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1. Introductiou 

In representation theory as well as in other topics of ring theory it is convenient to 
consider for a ring R the categories (mod R, Ab) = : D(R) and ((mod R)OP, Ab) =: L(R) 
of additive covariant resp. contravariant abelian group-valued functors on the 
category mod R of finitely presented right R-modules. In particular the close con- 
nection of homological properties of these functor categories with decomposition 
properties of R-modules has attracted much attention (see e.g. [2], [lo], [ 161, [ 171). 

Jensen shows as a main result of [lo] that the commutative soetherian rings R 
such that the global dimension of D(R) is 52 are precisely the commutative rings of 
finite representation type (i.e. the artinian principal ideal - or K&he rings). In the 
present paper we show (Theorem 4.3) that the commutative noetherian rings R with 
glob.dim. L(R) zs 2 are just the finite products R = !Z! x 0.. x R, of rings, where each 
Ri is a K&he ring or a Dedekind domain. Together with Corollary 1 of (lo] this 
result yields for example gldim. D(Z) = 3 dnd gl.dim. L(Z) = 2. Observe that in 
contrast to this example one can show fcr an Artin algebra R: 

gl.dim. D(R) =2 if and only if 
gldim. L(R) = 2 if aad only if 
R is non-semisimp1.e of finite representation type (cf. [2]). 

So one may ask in general for the rneaning of “gldim. L(R) 5 2”. We show that 
the right noetherian rings R of this property are precisely those who admit the 
following version of Kulikov ‘s theorem ([6], Thm. 18.1): Every submodule of a pure 
projective right R-module is pure projective. (Recall that a module is pure 
projective if it is a direct summand of a direct sum of finitely presented modules.) 
Another ch,zra:terizing property of those rings is the right noetherianess of the 
ringoid mod R (Theorem 2.1). 
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Since the Kulikov property (i.e. the heredity of pure projectivity) for a module 
category is something *between’ pure global dimension 0 and 1 it seems to be 
unnatural to handle it in terms of pure homological algebra. So theorem 2.1 below 
may be viewed as another homological approach to this aspect of representation 
theory. it’s relative version (Theorem 3.2) seems to be useful also in the 
investigation of hereditary u/g&as of tame representation type (cf. [3], [14]). For 
artinian rings some consequences of the results below are already presented in [4]. 

2. Heredity of pure projectivity 

in order to make - once for all - some basic arguments available let us work 
within a more general setting: 

Denote by // an arbitrary focally finitely presented category, i.e. a Grothendieck 
category with a generating set of finitely presented objects (cf. [16]). Recall that an 
object P E // is finitely presented provided the functor Hom(P, -) : . /f +Ab 
preserves directed colimits. The full subcategory ‘4 of finitely presented objects of 
& is skelctally small and we consider the category (‘A ‘p, Ab) of additive contra- 

variant abelian group-valued functors Ion ‘6. (‘d “p, Ab) is also called the category 
Mod- ,J of right-modules over the ringoid (small additive category) %. In the sense of 
Mitchell’s several object version of ring theory (cf. [13], [ 1 l]), Mod-% may be 
treated just like a usual module category (for any ringoid % ). In particular, the 
representable functors of 1 w form a generating set of finitely generated projectives 
for Mod- 1 whose directed colimits are just the flat right +modules. If R is a ring 
and N:= Mod-R, then, clearly, f = mod R and Mod- L = L(R) (cf. the introduction). 

Now we aim to prove the following theorem. 

Theorem 2. t. Lei // be locally noetherian (i.e. the notions ‘finitely presented’ 
md ‘finirdy generated’ coincide for objects of. /f ) and /et % be the ful[ subcategory 
of finiteQ generated objects of . H. The foliowing statements are equivalent: 

(a) right glob.dim. / I 2. 
f b) f is right noetherian (i.e. Mod- / is l!ocah’y noetherian). 
(c) E’ver_v submodule of a f/at right f-module has projective dimension 5 1. 
(d) Irr 14 every subobject of a pure projective object is pure projective (Kulikov 

prr~jWrl1’). 

W begin with an easy but somehow surprising property of locally noetherian 
cndleck categories. 

f.eanma 2.2. Le/ I/ be locally noefherian and ME . N. Suppose U = @,, I Ui is a 
.~~ib~~~~ect of ,W such that M/U is finitely generated. Then, for some cofinite subset 
rj_./ U, is u direct s ubobject of M. 
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Proof. First assume that U is essential in A4. Since A is locally noetherian the for- 
mation of injective hulls commutes with direct sums [ 181. So we get @I?( Ui) = 
H(U) = H(M) for the respective injective hulls; moreover A4= U+ V for some 

finitely generated KM Then I/C @ kEKk?(&), for some finite KC& and 
obvious;ly M=( & Ui)@(V+ BkeK u,), where J:=I\K. If U is arbitrary, then 
(by Zorn’s lemma) there is some subobject IV of M such that IV@ U is essential in 
M, and again M/( W@ U) is finitely generated. So apply the first part of the proof 
to ‘the direct sum IV@ ( @iel r/i) to get the desired result. 

Let us recall now some more or less well-known facts (cf. [ 161, [ 171, [7], [S]). The 
arbitrary locally finitely presented category A admits a full, left exact embedding 

T: 0’ +Mod-%, 
given by 

A&(-,M):=Hom(-,M) IX, 

which preserves limits and direct colimits. Flat @?-modules coincide with left exact 
functors on G?OP; denote the full subcategory of these (in Mod-%‘) by .Y: Then T 
induces an equivalence A+‘- Y of categories. In particular, the finitely presented 
objects of .1 correspond (via T) to the finitely generated projective &modules (i.e. 
to the representable functors of U”*) and the projective $6modules are just the 
functors of the form TP = (-, P), where PE ,A/ is pure projective. 

Y is closed under kernels in Mod-‘/;‘, hence 

flat right glob.dim. ~‘(2. 

Observe, however, that Y’ is not closed in Mod-% under the formation of sub- 
objects and cokernels. 

Now we are ready to give the proof of TheoTern 2:. 1. 

Proof of Theorem 2.1. (a)=(b). Let TC= (-, C), with CE %‘, be any small projec- 
tive right g-module and UC TC be an arbitrary submodule. We have to show that 
U is finitely generated. I%y assumption, 

proj.dim. Us 1; 

so there is an exact sequence 0 + TK + TP+ TC of projective K-modules, with image 
(TP-+ TC) = U. This sequence comes from an exact sequence 0-M -+A C of 
pure projective objects in .d. We may assume that K = @&, C; for suitable finitely 
generated objects C+. // (eventually after adding to the above sequence an exact 
sequence of the form O+L = L --+O, where L QK= &, Ci). Since - # is locally 
noetherian P/K is finitely generated being isomorphic to a subobject of the finitely 
generated object C of . //; thus, for some cofinite subset J of the above index set I, 
the sum @IrsJCi=: S is a direct subobject of P (Lemma 2.2). Let F be a direct 
complement of S in P. Thzn, by construction, 17 is finitely generated (i.e. FE % ) and 
SC ker f= K. Therefore f : P-K’ is describe,d by (0, f 1,~) with respect to the 
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decomposition S@F of P. Consequently, W = im( Tf) = im( TF+ TC) is a finitely 
generated +-module since so is TF. 

(b) m(c). If /; is right noetherian, then 

right glob.dim. % = flat right globdim. g ~2. 

So assertion (c) is true for submodules of projective right ti-modules. Now let U be 
a submodule of an arbitrary flat right g-module Fe Then F= TM for some ME, 4’. 

By transfinite induction we may write A4 as a continuous well-ordered union of a 
chain (A&& I of subobjects over some ordinal I, such that MO = 0 and Ma+ 1/Ma is 
finitely generated for all a + 1 E I. Similarly - applying T - F can be written as the 
continuous well-ordered union of the chain ( 73QaEl over I. Put &= Un TM, for 
ail Q E I. Then the Grothendieck property of Mod-u;’ finally yields a continuous well- 
ordered chain (V,),, 1 over I whose union is U. We further have U, = 0, 

u,. l/u,= (Un TM=+ ,)i((Un TM,, ,)fI TM,) 

n((UT) TA3,. ,)+ TM&TM& TM,+ ,/TM, 

and TIM,, j /TM& T(M,+ 1 /M,) she T is left exact. Hence U,, l/&C T(M,+ l/M,) 

foralh+ IE/. But T(M,,I Ai&) is a projective ‘6 -module since Ma + l/M, is finitely 
presented in R. Thus, for all Q t 1 E I, pr.dim.( V,, i/V,) s 3 by the initial remark. 
Consequently pr.dim I U I 1 by an argument of Auslander [l]. 

(c)*(d) Take any exact sequence O--W--+P+Q+O in t // with pure projective P. 

WC have to show that W is pure projective. Indeed, O-+TU-+ TP-+ TQ is an exact 
sequence elf flat right f-modules, where TP is projective. By (c) TU is projective, 
thus U is pure projective. 

(d)=(a), B:d sneans of the functor T assumption (d) can be translated to the state- 
ment that every flat submodule of a projective ‘d-module is projective. Thus (a) 
follows from the fact that weak right glob.dim. ‘6 ~2. The theorem is proved. 

We pause to look at some applications. 
First consider the oriented cycle r, of length n > 1 and denote by k[T,] the path 

algebra of this quiver over some field k. Mod-k[T,] is isomorphic to the category of 
k-linear representations of S,. In [3] it is shown that Mod-k[T,] admits Kulikov’s 
theorem by pointing out that mod k[T,] is right noetherian. 

Similarly, let k[N] be the k-linearization of the ordered set N (considered as a 
cf. [ 131, [5]). Mod-k[N] is hereditary and locally artinian being 

isomorphic to the category of k-linear representations of the ordered set NY Here a 
rather easy factorizing property of diagrams yields the right noetherianess of 

od ka% J as is shown in [4]. Again, by Theorem 2.1, Mod-k[N] admits Kulikov’s 

er finally the classical example of a Dedekind domain. In this case we want 
ctorial applic;.ttion of Ku!;kov’s theorem. For simplicity of notation let 

ourselves to the case // = Ab, f = mod Z, Mod- /; = L(Z). We know that 
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the left exact functors on g”P are simply those of the form (-,M) = Homz( -,M), 
A&Ab. What about right exact functors? With the aid of the theorem it turns out 
that a (&‘-module is a right exact functor if and only if it is a direct sum of copies of 
functors of the following four types (for various primes p): 

EN - 9 aP”)h EM-, z,,,), t-9 aP”h 6, Q), 

all restricted to V; where Z(p”) is the cyclic group of order pn (n r l), Ztp) the 
localization at p and B(p”) the Prtifer group belonging to p. 

The proof of the latter statements may be performed in the following steps: By 
the original theorem of Kulikov and Theorem 2.1, %’ is right noetherian. So right 
exact functors coincide with injective V-modules, moreover, every injective 
%-module is a unique direct sum of indecomposable ones (Matlis). Further observe 
that the embedding T: Ab-+Mod-V (as above) has an exact left adjoint which 
vanishes on Ext-functors. Using this, together with the observation that Ext(-, Z) z 
@,Ext(-, Z,,,) on V (where p runs through a11 primes), one shows, that every 
finitely generated %-Module is contained in a (finite) direct sum of functors of the 
above four types. Since these are indecomposable - indeed, their endomorphism 
rings are local - there are no other indecomposable injective %-modules. 

Remark. The latter example actually shows that for an arbitrary (reduce(d) abelian 
group 1IM the unique decomposition of the injective functor Ext(-, M) attaches on 
IM two sets of prime and cardinal invariants. 7 hese invariants will be described 
elsewhere. 

3. A relative version of Kulikov’s theorem 

In this section we outline a relative version of Kulikov’s theorem which mainly is 
suggested by the following situation (cf. [14]). Let A be a finite dimensional 
hereditary algebra of tame representation type over an algebraically closed field. let 
.@ c mod A be the full subcategory of regular modules of finite length. An arbitrary 
module is called regular torsion if it is a directed union of objects of 9. Then the 
ringoid .# is right noetherian and every regular torsion submodule of a direct sum of 
objects of 8 is again of this form. 

So let A be an arbitrary ring and ;# c Mod A be a full subcategory of finitely 
presented objects which is closed under direct summands and finite direct sums. We 
call a right A-module #-regular torsion if it is a directed colimit of objects of 4’. 
Some elementary properties of &regular torsion modules WC summarize as follows. 

Proposition 3.1. Let ./l be the full subcategory of &-regular torsion modules of 
Mod-A. Then 

(a) The functor T : Mod-A-+Mod-i’8, given by M++ (-, M) := Hom(-, M) ] ,dJ is 

left exact, preserveq Iimits and directed colimits and induces an equivalence of A/ to 
the full subcategor:) of f/at right &modules. 
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(a) The pure projective A -modules belonging to .d are direct summands of direct 
sums of objects of J? and cwrespond via T to the projective right Smodules. 

(c) If .# is abelian, then , // is iocah’y finitely presented (and locally coherelat) and 
# is the category of finitely presented objects of. A? 
(d) If A is right noetherian and ;‘R an exact subcategory of Mod-A, then .4 is an 

exact locally noerheriun subcategory of Mod-A. 

The proof of the proposition consists of applica!ions of the Yoneda lemma and of 
properties of directed colimits and functor categories Mod-9 with abelian 9 (cf. 
[7], [SJ, [12]). For instance, as to the fullness of T on .d, one shows first that 

T: - ‘om(M, N)+Hom( TM, TN) 

is surjective if M and N are pure projective .&regular torsion mijdules. If M and N 
are arbitrary .$-regular torsion modules, then there are canorical (pure) exact 
sequences 

M, -WO+M “0, NI-+NO-+N*O, 

where Mr. MO, Nr, No are direct sums of objects of .Y - the sequences expressing the 
fact that M and N are directed colimits of objects of .@. These colimit-sequences are 
preserved by T since the objects of .d are finitely presented. Using now the 
projectivity of TM,, TM0 and the faithfulness of T on . // one gets the fullness of T 
in l.fle obvious fashion. 

Now we can state a relative version of Theorem 2.1. 

Theorem 3.2. Let A be a ring and .ti be a fuli abelian subcategory of the finitely 
press -#ted right A-modules such that every object of .@ has the ascending chain- 
conJir:c~n on /i-subobjects. Then the full subcategory . // of .&regular torsion 
modules of Mod-A is a locah’y noetherian Grothendieck category and the following 
statements are equivalent: 

(a) right glob.dim. d ~2. 
(bl) .& is righ:t rtoetherian. 
(c’) If 0-F-M -+P is an exact sequence of right A-modules with M, PE. r/, F 

tors,ion-free and P pure projective, then M is pure projective. 

I-kre ‘torsion-free’ is meant with respect to the torsion theory generated by .@ (CL 
18J I. So the exactness of the above sequence simply means that M-+P is a mono- 

rphism in N. Thus, with the aid r:jf Theorem 2.1 and Proposition 3.1, the proof 
he theorem is straightforward. lqote that if in addition 9 is assumed to be an 

tluact subcategory of Mod-A, then the regular torsion modules are just the directed 
unions of objects of .# and condition (c) can be restated as follows: 

Every regular torsion A-submodule of 21 pure projective regular torsion module is 
0 projective. This is the case in thle above mentioned example of a finite 

ereditary algebra A of tame representation type. 
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4. Functor categories of small global dimensions 

In this section we return to the study of global dimensions of the functor category 

L(R) = ((mod R)OP, Ab), where R is a ring. 
First something about weak dimensions. 

Proposition 4.1. Let R be an arbitrary ring. Then weak gldim. L(R) is either 0 or 2 
(weak gl.dim. L(R) = 1 does not occur). Moreover, weak gl.dim. L(R) =0 if and 
only if R is von Neurmnn-regular. 

Proof. Weak gl.dim. L(R) 52, as was already remarked. Assume now weak 
gl.dim L(R) s Y We show weak gl.dim L(R) = 0. Again consider the full en-1 Jedding 
T: Mod-R-L(R) we used in Section 2, whose image is the full subcategory of flat 
objects in L(R). Let X be an arbitrary object of L(R). By assumption we get a flat 
resolution O+& -*Fo+X +O of X in L(R), which also may be written in the form 
O-+TMI---+ Tf TMO+X+O, where f: M1+Mo must be a monomorphism of right 
R-modules. Let O-+M, +MO+Q+O be exact in Mild-R. Then the left exactness of T 
yields XC TQ. Thus X is flat, T : Mod-R+ L(R) i I aA2 equivalence of categories and 
R is von Neumann-regular. 

On the other hand, if R is von Neumann-regular, then mod R coincides with 
the full subcategory of finitely generated projective R-modules, so that 
T : Mod-R -+ L(R) is an equivalence [ 121. Thus weak gl.dim. L(R) = 0. 

As an immediate consequence we obtain: 

Proposition 4.2. Let R be a ring. Then glob.dim. L(R) = 0 if and only if R is semi- 
simple artinian; glob.dim. L(R) I 1 if and only if R is hereditary and von Neumann 
regular. 

Finally we wanted to characterize rings with glob.dim. L(R) =2. We succeeded 
only in the case where R is commutative noetherian. So the following result may be 
viewed as a counterpart to the theorem in [lo]. 

Theorem 4.3. For a commutative noetherian ring R the following statements art’ 
equivalent. 

(a) glob.dim. L(R) 5 2. 
(b) R admits Kulikov’s theorem (in the original, form). 

(c) R=R,x**e x R, (n < oo), where each Ri is a Klithe ring or a Dedekind domain. 

Proof. (a) H (b). This is Theorem 2.1 for .H := Mod-R. 
(c) * (b) is obvious. 
(b)e (c). Suppose R has the Kulikov property. Then a routine consideration 

shows that all localizations R, at prime ideals p as well as all residue-class rings R/a, 
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for iarbitrary ideals Q, inherit the Kulikov property (and the noetherianess) from R. 
Fiirst consider the case where R even is artinian. Then every indecomposable 

injective R-module is finitely generated (R being commutative), thus every injective 
R-module is pure projective. But then the Kulikov property forces every R-module 
to be pure projective, i.e. R is pure semisimple. For an Artin algebra this implies 
finite representation type (cf. [2]). Thus R is a K&he ring. 

Next let R be local with radical m and residue-class field k. Then R/m2 is an 
artinian ring with Kulikov property. Thus R/m2 is a K&he ring, as above; in 
partiicular R/d is principal, i.e. dimk m/m 2 = 1. By a classical result this implies that 
R is principal, the powers m” (n 20) and zero being the only ideals of R (cf. [Ml). So 
R is either a K&he ring (if it’s Krull dimension is dim R = 0) or a discrete valuation 
ring (if dim R = 1). 

Finally let R be arbitrary but not artinian. Using induction, it is enough to show 
that R has a direct factor which is a Dedekind domain. Since R is not artinian there 
is a prime ideal p of R which is not maximal. By what we showed above R/p is a 
noet herian integral domain such that al it’s localizations are discrete valuation rings, 
hence R/p is a Dedekind domain. To show that R/p is a direct factor of R it is 
enough to show that R/p is projective as an R-module. So take any maximal ideal m 
of R, with mEsupport(R/p). Then p$m and ~,,,$rn,&R~, hence dim R&E 1. But 
using again the above local result we get dim R,I 1. Therefore dim R, = 1, hence 

pm = 0 and (R/p), = R,. SO the R-module R/p is projective since (R/p), is a 
projective R,-module for every maximal ideal m. 

References 

V. 4o.lander. On the dimensions of modules and algebras Ill, Nagoya Math. J. 9 (1955) 67-77. 

Xi. Au-lander, Representation theory of Artin algebras 11, Comm. Algebra 1 (1974) 269-310. 

D. Bacr. H. Brune and H. Lenzing, A homological approach to representations of algebras 11: Tame 

hcrediiary algebras, J. Pure Appl. Algebra 26 (1982) 141-153. 

H. Br me, On a theorem of Kulikov for artinian rings, Comm. Algebra 10 (1982) 433-448. 

H. Brune. Some left pure semisimple ringoids which are not right pure semisimple, Comm. Algebra 

? (17) (1979) 1795-1803. 

i , I-uch\. infinite Abelian Groups (Academic Press, New York, 1970). 

P. Fre>d, Abelian Categories (Harper and Row, New York, 1966). 

P’. Gabriel, De\ cat&gorie\ abilienne5. Bull. Sot. Math. Fr. (1962) 323-448. 

Xl. Hoppner and H. 1 enring, Diagrams over ordered sets: A simple model of abelian group theory, 
B~P: :\belian Group Theory. Lcct. Notes in Math. No. 874 (Springer, Berlin-New York, 1981) 
41’ 430. 

C .C:. Jensen, On the global dimension of the functor category (mod R, Ab), J. Pure Appl. Algebra 
?I Cl9”) 45 --cl. 

D.X1. Latch and B. Mitchell, 8n the difference between cohomolog,ical dimension and homological 

ImenGon, J. Pure Appl. Algebra 5 (1974) 333-343. 

I. Theory of Categories (Academic Press, New York, 1965). 

1. Rings x%lth several objects, Advances in Math. 8 (1972) l-161. 

fenitt: dimensional representations of finite dimensional hereditary algebras, 

Vol. 23 (Bologna, 1979). 



The global dimension of ((mod R)“P, Ab) 39 

[15] J.P. Serre, Corps Locaux (Hermann, Paris, 1962). 

[16] D. Simon, On pure global dimension of locally finitely presented Grothendieck categories, Fund. 

Math. 96 (1977) 91-116. 

[17] D. Simson, Functor categories in which every flat object is projective, Bull. Acad. Polon. Sci. 22 

(1974) 375-380. 

[18] B. StenstrGm, Rings of Quotients (Springer, Berlin, 1975). 


