange area is required.
Direct evaluation of Eqs. (5-122) then leads to

S
æ
S
æ
= � � (5-126)

where

S
⎯

1
⎯
S
⎯

2 = (5-127)

Equation (5-127) is of general utility for any two-zone system for
which εi ≠ 0.

The total exchange areas for the four geometries shown in Fig. 5-18
follow directly from Eqs. (5-126) and (5-127).

1. A planar surface A1 completely surrounded by a second surface
A2 > A1. Here F1,1 = 0, F1,2 = 1, and s⎯1

⎯s⎯2 = A1, resulting in

S
æ
S
æ
= � � /[ε1ρ2A1+ ε2A2]

and in particular S
⎯

1
⎯
S
⎯

2 = (5-127a)

In the limiting case, where A1 has no negative curvature and is com-
pletely surrounded by a very much larger surface A2 such that A1 <<
A2, Eq. (5-127a) leads to the even simpler result that S

⎯
1
⎯
S
⎯

2 = ε1⋅A1.
2. Two parallel plates of equal area which are large compared to

their distance of separation (infinite parallel plates). Case 2 is a limit-
ing form of case 1 with A1 = A2. Algebraic manipulation then results in

S
æ
S
æ
= � � /[ε1+ ε2 − ε1ε2]

and in particular

S
⎯

1
⎯
S
⎯

2 = (5-127b)
A1

��
1�ε1 + 1�ε2 − 1

(ε1 + ε2 − 2ε1ε2)�A1 ε1ε2A1

ε1ε2A1 (ε1+ ε2 − 2ε1ε2)A1

A1
���
1�ε1 + (A1�A2)(ρ2�ε2)

ε1ρ2 A2
1 + ε2ρ1A1A2 ε1ε2A1A2

ε1ε2A1A2 ε2A2
2+ ε1(ρ2− ε2)A1A2

1
���

��
s⎯1

⎯
1
s⎯2

⎯� + �
ε
ρ

1A
1

1
� + �

ε
ρ

2A
2

2
�	

ε1A1− S
⎯

1
⎯
S
⎯

2 S
⎯

1
⎯
S
⎯

2

S
⎯

1
⎯
S
⎯

2 ε2A2− S
⎯

1
⎯
S
⎯

2
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A2

A planar surface A1 completely 
surrounded by a second surface 
A2 > A1.

Case 1 Case 2 Case 3 Case 4

A2 A2

A2

A1

A1 A1

A1

A1

A2

A2

A2
GG

G
A1

F =
0 1

A1 / A2 1 – A1 / A2

G

Concentric spheres or infinite
cylinders where A1 < A2.
Identical to Case 1.

F =
0 1 1

A1 / A2 1 – A1 / A2
(A1 + A2)

Two infinite parallel plates
where A1 = A2.

F =
0 1

1 0

A speckled enclosure with
two surface zones.

F =
A1 A2

A1 A2

FIG. 5-18 Four enclosure geometries characterized by two surface zones and one volume zone. (Marks’ Standard
Handbook for Mechanical Engineers, McGraw-Hill, New York, 1999, p. 4-73, Table 4.3.5.)



3. Concentric spheres or cylinders where A2 > A1. Case 3 is mathe-
matically identical to case 1.

4. A speckled enclosure with two surface zones. Here

F = � � such that sæsæ = � � and Eqs.

(5-126) and (5-127) then produce

S
æ
S
æ
= � � /[ε1A1 + ε2A2]

with the particular result

S
⎯

1
⎯
S
⎯

2 = (5-127c)

Physically, a two-zone speckled enclosure is characterized by the fact
that the view factor from any point on the enclosure surface to the sink
zone is identical to that from any other point on the bounding surface.
This is only possible when the two zones are “intimately mixed.” The
seemingly simplistic concept of a speckled enclosure provides a sur-
prisingly useful default option in engineering calculations when the
actual enclosure geometries are quite complex.

Multizone Enclosures [M ≥ 3] Again assume K = 0. The major
numerical effort involved in implementation of the zone method is the
evaluation of the inverse reflection matrix R. For M = 3, explicit closed-
form algebraic formulas do indeed exist for the nine scalar elements of
the inverse of any arbitrary nonsingular matrix. These formulas are so
algebraically complex, however, that it proves impractical to present
universal closed-form expressions for the total exchange areas, as has
been done for the case M = 2. Fortunately, many practical furnace con-
figurations can be idealized with zoning such that only relatively simple
hand calculation procedures are required. Here the enclosure is mod-
eled with only M = 3 surface zones, e.g., a single source, a single sink,
and a lumped adiabatic refractory zone. This approach is sometimes
termed the SSR model. The SSR model assumes that all adiabatic
refractory surfaces are perfect diffuse mirrors. To implement the SSR
procedure, it is necessary to develop specialized algebraic formulas
and to define a third black view factor F

⎯
i,j with an overbar as follows.

Refractory Augmented Black View Factors F
⎯

i,j Let M = Mr +
Mb, where Mb is the number of black surface zones and Mr is the num-
ber of adiabatic refractory zones. Assume εr = 0 or ρr = 1 or, equiva-
lently, that all adiabatic refractory surfaces are perfect diffuse mirrors.
The view factor F

⎯
i,j is then defined as the refractory augmented

black view factor, i.e., the direct view factor between any two
black source-sink zones, Ai and Aj, with full allowance for reflections
from all intervening refractory surfaces. The quantity F

⎯
i,j shall be

referred to as F-bar, for expediency.
Consider the special situation where Mb = 2, with any number of

refractory zones Mr ≥ 1. By use of appropriate row and column reduc-
tion of the reflectivity matrix R, an especially useful relation can be
derived that allows computation of the conventional total exchange area
S
⎯

i
⎯
S
⎯

j from the corresponding refractory augmented black view factor F
⎯

i,j

S
⎯

1
⎯
S
⎯

2 = (5-128a)

or

F 1,2 = (5-128b)

where εi ≠ 0. Notice that Eq. (5-128a) appears deceptively similar to
Eq. (5-127). Collectively, Eqs. (5-128) along with various formulas to
compute F

⎯
i,j (F-bar) are sometimes called the three-zone source/sink/

refractory SSR model.
The following formulas permit the calculation of F

⎯
i,j from requisite

direct exchange areas. For the special case where the enclosure is
divided into any number of black source-sink zones, Mb ≥ 2, and the
remainder of the enclosure is lumped together into a single refractory

1
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ρ
ε1

1
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A
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2
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2
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1 A1A2

A1A2 A2

1
�
A1 + A2

A1 A2

A1 A2

1
�
A1 + A2

zone (Mr = 1) with total area Ar and uniform average temperature Tr,
then the direct refractory augmented exchange area for the black zone
pairs is given by

AiF
⎯

i,j = AjF
⎯

j,i = s⎯i
⎯s⎯j + for 1 ≤ i,j ≤ Mb (5-129)

For the special case Mb = 2 and Mr = 1, Eq. (5-129) then simplifies to

A1F
⎯

1,2 = A2F
⎯

2,1 = s
⎯

1
⎯
s
⎯

2 + (5-130)

and if s⎯1
⎯s⎯1 = s⎯2

⎯s⎯2 = 0, Eq. (5-130) further reduces to

A1F
⎯

1,2 = s⎯1
⎯s⎯2 + = (5-131)

which necessitates the evaluation of only one direct exchange area.
Let the Mr refractory zones be numbered last. Then the Mb × Mb

array of refractory augmented direct exchange areas [AiF
⎯

i,j] is sym-
metric and satisfies and the conservation relation

[Ai⋅F
⎯

i,j]◊1Mb
= AI◊1Mb

(5-132a)

with

F
⎯ ◊1Mb

= 1Mb
(5-132b)

Temporarily denote S
⎯

1
⎯
S
⎯

2]R as the value of S
⎯

1
⎯
S
⎯

2 computed from Eq.
(5-128a) which assumes εr = 0. It remains to demonstrate the relation-
ship between S

⎯
1
⎯
S
⎯

2]R and the total exchange area S
⎯

1
⎯
S
⎯

2 computed from
the matrix method for M = 3 when zone 3 is an adiabatic refractory for
which Q3 = 0 and ε3 ≠ 0. Let Θi = (Ei − E2)/(E1 − E2) denote the dimen-
sionless emissive power where E1 > E2 such that Θ1 = 1 and Θ2 = 0.
The dimensionless refractory emissive power may then be calculated
from Eq. (5-121) as Θ3 = S

⎯
3
⎯
S
⎯

1�[S
⎯

3
⎯
S
⎯

1 + S
⎯

3
⎯
S
⎯

2], which when substituted
into Eq. (5-122a) leads to S

⎯
1
⎯
S
⎯

2]R = S
⎯

1
⎯
S
⎯

2 + S
⎯

2
⎯
S
⎯

3⋅Θ3 = S
⎯

1
⎯
S
⎯

2 + S
⎯

1
⎯
S
⎯

3⋅S
⎯

3
⎯
S
⎯

2�

[S
⎯

3
⎯
S
⎯

1 + S
⎯

3
⎯
S
⎯

2]. Thus  S
⎯

1
⎯
S
⎯

2]R is clearly the refractory-aided total exchange
area between zone 1 and zone 2 and not S

⎯
1
⎯
S
⎯

2 as calculated by the
matrix method in general. That is, S

⎯
1
⎯
S
⎯

2]R includes not only the radiant
energy originating at zone 1 and arriving at zone 2 directly and by
reflection from zones 2 and 3, but also radiation originating at zone 1
that is absorbed by zone 3 and then wholly reemitted to zone 2; that is,
H3 = W3= E3.

Evaluation of any total view factor F i,j using the requisite refractory
augmented black view factor F

⎯
i,j obviously requires that the latter be

readily available and/or capable of calculation. The refractory aug-
mented view factor F

⎯
i,j is documented for a few geometrically simple

cases and can be calculated or approximated for others. If A1 and A2

are equal parallel disks, squares, or rectangles, connected by noncon-
ducting but reradiating refractory surfaces, then F

⎯
i,j is given by Fig. 5-13

in curves 5 to 8. Let A1 represent an infinite plane and A2 represent
one or two rows of infinite parallel tubes. If the only other surface is
an adiabatic refractory surface located behind the tubes, F

⎯
2,1 is then

given by curve 5 or 6 of Fig. 5-15.
Experience has shown that the simple SSR model can yield quite

useful results for a host of practical engineering applications without
resorting to digital computation. The error due to representation of
the source and sink by single zones is often small, even if the views of
the enclosure from different parts of the same zone are dissimilar,
provided the surface emissivities are near unity. The error is also small
if the temperature variation of the refractory is small. Any degree of
accuracy can, of course, be obtained via the matrix method for arbi-
trarily large M and N by using a digital computer. From a computa-
tional viewpoint, when M ≥ 4, the matrix method must be used. The
matrix method must also be used for finer-scale calculations such as
more detailed wall temperature and flux density profiles.

The Electrical Network Analog At each surface zone the total
radiant flux is proportional to the difference between Ei and Wi, as
indicated by the equation Qi = (εiAiρi)(Ei − Wi). The net flux between

zones i and j is also given by Qi,j = s
⎯

i
⎯
s
⎯

j(Wi − Wj), where Qi = 

M

j=1
Qi,j, for

all 1 ≤ i ≤ M, is the total heat flux leaving each zone. These relations

A1A2 − (s⎯1
⎯s⎯2)2

��
A1 + A2 − 2s⎯1

⎯s⎯2

1
���
1�(A1 − s⎯1

⎯s⎯2) + 1�(A2 − s⎯2
⎯s⎯1)

1
��
1�s⎯1
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suggest a visual electrical analog in which Ei and Wi are analogous to
voltage potentials. The quantities εiAi�ρi and s⎯i

⎯s⎯j are analogous to con-
ductances (reciprocal impedances), and Qi or Qi,j is analogous to elec-
tric currents. Such an electrical analog has been developed by
Oppenheim [Oppenheim, A. K., Trans. ASME, 78, 725–735 (1956)].

Figure 5-19 illustrates a generalized electrical network analogy for
a three-zone enclosure consisting of one refractory zone and two gray
zones A1 and A2. The potential points Ei and Wi are separated by
conductances εiAi�ρi. The emissive powers E1, E2 represent potential
sources or sinks, while W1, W2, and Wr are internal node points. In this
construction the nodal point representing each surface is connected to
that of every other surface it can see directly. Figure 5-19 can be used
to formulate the total exchange area S

⎯
1
⎯
S
⎯

2 for the SSR model virtually
by inspection. The refractory zone is first characterized by a floating
potential such that Er = Wr. Next, the resistance for the parallel
“current paths” between the internal nodes W1 and W2 is defined

by ≡ which is identical to Eq. (5-130).

Finally, the overall impedance between the source E1 and the sink E2

is represented simply by three resistors in series and is thus given by

= + +

or S
⎯

1
⎯
S
⎯

2 = (5-133)

This result is identically that for the SSR model as obtained previ-
ously in Eq. (5-128a). This equation is also valid for Mr ≥ 1 as long as
Mb = 2. The electrical network analog methodology can be generalized
for enclosures having M > 3.

Some Examples from Furnace Design The theory of the past
several subsections is best understood in the context of two engineer-
ing examples involving furnace modeling. The engineering idealiza-
tion of the equivalent gray plane concept is introduced first.
Figure 5-20 depicts a common furnace configuration in which the
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heating source is two refractory-backed, internally fired tube banks.
Clearly the overall geometry for even this common furnace configura-
tion is too complex to be modeled in an expeditious manner by any-
thing other than a simple engineering idealization. Thus the furnace
shown in Fig. 5-20 is modeled in Example 10, by partitioning the entire
enclosure into two subordinate furnace compartments. The approach
first defines an imaginary gray plane A2, located on the inward-facing
side of the tube assemblies. Second, the total exchange area between
the tubes to this equivalent gray plane is calculated, making full
allowance for the reflection from the refractory tube backing. The
plane-to-tube view factor is then defined to be the emissivity of the
required equivalent gray plane whose temperature is further assumed
to be that of the tubes. This procedure guarantees continuity of the
radiant flux into the interior radiant portion of the furnace arising
from a moderately complicated external source.

Example 9 demonstrates classical zoning calculations for radiation
pyrometry in furnace applications. Example 10 is a classical furnace design
calculation via zoning an enclosure with a diathermanous atmosphere and
M = 4. The latter calculation can only be addressed with the matrix
method. The results of Example 10 demonstrate the relative insensitivity
of zoning to M > 3 and the engineering utility of the SSR model.

Example 9: Radiation Pyrometry A long tunnel furnace is heated by
electrical resistance coils embedded in the ceiling. The stock travels on a floor-
mounted conveyer belt and has an estimated emissivity of 0.7. The sidewalls are
unheated refractories with emissivity 0.55, and the ceiling emissivity is 0.8. The
furnace cross section is rectangular with height 1 m and width 2 m. A total radi-
ation pyrometer is sighted on the walls and indicates the following apparent
temperatures: ceiling, 1340°C; sidewall readings average about 1145°C; and the
load indicates about 900°C. (a) What are the true temperatures of the furnace
walls and stock? (b) What is the net heat flux at each surface? (c) How do the
matrix method and SSR models compare?

Three-zone model, M = 3:
Zone 1: Source (top)
Zone 2: Sink (bottom)
Zone 3: Refractory (lumped sides)
Physical constants:

T0 ≡ 273.15 K σ ≡ 5.670400 × 10−8

Enclosure input parameters:

He := 1 m We := 2 m Le := 1 m A1 := We⋅Le A2 := A1 A3 := 2He⋅Le

ε1 := .8 ε2 := .7 ε3 := .55 ρ1 := 1 − ε1 ρ2 := 1 − ε2 ρ3 := 1 − ε3

AI := � � eI := � � rI := � �
AI := � � m2 eI := � � rI := � �

Compute direct exchange areas by using crossed strings (
 � 3):

ss11 := 0 ss22 := 0 ss33 := 2(�He
2 + W�e

2� − We)Le ss33 := 0.4721 m2

From symmetry and conservation, there are three linear simultaneous results
for the off-diagonal elements of ss:

� � = � �
−1

� � = � �
× � � = � �

Thus ss12 := 0.5 (A1 + A2 − A3 + ss33)
ss13 := 0.5 (A1 − A2 + A3 − ss33) ss23 := 0.5 ( − A1 + A2 + A3 − ss33)

s⎯s⎯ :=� � s⎯s⎯ :=� �m2 (AI − s⎯s⎯)� �= � �m2

Compute radiosities W from pyrometer temperature readings:
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FIG. 5-19 Generalized electrical network analog for a three-zone enclosure.
Here A1 and A2 are gray surfaces and Ar is a radiatively adiabatic surface. (Hot-
tel, H. C., and A. F. Sarofim, Radiative Transfer, McGraw-Hill, New York, 1967,
p. 91.)

FIG. 5-20 Furnace chamber cross section. To convert feet to meters, multiply
by 0.3048. 



Twc := � �C W := σ�Twc⋅ + T0	
4

W := � �
Matrix wall flux density relations and heat flux calculations based on W:

H := AI−1ss◊W Q := AI(W − H) E := (eI◊AI)−1◊Q + H

H := � � Q := � �kW E := � �
The sidewalls act as near-adiabatic surfaces since the heat loss through each
sidewall is only about 2.7 percent of the total heat flux originating at the source.

Actual temperatures versus pyrometer readings:

T: = �� 	
0.25

− T0� T = � �C versus Twc = � �C

Compare SSR model versus matrix method [use Eqs. (5-128a) and (5-130)]:
From Eq. (5-130)

ssbar12 := ss1,2 + ssbar12 = 1.6180 m2

And from Eq. (5-128a)

SSR12 := SSR12 = 1.0446 m2

With the numerical result Q12 := SSR12(E1 − E2) Q12 = 446.3 kW

Thus the SSR model produces Q12 = 446.3 kW versus the measured value Q1 =
460.0 kW or a discrepency of about 3.0 percent. Mathematically the SSR model
assumes a value of ε3 = 0.0, which precludes the sidewall heat loss of Q3 = −25.0
kW. This assumption accounts for all of the difference between the two values.
It remains to compare SSR12 and SS1,2 computed by the matrix method.

Compute total exchange areas (�3 = 0.55):

R := (AI − s⎯s⎯◊rI)−1

S
⎯
S
⎯

:= eI◊AI◊R◊s⎯s⎯◊eI S
⎯
S
⎯

= � �m2 (eI◊AI − S
⎯
S
⎯
)� � = � �m2

Clearly SSR21 and SS1,2 are unequal. But if

Θ3 :=

define

SSA12 := SS1,2 + SS2,3�Θ3

and

Θ3 := 0.5466 SSA12 = 1.0446 m2 Er := E2 + (E1 − E2)�Θ3 Er = 247.8

Numerically the matrix method predicts SSA12 = 1.0446 m2 for Q3 = 0 and ε3 =
0.55, which is identical to SSR1,2 for the SSR model. Thus SSR1,2 = SSA12 is the
refractory-aided total exchange area between zone 1 and zone 2. The SSR
model also predicts Er = 247.8 kW/m2 versus the experimental value E3 = 219.1
kW/m2 (1172.6C vs. 1128.9C), which is also a consequence of the actual 25.0-kW
refractory heat loss.

(This example was developed as a MATHCAD 14® worksheet. Mathcad is a
registered trademark of Parametric Technology Corporation.)

Example 10: Furnace Simulation via Zoning The furnace chamber
depicted in Fig. 5-20 is heated by combustion gases passing through 20 vertical
radiant tubes which are backed by refractory sidewalls. The tubes have an out-
side diameter of D = 5 in (12.7 cm) mounted on C = 12 in (4.72 cm) centers and
a gray body emissivity of 0.8. The interior (radiant) portion of the furnace is a
6 × 8 × 10 ft rectangular parallelepiped with a total surface area of 376 ft2

(34.932 m2). A 50-ft2 (4.645-m2) sink is positioned centrally on the floor of the
furnace. The tube and sink temperatures are measured with embedded ther-
mocouples as 1500 and 1200°F, respectively. The gray refractory emissivity may
be taken as 0.5. While all other refractories are assumed to be radiatively adia-
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batic, the roof of the furnace is estimated to lose heat to the surroundings with a
flux density (W/m2) equal to 5 percent of the source and sink emissive power dif-
ference. An estimate of the radiant flux arriving at the sink is required, as well as
estimates for the roof and average refractory temperatures in consideration of
refractory service life.

Part (a): Equivalent Gray Plane Emissivity Algebraically compute the
equivalent gray plane emissivity for the refractory-backed tube bank idealized
by the imaginary plane A2, depicted in Fig. 5-15.

Solution: Let zone 1 represent one tube and zone 2 represent the effective
plane 2, that is, the unit cell for the tube bank. Thus A1 = πD and A2 = C are the
corresponding zone areas, respectively (per unit vertical dimension). This nota-
tion is consistent with Example 3. Also put ε1 = 0.8 with ε2 = 1.0 and define R =
C/D = 12/5 = 2.4. The gray plane effective emissivity is then calculated as the total
view factor for the effective plane to tubes, that is, F 2,1 ≡ ε⎯2. For R = 2.4, Fig. 5-15,
curve 5, yields the refractory augmented view factor F

⎯
2,1 ≈ 0.81. Then F 2,1 is

calculated from Eq. (5-128b) as F 2,1 = ≈ 0.702.

A more accurate value is obtained via the matrix method as F 2,1 = 0.70295.

Part (b): Radiant Furnace Chamber with Heat Loss
Four-zone model, M = 4: Use matrix method.
Zone 1: Sink (floor)
Zone 2: Source (lumped sides)
Zone 3: Refractory (roof)
Zone 4: Refractory (ends and floor strips)

Physical constants:

T0 ≡ 273.15 K σ ≡ 5.6704 × 10−8

Enclosure input parameters:

A1 := 50 ft2 A2 := 120 ft2 A3 := 80 ft2 A4 := 126 ft2 D := 5 in  H := 6 ft

ε1 := .9 ε2 := .70295 ε3 := .5 ε4 := .5 I4:= identity(4)

eI =� � rI := I4 - eI rI =� �
Compute direct exchange areas: There are ∑ = 6 unique direct exchange

areas. These are obtained from Eqs. (5-114) and view factor algebra. The final
array of direct exchange areas is:

s⎯s⎯ =� �m2 AI =� �m2

Compute total exchange areas:

R := (AI - s⎯s⎯⋅rI)-1

S
⎯
S
⎯

:= eI◊AI◊R◊ss◊eI S
⎯
S
⎯

=� �m2

Check matrix conservation via row-sums:

(AI − s⎯s⎯)� � = � � m2 (eI�AI - S
⎯
S
⎯
)� � = � � m2

Emissive power and wall flux input data:

TF := � � F T := (TF − 32 F) E := σ�T⋅ + T0	
4

T =� �C E =� �
Q3 := − 0.05⋅A3(E2 − E1) Q3 = −14.37 kW Q4 := 0
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Compute refractory emissive powers from known flux inputs Q3 and Q4 using
partitioned matrix equations [Eq. (5-120b)]:

ER := � �
−1

⋅ � �

ER = � � E :=� � E =� �
Compute flux values and final zone temperatures:

Q := εI⋅AI⋅E − S
⎯
S
⎯

⋅E T := �� 	
0.25

− T0�

Q =� �kW T =� �C

Auxiliary calculations for tube area and effective tube emissivity:

ATubes := 20π⋅D⋅H εTubes := ATubes = 14.59 m2 εTubes = 0.2237

Notes: (1) Results for Q and T here are independent of ε3 and ε4 with the
exception of T3, which is indeed a function of ε3. (2) The total surface area of the
tubes is ATubes = 14.59 m2. Suppose the tubes were totally surrounded by a black
enclosure at the temperature of the sink. The hypothetical emissivity of the
tubes would then be εTubes = 0.224. (3) A 5 percent roof heat loss is consistent
with practical measurement errors. A sensitivity test was performed with M = 3,
4, and 5 with and without roof heat loss. The SSR model corresponds to M = 3
with zero heat loss. For M = 5, zone 4 corresponded to the furnace ends and
zone 5 corresponded to the floor strips. The results are summarized in the fol-
lowing table. With the exception of the temperature of the floor strips, the com-
puted results are seen to be remarkably insensitive to M.

Effect of Zone Number M on Computed Results

Zero roof heat loss 5 percent roof heat loss

M = 3 M = 4 M = 5 M = 3 M = 4 M = 5

Temperature, °C
T3 765.8 762.0 762.4 756.2 743.9 744.3
T4 NA 768.4 765.0 NA 764.5 761.1
T5 NA NA 780.9 NA NA 776.7

Heat flux, kW
Q1 −117.657 −117.275 −116.251 −112.601 −111.870 −110.877
Q2 117.657 117.275 116.251 126.975 126.244 125.251
Q3 0.000 0.000 0.000 −14.374 −14.374 −14.374
Q4 NA 0.000 0.000 NA 0.00 0.00
Q5 NA NA 0.000 NA NA 0.00

(This example was developed as a MATHCAD 14® worksheet. Mathcad is a
registered trademark of Parametric Technology Corporation.)

Allowance for Specular Reflection If the assumption that all
surface zones are diffuse emitters and reflectors is relaxed, the zoning
equations become much more complex. Here, all surface parameters
become functions of the angles of incidence and reflection of the radi-
ation beams at each surface. In practice, such details of reflectance
and emission are seldom known. When they are, the Monte Carlo
method of tracing a large number of beams emitted from random
positions and in random initial directions is probably the best method
of obtaining a solution. Siegel and Howell (op. cit., Chap. 10) and
Modest (op. cit., Chap. 20) review the utilization of the Monte Carlo
approach to a variety of radiant transfer applications. Among these is
the Monte Carlo calculation of direct exchange areas for very complex
geometries. Monte Carlo techniques are generally not used in practice
for simpler engineering applications.

A simple engineering approach to specular reflection is the so-called
diffuse plus specular reflection model. Here the total reflectivity
ρi = 1 − εi = ρSi + ρDi is represented as the sum of a diffuse component
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��
ATubes(E2 − E1)

648.9
815.6
743.9
764.5

−111.87
126.24
−14.37

0.00

C
�
K

E
�
σ

kW
�m2

40.98
79.66
60.68
65.73

E1

E2

ER1

ER2

kW
�m2

60.68
65.73

Q3 + SS3,1⋅E1 + SS3,2⋅E2

Q4 + SS4,1⋅E1 + SS4,2⋅E2

ε3⋅A3 − SS3,3 − SS3,4

−SS4,3 ε4⋅A4 − SS4,4

ρSi and a specular component ρDi. The method yields analytical results
for a number of two surface zone geometries. In particular, the follow-
ing equation is obtained for exchange between concentric spheres or
infinitely long coaxial cylinders for which A1 < A2:

S
⎯

1
⎯
S
⎯

2 = (5-134)

For ρD1 = ρD2 = 0 (or equivalently ρ1 = ρS1 with ρ2 = ρS2), Eq. (5-134)
yields the limiting case for wholly specular reflection, i.e.

Specular limit S
⎯

1
⎯
S
⎯

2 = (5-134a)

which is independent of the area ratio, A1/A2. It is important to notice
that Eq. (5-124a) is similar to Eq. (5-127b) but the emissivities here
are defined as ε1 ≡ 1 − ρS1 and ε2 ≡ 1 − ρS2. When surface reflection is
wholly diffuse [ρS1 = ρS2 = 0 or ρ1 = ρD1 with ρ2 = ρD2], Eq. (5-134)
results in a formula identical to Eq. (5-127a), viz.

Diffuse limit S
⎯

1
⎯
S
⎯

2 = (5-134b, 5-127a)

For the case of (infinite) parallel flat plates where A1 = A2, Eq. (5-134)
leads to a general formula similar to Eq. (5-134a) but with the stipu-
lation here that ε1 ≡ 1 − ρD1 − ρS1 and ε2 ≡ 1 − ρD2 − ρS2.

Another particularly interesting limit of Eq. (5-134) occurs when
A2 >> A1, which might represent a small sphere irradiated by an infi-
nite surroundings which can reflect radiation originating at A1 back to
A1. That is to say, even though A2 → ∞, the “self” total exchange area
does not necessarily vanish, to wit 

S
⎯

1
⎯
S
⎯

1 = and S
⎯

1
⎯
S
⎯

2 = (5-134c,d)

which again exhibit diffuse and specular limits. The diffuse plus spec-
ular reflection model becomes significantly more complex for geome-
tries with M ≥ 3 where digital computation is usually required.

An Exact Solution to the Integral Equations—The Hohlraum
Exact solutions of the fundamental integral equations for radiative
transfer are available for only a few simple cases. One of these is the
evaluation of the emittance from a small aperture, of area A1, in the sur-
face of an isothermal spherical cavity of radius R. In German, this geom-
etry is termed a hohlraum or hollow space. For this special case the
radiosity W is constant over the inner surface of the cavity. It then fol-
lows that the ratio W/E is given by

W�E = (5-135)

where ε and ρ = 1 − ε are the diffuse emissivity and reflectivity of the
interior cavity surface, respectively. The ratio W/E is the effective
emittance of the aperture as sensed by an external narrow-angle
receiver (radiometer) viewing the cavity interior. Assume that the cav-
ity is constructed of a rough material whose (diffuse) emissivity is
ε = 0.5. As a point of reference, if the cavity is to simulate a blackbody
emitter to better than 98 percent of an ideal theoretical blackbody,
Eq. (5-135) then predicts that the ratio of the aperture to sphere areas
A1�(4πR2) must be less than 2 percent. Equation (5-135) has practical
utility in the experimental design of calibration standards for labora-
tory radiometers.

RADIATION FROM GASES AND
SUSPENDED PARTICULATE MATTER

Introduction Flame radiation originates as a result of emission
from water vapor and carbon dioxide in the hot gaseous combustion
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products and from the presence of particulate matter. The latter
includes emission from burning of microscopic and submicroscopic
soot particles, and from large suspended particles of coal, coke, or ash.
Thermal radiation owing to the presence of water vapor and carbon
dioxide is not visible. The characteristic blue color of clean natural gas
flames is due to chemiluminescence of the excited intermediates in
the flame which contribute negligibly to the radiation from combus-
tion products.

Gas Emissivities Radiant transfer in a gaseous medium is char-
acterized by three quantities; the gas emissivity, gas absorptivity, and
gas transmissivity. Gas emissivity refers to radiation originating within
a gas volume which is incident on some reference surface. Gas absorp-
tivity and transmissivity, however, refer to the absorption and trans-
mission of radiation from some external surface radiation source
characterized by some radiation temperature T1. The sum of the gas
absorptivity and transmissivity must, by definition, be unity. Gas
absorptivity may be calculated from an appropriate gas emissivity. The
gas emissivity is a function only of the gas temperature Tg while the
absorptivity and transmissivity are functions of both Tg and T1.

The standard hemispherical monochromatic gas emissivity is
defined as the direct volume-to-surface exchange area for a hemi-
spherical gas volume to an infinitesimal area element located at the
center of the planar base. Consider monochromatic transfer in a black
hemispherical enclosure of radius R that confines an isothermal vol-
ume of gas at temperature Tg. The temperature of the bounding sur-
faces is T1. Let A2 denote the area of the finite hemispherical surface
and dA1 denote an infinitesimal element of area located at the center
of the planar base. The (dimensionless) monochromatic direct
exchange area for exchange between the finite hemispherical surface
A2 and dA1 then follows from direct integration of Eq. (5-116a) as

= �π�2

φ1= 0

cosφ1 2πR2 sinφ1 dφ1 = e−KλR (5-136a)

and from conservation there results

= 1 − e−KλR (5-136b)

Note that Eq. (5-136b) is identical to the expression for the gas emis-
sivity for a column of path length R. In Eqs. (5-136) the gas absorption
coefficient is a function of gas temperature, composition, and wave-
length, that is, Kλ = Kλ(T,λ). The net monochromatic radiant flux den-
sity at dA1 due to irradiation from the gas volume is then given by

q1g,λ = (E1,λ − Eg,λ) ≡ αg1,λE1,λ − εg,λEg,λ (5-137)

In Eq. (5-137), εg,λ(T,λ) = 1 − exp(−KλR) is defined as the monochro-
matic or spectral gas emissivity and αg,λ(T,λ) = εg,λ(T,λ).

If Eq. (5-137) is integrated with respect to wavelength over the
entire EM spectrum, an expression for the total flux density is obtained

q1,g = αg,1E1 − εgEg (5-138)

where εg(Tg) = �∞

λ=0
ελ(Tg,λ)⋅ dλ (5-138a)

and αg,1(T1,Tg) = �∞

λ=0
αg,λ(Tg,λ)⋅ dλ (5-138b)

define the total gas emissivity and absorptivity, respectively. The nota-
tion used here is analogous to that used for surface emissivity and
absorptivity as previously defined. For a real gas εg = αg,1 only if T1 =
Tg, while for a gray gas mass of arbitrarily shaped volume
εg = αg,1 = ∂(s⎯1

⎯g⎯)�∂A1 is independent of temperature. Because Kλ(T,λ)
is also a function of the composition of the radiating species, it is nec-
essary in what follows to define a second absorption coefficient kp,λ,
where Kλ = kp,λp. Here p is the partial pressure of the radiating
species, and kp,λ, with units of (atm⋅m)−1, is referred to as the mono-
chromatic line absorption coefficient.

Mean Beam Lengths It is always possible to represent the emis-
sivity of an arbitrarily shaped volume of gray gas (and thus the corre-

Eb,λ(T1,λ)
��

Eb(T1)

Eb,λ(Tg,λ)
��

Eb(Tg)

∂(s⎯1
⎯g⎯)λ

�
∂A1

∂(s⎯1
⎯g⎯)λ

�
∂A1

e−KλR

�
πR2

∂(s⎯1
⎯s⎯2

⎯)λ
�

∂A1

sponding direct gas-to-surface exchange area) with an equivalent
sphere of radius R = LM. In this context the hemispherical radius R =
LM is referred to as the mean beam length of the arbitrary gas vol-
ume. Consider, e.g., an isothermal gas layer at temperature Tg con-
fined by two infinite parallel plates separated by distance L. Direct
integration of Eq. (5-116a) and use of conservation yield a closed-
form expression for the requisite surface-gas direct exchange area

= [1 − 2E3(KL)] (5-139a)

where En(z) = �∞

t=1
dt is defined as the nth-order exponential

integral which is readily available. Employing the definition of gas
emissivity, the mean beam length between the plates LM is then
defined by the expression

εg = [1 − 2E3(KL)] ≡ 1 − e−KLM (5-139b)

Solution of Eq. (5-139b) yields KLM = −ln[2E3(KL)], and it is apparent
that KLM is a function of KL. Since En(0) = 1�(n − 1) for n > 1, the
mean beam length approximation also correctly predicts the gas emis-
sivity as zero when K = 0 and K → ∞.

In the limit K → 0, power series expansion of both sides of the Eq.
(5-139b) leads to KLM → 2KL ≡ KLM0, where LM ≡ LM0 = 2L. Here LM0

is defined as the optically thin mean beam length for radiant trans-
fer from the entire infinite planar gas layer to a differential element of
surface area on one of the plates. The optically thin mean beam length
for two infinite parallel plates is thus simply twice the plate spacing L.
In a similar manner it may be shown that for a sphere of diameter D,
LM0 = 2⁄3 D, and for an infinitely long cylinder LM0 = D. A useful default
formula for an arbitrary enclosure of volume V and area A is given by LM0

= 4V/A. This expression predicts LM0 = 8⁄9 R for the standard hemisphere
of radius R because the optically thin mean beam length is averaged
over the entire hemispherical enclosure.

Use of the optically thin value of the mean beam length yields val-
ues of gas emissivities or exchange areas that are too high. It is thus
necessary to introduce a dimensionless constant β ≤ 1 and define
some new average mean beam length such that KLM ≡ βKLM0.
For the case of parallel plates, we now require that the mean beam
length exactly predict the gas emissivity for a third value of KL. In
this example we find β = −ln[2E3(KL)]�2KL and for KL = 0.193095
there results β = 0.880. The value β = 0.880 is not wholly arbitrary. It
also happens to minimize the error defined by the so-called shape
correction factor φ = [∂(s⎯1

⎯g⎯)�∂A1]�(1 − e−KLM) for all KL > 0. The
required average mean beam length for all KL > 0 is then taken sim-
ply as LM = 0.88LM0 = 1.76L. The error in this approximation is less
than 5 percent.

For an arbitrary geometry, the average mean beam length is
defined as the radius of a hemisphere of gas which predicts values of
the direct exchange area s⎯1

⎯g⎯�A1 = [1 − exp(−KLM)], subject to the opti-
mization condition indicated above. It is has been found that the error
introduced by using average mean beam lengths to approximate direct
exchange areas is sufficiently small to be appropriate for many engi-
neering calculations. When β = LM�LM0 is evaluated for a large number
of geometries, it is found that 0.8 < β < 0.95. It is recommended here
that β = 0.88 be employed in lieu of any further geometric informa-
tion. For a single-gas zone, all the requisite direct exchange areas can
be approximated for engineering purposes in terms of a single appro-
priately defined average mean beam length.

Emissivities of Combustion Products Absorption or emission
of radiation by the constituents of gaseous combustion products is
determined primarily by vibrational and rotational transitions
between the energy levels of the gaseous molecules. Changes in both
vibrational and rotational energy states gives rise to discrete spectral
lines. Rotational lines accompanying vibrational transitions usually
overlap, forming a so-called vibration-rotation band. These bands are
thus associated with the major vibrational frequencies of the molecules.

e−z⋅t

�
tn

∂(s⎯1
⎯g⎯)

�
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Each spectral line is characterized by an absorption coefficient kp,λ
which exhibits a maximum at some central characteristic wavelength
or wave number η0 = 1�λ0 and is described by a Lorentz* probability
distribution. Since the widths of spectral lines are dependent on colli-
sions with other molecules, the absorption coefficient will also depend
upon the composition of the combustion gases and the total system
pressure. This brief discussion of gas spectroscopy is intended as an
introduction to the factors controlling absorption coefficients and thus
the factors which govern the empirical correlations to be presented
for gas emissivities and absorptivities.

Figure 5-21 shows computed values of the spectral emissivity εg,λ ≡
εg,λ(T,pL,λ) as a function of wavelength for an equimolar mixture of
carbon dioxide and water vapor for a gas temperature of 1500 K, par-
tial pressure of 0.18 atm, and a path length L = 2 m. Three principal
absorption-emission bands for CO2 are seen to be centered on 2.7,
4.3, and 15 µm. Two weaker bands at 2 and 9.7 µm are also evident.
Three principal absorption-emission bands for water vapor are also
identified near 2.7, 6.6, and 20 µm with lesser bands at 1.17, 1.36, and
1.87 µm. The total emissivity εg and absorptivity αg,1 are calculated by
integration with respect to wavelength of the spectral emissivities,
using Eqs. (5-138) in a manner similar to the development of total sur-
face properties.

Spectral Emissivities Highly resolved spectral emissivities can
be generated at ambient temperatures from the HITRAN database
(high-resolution transmission molecular absorption) that has been
developed for atmospheric models [Rothman, L. S., Chance, K., and
Goldman, A., eds., J. Quant. Spectroscopy & Radiative Trans., 82
(1–4), 2003]. This database includes the chemical species: H2O, CO2,
O3, N2O, CO, CH4, O2, NO, SO2, NO2, NH3, HNO3, OH, HF, HCl,
HBr, ClO, OCS, H2CO, HOCl, N2, HCN, CH3C, HCl, H2O2, C2H2,
C2H6, PH3, COF2, SF6, H2S, and HCO2H. These data have been
extended to high temperature for CO2 and H2O, allowing for the
changes in the population of different energy levels and in the line half
width [Denison, M. K., and Webb, B. W., Heat Transfer, 2, 19–24
(1994)]. The resolution in the single-line models of emissivities is far
greater than that needed in engineering calculations. A number of mod-
els are available that average the emissivities over narrow-wavelength
regimes or over the entire band. An extensive set of measurements of
narrowband parameters performed at NASA (Ludwig, C., et al., Hand-
book of Infrared Radiation from Combustion Gases, NASA SP-3080,
1973) has been used to develop the RADCAL computer code to obtain
spectral emissivities for CO2, H2O, CH4, CO, and soot (Grosshandler,

W. L., “RADCAL,” NIST Technical Note 1402, 1993). The exponen-
tial wideband model is available for emissions averaged over a band
for H2O, CO2, CO, CH4, NO, SO2, N2O, NH3, and C2H2 [Edwards,
D. K., and Menard, W. A., Appl. Optics, 3, 621–625 (1964)]. The line
and band models have the advantages of being able to account for
complexities in determining emissivities of line broadening due to
changes in composition and pressure, exchange with spectrally selec-
tive walls, and greater accuracy in formulating fluxes in gases with
temperature gradients. These models can be used to generate the
total emissivities and absorptivies that will be used in this chapter.
RADCAL is a command-line FORTRAN code which is available in
the public domain on the Internet.

Total Emissivities and Absorptivities Total emissivities and
absorptivities for water vapor and carbon dioxide at present are still
based on data embodied in the classical Hottel emissivity charts.
These data have been adjusted with the more recent measurements in
RADCAL and used to develop the correlations of emissivities given in
Table 5-5. Two empirical correlations which permit hand calculation
of emissivities for water vapor, carbon dioxide, and four mixtures of
the two gases are presented in Table 5-5. The first section of Table 5-5
provides data for the two constants b and n in the empirical relation

ε
⎯

g
⎯
T
⎯

g = b[pL − 0.015]n (5-140a)

while the second section of Table 5-5 utilizes the four constants in the
empirical correlation

log(ε⎯g
⎯
T
⎯

g) = a0 + a1 log (pL) + a2 log2(pL) + a3 log3(pL) (5-140b)

In both cases the empirical constants are given for the three tempera-
tures of 1000, 1500, and 2000 K. Table 5-5 also includes some six values
for the partial pressure ratios pW�pC of water vapor to carbon dioxide,
namely, 0, 0.5, 1.0, 2.0, 3.0, and ∞. These ratios correspond to composi-
tion values of pC / (pC+ pW) = 1/(1 + pW /pC) of 0, 1/3, 1/2, 2/3, 3/4, and
unity. For emissivity calculations at other temperatures and mixture
compositions, linear interpolation of the constants is recommended.

The absorptivity can be obtained from the emissivity with aid of
Table 5-5 by using the following functional equivalence.

α
⎯

g
⎯
,
⎯
1
⎯
T
⎯

l = [ε⎯g
⎯
T
⎯

1(pL⋅Tl�Tg)]� 	
0.5

(5-141)

Verbally, the absorptivity computed from Eq. (5-141) by using the cor-
relations in Table 5-5 is based on a value for gas emissivity εg calculated
at a temperature T1 and at a partial-pressure path-length product of
(pC + pW)LT1/Tg. The absorptivity is then equal to this value of gas emis-
sivity multiplied by (Tg /T1)0.5. It is recommended that spectrally based
models such as RADCAL (loc. cit.) be used particularly when extrapo-
lating beyond the temperature, pressure, or partial-pressure-length
product ranges presented in Table 5-5.

A comparison of the results of the predictions of Table 5-5 with values
obtained via the integration of the spectral results calculated from the
narrowband model in RADCAL is provided in Fig. 5-22. Here calcula-
tions are shown for pCL = pWL = 0.12 atm⋅m and a gas temperature of
1500 K. The RADCAL predictions are 20 percent higher than the mea-
surements at low values of pL and are 5 percent higher at the large val-
ues of pL. An extensive comparison of different sources of emissivity
data shows that disparities up to 20 percent are to be expected at the cur-
rent time [Lallemant, N., Sayre, A., and Weber, R., Prog. Energy Com-
bust. Sci., 22, 543–574, (1996)]. However, smaller errors result for the
range of the total emissivity measurements presented in the Hottel emis-
sivity tables. This is demonstrated in Example 11.

Example 11: Calculations of Gas Emissivity and Absorptivity Con-
sider a slab of gas confined between two infinite parallel plates with a distance
of separation of L = 1 m. The gas pressure is 101.325 kPa (1 atm), and the gas
temperature is 1500 K (2240°F). The gas is an equimolar mixture of CO2 and
H2O, each with a partial pressure of 12 kPa (pC = pW = 0.12 atm). The radiative
flux to one of its bounding surfaces has been calculated by using RADCAL for
two cases. For case (a) the flux to the bounding surface is 68.3 kW/m2 when the
emitting gas is backed by a black surface at an ambient temperature of 300 K
(80°F). This (cold) back surface contributes less than 1 percent to the flux. In
case (b), the flux is calculated as 106.2 kW/m2 when the gas is backed by a black
surface at a temperature of 1000 K (1340°F). In this example, gas emissivity and

Tg
�
Tl
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FIG. 5-21 Spectral emittances for carbon dioxide and water vapor after 
RADCAL. pcL = pwL = 0.36 atm⋅m, Tg = 1500 K.

*Spectral lines are conventionally described in terms of wave number η = 1�λ,
with each line having a peak absorption at wave number η0. The Lorentz distr-

ibution is defined as kη�S = where S is the integral of kη over all

wave numbers. The parameter S is known as the integrated line intensity, and bc

is defined as the collision line half-width, i.e., the half-width of the line is one-
half of its peak centerline value. The units of kη are m−1 atm−1.

bc
��
π[bc

2 + (η − ηo)2]



absorptivity are to be computed from these flux values and compared with val-
ues obtained by using Table 5-5.

Case (a): The flux incident on the surface is equal to εg⋅σ⋅Tg
4 = 68.3 kW/m2;

therefore, εg = 68,300�(5.6704 × 10−8⋅15004) = 0.238. To utilize Table 5-5, the mean
beam length for the gas is calculated from the relationLM=0.88LM0= 0.88⋅2L = 1.76
m. For Tg = 1500 K and (pC + pW)LM = 0.24(1.76) = 0.422 atm⋅m, the two-con-
stant correlation in Table 5-5 yields εg = 0.230 and the four-constant correlation
yields εg = 0.234. These results are clearly in excellent agreement with the pre-
dicted value of εg = 0.238 obtained from RADCAL.

Case (b): The flux incident on the surface (106.2 kW/m2) is the sum of that con-
tributed by (1) gas emission εg⋅σ⋅Tg

4 = 68.3 kW�m2 and (2) emission from the oppos-
ing surface corrected for absorption by the intervening gas using the gas
transmissivity, that is, τg,1σ⋅T4

1 where τg,1 = 1 − αg,1. Therefore αg,1 = [1 − (106,200 −
68,300)�(5.6704 × 10−8⋅10004)] = 0.332. Using Table 5-5, the two-constant and
four-constant gas emissivities evaluated at T1 = 1000 K and pL = 0.4224⋅
(1000�1500) = 0.282 atm⋅m are εg = 0.2654 and εg = 0.2707, respectively. Multi-
plication by the factor (Tg / T1)0.5 = (1500 / 1000) 0.5 = 1.225 produces the final val-
ues of the two corresponding gas absorptivities αg,1 = 0.325 and αg,1 = 0.332,
respectively. Again the agreement with RADCAL is excellent.

Other Gases The most extensive available data for gas emissivity
are those for carbon dioxide and water vapor because of their impor-
tance in the radiation from the products of fossil fuel combustion.
Selected data for other species present in combustion gases are pro-
vided in Table 5-6.
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TABLE 5-5 Emissivity-Temperature Product for CO2-H2O Mixtures, e⎯g
⎯
T
⎯

g
⎯

Limited range for furnaces, valid over 25-fold range of pw + cL, 0.046–1.15 m⋅atm (0.15–3.75 ft⋅atm)

pw /pc 0 a 1 2 3 ∞

0 s(0.3–0.42) a(0.42–0.5) w(0.6–0.7) e(0.7–0.8) 1

CO2 only Corresponding Corresponding to Corresponding Corresponding H2O only
to (CH)x, (CH2)x, covering to CH4, covering to (CH6)x,
covering coal, distillate oils, paraffins, natural gas and covering future
heavy oils, pitch olefines refinery gas high H2 fuels

Section 1 Constants b and n of ε
⎯

g
⎯
T
⎯

g
⎯
= b(pL − 0.015)n, pL = m⋅atm, T = K

T, K b n b n b n b n b n b n

1000 188 0.209 384 0.33 416 0.34 444 0.34 455 0.35 416 0.400
1500 252 0.256 448 0.38 495 0.40 540 0.42 548 0.42 548 0.523
2000 267 0.316 451 0.45 509 0.48 572 0.51 594 0.52 632 0.640

Constants b and n of ε
⎯

g
⎯
T
⎯

g
⎯
= b(pL − 0.05)n, pL = ft⋅atm, T = °R

T, °R b n b n b n b n b n b n

1800 264 0.209 467 0.33 501 0.34 534 0.34 541 0.35 466 0.400
2700 335 0.256 514 0.38 555 0.40 591 0.42 600 0.42 530 0.523
3600 330 0.316 476 0.45 519 0.48 563 0.51 577 0.52 532 0.640

Section 2 Full range, valid over 2000-fold range of pw + cL, 0.005–10.0 m⋅atm (0.016–32.0 ft⋅atm)
Constants of log10 ε

⎯
g
⎯
T
⎯

g
⎯
= a0 + a1 log pL + a2 log2 pL + a3 log3 pL

pL = m⋅atm, T = K pL = ft⋅atm, T = °R

T, K a0 a1 a2 a3 T, °R a0 a1 a2 a3

1000 2.2661 0.1742 −0.0390 0.0040 1800 2.4206 0.2176 −0.0452 0.0040
0 0 1500 2.3954 0.2203 −0.0433 0.00562 2700 2.5248 0.2695 −0.0521 0.00562

2000 2.4104 0.2602 −0.0651 −0.00155 3600 2.5143 0.3621 −0.0627 −0.00155
1000 2.5754 0.2792 −0.0648 0.0017 1800 2.6691 0.3474 −0.0674 0.0017

a s 1500 2.6451 0.3418 −0.0685 −0.0043 2700 2.7074 0.4091 −0.0618 −0.0043
2000 2.6504 0.4279 −0.0674 −0.0120 3600 2.6686 0.4879 −0.0489 −0.0120
1000 2.6090 0.2799 −0.0745 −0.0006 1800 2.7001 0.3563 −0.0736 −0.0006

1 a 1500 2.6862 0.3450 −0.0816 −0.0039 2700 2.7423 0.4561 −0.0756 −0.0039
2000 2.7029 0.4440 −0.0859 −0.0135 3600 2.7081 0.5210 −0.0650 −0.0135
1000 2.6367 0.2723 −0.0804 0.0030 1800 2.7296 0.3577 −0.0850 0.0030

2 w 1500 2.7178 0.3386 −0.0990 −0.0030 2700 2.7724 0.4384 −0.0944 −0.0030
2000 2.7482 0.4464 −0.1086 −0.0139 3600 2.7461 0.5474 −0.0871 −0.0139
1000 2.6432 0.2715 −0.0816 0.0052 1800 2.7359 0.3599 −0.0896 0.0052

3 e 1500 2.7257 0.3355 −0.0981 0.0045 2700 2.7811 0.4403 −0.1051 0.0045
2000 2.7592 0.4372 −0.1122 −0.0065 3600 2.7599 0.5478 −0.1021 −0.0065
1000 2.5995 0.3015 −0.0961 0.0119 1800 2.6720 0.4102 −0.1145 0.0119

∞ 1 1500 2.7083 0.3969 −0.1309 0.00123 2700 2.7238 0.5330 −0.1328 0.00123
2000 2.7709 0.5099 −0.1646 −0.0165 3600 2.7215 0.6666 −0.1391 −0.0165

NOTE: pw /(pw + pc) of s, a, w, and e may be used to cover the ranges 0.2–0.4, 0.4–0.6, 0.6–0.7, and 0.7–0.8, respectively, with a maximum error in εg of 5 percent
at pL = 6.5 m⋅atm, less at lower pL’s. Linear interpolation reduces the error generally to less than 1 percent. Linear interpolation or extrapolation on T introduces an
error generally below 2 percent, less than the accuracy of the original data.

pw
�
pw + pc

pw
�
pc

pw
�
pw + pc

RADCAL

Partial pressure–path length product (pc + pw)L [atm.m]
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FIG. 5-22 Comparison of Hottel and RADCAL total gas emissivities.
Equimolal gas mixture of CO2 and H2O with pc = pw = 0.12 atm and 
Tg = 1500 K.



Flames and Particle Clouds
Luminous Flames Luminosity conventionally refers to soot

radiation. At atmospheric pressure, soot is formed in locally fuel-rich
portions of flames in amounts that usually correspond to less than 1
percent of the carbon in the fuel. Because soot particles are small rel-
ative to the wavelength of the radiation of interest in flames (primary
particle diameters of soot are of the order of 20 nm compared to
wavelengths of interest of 500 to 8000 nm), the incident radiation
permeates the particles, and the absorption is proportional to the vol-
ume of the particles. In the limit of rp�λ < < 1, the Rayleigh limit, the
monochromatic emissivity ελ is given by

ελ = 1 − exp(−K⋅ fv⋅L�λ) (5-142)

where fv is the volumetric soot concentration, L is the path length in
the same units as the wavelength λ, and K is dimensionless. The value
K will vary with fuel type, experimental conditions, and the tempera-
ture history of the soot. The values of K for a wide range of systems are
within a factor of about 2 of one another. The single most important
variable governing the value of K is the hydrogen/carbon ratio of the
soot, and the value of K increases as the H/C ratio decreases. A value
of K = 9.9 is recommended on the basis of seven studies involving 29
fuels [Mulholland, G. W., and Croarkin, C., Fire and Materials, 24,
227–230 (2000)].

The total emissivity of soot εS can be obtained by substituting ελ
from Eq. (5-142) for ελ in Eq. (5-138a) to yield

εS = �∞

λ=0
ελ dλ = 1 − [Ψ(3)(1 + K⋅ fv⋅L⋅T�c2)]

≅ (1 + K⋅ fv⋅L⋅T�c2)−4 (5-143)

Here Ψ(3)(x) is defined as the pentagamma function of x and c2 (m⋅K) is
again Planck’s second constant. The approximate relation in Eq. (5-143)
is accurate to better than 1 percent for arguments yielding values of
εS < 0.7. At present, the largest uncertainty in estimating total soot
emissivities is in the estimation of the soot volume fraction fv. Soot
forms in the fuel-rich zones of flames. Soot formation rates are a func-
tion of fuel type, mixing rate, local equivalence ratio Φ, temperature,
and pressure. The equivalence ratio is defined as the quotient of the
actual to stoichiometric fuel-to-oxidant ratio Φ = [F�O]Act�[F�O]Stoich.
Soot formation increases with the aromaticity or C/H ratio of fuels
with benzene, α-methyl naphthalene, and acetylene having a high
propensity to form soot and methane having a low soot formation
propensity. Oxygenated fuels, such as alcohols, emit little soot. In
practical turbulent diffusion flames, soot forms on the fuel side of the
flame front. In premixed flames, at a given temperature, the rate of
soot formation increases rapidly for Φ > 2. For temperatures above

15
�
4

Eb,λ(Tg,λ)
��

Eb(Tg)

1500 K, soot burns out rapidly (in less than 0.1s) under fuel-lean con-
ditions, Φ < 1. Because of this rapid soot burnout, soot is usually local-
ized in a relatively small fraction of a furnace or combustor volume.
Long, poorly mixed diffusion flames promote soot formation while
highly backmixed combustors can burn soot-free. In a typical flame at
atmospheric pressure, maximum volumetric soot concentrations are
found to be in the range 10−7 < fv < 10−6. This corresponds to a soot
formation of about 1.5 to 15 percent of the carbon in the fuel. When
fv is to be calculated at high pressures, allowance must be made for the
significant increase in soot formation with pressure and for the inverse
proportionality of fv with respect to pressure. Great progress is
being made in the ability to calculate soot in premixed flames. For
example, predicted and measured soot concentration have been
compared in a well-stirred reactor operated over a wide range of
temperatures and equivalence ratios [Brown, N.J. Revzan, K. L.,
Frenklach, M., Twenty-seventh Symposium (International) on
Combustion, pp. 1573–1580, 1998]. Moreover, CFD (computa-
tional fluid dynamics) and population dynamics modeling have
been used to simulate soot formation in a turbulent non-premixed
ethylene-air flame [Zucca, A., Marchisio, D. L., Barresi, A. A., Fox,
R. O., Chem. Eng. Sci., 2005]. The importance of soot radiation
varies widely between combustors. In large boilers the soot is con-
fined to small volumes and is of only local importance. In gas tur-
bines, cooling the combustor liner is of primary importance so that
only small incremental soot radiation is of concern. In high-temper-
ature glass tanks, the presence of soot adds 0.1 to 0.2 to emissivities
of oil-fired flames. In natural gas-fired flames, efforts to augment
flame emissivities with soot generation have generally been unsuc-
cessful. The contributions of soot to the radiation from pool fires
often dominates, and thus the presence of soot in such flames
directly impacts the safe separation distances from dikes around oil
tanks and the location of flares with respect to oil rigs.

Clouds of Large Black Particles The emissivity εM of a cloud of
black particles with a large perimeter-to-wavelength ratio is

εM = 1 − exp[−(a�v)L] (5-144)

where a/v is the projected area of the particles per unit volume of
space. If the particles have no negative curvature (the particle does
not “see” any of itself) and are randomly oriented, a = a′�4, where a′ is
the actual surface area. If the particles are uniform, a�v = cA = cA′�4,
where A and A′ are the projected and total areas of each particle and
c is the number concentration of particles. For spherical particles this
leads to

εM = 1 − exp[−(π�4)cdp
2L] = 1 − exp(−1.5fvL�dp) (5-145)

As an example, consider a heavy fuel oil (CH1.5, specific gravity, 0.95)
atomized to a mean surface particle diameter of dp burned with 
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TABLE 5-6 Total Emissivities of Some Gases

Temperature 1000°R 1600°R 2200°R 2800°R
PxL, atm⋅ft 0.01 0.1 1.0 0.01 0.1 1.0 0.01 0.1 1.0 0.01 0.1 1.0

NH3
a 0.047 0.20 0.61 0.020 0.120 0.44 0.0057 0.051 0.25 (0.001) (0.015) (0.14)

SO2
b 0.020 0.13 0.28 0.013 0.090 0.32 0.0085 0.051 0.27 0.0058 0.043 0.20

CH4
c 0.0116 0.0518 0.1296 0.0111 0.0615 0.1880 0.0087 0.0608 0.2004 0.00622 0.04702 0.1525

COd 0.0052 0.0167 0.0403 0.0055 0.0196 0.0517 0.0036 0.0145 0.0418 0.00224 0.00986 0.02855
NOd 0.0046 0.018 0.060 0.0046 0.021 0.070 0.0019 0.010 0.040 0.0078 0.004 0.025
HCle 0.00022 0.00079 0.0020 0.00036 0.0013 0.0033 0.00037 0.0014 0.0036 0.00029 0.0010 0.0027

NOTE: Figures in this table are taken from plots in Hottel and Sarofim, Radiative Transfer, McGraw-Hill, New York, 1967, chap. 6. Values in parentheses are
extrapolated. To convert degrees Rankine to kelvins, multiply by (5.556)(10−1). To convert atmosphere-feet to kilopascal-meters, multiply by 30.89.

aTotal-radiation measurements of Port (Sc.D. thesis in chemical engineering, MIT, 1940) at 1-atm total pressure, L = 1.68 ft, T to 2000°R.
bCalculations of Guerrieri (S.M. thesis in chemical engineering, MIT, 1932) from room-temperature absorption measurements of Coblentz (Investigations of

Infrared Spectra, Carnegie Institution, Washington, 1905) with poor allowance for temperature.
cEstimated using Grosshandler, W.L., “RADCAL: A Narrow-Band Model for Radial Calculations in a Combustion Environment,” NIST Technical Note 1402,

1993.
dCalculations of Malkmus and Thompson [J. Quant. Spectros. Radiat. Transfer, 2, 16 (1962)], to T = 5400°R and PL = 30 atm⋅ft.
eCalculations of Malkmus and Thompson [J. Quant. Spectros. Radiat. Transfer, 2, 16 (1962)], to T = 5400°R and PL = 300 atm⋅ft.



20 percent excess air to produce coke-residue particles having the
original drop diameter and suspended in combustion products at
1204°C (2200°F). The flame emissivity due to the particles along a
path of L m, with dp measured in micrometers, is

εM = 1 − exp(−24.3L�dp) (5-146)

For 200-µm particles and L = 3.05 m, the particle contribution to
emissivity is calculated as 0.31.

Clouds of Nonblack Particles For nonblack particles, emissiv-
ity calculations are complicated by multiple scatter of the radiation
reflected by each particle. The emissivity εM of a cloud of gray parti-
cles of individual emissivity ε1 can be estimated by the use of a simple
modification Eq. (5-144), i.e.,

εM = 1 − exp[−ε1(a�v)L] (5-147)

Equation (5-147) predicts that εM → 1 as L → ∞. This is impossible in
a scattering system, and use of Eq. (5-147) is restricted to values of the
optical thickness (a/v) L < 2. Instead, the asymptotic value of εM is
obtained from Fig. 5-12 as εM = εh (lim L → ∞), where the albedo ω is
replaced by the particle-surface reflectance ω = 1 − ε1. Particles with
perimeter-to-wavelength ratios of 0.5 to 5.0 can be analyzed, with sig-
nificant mathematical complexity, by use of the the Mie equations
(Bohren, C. F., and Huffman, D. R., Absorption and Scattering of
Light by Small Particles, Wiley, 1998).

Combined Gas, Soot, and Particulate Emission In a mixture
of emitting species, the emission of each constituent is attenuated on
its way to the system boundary by absorption by all other constituents.
The transmissivity of a mixture is the product of the transmissivities of
its component parts. This statement is a corollary of Beer’s law. For
present purposes, the transmissivity of “species k” is defined as
τk = 1 − εk. For a mixture of combustion products consisting of carbon
dioxide, water vapor, soot, and oil coke or char particles, the total
emissivity εT at any wavelength can therefore be obtained from

(1 − εT)λ = (1 − εC)λ(1 − εW)λ(1 − εS)λ(1 − εM)λ (5-148)

where the subscripts denote the four flame species. The total emissiv-
ity is then obtained by integrating Eq. (5-148) over the entire EM
energy spectrum, taking into account the variability of εC, εW, and εS

with respect to wavelength. In Eq. (5-148), εM is independent of wave-
length because absorbing char or coke particles are effectively black-
body absorbers. Computer programs for spectral emissivity, such as
RADCAL (loc. cit.), perform the integration with respect to wave-
length for obtaining total emissivity. Corrections for the overlap of
vibration-rotation bands of CO2 and H2O are automatically included
in the correlations for εg for mixtures of these gases. The monochro-
matic soot emissivity is higher at shorter wavelengths, resulting in
higher attenuations of the bands at 2.7 µm for CO2 and H2O than at
longer wavelengths. The following equation is recommended for cal-
culating the emissivity εg+S of a mixture of CO2, H2O, and soot

εg+S = εg + εS − M⋅εgεS (5-149)

where M can be represented with acceptable error by the dimension-
less function

M = 1.12 − 0.27⋅(T�1000) + 2.7 × 105fv⋅L (5-150)

In Eq. (5-150), T has units of kelvins and L is measured in meters.
Since coke or char emissivities are gray, their addition to those of the
CO2, H2O, and soot follows simply from Eq. (5-148) as

εT = εg+S + εM − εg+SεM (5-151)

with the definition 1 − εg+S ≡ (1 − εC)(1 − εW)(1 − εS).

RADIATIVE EXCHANGE WITH PARTICIPATING MEDIA

Energy Balances for Volume Zones—The Radiation Source
Term Reconsider a generalized enclosure with N volume zones
confining a gray gas. When the N gas temperatures are unknown, an
additional set of N equations is required in the form of radiant energy

balances for each volume zone. These N equations are given by the
definition of the N-vector for the net radiant volume absorption
S′ = [S′j] for each volume zone

S′ = G
⎯

S
⎯◊E + G

⎯
G
⎯◊Eg − 4KVI◊Eg [N × 1] (5-152)

The radiative source term is a discretized formulation of the net radi-
ant absorption for each volume zone which may be incorporated as a
source term into numerical approximations for the generalized energy
equation. As such, it permits formulation of energy balances on each
zone that may include conductive and convective heat transfer. For
K→ 0, G

⎯
S
⎯

→ 0, and G
⎯

G
⎯

→ 0 leading to S′ → 0N. When K ≠ 0 and
S′ = 0N, the gas is said to be in a state of radiative equilibrium. In the
notation usually associated with the discrete ordinate (DO) and finite
volume (FV) methods, see Modest (op. cit., Chap. 16), one would
write Si′/Vi = K[G − 4�Eg] = −∇�q→r. Here Hg = G/4 is the average flux
density incident on a given volume zone from all other surface and
volume zones. The DO and FV methods are currently available
options as “RTE-solvers” in complex simulations of combustion sys-
tems using computational fluid dynamics (CFD).*

Implementation of Eq. (5-152) necessitates the definition of two
additional symmetric N × N arrays of exchange areas, namely,
g⎯g⎯ = [g⎯i

⎯g⎯j] and G
⎯

G
⎯

= [G
⎯

i
⎯
G
⎯

j]. In Eq. (5-152) VI = [Vj⋅δi,j] is an N × N
diagonal matrix of zone volumes. The total exchange areas in Eq. (5-151)
are explicit functions of the direct exchange areas as follows:
Surface-to-gas exchange 

G
⎯

S
⎯
= S

⎯
G
⎯T

[N × M] (5-153a)
Gas-to-gas exchange 

G
⎯

G
⎯

= g⎯g⎯ + s⎯g⎯
T
◊ρI◊R◊s⎯g⎯ [N × M] (5-153b)

The matrices g⎯g⎯ = [g⎯i
⎯g⎯j] and G

⎯
G
⎯

= [G
⎯

i
⎯
G
⎯

j] must also satisfy the fol-
lowing matrix conservation relations:

Direct exchange areas: 4KVI◊1N = g⎯s⎯ ◊1M + g⎯g⎯ ◊1N (5-154a)

Total exchange areas: 4KVI◊1N = G
⎯

S
⎯ ◊1M + G

⎯
G
⎯ ◊1N (5-154b)

The formal integral definition of the direct gas-gas exchange area is

g⎯i
⎯g⎯j =

™

Vi

™

Vj

K2 dVj dVi (5-155)

Clearly, when K = 0, the two direct exchange areas involving a gas
zone g⎯i

⎯s⎯j and g⎯i
⎯g⎯ j vanish. Computationally it is never necessary to make

resort to Eq. (5-155) for calculation of g⎯i
⎯g⎯j. This is so because s⎯i

⎯g⎯j, g⎯i
⎯s⎯j,

and g⎯i
⎯g⎯j may all be calculated arithmetically from appropriate values of

s⎯i
⎯s⎯j by using associated conservation relations and view factor algebra.

Weighted Sum of Gray Gas (WSGG) Spectral Model Even in
simple engineering calculations, the assumption of a gray gas is almost
never a good one. The zone method is now further generalized to
make allowance for nongray radiative transfer via incorporation of the
weighted sum of gray gas (WSGG) spectral model. Hottel has
shown that the emissivity εg(T,L) of an absorbing-emitting gas mixture
containing CO2 and H2O of known composition can be approximated
by a weighted sum of P gray gases

εg(T,L) ≈ 

P

p=1
ap(T)(1 − e−KpL) (5-156a)

where



P

p=1
ap(T) = 1.0 (5-156b)

In Eqs. (5-156), Kp is some gray gas absorption coefficient and L is
some appropriate path length. In practice, Eqs. (5-156) usually yield
acceptable accuracy for P ≤ 3. For P = 1, Eqs. (5-156) degenerate to
the case of a single gray gas.

e−Kr

�
πr2
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*To further clarify the mathematical differences between zoning and the DO
and FV methods recognize that (neglecting scatter) the matrix expressions H =
AI−1�s⎯s⎯�W + AI−1�s⎯g⎯�Eg and 4K�Hg = VI−1�g⎯s⎯�W+VI−1·g⎯g⎯ · Eg represent spa-
tial discretizations of the integral form(s) of the RTE applied at any point (zone)
on the boundary or interior of an enclosure, respectively, for a gray gas.



The Clear plus Gray Gas WSGG Spectral Model In principle,
the emissivity of all gases approaches unity for infinite path length L.
In practice, however, the gas emissivity may fall considerably short of
unity for representative values of pL. This behavior results because of
the band nature of real gas spectral absorption and emission whereby
there is usually no significant overlap between dominant absorption
bands. Mathematically, this physical phenomenon is modeled by
defining one of the gray gas components in the WSGG spectral model
to be transparent.

For P = 2 and path length LM, Eqs. (5-156) yield the following expres-
sion for the gas emissivity

εg = a1(1 − e−K1LM) + a2(1 − e−K2LM) (5-157)

In Eq. (5-157) if K1 = 0 and a2 ≠ 0, the limiting value of gas emissivity
is εg(T,∞) → a2. Put K1 = 0 in Eq. (5-157), ag = a2, and define τg = e−K2LM

as the gray gas transmissivity. Equation (5-157) then simplifies to

εg = ag(1 − τg) (5-158)

It is important to note in Eq. (5-158) that 0 ≤ ag, τg ≤ 1.0 while 0 ≤
εg ≤ ag.

Equation (5-158) constitutes a two-parameter model which may be
fitted with only two empirical emissivity data points. To obtain the
constants ag and τg in Eq. (5-158) at fixed composition and tempera-
ture, denote the two emissivity data points as εg,2 = εg(2pL) >
εg,1 = εg(pL) and recognize that εg,1 = ag(1 − τg) and εg,2 = ag(1 − τ2

g) =
ag(1 − τg)(1 + τg) = εg,1(1 + τg). These relations lead directly to the final
emissivity fitting equations

τg = − 1 (5-159a)

and

ag = (5-159b)

The clear plus gray WSGG spectral model also readily leads to val-
ues for gas absorptivity and transmissivity, with respect to some
appropriate surface radiation source at temperature T1, for example,

αg,1 = ag,1(1 − τg) (5-160a)

and

τg,1 = ag,1⋅τg (5-160b)

In Eqs. (5-160) the gray gas transmissivity τg is taken to be identical to
that obtained for the gas emissivity εg. The constant ag,1 in Eq. (5-160a)
is then obtained with knowledge of one additional empirical value for
αg,1 which may also be obtained from the correlations in Table 5-5.
Notice further in the definitions of the three parameters εg, αg,1, and
τg,1 that all the temperature dependence is forced into the two WSGG
constants ag and ag,1.

The three clear plus gray WSGG constants ag, ag,1, and τg are func-
tions of total pressure, temperature, and mixture composition. It is not
necessary to ascribe any particular physical significance to them.
Rather, they may simply be visualized as three constants that happen
to fit the gas emissivity data. It is noteworthy that three constants are
far fewer than the number required to calculate gas emissivity data
from fundamental spectroscopic data. The two constants ag and ag,1

defined in Eqs. (5-158) and (5-160) can, however, be interpreted
physically in a particularly simple manner. Suppose the gas absorption
spectrum is idealized by many absorption bands (boxes), all of which
are characterized by the identical absorption coefficient K. The a’s
might then be calculated from the total blackbody energy fraction
Fb (λT) defined in Eqs. (5-105) and (5-106). That is, ag simply repre-
sents the total energy fraction of the blackbody energy distribution in
which the gas absorbs. This concept may be further generalized to
real gas absorption spectra via the wideband stepwise gray spectral
box model (Modest, op. cit., Chap. 14).

When P ≥ 3, exponential curve-fitting procedures for the WSGG
spectral model become significantly more difficult for hand computa-
tion but are quite routine with the aid of a variety of readily available

εg,1
��
2 − εg,2�εg,1

εg,2
�
εg,1

mathematical software utilities. The clear plus gray WSGG fitting pro-
cedure is demonstrated in Example 8.

The Zone Method and Directed Exchange Areas Spectral
dependence of real gas spectral properties is now introduced into the
zone method via the WSGG spectral model. It is still assumed, how-
ever, that all surface zones are gray isotropic emitters and absorbers.

General Matrix Representation We first define a new set of four
directed exchange areas SSq, SGq, GSq, and GGq which are denoted
by an overarrow. The directed exchange areas are obtained from the
total exchange areas for gray gases by simple matrix multiplication using
weighting factors derived from the WSGG spectral model. The directed
exchange areas are denoted by an overarrow to indicate the “sending”
and “receiving” zone. The a-weighting factors for transfer originating at
a gas zone ag,i are derived from WSGG gas emissivity calculations, while
those for transfers originating at a surface zone, ai are derived from
appropriate WSGG gas absorptivity calculations. Let agIp = [ap,g,iδi,j]
and aIp = [ap,iδi,j] represent the P [M × M] and [N × N] diagonal matri-
ces comprised of the appropriate WSGG a constants. The directed
exchange areas are then computed from the associated total gray gas
exchange areas via simple diagonal matrix multiplication.

SS
q

= 

P

p=1
S
⎯
S
⎯

p◊aIp [M × M] (5-161a)

SG
q

= 

P

p=1
S
⎯
G
⎯

p◊agIp [M × N] (5-161b)

GS
q

= 

P

p=1
G
⎯

S
⎯

p◊aIp [M × N] (5-161c)

GG.
q

= 

P

p=1
G
⎯

G
⎯

p◊agIp [N × N] (5-161d)

with KI
q

= 

P

p=1
KIp◊agIp [N × N] (5-161e)

In contrast to the total exchange areas which are always independent
of temperature, the four directed arrays SSq, SGq, GSq, and GGq are
dependent on the temperatures of each and every zone, i.e., as in ap,i =
ap(Ti). Moreover, in contrast to total exchange areas, the directed arrays
SSq and GGq are generally not symmetric and GSq ≠ SSGq

T
. Finally, since

the directed exchange areas are temperature-dependent, iteration
may be required to update the aIp and agIp arrays during the course of
a calculation. There is a great deal of latitude with regard to fitting the
WSGG a constants in these matrix equations, especially if N > 1 and
composition variations are to be allowed for in the gas. An extensive
discussion of a fitting for N > 1 is beyond the scope of this presenta-
tion. Details of the fitting procedure, however, are presented in
Example 12 in the context of a single-gas zone.

Having formulated the directed exchange areas, the governing
matrix equations for the radiative flux equations at each surface zone
and the radiant source term are then given as follows:

Q = εAI◊E − SS
q⋅E − SG

q ⋅Eg (5-162a)

S′ = GG
q ⋅Eg + GS

q⋅E − 4KI
q ⋅VI⋅Eg (5-162b)

or the alternative forms

Q = [EI⋅SS
r − SS

q ⋅EI]◊1M + [EI⋅SG
r − SG

q ⋅EgI]◊1N (5-163a)

S′ = −[EgI⋅GS
r − GS

q⋅EI]◊1M − [EgI⋅GG
r − GG

q ⋅EgI]◊1N (5-163b)

It may be proved that the Q and S′ vectors computed from Eqs. (5-
162) and (5-163) always exactly satisfy the overall (scalar) radiant
energy balance 1T

M◊Q = 1T
N◊S′. In words, the total radiant gas emission

for all gas zones in the enclosure must always exactly equal the total
radiant energy received at all surface zones which comprise the enclo-
sure. In Eqs. (5-162) and (5-163), the following definitions are
employed for the four forward-directed exchange areas

SS
r = SS

qT
SG
r = GS

q T
GS
r = SG

qT
GG
r = GG

qT

(5-64a,b,c,d)
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such that formally there are some eight matrices of directed exchange
areas. The four backward-directed arrays of directed exchange areas
must satisfy the following conservation relations

SS
q◊1M + SG

q ◊1N = εI⋅AI⋅1M (5-165a)

4KI
q ⋅VI⋅1N = GS

q ⋅1M + GG
q ⋅1N (5-165b)

Subject to the restrictions of no scatter and diffuse surface emission
and reflection, the above equations are the most general matrix state-
ment possible for the zone method. When P = 1, the directed
exchange areas all reduce to the total exchange areas for a single gray
gas. If, in addition, K = 0, the much simpler case of radiative transfer
in a transparent medium results. If, in addition, all surface zones are
black, the direct, total, and directed exchange areas are all identical.

Allowance for Flux Zones As in the case of a transparent
medium, we now distinguish between source and flux surface zones. Let
M = Ms + Mf represent the total number of surface zones where Ms is the
number of source-sink zones and Mf is the number of flux zones. The flux
zones are the last to be numbered. To accomplish this, partition the

surface emissive power and flux vectors as E = � � and Q = � �,

where the subscript 1 denotes surface source/sink zones whose emis-
sive power E1 is specified a priori, and subscript 2 denotes surface flux
zones of unknown emissive power vector E2 and known radiative flux
vector Q2. Suppose the radiative source vector S′ is known. Appropri-
ate partitioning of Eqs. (5-162) then produces

� � = � � ⋅ � � � �⋅� � − � � ⋅Eg

(5-166a)

and

S′ = GG
q ⋅Eg + [GS

q
1 GS
q

2] � � − 4KI
q⋅VI⋅Eg (5-166b)

where the definitions of the matrix partitions follow the conventions
with respect to Eq. (5-120). Simultaneous solution of the two
unknown vectors in Eqs. (5-166) then yields

E2 = RP⋅[SS
q

2,1 + SG
q

2⋅PP⋅GS
q

1]⋅E1 + RP⋅[Q2 − SSG
q

2⋅PP⋅S′] (5-167a)

and

Eg = PP⋅[GS
q

1 GS
q

2] � � − PP⋅S′ (5-167b)

where two auxiliary inverse matrices RP and PP are defined as

PP = [4KI
q⋅VI − GG

q]−1
(5-168a)

RP = [εAI2,2 − SS
q

2,2 − SG
q

2⋅PP⋅GS
q

2]
−1

(5-168b)

The emissive power vectors E and Eg are then both known quantities
for purposes of subsequent calculation.

Algebraic Formulas for a Single Gas Zone As shown in Fig.
5-10, the three-zone system with M = 2 and N = 1 can be employed to
simulate a surprisingly large number of useful engineering geometries.
These include two infinite parallel plates confining an absorbing-emit-
ting medium; any two-surface zone system where a nonconvex surface
zone is completely surrounded by a second zone (this includes con-
centric spheres and cylinders), and the speckled two-surface enclo-
sure. As in the case of a transparent medium, the inverse reflectivity
matrix R is capable of explicit matrix inversion for M = 2. This allows
derivation of explicit algebraic equations for all the required directed
exchange areas for the clear plus gray WSGG spectral model with M =
1 and 2 and N =1.

The Limiting Case M = 1 and N = 1 The directed exchange
areas for this special case correspond to a single well-mixed gas zone
completely surrounded by a single surface zone A1. Here the reflec-
tivity matrix is a 1 × 1 scalar quantity which follows directly from the

E1
�
E2

E1
�
E2

SG
q

1

SG
q

1

E1
�
E2

SS
q

1,2 SS
q

1,2

SS
q

2 ,1 SS
q

2,2

E1
�
E2

εAI1,1 0
0 εAI2,2

Q1
�
Q2

Q1
�
Q2

E1
�
E2

general matrix equations as R = [1�(A1 − s⎯1
⎯s⎯1

⎯⋅ρ1)]. There are two
WSCC clear plus gray constants a1 and ag, and only one unique direct
exchange area which satisfies the conservation relation ss⎯1

⎯s⎯1
⎯ + s⎯1

⎯g⎯ = A1.
The only two physically meaningful directed exchange areas are those
between the surface zone A1 and the gas zone

S1G
q = (5-169a)

GS1
q = (5-169b)

The total radiative flux Q1 at surface A1 and the radiative source term
Q1 = S are given by

Q1 = GS1
q⋅E1 − S1G

q ⋅Eg (5-169)

Directed Exchange Areas for M = 2 and N = 1 For this case
there are four WSGG constants, i.e., a1, a2, ag, and τg. There is one
required value of K that is readily obtained from the equation K = 
−ln(τg)/LM, where τg = exp(−KLM). For an enclosure with M = 2, N = 1,
and K ≠ 0, only three unique direct exchange areas are required
because conservation stipulates A1 = s1

⎯s2
⎯ +  s1s2

⎯ + s1g⎯ and A2 = s1s2
⎯ +  s2s2

⎯
+ s2g⎯. For M = 2 and N = 1, the matrix Eqs. (5-118) readily lead to the
general gray gas matrix solution for S

⎯
S
⎯

and SG
⎯

with K ≠  0 as

S
⎯
S
⎯
= � � (5-170a)

where

S1S
⎯⎯

2 = ε1ε2A1A2s⎯1
⎯s⎯2 /det R−1 (5-170b)

and SG
⎯ = � �/det R−1 (5-170c)

with GS
⎯

= SG
⎯ T

and the indicated determinate of R−1 is evaluated
algebraically as 

det R−1 = (A1 − s⎯1
⎯s⎯1·ρ1)·(A2 − s⎯2

⎯s⎯2·ρ2) − ρ1·ρ2·s⎯1
⎯s⎯2

2 (5-170d)

For the WSGG clear gas components we denote S
⎯
S
⎯ 

�
K = 0

≡ S
⎯
S
⎯

0 and
S
⎯
G
⎯ 

�
K = 0

≡ S
⎯
G
⎯

0
= 0. Finally the WSGG arrays of directed exchange

areas are computed simply from a-weighted sums of the gray gas total
exchange areas as

SS
q= S

⎯
S
⎯

0 ·� � + S
⎯
S
⎯

·� �

SG
q = SG

⎯
·ag (5-171a,b,c)

GS
q= GS

q
·� � ≠ SG

qT

and finally
GG
q = ag⋅4KV − GS

q ⋅� � (5-171d)

The results of this development may be further expanded into alge-
braic form with the aid of Eq. (5-127) to yield the following

S2S1
q = + (5-171e)

SGq = � ��det R−1 (5-171f)

and GSq = �GS1
q GS2

q � (5-171g)

ε1A1[(A2 − ρ2⋅s⎯2
⎯s⎯2)⋅s⎯1

⎯g⎯ + ρ2⋅s⎯1
⎯s⎯2⋅s⎯2

⎯g⎯]ag

ε2A2[(A1 − ρ1⋅s⎯1
⎯s⎯1)⋅s⎯2

⎯g⎯ + ρ1⋅s⎯1
⎯s⎯2⋅s⎯1

⎯g⎯]ag

ε1ε2A1A2ss⎯2
⎯s⎯1⋅a1

��
det R−1

ε1ε2A1A2⋅s⎯2
⎯s⎯1]0(1 − a1)

����
ε1ε1A1A2 + (ε1A1ρ2 + ε2A2ρ1)s⎯2

⎯s⎯1]0

1
1

a1 0
0 a2

a1 0
0 a2

1− a1 0
0 1−a2

ε1A1[(A2 − ρ2⋅s⎯2
⎯s⎯2)⋅s⎯1

⎯g⎯ + ρ2⋅s⎯1
⎯s⎯2⋅s⎯2

⎯g⎯]
ε2A2[(A1 − ρ1⋅s⎯1

⎯s⎯1)⋅s⎯2
⎯g⎯ + ρ1⋅s⎯1

⎯s⎯2⋅s⎯1
⎯g⎯]

ε1A1 − S
⎯

1
⎯
S
⎯

2
⎯
− S

⎯
1
⎯
G
⎯⎯

S
⎯

1
⎯
S
⎯

2
⎯

S
⎯

1
⎯
S
⎯

1
⎯

ε2A2 − S
⎯

1
⎯
S
⎯

2
⎯
− S

⎯
2
⎯
G
⎯

a1⋅ε1A1⋅s
⎯

1
⎯
g
⎯

��
ε1⋅A1 + ρ1⋅s⎯1

⎯g⎯

ag⋅ε1A1⋅ss⎯1
⎯g⎯

��
ε1⋅A1 + ρ1⋅s⎯1

⎯g⎯
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whose matrix elements are given by GS
q

1 ≡ ε1A1[(A2 − ρ2 ·ss⎯1
⎯s⎯1)·s⎯1

⎯g⎯ + ρ2·s⎯1
⎯s⎯2·

s⎯2
⎯g⎯]a1/det R−1 and GS

q
2 ≡ ε2A2[(A1−ρ1·ss⎯1

⎯s⎯1)·s⎯2
⎯g⎯ + ρ1·s⎯1

⎯s⎯2·s⎯1
⎯g⎯]a2/ det R−1.

Derivation of the scalar (algebraic) forms for the directed exchange
areas here is done primarily for pedagogical purposes. Computation-
ally, the only advantage is to obviate the need for a digital computer to
evaluate a [2 × 2] matrix inverse.

Allowance for an Adiabatic Refractory with N = 1 and M = 2
Put N = 1 and M = 2, and let zone 2 represent the refractory surface.
Let Q2 = 0 and ε2 ≠ 0, and it then follows that we may define a refrac-
tory-aided directed exchange area S1GR

q by

S1GR
q = S1G

q + (5-172a)

Assuming radiative equilibrium, the emissive power of the refractory
may also be calculated from the companion equation

E2 = (5-172b)

In this circumstance, all the radiant energy originating in the gas vol-
ume is transferred to the sole sink zone A1. Equation (5-172a) is thus
tantamount to the statement that Q1 = S′ or that the net emission from
the source ultimately must arrive at the sink. Notice that if ε1 = 0, Eq.
(5-172a) leads to a physically incongruous statement since all the
directed exchange areas would vanish and no sink would exist. Even for
the simple case of M = 2, N = 1, the algebraic complexity of Eqs. (5-171)
suggests that numerical matrix manipulation of directed exchange areas
is to be preferred rather than calculations using algebraic formulas.

Engineering Approximations for Directed Exchange Areas
Use of the preceding equations for directed exchange areas with M = 2,
N = 1 and the WSGG clear plus gray gas spectral approximation
requires knowledge of three independent direct exchange areas. It
also formally requires evaluation of three WSGG weighting constants
a1, a2, and ag with respect to the three temperatures T1, T2, and Tg.
Further simplifications may be made by assuming that radiant trans-
fer for the entire enclosure is characterized by the single mean beam
length LM = 0.88⋅4⋅V�A. The requisite direct exchange areas are then
approximated by

s⎯s⎯ = τg� � (5-173a)

with s⎯g⎯ = (1 − τg) � � (5-173b)

and for the particular case of a speckled enclosure

s⎯s⎯ = � � (5-174a)

also with s⎯g⎯ = (1 − τg) � � (5-174b)

where again τg is obtained from the WSGG fit of gas emissivity. These
approximate formulas clearly obviate the need for exact values of the
direct exchange areas and may be used in conjunction with Eqs. (5-171).

For engineering calculations, an additional simplification is some-
times warranted. Again characterize the system by a single mean beam
length LM = 0.88⋅4⋅V�A and employ the identical value of τg = KLM for
all surface-gas transfers. The three a constants might then be obtained
by a WSGG data-fitting procedure for gas emissivity and gas absorptiv-
ity which utilizes the three different temperatures Tg, T1, and T2. For
engineering purposes we choose a simpler method, however. First cal-
culate values of εg and αg1 for gas temperature Tg with respect to the
dominant (sink) temperature T1. The net radiative flux between an
isothermal gas mass at temperature Tg and a black isothermal bound-
ing surface A1 at temperature T1 (the sink) is given by Eq. (5-138) as

Q1,g = A1σ(αg,1T4
1 − εgTg

4) (5-175)

A1

A2

A2
1 A1⋅A2

A1⋅A2 A2
2

τg
�
A1 + A2

A1

A2

A1⋅F1,1 A1⋅F1,2

A2⋅F2,1 A2⋅F2,2

S2S
q

1⋅E1 + S2G
q ⋅Eg

��
S2S
q

1 + S2G
q

S1S2
q

�S2G
q

��
S1S2
q + S2G

q

It is clear that transfer from the gas to the surface and transfer from
the surface into the gas are characterized by two different constants of
proportionality, εg and αg,1. To allow for the difference between gas
emissivity and absorptivity, it proves convenient to introduce a single
mean gas emissivity defined by

σ[εg T4
g− αg,1T4

1] = εmσ(Tg
4 − T4

1) (5-176a)

or εm ≡ (5-176b)

The calculation then proceeds by computing two values of εm at the given
Tg and T1 temperature pair and the two values of pLM and 2pLM. We
thereby obtain the expression εm = am(1 − τm). It is then assumed that a1

= a2 = ag = am for use in Eqs. (5-171). This simplification may be used for
M > 2 as long as N = 1. This simplification is illustrated in Example 12.

Example 12: WSGG Clear plus Gray Gas Emissivity Calcula-
tions Methane is burned to completion with 20 percent excess air (50 per-
cent relative humidity at 298 K or 0.0088 mol water/mol dry air) in a furnace
chamber of floor dimensions 3 × 10 m and height 5 m. The entire surface area
of the enclosure is a gray sink with emissivity of 0.8 at temperature 1000 K. The
confined gas is well stirred at a temperature of 1500 K. Evaluate the clear plus
gray WSGG constants and the mean effective gas emissivity, and calculate the
average radiative flux density to the enclosure surface.

Two-zone model, M = 1, N = 1: A single volume zone completely surrounded
by a single sink surface zone.

Function definitions:

Gas emissivity: εgF(Tg, pL, b, n) := b⋅(pL − 0.015)n ÷ Tg

Eq. (5-140a)

Gas absorptivity: αg1F(Tg, T1, pL, b, n)
Εq. (5-141)

:=

Mean effective gas emissivity: εgm(εg, αg, Tg, T1) :=
Eq. (5-176a)

Physical constants: σ � 5.670400 × 10−8

Enclosure input parameters:

Tg := 1500 K T1 := 1000 K A1 := 190 m2 V := 150 m3

ε1 := 0.8 ρ1 := 1 − ε1 ρ1 = 0.2

E1 := σ⋅T1
4 Eg := σ⋅Tg

4 E1 = 56.70 Eg = 287.06

Stoichiometry yields the following mole table:

Mole Table: Basis 1.0 mol Methane

Species MW Moles in Mass in Moles out Y out

CH4 16.04 1.00000 16.04 0.00000 0.00000
O2 32.00 2.40000 76.80 0.40000 0.03193
N2 28.01 9.02857 252.93 9.02857 0.72061
CO2 44.01 0.00000 0.00 1.00000 0.07981
H2O 18.02 0.10057 1.81 2.10057 0.16765

Totals 27.742 12.52914 347.58 1.52914 1.00000

pW := .16765 atm pC := 0.07981 atm p := pW + pC p = 0.2475 atm
pW ÷ pC = 2.101

The mean beam length is approximated by

LM := 0.88 ⋅4 ⋅V ÷ A1 LM = 2.7789 m
and pLM := p⋅LM pLM = 0.6877 atm ⋅m pLM := 0.6877

The gas emissivities and absorptivities are then calculated from the two constant
correlation in Table 5-5 (column 5 with pw/pc = 2.0) as follows:

εg1 := εgF(1500, pLM, 540, .42) εg1 = 0.3048

kW
�
m2

kW
�
m2

W
�
m2⋅K4

εg − αg⋅(T1 ÷ Tg)4

��
1 − (T1 ÷ Tg)4

εgF(T1, pL⋅T1 ÷ Tg, b, n)⋅T1⋅ (Tg ÷ T1)0.5

�����
T1

εg − αg,1(T1�Tg)4

��
1 − (T1�Tg)4
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εg2 := εgF(1500, 2pLM, 540, .42) εg2 = 0.4097

αg11 := αg1F(1500, 1000, pLM, 444, .34) αg11 = 0.4124

αg12 := αg1F(1500, 1000, 2pLM, 444, .34) αg12 = 0.5250

Case (a): Compute Flux Density Using Exact Values of the WSGG Constants

τg := − 1 ag := εg := ag⋅(1 − τg) ag1 :=

τg = 0.3442 ag = 0.4647 εg = 0.3048 ag1 = 0.6289

and the WSGG gas absorption coefficient (which is necessary for calculation of

direct exchange areas) is calculated as K1 := or K1 = 0.3838

Compute directed exchange areas: 
Eqs. (5-169)

s1g := (1 − τg) ⋅A1 s1g = 124.61 m2

DS1G := DGS1 :=

DS1G = 49.75 m2 DGS1 = 67.32 m2

And finally the gas to sink flux density is computed as

Q1 := DGS1⋅E1 − DS1G⋅Eg Q1 = −10464.0 kW = −55.07

Case (b): Compute the Flux Density Using Mean Effective Gas Emissivity
Approximation

εgm1 := εgm(εg1,αg11,Tg,T1) εgm1 = 0.2783
εgm2 := εgm(εg2,αg12,Tg,T1) εgm2 = 0.3813

τm := − 1 am := εgm := am⋅(1 − τm)

τm = 0.3701 am = 0.4418 εgm = 0.2783 s1gm := (1 − τm)⋅A1

S1Gm := S1Gm = 45.68 m2 s1gm = 119.67 m2

q1m := q1m = −55.38

compared with = −55.07

The computed flux densities are nearly equal because there is a single sink zone A1.
(This example was developed as a MATHCAD 14® worksheet. Mathcad is a

registered trademark of Parametric Technology Corporation.)

ENGINEERING MODELS FOR FUEL-FIRED FURNACES

Modern digital computation has evolved methodologies for the design
and simulation of fuel-fired combustion chambers and furnaces which
incorporate virtually all the transport phenomena, chemical kinetics,
and thermodynamics studied by chemical engineers. Nonetheless,
there still exist many furnace design circumstances where such com-
putational sophistication is not always appropriate. Indeed, a practical
need still exists for simple engineering models for purposes of con-
ceptual process design, cost estimation, and the correlation of test
performance data. In this section, the zone method is used to develop
perhaps the simplest computational template available to address
some of these practical engineering needs.

Input/Output Performance Parameters for Furnace Opera-
tion The term firing density is typically used to define the basic
operational input parameter for fuel-fired furnaces. In practice, firing
density is often defined as the input fuel feed rate per unit area (or
volume) of furnace heat-transfer surface. Thus defined, the firing
density is a dimensional quantity. Since the feed enthalpy rate H

⋅
f is

kW
�
m2

Q1
�
A1

kW
�
m2

S1Gm⋅(E1 − Eg)
��

A1

ε1⋅am⋅s1gm⋅A1
��
ε1⋅A1+ ρ1⋅ s1gm)

εgm1
�
1 − τm

εgm2
�
εgm1

kW
�
m2

Q1
�
A1

ag1⋅ε1⋅A1⋅s1g
��
ε1⋅A1 + ρ1⋅s1g

ag⋅ε1⋅A1⋅s1g
��
ε1⋅A1 + ρ1⋅s1g

1
�
m

−(ln τg)
�

LM

αg11
�1 − τg

εg1
�
1 − τg

εg2
�εg1

proportional to the feed rate, we employ the sink area A1 to define
a dimensionless firing density as NFD = H

⋅
f �σ T4

Ref⋅A1 where TRef is
some characteristic reference temperature. In practice, gross furnace
output performance is often described by using one of several furnace
efficiencies. The most common is the gas or gas-side furnace effi-
ciency ηg, defined as the total enthalpy transferred to furnace inter-
nals divided by the total available feed enthalpy. Here the total
available feed enthalpy is defined to include the lower heating value
(LHV) of the fuel plus any air preheat above an arbitrary ambient
datum temperature. Under certain conditions the definition of fur-
nace efficiency reduces to some variant of the simple equation
ηg = (TRef − Tout)�(TRef − T0) where again TRef is some reference tem-
perature appropriate to the system in question.

The Long Plug Flow Furnace (LPFF) Model If a combustion
chamber of cross-sectional area ADuct and perimeter PDuct is sufficiently
long in the direction of flow, compared to its mean hydraulic radius,
L>>Rh = ADuct /PDuct, the radiative flux from the gas to the bounding
surfaces can sometimes be adequately characterized by the local gas
temperature. The physical rationale for this is that the magnitudes of
the opposed upstream and downstream radiative fluxes through a cross
section transverse to the direction of flow are sufficiently large as to
substantially balance each other. Such a situation is not unusual in engi-
neering practice and is referred to as the long furnace approximation.
As a result, the radiative flux from the gas to the bounding surface may
then be approximated using two-dimensional directed exchange

areas, S1G
q/A1 ≡ �

∂(
∂A

1G

1

q
)S

�, calculated using methods as described previously.

Consider a duct of length L and perimeter P, and assume plug flow
in the direction of flow z. Further assume high-intensity mixing at the
entrance end of the chamber such that combustion is complete as the
combustion products enter the duct. The duct then acts as a long heat
exchanger in which heat is transferred to the walls at constant tem-
perature T1 by the combined effects of radiation and convection. Sub-
ject to the long furnace approximation, a differential energy balance
on the duct then yields

ṁC
⎯

p = P� σ (Tg
4 − T4

1) + h(Tg − T1)� (5-177)

where ṁ is the mass flow rate and C
⎯

p is the heat capacity per unit mass.
Equation (5-177) is nonlinear with respect to temperature. To solve
Eq. (5-177), first linearize the convective heat-transfer term in the
right-hand side with the approximation ∆T = T2 − T1 ≈ (T4

2 − T4
1)�4T

⎯3
1,2

where T
⎯

1,2 = (T1 + T2)�2. This linearization underestimates ∆T by no
more than 5 percent when T2/T1 < 1.59. Integration of Eq. (5-177)
then leads to the solution

ln � � + 2.0 tan−1� � = −

(5-178)

The LPFF model is described by only two dimensionless parame-
ters, namely an effective firing density and a dimensionless sink tem-
perature, viz.,

Deff = and Θ1 = T1/Tg,in (5-178a,b)

Here the dimensionless firing density, NFD, and a dimensionless con-
vection-radiation namber NCR are defined as 

NFD = �
σ
m
·

˙

T
C
–

3
1 A

p

1
� and NCR = �

4σ
h
T
�−3

g,1
(5-178c,d)

where A1 = PL is the duct surface area (the sink area), and T
–

g,1 =
(T

–
g + T1)/2 is treated as a constant. This definition of the effective

dimensionless firing density, Deff, clearly delineates the relative

NFD
��

��
S
q

A
1G

1
�	 + NCR

4
�
Deff

(Tg,in − Tg,out)⋅T1
��(T2

1 + Tg,in⋅Tg,out)
(Tg,out − T1)(Tg,in + T1)
���
(Tg,out + T1)(Tg,in − T1)

S1G
q
�
A1

dTg
�
dz
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roles of radiation and convective heat transfer since radiation and
convection are identified as parallel (electrical) conductances.

In analogy with a conventional heat exchanger, Eq. (5-178) displays
two asymptotic limits. First define 

ηf =�
T
T
g,i

g

n

,in

−
−
T
T
g,o

1

ut
� = 1 −�

T
T

g

g

,o

,i

u

n

t

−
−

T
T

1

1
� (5-179)

as the efficiency of the long furnace. The two asymptotic limits with
respect to firing density are then given by 

Deff << 1, Tg,out → T1 ηf → 1 (5-179a)

and

Deff >> 1, Tg,out → Tg, in

η f → (5-179b)

where R � Tg, in �T1 = 1�Θ1.
For low firing rates, the exit temperature of the furnace gases

approaches that of the sink; i.e., sufficient residence time is provided
for nearly complete heat removal from the gases. When the combus-
tion chamber is overfired, only a small fraction of the available feed
enthalpy heat is removed within the furnace. The exit gas temperature
then remains essentially that of the inlet temperature, and the furnace
efficiency tends asymptotically to zero.

It is important to recognize that the two-dimensional exchange area

�
S
A
1
q

G

1
� ≡ �

∂(
∂
S
A
1
q

G

1

)
� in the definition of Deff can represent a lumped two-

dimensional exchange area of somewhat arbitrary complexity. This
quantity also contains all the information concerning furnace geome-
try and gas and surface emissivities. To compare the relative impor-
tance of radiation with respect to convection, suppose h = 10 Btu�(hr⋅
ft2⋅°R) = 0.057 kW�(K⋅m2) and T

⎯
g,1 = 1250 K, which leads to the

numerical value NCR = 0.128; or, in general, NCR is of order 0.1 or less.
The importance of the radiation contribution is estimated by bound-
ing the magnitude of the dimensionless directed exchange area. For
the case of a single gas zone completely surrounded by a black enclosure,
Eq. (5-169) reduces to simply S1

qG/A1 = εg ≤ 1.0, and it is evident that
the magnitude of the radiation contribution never exceeds unity. At
high temperatures, radiative effects can easily dominate other modes
of heat transfer by an order of magnitude or more. When mean beam
length calculations are employed, use LM/D = 0.94 for a cylindrical
cross section of diameter D, and

LM0 = �
H
2H
+
⋅W
W

�

for a rectangular duct of height H and width W.
The Well-Stirred Combustion Chamber (WSCC) Model

Many combustion chambers utilize high-momentum feed condi-
tions with associated high-intensity mixing. The well-stirred com-
bustion chamber (WSCC) model assumes a single gas zone and
high-intensity mixing. Moreover, combustion and heat transfer are
visualized to occur simultaneously within the combustion chamber.
The WSCC model is characterized by some six temperatures which
are listed in rank order as T0, Tair, T1, Te, Tg, and Tf. Even though the
combustion chamber is well mixed, it is arbitrarily assumed that the
gas temperature within the enclosure Tg is not necessarily equal to
the gas exit temperature Te. Rather the two temperatures are related
by the simple relation ∆Tge ≡ Tg − Te, where ∆Tge ≈ 170 K (as a repre-
sentative value) is introduced as an adjustable parameter for pur-
poses of data fitting and to make allowance for nonideal mixing. In
addition, T0 is the ambient temperature, Tair is the air preheat tem-
perature, and Tf is a pseudoadiabatic flame temperature, as shall be
explained in the following development. The condition ∆Tge ≡ 0 is
intended to simulate a perfect continuous well-stirred reactor
(CSTR).

4
���
Deff �1 − �

R
R
−
+

1
1

� − 2 �
R
R

2

−
+

1
1

��

Dimensional WSCC Approach A macroscopic enthalpy bal-
ance on the well-stirred combustion chamber is written as

−∆H = HIn − HOut = QRad + QCon + QRef (5-180)

Here QRad = S1
qGRσ(Tg

4 − T4
1) represents radiative heat transfer to the

sink (with due allowance for the presence of any refractory surfaces).
And the two terms QCon = h1A1(Tg − T1) and QRef = UAR(Tg − T0) for-
mulate the convective heat transfer to the sink and through the refrac-
tory, respectively.

Formulation of the left-hand side of Eq. (5-180) requires representa-
tive thermodynamic data and information on the combustion stoichiom-
etry. In particular, the former includes the lower heating value of the fuel,
the temperature-dependent molal heat capacity of the inlet and outlet
streams, and the air preheat temperature Tair. It proves especially conve-
nient now to introduce the definition of a pseudoadiabatic flame temper-
ature Tf, which is not the true adiabatic flame temperature, but rather is
an adiabatic flame temperature based on the average heat capacity of the
combustion products over the temperature interval T0 < T < Te. The cal-
culation of Tf does not allow for dissociation of chemical species and is a
surrogate for the total enthalpy content of the input fuel-air mixture. It
also proves to be an especially convenient system reference temperature.
Details for the calculation of Tf are illustrated in Example 13.

In terms of this particular definition of the pseudoadiabatic flame
temperature Tf, the total enthalpy change and gas efficiency are given
simply as

∆H = H
·

f − m· ⋅ C
⎯

P, Prod (Te − T0) = m· C
⎯

P,Prod (Tf − Te) (5-181a,b)

where H
·

f � m· ⋅ C
⎯

p,Prod (Tf − T0) and Te = Tg − ∆Tge. This particular defi-
nition of Tf leads to an especially convenient formulation of furnace
efficiency

ηg = Q�H
⋅

f = = (5-182)

In Eq. (5-182), m⋅ is the total mass flow rate and C
⎯

P,Prod [J�(kg ⋅K)] is
defined as the average heat capacity of the product stream over the
temperature interval T0 < T < Te.

The final overall enthalpy balance is then written as

m· ⋅C
⎯

P,Prod(Tf − Te) = S1
qGR σ (Tg

4 − T 4
1) + h1A1(Tg − T1) + UAR(Tg − T0)

(5-183)

with Te = Tg − ∆Tge.
Equation (5-183) is a nonlinear algebraic equation which may be

solved by a variety of iterative methods. The sole unknown quantity,
however, in Eq. (5-183) is the gas temperature Tg. It should be recog-
nized, in particular, that Tf, Te, C

⎯
P,Prod, and the directed exchange area

are all explicit functions of Tg. The method of solution of Eq. (5-183)
is demonstrated in some detail in Example 13.

Dimensionless WSCC Approach In Eq. (5-183), assume the
convective heat loss through the refractory is negligible, and linearize
the convective heat transfer to the sink. These approximations lead to
the result

m· ⋅C
⎯

P,Prod (Tf − Tg + ∆Tge) = S1
qGR σ(Tg

4 − T 4
1) + h1 A1(Tg

4 − T 4
1)�4T

⎯ 3
g,1

(5-184)

where T
⎯

g,1 = (Tg + T1)�2 is some characteristic average temperature
which is taken as constant. Now normalize all temperatures based on
the pseudoadiabatic temperature as in Θi = Ti �Tf. Equation (5-184)
then leads to the dimensionless equation

Deff (1 − Θg + ∆* ) = (Θg
4 − Θ4

1) (5-185)

where again Deff = NFD �(S1
qG�A1 + NCR) is defined exactly as in the

case of the LPFF model, with the proviso that the WSCC dimension-
less firing density is defined here as NFD = m· C

⎯
P,Prod /(σ Tf

3⋅A1). The
dimensionless furnace efficiency follows directly from Eq. (5-182) as

ηg = = (5-186a)
1 − Θg + ∆*
��

1 − Θ0

1 − Θe
�
1 − Θ0

Tf − Te
�
Tf − T0

m· ⋅C
⎯

P, Prod (Tf − Te)
��
m· ⋅C

⎯
P,Prod(Tf − T0)
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We also define a reduced furnace efficiency η′g
η′g � (1 − Θ0)ηg = 1 − Θg + ∆* (5-186b)

Since Eq. (5-186b) may be rewritten as Θg = (1 + ∆* − η′g), combina-
tion of Eqs. (5-185) and (5-186b) then yields the final result

Deffη′g = (1 + ∆* − η′g)4 − Θ4
1 (5-187)

Equation (5-187) provides an explicit relation between the modified
furnace efficiency and the effective firing density directly in which the
gas temperature is eliminated.

Equation (5-187) has two asymptotic limits

Deff << 1 Θg → Θ1

η′g → 1 − Θ1 + ∆* (5-188a)

and
Deff >> 1 Θg→1 + ∆* and Θe→1

η′g → (5-188b)

Figure 5-23 is a plot of η′g versus Deff computed from Eq. (5-187) for
the case ∆* = 0.

The asymptotic behavior of Eq. (5-189) mirrors that of the LPFF
model. Here, however, for low firing densities, the exit temperature of
the furnace exit gases approaches Θe = Θ1 − ∆* rather than the sink
temperature. Moreover, for Deff << 1 the reduced furnace efficiency
adopts the constant value η′g = 1 − Θe = 1 + ∆* − Θ1. Again at very high
firing rates, only a very small fraction of the available feed enthalpy
heat is recovered within the furnace. Thus the exit gas temperature
remains nearly unchanged from the pseudoadiabatic flame tempera-
ture [Te ≈ Tf,] and the gas-side efficiency necessarily approaches zero.

Example 13: WSCC Furnace Model Calculations Consider the
furnace geometry and combustion stoichiometry described in Example 12. The
end-fired furnace is 3 m wide, 5 m tall, and 10 m long. Methane at a firing rate
of 2500 kg/h is burned to completion with 20 percent excess air which is pre-
heated to 600°C. The speckled furnace model is to be used. The sink (zone 1)

(1 + ∆*)4 − Θ4
1

��
Deff + 4(1 + ∆*)3

occupies 60 percent of the total interior furnace area and is covered with two
rows of 5-in (0.127-m) tubes mounted on equilateral centers with a center-to-
center distance of twice the tube diameter. The sink temperature is 1000 K, and
the tube emissivity is 0.7. Combustion products discharge from a 10-m2 duct in
the roof which is also tube-screen covered and is to be considered part of the
sink. The refractory (zone 2) with emissivity 0.6 is radiatively adiabatic but
demonstrates a small convective heat loss to be calculated with an overall heat
transfer coefficient U. Compute all unknown furnace temperatures, the gas-side
furnace efficiency, and the mean heat flux density through the tube surface. Use
the dimensional solution approach for the well-stirred combustor model and
compare computed results with the dimensionless WSCC and LPFF models.
Computed values for mean equivalent gas emissivity obtained from Eq. 
(5-174b) and Table 5-5 for Tg = 2000 K for LM = 2.7789 m and T1 = 1000 K are
found to be

Tg = 1500 K am = 0.44181 τm = 0.37014 εm = 0.27828

Tg = 2000 K am = 0.38435 τm = 0.41844 εm = 0.22352

Over this temperature range the gas emissivity may be calculated by linear
interpolation. Additional heat-transfer and thermodynamic data are supplied in
context.

Three-zone speckled furnace model, M = 2, N = 1:
Zone 1: Sink (60 percent of total furnace area)
Zone 2: Refractory surface (40 percent of total furnace area)
Physical constants:

σ ≡ 5.670400 × 10−8

Linear interpolation function for mean effective gas emissivity constants:

LINTF(T, Y2, Y1):= (1500 K < T < 2000 K)

Enclosure input parameters:

Vtot := 150 m3 Atot := 190 m2 C1 := 0.6 C2 := 1 − C1

A1 := C1⋅Atot A2 := C2⋅Atot Dtube := .127 m

Direct exchange areas for WSGG clear gas component (temperature inde-
pendent):

F := � 	 AI := � 	 ss1 := AI·F ss1 = � 	m2
68.40 45.60

45.60 30.40
A1 0
0 A2

C1 C2

C1 C2

Y1⋅(2000 K − T) + Y2⋅(T − 1500 K)
����

500 K

W
�
m2⋅K4
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Equivalent gray plane emissivity calculations for sink:

εtube := 0.7 Fbar := 0.987 (from Fig. 5-13, curve 6 with ratio = 2.0)

ε1eq := ε1eq = 0.86988

ε1 := ε1eq ε2 := 0.6 εI := � 	 ρI := identity (2) − εI

Total exchange areas for WSGG clear gas component:

R1 := (AI − ss1⋅ρI)−1 SS1 := εI⋅AI⋅R1⋅ss1⋅εI SS1 = � 	 m2

Temperature and emissive power input data:

T1 := 1000.0 K Tair := 873.15 K

T0 := 298.15 K ∆Tge := 170 K E1 := σ⋅T1
4 E1 = 56.704

Mean beam length calculations:

LM0 := 4⋅ LM0 = 3.1579 m LM := 0.88LM0 LM = 2.7789 m

Stoichiometric and thermodynamic input data:

MCH4dot := 2500 MWCH4 := 16.04 MWin := 27.742


Mols := 12.52914 LHV := 191760 MCpair := 7.31

MCp(T) := �7.01 + 0.875� 	� (800 K < T < 1200 K)

Mdot is the total mass flowrate and NCH4dot is the molal flowrate of CH4.

Mdot := NCH4dot :=

Mdot = 54174.5 NCH4dot = 155860.3

Overall refractory heat-transfer coefficient:

Dr := 0.343 m kr := 0.00050

h0 := 0.0114· h0 = 2.0077 h1 := 0.0170

h1 = 2.9939 U :=

U = 0.001201 U = 0.2115

START OF ITERATION LOOP: Successive Substitution with Tg as the Trial
Variable

Assume Tg := 1759.1633222447 K Te := Tg − ∆Tge Te = 1589.2 K

Eg := σ⋅Tg
4 Eg = 543.05

Compute temperature-dependent mean effective gas emissivity via linear
interpolation:

τm := LINTF(Tg, 0.37014, 0.418442) am := LINTF (Tg, 0.44181, 0.38435)

τm = 0.3934 am = 0.4141 εm := am⋅(1 − τm) εm = 0.2512

Compare interpolated value:

εcom := LINTF(Tg, 0.27828, 0.22352) εcom = 0.2519

Direct and total exchange areas for WSGG gray gas component:

ss2 := τm⋅ss1 sg2 := (AI − ss2)� � R2 := (AI − ss2⋅ρI)−11
1
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�
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ss2 = � 	m2 sg2 = � 	 m2 SS2 := εI⋅AI⋅R2⋅ss2⋅εI

Compute directed exchange areas:

DSS := (1 − am)⋅SS1 + am⋅SS2 DSG := am⋅εI⋅AI⋅R2⋅sg2

Refractory augmented directed gas-sink exchange area:

DS1GR := DSG1 + DS1GR = 35.59 m2 Eq. (5-172a)

Compute refractory temperature (T2); assume radiative equilibrium:

Equation (5-172b): E2 :=

E2 = 231.24

T2 := � 	
0.25

T2 = 1421.1 K

Enthalpy balance: Basis: 1 mole CH4:

hin := LHV + (ΣMols − 1)⋅MCpair⋅(Tair − T0) hin = 240219.9

Compute pseudoadiabatic flame temperature Tf:

Tf := T0 + hout := ΣMols⋅MCp(Te)⋅(Te − T0)

Tf = 2580.5 K hout = 135880.8

Hin := NCH4dot⋅hin Hout := NCH4dot⋅hout ∆H := Hout − Hin

Hin = 43543.59 kW Hout = 24630.51 kW ∆H = −18913.08 kW

Overall enthalpy balance:

Q1g := DS1GR⋅(Eg − E1) Q1g = 17308.45 kW

Q1Con := h1⋅A1⋅(Tg − T1) Q1Con = 1471.26 kW

Q2Con := U⋅A2⋅(Tg − T0) Q2Con = 133.37 kW

ERROR := Q1g + Q1Con + Q2Con + ∆H %ERROR1 := 100

ERROR = −0.0000 kW %ERROR1 = 0.00000

Tgcalc := � �0.25
Tgcalc = 1759.16332 K

Average assumed and calculated temperatures for next iteration

Tgnew := Tgnew = 1759.1633222935 K Go to Start

END OF ITERATION LOOP: Final Gas Temperature Tg = 1759.16 K

ηg := or η1g := ηg = 0.43435 η1g = 0.43435

Heat flux density calculations:

q1 := qtube := q1⋅�2⋅ 	
q1 = 164.7 qtube = 52.44

Note: This example was also solved with ∆Tge = 0. The results were as follows:
Tf = 2552.8 K, Tg = Te = 1707.1 K, T2 = 1381.1 K, ηg = 37.51 percent, Deff =
0.53371, and ∆H = 16332.7 kW. The WSCC model with ∆Tge = 0 predicts a
lower performance bound.

Compare dimensionless WSCC model:

Θ0 := Θ1 := ∆Tstar :=

Tg1 :=
T1 + Tg
�

2

∆Tge
�

Tf

T1
�
Tf
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�
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�
m2

kW
�
m2

Dtube
��
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��
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�
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��

Hin
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��

2
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����
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�
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��
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�
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�
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DSS2,1⋅E1 + DSG2⋅Eg
���

DSS2,1 + DSG2
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��
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69.15
46.10

26.91 17.94
17.94 11.96
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Θ0 = 0.1155 Θ1 = 0.3875 ∆Tstar = 0.06588 Tg1 = 1379.58 K

CpProd := CpProd = 0.000352 kW⋅

NFD := Mdot⋅ NCR := Deff :=

NFD = 0.17176 NCR = 0.02855 Deff = 0.50409 = 0.31218

ηprime := ηg⋅(1 − Θ0) D1eff :=

D1eff = 0.50350 versus Deff = 0.50409

This small discrepancy is due to linearization and neglect of convective refrac-
tory heat losses in the dimensionless WSCC model.

Compare dimensionless LPFF model:

Rin := Rin = 2.58050

Trial and error calculation to match effective firing densities:
Assume:

Tout := 1000.13763 K Rout := Rout = 1.00014 = 7.93513

CLong := −ln� � −2⋅atan� 	 CLong = 7.93514

ηLf := ηLf = 0.99991292 versus ηg = 0.43435

Note: The long plug flow furnace Model is so efficient that it would be grossly
underfired using the computed WSCC effective firing density. Of the two mod-
els, the LPFF model always predicts an upper theoretical performance limit.

(This example was developed as a MATHCAD 14® worksheet. Mathcad is reg-
istered trademark of Parametric Technology Corporation.)

WSCC Model Utility and More Complex Zoning Models
Despite its simplicity, the WSCC construct has a wide variety of prac-
tical uses and is of significant pedagogical value. Here an engineering
situation of inordinate complexity is described by the definition
of only eight dimensionless quantities Deff, NFD, SS1

qGR�A1, NCR, ηg, ∆*,
Θ0, and Θ1. The first three are related by the simple algebraic defini-
tion Deff = NFD�(S1

qGR�A1 + NCR). These dimensionless quantities con-
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4
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tain all the physical input information for the model, namely, furnace
parameters and geometry, radiative properties of the combustion
products, and the stoichiometry and thermodynamics of the combus-
tion process. The WSCC model leads to a dimensionless two-dimen-
sional plot of reduced effective furnace efficiency versus
dimensionless effective firing density (Fig. 5-23), which is character-
ized by only two additional parameters, namely, ∆* and Θ1.

Of the models presented here, the WSCC model with ∆Tge = 0 pro-
duces the lowest furnace efficiencies. The long furnace model usually
produces the highest furnace efficiency. This is really not a fair statement
because two distinctly different pieces of process equipment are com-
pared. In this regard, a more appropriate definition of the dimensionless
firing density for the LPFF model might be N′FD = ⋅m −

Cp /(σ⋅T3
g,in⋅A1).

It may be counterintuitive, but the WSCC and LPFF models gener-
ally do not characterize the extreme conditions for the performance of
combustors as in the case of chemical reactors.

Figure 5-23 has been used to correlate furnace performance data for
a multitude of industrial furnaces and combustors. Typical operational
domains for a variety of fuel-fired industrial furnaces are summarized
in Table 5-7. The WSCC approach (or “speckled” furnace model) is a
classic contribution to furnace design methodology which was first due
to Hottel [op. cit.]. The WSCC model provides a simple furnace design
template which leads to a host of more complex furnace models. These
models include an obvious extension to a tanks-in-series model as well
as multizone models utilizing empirical cold-flow velocity patterns. For
more information on practical furnace design models, reference is
made to Hottel and Sarofim (op. cit., Chap. 14). Qualitative aspects of
process equipment have been treated in some detail elsewhere
(Baukal, C. E., ed., The John Zink Combustion Handbook, CRC Press,
Boca Raton, Fla., 2001).
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INTRODUCTION

This part of Sec. 5 provides a concise guide to solving problems in sit-
uations commonly encountered by chemical engineers. It deals with
diffusivity and mass-transfer coefficient estimation and common flux
equations, although material balances are also presented in typical
coordinate systems to permit a wide range of problems to be formu-
lated and solved.

Mass-transfer calculations involve transport properties, such as
diffusivities, and other empirical factors that have been found to
relate mass-transfer rates to measured “driving forces” in myriad
geometries and conditions. The context of the problem dictates
whether the fundamental or more applied coefficient should be
used. One key distinction is that, whenever there is flow parallel to
an interface through which mass transfer occurs, the relevant coeffi-
cient is an empirical combination of properties and conditions. Con-
versely, when diffusion occurs in stagnant media or in creeping flow
without transverse velocity gradients, ordinary diffusivities may be
suitable for solving the problem. In either case, it is strongly sug-
gested to employ data, whenever available, instead of relying on cor-
relations.

Units employed in diffusivity correlations commonly followed the
cgs system. Similarly, correlations for mass transfer correlations used
the cgs or English system. In both cases, only the most recent correla-
tions employ SI units. Since most correlations involve other properties
and physical parameters, often with mixed units, they are repeated
here as originally stated. Common conversion factors are listed in
Table 1-4.

Fick’s First Law This law relates flux of a component to its 
composition gradient, employing a constant of proportionality called a
diffusivity. It can be written in several forms, depending on the units
and frame of reference. Three that are related but not identical are

VJA = −DAB ≈ MJA = −cDAB ∝ m JA = −ρDAB (5-189)

The first equality (on the left-hand side) corresponds to the molar flux
with respect to the volume average velocity, while the equality in the
center represents the molar flux with respect to the molar average
velocity and the one on the right is the mass flux with respect to the
mass average velocity. These must be used with consistent flux expres-
sions for fixed coordinates and for NC components, such as:

NA = VJA + cA 

NC

i = 1

NiV�i = MJA + xA 

NC

i = 1

Ni = (5-190)

In each case, the term containing the summation accounts for con-
veyance, which is the amount of component A carried by the net flow
in the direction of diffusion. Its impact on the total flux can be as
much as 10 percent. In most cases it is much less, and it is frequently
ignored. Some people refer to this as the “convective” term, but that
conflicts with the other sense of convection which is promoted by flow
perpendicular to the direction of flux.

Mutual Diffusivity, Mass Diffusivity, Interdiffusion Coeffi-
cient Diffusivity is denoted by DAB and is defined by Fick’s first law
as the ratio of the flux to the concentration gradient, as in Eq. (5-189).
It is analogous to the thermal diffusivity in Fourier’s law and to the
kinematic viscosity in Newton’s law. These analogies are flawed
because both heat and momentum are conveniently defined with
respect to fixed coordinates, irrespective of the direction of transfer or
its magnitude, while mass diffusivity most commonly requires infor-

mJA + wA 

NC

i = 1

ni

��
MA

dwA
�
dz

dxA
�
dz

dcA
�
dz

mation about bulk motion of the medium in which diffusion occurs.
For liquids, it is common to refer to the limit of infinite dilution of A
in B using the symbol, D°AB.

When the flux expressions are consistent, as in Eq. (5-190), the
diffusivities in Eq. (5-189) are identical. As a result, experimental
diffusivities are often measured under constant volume conditions
but may be used for applications involving open systems. It turns out
that the two versions are very nearly equivalent for gas-phase sys-
tems because there is negligible volume change on mixing. That is
not usually true for liquids, however.

Self-Diffusivity Self-diffusivity is denoted by DA′A and is the
measure of mobility of a species in itself; for instance, using a small
concentration of molecules tagged with a radioactive isotope so
they can be detected. Tagged and untagged molecules presumably
do not have significantly different properties. Hence, the solution is
ideal, and there are practically no gradients to “force” or “drive” dif-
fusion. This kind of diffusion is presumed to be purely statistical in
nature.

In the special case that A and B are similar in molecular weight,
polarity, and so on, the self-diffusion coefficients of pure A and B will
be approximately equal to the mutual diffusivity, DAB. Second, when A
and B are the less mobile and more mobile components, respectively,
their self-diffusion coefficients can be used as rough lower and upper
bounds of the mutual diffusion coefficient. That is, DA′A ≤ DAB ≤ DB′B.
Third, it is a common means for evaluating diffusion for gases at high
pressure. Self-diffusion in liquids has been studied by many [Easteal,
AIChE J. 30, 641 (1984), Ertl and Dullien, AIChE J. 19, 1215 (1973),
and Vadovic and Colver, AIChE J. 18, 1264 (1972)].

Tracer Diffusivity Tracer diffusivity, denoted by DA′B is
related to both mutual and self-diffusivity. It is evaluated in the 
presence of a second component B, again using a tagged isotope of
the first component. In the dilute range, tagging A merely provides
a convenient method for indirect composition analysis. As con-
centration varies, tracer diffusivities approach mutual diffusivities at
the dilute limit, and they approach self-diffusivities at the pure com-
ponent limit. That is, at the limit of dilute A in B, DA ′B → D°AB and
DB ′A → DB ′B; likewise at the limit of dilute B in A, DB ′A → D°BA and
DA ′B → DA′A.

Neither the tracer diffusivity nor the self-diffusivity has much prac-
tical value except as a means to understand ordinary diffusion and as
order-of-magnitude estimates of mutual diffusivities. Darken’s equa-
tion [Eq. (5-230)] was derived for tracer diffusivities but is often used
to relate mutual diffusivities at moderate concentrations as opposed to
infinite dilution.

Mass-Transfer Coefficient Denoted by kc, kx, Kx, and so on, the
mass-transfer coefficient is the ratio of the flux to a concentration (or
composition) difference. These coefficients generally represent rates
of transfer that are much greater than those that occur by diffusion
alone, as a result of convection or turbulence at the interface where
mass transfer occurs. There exist several principles that relate that
coefficient to the diffusivity and other fluid properties and to the
intensity of motion and geometry. Examples that are outlined later are
the film theory, the surface renewal theory, and the penetration the-
ory, all of which pertain to idealized cases. For many situations of
practical interest like investigating the flow inside tubes and over flat
surfaces as well as measuring external flow through banks of tubes, in
fixed beds of particles, and the like, correlations have been developed
that follow the same forms as the above theories. Examples of these
are provided in the subsequent section on mass-transfer coefficient
correlations.

Problem Solving Methods Most, if not all, problems or applica-
tions that involve mass transfer can be approached by a systematic
course of action. In the simplest cases, the unknown quantities are
obvious. In more complex (e.g., multicomponent, multiphase, multi-
dimensional, nonisothermal, and/or transient) systems, it is more sub-
tle to resolve the known and unknown quantities. For example, in
multicomponent systems, one must know the fluxes of the compo-
nents before predicting their effective diffusivities and vice versa.
More will be said about that dilemma later. Once the known and
unknown quantities are resolved, however, a combination of conser-
vation equations, definitions, empirical relations, and properties are
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Nomenclature and Units—Mass Transfer

Symbols Definition SI units U.S. Customary units

a Effective interfacial mass transfer area per m2/m3 ft2/ft3

unit volume
Acs Cross-sectional area of vessel m2 or cm2 ft2

A′ Constant (see Table 5-24-K)
ap See a
c Concentration = P/RT for an ideal gas mol/m3 or mol/l or gequiv/l lbmol/ft3

ci Concentration of component i = xic at gas-liquid interface mol/m3 or mol/l or gequiv/l lbmol/ft3

cP Specific heat kJ/(kg⋅K) Btu/(lb⋅°F)
d Characteristic length m or cm ft
db Bubble diameter m ft
dc Column diameter m or cm ft
d�drop Sauter mean diameter m ft
dimp Impeller diameter m ft
dpore Pore diameter m or cm ft
DA′A Self-diffusivity (= DA at xA = 1) m2/s or cm2/s ft2/h
DAB Mutual diffusivity m2/s or cm2/s ft2/h
D°AB Mutual diffusivity at infinite dilution of A in B m2/s or cm2/s ft2/h
Deff Effective diffusivity within a porous solid = εpD/τ m2/s ft2/h
DK Knudson diffusivity for gases in small pores m2/s or cm2/s ft2/h
DL Liquid phase diffusion coefficient m2/s ft2/h
DS Surface diffusivity m2/s or cm2/s ft2/h
E Energy dissipation rate/mass
ES Activation energy for surface diffusion J/mol or cal/mol
f Friction factor for fluid flow Dimensionless Dimensionless
F Faraday’s constant 96,487 Coulomb/gequiv
g Acceleration due to gravity m/s2 ft/h2

gc Conversion factor 1.0 4.17 × 108 lb ft/[lbf⋅h2]
G Gas-phase mass flux kg/(s⋅m2) lb/(h⋅ft2)
Ga Dry air flux kg/(s⋅m2) lb/(h⋅ft2)
GM Molar gas-phase mass flux kmol/(s⋅m2) (lbmol)/(h⋅ft2)
h′ Heat transfer coefficient W/(m2⋅K) = J/(s⋅m2⋅K) Btu/(h⋅ft2⋅°F)
hT Total height of tower packing m ft
H Compartment height m ft
H Henry’s law constant kPa/(mole-fraction solute (lbf/in2)/(mole-fraction

in liquid phase) solute in liquid phase)
H′ Henry’s law constant kPa/[kmol/(m3 solute in (lbf/in2)/[(lbmol)/(ft3 solute in

liquid phase)] liquid phase)] or atm/[(lbmole)/
(ft3 solute in liquid phase)]

HG Height of one transfer unit based on gas-phase resistance m ft
HOG Height of one overall gas-phase mass-transfer unit m ft
HL Height of one transfer unit based on liquid-phase resistance m ft
HOL Height of one overall liquid-phase mass-transfer unit m ft
HTU Height of one transfer unit (general) m ft
jD Chilton-Colburn factor for mass transfer, Eq. (5-289) Dimensionless Dimensionless
jH Chilton-Colburn factor for heat transfer Dimensionless Dimensionless
jM See jD

m JA Mass flux of A by diffusion with respect kmol/(m2⋅s) or mol/(cm2⋅s) lbmol/(ft2⋅h)
to the mean mass velocity

MJA Molar flux of A by diffusion with respect kmol/(m2⋅s) or mol/(cm2⋅s) lbmol/(ft2⋅h)
to mean molar velocity

VJA Molar flux of A with respect to mean volume velocity kmol/(m2⋅s) lbmol/(ft2⋅h)
JSi Molar flux by surface diffusion kmol/(m2⋅s) or gmol/(cm2⋅s) lbmol/(ft2⋅h)
k Boltzmann’s constant 8.9308 × 10−10 gequiv ohm/s
k Film mass transfer coefficient m/s or cm/s ft/hr
k Thermal conductivity (J⋅m)/(s⋅m2⋅K) Btu/(h⋅ft⋅°F)
k′ Mass-transfer coefficient for dilute systems kmol/[(s⋅m2)(kmol/m3)] lbmol/[(h⋅ft2)(lbmol/ft3)]

or m/s or ft/hr
kG Gas-phase mass-transfer coefficient for dilute systems kmol/[(s⋅m2)(kPa solute lbmol/[(h⋅ft2)lbf/in2

partial pressure)] solute partial pressure)]
k′G Gas-phase mass-transfer coefficient for dilute systems kmol/[(s⋅m2)(mole fraction lbmol/[(h⋅ft2)(mole fraction

in gas)] in gas)]
kGa Volumetric gas-phase mass-transfer kmol/[(s⋅m3)(mole fraction)] (lbmol)/[(h⋅ft3)(mole fraction)]
k̂Ga Overall volumetric gas-phase mass-transfer kmol/(s⋅m3) lbmol/(h⋅ft3)

coefficient for concentrated systems
k̂°L Liquid phase mass transfer coefficient kmol/(s⋅m2) lbmol/(h⋅ft2)

for pure absorption (no reaction)
kL Liquid-phase mass-transfer coefficient for dilute systems kmol/[(s⋅m2)(mole-fraction (lbmol)/[(h⋅ft2)(mole-fraction

solution in liquid)] solute in liquid)]
k′L Liquid-phase mass-transfer coefficient for dilute systems kmol/[(s⋅m2)(kmol/m3)] or m/s (lbmol)/[(h⋅ft2)(lbmol/ft3)] or ft/h
k̂L Liquid-phase mass-transfer coefficient for concentrated kmol/(s⋅m2) lbmol/(h⋅ft2)

systems
kLa Volumetric liquid-phase mass-transfer coefficient for kmol/[(s⋅m3)(mole fraction)] (lbmol)/[(h⋅ft3)(mole fraction)]

dilute systems
K Overall mass transfer coefficient m/s or cm/s ft/h
K α/R = specific conductance ohm/cm
KG Overall gas-phase mass-transfer coefficient for dilute kmol/[(s⋅m2)(mole fraction)] (lbmol)/[(h⋅ft2)(mole fraction)]

systems
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Nomenclature and Units—Mass Transfer (Continued )

Symbols Definition SI units U.S. Customary units

K̂G Overall gas-phase mass-transfer coefficient for kmol/(s⋅m2) lbmol/(h⋅ft2)
concentrated systems

KGa Overall volumetric gas-phase mass-transfer dilute systems kmol/[(s⋅m3)(mole-fraction (lbmol)/[(h⋅ft3(mole-fraction
solute in gas)] solute in gas)]

K′Ga Overall volumetric gas-phase mass-transfer dilute systems kmol/[(s⋅m3)(kPa solute (lbmol)/[(h⋅ft3)(lbf/in2 solute
partial pressure)] partial pressure)]

(Ka)H Overall enthalpy mass-transfer coefficient kmol/[(s⋅m2)(mole fraction)] lb/[(h⋅ft3)(lb water/lb dry air)]
KL Overall liquid-phase mass-transfer coefficient kmol/[(s⋅m2)(mole fraction)] (lbmol)/[(h⋅ft2)(mole fraction)]
K̂L Liquid-phase mass-transfer coefficient for concentrated kmol/(s⋅m2) (lbmol)/(h⋅ft2)

systems
KLa Overall volumetric liquid-phase mass-transfer coefficient kmol/[(s⋅m3)(mole-fraction (lbmol)/[(h⋅ft3)(mole-fraction

for dilute systems solute in liquid)] solute in liquid)]
K̂La Overall volumetric liquid-phase mass-transfer coefficient kmol/(s⋅m3) (lbmol)/(h⋅ft3)

for concentrated systems
L Liquid-phase mass flux kg/(s⋅m2) lb/(h⋅ft2)
LM Molar liquid-phase mass flux kmol/(s⋅m2) (lbmol)/(h⋅ft2)
m Slope of equilibrium curve = dy/dx (mole-fraction solute Dimensionless Dimensionless

in gas)/(mole-fraction solute in liquid)
m Molality of solute mol/1000 g solvent
Mi Molecular weight of species i kg/kmol or g/mol lb/lbmol
M Mass in a control volume V kg or g lb
|n+ �n −| Valences of cationic and anionic species Dimensionless Dimensionless
n′ See Table 5-24-K Dimensionless Dimensionless
nA Mass flux of A with respect to fixed coordinates kg/(s⋅m2) lb/(h⋅ft2)
N Impeller speed Revolution/s Revolution/min
N′ Number deck levels Dimensionless Dimensionless
NA Interphase mass-transfer rate of solute A per interfacial kmol/(s⋅m2) (lbmol)/(h⋅ft2)

area with respect to fixed coordinates
Nc Number of components Dimensionless Dimensionless
NFr Froude Number (dimp N2/g) Dimensionless Dimensionless

NGr Grashof number � � − 1		 Dimensionless Dimensionless

NOG Number of overall gas-phase mass-transfer units Dimensionless Dimensionless
NOL Number of overall liquid-phase mass-transfer units Dimensionless Dimensionless
NTU Number of transfer units (general) Dimensionless Dimensionless
NKn Knudson number = l/dpore Dimensionless Dimensionless
NPr Prandtl number (cpµ/k) Dimensionless Dimensionless
NRe Reynolds number (Gd/µG) Dimensionless Dimensionless
NSc Schmidt number (µG/ρGDAB) or (µL/ρLDL) Dimensionless Dimensionless
NSh Sherwood number (k̂GRTd/DABpT), see also Tables 5-17 to 5-24 Dimensionless Dimensionless
NSt Stanton number (k̂G/GM) or (k̂L/LM) Dimensionless Dimensionless
NW Weber number (ρcN2d3

imp/σ) Dimensionless Dimensionless
p Solute partial pressure in bulk gas kPa lbf/in2

pB,M Log mean partial pressure difference of stagnant gas B Dimensionless Dimensionless
pi Solute partial pressure at gas-liquid interface kPa lbf/in2

pT Total system pressure kPa lbf/in2

P Pressure Pa lbf/in2 or atm
P Power Watts
Pc Critical pressure Pa lbf/in2 or atm
Per Perimeter/area m−1 ft−1

Q Volumetric flow rate m3/s ft3/h
rA Radius of dilute spherical solute Å
R Gas constant 8.314 J/mol K = 8.314 Pa m3/(mol 10.73 ft3 psia/lbmol⋅h

K) = 82.057 atm cm3/mol K
R Solution electrical resistance ohm
Ri Radius of gyration of the component i molecule Å
s Fractional surface-renewal rate s−1 h−1

S Tower cross-sectional area = πd2/4 m2 ft2

t Contact time s h
tf Formation time of drop s h
T Temperature K °R
Tb Normal boiling point K °R
Tc Critical temperature K °R
Tr Reduced temperature = T/Tc Dimensionless Dimensionless
u, v Fluid velocity m/s or cm/s ft/h
uo Blowing or suction velocity m/s ft/h
u∞ Velocity away from object m/s ft/h
uL Superficial liquid velocity in vertical direction m/s ft/h
vs Slip velocity m/s ft/h
vT Terminal velocity m/s ft/h
vTS Stokes law terminal velocity m/s ft/h
V Packed volume in tower m3 ft3

V Control volume m3 or cm3 ft3

Vb Volume at normal boiling point m3/kmol or cm3/mol ft3/lbmol
Vi Molar volume of i at its normal boiling point m3/kmol or cm3/mol ft3/lbmol
v�i Partial molar volume of i m3/kmol or cm3/mol ft3/lbmol

ρ∞
�
ρo

gx3

�
(µ/ρ)2
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Nomenclature and Units—Mass Transfer (Concluded)

Symbols Definition SI units U.S. Customary units

Vmli Molar volume of the liquid-phase component i at the m3/kmol or cm3/mol ft3/lbmol
melting point

Vtower Tower volume per area m3/m2 ft3/ft2

w Width of film m ft
x Length along plate m ft
x Mole-fraction solute in bulk-liquid phase (kmol solute)/(kmol liquid) (lbmol solute)/(lb mol liquid)
xA Mole fraction of component A kmole A/kmole fluid lbmol A/lb mol fluid
xo Mole-fraction solute in bulk liquid in equilibrium with (kmol solute)/(kmol liquid) (lbmol solute)/(lbmol liquid)

bulk-gas solute concentration y
xBM Logarithmic-mean solvent concentration between bulk (kmol solvent)/(kmol liquid) (lbmol solvent)/(lbmol liquid)

liquid and interface values
xo

BM Logarithmic-mean inert-solvent concentration between (kmol solvent)/(kmol liquid) (lbmol solvent)/(lbmol liquid)
bulk-liquid value and value in equilibrium with bulk gas

xi Mole-fraction solute in liquid at gas-liquid interface (kmol solute)/(kmol liquid) (lbmol solute)/(lbmol liquid)
y Mole-fraction solute in bulk-gas phase (kmol solute)/(kmol gas) (lbmol solute)/(lbmol gas)
yBM Logarithmic-mean inert-gas concentration [Eq. (5-275)] (kmol inert gas)/(kmol gas) (lbmol inert gas)/(lbmol gas)
yo

BM Logarithmic-mean inert-gas concentration (kmol inert gas)/(kmol gas) (lbmol inert gas)/(lbmol gas)
yi Mole fraction solute in gas at interface (kmole solute)/(kmol gas) (lbmol solute)/(lbmol gas)
yi

o Mole-fraction solute in gas at interface in equilibrium (kmol solute)/(kmol gas) (lbmol solute)/(lbmol gas)
with the liquid-phase interfacial solute concentration xi

z Direction of unidimensional diffusion m ft

Greek Symbols

α 1 + NB/NA Dimensionless Dimensionless
α Conductance cell constant (measured) cm−1

β MA
1/2 Pc

1/3/Tc
5/6 Dimensionless Dimensionless

δ Effective thickness of stagnant-film layer m ft
ε Fraction of discontinuous phase in continuous phase for Dimensionless Dimensionless

two-phase flow
ε Void fraction available for gas flow or fractional gas holdup m3/m3 ft3/ft3

εA Characteristic Lennard-Jones energy Dimensionless Dimensionless
εAB (εAεB)1/2 Dimensionless Dimensionless
γi Activity coefficient of solute i Dimensionless Dimensionless
γ± Mean ionic activity coefficient of solute Dimensionless Dimensionless
λ+ λ− Infinite dilution conductance of cation and anion cm2/(gequiv⋅ohm)
Λ 1000 K/C = λ+ + λ− = Λo + f(C) cm2/ohm gequiv
Λo Infinite dilution conductance cm2/gequiv ohm
µi Dipole moment of i Debeyes
µi Viscosity of pure i cP or Pa s lb/(h⋅ft)
µG Gas-phase viscosity kg/(s⋅m) lb/(h⋅ft)
µL Liquid-phase viscosity kg/(s⋅m) lb/(h⋅ft)
ν Kinematic viscosity = ρ/µ m2/s ft2/h
ρ Density of A kg/m3 or g/cm3 lb/ft3

ρc Critical density of A kg/m3 or g/cm3 lb/ft3

ρc Density continuous phase kg/m3 lb/ft3

ρG Gas-phase density kg/m3 lb/ft3

ρ�L Average molar density of liquid phase kmol/m3 (lbmol)/ft3

ρp Particle density kg/m3 or g/cm3 lb/ft3

ρr Reduced density = ρ/ρc Dimensionless Dimensionless
ψi Parachor of component i = Viσ1/4

ψ Parameter, Table 5-24-G Dimensionless Dimensionless
σ Interfacial tension dyn/cm lbf/ft
σi Characteristic length Å
σi Surface tension of component i dyn/cm
σAB Binary pair characteristic length = (σA + σB)/2 Å
τ Intraparticle tortuosity Dimensionless Dimensionless
ω Pitzer’s acentric factor = −[1.0 + log10(P*/Pc)] Dimensionless
ω Rotational velocity Radians/s
Ω Diffusion collision integral = f(kT/εAB) Dimensionless Dimensionless

Subscripts

A Solute component in liquid or gas phase
B Inert-gas or inert-solvent component
G Gas phase
m Mean value
L Liquid phase
super Superficial velocity

Superscript

* At equilibrium



applied to arrive at an answer. Figure 5-24 is a flowchart that illustrates
the primary types of information and their relationships, and it applies
to many mass-transfer problems.

CONTINUITY AND FLUX EXPRESSIONS

Material Balances Whenever mass-transfer applications involve
equipment of specific dimensions, flux equations alone are inadequate
to assess results. A material balance or continuity equation must also be
used. When the geometry is simple, macroscopic balances suffice. The
following equation is an overall mass balance for such a unit having Nm

bulk-flow ports and Nn ports or interfaces through which diffusive flux
can occur:

= 

Nm

i = 1

mi + 

Nn

i = 1

niAcsi (5-191)

where M represents the mass in the unit volume V at any time t; mi is
the mass flow rate through the ith port; and ni is the mass flux through
the ith port, which has a cross-sectional area of Acsi. The corresponding
balance equation for individual components includes a reaction term:

= 

Nm

i = 1

mij + 

Nn

i = 1

nijAcsi + rj V (5-192)

For the jth component, mij = miwij is the component mass flow rate in
stream i; wij is the mass fraction of component j in stream i; and rj is the
net reaction rate (mass generation minus consumption) per unit volume
V that contains mass M. If it is inconvenient to measure mass flow rates,
the product of density and volumetric flow rate is used instead.

In addition, most situations that involve mass transfer require mate-
rial balances, but the pertinent area is ambiguous. Examples are
packed columns for absorption, distillation, or extraction. In such

dMj
�
dt

dM
�
dt

cases, flow rates through the discrete ports (nozzles) must be related
to the mass-transfer rate in the packing. As a result, the mass-transfer
rate is determined via flux equations, and the overall material balance
incorporates the stream flow rates mi and integrated fluxes. In such
instances, it is common to begin with the most general, differential
material balance equations. Then, by eliminating terms that are negli-
gible, the simplest applicable set of equations remains to be solved.
Table 5-8 provides material balances for Cartesian, cylindrical, and
spherical coordinates. The generic form applies over a unit cross-
sectional area and constant volume:

= −∇⋅nj + rj (5-193a)

where nj = ρvj. Applying Fick’s law and expressing composition as con-
centration gives

= −v ⋅ ∇cj + Dj∇2cj + rj (5-193b)

Flux Expressions: Simple Integrated Forms of Fick’s First 
Law Simplified flux equations that arise from Eqs. (5-189) and 
(5-190) can be used for unidimensional, steady-state problems with
binary mixtures. The boundary conditions represent the compositions
xAL and xAR at the left-hand and right-hand sides of a hypothetical layer
having thickness ∆z. The principal restriction of the following equations
is that the concentration and diffusivity are assumed to be constant. As
written, the flux is positive from left to right, as depicted in Fig. 5-25.

1. Equimolar counterdiffusion (NA = −NB)

NA = MJA = −DAB c = c (xAL − xAR) (5-197)
DAB
�
∆z

dxA
�
dz

∂cj
�
∂t

∂ρ j
�
∂t
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FIG. 5-24 Flowchart illustrating problem solving approach using mass-transfer rate expres-
sions in the context of mass conservation.

TABLE 5-8 Continuity Equation in Various Coordinate Systems

Coordinate System Equation

Cartesian = −� + + 	 + rj (5-194)

Cylindrical = −� + + 	 + rj (5-195)

Spherical = −� + + 	 + rj (5-196)
∂nφj
�
∂φ

1
�
r sin θ

∂nθj sin θ
��
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1

�
r sin θ
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�
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1
�
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�
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1
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r

∂ρj
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2. Unimolar diffusion (NA ≠ 0, NB = 0)

NA = MJA + xANA = c ln (5-198)

3. Steady state diffusion (NA ≠ −NB ≠ 0)

NA = MJA + xA(NA + NB) = c ln (5-199)

The unfortunate aspect of the last relationship is that one must
know a priori the ratio of the fluxes to determine the magnitudes. It is
not possible to solve simultaneously the pair of equations that apply
for components A and B because the equations are not independent.

Stefan-Maxwell Equations Following Eq. (5-190), a simple and
intuitively appealing flux equation for applications involving Nc com-
ponents is

Ni = −cDim ∇xi + xi 

Nc

j = 1

Nj (5-200)

In the late 1800s, the development of the kinetic theory of gases led
to a method for calculating multicomponent gas diffusion (e.g., the
flux of each species in a mixture). The methods were developed
simultaneously by Stefan and Maxwell. The problem is to determine
the diffusion coefficient Dim. The Stefan-Maxwell equations are sim-
pler in principle since they employ binary diffusivities:

∇xi = 

Nc

j = 1

(xiNj − xjNi) (5-201)

If Eqs. (5-200) and (5-201) are combined, the multicomponent diffusion
coefficient may be assessed in terms of binary diffusion coefficients [see
Eq. (5-214)]. For gases, the values Dij of this equation are approximately
equal to the binary diffusivities for the ij pairs. The Stefan-Maxwell diffu-
sion coefficients may be negative, and the method may be applied to liq-
uids, even for electrolyte diffusion [Kraaijeveld, Wesselingh, and Kuiken,
Ind. Eng. Chem. Res., 33, 750 (1994)]. Approximate solutions have been
developed by linearization [Toor, H.L., AIChE J., 10, 448 and 460 (1964);
Stewart and Prober, Ind. Eng. Chem. Fundam., 3, 224 (1964)]. Those dif-
fer in details but yield about the same accuracy. More recently, efficient
algorithms for solving the equations exactly have been developed (see
Taylor and Krishna, Krishnamurthy and Taylor [Chem. Eng. J., 25, 47
(1982)], and Taylor and Webb [Comput. Chem. Eng., 5, 61 (1981)].

Useful studies of multicomponent diffusion were presented by
Vrentas and Vrentas [Ind. Eng. Chem. Res. 44, 1112 (2005)], Curtis

1
�
cDij

�
NA

N
+

A

NB

� − xAR

��

�
NA

N
+

A

NB

� − xAL

DAB
�
∆z

NA
�
NA + NB

1 − xAR�
1 − xAL

DAB
�
∆z

and Bird [Ind. Eng. Chem. Res. 38, 2515 (1999)], and Amundson, Pan,
and Paulson [AIChE J. 48, 813 (2003)]. Vrentas and Vrentas treated
only ternary mixtures, such as restrictions due to the entropy inequal-
ity, application of the Onsager reciprocal relations, and stability. Curtis
and Bird reconciled the multicomponent Fick’s law approach with the
more elegant Stefan-Maxwell theory. They also provided interrelation-
ships of multicomponent diffusivities devised for various situations,
i.e., binary, ternary, and quaternary mixtures. Amundson et al. pre-
sented numerical methods for coping with mixtures having four or
more components, which are nearly intractable via the analytical S-M
method, due to the difficult inversion. Related studies were performed
by Ghorayeb and Firoozabadi [AIChE J. 46, 883 (2000)] and Firooz-
abadi, Ghorayeb, and Saukla [AIChE J. 46, 892 (2000)]. The former
covered ordinary molecular diffusion as well as pressure and thermal
diffusion for multicomponent mixtures. The latter covered thermal
diffusion in multicomponent mixtures.

DIFFUSIVITY ESTIMATION—GASES

Whenever measured values of diffusivities are available, they should
be used. Typically, measurement errors are less than those associated
with predictions by empirical or even semitheoretical equations. A
few general sources of data are Sec. 2 of this handbook; e.g., experi-
mental values for gas mixtures are listed in Table 2-371. Estimation
methods for some gaseous applications appear in Eqs. (2-150)
through (2-154). Other pertinent references are Schwartzberg and
Chao; Poling et al.; Gammon et al.; and Daubert and Danner. Many
other more restricted sources are listed under specific topics later in
this subsection.

Before using diffusivities from either data or correlations, it is a
good idea to check their reasonableness with respect to values that
have been commonly observed in similar situations. Table 5-9 is a
compilation of several rules of thumb. These values are not authorita-
tive; they simply represent guidelines based on experience.

Diffusivity correlations for gases are outlined in Table 5-10. Specific
parameters for individual equations are defined in the specific text
regarding each equation. References are given at the beginning of the
“Mass Transfer” subsection. The errors reported for Eqs. (5-202)
through (5-205) were compiled by Poling et al., who compared the
predictions with 68 experimental values of DAB. Errors cited for Eqs.
(5-206) to (5-212) were reported by the authors.

Binary Mixtures—Low Pressure—Nonpolar Components
Many evaluations of correlations are available [Elliott and Watts, Can.
J. Chem., 50, 31 (1972); Lugg, Anal. Chem., 40, 1072 (1968); Marrero
and Mason, AIChE J., 19, 498 (1973)]. The differences in accuracy of
the correlations are minor, and thus the major concern is ease of cal-
culation. The Fuller-Schettler-Giddings equation is usually the sim-
plest correlation to use and is recommended by Poling et al.

Chapman-Enskog (Bird et al.) and Wilke and Lee [31] The
inherent assumptions of these equations are quite restrictive (i.e., low
density, spherical atoms), and the intrinsic potential function is empir-
ical. Despite that, they provide good estimates of DAB for many poly-
atomic gases and gas mixtures, up to about 1000 K and a maximum of
70 atm. The latter constraint is because observations for many gases
indicate that DABP is constant up to 70 atm.

The characteristic length is σAB = (σA + σB)/2 in Å. In order to esti-
mate ΩD for Eq. (5-202) or (5-203), two empirical equations are
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FIG. 5-25 Hypothetical film and boundary conditions.

TABLE 5-9 Rules of Thumb for Diffusivities (See Cussler, Poling et al., Schwartzberg and Chao)

Di magnitude Di range

Continuous phase m2/s cm2/s m2/s cm2/s Comments

Gas at atmospheric pressure 10−5 0.1 10−4–10−6 1–10−2 Accurate theories exist, generally within �10%;
DiP � constant; Di ∝ T1.66 to 2.0

Liquid 10−9 10−5 10−8–10−10 10−4–10−6 Approximate correlations exist, generally within �25%
Liquid occluded in solid matrix 10−10 10−6 10−8–10−12 10−4–10−8 Hard cell walls: Deff /Di = 0.1 to 0.2. Soft cell walls: Deff /Di = 0.3 to 0.9
Polymers and glasses 10−12 10−8 10−10–10−14 10−6–10−10 Approximate theories exist for dilute and concentrated limits; strong 

composition dependence
Solid 10−14 10−10 10−10–10−34 10−6–10−30 Approximate theories exist; strong temperature dependence



available. The first is:
ΩD = (44.54T*−4.909 + 1.911T*−1.575)0.10 (5-213a)

where T* = kT/εAB and εAB = (εA εB)1/2. Estimates for σi and εi are given
in Table 5-11. This expression shows that ΩD is proportional to tem-
perature roughly to the −0.49 power at low temperatures and to the 

−0.16 power at high temperature. Thus, gas diffusivities are propor-
tional to temperatures to the 2.0 power and 1.66 power, respectively,
at low and high temperatures. The second is:

ΩD = + + + (5-213b)
G

��
exp (HT*)

E
��
exp (FT*)

C
��
exp (DT*)

A
�
T*B
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TABLE 5-10 Correlations of Diffusivities for Gases

Authors* Equation Error, %

1. Binary Mixtures—Low Pressure—Nonpolar

Chapman-Enskog DAB = (5-202) 7.3

Wilke-Lee [31] DAB = (5-203) 7.0

Fuller-Schettler-Giddings [10] DAB = (5-204) 5.4

2. Binary Mixtures—Low Pressure—Polar

Brokaw [4] DAB = (5-205) 9.0

3. Self-Diffusivity

Mathur-Thodos [18] DAA = {ρr ≤ 1.5} (5-206) 5

Lee-Thodos [14] DAA = {ρr ≤ 1} (5-207) 0.5

Lee-Thodos [15] DAA = , [ρr > 1, G < 1] (5-208) 17

4. Supercritical Mixtures

Sun and Chen [25] DAB = (5-209) 5

Catchpole and King [6] DAB = 5.152 DcTr (5-210) 10

Liu and Ruckenstein [17] DAB = � + � (5-211) 5.7

DAB = α(Vk
A − β)�
, α = 10 −5 �0.56392 6.9

+ 2.1417 exp � 	� (5-212)

β = 8.9061 + 0.93858

k = [1 − 0.28 exp (−0.3 �MA�ριA)]

*References are listed at the beginning of the “Mass Transfer” subsection.
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TABLE 5-11 Estimates for ei and si (K, Å, atm, cm3, mol)

Critical point ε/k = 0.75 Tc σ = 0.841 Vc
1/3 or 2.44 (Tc /Pc)1/3

Critical point ε/k = 65.3 Tczc
3.6 σ =

Normal boiling point ε/k = 1.15 Tb σ = 1.18 Vb
1/3

Melting point ε/k = 1.92 Tm σ = 1.222 Vm
1/3

Acentric factor ε/k = (0.7915 + 0.1693 ω) Tc σ = (2.3551 − 0.087 ω)� 	
1/3

NOTE: These values may not agree closely, so usage of a consistent basis is suggested (e.g., data at the
normal boiling point).

Tc
�
Pc

1.866 Vc
1/3

��
zc

1.2



where A = 1.06036, B = 0.15610, C = 0.1930, D = 0.47635, E =
1.03587, F = 1.52996, G = 1.76474, and H = 3.89411.

Fuller, Schettler, and Giddings [10] The parameters and con-
stants for this correlation were determined by regression analysis of
340 experimental diffusion coefficient values of 153 binary systems.
Values of 
 vi used in this equation are in Table 5-12.

Binary Mixtures—Low Pressure—Polar Components The
Brokaw [4] correlation was based on the Chapman-Enskog equa-
tion, but σAB* and ΩD* were evaluated with a modified Stockmayer
potential for polar molecules. Hence, slightly different symbols are
used. That potential model reduces to the Lennard-Jones 6-12
potential for interactions between nonpolar molecules. As a result,
the method should yield accurate predictions for polar as well as
nonpolar gas mixtures. Brokaw presented data for 9 relatively polar
pairs along with the prediction. The agreement was good: an aver-
age absolute error of 6.4 percent, considering the complexity of
some of the gas pairs [e.g., (CH3)2O and CH3Cl]. Despite that, Pol-
ing, (op. cit.) found the average error was 9.0 percent for combina-
tions of mixtures (including several polar-nonpolar gas pairs),
temperatures and pressures. In this equation, ΩD is calculated as
described previously, and other terms are:

ΩD* = ΩD + 0.19 δ 2
AB/T* T* = kT/εAB*

σAB* = (σA* σB*)1/2 σi* = [1.585 Vbi /(1 + 1.3 δi
2)]1/3

δAB = (δA δB)1/2 δi = 1.94 × 103 µi
2/VbiTbi

εAB* = (εA*εB*)1/2 εi*/k = 1.18 (1 + 1.3 δ i
2)Tbi

Binary Mixtures—High Pressure Of the various categories of
gas-phase diffusion, this is the least studied. This is so because of the
effects of diffusion being easily distorted by even a slight pressure gra-
dient, which is difficult to avoid at high pressure. Harstad and Bellan
[Ind. Eng. Chem. Res. 43, 645 (2004)] developed a corresponding-
states expression that extends the Chapman-Enskog method, covered
earlier. They express the diffusivity at high pressure by accounting for
the reduced temperature, and they suggest employing an equation of
state and shifting from Do

AB = f(T, P) to DAB = g(T, V).
Self-Diffusivity Self-diffusivity is a property that has little intrin-

sic value, e.g., for solving separation problems. Despite that, it reveals
quite a lot about the inherent nature of molecular transport, because
the effects of discrepancies of other physical properties are elimi-
nated, except for those that constitute isotopic differences, which
are necessary to ascertain composition differences. Self-diffusivity
has been studied extensively under high pressures, e.g., greater than
70 atm. There are few accurate estimation methods for mutual diffu-
sivities at such high pressures, because composition measurements
are difficult.

The general observation for gas-phase diffusion DAB P = constant,
which holds at low pressure, is not valid at high pressure. Rather, DAB

P decreases as pressure increases. In addition, composition effects,
which frequently are negligible at low pressure, are very significant at
high pressure.

Liu and Ruckenstein [Ind. Eng. Chem. Res. 36, 3937 (1997)] stud-
ied self-diffusion for both liquids and gases. They proposed a semiem-
pirical equation, based on hard-sphere theory, to estimate self-
diffusivities. They extended it to Lennard-Jones fluids. The necessary
energy parameter is estimated from viscosity data, but the molecular
collision diameter is estimated from diffusion data. They compared
their estimates to 26 pairs, with a total of 1822 data points, and
achieved a relative deviation of 7.3 percent.

Zielinski and Hanley [AIChE J. 45, 1 (1999)] developed a model to
predict multicomponent diffusivities from self-diffusion coefficients
and thermodynamic information. Their model was tested by esti-
mated experimental diffusivity values for ternary systems, predicting
drying behavior of ternary systems, and reconciling ternary self-
diffusion data measured by pulsed-field gradient NMR.

Mathur and Thodos [18] showed that for reduced densities less
than unity, the product DAAρ is approximately constant at a given
temperature. Thus, by knowing the value of the product at low pres-
sure, it is possible to estimate its value at a higher pressure. They
found at higher pressures the density increases, but the product
DAAρ decreases rapidly. In their correlation, β = MA

1/2PC
1/3/TC

5/6.
Lee and Thodos [14] presented a generalized treatment of self-

diffusivity for gases (and liquids). These correlations have been
tested for more than 500 data points each. The average deviation of
the first is 0.51 percent, and that of the second is 17.2 percent. δ =
MA

1/2/Pc
1/2Vc

5/6, s/cm2, and where G = (X* − X)/(X* − 1), X = ρr /T r
0.1, and

X* = ρr /T r
0.1 evaluated at the solid melting point.

Lee and Thodos [15] expanded their earlier treatment of self-
diffusivity to cover 58 substances and 975 data points, with an average
absolute deviation of 5.26 percent. Their correlation is too involved to
repeat here, but those interested should refer to the original paper.

Liu, Silva, and Macedo [Chem. Eng. Sci. 53, 2403 (1998)] present a
theoretical approach incorporating hard-sphere, square-well, and
Lennard-Jones models. They compared their resulting estimates to
estimates generated via the Lee-Thodos equation. For 2047 data
points with nonpolar species, the Lee-Thodos equation was slightly
superior to the Lennard-Jones fluid-based model, that is, 5.2 percent
average deviation versus 5.5 percent, and much better than the
square-well fluid-based model (10.6 percent deviation). For over 467
data points with polar species, the Lee-Thodos equation yielded 36
percent average deviation, compared with 25 percent for the Lennard-
Jones fluid-based model, and 19 percent for the square-well fluid-
based model.

Silva, Liu, and Macedo [Chem. Eng. Sci. 53, 2423 (1998)] present
an improved theoretical approach incorporating slightly different
Lennard-Jones models. For 2047 data points with nonpolar species,
their best model yielded 4.5 percent average deviation, while the Lee-
Thodos equation yielded 5.2 percent, and the prior Lennard-Jones
fluid-based model produced 5.5 percent. The new model was much
better than all the other models for over 424 data points with polar
species, yielding 4.3 percent deviation, while the Lee-Thodos equa-
tion yielded 34 percent and the Lennard-Jones fluid-based model
yielded 23 percent.

Supercritical Mixtures Debenedetti and Reid [AIChE J., 32,
2034 (1986) and 33, 496 (1987)] showed that conventional correla-
tions based on the Stokes-Einstein relation (for liquid phase) tend to
overpredict diffusivities in the supercritical state. Nevertheless, they
observed that the Stokes-Einstein group DABµ/T was constant. Thus,
although no general correlation applies, only one data point is neces-
sary to examine variations of fluid viscosity and/or temperature
effects. They explored certain combinations of aromatic solids in SF6

and CO2.
Sun and Chen [25] examined tracer diffusion data of aromatic

solutes in alcohols up to the supercritical range and found their data
correlated with average deviations of 5 percent and a maximum devi-
ation of 17 percent for their rather limited set of data.

Catchpole and King [6] examined binary diffusion data of near-
critical fluids in the reduced density range of 1 to 2.5 and found that
their data correlated with average deviations of 10 percent and a max-
imum deviation of 60 percent. They observed two classes of behavior.
For the first, no correction factor was required (R = 1). That class was
comprised of alcohols as solvents with aromatic or aliphatic solutes, or
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TABLE 5-12 Atomic Diffusion Volumes for Use in Estimating
DAB by the Method of Fuller, Schettler, and Giddings [10]

Atomic and Structural Diffusion–Volume Increments, vi (cm3/mol)

C 16.5 (Cl) 19.5
H 1.98 (S) 17.0
O 5.48 Aromatic ring −20.2
(N) 5.69 Heterocyclic ring −20.2

Diffusion Volumes for Simple Molecules, Σvi (cm3/mol)

H2 7.07 CO 18.9
D2 6.70 CO2 26.9
He 2.88 N2O 35.9
N2 17.9 NH3 14.9
O2 16.6 H2O 12.7
Air 20.1 (CCl2F2) 114.8
Ar 16.1 (SF5) 69.7
Kr 22.8 (Cl2) 37.7
(Xe) 37.9 (Br2) 67.2
Ne 5.59 (SO2) 41.1

Parentheses indicate that the value listed is based on only a few data points.



carbon dioxide as a solvent with aliphatics except ketones as solutes, or
ethylene as a solvent with aliphatics except ketones and naphthalene
as solutes. For the second class, the correction factor was R = X 0.17.
The class was comprised of carbon dioxide with aromatics; ketones
and carbon tetrachloride as solutes; and aliphatics (propane, hexane,
dimethyl butane), sulfur hexafluoride, and chlorotrifluoromethane as
solvents with aromatics as solutes. In addition, sulfur hexafluoride
combined with carbon tetrachloride, and chlorotrifluoromethane
combined with 2-propanone were included in that class. In all cases, 
X = (1 + (VCB/VCA)1/3)2/(1 + MA /MB) was in the range of 1 to 10.

Liu and Ruckenstein [17] presented a semiempirical equation to
estimate diffusivities under supercritical conditions that is based on
the Stokes-Einstein relation and the long-range correlation, respec-
tively. The parameter 2θo

AB was estimated from the Peng-Robinson
equation of state. In addition, f = 2.72 − 0.3445 TcB/TcA for most
solutes, but for C5 through C14 linear alkanes, f = 3.046 − 0.786 TcB/TcA.
In both cases Tci is the species critical temperature. They compared
their estimates to 33 pairs, with a total of 598 data points, and achieved
lower deviations (5.7 percent) than the Sun-Chen correlation (13.3
percent) and the Catchpole-King equation (11.0 percent).

He and Yu [13] presented a semiempirical equation to estimate dif-
fusivities under supercritical conditions that is based on hard-sphere
theory. It is limited to ρr . 0.21, where the reduced density is ρr =
ρA(T, P)/ρcA. They compared their estimates to 107 pairs, with a total
of 1167 data points, and achieved lower deviations (7.8 percent) than
the Catchpole-King equation (9.7 percent), which was restricted to
ρr . 1.

Silva and Macedo [Ind. Eng. Chem. Res. 37, 1490 (1998)] measured
diffusivities of ethers in CO2 under supercritical conditions and com-
pared them to the Wilke-Chang [Eq. (5-218)], Tyn-Calus [Eq. (5-219)],
Catchpole-King [Eq. (5-210)], and their own equations. They found
that the Wilke-Chang equation provided the best fit.

Gonzalez, Bueno, and Medina [Ind. Eng. Chem. Res. 40, 3711 (2001)]
measured diffusivities of aromatic compounds in CO2 under supercriti-
cal conditions and compared them to the Wilke-Chang [Eq. (5-218)],
Hayduk-Minhas [Eq. (5-226)], and other equations. They recom-
mended the Wilke-Chang equation (which yielded a relative error of
10.1 percent) but noted that the He-Yu equation provided the best fit
(5.5 percent).

Low-Pressure/Multicomponent Mixtures These methods are
outlined in Table 5-13. Stefan-Maxwell equations were discussed ear-
lier. Smith and Taylor [23] compared various methods for predicting
multicomponent diffusion rates and found that Eq. (5-214) was supe-
rior among the effective diffusivity approaches, though none is very
good. They also found that linearized and exact solutions are roughly
equivalent and accurate.

Blanc [3] provided a simple limiting case for dilute component i dif-
fusing in a stagnant medium (i.e., N ≈ 0), and the result, Eq. (5-215),
is known as Blanc’s law. The restriction basically means that the com-
positions of all the components, besides component i, are relatively
large and uniform.

Wilke [29] obtained solutions to the Stefan-Maxwell equations. The
first, Eq. (5-216), is simple and reliable under the same conditions as
Blanc’s law. This equation applies when component i diffuses through

a stagnant mixture. It has been tested and verified for diffusion of
toluene in hydrogen + air + argon mixtures and for diffusion of ethyl
propionate in hydrogen + air mixtures [Fairbanks and Wilke Ind. Eng.
Chem., 42, 471 (1950)]. When the compositions vary from one
boundary to the other, Wilke recommends that the arithmetic average
mole fractions be used. Wilke also suggested using the Stefan-
Maxwell equation, which applies when the fluxes of two or more com-
ponents are significant. In this situation, the mole fractions are
arithmetic averages of the boundary conditions, and the solution
requires iteration because the ratio of fluxes is not known a priori.

DIFFUSIVITY ESTIMATION—LIQUIDS

Many more correlations are available for diffusion coefficients in the
liquid phase than for the gas phase. Most, however, are restricted to
binary diffusion at infinite dilution D°AB or to self-diffusivity DA′A. This
reflects the much greater complexity of liquids on a molecular level.
For example, gas-phase diffusion exhibits negligible composition
effects and deviations from thermodynamic ideality. Conversely, 
liquid-phase diffusion almost always involves volumetric and thermo-
dynamic effects due to composition variations. For concentrations
greater than a few mole percent of A and B, corrections are needed to
obtain the true diffusivity. Furthermore, there are many conditions
that do not fit any of the correlations presented here. Thus, careful
consideration is needed to produce a reasonable estimate. Again, if
diffusivity data are available at the conditions of interest, then they are
strongly preferred over the predictions of any correlations. Experi-
mental values for liquid mixtures are listed in Table 2-325. 

Stokes-Einstein and Free-Volume Theories The starting
point for many correlations is the Stokes-Einstein equation. This
equation is derived from continuum fluid mechanics and classical
thermodynamics for the motion of large spherical particles in a liquid.
For this case, the need for a molecular theory is cleverly avoided. The
Stokes-Einstein equation is (Bird et al.)

DAB = (5-217)

where A refers to the solute and B refers to the solvent. This equation
is applicable to very large unhydrated molecules (M > 1000) in low-
molecular-weight solvents or where the molar volume of the solute is
greater than 500 cm3/mol (Reddy and Doraiswamy, Ind. Eng. Chem.
Fundam., 6, 77 (1967); Wilke and Chang [30]). Despite its intellectual
appeal, this equation is seldom used “as is.” Rather, the following prin-
ciples have been identified: (1) The diffusion coefficient is inversely
proportional to the size rA � VA

1/3 of the solute molecules. Experimen-
tal observations, however, generally indicate that the exponent of the
solute molar volume is larger than one-third. (2) The term DABµB /T is
approximately constant only over a 10-to-15 K interval. Thus, the
dependence of liquid diffusivity on properties and conditions does not
generally obey the interactions implied by that grouping. For exam-
ple, Robinson, Edmister, and Dullien [Ind. Eng. Chem. Fundam., 5,
75 (1966)] found that ln DAB ∝ −1/T. (3) Finally, pressure does not
affect liquid-phase diffusivity much, since µB and VA are only weakly
pressure-dependent. Pressure does have an impact at very high levels.

kT
�
6πrAµB

MASS TRANSFER 5-53

TABLE 5-13 Relationships for Diffusivities of Multicomponent Gas Mixtures 
at Low Pressure

Authors* Equation

Stefan-Maxwell, Smith and Taylor [23] Dim = �1 − xi �

NC

j = 1
Nj	/Ni�/


NC

j = 1
��xj − 	/Dij� (5-214)

Blanc [2] Dim = � 

NC

j = 1
	
−1

(5-215)

Wilke [29] Dim = �

NC

j = 1
j ≠ i

	
−1

(5-216)

*References are listed at the beginning of the “Mass Transfer” subsection.

xj
�
Dij

xj
�
Dij

xiNi
�
Ni



Another advance in the concepts of liquid-phase diffusion was pro-
vided by Hildebrand [Science, 174, 490 (1971)] who adapted a theory
of viscosity to self-diffusivity. He postulated that DA′A = B(V − Vms)/Vms,
where DA′A is the self-diffusion coefficient, V is the molar volume, and
Vms is the molar volume at which fluidity is zero (i.e., the molar volume
of the solid phase at the melting temperature). The difference (V −
Vms) can be thought of as the free volume, which increases with tem-
perature; and B is a proportionality constant.

Ertl and Dullien (ibid.) found that Hildebrand’s equation could not
fit their data with B as a constant. They modified it by applying an
empirical exponent n (a constant greater than unity) to the volumetric
ratio. The new equation is not generally useful, however, since there is
no means for predicting n. The theory does identify the free volume as
an important physical variable, since n > 1 for most liquids implies that
diffusion is more strongly dependent on free volume than is viscosity.

Dilute Binary Nonelectrolytes: General Mixtures These cor-
relations are outlined in Table 5-14.

Wilke-Chang [30] This correlation for D°AB is one of the most
widely used, and it is an empirical modification of the Stokes-Einstein
equation. It is not very accurate, however, for water as the solute.
Otherwise, it applies to diffusion of very dilute A in B. The average
absolute error for 251 different systems is about 10 percent. φB is an
association factor of solvent B that accounts for hydrogen bonding.

Component B φB

Water 2.26
Methanol 1.9
Ethanol 1.5
Propanol 1.2
Others 1.0

The value of φB for water was originally stated as 2.6, although when
the original data were reanalyzed, the empirical best fit was 2.26.
Random comparisons of predictions with 2.26 versus 2.6 show no
consistent advantage for either value, however. Kooijman [Ind. Eng.
Chem. Res. 41, 3326 (2002)] suggests replacing VA with θA VA, in
which θA = 1 except when A = water, θA = 4.5. This modification
leads to an overall error of 8.7 percent for 41 cases he compared. He
suggests retaining ΦB = 2.6 when B = water. It has been suggested to
replace the exponent of 0.6 with 0.7 and to use an association factor
of 0.7 for systems containing aromatic hydrocarbons. These modifi-
cations, however, are not recommended by Umesi and Danner [27].
Lees and Sarram [J. Chem. Eng. Data, 16, 41 (1971)] present a
comparison of the association parameters. The average absolute
error for 87 different solutes in water is 5.9 percent.

Tyn-Calus [26] This correlation requires data in the form of
molar volumes and parachors ψi = Viσ i

1/4 (a property which, over mod-
erate temperature ranges, is nearly constant), measured at the same
temperature (not necessarily the temperature of interest). The para-
chors for the components may also be evaluated at different tempera-
tures from each other. Quale [Chem. Rev. 53, 439 (1953)] has
compiled values of ψi for many chemicals. Group contribution meth-
ods are available for estimation purposes (Poling et al.). The following
suggestions were made by Poling et al.: The correlation is constrained
to cases in which µB < 30 cP. If the solute is water or if the solute is an
organic acid and the solvent is not water or a short-chain alcohol,
dimerization of the solute A should be assumed for purposes of esti-
mating its volume and parachor. For example, the appropriate values
for water as solute at 25°C are VW = 37.4 cm3/mol and ψW = 105.2
cm3g1/4/s1/2mol. Finally, if the solute is nonpolar, the solvent volume
and parachor should be multiplied by 8µB. According to Kooijman
(ibid.), if the Brock-Bird method (described in Poling et al.) is used to
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TABLE 5-14 Correlations for Diffusivities of Dilute, Binary Mixtures of Nonelectrolytes in Liquids

Authors* Equation Error

1. General Mixtures

Wilke-Chang [30] D°AB = (5-218) 20%

Tyn-Calus [26] D°AB = (5-219) 10%

Umesi-Danner [27] D°AB = (5-220) 16%

Siddiqi-Lucas [22] D°AB = (5-221) 13%

2. Gases in Low Viscosity Liquids

Sridhar-Potter [24] D°AB = DBB � 	
2/3

� 	 (5-222) 18%

Chen-Chen [7] D°AB = 2.018 × 10−9 (Vr − 1)� 	
1/2

(5-223) 6%

3. Aqueous Solutions

Hayduk-Laudie [11] D°AW = (5-224) 18%

Siddiqi-Lucas [22] D°AW = 2.98 × 10−7 VA
−0.5473 µw

−1.026 T (5-225) 13%

4. Hydrocarbon Mixtures

Hayduk-Minhas [12] D°AB = 13.3 × 10−8 T1.47 µB
(10.2/VA − 0.791) VA

−0.71 (5-226) 5%

Matthews-Akgerman [19] D°AB = 32.88 MA
−0.61VD

−1.04 T 0.5 (VB − VD) (5-227) 5%

Riazi-Whitson [21] DAB = 1.07 � 	
−0.27 − 0.38 ω + (−0.05 + 0.1 ω)Pr

(5-228) 15%

*References are listed at the beginning of the “Mass Transfer” subsection.

µ
�
µ°

(ρDAB)°
�

ρ

13.16 × 10−5

��
µw

1.14 VA
0.589

T
�
TcB

(βVcB)
2/3(RTcB)

1/2

��
MA

1/6 (MBVcA)
1/3

VB
�
VmlB

VcB�
VcA

9.89 × 10−8 VB
0.265 T

���
VA

0.45 µB
0.907

2.75 × 10−8 (RB/RA
2/3) T

���
µB

8.93 × 10−8 (VA/VB
2)1/6 (ψB/ψA)0.6 T

����
µB

7.4 × 10−8 (φBMB)1/2 T
���

µB VA
0.6



estimate the surface tension, the error is only increased by about 2
percent, relative to employing experimentally measured values.

Umesi-Danner [27] They developed an equation for nonaque-
ous solvents with nonpolar and polar solutes. In all, 258 points were
involved in the regression. Ri is the radius of gyration in Å of the com-
ponent molecule, which has been tabulated by Passut and Danner
[Chem. Eng. Progress Symp. Ser., 140, 30 (1974)] for 250 compounds.
The average absolute deviation was 16 percent, compared with 26
percent for the Wilke-Chang equation.

Siddiqi-Lucas [22] In an impressive empirical study, these
authors examined 1275 organic liquid mixtures. Their equation
yielded an average absolute deviation of 13.1 percent, which was less
than that for the Wilke-Chang equation (17.8 percent). Note that this
correlation does not encompass aqueous solutions; those were exam-
ined and a separate correlation was proposed, which is discussed later.

Binary Mixtures of Gases in Low-Viscosity, Nonelectrolyte
Liquids Sridhar and Potter [24] derived an equation for predicting
gas diffusion through liquid by combining existing correlations. Hilde-
brand had postulated the following dependence of the diffusivity for a
gas in a liquid: D°AB = DB′B(VcB /VcA)2/3, where DB′B is the solvent self-
diffusion coefficient and Vci is the critical volume of component i,
respectively. To correct for minor changes in volumetric expansion,
Sridhar and Potter multiplied the resulting equation by VB /VmlB,
where VmlB is the molar volume of the liquid B at its melting point and
DB′B can be estimated by the equation of Ertl and Dullien (see p. 5-54).
Sridhar and Potter compared experimentally measured diffusion coeffi-
cients for twenty-seven data points of eleven binary mixtures. Their aver-
age absolute error was 13.5 percent, but Chen and Chen [7] analyzed
about 50 combinations of conditions and 3 to 4 replicates each and found
an average error of 18 percent. This correlation does not apply to hydro-
gen and helium as solutes. However, it demonstrates the usefulness of
self-diffusion as a means to assess mutual diffusivities and the value of
observable physical property changes, such as molar expansion, to
account for changes in conditions.

Chen-Chen [7] Their correlation was based on diffusion mea-
surements of 50 combinations of conditions with 3 to 4 replicates each
and exhibited an average error of 6 percent. In this correlation, Vr =
VB / [0.9724 (VmlB + 0.04765)] and VmlB = the liquid molar volume at the
melting point, as discussed previously. Their association parameter β
[which is different from the definition of that symbol in Eq. (5-229)]
accounts for hydrogen bonding of the solvent. Values for acetonitrile
and methanol are: β = 1.58 and 2.31, respectively.

Dilute Binary Mixtures of a Nonelectrolyte in Water The
correlations that were suggested previously for general mixtures,
unless specified otherwise, may also be applied to diffusion of miscel-
laneous solutes in water. The following correlations are restricted to
the present case, however.

Hayduk and Laudie [11] They presented a simple correlation
for the infinite dilution diffusion coefficients of nonelectrolytes in
water. It has about the same accuracy as the Wilke-Chang equation
(about 5.9 percent). There is no explicit temperature dependence, but
the 1.14 exponent on µw compensates for the absence of T in the
numerator. That exponent was misprinted (as 1.4) in the original arti-
cle and has been reproduced elsewhere erroneously.

Siddiqi and Lucas [227] These authors examined 658 aqueous
liquid mixtures in an empirical study. They found an average absolute
deviation of 19.7 percent. In contrast, the Wilke-Chang equation gave
35.0 percent and the Hayduk-Laudie correlation gave 30.4 percent.

Dilute Binary Hydrocarbon Mixtures Hayduk and Minhas
[12] presented an accurate correlation for normal paraffin mixtures
that was developed from 58 data points consisting of solutes from C5

to C32 and solvents from C5 to C16. The average error was 3.4 percent
for the 58 mixtures.

Matthews and Akgerman [19] The free-volume approach of
Hildebrand was shown to be valid for binary, dilute liquid paraffin
mixtures (as well as self-diffusion), consisting of solutes from C8 to
C16 and solvents of C6 and C12. The term they referred to as the “dif-
fusion volume” was simply correlated with the critical volume, as VD =
0.308 Vc. We can infer from Table 5-11 that this is approximately
related to the volume at the melting point as VD = 0.945 Vm. Their
correlation was valid for diffusion of linear alkanes at temperatures

up to 300°C and pressures up to 3.45 MPa. Matthews, Rodden, and
Akgerman [J. Chem. Eng. Data, 32, 317 (1987)] and Erkey and
Akgerman [AIChE J., 35, 443 (1989)] completed similar studies of
diffusion of alkanes, restricted to n-hexadecane and n-octane, respec-
tively, as the solvents.

Riazi and Whitson [21] They presented a generalized correla-
tion in terms of viscosity and molar density that was applicable to both
gases and liquids. The average absolute deviation for gases was only
about 8 percent, while for liquids it was 15 percent. Their expression
relies on the Chapman-Enskog correlation [Eq. (5-202)] for the low-
pressure diffusivity and the Stiel-Thodos [AIChE J., 7, 234 (1961)]
correlation for low-pressure viscosity:

µ° =

where µi°ξi = 3.4 × 10−4 Tr i
0.94 for Tr i < 1.5 or µ i°ξi = 1.778 × 10−4 (4.58

Tr i − 1.67)5/8 for Tr i > 1.5. In these equations, ξi = Tc i
1/6/Pc i

2/3 Mi
1/2, and

units are in cP, atm, K, and mol. For dense gases or liquids, the Chung
et al; [Ind. Eng. Chem. Res., 27, 671 (1988)] or Jossi-Stiel-Thodos
[AIChE J., 8, 59 (1962)] correlation may be used to estimate viscosity.
The latter is:

(µ − µ°) ξ + 10−4

= (0.1023 + 0.023364 ρr + 0.058533 ρr
2 − 0.040758 ρr

3 + 0.093324 ρr
4)4

where ξ =

and ρr = (xA VcA + xB VcB)ρ.

Dilute Binary Mixtures of Nonelectrolytes with Water as the
Solute Olander [AIChE J., 7, 175 (1961)] modified the Wilke-
Chang equation to adapt it to the infinite dilution diffusivity of water
as the solute. The modification he recommended is simply the divi-
sion of the right-hand side of the Wilke-Chang equation by 2.3. Unfor-
tunately, neither the Wilke-Chang equation nor that equation divided
by 2.3 fit the data very well. A reasonably valid generalization is that
the Wilke-Chang equation is accurate if water is very insoluble in the
solvent, such as pure hydrocarbons, halogenated hydrocarbons, and
nitro-hydrocarbons. On the other hand, the Wilke-Chang equation
divided by 2.3 is accurate for solvents in which water is very soluble, as
well as those that have low viscosities. Such solvents include alcohols,
ketones, carboxylic acids, and aldehydes. Neither equation is accurate
for higher-viscosity liquids, especially diols.

Dilute Dispersions of Macromolecules in Nonelectrolytes
The Stokes-Einstein equation has already been presented. It was noted
that its validity was restricted to large solutes, such as spherical macro-
molecules and particles in a continuum solvent. The equation has also
been found to predict accurately the diffusion coefficient of spherical
latex particles and globular proteins. Corrections to Stokes-Einstein for
molecules approximating spheroids is given by Tanford Physical Chem-
istry of Macromolecules, Wiley, New York, (1961). Since solute-solute
interactions are ignored in this theory, it applies in the dilute range only.

Hiss and Cussler [AIChE J., 19, 698 (1973)] Their basis is the
diffusion of a small solute in a fairly viscous solvent of relatively large
molecules, which is the opposite of the Stokes-Einstein assumptions.
The large solvent molecules investigated were not polymers or gels but
were of moderate molecular weight so that the macroscopic and micro-
scopic viscosities were the same. The major conclusion is that D°AB µ2/3 =
constant at a given temperature and for a solvent viscosity from 5 × 10−3

to 5 Pa⋅s or greater (5 to 5 × 103 cP). This observation is useful if D°AB is
known in a given high-viscosity liquid (oils, tars, etc.). Use of the usual
relation of D°AB ∝ 1/µ for such an estimate could lead to large errors.

Concentrated, Binary Mixtures of Nonelectrolytes Several
correlations that predict the composition dependence of DAB are sum-
marized in Table 5-15. Most are based on known values of D°AB and
D°BA. In fact, a rule of thumb states that, for many binary systems, D°AB

and D°BA bound the DAB vs. xA curve. Cullinan’s [8] equation predicts
diffusivities even in lieu of values at infinite dilution, but requires
accurate density, viscosity, and activity coefficient data.

(xA TcA + xBTcB)
1/6

����
(xAMA + xBMB)1/2 (xA PcA + xB PcB)

xAµA°MA
1/2 + xBµB°MB

1/2

���
xAMA

1/2 + xBMB
1/2
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Since the infinite dilution values D°AB and D°BA are generally
unequal, even a thermodynamically ideal solution like γA = γB = 1 will
exhibit concentration dependence of the diffusivity. In addition, non-
ideal solutions require a thermodynamic correction factor to retain
the true “driving force” for molecular diffusion, or the gradient of the
chemical potential rather than the composition gradient. That correc-
tion factor is:

βA = 1 + (5-229)

Caldwell and Babb [5] Darken [Trans. Am. Inst. Mining Met.
Eng., 175, 184 (1948)] observed that solid-state diffusion in metallur-
gical applications followed a simple relation. His equation related the
tracer diffusivities and mole fractions to the mutual diffusivity:

DAB = (xA DB + xB DA) βA (5-230)

Caldwell and Babb used virtually the same equation to evaluate the
mutual diffusivity for concentrated mixtures of common liquids.

Van Geet and Adamson [J. Phys. Chem. 68, 238 (1964)] tested that
equation for the n-dodecane (A) and n-octane (B) system and found
the average deviation of DAB from experimental values to be −0.68 per-
cent. In addition, that equation was tested for benzene + bromoben-
zene, n-hexane + n-dodecane, benzene + CCl4, octane + decane,
heptane + cetane, benzene + diphenyl, and benzene + nitromethane
with success. For systems that depart significantly from thermody-
namic ideality, it breaks down, sometimes by a factor of eight. For
example, in the binary systems acetone + CCl4, acetone + chloroform,
and ethanol + CCl4, it is not accurate. Thus, it can be expected to be
fairly accurate for nonpolar hydrocarbons of similar molecular weight
but not for polar-polar mixtures. Siddiqi, Krahn, and Lucas [J. Chem.
Eng. Data, 32, 48 (1987)] found that this relation was superior to those
of Vignes and Leffler and Cullinan for a variety of mixtures. Umesi and
Danner [27] found an average absolute deviation of 13.9 percent for
198 data points.

Rathbun and Babb [20] suggested that Darken’s equation could be
improved by raising the thermodynamic correction factor βA to a
power, n, less than unity. They looked at systems exhibiting negative
deviations from Raoult’s law and found n = 0.3. Furthermore, for polar-
nonpolar mixtures, they found n = 0.6. In a separate study, Siddiqi and
Lucas [22] followed those suggestions and found an average absolute
error of 3.3 percent for nonpolar-nonpolar mixtures, 11.0 percent for
polar-nonpolar mixtures, and 14.6 percent for polar-polar mixtures.
Siddiqi, Krahn, and Lucas (ibid.) examined a few other mixtures and

∂ ln γA
�
∂ ln xA

found that n = 1 was probably best. Thus, this approach is, at best,
highly dependent on the type of components being considered.

Vignes [28] empirically correlated mixture diffusivity data for 12 binary
mixtures. Later Ertl, Ghai, and Dollon [AIChE J., 20, 1 (1974)] evalu-
ated 122 binary systems, which showed an average absolute deviation of
only 7 percent. None of the latter systems, however, was very nonideal.

Leffler and Cullinan [16] modified Vignes’ equation using some
theoretical arguments to arrive at Eq. (5-234), which the authors com-
pared to Eq. (5-233) for the 12 systems mentioned above. The average
absolute maximum deviation was only 6 percent. Umesi and Danner
[27], however, found an average absolute deviation of 11.4 percent for
198 data points. For normal paraffins, it is not very accurate. In gen-
eral, the accuracies of Eqs. (5-233) and (5-234) are not much differ-
ent, and since Vignes’ is simpler to use, it is suggested. The application
of either should be limited to nonassociating systems that do not devi-
ate much from ideality (0.95 < βA < 1.05).

Cussler [9] studied diffusion in concentrated associating systems
and has shown that, in associating systems, it is the size of diffusing
clusters rather than diffusing solutes that controls diffusion. Do is a
reference diffusion coefficient discussed hereafter; aA is the activity of
component A; and K is a constant. By assuming that Do could be pre-
dicted by Eq. (5-233) with β = 1, K was found to be equal to 0.5 based
on five binary systems and validated with a sixth binary mixture. The
limitations of Eq. (5-235) using Do and K defined previously have not
been explored, so caution is warranted. Gurkan [AIChE J., 33, 175
(1987)] showed that K should actually be closer to 0.3 (rather than 0.5)
and discussed the overall results.

Cullinan [8] presented an extension of Cussler’s cluster diffusion
theory. His method accurately accounts for composition and temper-
ature dependence of diffusivity. It is novel in that it contains no
adjustable constants, and it relates transport properties and solution
thermodynamics. This equation has been tested for six very different
mixtures by Rollins and Knaebel [AIChE J., 37, 470 (1991)], and it
was found to agree remarkably well with data for most conditions,
considering the absence of adjustable parameters. In the dilute region
(of either A or B), there are systematic errors probably caused by the
breakdown of certain implicit assumptions (that nevertheless appear
to be generally valid at higher concentrations).

Asfour and Dullien [1] developed a relation for predicting alkane
diffusivities at moderate concentrations that employs:

ζ = � 	
2/3

(5-241)
MxAMxB�

Mm

Vfm�
Vf xAVf xB
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TABLE 5-15 Correlations of Diffusivities for Concentrated, Binary Mixtures 
of Nonelectrolyte Liquids

Authors* Equation

Caldwell-Babb [5] DAB = (xADBA° + xB DAB° )βA (5-231)
Rathbun-Babb [20] DAB = (xADBA° + xB DAB° )βA

n (5-232)
Vignes [28] DAB = DAB°xBDBA°xAβA (5-233)
Leffler-Cullinan [16] DABµmix = (DAB° µB)xB(DBA° µA)xAβA (5-234)

Cussler [9] DAB = D0�1 + � − 1	�
−1/2

(5-235)

Cullinan [8] DAB = � �
1/2

(5-236)

Asfour-Dullien [1] DAB = � 	
x

B� 	
x

A

ζµβA (5-237)

Siddiqi-Lucas [22] DAB = (CBV�BDAB° + CAV�ADBA° )βA (5-238)

Bosse and Bart no. 1 [3] DAB = (D∞
AB)XB(D∞

AB)XA exp �− 	 (5-239)

Bosse and Bart no. 2 [3] µDAB = (µβD∞
AB)XB (µAD∞

BA)XA exp �− 	 (5-240)

Relative errors for the correlations in this table are very dependent on the components of interest and are cited in the text.
*See the beginning of the “Mass Transfer” subsection for references.
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�
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�
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�
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�

µB

2πxAxBβA
��
1 + βA (2πxAxB − 1)

kT
��
2πµmix(V/A)1/3

∂ ln xA
�
∂ ln aA
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�
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where Vfxi
= Vfi

xi; the fluid free volume is Vf i = Vi − Vmli for i = A, B, and m,
in which Vml i is the molar volume of the liquid at the melting point and

Vmlm = � + + 	
−1

and VmlAB = � �
3

and µ is the mixture viscosity; Mm is the mixture mean molecular
weight; and βA is defined by Eq. (5-229). The average absolute error
of this equation is 1.4 percent, while the Vignes equation and the Lef-
fler-Cullinan equation give 3.3 percent and 6.2 percent, respectively.

Siddiqi and Lucas [22] suggested that component volume fractions
might be used to correlate the effects of concentration dependence.
They found an average absolute deviation of 4.5 percent for nonpolar-
nonpolar mixtures, 16.5 percent for polar-nonpolar mixtures, and 10.8
percent for polar-polar mixtures.

Bosse and Bart added a term to account for excess Gibbs free energy,
involved in the activation energy for diffusion, which was previously
omitted. Doing so yielded minor modifications of the Vignes and Lef-
fler-Cullinan equations [Eqs. (5-233) and (5-234), respectively]. The
UNIFAC method was used to assess the excess Gibbs free energy.
Comparing predictions of the new equations with data for 36 pairs and
326 data points yielded relative deviations of 7.8 percent and 8.9 per-
cent, respectively, but which were better than the closely related Vignes
(12.8 percent) and Leffler-Cullinan (10.4 percent) equations.

Binary Electrolyte Mixtures When electrolytes are added to 
a solvent, they dissociate to a certain degree. It would appear that 
the solution contains at least three components: solvent, anions, and
cations. If the solution is to remain neutral in charge at each point
(assuming the absence of any applied electric potential field), the
anions and cations diffuse effectively as a single component, as for
molecular diffusion. The diffusion of the anionic and cationic species
in the solvent can thus be treated as a binary mixture.

Nernst-Haskell The theory of dilute diffusion of salts is well
developed and has been experimentally verified. For dilute solutions
of a single salt, the well-known Nernst-Haskell equation (Poling et al.)
is applicable:

D°AB = = 8.9304 × 10−10 T (5-242)

where D°AB = diffusivity based on molarity rather than normality of
dilute salt A in solvent B, cm2/s.

The previous definitions can be interpreted in terms of ionic-
species diffusivities and conductivities. The latter are easily measured
and depend on temperature and composition. For example, the
equivalent conductance Λ is commonly tabulated in chemistry hand-
books as the limiting (infinite dilution) conductance Λo and at stan-
dard concentrations, typically at 25°C. Λ = 1000K/C = λ+ + λ− = Λo +
f(C), (cm2/ohm gequiv); K = α/R = specific conductance, (ohm cm)−1;
C = solution concentration, (gequiv/�); α = conductance cell constant
(measured), (cm−1); R = solution electrical resistance, which is mea-
sured (ohm); and f(C) = a complicated function of concentration. The
resulting equation of the electrolyte diffusivity is

DAB = (5-243)

where |z�| represents the magnitude of the ionic charge and where the
cationic or anionic diffusivities are D� = 8.9304 × 10−10 Tλ� / |z�| cm2/s.
The coefficient is kN0 /F 2 = R/F 2. In practice, the equivalent conduc-
tance of the ion pair of interest would be obtained and supplemented
with conductances of permutations of those ions and one independent
cation and anion. This would allow determination of all the ionic con-
ductances and hence the diffusivity of the electrolyte solution.

Gordon [J. Phys. Chem. 5, 522 (1937)] Typically, as the concen-
tration of a salt increases from infinite dilution, the diffusion coefficient
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decreases rapidly from D°AB. As concentration is increased further, how-
ever, DAB rises steadily, often becoming greater than D°AB. Gordon pro-
posed the following empirical equation, which is applicable up to
concentrations of 2N:

DAB = D°AB �1 + 	 (5-244)

where D°AB is given by the Nernst-Haskell equation. References that
tabulate γ� as a function of m, as well as other equations for DAB, are
given by Poling et al.

Morgan, Ferguson, and Scovazzo [Ind. Eng. Chem. Res. 44,
4815 (2005)] They studied diffusion of gases in ionic liquids having
moderate to high viscosity (up to about 1000 cP) at 30°C. Their range
was limited, and the empirical equation they found was

DAB = 3.7 × 10−3� 	 (5-245)

which yielded a correlation coefficient of 0.975. Of the estimated dif-
fusivities 90 percent were within ±20 percent of the experimental values.
The exponent for viscosity approximately confirmed the observation of
Hiss and Cussler (ibid).

Multicomponent Mixtures No simple, practical estimation
methods have been developed for predicting multicomponent liquid-
diffusion coefficients. Several theories have been developed, but the
necessity for extensive activity data, pure component and mixture vol-
umes, mixture viscosity data, and tracer and binary diffusion coeffi-
cients have significantly limited the utility of the theories (see Poling
et al.).

The generalized Stefan-Maxwell equations using binary diffusion
coefficients are not easily applicable to liquids since the coefficients
are so dependent on conditions. That is, in liquids, each Dij can be
strongly composition dependent in binary mixtures and, moreover,
the binary Dij is strongly affected in a multicomponent mixture. Thus,
the convenience of writing multicomponent flux equations in terms of
binary coefficients is lost. Conversely, they apply to gas mixtures
because each Dij is practically independent of composition by itself
and in a multicomponent mixture (see Taylor and Krishna for details).

One particular case of multicomponent diffusion that has been
examined is the dilute diffusion of a solute in a homogeneous mixture
(e.g., of A in B + C). Umesi and Danner [27] compared the three
equations given below for 49 ternary systems. All three equations
were equivalent, giving average absolute deviations of 25 percent.

Perkins and Geankoplis [Chem. Eng. Sci., 24, 1035 (1969)]

Dam µm
0.8 = 


n

j = 1
j ≠ A

xj D°Aj µ j
0.8 (5-246)

Cullinan [Can. J. Chem. Eng. 45, 377 (1967)] This is an exten-
sion of Vignes’ equation to multicomponent systems:

Dam = �
n

j = 1
j ≠ A

(D°A j)
xj (5-247)

Leffler and Cullinan [16] They extended their binary relation
to an arbitrary multicomponent mixture, as follows:

Dam µm = �
n

j = 1
j ≠ A

(D°Aj µj)
xj (5-248)

where DAj is the dilute binary diffusion coefficient of A in j; DAm is the
dilute diffusion of A through m; xj is the mole fraction; µj is the viscos-
ity of component j; and µm is the mixture viscosity.

Akita [Ind. Eng. Chem. Fundam., 10, 89 (1981)] Another case of
multicomponent dilute diffusion of significant practical interest is that
of gases in aqueous electrolyte solutions. Many gas-absorption
processes use electrolyte solutions. Akita presents experimentally tested
equations for this case.

Graham and Dranoff [Ind. Eng. Chem. Fundam., 21, 360 and
365 (1982)] They studied multicomponent diffusion of electrolytes
in ion exchangers. They found that the Stefan-Maxwell interaction
coefficients reduce to limiting ion tracer diffusivities of each ion.
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Pinto and Graham [AIChE J. 32, 291 (1986) and 33, 436 (1987)]
They studied multicomponent diffusion in electrolyte solutions. They
focused on the Stefan-Maxwell equations and corrected for solvation
effects. They achieved excellent results for 1-1 electrolytes in water at
25°C up to concentrations of 4M.

Anderko and Lencka [Ind. Eng. Chem. Res. 37, 2878 (1998)]
These authors present an analysis of self-diffusion in multicompo-
nent aqueous electrolyte systems. Their model includes contribu-
tions of long-range (Coulombic) and short-range (hard-sphere)
interactions. Their mixing rule was based on equations of nonequilib-
rium thermodynamics. The model accurately predicts self-diffusivities
of ions and gases in aqueous solutions from dilute to about 30 mol/kg
water. It makes it possible to take single-solute data and extend them
to multicomponent mixtures.

DIFFUSION OF FLUIDS IN POROUS SOLIDS

Diffusion in porous solids is usually the most important factor con-
trolling mass transfer in adsorption, ion exchange, drying, heteroge-
neous catalysis, leaching, and many other applications. Some of the
applications of interest are outlined in Table 5-16. Applications of
these equations are found in Secs. 16, 22, and 23.

Diffusion within the largest cavities of a porous medium is assumed
to be similar to ordinary or bulk diffusion except that it is hindered by
the pore walls (see Eq. 5-249). The tortuosity τ that expresses this hin-
drance has been estimated from geometric arguments. Unfortunately,

measured values are often an order of magnitude greater than those
estimates. Thus, the effective diffusivity Deff (and hence τ) is normally
determined by comparing a diffusion model to experimental measure-
ments. The normal range of tortuosities for silica gel, alumina, and
other porous solids is 2 ≤ τ ≤ 6, but for activated carbon, 5 ≤ τ ≤ 65.

In small pores and at low pressures, the mean free path � of the gas
molecule (or atom) is significantly greater than the pore diameter
dpore. Its magnitude may be estimated from

� = � 	
1/2

m

As a result, collisions with the wall occur more frequently than with
other molecules. This is referred to as the Knudsen mode of diffusion
and is contrasted with ordinary or bulk diffusion, which occurs by
intermolecular collisions. At intermediate pressures, both ordinary
diffusion and Knudsen diffusion may be important [see Eqs. (5-252)
and (5-253)].

For gases and vapors that adsorb on the porous solid, surface diffu-
sion may be important, particularly at high surface coverage [see Eqs.
(5-254) and (5-257)]. The mechanism of surface diffusion may be
viewed as molecules hopping from one surface site to another. Thus,
if adsorption is too strong, surface diffusion is impeded, while if
adsorption is too weak, surface diffusion contributes insignificantly to
the overall rate. Surface diffusion and bulk diffusion usually occur in
parallel [see Eqs. (5-258) and (5-259)]. Although Ds is expected to be
less than Deff, the solute flux due to surface diffusion may be larger

RT
�
2πM

3.2 µ
�

P
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TABLE 5-16 Relations for Diffusion in Porous Solids

Mechanism Equation Applies to References*

Deff =

DK = 48.5 dpore � 	
1/2

in m2/s

DKeff =

Ni = −DK

Deff = � + 	
−1

α = 1 +

Deff = � + 	
−1

JSi = −DSeff ρp � 	
DSeff =

DSθ =

DS = D′S (q) exp � 	
J = −�Deff � 	 + DSeff ρp � 	�
J = −Dapp � 	
Dapp = Deff + DSeff ρp � 	dqi

�
dpi

dpi
�
dz

dqi
�
dz

dpi
�
dz

−ES
�
RT

DSθ = 0
�
(1 − θ)

εpDS
�
τ

dqi
�
dz

1
�
DKeff

1
�
Deff

NB
�
NA

1
�
DKeff

1 − α xA
�

Deff

dCi
�
dz

εpDK
�
τ

T
�
M

εpD
�
τ

(5-249)

(5-250)

(5-251)

(5-252)

(5-253)

(5-254)

(5-255)

(5-256)

(5-257)

(5-258)

(5-259)

(5-260)

Gases or liquids in large pores. 
NK n = �/d pore < 0.01

Dilute (low pressure) gases in small pores. 
NK n = �/d pore > 10

" " " "

" " " "

NA ≠ NB

NA = NB

Adsorbed gases or vapors

" " " "

θ = fractional surface coverage ≤ 0.6

" " " "

" " " "

" " " "

" " " "

[33]

Geankoplis, [34, 35]

Geankoplis, [32, 35]

[32, 34, 35]

[34]

Bulk diffusion in pores

Knudsen diffusion

Combined bulk and Knudsen diffu-
sion

Surface diffusion

Parallel bulk and surface diffusion

*See the beginning of the “Mass Transfer” subsection for references.



than that due to bulk diffusion if ∂qi /∂z >> ∂Ci /∂z. This can occur
when a component is strongly adsorbed and the surface coverage is
high. For all that, surface diffusion is not well understood. The refer-
ences in Table 5-16 should be consulted for further details.

INTERPHASE MASS TRANSFER

Transfer of material between phases is important in most separation
processes in which two phases are involved. When one phase is pure,
mass transfer in the pure phase is not involved. For example, when a
pure liquid is being evaporated into a gas, only the gas-phase mass
transfer need be calculated. Occasionally, mass transfer in one of the
two phases may be neglected even though pure components are not
involved. This will be the case when the resistance to mass transfer is
much larger in one phase than in the other. Understanding the nature
and magnitudes of these resistances is one of the keys to performing
reliable mass transfer. In this section, mass transfer between gas and
liquid phases will be discussed. The principles are easily applied to the
other phases.

Mass-Transfer Principles: Dilute Systems When material is
transferred from one phase to another across an interface that sepa-
rates the two, the resistance to mass transfer in each phase causes a
concentration gradient in each, as shown in Fig. 5-26 for a gas-liquid
interface. The concentrations of the diffusing material in the two
phases immediately adjacent to the interface generally are unequal,
even if expressed in the same units, but usually are assumed to be
related to each other by the laws of thermodynamic equilibrium.
Thus, it is assumed that the thermodynamic equilibrium is reached at
the gas-liquid interface almost immediately when a gas and a liquid
are brought into contact.

For systems in which the solute concentrations in the gas and liquid
phases are dilute, the rate of transfer may be expressed by equations
which predict that the rate of mass transfer is proportional to the dif-
ference between the bulk concentration and the concentration at the
gas-liquid interface. Thus

NA = k′G(p − pi) = k′L(ci − c) (5-261)

where NA = mass-transfer rate, k′G = gas-phase mass-transfer coefficient,
k′L = liquid-phase mass-transfer coefficient, p = solute partial pressure in
bulk gas, pi = solute partial pressure at interface, c = solute concentra-
tion in bulk liquid, and ci = solute concentration in liquid at interface.

The mass-transfer coefficients k′G and k′L by definition are equal to
the ratios of the molal mass flux NA to the concentration driving forces
(p − pi) and (ci − c) respectively. An alternative expression for the rate
of transfer in dilute systems is given by

NA = kG(y − yi) = kL(xi − x) (5-262)
where NA = mass-transfer rate, kG = gas-phase mass-transfer coeffi-
cient, kL = liquid-phase mass-transfer coefficient, y = mole-fraction

solute in bulk-gas phase, yi = mole-fraction solute in gas at interface, 
x = mole-fraction solute in bulk-liquid phase, and xi = mole-fraction
solute in liquid at interface.

The mass-transfer coefficients defined by Eqs. (5-261) and (5-262)
are related to each other as follows:

kG = k′GpT (5-263)
kL = k′Lρ�L (5-264)

where pT = total system pressure employed during the experimental
determinations of k′G values and ρ�L = average molar density of the liq-
uid phase. The coefficient kG is relatively independent of the total sys-
tem pressure and therefore is more convenient to use than k′G, which
is inversely proportional to the total system pressure.

The above equations may be used for finding the interfacial con-
centrations corresponding to any set of values of x and y provided the
ratio of the individual coefficients is known. Thus

(y − yi)/(xi − x) = kL /kG = k′Lρ�L/k′GpT = LMHG /GMHL (5-265)

where LM = molar liquid mass velocity, GM = molar gas mass velocity,
HL = height of one transfer unit based on liquid-phase resistance, and
HG = height of one transfer unit based on gas-phase resistance. The
last term in Eq. (5-265) is derived from Eqs. (5-284) and (5-286).

Equation (5-265) may be solved graphically if a plot is made of the
equilibrium vapor and liquid compositions and a point representing
the bulk concentrations x and y is located on this diagram. A con-
struction of this type is shown in Fig. 5-27, which represents a gas-
absorption situation.

The interfacial mole fractions yi and xi can be determined by solv-
ing Eq. (5-265) simultaneously with the equilibrium relation y°i = F(xi)
to obtain yi and xi. The rate of transfer may then be calculated from
Eq. (5-262).

If the equilibrium relation y°i = F(xi) is sufficiently simple, e.g., if a
plot of y°i versus xi is a straight line, not necessarily through the origin,
the rate of transfer is proportional to the difference between the bulk
concentration in one phase and the concentration (in that same phase)
which would be in equilibrium with the bulk concentration in the sec-
ond phase. One such difference is y − y°, and another is x° − x. In this
case, there is no need to solve for the interfacial compositions, as may
be seen from the following derivation.

The rate of mass transfer may be defined by the equation

NA = KG(y − y°) = kG(y − yi) = kL(xi − x) = KL(x° − x) (5-266)

where KG = overall gas-phase mass-transfer coefficient, KL = overall liq-
uid-phase mass-transfer coefficient, y° = vapor composition in equilib-
rium with x, and x° = liquid composition in equilibrium with vapor of
composition y. This equation can be rearranged to the formula

= � 	 = + � 	 = + � 	
(5-267)
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FIG. 5-26 Concentration gradients near a gas-liquid interface.
FIG. 5-27 Identification of concentrations at a point in a countercurrent
absorption tower.



in view of Eq. (5-265). Comparison of the last term in parentheses
with the diagram of Fig. 5-27 shows that it is equal to the slope of the
chord connecting the points (x,y°) and (xi,yi). If the equilibrium curve
is a straight line, then this term is the slope m. Thus

1/KG = (1/kG + m/kL) (5-268)
When Henry’s law is valid (pA = HxA or pA = H′CA), the slope m can

be computed according to the relationship
m = H/pT = H′ρ�L/pT (5-269)

where m is defined in terms of mole-fraction driving forces compati-
ble with Eqs. (5-262) through (5-268), i.e., with the definitions of kL,
kG, and KG.

If it is desired to calculate the rate of transfer from the overall con-
centration difference based on bulk-liquid compositions (x° − x), the
appropriate overall coefficient KL is related to the individual coeffi-
cients by the equation

1/KL = [1/kL + 1/(mkG)] (5-270)
Conversion of these equations to a k′G, k′L basis can be accomplished

readily by direct substitution of Eqs. (5-263) and (5-264).
Occasionally one will find k′L or K′L values reported in units (SI) of

meters per second. The correct units for these values are kmol/
[(s⋅m2)(kmol/m3)], and Eq. (5-264) is the correct equation for convert-
ing them to a mole-fraction basis.

When k′G and K′G values are reported in units (SI) of kmol/[(s⋅m2)
(kPa)], one must be careful in converting them to a mole-fraction
basis to multiply by the total pressure actually employed in the origi-
nal experiments and not by the total pressure of the system to be
designed. This conversion is valid for systems in which Dalton’s law of
partial pressures (p = ypT) is valid.

Comparison of Eqs. (5-268) and (5-270) shows that for systems in
which the equilibrium line is straight, the overall mass transfer coeffi-
cients are related to each other by the equation

KL = mKG (5-271)

When the equilibrium curve is not straight, there is no strictly logi-
cal basis for the use of an overall transfer coefficient, since the value of
m will be a function of position in the apparatus, as can be seen from
Fig. 5-27. In such cases the rate of transfer must be calculated by solv-
ing for the interfacial compositions as described above.

Experimentally observed rates of mass transfer often are expressed
in terms of overall transfer coefficients even when the equilibrium
lines are curved. This procedure is empirical, since the theory indi-
cates that in such cases the rates of transfer may not vary in direct 
proportion to the overall bulk concentration differences (y − y°) and
(x° − x) at all concentration levels even though the rates may be pro-
portional to the concentration difference in each phase taken sepa-
rately, i.e., (xi − x) and (y − yi).

In most types of separation equipment such as packed or spray tow-
ers, the interfacial area that is effective for mass transfer cannot be
accurately determined. For this reason it is customary to report exper-
imentally observed rates of transfer in terms of transfer coefficients
based on a unit volume of the apparatus rather than on a unit of inter-
facial area. Such volumetric coefficients are designated as KGa, kLa,
etc., where a represents the interfacial area per unit volume of the
apparatus. Experimentally observed variations in the values of these
volumetric coefficients with variations in flow rates, type of packing,
etc., may be due as much to changes in the effective value of a as to
changes in k. Calculation of the overall coefficients from the individ-
ual volumetric coefficients is made by means of the equations

1/KGa = (1/kGa + m/kLa) (5-272)

1/KLa = (1/kLa + 1/mkGa) (5-273)

Because of the wide variation in equilibrium, the variation in the val-
ues of m from one system to another can have an important effect on
the overall coefficient and on the selection of the type of equipment to
use. For example, if m is large, the liquid-phase part of the overall resis-
tance might be extremely large where kL might be relatively small. This
kind of reasoning must be applied with caution, however, since species
with different equilibrium characteristics are separated under different

operating conditions. Thus, the effect of changes in m on the overall
resistance to mass transfer may partly be counterbalanced by changes in
the individual specific resistances as the flow rates are changed.

Mass-Transfer Principles: Concentrated Systems When
solute concentrations in the gas and/or liquid phases are large, the
equations derived above for dilute systems no longer are applicable.
The correct equations to use for concentrated systems are as follows:

NA = k̂G(y − yi)/yBM = k̂L(xi − x)/xBM

= K̂G(y − y°)/y°BM = K̂L(x° − x)/x°BM (5-274)

where (NB = 0)

yBM = (5-275)

y°BM = (5-276)

xBM = (5-277)

x°BM = (5-278)

and where k̂G and k̂L are the gas-phase and liquid-phase mass-transfer
coefficients for concentrated systems and K̂G and K̂L are the overall
gas-phase and liquid-phase mass-transfer coefficients for concentrated
systems. These coefficients are defined later in Eqs. (5-281) to (5-283).

The factors yBM and xBM arise from the fact that, in the diffusion of a
solute through a second stationary layer of insoluble fluid, the resis-
tance to diffusion varies in proportion to the concentration of the
insoluble stationary fluid, approaching zero as the concentration of
the insoluble fluid approaches zero. See Eq. (5-198).

The factors y°BM and x°BM cannot be justified on the basis of mass-
transfer theory since they are based on overall resistances. These fac-
tors therefore are included in the equations by analogy with the
corresponding film equations.

In dilute systems the logarithmic-mean insoluble-gas and nonvolatile-
liquid concentrations approach unity, and Eq. (5-274) reduces to the
dilute-system formula. For equimolar counter diffusion (e.g., binary dis-
tillation), these log-mean factors should be omitted. See Eq. (5-197).

Substitution of Eqs. (5-275) through (5-278) into Eq. (5-274)
results in the following simplified formula:

NA = k̂G ln [(1 − yi)/(1 − y)]

= K̂G ln [(1 − y°)/(1 − y)]

= k̂L ln [(1 − x)/(1 − xi)]

= K̂L ln [(1 − x)/(1 − x°)] (5-279)

Note that the units of k̂G, K̂G, k̂L, and K̂L are all identical to each
other, i.e., kmol/(s⋅m2) in SI units.

The equation for computing the interfacial gas and liquid composi-
tions in concentrated systems is

(y − yi)/(xi − x) = k̂LyBM /k̂GxBM

= LMHGyBM /GMHLxBM = kL /kG (5-280)

This equation is identical to the one for dilute systems since k̂G =
kGyBM and k̂L = kLxBM. Note, however, that when k̂G and k̂L are given,
the equation must be solved by trial and error, since xBM contains xi

and yBM contains yi.
The overall gas-phase and liquid-phase mass-transfer coefficients

for concentrated systems are computed according to the following
equations:

= + � 	 (5-281)

= + � 	 (5-282)

When the equilibrium curve is a straight line, the terms in parenthe-
ses can be replaced by the slope m or 1/m as before. In this case the
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overall mass-transfer coefficients for concentrated systems are related
to each other by the equation

K̂L = mK̂G(x°BM /y°BM) (5-283)

All these equations reduce to their dilute-system equivalents as the
inert concentrations approach unity in terms of mole fractions of inert
concentrations in the fluids.

HTU (Height Equivalent to One Transfer Unit) Frequently
the values of the individual coefficients of mass transfer are so strongly
dependent on flow rates that the quantity obtained by dividing each
coefficient by the flow rate of the phase to which it applies is more
nearly constant than the coefficient itself. The quantity obtained by
this procedure is called the height equivalent to one transfer unit,
since it expresses in terms of a single length dimension the height of
apparatus required to accomplish a separation of standard difficulty.

The following relations between the transfer coefficients and the
values of HTU apply:

HG = GM /kGayBM = GM /k̂Ga (5-284)

HOG = GM /KGay°BM = GM/K̂Ga (5-285)

HL = LM /kLaxBM = LM /k̂La (5-286)

HOL = LM /KLax°BM = LM/K̂La (5-287)

The equations that express the addition of individual resistances in
terms of HTUs, applicable to either dilute or concentrated systems,
are

HOG = HG + HL (5-288)

HOL = HL + HG (5-289)

These equations are strictly valid only when m, the slope of the equi-
librium curve, is constant, as noted previously.

NTU (Number of Transfer Units) The NTU required for a
given separation is closely related to the number of theoretical stages or
plates required to carry out the same separation in a stagewise or plate-
type apparatus. For equimolal counterdiffusion, such as in a binary dis-
tillation, the number of overall gas-phase transfer units NOG required for
changing the composition of the vapor stream from y1 to y2 is

NOG = �y1

y2

(5-290)

When diffusion is in one direction only, as in the absorption of a solu-
ble component from an insoluble gas,

NOG = �y1

y2

(5-291)

The total height of packing required is then

hT = HOGNOG (5-292)

When it is known that HOG varies appreciably within the tower, this
term must be placed inside the integral in Eqs. (5-290) and (5-291) for
accurate calculations of hT. For example, the packed-tower design
equation in terms of the overall gas-phase mass-transfer coefficient
for absorption would be expressed as follows:

hT = �y1

y2
� � (5-293)

where the first term under the integral can be recognized as the HTU
term. Convenient solutions of these equations for special cases are
discussed later.

Definitions of Mass-Transfer Coefficients k̂G and k̂L The
mass-transfer coefficient is defined as the ratio of the molal mass flux
NA to the concentration driving force. This leads to many different
ways of defining these coefficients. For example, gas-phase mass-
transfer rates may be defined as

NA = kG(y − yi) = k′G(p − pi) = k̂G(y − yi)/yBM (5-294)

where the units (SI) of kG are kmol/[(s⋅m2)(mole fraction)], the units of
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k′G are kmol/[(s⋅m2)(kPa)], and the units of k̂G are kmol/(s⋅m2). These
coefficients are related to each other as follows:

kG = kGyBM = k′GpTyBM (5-295)
where pT is the total system pressure (it is assumed here that Dalton’s
law of partial pressures is valid).

In a similar way, liquid-phase mass-transfer rates may be defined by
the relations

NA = kL(xi − x) = k′L(ci − c) = k̂L(xi − x)/xBM (5-296)

where the units (SI) of kL are kmol/[(s⋅m2)(mole fraction)], the units of
k′L are kmol/[(s⋅m2)(kmol/m3)] or meters per second, and the units 
of k̂L are kmol/(s⋅m2). These coefficients are related as follows:

k̂L = kLxBM = k′Lρ�LxBM (5-297)

where ρ�L is the molar density of the liquid phase in units (SI) of kilo-
moles per cubic meter. Note that, for dilute solutions where xBM � 1,
kL and k̂L will have identical numerical values. Similarly, for dilute
gases k̂G � kG.

Simplified Mass-Transfer Theories In certain simple situa-
tions, the mass-transfer coefficients can be calculated from first prin-
ciples. The film, penetration, and surface-renewal theories are
attempts to extend these theoretical calculations to more complex sit-
uations. Although these theories are often not accurate, they are use-
ful to provide a physical picture for variations in the mass-transfer
coefficient.

For the special case of steady-state unidirectional diffusion of a
component through an inert-gas film in an ideal-gas system, the rate
of mass transfer is derived as

NA = = ln (5-298)

where DAB = the diffusion coefficient or “diffusivity,” δG = the “effec-
tive” thickness of a stagnant-gas layer which would offer a resistance to
molecular diffusion equal to the experimentally observed resistance,
and R = the gas constant. [Nernst, Z. Phys. Chem., 47, 52 (1904);
Whitman, Chem. Mat. Eng., 29, 149 (1923), and Lewis and Whitman,
Ind. Eng. Chem., 16, 1215 (1924)].

The film thickness δG depends primarily on the hydrodynamics of
the system and hence on the Reynolds number and the Schmidt num-
ber. Thus, various correlations have been developed for different
geometries in terms of the following dimensionless variables:

NSh = k̂GRTd/DABpT = f(NRe,NSc) (5-299)
where NSh is the Sherwood number, NRe (= Gd/µG) is the Reynolds
number based on the characteristic length d appropriate to the geom-
etry of the particular system; and NSc (= µG /ρGDAB) is the Schmidt
number.

According to this analysis one can see that for gas-absorption prob-
lems, which often exhibit unidirectional diffusion, the most appropri-
ate driving-force expression is of the form (y − yi)/yBM, and the most
appropriate mass-transfer coefficient is therefore k̂G. This concept is
to be found in all the key equations for the design of mass-transfer
equipment.

The Sherwood-number relation for gas-phase mass-transfer coeffi-
cients as represented by the film diffusion model in Eq. (5-299) can be
rearranged as follows:

NSh = (k̂G /GM)NReNSc = NStNReNSc = f (NRe,NSc) (5-300)
where NSt = k̂G /GM = k′GpBM /GM is known as the Stanton number. This
equation can now be stated in the alternative functional forms

NSt = k̂G /GM = g(NRe,NSc) (5-301)
jD = NSt ⋅ NSc

2 /3 (5-302)
where j is the Chilton-Colburn “j factor” for mass transfer (discussed
later).

The important point to note here is that the gas-phase mass-
transfer coefficient k̂G depends principally upon the transport proper-
ties of the fluid (NSc) and the hydrodynamics of the particular system
involved (NRe). It also is important to recognize that specific mass-
transfer correlations can be derived only in conjunction with the

1 − yi
�
1 − y

DABpT
�
RT δG

(y − yi)
�

yBM

DABpT
�
RT δG
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investigator’s particular assumptions concerning the numerical values
of the effective interfacial area a of the packing.

The stagnant-film model discussed previously assumes a steady
state in which the local flux across each element of area is constant;
i.e., there is no accumulation of the diffusing species within the film.
Higbie [Trans. Am. Inst. Chem. Eng., 31, 365 (1935)] pointed out that
industrial contactors often operate with repeated brief contacts
between phases in which the contact times are too short for the steady
state to be achieved. For example, Higbie advanced the theory that in
a packed tower the liquid flows across each packing piece in laminar
flow and is remixed at the points of discontinuity between the packing
elements. Thus, a fresh liquid surface is formed at the top of each
piece, and as it moves downward, it absorbs gas at a decreasing rate
until it is mixed at the next discontinuity. This is the basis of penetra-
tion theory.

If the velocity of the flowing stream is uniform over a very deep
region of liquid (total thickness, δT >> �D�t�), the time-averaged mass-
transfer coefficient according to penetration theory is given by

k′L = 2�D�L/�π�t� (5-303)

where k′L = liquid-phase mass-transfer coefficient, DL = liquid-phase
diffusion coefficient, and t = contact time.

In practice, the contact time t is not known except in special cases
in which the hydrodynamics are clearly defined. This is somewhat
similar to the case of the stagnant-film theory in which the unknown
quantity is the thickness of the stagnant layer δ (in film theory, the 
liquid-phase mass-transfer coefficient is given by k′L = DL /δ).

The penetration theory predicts that k′L should vary by the square
root of the molecular diffusivity, as compared with film theory, which
predicts a first-power dependency on D. Various investigators have
reported experimental powers of D ranging from 0.5 to 0.75, and the
Chilton-Colburn analogy suggests a w power.

Penetration theory often is used in analyzing absorption with chem-
ical reaction because it makes no assumption about the depths of pen-
etration of the various reacting species, and it gives a more accurate
result when the diffusion coefficients of the reacting species are not
equal. When the reaction process is very complex, however, penetra-
tion theory is more difficult to use than film theory, and the latter
method normally is preferred.

Danckwerts [Ind. Eng. Chem., 42, 1460 (1951)] proposed an exten-
sion of the penetration theory, called the surface renewal theory,
which allows for the eddy motion in the liquid to bring masses of fresh
liquid continually from the interior to the surface, where they are
exposed to the gas for finite lengths of time before being replaced. In
his development, Danckwerts assumed that every element of fluid has
an equal chance of being replaced regardless of its age. The Danck-
werts model gives

k′L = �D�s� (5-304)

where s = fractional rate of surface renewal.
Note that both the penetration and the surface-renewal theories

predict a square-root dependency on D. Also, it should be recognized
that values of the surface-renewal rate s generally are not available,
which presents the same problems as do δ and t in the film and pene-
tration models.

The predictions of correlations based on the film model often are
nearly identical to predictions based on the penetration and surface-
renewal models. Thus, in view of its relative simplicity, the film model
normally is preferred for purposes of discussion or calculation. It
should be noted that none of these theoretical models has proved ade-
quate for making a priori predictions of mass-transfer rates in packed
towers, and therefore empirical correlations such as those outlined
later in Table 5-24 must be employed.

Mass-Transfer Correlations Because of the tremendous im-
portance of mass transfer in chemical engineering, a very large num-
ber of studies have determined mass-transfer coefficients both
empirically and theoretically. Some of these studies are summarized
in Tables 5-17 to 5-24. Each table is for a specific geometry or type of
contactor, starting with flat plates, which have the simplest geometry
(Table 5-17); then wetted wall columns (Table 5-18); flow in pipes
and ducts (Table 5-19); submerged objects (Table 5-20); drops and

bubbles (Table 5-21); agitated systems (Table 5-22); packed beds of
particles for adsorption, ion exchange, and chemical reaction (Table 5-
23); and finishing with packed bed two-phase contactors for distilla-
tion, absorption and other unit operations (Table 5-24). Although
extensive, these tables are not meant to be encyclopedic, but a variety
of different configurations are shown to provide a flavor of the range of
correlations available. These correlations include transfer to or from
one fluid and either a second fluid or a solid. Many of the correlations
are for kL and kG values obtained from dilute systems where xBM ≈ 1.0
and yBM ≈ 1.0. The most extensive source for older mass-transfer cor-
relations in a variety of geometries is Skelland (Diffusional Mass Trans-
fer, 1974). The extensive review of bubble column systems (see Table
5-21) by Shah et al. [AIChE J. 28, 353 (1982)] includes estimation of
bubble size, gas holdup, interfacial area kLa, and liquid dispersion coef-
ficent. For correlations for particle-liquid mass transfer in stirred tanks
(part of Table 5-22) see the review by Pangarkar et al. [Ind. Eng. Chem.
Res. 41, 4141 (2002)]. For mass transfer in distillation, absorption, and
extraction in packed beds (Table 5-24), see also the appropriate sec-
tions in this handbook and the review by Wang, Yuan, and Yu [Ind.
Eng. Chem. Res. 44, 8715 (2005)]. For simple geometries, one may be
able to determine a theoretical (T) form of the mass-transfer correla-
tion. For very complex geometries, only an empirical (E) form can be
found. In systems of intermediate complexity, semiempirical (S) corre-
lations where the form is determined from theory and the coefficients
from experiment are often useful. Although the major limitations and
constraints in use are usually included in the tables, obviously many
details cannot be included in this summary form. Readers are strongly
encouraged to check the references before using the correlations in
important situations. Note that even authoritative sources occasionally
have typographical errors in the fairly complex correlation equations.
Thus, it is a good idea to check several sources, including the original
paper. The references will often include figures comparing the correla-
tions with data. These figures are very useful since they provide a visual
picture of the scatter in the data.

Since there are often several correlations that are applicable, how
does one choose the correlation to use? First, the engineer must
determine which correlations are closest to the current situation. This
involves recognizing the similarity of geometries, which is often chal-
lenging, and checking that the range of parameters in the correlation
is appropriate. For example, the Bravo, Rocha, and Fair correlation
for distillation with structured packings with triangular cross-sectional
channels (Table 5-24-H) uses the Johnstone and Pigford correlation
for rectification in vertical wetted wall columns (Table 5-18-F). Rec-
ognizing that this latter correlation pertains to a rather different appli-
cation and geometry was a nontrivial step in the process of developing
a correlation. If several correlations appear to be applicable, check to
see if the correlations have been compared to each other and to the
data. When a detailed comparison of correlations is not available, the
following heuristics may be useful:

1. Mass-transfer coefficients are derived from models. They must
be employed in a similar model. For example, if an arithmetic con-
centration difference was used to determine k, that k should only be
used in a mass-transfer expression with an arithmetic concentration
difference.

2. Semiempirical correlations are often preferred to purely empir-
ical or purely theoretical correlations. Purely empirical correlations
are dangerous to use for extrapolation. Purely theoretical correlations
may predict trends accurately, but they can be several orders of mag-
nitude off in the value of k.

3. Correlations with broader data bases are often preferred.
4. The analogy between heat and mass transfer holds over wider

ranges than the analogy between mass and momentum transfer. Good
heat transfer data (without radiation) can often be used to predict
mass-transfer coefficients.

5. More recent data is often preferred to older data, since end
effects are better understood, the new correlation often builds on ear-
lier data and analysis, and better measurement techniques are often
available.

6. With complicated geometries, the product of the interfacial area
per volume and the mass-transfer coefficient is required. Correlations
of kap or of HTU are more accurate than individual correlations of k and
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TABLE 5-17 Mass-Transfer Correlations for a Single Flat Plate or Disk—Transfer to or from Plate to Fluid

Comments
Situation Correlation E = Empirical, S = Semiempirical, T = Theoretical References*

A. Laminar, local, flat plate,
forced flow

Laminar, average, flat plate,
forced flow

j-factors

B. Laminar, local, flat plate,
blowing or suction and forced flow

C. Laminar, local, flat plate,
natural convection
vertical plate

D. Laminar, stationary disk

Laminar, spinning disk

E. Laminar, inclined, plate

F. Turbulent, local flat plate, forced flow

Turbulent, average, flat plate,
forced flow

G. Laminar and turbulent, flat plate, 
forced flow

NSh,x = = 0.323(NRe,x)1/2(NSc)1/3

Coefficient 0.332 is a better fit.

NSh,avg = = 0.646(NRe,L)1/2(NSc)1/3

Coefficient 0.664 is a better fit.

k′m is mean mass-transfer coefficient for dilute 
systems.

jD = jH = = 0.664(NRe,L)−1/2

NSh,x = = (Slope)y = 0 (NRe,x)1/2(NSc)1/3

NSh,x = = 0.508NSc
1/2(0.952 + NSc)−1/4NGr

1/4

NGr = � − 1	

NSh = =

NSh = = 0.879NRe
1/2NSc

1/3

NRe < ∼ 104

NSh,avg = 0.783NRe,film
1/9 NSc

1/3 � 	
2/9

NRe,film = < 2000

NSh,avg =

δfilm = � 	
1/3

= film thickness

NSh,x = = 0.0292NRe,x
0.8,

NSh,avg = = 0.0365NRe,L
0.8

jD = jH = = 0.037NRe,L
−0.2

jD = (kG/GM)NSc
2/3

jH = (h′�CpG) NPr
2/3

f
�
2

k′L
�
D

k′x
�
D

3µQ
��
wρg sinα

k′mx
�

D

4Qρ
�

µ2

x3ρ2g sinα
��

µ2

k′ddisk
�

D

8
�
π

k′ddisk
�

D

ρ∞
�
ρ0

gx3

�
(µ/ρ)2

k′x
�
D

k′x
�
D

f
�
2

k′mL
�

D

k′x
�
D

[T] Low M.T. rates. Low mass-flux, constant 
property systems. NSh,x is local k. Use with arith-
metic difference in concentration. Coefficient
0.323 is Blasius’ approximate solution.

NRe,x = , x = length along plate

NRe,L = , 0.664 (Polhausen) 

is a better fit for NSc > 0.6, NRe,x < 3 × 105.

[S] Analogy. NSc = 1.0, f = drag coefficient. jD is
defined in terms of k′m.

[T] Blowing is positive. Other conditions as above.

[T] Low MT rates. Dilute systems, ∆ρ/ρ << 1.
NGrNSc < 108. Use with arithmetic concentration 
difference. x = length from plate bottom.

[T] Stagnant fluid. Use arithmetic concentration 
difference.

[T] Asymptotic solution for large NSc.
u = ωddisk/2, ω = rotational speed, rad/s.

Rotating disks are often used in electrochemical
research.

[T] Constant-property liquid film with low mass-
transfer rates. Use arithmetic concentration 
difference. Newtonian fluid. Solute does not pene-
trate past region of linear velocity profile. Differ-
ences between theory and experiment.

w = width of plate, δ f = film thickness, α = angle of 
inclination, x = distance from start soluble surface.

[S] Low mass-flux with constant property system. 
Use with arithmetic concentration difference.
NSc = 1.0, NRe,x > 105

Based on Prandtl’s 1/7-power velocity law, 

= � 	
1/7

[E] Chilton-Colburn analogies, NSc = 1.0, (gases), 
f = drag coefficient. Corresponds to item 5-17-F
and refers to same conditions. 8000 < NRe < 300,000.
Can apply analogy, jD = f/2, to entire plate (including
laminar portion) if average values are used.

y
�
δ

u
�
u∞

0.6 0.5 0.25 0.0 −2.5
���
0.01 0.06 0.17 0.332 1.64

�
u
u

∞

o
� �N�Re�,x�

��
(Slope)y = 0

Lu∞ρ
�

µ

xu∞ρ
�

µ

[77] p. 183
[87] p. 526
[138] p. 79
[140] p. 518

[141] p. 110

[91] p. 480

[141] p. 271

[77] p. 185

[140] p. 271

[141] p. 120

[138] p. 240

[101] p. 60

[138] p. 240

[141] p. 130
[138] p. 209

[77] p. 191
[138] p. 201
[141] p. 221

[77] p. 193
[88] p. 112
[138] p. 201
[141] p. 271
[80] [53]
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TABLE 5-17 Mass-Transfer Correlations for a Single Flat Plate or Disk—Transfer to or from Plate to Fluid (Concluded)

Comments
Situation Correlation E = Empirical, S = Semiempirical, T = Theoretical References*

H. Laminar and turbulent, flat plate, 
forced flow

I. Turbulent, local flat plate, natural 
convection, vertical plate

Turbulent, average, flat plate, 
natural convection, vertical plate

J. Perforated flat disk

Perforated vertical plate.
Natural convection.

K. Turbulent, vertical plate

L. Cross-corrugated plate (turbulence
promoter for membrane systems)

M. Turbulent, spinning disk

N. Mass transfer to a flat plate 
membrane in a stirred vessel

O. Spiral type RO (seawater
desalination)

NSh,avg = 0.037NSc
1/3(N Re,L

0.8 − 15,500)
to NRe,L = 320,000

NSh,avg = 0.037NSc
1/3

× �NRe,L
0.8 − NRe,Cr

0.8 + NRe,Cr
1/2 	

in range 3 × 105 to 3 × 106.

NSh,x = = 0.0299NGr
2/5NSc

7/15

× (1 + 0.494NSc
2/3)−2/5

NSh,avg = 0.0249NGr
2/5NSc

7/15 × (1 + 0.494NSc
2/3)−2/5

NGr = � − 1	, NSh,avg =

NSh = 0.059NSc
0.35NGr

0.35� 	
0.04

Characteristic length = disk diameter d

NSh = 0.1NSc
1�3NGr

1�3

Characteristic length = L, electrode height

NSh,avg = = 0.327NRe,film
2/9 NSc

1/3� 	
2/9

δfilm = 0.172 � 	
1/3

NSh = cNa
ReNSc

1�3

NSh = = 5.6NRe
1.1NSc

1/3

6 × 105 < NRe < 2 × 106

120 < NSc < 1200

NSh = = aNRe
b N Sc

c

a depends on system. a = 0.0443 [40]; b is
often 0.65–0.70 [89]. If

NRe =

NSh = 0.210 NRe
2�3NSc

1�4

Or with slightly larger error,

NSh = 0.080 NRe
0.875 NSc

1�4

ωdtank
2 ρ

�
µ

k′dtank
�

D

k ′ddisk
�

D

Q2

�
w2g

x3ρ2g
�

µ2

k′mx
�

D

dh
�
d

k′mL
�

D
ρ∞
�
ρ0

gx3

�
(µ/ρ)2

k′x
�
D

0.664
�
0.037

[E] Use arithmetic concentration difference.

NSh,avg = , NSc > 0.5

Entrance effects are ignored.
NRe,Cr is transition laminar to turbulent.

[S] Low solute concentration and low transfer rates. 
Use arithmetic concentration difference.

NGr > 1010

Assumes laminar boundary layer is small fraction of 
total.

[E]6 × 109 < NScNGr < 1012 and 1943 < NSc < 2168

dh = hole diameter

[E]1 × 1010 < NScNGr < 5 × 1013 and 1939 < NSc <
2186

Average deviation ± 10%

[E] See 5-17-E for terms.

NRe,film = > 2360

Solute remains in laminar sublayer.

[E] Entrance turbulent channel
For parallel flow and corrugations:
NSc = 1483, a = 0.56, c = 0.268
NSc = 4997, a = 0.50, c = 0.395
Corrugations perpendicular to flow:
NSc = 1483, a = 0.57, c = 0.368
NSc = 4997, a = 0.52, c = 0.487

[E] Use arithmetic concentration difference.
u = ωddisk /2 where ω = rotational speed, radians/s. 

NRe = ρωd 2/2µ.

[E] Use arithmetic concentration difference. 
ω = stirrer speed, radians/s. Useful for laboratory
dialysis, R.O., U.F., and microfiltration systems.

b = 0.785 [40]. c is often 0.33 but other values 
have been reported [89].

[E] Polyamide membrane.

p = 6.5 MPa and TDS rejection = 99.8%. Recovery
ratio 40%.

4Qρ
�
wµ2

k′mL
�

D
[88] p. 112

[138] p. 201

[141] p. 225

[162]

[141] p. 229

[134]

[55]
[138] p. 241

[40]
[89] p. 965

[148]

*See the beginning of the “Mass Transfer” subsection for references.



MASS TRANSFER 5-65

TABLE 5-18 Mass-Transfer Correlations for Falling Films with a Free Surface in Wetted Wall Columns— 
Transfer between Gas and Liquid

Comments
Situation Correlation E = Empirical, S = Semiempirical, T = Theoretical References*

A. Laminar, vertical wetted wall 
column

B. Turbulent, vertical wetted wall 
column

Better fit

C. Turbulent, very short column

D. Turbulent, vertical wetted wall 
column with ripples

E. Turbulent, with ripples

F. Rectification in vertical wetted 
wall column with turbulent 
vapor flow, Johnstone and 
Pigford correlation

NSh,avg = ≈ 3.41

(first term of infinite series)

δfilm = � 	
1/3

= film thickness

NRe,film = < 20

NSh,avg = = 0.023NRe
0.83N Sc

0.44

A coefficient 0.0163 has also been reported 
using NRe′, where v = v of gas relative to liq-
uid film.

NSh,avg = 0.0318NRc
0.790NSc

0.5

NSh = 0.00283NRe,gN0.5
Sc,gN0.08

Re,liq

NSh = kg(dtube − 2�)�D

NRe,g = �gug(dtube − 2�)��g

NRe,liq = �liqQliq�[#�(dtube − 2�)]

NSh,avg = = 0.00814NRe
0.83N Sc

0.44� 	
0.15

30 ≤ � 	 < 1200

NSh,avg = = 0.023NRe
0.8NSc

1/3

NSh = � 	
0.5

N0.5
Re,ε

.NSc
0.5

NRe,ε. = ε
.
L2��

NSh,avg = = 0.0328(N ′Re)0.77N Sc
0.33

3000 < N ′Re < 40,000, 0.5 < NSc < 3

N ′Re = , vrel = gas velocity relative to 

liquid film = uavg in film
3
�
2

dcolvrelρv
�

µ v

k′Gdcol pBM
��

Dv p

2
�
#

k′mdt
�

D

4Qρ
�
wµ

4Qρ
�
wµ

k′mdt
�

D

k′mdt
�

D

4Qρ
�
wµ

3µQ
�
wρg

x
�
δfilm

k′m x
�

D
[T] Low rates M.T. Use with log mean concentration 
difference. Parabolic velocity distribution in films.

w = film width (circumference in column)

Derived for flat plates, used for tubes if

rtube � 	
1/2

> 3.0. σ = surface tension

If NRe,film > 20, surface waves and rates increase. An 
approximate solution Dapparent can be used. Ripples
are suppressed with a wetting agent good to NRe =
1200.

[E] Use with log mean concentration difference for 
correlations in B and D. NRe is for gas. NSc for vapor
in gas. 2000 < NRe ≤ 35,000, 0.6 ≤ NSc ≤ 2.5. Use for
gases, dt = tube diameter.

[S] Reevaluated data

[E] Evaporation data

NSh,g = 11 to 65, NRe,g = 2400 to 9100

NRe,liq = 110 to 480, NSc,g = 0.62 to 1.93

� = film thickness

[E] For gas systems with rippling.

Fits 5-18-B for � 	 = 1000

[E] “Rounded” approximation to include ripples. 
Includes solid-liquid mass-transfer data to find s
coefficient on NSc. May use NRe

0.83. Use for liquids.
See also Table 5-19.

[E] ε
.
= dilation rate of surface = +

[E] Use logarithmic mean driving force at two ends 
of column. Based on four systems with gas-side
resistance only. pBM = logarithmic mean partial pres-
sure of nondiffusing species B in binary mixture.
p = total pressure

Modified form is used for structured packings 
(See Table 5-24-H).

∂vs
y

�
∂y

∂vx
c

�
∂x

4Qρ
�
wµ

ρg
�
2σ

[138] p. 78

[141] p. 137

[152] p. 50

[68]
[77] p.181
[138] p. 211
[141] p. 265
[149] p. 212
[152] p. 71
[58]

[56]

[85]

[138] p. 213

[150]

[84]

[138] p. 214

[156]

*See the beginning of the “Mass Transfer” subsection for references.

ap since the measurements are simpler to determine the product kap

or HTU.
7. Finally, if a mass-transfer coefficient looks too good to be true, it

probably is incorrect.
To determine the mass-transfer rate, one needs the interfacial area

in addition to the mass-transfer coefficient. For the simpler geome-
tries, determining the interfacial area is straightforward. For packed
beds of particles a, the interfacial area per volume can be estimated as
shown in Table 5-23-A. For packed beds in distillation, absorption,
and so on in Table 5-24, the interfacial area per volume is included
with the mass-transfer coefficient in the correlations for HTU. For
agitated liquid-liquid systems, the interfacial area can be estimated

from the dispersed phase holdup and mean drop size correlations.
Godfrey, Obi, and Reeve [Chem. Engr. Prog. 85, 61 (Dec. 1989)]
summarize these correlations. For many systems, d�drop/dimp =
(const)NWe

−0.6 where NWe = ρcN 2d 3
imp /σ. Piché, Grandjean, and Larachi

[Ind. Eng. Chem. Res. 41, 4911 (2002)] developed two correlations for
reconciling the gas-liquid mass-transfer coefficient and interfacial
area in randomly packed towers. The correlation for the interfacial
area was a function of five dimensionless groups, and yielded a relative
error of 22.5 percent for 325 data points. That equation, when com-
bined with a correlation for NSh as a function of four dimensionless
groups, achieved a relative error of 24.4 percent, for 3455 data points
for the product k′Ga.



5-66 HEAT AND MASS TRANSFER

TABLE 5-19 Mass-Transfer Correlations for Flow in Pipes and Ducts—Transfer Is from Wall to Fluid

Comments
Situation Correlation E = Empirical, S = Semiempirical, T = Theoretical References*

A. Tubes, laminar, fully developed 
parabolic velocity profile, 
developing concentration profile,
constant wall concentration

Fully developed 
concentration profile

B. Tubes, approximate solution

C. Tubes, laminar, uniform plug 
velocity, developing concen-
tration profile, constant wall 
concentration

D. Laminar, fully developed 
parabolic velocity profile, 
constant mass flux at wall

E. Laminar, alternate

F. Laminar, fully developed 
concentration and velocity 
profile

G. Vertical tubes, laminar flow, 
forced and natural convection

H. Hollow-fiber extraction inside
fibers

I. Tubes, laminar, RO systems

J. Tubes and parallel plates, 
laminar RO

K. Rotating annulus for reverse
osmosis

NSh = = 3.66 +

NSh = = 3.66

NSh,x = = 1.077� 	
1/3

(NReNSc)1/3

NSh,avg = = 1.615� 	
1/3

(NReNSc)1/3

NSh,avg = NReNSc� �
Graetz solution for heat transfer written for M.T.

NSh, x = � − 

∞

j = 1
�
−1

j λ j
2 cj

1 25.68 7.630 × 10−3

2 83.86 2.058 × 10−3

3 174.2 0.901 × 10−3

4 296.5 0.487 × 10−3

5 450.9 0.297 × 10−3

NSh = 4.36 +

NSh = = = 4.3636

NSh,avg = 1.62NGz
1/3�1 � 0.0742 �

1/3

NSh = 0.5NGz,NGz < 6

NSh = 1.62NGz
0.5,NGz ≥ 6

NSh,avg = = 1.632� 	
1/3

Graphical solutions for concentration polarization.
Uniform velocity through walls.

For nonvortical flow:

NSh = 2.15�NTa� 	
0.5

�
0.18

NSc
1�3

For vortical flow:

NSh = 1.05�NTa� 	
0.5

�NSc
1�3d

�
ri

d
�
ri

ud t
2

�
DL

k′mdt
�

D

(NGrNScd/L)3/4

��
NGz

48
�
11

k′dt
�
D

0.023(dt /L)NReNSc
���
1 + 0.0012(dt/L)NReNSc

exp [−λ j
2 (x /rt)/(NReNSc)]

���
Cjλ j

4

1
�
2

11
�
48

1 − 4 

∞

j = 1

a j
−2 exp ��−2

N
a

R

j
2

e

(
N
x/

S

r

c

t)
�	

����

1 + 4 

∞

j = 1

a j
−2 exp ��−2

N
a

R

j
2

e

(
N
x/

S

r

c

t)
�	

dt
�
L

1
�
2

dt
�
L

k′dt
�
D

dt
�
x

k′dt
�
D

k′dt
�
D

0.0668(dt /x)NReNSc
���
1 + 0.04[(dt /x)NReNSc]2/3

k′dt
�
D

[T] Use log mean concentration difference. For

< 0.10, NRe < 2100.

x = distance from tube entrance. Good agreement 
with experiment at values

104 > NReNSc > 10

[T] > 0.1

[T] For arithmetic concentration difference.

> 400

Leveque’s approximation: Concentration BL is 
thin. Assume velocity profile is linear. High mass
velocity. Fits liquid data well.

[T] Use arithmetic concentration difference. Fits 

gas data well, for < 50 (fit is fortuitous). 

NSh,avg = (k′mdt)/D. a1 = 2.405, a2 = 5.520,
a3 = 8.654, a4 = 11.792, a 5 = 14.931. Graphical
solutions are in references.

[T] Use log mean concentration difference.
NRe < 2100

NSh,x =

NRe =

[T] Nsh = , Use log mean concentration

difference. NRe < 2100

[T] Use log mean concentration difference.
NRe < 2100

[T] Approximate solution. Use minus sign if 
forced and natural convection oppose each other.
Good agreement with experiment.

NGz = , NGr =

[E] Use arithmetic concentration difference.

Use arithmetic concentration difference.
Thin concentration polarization layer, not fully 
developed. NRe < 2000, L = length tube.

[T]

[E,S] NTa = Taylor number = riωd�ν

ri = inner cylinder radius

ω = rotational speed, rad�s

d = gap width between cylinders

g∆ρd3

�
ρν 2

NReNScd
�

L

k′dt
�
D

vdtρ
�

µ

k′dt
�
D

W
�
Dρx

W
�
ρDx

x/dt
�
NReNSc

dt
�
x

π
�
4

x/dt
�
NReNSc

[77] p. 176

[87] p. 525
[141] p. 159

[141] p. 165

[141] p. 166

[103]

[141] p. 150

[139]
[141] p. 167

[77] p. 176

[141] p. 167

[127]

[41]

[40]

[137]

[100]
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TABLE 5-19 Mass-Transfer Correlations for Flow in Pipes and Ducts—Transfer Is from Wall to Fluid (Continued )

Comments
Situation Correlation E = Empirical, S = Semiempirical, T = Theoretical References*

L. Parallel plates, laminar, parabolic 
velocity, developing concen-
tration profile, constant wall 
concentration

L′. 5-19-L, fully developed

M. Parallel plates, laminar, parabolic 
velocity, developing concen-
tration profile, constant mass 
flux at wall

N. 5-19-M, fully developed

O. Laminar flow, vertical parallel 
plates, forced and natural 
convection

P. Parallel plates, laminar, RO systems

Q. Tubes, turbulent

R. Tubes, turbulent

S. Tubes, turbulent, smooth tubes, 
Reynolds analogy

T. Tubes, turbulent, smooth tubes, 
Chilton-Colburn analogy

U. Tubes, turbulent, smooth tubes, 
constant surface concentration, 
Prandtl analogy

Graphical solution

NSh = = 7.6

Graphical solution

NSh = = 8.23

NSh,avg = 1.47NGz
1/3�1 � 0.0989 �

1/3

NSh,avg = = 2.354� 	
1/3

NSh,avg = = 0.023NRe
0.83NSc

1/3

2100 < NRe < 35,000
0.6 < NSc < 3000

NSh,avg = = 0.023NRe
0.83 NSc

0.44

2000 < NRe < 35,000
0.6 < NSc < 2.5

NSh = = 0.0096NRe
0.913NSc

0.346

NSh = = � 	NRe NSc

f = Fanning friction faction

jD = jH /

If = 0.023N Re
−0.2, jD = = 0.023NRe

−0.2

NSh = , Sec. 5-17-G

jD = jH = f (NRe, geometry and B.C.)

NSh = =

= 0.04NRe
−0.25f

�
2

( f /2)NReNSc
��
1 + 5�f /�2�(NSc − 1)

k′dt
�
D

k′dt
�
D

NSh
�
NReNSc

1/3

f
�
2

f
�
2

f
�
2

k′dt
�
D

k′dt
�
D

k′mdt
�

D

k′mdt
�

D

uHp
2

�
DL

k′(2Hp)
�

D

(NGrNSc h/L)3/4

��
NGz

k′(2h)
�

D

k′(2h)
�

D

[T] Low transfer rates.

[T] h = distance between plates. Use log mean 
concentration difference.

< 20

[T] Low transfer rates.

[T] Use log mean concentration difference.

< 20

[T] Approximate solution. Use minus sign if 
forced and natural convection oppose each other.
Good agreement with experiment.

NGz = , NGr =

Thin concentration polarization layer. Short tubes, 
concentration profile not fully developed. Use
arithmetic concentration difference.

[E] Use with log mean concentration difference at 
two ends of tube. Good fit for liquids.

From wetted wall column and dissolution data—
see Table 5-18-B.

[E] Evaporation of liquids. Use with log mean 
concentration difference. Better fit for gases.

[E] 430 < NSc < 100,000.
Dissolution data. Use for high NSc.

[T] Use arithmetic concentration difference. NSc

near 1.0
Turbulent core extends to wall. Of limited utility.

[E] Use log-mean concentration difference. Relat-
ing jD to f/2 approximate. NPr and NSc near 1.0.
Low concentration.

Results about 20% lower than experiment.
3 × 104 < NRe < 106

[E] Good over wide ranges.

[T] Use arithmetic concentration difference. 
Improvement over Reynolds analogy.

Best for NSc near 1.0.

g∆ρh3

�
ρν 2

NReNSch
�

L

NReNSc
�
x/(2h)

NReNSc
�
x/(2h)

[141] p. 176

[141] p. 177

[141] p. 176

[141] p. 177

[127]

[40]

[77] p. 181
[103]
[152] p. 72

[68][77]
p. 181

[88] p. 112
[138] p. 211

[105] p. 668

[66] p. 474
[77] p. 171
[141] p. 239
[149] p. 250

[39] pp. 400, 
647

[51][53]

[141] p. 264
[149] p. 251
[66] p. 475
[39] p. 647
[51]

[77] p. 173

[141] p. 241
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Effects of Total Pressure on k̂G and k̂L The influence of total
system pressure on the rate of mass transfer from a gas to a liquid or
to a solid has been shown to be the same as would be predicted from
stagnant-film theory as defined in Eq. (5-298), where

k̂G = DABpT /RT δG (5-305)

Since the quantity DABpT is known to be relatively independent of the
pressure, it follows that the rate coefficients k̂G, kGyBM, and k′GpTyBM

(= k′GpBM) do not depend on the total pressure of the system, subject
to the limitations discussed later.

Investigators of tower packings normally report k′Ga values mea-
sured at very low inlet-gas concentrations, so that yBM = 1, and at total
pressures close to 100 kPa (1 atm). Thus, the correct rate coefficient
for use in packed-tower designs involving the use of the driving force
(y − yi)/yBM is obtained by multiplying the reported k′Ga values by the
value of pT employed in the actual test unit (e.g., 100 kPa) and not the
total pressure of the system to be designed.

From another point of view one can correct the reported values of
k′Ga in kmol/[(s⋅m3)(kPa)], valid for a pressure of 101.3 kPa (1 atm), to
some other pressure by dividing the quoted values of k′Ga by the
design pressure and multiplying by 101.3 kPa, i.e., (k′Ga at design pres-
sure pT) = (k′Ga at 1 atm) × 101.3/pT.

One way to avoid a lot of confusion on this point is to convert the
experimentally measured k′Ga values to values of k̂Ga straightaway,
before beginning the design calculations. A design based on the
rate coefficient k̂Ga and the driving force (y − yi)/yBM will be inde-
pendent of the total system pressure with the following limitations:
caution should be employed in assuming that k̂Ga is independent
of total pressure for systems having significant vapor-phase non-
idealities, for systems that operate in the vicinity of the critical

point, or for total pressures higher than about 3040 to 4050 kPa (30 to
40 atm).

Experimental confirmations of the relative independence of k̂G with
respect to total pressure have been widely reported. Deviations do
occur at extreme conditions. For example, Bretsznajder (Prediction of
Transport and Other Physical Properties of Fluids, Pergamon Press,
Oxford, 1971, p. 343) discusses the effects of pressure on the DABpT

product and presents experimental data on the self-diffusion of CO2

which show that the D-p product begins to decrease at a pressure of
approximately 8100 kPa (80 atm). For reduced temperatures higher
than about 1.5, the deviations are relatively modest for pressures up to
the critical pressure. However, deviations are large near the critical
point (see also p. 5-52). The effect of pressure on the gas-phase viscos-
ity also is negligible for pressures below about 5060 kPa (50 atm).

For the liquid-phase mass-transfer coefficient k̂L, the effects of
total system pressure can be ignored for all practical purposes. Thus,
when using k̂G and k̂L for the design of gas absorbers or strippers, the
primary pressure effects to consider will be those which affect the
equilibrium curves and the values of m. If the pressure changes affect
the hydrodynamics, then k̂G, k̂L, and a can all change significantly.

Effects of Temperature on k̂G and k̂L The Stanton-number
relationship for gas-phase mass transfer in packed beds, Eq. (5-301),
indicates that for a given system geometry the rate coefficient k̂G

depends only on the Reynolds number and the Schmidt number.
Since the Schmidt number for a gas is approximately independent of
temperature, the principal effect of temperature upon k̂G arises
from changes in the gas viscosity with changes in temperature. For
normally encountered temperature ranges, these effects will be
small owing to the fractional powers involved in Reynolds-number
terms (see Tables 5-17 to 5-24). It thus can be concluded that for all

TABLE 5-19 Mass-Transfer Correlations for Flow in Pipes and Ducts—Transfer Is from Wall to Fluid (Concluded)

Comments
Situation Correlation E = Empirical, S = Semiempirical, T = Theoretical References*

V. Tubes, turbulent, smooth tubes, 
Constant surface concentration, 
Von Karman analogy

W. Tubes, turbulent, smooth tubes, 
constant surface concentration

X. Turbulent flow, tubes

Y. Turbulent flow, noncircular ducts

Z. Decaying swirling flow in pipe

NSh =

= 0.04NRe
−0.25

For 0.5 < NSc < 10:

NSh,avg = 0.0097NRe
9/10NSc

1/2

× (1.10 + 0.44NSc
−1/3 − 0.70N Sc

−1/6)

For 10 < NSc < 1000: NSh,avg

=

For NSc > 1000: NSh,avg = 0.0102NRe
9/10NSc

1/3

NSt = = = 0.0149NRe
−0.12NSc

−2/3

Use correlations with

deq =

NSh,avg = 0.3508NSc
1�3NRe

0.759(x�d)−0.400 × (1 + tanθ)0.271

NRe = 1730 to 8650, NSc = 1692

4 cross-sectional area
���

wetted perimeter

NSh
�
NReNSc

NSh
�
NPe

0.0097NRe
9/10NSc

1/2 (1.10 + 0.44NSc
−1/3 − 0.70NSc

−1/6)
�����
1 + 0.064NSc

1/2 (1.10 + 0.44NSc
−1/3 − 0.70NSc

−1/6)

f
�
2

( f/2)NReNSc
�����

1 + 5�f/�2� �(NSc − 1) + ln�1 + �
5
6

� (NSc − 1)��
[T] Use arithmetic concentration difference. NSh =
k′dt /D. Improvement over Prandtl, NSc < 25.

[S] Use arithmetic concentration difference. 
Based on partial fluid renewal and an infre-
quently replenished thin fluid layer for high Nsc.

Good fit to available data.

NRe =

NSh,avg =

[E] Smooth pipe data. Data fits within 4% except 
at NSc > 20,000, where experimental data is
underpredicted. NSc > 100, 105 > NRe > 2100

Can be suspect for systems with sharp corners.

Parallel plates:

deq = 4

[E,S] x = axial distance, d = diameter, θ = vane
angle (15° to 60°)

Regression coefficient = 0.9793.
Swirling increases mass transfer.

2hw
�
2w + 2h

k′avg dt
�

D

ubulk dt
�

ν

[77] p. 173
[141] p. 243
[149] p. 250
[154]

[77] p. 179
[117]

[107]

[141] p. 289

[161]

*See the beginning of the “Mass Transfer” subsection for references.



TABLE 5-20 Mass-Transfer Correlations for Flow Past Submerged Objects

Comments
Situation Correlation E = Empirical, S = Semiempirical, T = Theoretical References*

A. Single sphere

B. Single sphere, creeping flow 
with forced convection

C. Single spheres, molecular 
diffusion, and forced 
convection, low flow rates

D. Same as 5-20-C

E. Same as 5-20-C

F. Single spheres, forced 
concentration, any flow rate

G. Single spheres, forced 
convection, high flow rates, 
ignoring molecular diffusion

H. Single sphere immersed in 
bed of smaller particles. 
For gases.

I. Single cylinders, perpendi-
cular flow

NSh = =

r/rs 2 5 10 50 ∞ (asymptotic limit)
NSh 4.0 2.5 2.22 2.04 2.0

NSh = = [4.0 + 1.21(NReNSc)2/3]1/2

NSh = = a(NReNSc)1/3

a = 1.00 � 0.01

NSh = 2.0 + ANRe
1/2NSc

1/3

A = 0.5 to 0.62

A = 0.60.

A = 0.95.

A = 0.95.
A = 0.544.

NSh = = 2.0 + 0.575N Re
1/2N Sc

0.35

NSh = = 2.0 + 0.552N Re
0.53 NSc

1/3

NSh = = 2.0 + 0.59� �
0.57

NSc
1/3

Energy dissipation rate per unit mass of fluid 
(ranges 570 < NSc < 1420):

E = � 	 � 	
NSh = = 0.347NRe

0.62NSc
1/3

NSh = = 0.33NRe
0.6 NSc

1/3

NSh = = 0.43NRe
0.56 NSc

1/3

NSh = = 0.692NRe
0.514NSc

1/3

NSh,avg = = ε�4 + NPe′
2�3 + NPe′�

�1 + NPe′	
1�2

Limit NPe′→0,NSh,avg = 2ε

NSh = = ANRe
1/2NSc

1/3, A = 0.82

A = 0.74

A = 0.582

jD = 0.600(NRe)−0.487

NSh = k′dcyl�
D

k′ds
�
D

1
�
9

4
�
π

4
�
5

kd1
�
D′

k′ds
�
D

k′ds�
D

k′ds�
D

k′ds
�
D

m2

�
s3

vr
3

�
dp

CDr
�

2

E1/3dp
4/3ρ

�
µ

k′Lds
�

D

k′ds
�
D

k′ds
�
D

k′d
�
D

k′d
�
D

2r
�
r − rs

k′GpBLMRTds
��

PD
[T] Use with log mean concentration difference.
r = distance from sphere, rs, ds = radius and 
diameter of sphere.

No convection.

[T] Use with log mean concentration difference.
Average over sphere. Numerical calculations. 
(NReNSc) < 10,000 NRe < 1.0. Constant sphere
diameter. Low mass-transfer rates.

[T] Fit to above ignoring molecular diffusion.

1000 < (NReNSc) < 10,000.

[E] Use with log mean concentration difference.
Average over sphere.

Frössling Eq. (A = 0.552), 2 ≤ NRe ≤ 800, 0.6 ≤
Nsc ≤ 2.7.

NSh lower than experimental at high NRe.
[E] Ranz and Marshall 2 ≤ NRe ≤ 200, 0.6 ≤ Nsc ≤
2.5. Modifications recommended [110]

See also Table 5-23-O.

[E] Liquids 2 ≤ NRe ≤ 2,000.
Graph in Ref. 138, p. 217–218.
[E] 100 ≤ NRe ≤ 700; 1,200 ≤ NSc ≤ 1525.
[E] Use with arithmetic concentration difference.
NSc = 1; 50 ≤ NRe ≤ 350.

[E] Use with log mean concentration difference.
NSc ≤ 1, NRe < 1.

[E] Use with log mean concentration difference.
1.0 < NRe ≤ 48,000 Gases: 0.6 ≤ NSc ≤ 2.7.

[S] Correlates large amount of data and compares 
to published data. vr = relative velocity between
fluid and sphere, m/s. CDr = drag coefficient for
single particle fixed in fluid at velocity vr. See 
5-23-F for calculation details and applications. 

2 < � 	 < 63,000

[E] Use with arithmetic concentration difference.
Liquids, 2000 < NRe < 17,000.
High NSc, graph in Ref. 138, p. 217–218.

[E] 1500 ≤ NRe ≤ 12,000.

[E] 200 ≤ NRe ≤ 4 × 104, “air” ≤ NSc ≤ “water.”

[E] 500 ≤ NRe ≤ 5000.

[T] Compared to experiment. NPe′ = ,

D′ = D�τ, D = molecular diffusivity, d1 = diameter
large particle, τ = tortuosity.
Arithmetic conc. difference fluid flow in inert bed
follows Darcy’s law.

[E] 100 < NRe ≤ 3500, NSc = 1560.

[E] 120 ≤ NRe ≤ 6000, NSc = 2.44.

[E] 300 ≤ NRe ≤ 7600, NSc = 1200.

[E] Use with arithmetic concentration difference.

50 ≤ NRe ≤ 50,000; gases, 0.6 ≤ NSc ≤ 2.6; liquids; 
1000 ≤ NSc ≤ 3000. Data scatter � 30%.

uod1
�
D′

E1/3dp
4/3ρ

��
µ

[141] p. 18

[46][88] p. 114
[105]
[138] p. 214

[101] p. 80

[138] p. 215

[39]

[77], p. 194
[88] p. 114
[141] p. 276
[39] p. 409, 647
[121] [110]
[138] p. 217
[141] p. 276
[65][66] p. 482
[138] p. 217
[126][141] p. 276
[81][141] p. 276

[70][141] p. 276

[66] p. 482

[108]

[66] p. 482
[147]
[138] p. 217
[141] p. 276

[141] p. 276

[112]
[141] p. 276

[71]

[141] p. 276

[141] p. 276

[142]

[141] p. 276

[66] p. 486

5-69



5-70 HEAT AND MASS TRANSFER

TABLE 5-20 Mass-Transfer Correlations for Flow Past Submerged Objects (Concluded)

Comments
Situation Correlation E = Empirical, S = Semiempirical, T = Theoretical References*

J. Rotating cylinder in an infinite 
liquid, no forced flow

K. Stationary or rotating cylinder
for air

L. Oblate spheroid, forced 
convection

M. Other objects, including 
prisms, cubes, hemispheres, 
spheres, and cylinders; forced 
convection

N. Other objects, molecular 
diffusion limits

O. Shell side of microporous 
hollow fiber module for 
solvent extraction

j ′D = NSc
0.644 = 0.0791NRe

−0.30

Results presented graphically to NRe = 241,000.

NRe = where v = = peripheral velocity

Stationary:
NSh,avg = ANc

ReSc
1�3

2.0 × 104 ≤ NRe ≤ 2.5 × 105; d�H = 0.3, Tu = 0.6%

A = 0.0539, c = 0.771 [114]

A and c depend on geometry [37]

Rotating in still air: 
NSh,avg = 0.169N2�3

Re,ω

1.0E4 ≤ NRe,ω ≤1.0E5; NSc≈2.0;NGr≈2.0 × 106

jD = = 0.74NRe
−0.5

NRe = , dch =

e.g., for cube with side length a, dch = 1.27a.

NSh =

jD = 0.692N Re,p
−0.486, NRe,p =

Terms same as in 5-20-J.

NSh = = A

NSh = β[dh(1 − ϕ)/L]NRe
0.6 NSc

0.33

NSh =

NRe = , K� = overall mass-transfer coefficient

β = 5.8 for hydrophobic membrane.

β = 6.1 for hydrophilic membrane.

dhvρ
�µ

K�dh
�

D

k′dch
�

D

vdchρ
�

µ

k′dch
�

D

total surface area
���
perimeter normal to flow

dch vρ
�µ

NSh
�
NReNSc

1/3

ωdcyl
�

2
vdcylµ
�

ρ

k′
�
v

[E] Used with arithmetic concentration 
difference. Useful geometry in electrochemical
studies.

112 < NRe ≤ 100,000. 835 < NSc < 11490

k′ = mass-transfer coefficient, cm/s; ω = rotational
speed, radian/s.

[E] Reasonable agreement with data of other 
investigators. d = diameter of cylinder, H =
height of wind tunnel, Tu of = turbulence level, 
NRew = rotational

Reynold’s number = uωdρ�µ, uω = cylinder surface
velocity. Also correlations for two-dimensional 
slot jet flow [114]. For references to other 
correlations see [37].

[E] Used with arithmetic concentration 
difference.

120 ≤ NRe ≤ 6000; standard deviation 2.1%.
Eccentricities between 1:1 (spheres) and 3:1.
Oblate spheroid is often approximated by drops.

[E] Used with arithmetic concentration difference.
Agrees with cylinder and oblate spheroid results,
�15%. Assumes molecular diffusion and natural
convection are negligible.

500 ≤ NRe, p ≤ 5000. Turbulent.

[T] Use with arithmetic concentration difference.
Hard to reach limits in experiments.
Spheres and cubes A = 2, tetrahedrons A = 2�6�

octahedrons 2�2�.

[E] Use with logarithmic mean concentration 
difference.

dh = hydraulic diameter 

=

ϕ = packing fraction of shell side.
L = module length.
Based on area of contact according to inside or 
outside diameter of tubes depending on location
of interface between aqueous and organic
phases. Can also be applied to gas-liquid systems
with liquid on shell side.

4 × cross-sectional area of flow
����

wetted perimeter

[60]

[138] p. 238

[37]

[114]

[141] p. 284

[142]

[88] p. 115
[141] p. 285

[111] [112]

[88] p. 114

[118]

See Table 5-23 for flow in packed beds.
*See the beginning of the “Mass Transfer” subsection for references.



TABLE 5-21 Mass-Transfer Correlations for Drops, Bubbles, and Bubble Columns

Comments
Conditions Correlations E = Empirical, S = Semiempirical, T = Theoretical References*

A. Single liquid drop in immiscible 
liquid, drop formation, 
discontinuous (drop) phase 
coefficient

B. Same as 5-21-A

C. Single liquid drop in immiscible 
liquid, drop formation, 
continuous phase coefficient

D. Same as 5-21-C

E. Single liquid drop in immiscible 
liquid, free rise or fall, 
discontinuous phase coefficient, 
stagnant drops

F. Same as  5-21-E

G. Same as 5-21-E, continuous phase 
coefficient, stagnant drops, 
spherical

H. Single bubble or drop with
surfactant. Stokes flow.

I. 5-21-E, oblate spheroid

J. Single liquid drop in immiscible 
liquid, Free rise or fall, 
discontinuous phase coefficient, 
circulating drops

k̂d,f = A � 	
av
� 	

1/2

A = (penetration theory)

A = 1.31 (semiempirical value)

A = � (0.8624)� (extension by fresh surface 

elements)

k̂df = 0.0432

× � 	
av
� 	

0.089

� 	
−0.334

� 	
−0.601

k̂cf = 4.6 � 	
av�


kL,c = 0.386

× � 	
av
� 	

0.5

� 	
0.407

� 	
0.148

kL,d,m = � 	
av

ln � 

∞

j = 1

exp �� 	��

k̂L,d,m = � 	
av

ln �1 − �

NSh = = 0.74� 	
av

NRe
1/2(NSc)1/3

NSh = 2.0 + αNβ
Pe, NSh = 2rk�D

α = +

β =

2r = 2 to 50 µm, A = 2.8E4 to 7.0E5

0.0026 < NPe,s < 340, 2.1 < NMa < 1.3E6

NPe = 1.0 to 2.5 × 104,

NRe = 2.2 × 10−6 to 0.034

NSh = = 0.74 � 	
av

(NRe,3)1/2(NSc,c)1/3

NRe,3 =

kdr,circ = − ln � 

∞

j = 1

Bj
2 exp �− 	�

Eigenvalues for Circulating Drop

kd dp /Dd λ1 λ 2 λ 3 B1 B2 B3

3.20 0.262 0.424 1.49 0.107
10.7 0.680 4.92 1.49 0.300
26.7 1.082 5.90 15.7 1.49 0.495 0.205

107 1.484 7.88 19.5 1.39 0.603 0.384
320 1.60 8.62 21.3 1.31 0.583 0.391

∞ 1.656 9.08 22.2 1.29 0.596 0.386

λ j64Ddθ
�

dp
2

3
�
8

dp
�
6θ

vsd3ρc
�

µ c

ρc
�
Mc

kL,c,md3
�

Dc

0.35A + 17.21
��

A + 34.14

A
��
A + 28.64

5.49
�
A + 6.10

ρc
�
Mc

kL,c,mdc
�

Dc

πDd
1/2t 1/2

�
dp /2

ρd
�
Md

−dp
�
6t

−Dd j2π2t
�

(dp /2)2

1
�
j2

6
�
π2

ρd
�
Md

−dp
�
6t

gtf
2

�
dp

ρcσgc
�
∆ρgtfµc

Dc
�
t f

ρc
�
Mc

Dc
�
πtf

ρc
�
Mc

µ d
��
�ρ�dd�p�σ�g�c�

dp
2

�
tf Dd

uo
�
dpg

ρd
�
Md

dp
�
tf

24
�
7

24
�
7

Dd
�
π tf

ρd
�
Md

[T,S] Use arithmetic mole fraction difference.

Fits some, but not all, data. Low mass transfer 
rate. Md = mean molecular weight of dispersed
phase; tf = formation time of drop.

kL,d = mean dispersed liquid phase M.T. 
coefficient kmole/[s⋅m2 (mole fraction)].

[E] Use arithmetic mole fraction difference.
Based on 23 data points for 3 systems. Average 
absolute deviation 26%. Use with surface area of
drop after detachment occurs. uo = velocity
through nozzle; σ = interfacial tension.

[T] Use arithmetic mole fraction difference.
Based on rate of bubble growth away from fixed 
orifice. Approximately three times too high com-
pared to experiments.

[E] Average absolute deviation 11% for 20 data 
points for 3 systems.

[T] Use with log mean mole fraction differences 
based on ends of column. t = rise time. No con-
tinuous phase resistance. Stagnant drops are
likely if drop is very viscous, quite small, or is
coated with surface active agent. kL,d,m = mean
dispersed liquid M.T. coefficient.

[S] See 5-21-E. Approximation for fractional 
extractions less than 50%.

[E] NRe = , vs = slip velocity between 

drop and continuous phase.

[T] A = surface retardation parameter

A = BΓor�µDs = NMaNPe,s

NMa = BΓo�µu = Marangoni no.

Γ = surfactant surface conc.

NPe,s = surface Peclet number = ur/Ds

Ds = surface diffusivity

NPe = bulk Peclet number

For A >> 1 acts like rigid sphere:

β → 0.35, α → 1�2864 = 0.035

[E] Used with log mean mole fraction.
Differences based on ends of extraction column; 
100 measured values �2% deviation. Based on 
area oblate spheroid.

vs = slip velocity, d3 =

[T] Use with arithmetic concentration difference.

θ = drop residence time. A more complete listing 
of eigenvalues is given by Refs. 62 and 76.

k′L,d,circ is m/s.

total drop surface area
���
perimeter normal to flow

vsdpρc
�

µ c

[141] p. 399

[141] p. 401

[144] p. 434

[141] p. 402

[141] p. 402
[144] p. 434

[141] p. 404
[144] p. 435

[141] p. 404
[144] p. 435

[141] p. 407
[142][144]
p. 436

[120]

[141] p. 285, 
406, 407

[62][76][141]
p. 405

[152] p. 523
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TABLE 5-21 Mass-Transfer Correlations for Drops, Bubbles, and Bubble Columns (Continued)

Comments
Conditions Correlations E = Empirical, S = Semiempirical, T = Theoretical References*

K. Same as 5-21-J

L. Same as 5-21-J

M. Liquid drop in immiscible liquid, 
free rise or fall, continuous phase 
coefficient, circulating single 
drops

N. Same as 5-21-M, circulating,
single drop

O. Same as 5-21-M, circulating
swarm of drops

P. Liquid drops in immiscible liquid, 
free rise or fall, discontinuous 
phase coefficient, oscillating 
drops

Q. Same as 5-21-P

R. Single liquid drop in immiscible 
liquid, range rigid to fully 
circulating

S. Coalescing drops in immiscible 
liquid, discontinuous phase 
coefficient

T. Same as 5-21-S, continuous 
phase coefficient

k̂L,d,circ = − � 	
av

ln �1 − �

NSh =

= 31.4� 	
av
� 	

−0.34

N Sc,d
−0.125� 	

−0.37

NSh,c =

= �2 + 0.463NRe,drop
0.484 NSc,c

0.339� 	
0.072

�F

F = 0.281 + 1.615K + 3.73K 2 − 1.874K

K = N Re,drop
1/8 � 	

1/4

� 	
1/6

NSh = = 0.6� 	
av

NRe,drop
1/2 NSc,c

1/2

kL,c = 0.725� 	
av

NRe,drop
−0.43 NSc,c

−0.58vs(1 − φd)

NSh =

= 0.32� 	
av
� 	

−0.14

NRe,drop
0.68 � 	

0.10

kL,d,osc =

NSh,c,rigid = = 2.43 + 0.774NRe
0.5NSc

0.33

+ 0.0103NReNSc
0.33

NSh,c,fully circular = � �NPe,c
0.5

Drops in intermediate range:

= 1 − exp [−(4.18 × 10−3)NPe,c
0.42]

k̂d,coal = 0.173 � 	
av
� 	

−1.115

× � 	
1.302

� 	
0.146

k̂c,coal = 5.959 × 10−4 � 	
av

× � 	
0.5

� 	
0.332

� 	
0.525dp

2ρcρdvs
3

��
µdσgc

ρdus
3

�
gµc

Dc
�
tf

ρ
�
M

vs
2 tf

�
Dd

∆ρgdp
2

�
σgc

µd
�
ρdDd

ρd
�
Md

dp
�
tf

NSh,c − NSh,c,rigid
���
NSh,c,fully circular − NSh,c,rigid

2
�
π 0.5

kcdp
�
Dc

0.00375vs
��
1 + µd /µc

σ3gc
3ρc

2

�
gµ c

4∆ρ
4Ddt
�

dp
2

ρd
�
Md

kL,d,oscdp
�

Dd

ρc
�
Mc

ρc
�
Mc

kL,cdp
�

Dc

µcvs
�
σgc

µc
�
µd

dpg1/3

�
Dc

2/3

k′L,cdp
�

Dd

dpvs
2ρc

�
σgc

4Ddt
�

dp
2

ρd
�
Mf

k̂L,d,circdp
�

Dd

R1/2πDd
1/2θ1/2

��
dp /2

ρd
�
Md

dp
�
6θ

[E] Used with mole fractions for extraction less 
than 50%, R ≈ 2.25.

[E] Used with log mean mole fraction difference. 
dp = diameter of sphere with same volume as
drop. 856 ≤ NSc ≤ 79,800, 2.34 ≤ σ ≤ 4.8
dynes/cm.

[E] Used as an arithmetic concentration 
difference.

NRe,drop =

Solid sphere form with correction factor F.

[E] Used as an arithmetic concentration 
difference. Low σ.

[E] Used as an arithmetic concentration difference.
Low σ, disperse-phase holdup of drop swarm.
φd = volume fraction dispersed phase.

[E] Used with a log mean mole fraction 
difference. Based on ends of extraction column.

NRe,drop = , 411 ≤ NRe ≤ 3114

dp = diameter of sphere with volume of drop. 
Average absolute deviation from data, 10.5%.

Low interfacial tension (3.5–5.8 dyn), µc < 1.35
centipoise.

[T] Use with log mean concentration difference.
Based on end of extraction column. No 
continuous phase resistance. kL,d,osc in cm/s, vs =
drop velocity relative to continuous phase.

[E] Allows for slight effect of wake.
Rigid drops: 104 < NPe,c < 106

Circulating drops: 10 < NRe < 1200,
190 < NSc < 241,000, 103 < NPe,c < 106

[E] Used with log mean mole fraction difference.
23 data points. Average absolute deviation 25%.
tf = formation time.

[E] Used with log mean mole fraction difference.
20 data points. Average absolute deviation 22%.

dpvsρc
�

µc

dpvsρc
�

µc

[141] p. 405

[144] p. 435
[145]

[82]

[141] p. 407

[141] p. 407
[144] p. 436

[141] p. 406

[144] p. 435
[145]

[138] p. 228
[141] p. 405

[146] p. 58

[141] p. 408

[141] p. 409
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TABLE 5-21 Mass-Transfer Correlations for Drops, Bubbles, and Bubble Columns (Continued)

Comments
Conditions Correlations E = Empirical, S = Semiempirical, T = Theoretical References*

U. Single liquid drops in gas, gas 
side coefficient

V. Single water drop in air, liquid 
side coefficient

W. Single bubbles of gas in liquid, 
continuous phase coefficient, 
very small bubbles

X. Same as 5-21-W, medium to large 
bubbles

Y. Same as 5-21-X

Z. Taylor bubbles in single
capillaries (square or circular)

AA. Gas-liquid mass transfer in
monoliths

AB. Rising small bubbles of gas in 
liquid, continuous phase.
Calderbank and Moo-Young 
correlation

AC. Same as 5-21-AB, large bubbles

AD. Bubbles in bubble columns.
Hughmark correlation

AE. Bubbles in bubble column

= 2 + AN Re,g
1/2 NSc,g

1/3

A = 0.552 or 0.60.

NRe,g =

kL = 2� 	
1/2

, short contact times

kL = 10 , long contact times

NSh = = 1.0(NReNSc)1/3

NSh = = 1.13(NReNSc)1/2

NSh = = 1.13(NReNSc)1/2� �
500 ≤ NRe ≤ 8000

kLa = 4.5� 	
1�2

Applicable � 	
0.5

> 3s−0.5

kLa ≈ 0.1� 	
1�4

P/V = power/volume (kW/m3), range = 100 to
10,000

NSh = = 2 + 0.31(NGr)1/3N Sc
1/3, db < 0.25 cm

NRa = = Raleigh number

NSh = = 0.42 (NGr)1/3NSc
1/2, db > 0.25 cm

= a =

NSh = = 2 + bNSc
0.546NRe

0.779� 	
0.116

b = 0.061 single gas bubbles;

b = 0.0187 swarms of bubbles,

Vs = −

kLa = 0.00315uG
0.59 µeff

−0.84

VL
�
1−0G

Vg
�
0G

dg1�3

�
D2�3

kLd
�
D

6 Hg
�

db

Interfacial area
��

volume

k′cdb
�

Dc

db
3|ρG − ρL|g

��
µLDL

k′cdb
�

Dc

P
�
V

uG + uL
�

Lslug

1
�
dc

DuG
�
Luc

db
��
0.45 + 0.2db

k′cdb
�

Dc

k′cdb
�

Dc

k′cdb
�

Dc

DL
�
dp

DL
�
π t

dpρgvs
�

µg

k̂gMgdpP
�

Dgasρg

[E] Used for spray drying (arithmetic partial 
pressure difference).

vs = slip velocity between drop and gas stream.

Sometimes written with MgP/ρg = RT.

[T] Use arithmetic concentration difference.
Penetration theory. t = contact time of drop.
Gives plot for kG a also. Air-water system.

[T] Solid-sphere Eq. (see Table 5-20-B).
db < 0.1 cm, k′c is average over entire surface of 
bubble.

[T] Use arithmetic concentration difference.
Droplet equation: db > 0.5 cm.

[S] Use arithmetic concentration difference.
Modification of above (X), db > 0.5 cm.
No effect SAA for dp > 0.6 cm.

[E] Air-water

Luc = unit cell length, Lslug = slug length, dc = capil-
lary i.d.

For most data kLa ± 20%.

[E] Each channel in monolith is a capillary. Results
are in expected order of magnitude for capillaries 
based on 5-21-Z.

kL is larger than in stirred tanks.

[E] Use with arithmetic concentration difference.
Valid for single bubbles or swarms. Independent 
of agitation as long as bubble size is constant. 
Recommended by [136].

Note that NRa = NGrNSc.

[E] Use with arithmetic concentration difference.
For large bubbles, k′c is independent of bubble 
size and independent of agitation or liquid 
velocity. Resistance is entirely in liquid phase for 
most gas-liquid mass transfer.

Hg = fractional gas holdup, volume gas/total 
volume.

[E] d = bubble diameter

Air–liquid. Recommended by [136, 152]. For 
swarms, calculate

NRe with slip velocity Vs.

0G = gas holdup

VG = superficial gas velocity 
Col. diameter = 0.025 to 1.1 m

ρ′L = 776 to 1696 kg/m3

µL = 0.0009 to 0.152 Pa⋅s

[E] Recommended by [136].

[90] p. 388
[121]

[90] p. 389

[105]
[138] p. 214

[138] p. 231

[83][138]
p. 231

[153]

[93]

[47][66] p. 451

[88] p. 119
[152] p. 156
[136]

[47][66] p. 452
[88] p. 119
[97] p. 249
[136]

[55]
[82]
[152] p. 144

[57]
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practical purposes k̂G is independent of temperature and pressure
in the normal ranges of these variables.

For modest changes in temperature the influence of temperature
upon the interfacial area a may be neglected. For example, in experi-
ments on the absorption of SO2 in water, Whitney and Vivian [Chem.
Eng. Prog., 45, 323 (1949)] found no appreciable effect of tempera-
ture upon k′Ga over the range from 10 to 50°C.

With regard to the liquid-phase mass-transfer coefficient, Whitney
and Vivian found that the effect of temperature upon kLa could be
explained entirely by variations in the liquid-phase viscosity and diffu-
sion coefficient with temperature. Similarly, the oxygen-desorption
data of Sherwood and Holloway [Trans. Am. Inst. Chem. Eng., 36, 39
(1940)] show that the influence of temperature upon HL can be
explained by the effects of temperature upon the liquid-phase viscos-
ity and diffusion coefficients (see Table 5-24-A).

It is important to recognize that the effects of temperature on the
liquid-phase diffusion coefficients and viscosities can be very large
and therefore must be carefully accounted for when using k̂L or HL

data. For liquids the mass-transfer coefficient k̂L is correlated as
either the Sherwood number or the Stanton number as a function of
the Reynolds and Schmidt numbers (see Table 5-24). Typically, the
general form of the correlation for HL is (Table 5-24)

HL = bNa
ReNSc

1/2 (5-306)

where b is a proportionality constant and the exponent a may range
from about 0.2 to 0.5 for different packings and systems. The liquid-
phase diffusion coefficients may be corrected from a base tempera-
ture T1 to another temperature T2 by using the Einstein relation as
recommended by Wilke [Chem. Eng. Prog., 45, 218 (1949)]:

D2 = D1(T2 /T1)(µ1/µ2) (5-307)

The Einstein relation can be rearranged to the following equation for
relating Schmidt numbers at two temperatures:

NSc2 = NSc1(T1 /T2)(ρ1 /ρ2)(µ2 /µ1)2 (5-308)

Substitution of this relation into Eq. (5-306) shows that for a given
geometry the effect of temperature on HL can be estimated as

HL2 = HL1(T1 /T2)1/2(ρ1 /ρ2)1/2(µ2 /µ1)1 − a (5-309)

In using these relations it should be noted that for equal liquid flow
rates

HL2 /HL1 = (k̂La)1/(k̂La)2 (5-310)

Effects of System Physical Properties on k̂G and k̂L When
designing packed towers for nonreacting gas-absorption systems for
which no experimental data are available, it is necessary to make cor-
rections for differences in composition between the existing test data
and the system in question. The ammonia-water test data (see Table
5-24-B) can be used to estimate HG, and the oxygen desorption data
(see Table 5-24-A) can be used to estimate HL. The method for doing
this is illustrated in Table 5-24-E. There is some conflict on whether
the value of the exponent for the Schmidt number is 0.5 or 2/3 [Yadav
and Sharma, Chem. Eng. Sci. 34, 1423 (1979)]. Despite this disagree-
ment, this method is extremely useful, especially for absorption and
stripping systems.

It should be noted that the influence of substituting solvents of
widely differing viscosities upon the interfacial area a can be very
large. One therefore should be cautious about extrapolating k̂La data
to account for viscosity effects between different solvent systems.

Effects of High Solute Concentrations on k̂G and k̂L As dis-
cussed previously, the stagnant-film model indicates that k̂G should be
independent of yBM and kG should be inversely proportional to yBM. The
data of Vivian and Behrman [Am. Inst. Chem. Eng. J., 11, 656 (1965)]
for the absorption of ammonia from an inert gas strongly suggest that
the film model’s predicted trend is correct. This is another indication
that the most appropriate rate coefficient to use in concentrated sys-
tems is k̂G and the proper driving-force term is of the form (y − yi)/yBM.

The use of the rate coefficient k̂L and the driving force (xi − x)/xBM

is believed to be appropriate. For many practical situations the liquid-
phase solute concentrations are low, thus making this assumption
unimportant.

Influence of Chemical Reactions on k̂G and k̂L When a chem-
ical reaction occurs, the transfer rate may be influenced by the chem-
ical reaction as well as by the purely physical processes of diffusion
and convection within the two phases. Since this situation is common
in gas absorption, gas absorption will be the focus of this discussion.
One must consider the impacts of chemical equilibrium and reaction
kinetics on the absorption rate in addition to accounting for the effects
of gas solubility, diffusivity, and system hydrodynamics.

There is no sharp dividing line between pure physical absorption
and absorption controlled by the rate of a chemical reaction. Most
cases fall in an intermediate range in which the rate of absorption is
limited both by the resistance to diffusion and by the finite velocity of
the reaction. Even in these intermediate cases the equilibria between
the various diffusing species involved in the reaction may affect the
rate of absorption.

TABLE 5-21 Mass-Transfer Correlations for Drops, Bubbles, and Bubble Columns (Concluded)

Comments
Conditions Correlations E = Empirical, S = Semiempirical, T = Theoretical References*

AF. Bubbles in bubble column

AG. High-pressure bubble column

AH. Three phase (gas-liquid-solid)
bubble column to solid spheres

kL = � 	
1�2

NRe
3�4

kLa = 1.77σ−0.22 exp(1.65ul − 65.3µl)εg
1.2

790 < ρL < 1580 kg/m3

0.00036 < µl < 0.0383 Pa⋅s
0.0232 < σl < 0.0726 N�m
0.028 < ug < 0.678 m�s
0 < ul < 0.00089 m�s

Nsh = = 2.0 + 0.545NSc
1�3� 	

0.264

NSc = 137 to 50,000 (very wide range)
dp = particle diameter (solids)

ed4
p

�
ν3

ksdp
�

D

ν
�
D

0.15D
�

dVs

[E] dVs = Sauter mean bubble diameter, 
NRe = dVsuGρL�µL.

Recommended by [49] based on experiments in 
industrial system.

[E] Pressure up to 4.24 MPa.

T up to 92°C.

εg = gas holdup. Correlation to estimate εg is given.

0.045 < dcol < 0.45 m, dcol�Hcol > 5

0.97 < ρg < 33.4 kg�m3

[E] e = local energy dissipation rate/unit mass, 
e = ugg

NSc = µL�(ρLD)

Recommended by [136].

[49]
[133]

[96]

[129]
[136]

See Table 5-22 for agitated systems.
*See the beginning of the “Mass Transfer” subsection for references.



TABLE 5-22 Mass-Transfer Correlations for Particles, Drops, and Bubbles in Agitated Systems

Comments
Situation Correlation E = Empirical, S = Semiempirical, T = Theoretical References*

A. Solid particles suspended in 
agitated vessel containing vertical 
baffles, continuous phase 
coefficient

B. Solid, neutrally buoyant particles, 
continuous phase coefficient

C. Same as 22-B, small particles

D. Solid particles with significant 
density difference

E. Small solid particles, gas bubbles 
or liquid drops, dp < 2.5 mm. 
Aerated mixing vessels

F. Highly agitated systems; solid 
particles, drops, and bubbles; 
continuous phase coefficient

G. Liquid drops in baffled tank 
with flat six-blade turbine

H. Liquid drops in baffled tank, 
low volume fraction dispersed 
phase

= 2 + 0.6NRe,T
1/2 NSc

1/3

Replace vslip with vT = terminal velocity. Calculate 
Stokes’ law terminal velocity

vTs =

and correct:

NRe,Ts 1 10 100 1,000 10,000 100,000
vT /vTs 0.9 0.65 0.37 0.17 0.07 0.023

Approximate: k′L = 2k′LT

NSh = = 2 + 0.47N Re,p
0.62 NSc

0.36 � 	
0.17

Graphical comparisons are in Ref. 88, p. 116.

NSh = 2 + 0.52NRe,p
0.52 NSc

1/3, NRe,p < 1.0

NSh = = 2 + 0.44� 	
1/2

NSc
0.38

NSh = = 2 + 0.31� �
1/3

k′LNSc
2/3 = 0.13� �

1/4

k′ca = 2.621 × 10−3

× φ0.304� 	
1.582

NRe
1.929NOh

1.025

NSh = = 1.237 × 10−5 NSc
1/3N 2/3

× NFr
5/12� 	� 	

1/2

� 	
5/4

φ−1/2

Stainless steel flat six-blade turbine.
Tank had four baffles.
Correlation recommended for φ ≤ 0.06 [Ref. 146]
a = 6φ /d̂32, where d̂32 is Sauter mean diameter when 

33% mass transfer has occurred.

ρddp
2

�
σ

dp
�
Dtank

d imp
�
dp

k′cdp
�

D

d imp
�
dtank

(ND)1/2

�
d imp

(P/Vtank)µcgc
��

ρc
2

dp
3 |ρp − ρc|

��
µcD

k′Ldp
�

D

dpvslip
�

ν
k′L dp
�

D

d imp
�
dtank

k′Ldp
�

D

dp
2|ρp − ρc|g

��
18µc

k′LT dp
�

D
[S] Use log mean concentration difference.

Modified Frossling equation: NRe,Ts =

(Reynolds number based on Stokes’ law.)

NRe,T =

(terminal velocity Reynolds number.)
k′L almost independent of dp.
Harriott suggests different correction procedures.
Range k′L /k′LT is 1.5 to 8.0.

[E] Use log mean concentration difference.
Density unimportant if particles are close to
neutrally buoyant. Also used for drops. Geomet-
ric effect (d imp/dtank) is usually unimportant. Ref.
102 gives a variety of references on correlations.

[E] E = energy dissipation rate per unit mass fluid 

= , P = power, NRe,p =

[E] Terms same as above.

[E] Use log mean concentration difference.
NSh standard deviation 11.1%. vslip calculated by 

methods given in reference.

[E] Use log mean concentration difference.
g = 9.80665 m/s2. Second term RHS is free-fall or 
rise term. For large bubbles, see Table 5-21-AC.

[E] Use arithmetic concentration difference.
Use when gravitational forces overcome by agita-
tion. Up to 60% deviation. Correlation prediction
is low (Ref. 102). (P/Vtank) = power dissipated by
agitator per unit volume liquid.

[E] Use arithmetic concentration difference. 
Studied for five systems.

NRe = d imp
2 Nρc /µc, NOh = µc /(ρcd impσ)1/2

φ = volume fraction dispersed phase. N = impeller
speed (revolutions/time). For dtank = htank, average
absolute deviation 23.8%.

[E] 180 runs, 9 systems, φ = 0.01. kc is time-
averaged. Use arithmetic concentration differ-
ence.

NRe = � 	 , NFr = � 	
dp = particle or drop diameter; σ = interfacial ten-

sion, N/m; φ = volume fraction dispersed phase;
a = interfacial volume, 1/m; and kcαDc

2/3 implies
rigid drops.

Negligible drop coalescence.
Average absolute deviation—19.71%. Graphical 
comparison given by Ref. 143.

d impN 2

�
g

d imp
2 NSc

�
µ c

E1/3dp
4/3

�
ν

Pgc
�
Vtankρc

vTdpρc
�

µc

vTsdpρc
�

µc

[74][138]
p. 220–222

[110]

[74]

[88] p. 115
[102] p. 132

[152] p. 523

[88] p. 116

[102]
[110]

[46][67] p. 487
[97] p. 249

[47]
[66] p. 489
[110]

[144] p. 437

[143] [146]
p. 78
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TABLE 5-22 Mass-Transfer Correlations for Particles, Drops, and Bubbles in Agitated Systems (Concluded)

Comments
Situation Correlation E = Empirical, S = Semiempirical, T = Theoretical References*

I. Gas bubble swarms in sparged 
tank reactors

J. Same as 5-22-I

K. Same as 5-22-J

L. Same as 5-22-I, baffled tank with
standard blade Rushton impeller

M. Same as 5-22-L

N. Same as 5-22-L, bubbles

O. Gas bubble swarm in sparged 
stirred tank reactor with solids 
present

P. Surface aerators for air-water
contact

Q. Gas-inducing impeller for
air-water contact

R. Gas-inducing impeller with
dense solids

k′La� 	
1/3

= C� �
a

� � 	
1/3

�
b

Rushton turbines: C = 7.94 × 10−4, a = 0.62,
b = 0.23.

Intermig impellers: C = 5.89 × 10−4, a = 0.62,
b = 0.19.

k′La = 2.6 × 10−2 � 	
0.4

uG
0.5

k′La = 2.0 × 10−3 � 	
0.7

uG
0.2

k′La = 93.37� 	
0.76

uG
0.45

k′La = 7.57� �
0.5

� �
0.694

× � �
1.11

� 	
0.447

d imp = impeller diameter, m; D = diffusivity, m2/s

= 0.060� 	� 	
0.19

� 	
0.6

= 1 − 3.54(εs − 0.03)

300 ≤ P/Vrx < 10,000 W/m3, 0.03 ≤ εs ≤ 0.12
0.34 ≤ uG ≤ 4.2 cm/s, 5 < µL < 75 Pa⋅s

= bNp
0.71 NFr

0.48 NRe
0.82 � 	

−0.54

� 	
−1.08

b = 7 × 10−6, Np = P/(ρN3d5)
NRe = Nd2ρliq/µliq

NFr = N2d/g, P/V = 90 to 400 W/m3

kLaV(v/g2)1/3 d3 = ANB
Fr � 	

C

Single impeller: 
A = 0.00497, B = 0.56, C = 0.32
Multiple impeller:
A = 0.00746, B = 0.54, C = 0.38

ShGL = = (1.26 × 10−5) NRe
1.8NSc

0.9NWe
−0.1

NRe = ρNd2
St/µ, NSc = µ/(ρD),

NWe = ρN2d2
St/σ

kLad2
st�

D

VA
�
V

V
�
d3

H
�
d

kLa
�

N

k′La
�
(k′La)o

µeff uG
�

σ
d 2

imp N 2

�
g

d 2
impNρ
�

µeff

k′Lad 2
imp

�
D

uGd
�

σ
d 2

impNρL
�

µ eff

µG
�
µeff

µeff
�
ρD

d 2
imp

�
D

P
�
VL

P
�
VL

P
�
VL

ν
�
g2

qG
�
VL

P/VL
�
ρ(νg 4)1/3

ν
�
g 2

[E] Use arithmetic concentration difference.
Done for biological system, O2 transfer.
htank /Dtank = 2.1; P = power, kW. VL = liquid volume, 
m3. qG = gassing rate, m3/s. k′La = s−1.

Since a = m2/m3, ν = kinematic viscosity, m2/s. Low
viscosity system. Better fit claimed with 
qG /VL than with uG (see 5-22-J to N).

[E] Use arithmetic concentration difference.
Ion free water VL < 2.6, uG = superficial gas 
velocity in m/s. 500 < P/VL < 10,000. P/VL =
watts/m3, VL = liquid volume, m3.

[E] Use arithmetic concentration difference.
Water with ions. 0.002 < VL < 4.4, 500 < P/VL <
10,000. Same definitions as 5-22-I.

[E] Air-water. Same definitions as 5-22-I.
0.005 < uG < 0.025, 3.83 < N < 8.33,
400 < P/VL < 7000

h = Dtank = 0.305 or 0.610 m. VG = gas volume, m3,
N = stirrer speed, rpm. Method assumes perfect
liquid mixing.

[E] Use arithmetic concentration difference.
CO2 into aqueous carboxyl polymethylene.
Same definitions as 5-22-L. µeff = effective viscos-
ity from power law model, Pa⋅s. σ = surface
tension liquid, N/m.

[E] Use arithmetic concentration difference.
O2 into aqueous glycerol solutions. O2 into aque-

ous millet jelly solutions. Same definitions as 
5-22-L.

[E] Use arithmetic concentration difference.
Solids are glass beads, dp = 320 µm.
εs = solids holdup m3/m3 liquid, (k′La)o = mass

transfer in absence of solids. Ionic salt solution—
noncoalescing.

[E] Three impellers: Pitched blade downflow 
turbine, pitched blade upflow turbine, standard 
disk turbine. Baffled cylindrical tanks 1.0- and 
1.5-m ID and 8.2 × 8.2-m square tank. Submer-
gence optimized all cases. Good agreement with
data.

N = impeller speed, s−1; d = impeller diameter, m; 
H = liquid height, m; V = liquid volume, m3; kLa =

s−1, g = acceleration gravity = 9.81 m/s2

[E] Same tanks and same definitions as in 5-22-P.
VA = active volume = p/(πρgNd).

[E] Hydrogenation with Raney-type nickel catalyst
in stirred autoclave. Used varying T, p, solvents. 
dst = stirrer diameter.

[131]

[98] [123]

[98] [101]

[67] [98]

[98] [115]

[98] [160]

[38] [132]

[113]

[113]

[78]

See also Table 5-21.
*See the beginning of the “Mass Transfer” subsection for references.
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TABLE 5-23 Mass-Transfer Correlations for Fixed and Fluidized Beds

Transfer is to or from particles

Comments
Situation Correlation E = Empirical, S = Semiempirical, T = Theoretical References*

A. For gases, fixed and fluidized beds, 
Gupta and Thodos correlation

B. For gases, for fixed beds, Petrovic 
and Thodos correlation

C. For gases and liquids, fixed and 
fluidized beds

D. For gases, fixed beds

E. For liquids, fixed bed, Wilson 
and Geankoplis correlation

F. For liquids, fixed beds, Ohashi 
et al. correlation

jH = jD = , 90 ≤ NRe ≤ A

Equivalent:

NSh = NRe
0.425NSc

1/3

For other shapes:

= 0.79 (cylinder) or 0.71 (cube)

NSh = NRe
0.641NSc

1/3

3 < NRe < 900 can be extrapolated to NRe < 2000.

jD = , 10 ≤ NRe ≤ 2000

jD = , NSh =

jD =

jD = , 0.0016 < NRe < 55

165 ≤ NSc ≤ 70,600, 0.35 < ε < 0.75
Equivalent:

NSh = NRe
1/3NSc

1/3

jD = , 55 < NRe < 1500, 165 ≤ NSc ≤ 10,690

Equivalent: NSh = NRe
0.69NSc

1/3

NSh = = 2 + 0.51� 	
0.60

NSc
1/3

E = Energy dissipation rate per unit mass of fluid

= 50(1 − ε)ε 2 CDo� 	 , m2/s3

= � �� 	
General form:

NSh = 2 + K� 	
α

NSc
β

applies to single particles, packed beds, two-phase
tube flow, suspended bubble columns, and stirred
tanks with different definitions of E.

E1/3Dp
4/3ρ

��
µ

v3
super

�
dp

50(1 − ε)CD
��

ε

vr
3

�
dp

E1/3dp
4/3ρ

�
µ

k′ds
�
D

0.25
�
ε

0.25
�
εNRe

0.31

1.09
�
ε

1.09
�
εNRe

2/3

0.499
�
εNRe

0.382

k′ds
�
D

NSh
�
NReNSc

1/3

0.4548
�
εNRe

0.4069

0.357
�

ε

ε jD
�
(ε jD)sphere

2.06
�
ε

2.06
�
εNRe

0.575 [E] For spheres. NRe =

A = 2453 [Ref. 141], A = 4000 [Ref. 77].
For NRe > 1900, jH = 1.05jD.
Heat transfer result is in absence of radiation.

NSh =

Graphical results are available for NRe from 1900 
to 10,300.

a = = 6(1 − ε)/dp

For spheres, dp = diameter.
For nonspherical: dp= 0.567 �P�ar�t.� S�u�rf�.�A�re�a�

[E] Packed spheres, deep beds. Corrected for 
axial dispersion with axial Peclet number = 2.0.
Prediction is low at low NRe. NRe defined as in 
5-23-A.

[E] Packed spheres, deep bed. Average deviation 
�20%, NRe = dpvsuperρ/µ. Can use for fluidized
beds. 10 ≤ NRe ≤ 4000.

[E] Data on sublimination of naphthalene spheres 
dispersed in inert beads. 0.1 < NRe < 100, NSc =
2.57. Correlation coefficient = 0.978.

[E] Beds of spheres,

NRe =

Deep beds.

NSh =

[S] Correlates large amount of published data. 
Compares number of correlations, vr = relative
velocity, m/s. In packed bed, vr = vsuper /ε.

CDo = single particle drag coefficient at vsuper cal-
culated from CDo = AN Rei

−m.

NRe A m
0 to 5.8 24 1.0

5.8 to 500 10 0.5
>500 0.44 0

Ranges for packed bed:

0.001 < NRe < 1000, 505 < NSc < 70,600,

0.2 < < 4600

Compares different situations versus general 
correlation. See also 5-20-F.

E1/3dp
4/3ρ

��
µ

k′ds
�
D

dpVsuperρ
�

µ

surface area
��

volume

k′ds
�
D

vsuperdpρ
�

µ
[72] [73]

[77] p. 195
[141]

[116][128]
p. 214

[155]

[60][66]
p. 484

[80]

[66] p. 484

[77] p. 195

[141] p. 287
[158]

[108]
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TABLE 5-23 Mass Transfer Correlations for Fixed and Fluidized Beds (Continued )

Comments
Situation Correlation E = Empirical, S = Semiempirical, T = Theoretical References*

G. Electrolytic system. Pall rings.
Transfer from fluid to rings.

H. For liquids, fixed and fluidized 
beds

I. For gases and liquids, fixed and 
fluidized beds, Dwivedi and 
Upadhyay correlation

J. For gases and liquids, fixed bed

K. For liquids, fixed and fluidized 
beds, Rahman and Streat 
correlation

L. Size exclusion chromatography
of proteins

M. Liquid-free convection with
fixed bed Raschig rings.
Electrochemical.

N. Oscillating bed packed with
Raschig rings. Dissolution of
copper rings.

O. For liquids and gases, Ranz and 
Marshall correlation

P. For liquids and gases, Wakao 
and Funazkri correlation

Q. Acid dissolution of limestone
in fixed bed

R. Semifluidized or expanded bed.
Liquid-solid transfer.

Full liquid upflow:
Nsh = kLde/D = 4.1NRe

0.39NSc
1/3

NRedeu/ν = 80 to 550
Irrigated liquid downflow (no gas flow):
NSh = 5.1NRe

0.44NSc
1/3

ε jD = , 1.0 < NRe ≤ 10

ε jD = , NSh =

ε jD = +

Gases: 10 ≤ NRe ≤ 15,000.
Liquids: 0.01 ≤ NRe ≤ 15,000.

NRe = , NSh =

jD = 1.17N Re
−0.415, 10 ≤ NRe ≤ 2500

jD = NSc
2/3

NSh = NReNSc
1/3, 2 ≤ NRe ≤ 25

NSh = = NRe
1/3NSc

1/3

NSh = kd/D = 0.15 (NSc NGr)0.32

NGr = Grashof no. = gd3∆ρ/(ν2ρ)
If forced convection superimposed,
NSh, overall = (N3

Sh,forced + N3
Sh,free)1/3

Batch (no net solution flow):
NSh = 0.76NSc

0.33N0.7
Re,v(dc/h)0.35

503 < NRe,v < 2892
960 < NSc < 1364, 2.3 < dc/h < 7.6

NSh = = 2.0 + 0.6NSc
1/3NRe

1/2

NRe =

NSh = 2.0 + 1.1NSc
1/3NRe

0.6, 3 < NRe < 10,000

NSh = , NRe =

= 10 + 0.5NScNRe

NSh = 1.77 NRe
0.56NSc

1/3(1 − ε)0.44

20 < NRe < 6000

NSh = = 2 + 1.5 (1 − εL)NRe
1/3NSc

1/3

NRe = ρpdpu/µεL; NSc = µ/ρD

kfilm dp
�

D

εDaxial
�

D

ρf vsuperρ
�

µ
k′film dp
�

D

dpvsuperρ
�

µ

k′d
�
D

1.903
�

ε
kLd
�

D

0.86
�
ε

pBM
�

P
k′
�
vav

k′ds
�
D

dpvsuperρ
�

µ

0.365
�
NRe

0.386

0.765
�
NRe

0.82

k′ds
�

D
NSh

�
NReNSc

1/3

1.1068
�

NRe
0.72

[E] de = diameter of sphere with same surface 
area as Pall ring. Full liquid upflow agreed with 
literature values. Schmidt number dependence 
was assumed from literature values. In downflow,
NRe used superficial fluid velocity.

[E] Spheres:

NRe =

[E] Deep beds of spheres,

jD =

Best fit correlation at low conc. [52]
Based on 20 gas studies and 17 liquid studies. 
Recommended instead of 5-23-C or E.

[E] Spheres: Variation in packing that changes ε
not allowed for. Extensive data referenced. 0.5 <
NSc < 15,000. Comparison with other results are
shown.

NRe =

[E] Can be extrapolated to NRe = 2000. NRe =
dpvsuperρ/µ. Done for neutralization of ion
exchange resin.

[E] Slow mass transfer with large molecules. 
Aqueous solutions. Modest increase in NSh with
increasing velocity.

[E] d = Raschig ring diameter, h = bed height
1810 < NSc < 2532, 0.17 < d/h < 1.0
10.6 × 106 < NScNGr < 21 × 107

[E] NSh = kdc/D, NRe,v = vibrational Re = ρvvdc/µ
vv = vibrational velocity (intensity)
dc = col. diameter, h = column height
Average deviation is ± 12%.

[E] Based on freely falling, evaporating spheres 
(see 5-20-C). Has been applied to packed beds,
prediction is low compared to experimental data.
Limit of 2.0 at low NRe is too high. Not corrected
for axial dispersion.

[E] Correlate 20 gas studies and 16 liquid studies.
Corrected for axial dispersion with: Graphical
comparison with data shown [128], p. 215,
and [155].

Daxial is axial dispersion coefficient.

[E] Best fit was to correlation of Chu et al., Chem.
Eng. Prog., 49(3), 141(1953), even though no 
reaction in original.

[E] εL = liquid-phase void fraction, ρp = particle
density, ρ = fluid density, dp = particle diameter. 
Fits expanded bed chromatography in viscous 
liquids.

dpvsuperρ
�

µ

NSh
�
NReNSc

1/3

dpvsuperρ
�

µ

[69]

[59][66]
p. 484

[59] [77]
p. 196

[52]

[138] p. 241

[119]

[79]

[135]

[61]

[121][128]
p. 214

[155]
[110]

[128] p. 214
[155]

[94]

[64]
[159]
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TABLE 5-23 Mass Transfer Correlations for Fixed and Fluidized Beds (Concluded )

Comments
Situation Correlation E = Empirical, S = Semiempirical, T = Theoretical References*

S. Mass-transfer structured
packing and static mixers. 
Liquid with or without
fluidized particles. 
Electrochemical

T. Liquid fluidized beds

U. Liquid fluidized beds

V. Liquid film flowing over solid 
particles with air present, 
trickle bed reactors, fixed bed

W. Supercritical fluids in packed 
bed

X. Cocurrent gas-liquid flow in
fixed beds

Y. Liquid-solid transfer.
Electrochemical reaction. 
Lessing rings. 
Transfer from liquid to solid

Fixed bed:
j′ = 0.927NRe′

0.572, N′Re < 219
j′ = 0.443NRe′

−0.435, 219 < N′Re < 1360
Fluidized bed with particles:
j = 6.02NRe

−0.885, or
j′ = 16.40NRe′

−0.950

Natural convection:
NSh = 0.252(NScNGr)0.299

Bubble columns:
Structured packing:
NSt = 0.105(NReNFrN2

Sc)−0.268

Static mixer:
NSt = 0.157(NReNFrN2

Sc)−0.298

NSh =

where

ξ = � − 1� NSc
1/3NRe

1/2

This simplifies to:

NSh = � − 1� NReNSc
2/3 (NRe< 0.1)

NSh = 0.250NRe
0.023NGa

0.306� 	
0.282

NSc
0.410 (ε < 0.85)

NSh = 0.304NRe
−0.057NGa

0.332� 	
0.297

NSc
0.404 (ε > 0.85)

This can be simplified (with slight loss in accuracy 
at high ε) to

NSh = 0.245NGa
0.323� 	

0.300

NSc
0.400

NSh = = 1.8NRe
1/2NSc

1/3, 0.013 < NRe < 12.6

two-phases, liquid trickle, no forced flow of gas.
NSh = 0.8NRe

1/2NSc
1/3, one-phase, liquid only.

= 0.5265 � 	
1.6808

+ 2.48�� 	
0.6439

− 0.8768�
1.553

Downflow in trickle bed and upflow in bubble columns.

Liquid only:

NSh = kd/D = 1.57NSc
1/3NRe

0.46

1390 < NSc < 4760, 166 < NRe < 722
Cocurrent two-phase (liquid and gas) in packed bubble
column:
NSh = 1.93NSc

1/3 NRe
0.34 NRe,gas

0.11

60 < NRe,gas < 818, 144 < NRe < 748

NRe
2 NSc

1/3

�
NGr

(NRe
1/2NSc

1/3)
��
(NScNGr)1/4

NSh
��
(NScNGr)1/4

kL
�
aD

ρs − ρ
�

ρ

ρs − ρ
�

ρ

ρs − ρ
�

ρ

α 2

�
2

1
�
(1 − ε)1/3

ε1 − 2m

�
(1 − ε)1/3

α
�
2

1
�
(1 − ε)1/3

2ξ/εm + ��([
2
1
ξ/
−
εm

(1
)(
−
1
ε
−
)1

ε
/3

)
]

1

2

/2

� − 2� tan h (ξ/εm)

�����

�
1 − (

ξ
1
/ε
−

m

ε1/2)
� − tan h (ξ/εm)

[E] Sulzer packings, j′ = NSc
2/3,

β = corrugation incline angle.
NRe′ = v′ d′hρ/µ, v′ = vsuper/(ε cos β),
d′h = channel side width.
Particles enhance mass transfer in laminar flow
for natural convection. Good fit with correlation
of Ray et al., Intl. J. Heat Mass Transfer, 41, 1693
(1998). NGr = g ∆ ρZ3ρ/µ2,
Z = corrugated plate length. Bubble column
results fit correlation of Neme et al., Chem. Eng.
Technol., 20, 297 (1997) for structured packing.
NSt = Stanton number = kZ/D
NFr = Froude number = v2

super/gz

[S] Modification of theory to fit experimental 
data. For spheres, m = 1, NRe > 2.

NSh = , NRe =

m = 1 for NRe > 2; m = 0.5 for NRe < 1.0; ε =
voidage; α = const.

Best fit data is α = 0.7.
Comparison of theory and experimental ion 
exchange results in Ref. 92.

[E] Correlate amount of data from literature.
Predicts very little dependence of NSh on
velocity. Compare large number of published
correlations.

NSh = , NRe = , NGa = ,

NSc =

1.6 < NRe < 1320, 2470 < NGa < 4.42 × 106

0.27 < < 1.114, 305 < NSc< 1595

[E] NRe = , irregular granules of benzoic acid,

0.29 ≤ dp ≤ 1.45 cm.
L = superficial liquid flow rate, kg/m2s.
a = surface area/col. volume, m2/m3.

[E] Natural and forced convection. 0.3 < NRe < 135.

Literature review and meta-analysis. Analyzed
both downflow and upflow. Recommendations for
best mass- and heat-transfer correlations (see ref-
erence).

[E] Electrochemical reactors only.
d = Lessing ring diameter,
1 < d < 1.4 cm, NRe = ρvsuper d/µ,
Deviation ±7% for both cases.
NRe,gas = ρgasVsuper,gasd/µgas

Presence of gas enhances mass transfer.

L
�
aµ

ρs − ρ
�

ρ

µ
�
ρD

dp
3ρ2g

�
µ2

dpρvsuper
�

µ
k′Ldp
�

D

Vsuperdpξ
�

µ
k′Ldp
�

D

k cos β
�

v
[48]

[92] [106] 
[125]

[151]

[130]

[99]

[95]

[75]

NOTE: For NRe < 3 convective contributions which are not included may become important. Use with logarithmic concentration difference (integrated form) or with
arithmetic concentration difference (differential form).

*See the beginning of the “Mass Transfer” subsection for references.
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TABLE 5-24 Mass-Transfer Correlations for Packed Two-Phase Contactors—Absorption, Distillation, Cooling Towers, 
and Extractors (Packing Is Inert)

Comments
Situation Correlations E = Empirical, S = Semiempirical, T = Theoretical References*

A. Absorption, counter-current, 
liquid-phase coefficient HL,
Sherwood and Holloway
correlation for random packings

B. Absorption counter-current, gas-
phase coefficient HG, for random 
packing

C. Absorption and and distillation, 
counter-current, gas and liquid 
individual coefficients and wetted 
surface area, Onda et al. correla-
tion for random packings

D. Distillation and absorption, 
counter-current, random 
packings, modification of Onda 
correlation, Bravo and Fair 
correlation to determine 
interfacial area

HL = aL� 	
n

NSc,L
0.5 , L = lb/hr ft 2

Ranges for 5-24-B (G and L)

Packing aG b c G L aL n

Raschig rings

3/8 inch 2.32 0.45 0.47 200–500 500–1500 0.00182 0.46
1 7.00 0.39 0.58 200–800 400–500 0.010 0.22
1 6.41 0.32 0.51 200–600 500–4500 — —
2 3.82 0.41 0.45 200–800 500–4500 0.0125 0.22

Berl saddles

1/2 inch 32.4 0.30 0.74 200–700 500–1500 0.0067 0.28
1/2 0.811 0.30 0.24 200–800 400–4500 — —
1 1.97 0.36 0.40 200–800 400–4500 0.0059 0.28
1.5 5.05 0.32 0.45 200–1000 400–4500 0.0062 0.28

HG = =

= A� 	
0.7

NSc,G
1/3 (apd ′p)−2.0

k ′L� 	
1/3

= 0.0051 � 	
2/3

NSc,L
−1/2 (apd ′p)0.4

k′L = lbmol/hr ft2 (lbmol/ft3) [kgmol/s m2

(kgmol/m3)]

= 1 − exp �−1.45� 	
0.75

� 	
0.1

�× � 	
−0.05

� 	
0.2

Use Onda’s correlations (5-24-C) for k′G and k′L.
Calculate:

HG = , HL = , HOG = HG + λHL

λ =

ae = 0.498ap� 	(NCa,LNRe,G)0.392

NRe,G = , NCa,L = (dimensionless)
LµL
�
ρLσgc

6G
�
apµG

σ0.5

�
Z0.4

m
�
LM/GM

L
�
k′LaeρL

G
�
k ′GaePMG

L
�
ρLσap

L2ap
�
ρL

2 g

L
�
apµL

σc
�
σaw

�
ap

L
�
aw µL

ρL
�
µLg

G
�
apµG

k′G RT
�
apDG

aG(G)bNSc,v
0.5

��
(L)c

GM
�̂
kGa

L
�
µL

[E] From experiments on desorption of sparingly 
soluble gases from water. Graphs [Ref. 138], p.
606. Equation is dimensional. A typical value of
n is 0.3 [Ref. 66] has constants in kg, m, and s
units for use in 5-24-A and B with k̂G in kgmole/s
m2 and k̂L in kgmole/s m2 (kgmol/m3). Constants
for other packings are given by Refs. 104, p. 187
and 152, p. 239.

HL =

LM = lbmol/hr ft 2, k̂L = lbmol/hr ft 2, a = ft 2/ft 3,
µL in lb/(hr ft).

Range for 5-24-A is 400 < L < 15,000 lb/hr ft2

[E] Based on ammonia-water-air data in
Fellinger’s 1941 MIT thesis. Curves: Refs. 104, 
p. 186 and 138, p. 607. Constants given in 5-24-

A. The equation is dimensional. G = lb/hr ft 2 ,
GM = lbmol/hr ft 2, k̂G = lbmol/hr ft 2.

[E] Gas absorption and desorption from water 
and organics plus vaporization of pure liquids for
Raschig rings, saddles, spheres, and rods. d ′p =
nominal packing size, ap = dry packing surface
area/volume, aw = wetted packing surface
area/volume. Equations are dimensionally con-
sistent, so any set of consistent units can be used.
σ = surface tension, dynes/cm.

A = 5.23 for packing ≥ 1/2 inch (0.012 m)
A = 2.0 for packing < 1/2 inch (0.012 m)
k′G = lbmol/hr ft 2 atm [kg mol/s m2 (N/m2)]

Critical surface tensions, σC = 61 (ceramic), 75 
(steel), 33 (polyethylene), 40 (PVC), 56 (carbon)
dynes/cm.

4 < < 400

5 < < 1000

Most data ± 20% of correlation, some ± 50%.
Graphical comparison with data in Ref. 109.

[E] Use Bolles & Fair (Ref. 43) database to 
determine new effective area ae to use with Onda
et al. (Ref. 109) correlation. Same definitions as
5-24-C. P = total pressure, atm; MG = gas, molec-
ular weight; m = local slope of equilibrium curve;
LM/GM = slope operating line; Z = height of pack-
ing in feet.

Equation for ae is dimensional. Fit to data for 
effective area quite good for distillation. Good
for absorption at low values of (Nca,L × NRe,G), but
correlation is too high at higher values of (NCa,L ×
NRe,G).

G
�
apµG

L
�
awµL

LM
�̂
kLa

[104] p. 187
[105]
[138] p. 606
[157]
[156]

[104] p. 189
[138] p. 607
[157]

[44]

[90] p. 380

[109][149]
p. 355

[156]

[44]
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TABLE 5-24 Mass-Transfer Correlations for Packed Two-Phase Contactors—Absorption, Distillation, Cooling Towers, 
and Extractors (Packing Is Inert) (Continued )

Comments
Situation Correlations E = Empirical, S = Semiempirical, T = Theoretical References*

E. Absorption and distillation,
countercurrent gas-liquid flow,
random and structured packing.
Determine HL and HG

F. Absorption, cocurrent downward 
flow, random packings, Reiss
correlation

G. Absorption, stripping, distillation, 
counter-current, HL, and HG,
random packings, Bolles and Fair 
correlation

H. Distillation and absorption. 
Counter-current flow. Structured 
packings. Gauze-type with 
triangular flow channels, Bravo, 
Rocha, and Fair correlation

HG = � 	 � 	
b

� 	
−0.5

� 	
0.35

HL = � 	 � 	
0.5

� 	
0.3

Relative transfer coefficients [91], fp values are in table:

Ceramic Ceramic Metal
Size, Raschig Berl Pall Metal Metal
in. rings saddles rings Intalox Hypac

0.5 1.52 1.58 — — —
1.0 1.20 1.36 1.61 1.78 1.51
1.5 1.00 — 1.34 — —
2.0 0.85 — 1.14 1.27 1.07

Norton Intalox structured: 2T, fp = 1.98; 3T, fp = 1.94.

Air-oxygen-water results correlated by k′La =
0.12EL

0.5. Extended to other systems.

k′La = 0.12EL
0.5� 	

0.5

EL = � 	
2-phase

vL

= pressure loss in two-phase flow = lbf/ft2 ft

k′Ga = 2.0 + 0.91EG
2/3 for NH3

Eg = � 	2-phase
vg

vg = superficial gas velocity, ft/s

For Raschig rings, Berl saddles, and spiral tile:

HL = N0.5
Sc,L� 	

0.15

Cflood = 1.0 if below 40% flood—otherwise, use fig-
ure in [54] and [157].

HG =

Figures for φ and ψ in [42 and 43] 
Ranges: 0.02 <φ> 0.300; 25 < ψ < 190 m.

Equivalent channel:

deq = Bh� + �

Use modified correlation for wetted wall column 
(See 5-18-F)

NSh,v = = 0.0338N0.8
Re,vNSc,v

0.333

NRe,v =

Calculate k′L from penetration model (use time for 
liquid to flow distance s).

k′L = 2(DLUL,eff /πS)1/2.

deqρv(Uv,eff + UL,eff)
��

µv

k′vdeq
�

Dv

1
�
2S

1
�
B + 2S

Aψ(d′col)mZ0.33N0.5
Sc,G

����

�L��µ
µ
wa

L

ter
�	

0.16

��ρρwa

L

ter
�	

1.25

��σσ
wa

L

ter
�	

0.8

�
n

Z
�
3.05

φCflood
�

3.28

∆p
�
∆L

∆p
�
∆L

∆p
�
∆L

DL
�
2.4 × 105

Gx/µ
��
6.782/0.0008937

NSc
�
372

0.357
�

fP

Gy
�
0.678

Gx
�
6.782

NSc
�
0.660

0.226
�

fp

[S] HG based on NH3 absorption data (5–28B) for
which HG, base = 0.226 m with NSc, base = 0.660 at
Gx, base = 6.782 kg/(sm2) and Gy, base = 0.678 kg/(sm2)
with 11⁄2 in. ceramic Raschig rings. The exponent b
on NSc is reported as either 0.5 or as 2⁄3.

fp =

HL based on O2 desorption data (5-24-A).

Base viscosity, µbase = 0.0008937 kg/(ms).

HL in m. Gy < 0.949 kg/(sm2), 0.678 < Gx < 6.782
kg/(sm2).

Best use is for absorption and stripping. Limited
use for organic distillation [156].

[E] Based on oxygen transfer from water to air 
77°F. Liquid film resistance controls. (Dwater @
77°F = 2.4 × 10−5). Equation is dimensional.
Data was for thin-walled polyethylene Raschig
rings. Correlation also fit data for spheres. Fit
�25%. See [122] for graph.

k′La = s−1

DL = cm/s
EL = ft, lbf/s ft3

vL = superficial liquid velocity, ft/s

[E] Ammonia absorption into water from air at 
70°F. Gas-film resistance controls. Thin-walled
polyethylene Raschig rings and 1-inch Intalox
saddles. Fit �25%. See [122] for fit. Terms
defined as above.

[E] Z = packed height, m of each section with its 
own liquid distribution. The original work is
reported in English units. Cornell et al. (Ref. 54)
review early literature. Improved fit of Cornell’s
φ values given by Bolles and Fair (Refs. [42],
[43]) and [157].

A = 0.017 (rings) or 0.029 (saddles)
d′col = column diameter in m (if diameter > 0.6 m, 
use d′col = 0.6)

m = 1.24 (rings) or 1.11 (saddles)
n = 0.6 (rings) or 0.5 (saddles)

L = liquid rate, kg/(sm2), µwater = 1.0 Pa⋅s, ρwater =
1000 kg/m3, σwater = 72.8 mN/m (72.8 dyn/cm).
HG and HL will vary from location to location.
Design each section of packing separately.

[T] Check of 132 data points showed average 
deviation 14.6% from theory. Johnstone and Pig-
ford [Ref. 84] correlation (5-18-F) has exponent
on NRe rounded to 0.8. Assume gauze packing is
completely wet. Thus, aeff = ap to calculate HG

and HL. Same approach may be used
generally applicable to sheet-metal packings, but 
they will not be completely wet and need to esti-
mate transfer area.

L = liquid flux, kg/s m2, G = vapor flux, kg/s m2.
Fit to data shown in Ref. [45].

HG = , HL =

effective velocities

Uv,eff = , UL,eff = � 	
0.333

, Γ =

Per = =
4S + 2B
�

Bh
Perimeter
��

Area

L
�
Per

ρL
2 g

�
3µLΓ

3Γ
�
2ρL

Uv,super
�
ε sin θ

L
�
k′LapρL

G
�
k′vapρv

HG for NH3 with 11⁄2 Raschig rings
����

HG for NH3 with desired packing

[66] p. 686,
659

[138] [156]

[122]
[130] p. 217

[122]

[42, 43, 54]
[77] p. 428
[90] p. 381
[141] p. 353
[157] [156]

[45]
[63] p. 310, 
326

[149] p. 356,
362

[156]
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TABLE 5-24 Mass-Transfer Correlations for Packed Two-Phase Contactors—Absorption, Distillation, Cooling Towers, 
and Extractors (Packing Is Inert) (Concluded)

Comments
Situation Correlations E = Empirical, S = Semiempirical, T = Theoretical References*

I. Distillation and absorption, counter-
current flow. Structured packing
with corrugations. Rocha, Bravo,
and Fair correlation.

J. Rotating packed bed (Higee)

K. High-voidage packings, cooling 
towers, splash-grid packings

L. Liquid-liquid extraction, packed 
towers

M.Liquid-liquid extraction in 
rotating-disc contactor (RDC)

N. Liquid-liquid extraction, stirred 
tanks

NSh,G = = 0.054 NRe
0.8 NSc

0.33

uv,eff = , uL,eff = ,

kL = 2� 	
HOG = HG + λ HL = +

Interfacial area:

= FSE

Packing factors:

ap ε FSE θ
Flexi-pac 2 233 0.95 0.350 45º
Gempak 2A 233 0.95 0.344 45º
Intalox 2T 213 0.95 0.415 45º
Mellapak 350Y 350 0.93 0.350 45º

�1 − 0.93 − 1.13 	= 0.65 NSc
0.5

× � 	
0.17

� 	
0.3

� 	
0.3

500 ≤ NSc ≤ 1.2 E5; 0.0023 ≤ L/(apµ) ≤ 8.7

120 ≤ (d3
pρ2ac)/µ2 ≤ 7.0 E7; 3.7 E − 6 ≤ L2/(ρapσ) ≤

9.4 E − 4

9.12 ≤ ≤ 2540

= 0.07 + A′N′� 	
−n′

A′ and n′ depend on deck type (Ref. 86), 0.060 ≤
A′ ≤ 0.135, 0.46 ≤ n′ ≤ 0.62.

General form fits the graphical comparisons (Ref. 
138).

Use k values for drops (Table 5-21). Enhancement 
due to packing is at most 20%. 

= 1.0 + 2.44� 	
2.5

NCr = 7.6 × 10−4 � 	� 	
= 1.0 + 1.825� 	

See Table 5-22-E, F, G, and H.

H
�
Dtank

N
�
NCr

kd,RDC
�

kd

H
�
Dtank

σ
�
ddrop µc

N
�
NCr

kc,RDC
�

kc

L
�
Ga

(Ka)HVtower
��

L

kLa dp
�

Dap

L2

�
ρapσ

dp
3ρ2ac

�
µ2

L
�
apµ

Vi
�
Vt

Vo
�
Vt

kLadp
�

Dap

29.12 (NWeNFr)0.15 S0.359

����
N0.2

Re,L ε0.6 (1 − 0.93 cos γ)(sin θ)0.3

ae
�
ap

λuL,super
�

kL ae

ug,super
�
kg ae

DL CE uL,eff
��

πS

uliq,super
�
εhL sin θ

ug,super
��
ε(1 − hL)sin θ

kgS
�

Dg

[E, T] Modification of Bravo, Rocha, and Fair 
(5-24-H). Same definitions as in (5-24-H) unless
defined differently here. Recommended [156].
hL = fractional hold-up of liquid
CE = factor for slow surface renewal 
CE ~ 0.9
ae = effective area/volume (1/m)
ap = packing surface area/volume (1/m)

FSE = surface enhancement factor

γ = contact angle; for sheet metal, cos γ = 0.9 for 
σ < 0.055 N/m

cos γ = 5.211 × 10−16.8356, σ > 0.055 N/m

λ = , m = from equilibrium

[E] Studied oxygen desorption from water into
N2. Packing 0.22-mm-diameter stainless-steel
mesh.
ε = 0.954, ap = 829 (1/m), hbed = 2 cm.
a = gas-liquid area/vol (1/m)
L = liquid mass flux, kg/(m2S)
ac = centrifugal accel, m2/S
Vi, Vo, Vt = volumes inside inner radius, between
outer radius and housing, and total, respectively,
m3. Coefficient (0.3) on centrifugal acceleration
agrees with literature values (0.3–0.38).

[E] General form. Ga = lb dry air/hr ft2.
L = lb/h ft2, N′ = number of deck levels.
(Ka)H = overall enthalpy transfer coefficient =

lb/(h)(ft3) � 	
Vtower = tower volume, ft3/ft2.
If normal packings are used, use absorption mass-
transfer correlations.

[E] Packing decreases drop size and increases
interfacial area.

kc, kd are for drops (Table 5-21) Breakage occurs
when N > NCr. Maximum enhancement before
breakage was factor of 2.0.
N = impeller speed
H = compartment height, Dtank = tank diameter, 

σ = interfacial tension, N/m.
Done in 0.152 and 0.600 m RDC.

[E]

lb water
�
lb dry air

dy
�
dx

m
�
L/V

[124], [156]

[50]

[86][104]
p. 220

[138] p. 286

[146] p. 79

[36][146]
p. 79

See also Sec. 14.
*See the beginning of the “Mass Transfer” subsection for references.

The gas-phase rate coefficient k̂G is not affected by the fact that a
chemical reaction is taking place in the liquid phase. If the liquid-
phase chemical reaction is extremely fast and irreversible, the rate of
absorption may be governed completely by the resistance to diffusion
in the gas phase. In this case the absorption rate may be estimated by

knowing only the gas-phase rate coefficient k̂G or else the height of
one gas-phase transfer unit HG = GM /(k̂Ga).

It should be noted that the highest possible absorption rates will
occur under conditions in which the liquid-phase resistance is negligi-
ble and the equilibrium back pressure of the gas over the solvent is zero.
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Such situations would exist, for instance, for NH3 absorption into an
acid solution, for SO2 absorption into an alkali solution, for vaporization
of water into air, and for H2S absorption from a dilute-gas stream into
a strong alkali solution, provided there is a large excess of reagent in
solution to consume all the dissolved gas. This is known as the gas-phase
mass-transfer limited condition, when both the liquid-phase resistance
and the back pressure of the gas equal zero. Even when the reaction is
sufficiently reversible to allow a small back pressure, the absorption may
be gas-phase-controlled, and the values of k̂G and HG that would apply
to a physical-absorption process will govern the rate.

The liquid-phase rate coefficient k̂L is strongly affected by fast
chemical reactions and generally increases with increasing reaction
rate. Indeed, the condition for zero liquid-phase resistance (m/k̂L)
implies that either the equilibrium back pressure is negligible, or that
k̂L is very large, or both. Frequently, even though reaction consumes
the solute as it is dissolving, thereby enhancing both the mass-transfer
coefficient and the driving force for absorption, the reaction rate is
slow enough that the liquid-phase resistance must be taken into
account. This may be due either to an insufficient supply of a second
reagent or to an inherently slow chemical reaction.

In any event the value of k̂L in the presence of a chemical reaction
normally is larger than the value found when only physical absorption
occurs, k̂L

0 . This has led to the presentation of data on the effects of
chemical reaction in terms of the “reaction factor” or “enhancement
factor” defined as

φ = k̂L /k̂L
0 ≥ 1 (5-311)

where k̂L = mass-transfer coefficient with reaction and k̂L
0 = mass-

transfer coefficient for pure physical absorption.
It is important to understand that when chemical reactions are

involved, this definition of k̂L is based on the driving force defined as
the difference between the concentration of unreacted solute gas at
the interface and in the bulk of the liquid. A coefficient based on the
total of both unreacted and reacted gas could have values smaller than
the physical-absorption mass-transfer coefficient k̂L

0 .
When liquid-phase resistance is important, particular care should be

taken in employing any given set of experimental data to ensure that the
equilibrium data used conform with those employed by the original
author in calculating values of k̂L or HL. Extrapolation to widely different
concentration ranges or operating conditions should be made with cau-
tion, since the mass-transfer coefficient k̂L may vary in an unexpected
fashion, owing to changes in the apparent chemical-reaction mechanism.

Generalized prediction methods for k̂L and HL do not apply when
chemical reaction occurs in the liquid phase, and therefore one must
use actual operating data for the particular system in question. A dis-
cussion of the various factors to consider in designing gas absorbers and
strippers when chemical reactions are involved is presented by Astarita,
Savage, and Bisio, Gas Treating with Chemical Solvents, Wiley (1983)
and by Kohl and Nielsen, Gas Purification, 5th ed., Gulf (1997).

Effective Interfacial Mass-Transfer Area a In a packed tower
of constant cross-sectional area S the differential change in solute flow
per unit time is given by

−d(GMSy) = NAa dV = NAaS dh (5-312)

where a = interfacial area effective for mass transfer per unit of
packed volume and V = packed volume. Owing to incomplete wetting
of the packing surfaces and to the formation of areas of stagnation in
the liquid film, the effective area normally is significantly less than the
total external area of the packing pieces.

The effective interfacial area depends on a number of factors, as
discussed in a review by Charpentier [Chem. Eng. J., 11, 161 (1976)].
Among these factors are (1) the shape and size of packing, (2) the
packing material (for example, plastic generally gives smaller interfa-
cial areas than either metal or ceramic), (3) the liquid mass velocity,
and (4), for small-diameter towers, the column diameter.

Whereas the interfacial area generally increases with increasing liq-
uid rate, it apparently is relatively independent of the superficial gas
mass velocity below the flooding point. According to Charpentier’s
review, it appears valid to assume that the interfacial area is indepen-
dent of the column height when specified in terms of unit packed 
volume (i.e., as a). Also, the existing data for chemically reacting 
gas-liquid systems (mostly aqueous electrolyte solutions) indicate that

the interfacial area is independent of the chemical system. However, this
situation may not hold true for systems involving large heats of reaction.

Rizzuti et al. [Chem. Eng. Sci., 36, 973 (1981)] examined the influ-
ence of solvent viscosity upon the effective interfacial area in packed
columns and concluded that for the systems studied the effective
interfacial area a was proportional to the kinematic viscosity raised to
the 0.7 power. Thus, the hydrodynamic behavior of a packed absorber
is strongly affected by viscosity effects. Surface-tension effects also are
important, as expressed in the work of Onda et al. (see Table 5-24-C).

In developing correlations for the mass-transfer coefficients k̂G and
k̂L, the various authors have assumed different but internally compatible
correlations for the effective interfacial area a. It therefore would be
inappropriate to mix the correlations of different authors unless it has
been demonstrated that there is a valid area of overlap between them.

Volumetric Mass-Transfer Coefficients K̂Ga and K̂La Experi-
mental determinations of the individual mass-transfer coefficients k̂G

and k̂L and of the effective interfacial area a involve the use of
extremely difficult techniques, and therefore such data are not plenti-
ful. More often, column experimental data are reported in terms of
overall volumetric coefficients, which normally are defined as follows:

K′Ga = nA /(hTSpT∆y°1m) (5-313)

and KLa = nA /(hTS ∆x°1m) (5-314)

where K′Ga = overall volumetric gas-phase mass-transfer coefficient,
KLa = overall volumetric liquid-phase mass-transfer coefficient, nA =
overall rate of transfer of solute A, hT = total packed depth in tower, 
S = tower cross-sectional area, pT = total system pressure employed
during the experiment, and ∆x°1m and ∆y°1m are defined as

∆y°1m = (5-315)

and ∆x°1m = (5-316)

where subscripts 1 and 2 refer to the bottom and top of the tower
respectively.

Experimental K′Ga and KLa data are available for most absorption
and stripping operations of commercial interest (see Sec. 14). The
solute concentrations employed in these experiments normally are
very low, so that KLa � K̂La and K′GapT � K̂Ga, where pT is the total
pressure employed in the actual experimental-test system. Unlike the
individual gas-film coefficient k̂Ga, the overall coefficient K̂Ga will vary
with the total system pressure except when the liquid-phase resistance
is negligible (i.e., when either m = 0, or k̂La is very large, or both).

Extrapolation of KGa data for absorption and stripping to conditions
other than those for which the original measurements were made can
be extremely risky, especially in systems involving chemical reactions
in the liquid phase. One therefore would be wise to restrict the use of
overall volumetric mass-transfer-coefficient data to conditions not too
far removed from those employed in the actual tests. The most reli-
able data for this purpose would be those obtained from an operating
commercial unit of similar design.

Experimental values of HOG and HOL for a number of distillation sys-
tems of commercial interest are also readily available. Extrapolation of
the data or the correlations to conditions that differ significantly from
those used for the original experiments is risky. For example, pressure
has a major effect on vapor density and thus can affect the hydro-
dynamics significantly. Changes in flow patterns affect both mass-
transfer coefficients and interfacial area.

Chilton-Colburn Analogy On occasion one will find that heat-
transfer-rate data are available for a system in which mass-transfer-rate
data are not readily available. The Chilton-Colburn analogy [90, 53] (see
Tables 5-17-G and 5-19-T) provides a procedure for developing esti-
mates of the mass-transfer rates based on heat-transfer data. Extrapola-
tion of experimental jM or jH data obtained with gases to predict liquid
systems (and vice versa) should be approached with caution, however.
When pressure-drop or friction-factor data are available, one may be
able to place an upper bound on the rates of heat and mass transfer of
f/2. The Chilton-Colburn analogy can be used for simultaneous heat and
mass transfer as long as the concentration and temperature fields are
independent [Venkatesan and Fogler, AIChE J. 50, 1623 (2004)].

(x° − x)2 − (x° − x)1
���
ln [(x° − x)2/(x° − x)1]

(y − y°)1 − (y − y°)2
���
ln [(y − y°)1/(y − y°)2]
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