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Abstract - The (R)- and (S)-enantiomers of 3-benzyl-4-chromanone 

(homoisoflavanone) were synthesized starting with the optically active 

2-benzyl-1,3-propanediol monoacetates, which were obtained via the 

lipase-catalyzed enantioselective reaction.

Homoisoflavanones (3-arylmethyl-4-chromanones) belong to a small family of natural products1 and have 

been found in several genera of Liliaceae2 and Leguminosae.3   Recently, a homoisoflavanone was also 

isolated from Dracaena loureiri (Agavaceae).4   It is known that some of these compounds possess 

cyclooxygenase4 and phosphodiesterase5 inhibitory activities, antiinflammatory6 and antivirus7 activities   

which promoted many organic chemists to synthesize them.   Although many methods to prepare 

racemic homoisoflavanones have been reported,8 there is no report of asymmetric syntheses. 

We are also interested in the synthesis of flavanones or the analogues of homoisoflavanones, and have 

succeeded in the facile asymmetric synthesis of a flavanone.9   We now report the asymmetric synthesis 

of 3-benzyl-4-chromanone (8)10 from a chiral intermediate prepared by a lipase-catalyzed reaction. 

First, (R)-8 was synthesized according to Scheme 1.   Commercially available diethyl benzylmalonate 
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(1) was reduced using LiAlH4 and the diol (2) thus obtained was subjected to the lipase (Lipase PS 

“Amano” from Burkholderia cepacia)-catalyzed transesterification in vinyl acetate, which acted not only 

as the solvent but also as the acetylating reagent, to afford the optically active monoacetate11 ((R)-4) in 

97% ee12 {[α]22
D +28.4° (c 1.7, CHCl3)}.   The absolute configuration of (R)-4 was established by 

comparison of its optical rotation with that in the literature13 {[α]25
D +31.9° (c 1.2, CHCl3), >99% ee, 

(R)}.   Although Bertucci et al.13 reported that the Lipase PS-catalyzed transesterification of 2 in vinyl 

acetate yielded (R)-4 in >99% ee, we were not able to obtain (R)-4 in such a high enantiomeric excess.   

The coupling of (R)-4 and phenol with diisopropyl azodicarboxylate in the presence of 

triphenylphosphine gave the phenyl ether ((R)-5).   The hydrolysis of the ester moiety of (R)-5 with 

NaOH afforded the corresponding alcohol ((S)-6), which was oxidized to the carboxylic acid ((R)-7) 

using Jones reagent.   The intramolecular Friedel-Crafts acylation of (R)-7 using trifluoroacetic acid and 

trifluoroacetic anhydride afforded (R)-814 in 98% ee15 {[α]25
D -10.5° (c 1.0, MeOH)}.   Judging from 

their enantiomeric excesses, no racemization of the intermediates occurred during the conversion 

processes from (R)-4 to (R)-8. 
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Scheme 1: Reagents and conditions: a: LiAlH4, Et2O, rt (76%); b: vinyl acetate,
Lipase PS, rt (87%); c: PhOH, PPh3, diisopropyl azodicarboxylate, THF, 0 oC-rt (75%);
d: NaOH, EtOH-H2O, rt (77%); e: Jones oxid., rt (64%); f: TFAA, TFA, CH2Cl2, rt 
(88%)
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According to the same procedure, (S)-814 was also synthesized in an optically active form {96% ee,15 

[α]23
D +9.5° (c 1.2, MeOH)} from (S)-4 (96% ee12) which was obtained by the Lipase PS-catalyzed 

enantioselective hydrolysis of 3,16-18 prepared from 2, in phosphate buffer (Scheme 2). 
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In conclusion, we have been able to easily synthesize the (R)- and (S)-enantiomers of 

3-benzyl-4-chromanone.   We are now synthesizing novel optically active 3-arylmethyl-4-chromanones 

and testing their biological activities. 
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Scheme 2: Reagents and conditions: a: AcCl, pyridine, THF, 0 oC-rt (79%);
b: Lipase PS, phosphate buffer (pH 7), rt (30%); c-f: 14% in four steps.
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