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1. INTRODUCTION 

Throughout this paper A, B, P, Q are, respectively, m x n, n x m, 

m x m, n x n matrices with elements in some given field K. Let P = AB 

and Q = BA In a well-known paper [l], H. Flanders solved the problem 

of determining the relationship between the elementary divisors of P 

and those of Q. Another proof of Flanders’ theorem, with some generaliza- 

tions, has been given in [Z]. In this paper we give a new proof of Flanders’ 

theorem. It is obvious that some connection exists between the ranks 

of A and B and the intertwining of the elementary divisors of P and Q. 

Our proof enables us to derive a set of inequalities relating the integers 

rank A, rank B to the elementary divisor structures of P and Q. These 

inequalities are stronger than the obvious inequalities rank P, rank Q < 

rank A, rank B < m, n. Our main result is that our inequalities are the 

necessary and sufficient conditions in order that P = AB and Q = BA 

where A and B are to have prescribed ranks. Our inequalities define an 

isosceles trapezoid of permissible values for the integer pairs (rank -4, 

rank B) for fixed P, Q. We investigate the relationship between properties 

of P, Q and properties of the associated trapezoid. We go on to determine 

which isosceles trapezoids are achievable as trapezoids of permissible 

values for some pair P, Q. Finally we investigate when a given trapezoid 

can be associated with a pair P, Q for which P = Q. Additional results 

are also derived. 

* The preparation of this paper was supported in part by the U.S. Air Force under 

Grant 698-67. 
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44 R. C. THOMPSON 

Our methods use only elementary matrix theory, and are thus accessible 

to any linear algebra student familiar with elementary divisor theory 

and the Hermite (echelon) method for solving linear systems. 

W’e define the degree function by degree P = m for P an m x m 

matrix. 

“. NECESSITY 

From 

we get 

P=AB, Q=BA, (1) 

SPS-1 = (SAT)(T-lBS-l), T-lQT = (T-IBS-l)(SAT), (2) 

where S is m x m and T is n x n. Thus in (1) we may make independent 

similarities of P and Q or, alternatively, an equivalence of A and B. 

Thus we may assume A = Iy q 0 _ _ m r,n VP where I, denotes the r-square 

identity matrix, O,, is an CC x /II matrix of zeros, and c denotes direct 

sum. We partition 

B= 
Bll Bl, I 1 B,, B22 

(3) 

conformally with the partitioning of A. We proceed to simplify B, step 

by step, retaining the form of A. 

Let S = S, i I%_? and T = S,-l i- I,_,. Then, as in (2), B,, is 

converted to S,B1,S,-l. Hence in (3) we may assume B,, = B,, i 8,,, 

where B,, is a nonsingular f x f matrix, and B,, is an e x e nilpotent 

matrix in Jordan form: 8,, = J,, i_ J,, 4 * . . -r J,, where e = er + 

e2 + . * . + e,, and J, denotes the u-square Jordan matrix belonging to 

elementary divisor Au : J, is all zeros except for a stripe of ones on the 

diagonal just above the main diagonal. We arrange the blocks in B,, 

so that eI>ee,>-.*>ee,. 

Now let 

6, = G2 
i 1 h2 ’ 

Here B,, is f x (m - r), & is 

(92 - 7) X e. Let 

B,, = [&,I &I. 

ex (m-r), Baris (S-Y) Xf, &is 

Limxw Algebra and Its A;hplications 1, 43-S (1968) 



ON THE MATKICES AL3 AKI‘U HA 45 

Changing notation and denoting SAT by A and T-lB.S-l by B, we now 

find that B,, = 0 and B,, = 0. 

Next let 

s4+ T=Ir+ 

Then for T-lBS-1 we still have B12 = 0, & = 0, and now block B,, is 

replaced with - BllW + a,, and block B,, is replaced with - Z&, + 

4,. Thus in l?,, we can, choosing W appropriately, add an arbitrary 

linear combination of the columns of El1 to each given column of El,, 

and, choosing Z appropriately, add an arbitrary linear combination of 

the rows of B,, to each given row of B,,. This means that in B we may 

suppose that each row passing through a one in a Jordan block of B,, 

consists of zeros only when intersecting 8,,, and that each column of B 

passing through a one in a Jordan block of El1 consists of zeros only when 

intersecting I$,. 

Continuing our simplification of B, we next let S = If i I, $ W, 

and T = I, i I, r Z,, where Wl and 2, are nonsingular. Then in T-lB.S-l 

block B,, becomes B,2W,-1 and block & becomes Zl-1B,l. Thus we 

may assume that & is in column Hermite (echelon) form and I?,, is 

in row Hermite form. The zero rows of 8,, and the zero columns of &., 

obtained in the previous paragraph are preserved. 

Thus let El2 = (bij)lGiGt,IGjGm_r, where bii is a column qtuple 

with all positions zero except perhaps for the bottom position. Because 

B,, is in Hermite form we may suppose that the nonzero columns of 

&, are columns 1, 2, . , s, that b,, = 0, bii = 0, . . . , b,+, = 0, bciz f 0, 

that cl < cg < . * . ( cs, that the nonzero entry of bcii is a one, and that 

bcZ1 = b,, = . . . = bcZ,i_-l = 0; 1 < i < s. Similarly let I?,, = 

(&)l+Q-,,I<i<:t~ where pii is a row ej-tuple, with all entries zero except 

perhaps for the first entry. Because B,, is in Hermite form, we may assume 

that the nonzero rows of B,, are rows 1, 2, . . , u, that /?,1 = 0, pi, = 

0, . . . , /?++l = 0, Pidi # 0, that d, < d, < . - . < d,, that the nonzero 

entry of ,41jdi is a one, and that ,Q = bZdi = * - . = Pz_-l,di = 0; 1 < i < u. 

Linear Algebra and Its Ap~licatiom 1, 43-58 (1968) 



46 11. C. THOMPSOS 

Summarizing, we have A = If j- I, i- Om-e_i,n-e_l and 

where i?,,, I?,,, Bar satisfy the conditions obtained above. Then we get 

Our next goal is to compute the elementary divisors of P and of Q. 

To this end we shall carry out certain similarity transformations of P 

and, later, of Q. 

Make the similarity transformation of P (a sequence of column ex- 

changes and the same sequence of row exchanges) that moves the column 

of P containing column i of B,, to a new column position between Jet, 

and J,, 1 ; the corresponding row operation moves a zero row up to $ 

new row position between J,, 
z 

and J_,; 1 < i < s. The new matrix, 

call it X, has the form of a block triangular matrix in which the main 

block diagonal is 

B,,i-J,C...iJ~~,+,i-...i-J,t~i...iJ,jiO,_,-,,_,-,. s 

An off-diagonal block in X can be nonzero only if it appears in the same 

block column as some J,+l and in the same block row as some J,, with 

ci < p < t> p # ci+r> . . .P L # ‘.q’ Call this nonzero block X,i. Note that 

the block row of Ja,.+l is entirely zero except for the main block diagonal 

position as is the blbck column of J,,. Let xPi be the nonzero element in 

XPz; xPi is in the lower right corner of X,i. Since p > i, eci + 1 > e,,. 

Let Woi be eP x (eci + 1) with all entries zero except for - xPi occupying 

all positions (p, Y) for which ,u - Y = eP - eci. Let S be block triangular 

with main block diagonal 

Linear Algebra and Its Applications 1, 43-58 (1968) 



All the off-diagonal blocks in S are to be zero, except for the blocks TV+ 

where W,, sits in the block row of lep and the block column of I, 
ci 

+r. 

Then in SXS-l all block positions are undisturbed,. except that now in 

place of X,, we have XPi + WPiJLCitl - JepWPi = 0. Thus SXS-l is 

in a form from which the elementary divisors can be read off. Hence the 

elementary divisors of P are the elementary divisors of B,, together with 

the elementary divisors 

2-1, . . . , a”“+, . . . , a+‘+l, . , . ) P, a, . . . ) a. (6) -- 

WT:e now repeat this calculation with Q. Make the similarity transforma- 

tion of Q that moves row i of R,, to a new row position between J,,_l 

and J,,,; the corresponding column operation moves a column of zeios 

to a ne;v column position between J,_, and J,,; 1 < i < u. The new 

matrix, call it Y, is a block triangular matrix in which the main block 

diagonal is 

R,, i J,, i- * * * i Jedl+l + * . . i- Je, i‘ +I + . . . i- J, i- L-I--U,n--Y--U. 

An off-diagonal block in Y can be nonzero only if it appears in the same block 

row as some J,; +l and in the same block column as some J,, with p > d,, 

p <t, p # a,,,, . . .> p f d,,. Call this nonzero block Yip. Kate that the 

block column of Jed,+l is entirely zero except for the main block diagonal 

position as is the block row of Jep. Let yi,, be the nonzero element of 

YVlp: yip is in the upper left corner of Y;,. Since p > i, ep < e, + 1. Let 

VAP be (edi + 1) x e, with all entries zero except for - yzp ocfupying all 

positions (,u, Y) in T/z, for which ,U - v = 1. Let T be block triangular 

with main block diagonal 

I, i Ie, i- * . . i &,+, + * . * i- Ied 
IL 
+I i- . . . + I, i- I,-,-,. 

All off-diagonal blocks in T are to be zero except for the blocks Vi, in 

the block row of Ied +r and the block column of leP. Then in T-IYT all 

block positions are ‘undisturbed except that now Yi, is replaced with 

Y,, + Je,;x V,, - V,,J, = 0. Thus T-lYT is in a form from which the 
P 

elementary divisors can be read off. Hence the elementary divisors of Q 

are the elementary divisors of B,, together with the elementary divisors 

Linear Algebra and Its Applxutions 1, 43-58 (1968) 



48 H. C. THOiW?SON 

a e, 
I.. *, 

/@+l, . . .) P,+l, . . .) ilet, a, . . . , a. (7) 

Rearrange the sequence (6) so that the exponents are nonincreasing; 

let this rearranged sequence be 

P, P, . . . , amp; m, > vnz > * * * > mp > 0. (8) 

Rearrange the sequence (7) so that the exponents are nonincreasing; let 

this rearranged sequence be 

am:, a-', . ., amq'; m,’ > m2’ 3 . * * 3 m,’ > 0. (9) 

Because e, > es > - * - >, et, it follows that 

jmi - mi’/ < 1, 1 < i < min(p, 4) ; 

m, = 1 for i>$ (ifp>q), 

m,’ = 1 for i>q (if q>p). 

For suppose that the distinct integers among e,, . . . , et are er > * * * > Em 

with multiplicities pr, . . . , ,up, respectively. Suppose that the number of 

integers cr, . . . , c, within the interval [pr + * - - + P,_~ + 1, ,ur + * * * + pi] 

is 13; and that the number of integers d,, . . . , d, within this interval is 

19~; 1 < i <y. Then the exponents in (6), when (6) is rearranged so 

that the exponents are nonincreasing, become 

.sr + 1 (6, times), 8r (j_4r - 6, times), e2 + 1 (6, times), 

s2 (,uz - 6, times), . . . , .sq + 1 (6, times), ep (p, - 6, times), 

1 (m - r - s times) ; (11) 

and the exponents in (7), when (7) is rearranged so that the exponents 

are nonincreasing, become 

.sr + 1 (8, times), &I (pr - 0, times), .s2 + 1 (0, times), 

.s2 (p2 - 8, times), . . . , cp + 1 (19, times), Ed (pu, - 0, times), 

1 (n-r-24 times). (12) 

This completes the proof of half of Flanders’ result. 
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OS THE MATRICES dL3 AND RA 49 

THEOREM 1. If P = AB and Q = BA then P and Q have the same 

elementary divisors be1olzgin.g to nonzero eigenvalues, and the elementary 

divisors (8) of P and (9) of Q belonging to eigenvaltie .zero satisfy (10). 

Before continuing with our argument, we require some additional 

notation. 

Notation: Referring to the elementary divisors (8) and (9) of P and 

Q respectively, and noting (lo), we let: 

#(P/Q) denote the number of integers i with 1 < i < min($, y) for 

which m, > m,’ ; 

#(Q/P) denote the number of integers i with 1 < i < min($, q) for 

which m,’ > mi; 

q(P, Q) denote the number of integers i with 1 < i < min($, 2) for 

which max(mj, m,‘) > 1; 

N(P, Q) denote the number of integers i with 1 < i < min(@, q) for 

which m, = mz,’ > 1; 

L(P, Q) denote the number of integers i with 1 < i < min@, q) for 

which rni = m,’ = 1. 

Thus N denotes the number of nonlinear coincidences of elementary 

divisors for zero of P and Q, L denotes the number of linear coincidences, 

7 denotes the total number of pairs excluding linear pairs, and #(Q/P) + 

#(P/Q) the number of nonlinear disagreements. Also q( P, Q) = X( P, Q) + 

#(P/Q) + #(Q/W. 
We now continue the proof started above. Observe that in B given 

by (4) where &‘,,, B,,, &, B,, are as described above, the following sets 

of rows are an independent set: the rows of B passing through &, 

together with the rows of B passing through the ones of the Jordan blocks 

in I?,,, together with the rows of B passin g through the leading ones in 

the nonzero columns of B,,, together with the rows of B passing through 

the leading ones in the nonzero rows of &r. This independence stems 

from the fact that the ones in B,,, the leading ones in d,,, and the leading 

ones in B,, all occur in different rows and in different columns. Thus 

rank B 3 f + e - t + s + u. Knowing the elementary divisors (6) and 

(7) of P and Q, we compute that rank P = f + e - t + s and rank Q = 

f + e - t + z.1. iT:e also have rank A = f + e. We also observe that the 
rows of R that pass through zero rows of B,, and do not pass through 

leading ones of 8r2 are dependent on the rows of B that pass both through 

zero rows of B,, and through leading ones of &a. Thus a maximal in- 
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50 R. C. THOMPSON 

dependent set of rows of B is obtained by adjoining some of the rows of 

B passing through B,, to the following set of rows of B : the rows passing 

through B,,, together with the rows passing through ones of Jordan 

blocks in B,,, together with rows passing through leading ones of &a. 

Hence rankB<f+e-t+s++--_=G--t+s. An analogous 

column argument shows that the columns of B passing through the columns 

of B,,, together with columns passing through ones in Jordan blocks of 

B,,, together with columns passing through leading ones in Z?,,, together 

with certain of the columns passing through &a, form a maximal in- 

dependent set of columns of B. Hence rank B < m - t + zt. We are 

now ready to prove Theorem 2. 

THEOREM 2. Let P = AB and Q = BA. Then, 

rank A > rank P + #(Q/P) = rank Q + #(P/Q), (13) 

rank B >, rank P + #(Q/P) = rank Q + #(P/Q), (14) 

rank A + rank B 3 rank P + rank Q + q(P, Q), (15) 

rank A + rank B < min{rank P + n, rankQ + m}. (16) 

Proof. From (11) and (12) we obtain #(P/Q) = Cyzl max(b, - 

f&O) < C&6; = s. Also #(P/Q) = Cz”=r max(Si - 19~, 0 ) < CFEl max 

(pi - ei, 0) = C:=~,U~ - ~~=r=lBi =z t - U. Furthermore, #(Q/P) = 

c& max(8, - ai, 0) < cF’lOi = U. Also #(Q/P) = cFc”=l max(Bi - 

6;, 0) < ~~=I max(p; - 6+ 0) = t - s. Lastly, 7 < t. Now note that 

rank B >, f + e - t + u + s = rank P + u > rank P + #(Q/P). This 

proves the inequality in (14). Next, observe rank B > f + e - t + u + 

s = rank P + rank Q - f - e + t = rank P + rank Q - rank A + t > 

rank P + rankQ - rank A + yl. From this, (15) follows. We also have 

rankA=f+e=f+e-t+s+t-s=rankP+t-s>rankP+ 

#(Q/P). This proves half of (13). Next, from rank B < 1z - t + s we get 

rank A + rank B < f + e + n - t + s = rank P + n. Again rank A + 

rankB<f+e+m-t+f=rankQ+m. This proves (16). The 

equality rank P + #(Q/P) = rank Q + #(P/Q) follows from max(S, - 

13~, 0) + Bi = max(ei - 6,, 0) + ai. This completes the proof of Theorem 2. 

3. SUFFICIENCY 

We now let the elementary divisors of P and Q satisfy the conditions 

of Theorem 1. That is, the elementary divisors are a common set belonging 
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to nonzero eigenvalues, with total degree f ; for P, belonging to eigenvalue 

zero, a set (8) and for Q, belonging to eigenvalue zero, a set (!!I), such that 

(10) holds. 

We change the notation used in Section 2, and now we define integer 

t by max(m,, Mu’) > 1, m, = 1 for all i > t and WZ~’ = 1 for all i > t. Let 

ei = min(q, m,‘) for 1 < i < t. Choose discrepancy numbers cr, . . ., c, 

and d,, . . , d,, so that the elementary divisors of P belonging to eigenvalue 

zero are 

whereas those for Q belonging to eigenvalue zero are 

1”1, ..,) W1,. ..,nl”+. . . ) P, ii, . . ) il. (18) 
-A 

9--t 

Here we are arranging notation so that cr, . . . , c, are each distinct from 

each of d,, . . . , d,‘. Let e = e, + * . . + z~. Now, 

rank P = f + e - t + s, (19) 

rankQ=f+e-t+$-u, (20) 

#(p/Q) = s, (21) 

#(Q/P) = 11, (22) 

m=f+ei-s+$-t, (23) 

fz=f+e+u+q-t, (24) 

v(P,Q) = t, (25) 

iV(P, Q) = t - s -- U, (26) 

L(P, Q) = min@, q) - t. (27) 

Let p = rank A and o = rank Lt. The inequalities (13-16) become 

p>rankP+#(Q/P)=rankQ+#(P/Q)=f+e-t+s++, (13’) 

g 3 rank P + #(Q/P) = rankQ + #(P/Q) = f + e - t + s + u, (14’) 

p + o > rank P + rankQ + r(P, Q) = S(f + e) - t + u + s, (15’) 
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p+o<min{rankP+n,rankQ+m}=Z(f+e-_)+s+u 

+ min(fi, 9). (16’) 

These inequalities define an isosceles trapezoid T = T(P, Q) in the 

p, (T plane whose vertices are 

(f + e - t + s + II, f + e) 

= (rank I’ f #(Q/p), rank P + #(Q/P) + N(P, Q)). (28) 

(f + e - t + s + ~1, f + e - t + min(p, 9)) 

= (rank P + #(Q/W, l-ank P + #(Q/p) + N(P, Q) + L(P, Q)), (29) 

(f + e, f + e - t + s + u) 

= CrankQ +#P/Q) + N(P,Q), rankQ +#(plQ)), WY 

(! + e - t + mW,q), i + e ~ t + s + ,LL) 

= bkQ +#PlQ) + N(P,Q) +L(P,Q), rankQ +#(p/Q)). (31) 

We now present our main result. 

THEOREM 3. The necessary and sufficient conditions that m-square 

matrix P and n-square matrix Q be representable as P = AB and Q = BA 

are that the elementary divisors of P and Q satisfy the condition given in 

Theorem 1. If this conditiox is satisfied then as A and B vary ove7 all 

solutions of P = AB and Q = BA, the integer pairs (p, 0) where p = rank A 

and u = rank B precisely fill out the integer lattice points in the trapezoid 

T(P, Q) for which the vertices aye (28), (29), (30), (31). Equivalently, the 

conditions of Theorem 1 and the inequalities (13’), (14’), (15’), (16’) are 

necessary and sufficient in order that P = AB and Q = BA with rank A = p 

and rank B = (T. 

Proof. Necessity is already established. Suppose (p, a) E T. First 

assume that f + e < p < f + e - t + min(p, q). Let A = I, i I,,_, i_ 

0 m_-p,n_-p. Let B be defined by (4). There Brr is to be f-square and is to 

have as elementary divisors the common set of elementary divisors of 

P and Q belonging to nonzero eigenvalues. We let B,, = J,, i_ . * * i_ 
J, i- Op-e-/,p-e-r Let I?& be (p - f) x (M - p) with all columns zero 

except for the first s columns. The first s columns of B,, each have a 
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single nonzero entry, a one, and the one in column i of 8,s is opposite 

the last row (the row of zeros) of block J, 
‘I 

in B,,; 1 < i < s. We let 

B,, be (n - p) x (p - f) with all rows zero except for the first u rows. 

Each of the first u rows contains a single nonzero entry, a one, and the 

one in row i of 8,, is underneath the first column (the column of zeros) 

of the block Jedl in 8,, ; l<i<zd. ThematrixB,,is(n--p) x (m-p). 

In B,, each row opposite a one in &,, is to be zero and each column 

beneath a one in l?r2 is to be zero. This means that B,, is to be zero except 

for an (n -- p - U) x (m - p - s) submatrix 8,, located in the lower 

right corner of B,,. The conditions on p ensure that n - p - u 3 0 and 

M - p - s >, 0. The proof of Theorem 1 now demonstrates that A B 

has the elementary divisors of P and that l3A has the elementary divisors 

of Q, for any choice of B,,. The rank of B depends on the rank of B,, 

and as rank B,, varies over all possible values for an (n - p - .u) x 

(m - p - s) matrix, rank B varies over all integers CT such that f + e - 
t+s+u<o<f+e-t+s+zb+min{n----_u,m-p-s}. Thus 

u = rank B assumes any value such that cr >, f + e - t + s + u and 

p + G < 2(f + e - t) + s + u + min($, 9). Thus for the given p, we 

achieve all cr permitted by (13’), (14’), (15’), (16’). 

Next assume that f + e - t + u + s < p < f + e. For such a fixed 

,o, we have to construct d and B with rank A = p and rank B = CT, where 

the range of u is determined by the inequalities (15’) and (16’). Observe 

that t --- s - ZL is the number of integers i, 1 < i -(, t, distinct from all 

of cr, . , c,q, d,, . . ) d,‘. By our choice of notation, each such i represents 

a coincident pair of nonlinear elementary divisors of P and Q; that is, 

ei > 2. Since 0 < f + e - p < t - IL ~ s, from these coincident non- 

linear pairs we may select f + e - p elementary divisors and denote 

them by A”‘{, . , Ae;+,-~. Denote the remaining coincident nonlinear 

pairs of elementary divisors by Xl’, . . 
I, 

, ;lel-~l-s--l-r+p. Now we construct 
A and B. 

Let A = I, + I,_, i- O,_,,,_,. Let B be given by (4) as before, where 

B,, is f-square and has as elementary divisors the common elementary 

divisors of P and Q belonging to nonzero eigenvalues. \Ve let 

‘%I = Je, i . . . t J,,, + Jedl i- . . . t Je<,,, i- J<,x--l + . . . i- Je;+e_,_l 
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‘Then d,, is (p - /)-square. Matrix & is (p - f) x (m - p) and is in 

Hermite column form. Each column of B,, after the first s + f + e - p 

columns is to be zero. Each of the first s + f + e - p columns is to have 

a single nonzero entry, a one, the ones in these columns being opposite, 

respectively, the last rows (the zero rows) of the blocks J,C,, . . , Jets, 

Jr,t_-l, . , Jei+A_,p,, The matrix B,, is (n - p) x (p - f) and is in 

Hermite row form. Each row of B,, after the first u + / + e - p rows 

is to be zero. Each of the first u + f + e - p rows is to have a single 

nonzero entry, a one, and the ones in these rows are, respectively, to be 

underneath the first columns (the columns of zeros) in J,(, , . . , J, , 

Je,t--ll . . f Jc;+e_-p_l. The matrix B,, is to be (n -- p) x (m L p). EacUh 

row of B,, opposite a one in 8,, is to be a zero row and each column of 

B,, beneath a one in i?,, is to be a zero column. Thus sitting in the lower 

right corner of B,, is an (~2 - f - e - 2~) X (~2 - / - e - s) matrix, 

call it B,,. For any choice of l?,,, we find by the proof of Theorem 1 

that A B has the elementary divisors of P and BA has the elementary 

divisors of Q. The rank of da, may assume any integer between zero 

and min(n - f - e - zt, m - f - e - s) = min(q - t, 9 - t). Thus rank B 

may assume any value o for which 2(f + e) - t + u + s - p < o < 

2(f + e) - t + zt + s - p + min(q - t, p - 2). That is, p + o 2 2({ + 

e) - t + u + s and p + o < 2(f + e - t) + II f s + min(p, 4). This 

completes the proof of Theorem 3. 

4. PROPERTIES OF THE FUNDAMENTAL TRAPEZOID 

In this section we discuss properties of the trapezoid T(P, Q), given 

matrices P and Q satisfying the necessary and sufficient conditions of 

Theorem 3. We continue the notation used above. We let f(u, b, c) 

denote the trapezoid with vertices (a, b). (a, c), (b, a), (c, a), when 0 < 

a<b<c. 

THEOREM 4. l'.(P,Q) = T(P,,Q,) if and only if 

rank P + #(Q/P) = rank P, + #(Ql/pl), 



Proof. See (28-31). 

We say f(a, b, c) is admissible if #(a, b, c) = T(P, Q) for some pair 

P, Q. 

THEOREM 5. y(a, b, c) is admissible if and only if 2a > b. 

Proof. Let f(a, b, c) = T(P, Q). Then from (28-31) we get 

f+e-t+s+w=a, 

j+e=b, 

f + e - t + min(@, 4) = c. 

(32) 

Hence t - u - s = b - a. Thus of the integers e,, . . , e,, exactly b - a 

represent coincident nonlinear pairs of elementary divisors of P and Q 

for eigenvalue zero. For these coincident nonlinear pairs each e, 3 2. 

The remaining II + s integers e, are each 3 1. Hence e > 2(b - a) + u + 

s. Since f + e = a + t - s - ‘~6, f + 2(b - a) + u + s < a + (b - a), 

hence f < 2a - b ~ 11 - s. Since f > 0, we get 2a - b >, 0. 

Conversely let &(a, b, c) be given with 2a > b. We construct a pair 

P, Q with P similar to Q such that $(a, b, c) = T(P, Q). Set u = s = 0, 

t = b - a, e, = . . . = e, = 2, p = q = c - a, f = 2a - b. Then the 

required conditions p >, t, q > t, f > 0 are satisfied, so that P and Q 

are constructible. Since u = s = 0 and9 = q, in fact P and Q are similar. 

Then f + e - t + s + u = a, f + e = b, f + e - t + min($, q) = c, hence 

T(P, Q) = $(a, b, c), as required. Since independent similarities of P 

and Q may be made, we may achieve P = Q. 

THEOREM 6. Any admissible trapezoid y(a, b, c) is of the form 

$(a, b, c) = T(P, P). 

Theorem 6 leads us to seek additional properties that may be imposed 

on P. In the following theorems a point is considered to be a degenerate 

case of a triangle and a line is not considered to be a triangle. 

THEOREM 7. Let f(a, b, c) be admissible. Then $(a, b, c) = T(P, P) 

with P nilpotent and non.zeYo if and only if $(a, b, c) is not a triangle; 

that is, if and only if b # a. If $(a, b, ) c is not a triangle then the set of 

permissible values for the index of nilpotency y of P is Precisely the set of 

integers y for which b/(b - a) < y < 2a - b f 2. 
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We say P has index of nilpotency y if PY-’ # 0 but PY = 0 

Proof. Suppose y(a, b, c) = T(P, P) with P nilpotent and nonzero. 

Then fi = q, u = s = 0, f = 0, and t f 0, hence e - t = a, e = b, e - 

t + p = c. Thus b # a, hence f is not a triangle. We have e, 2. * . 3 

et 3 2. The index of nilpotency y of P is y = e,. From e = b we get 

(using t = b - a) that (b - U)Y 3 b, hence y > b(b - a)-‘. We also 

get from e = b that y + 2(b - a - 1) < b, hence y < 2a - b + 2. This 

establishes the claimed bounds on y. 

Conversely suppose admissible nontriangular trapezoid $(a, 6, c) is 

given and integer y is given satisfying the bounds of the theorem. We 

now construct nilpotent P with y as the index of nilpotency such that 

f(a, b, c) = T(P, P). Observe that b(b - a)-’ > 1 since b(b - a)-1 < 1 

implies a = 0, hence b = 0 (because 2a > b), and hence a = b, a con- 

tradiction. Thus y 3 2. We now attempt to satisfy the equations f = 
u = s = 0, $J = q, eI = y, e - t = a, e = b, e - t + p = c. We take 

t = b - a, p = c - a. We have only to choose er = y, e2, . . . , eb_-a such 

that y > e2 > * . * > eb_a >, 2 and such that e = b. As e2, . . . , e,_, range 

independently over the integers between 2 and y, e = y + es + . * * + eb_-a 

assumes all integral values between y + 2(b - a - 1) and (b - a)?~. 

Since y + 2(b - a - 1) < b and (b - u)y > b, there is a choice of 

ez’ . . , , eb__u, each between 2 and y, such that e = b. This completes the 

proof. 

THEOREM 8. Let $(a, b, c) be admissible. As P ranges over all matrices 

such that $(a, b, c) = T(P, P) the number of nonzero eigenvalues (counting 

multiplicities) that P may have is precisely the integers f for which 0 < f < 

2a - b. 

Proof. Using p = q and u = s = 0, we observed in the proof of 

Theorem 5 that f < 2a - b. This gives the bound of the theorem. 

Conversely, given f, we have to solve f + e - t = a, f + e = b, f + e - 

t + p = c. Put t = b - a, e, = b - f - 2(b - a - l), e2 = * a. = e, = 2, 

p=c-a. Then e, 2 2 as required since f < 2a - b. 

THEOREM 9. T(P, Q) is a point if and only if N(P, Q) = L(P, Q) = 0. 

Proof. Let T(P, Q) = f(a, 6, c). $(a, b, c) is a point if and only if 

a = b = c and from (28-31) this happens if and only if N(P, Q) = 

L(P, Q) = 0. 
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COROLLARY. IR P = AB, Q = BA the integers rank A, rank B are 

uniquely determined by P and Q if and o$y if N(P, Q) = L(P, Q) = 0. 

In this event rank A = rank B = rank P + #(Q/P) = rank Q + #(P/Q). 

COROLLARY. T(P, P) is a point if and only if P is nonsilzgular. 

THEOREM 10. T(P, Q) is a line if and only if L(P, Q) = 0. 

Proof. $(a, b, c) is a line if and only if b = c. By (28-31) this happens 

if and only if L(P, Q) = 0. 

COROLLARY. In P = AB, Q = BA, the sum rank A + rank B is 

wGquely determined by P and Q if and only if L( P, Q) = 0. In this case 

the constant value of the wm is rank P = rank Q + q(P, Q), for rank P + 

#(Q/P) < rank A, rank R < rank P + #(Q/P) + N(P, Q). 

THEOREM 11. 7‘( P, Q) is a triangle if and only if N(P, Q) = 0. 

Proof. $(a, b, c) is a triangle if and only if b = a. Using (28-31) 

the result follows. 

COROLLARY. T(P, P) is a triangle if and only if P has only linear 

elementary divisors for eigenvalue zero. 

COROLLARY. Triangular trapezoids, altd only triangular tra;hezoids, 

are of the form T(P, P) for diagonable P. 

THEOREM 12. Let d(a, b, c) be admissible. Then fo7 any P, Q such 

that $(a, b, c) = T(P, Q) we have: 

(i) N(P,Q) = b - a; 

(ii) L(P, Q) = c - a; 

(iii) degree P > c, degree Q > c with degree P = degree Q = c if and 

omly if P and Q are similar ; 
(iv) rank P < a, rank Q < a with rank P = alif and only if #(Q/P) = 

0 and rank Q = a if and only if #(P/Q) = 0. 

In particular, when degree P = degree Q, rank P = rank Q = a if and 

only if P and Q aye similar. 
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Proof. (i) and (ii) follow from (28-31). For (iii) observe that degree P = 

f + e + s + $ - t > f + e - t + min($, q) = c and degree Q = f + e + 

u + q - t > f + e - t + min(p, q) = c, with both inequalities being 

equality if and only if s = u = 0 and p = q. This proves (iii). For (iv) 

observe that rank P = f + e - t + s < f + e - t + s + u = a and 

rankQ=f+e-t+u<f+e-t+s+u=a. 

THEOREM 13. The number of admissible line. trapezoids T(P, P), 

where rank P = a, is exactly a + 1. These different admissible trapezoids 

arise as N( P, P) assumes the values 0, 1, . . . , a ; L(P, P) = 0; and as 

degree P assumes the values a, a + 1, . . . , 2a. 

Proof. $(a, b, c) is admissible if and only if 2a > c. Hence c can 

only assume the values a, a + 1, . . . , 2a. 

THEOREM 14. The number of integral pairs (p, G) E T(P, Q) is 

+(l + L(P, Q))(2 + 2N(P> Q) + -V> Q))- 

Proof. Direct computation. 
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