

Journal of Pure and Applied Algebra 112 (1996) 91-107

JOURNAL OF PURE AND APPLIED ALGEBRA

Preserving and reflecting covers by functors. Applications to graded modules

J.R. García Rozas * and B. Torrecillas¹

Department of Algebra and Analysis, University of Almería, 04071 Almería, Spain

Communicated by C.A. Weibel; received 1 February 1995; revised 23 August 1995

Abstract

We study \mathscr{C} -covers in the context of Grothendieck categories. Namely, we analyse when a functor between two Grothendieck categories preserves or reflects \mathscr{C} -covers. We apply our general study to the category of graded modules over a graded ring, by showing that relative injective covers with respect to a torsion theory are preserved and reflected, in some cases, among the categories *R*-gr, *R*₁-Mod and *R*-Mod.

1. Introduction

Let \mathscr{C} be a Grothendieck category and \mathscr{A} a full subcategory of \mathscr{C} . The general problem of the existence of \mathscr{A} -(pre)covers for every object in \mathscr{C} is an interesting question. For concrete \mathscr{C} and \mathscr{A} , the characterization of the existence of \mathscr{A} -(pre)covers has allowed to obtain special properties for \mathscr{C} . For example, if \mathscr{A} is the full subcategory of injective objects in \mathscr{C} , every object in \mathscr{C} has an injective (pre)cover if and only if \mathscr{C} is a locally noetherian category. This result was given by E. Enochs for the case of $\mathscr{C} = R - Mod$ and it has been the first step in a homology theory for modules, using injective resolvents [2, 3, 7, 8]. In [4, 16], the existence of (pre)covers of injectives relative to an hereditary torsion theory was considered.

In Section 2, we find some conditions under which a given functor preserves and (or) reflects (pre)covers. For this, the concept of separable functors (cf. [12]) is fundamental. In Section 3, we apply these results to study the relationship between (relative) injective

^{*} Corresponding author.

¹ Supported by the grant PB91-0706 from the DGICYT.

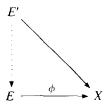
(pre)covers in *R*-Mod and the category of graded left *R*-modules for $R = \bigoplus_{g \in G} R_g$ a graded ring. We also obtain precovers in *R*-Mod from precovers in R_1 -Mod.

The study of relative injective (pre)covers could be important for the development of a relative homology theory.

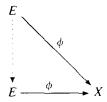
2. General results

In this section \mathscr{C} and \mathscr{D} will denote arbitrary Grothendieck categories. Let \mathscr{A} be a class of objects in \mathscr{C} . We recall the definition introduced by Enochs in [2].

Definition 1. Let X be an object of \mathscr{C} . We say that E in \mathscr{A} is a \mathscr{A} -precover of X if there exists a homomorphism $\phi : E \to X$ such that the triangle



can be completed for each homomorphism $E' \to X$ with E' in \mathscr{A} . If the triangle



can be completed only by automorphisms, we say that $\phi: E \to X$ is a \mathscr{A} -cover.

Throughout this section let $F : \mathscr{C} \longrightarrow \mathscr{G}$ be a covariant functor and $\mathscr{A} \subseteq \mathscr{C}$ a full subcategory of \mathscr{C} closed under isomorphisms. Suppose that $F(\mathscr{A}) = \{F(A) | A \in \mathscr{A}\}$ is full in \mathscr{D} and closed under isomorphisms.

Definition 2. We say that a covariant functor $F : \mathscr{C} \longrightarrow \mathscr{D}$ preserves (resp. reflect) \mathscr{A} -(pre)covers in the case that if $\phi : E \to X$ is a \mathscr{A} -(pre)cover, then $F(\phi) : F(E) \to F(X)$ is a $F(\mathscr{A})$ -(pre)cover (resp. if $F(\phi) : F(E) \to F(X)$ is a $F(\mathscr{A})$ -(pre)cover then $\phi : E \to X$ is a \mathscr{A} -(pre)cover).

We are going to study when F preserves or reflects \mathscr{A} -(pre)covers.

Proposition 1. If F is an equivalence of categories, then it preserves and reflects A-covers.

Proof. Easy.

However, there exist a more general class of functors that preserve and reflect \mathscr{A} -(pre)covers in a separate way.

Recall the concept of separable functor given in [12, Section 1].

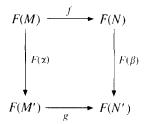
Definition 3. A covariant functor $F: \mathscr{C} \longrightarrow \mathscr{Q}$ is said to be a separable functor if for all objects M, N in \mathscr{C} there are maps $\varphi_{M,N}^F$:

 $\varphi_{M,N}^F: Hom_{\mathscr{L}}(F(M), F(N)) \longrightarrow Hom_{\mathscr{C}}(M, N),$

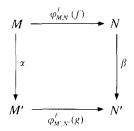
satisfying the following conditions:

SF1. For $\alpha \in Hom_{\mathscr{C}}(M,N)$ we have $\varphi_{M,N}^F(F(\alpha)) = \alpha$.

SF2. Given $M', N' \in \mathcal{C}, \ \alpha \in Hom_{\mathcal{C}}(M, M'), \ \beta \in Hom_{\mathcal{C}}(N, N'), \ f \in Hom_{\mathcal{C}}(F(M), F(N)), \ g \in Hom_{\mathcal{C}}(F(M'), F(N'))$ such that the following diagram is commutative:



Then the following diagram is also commutative:



It is clear that SF1 implies that a separable functor is faithful. Conversely, if F is full and faithful (but not necessarily an equivalence), then F is separable. We collect this fact in the next lemma.

Lemma 1. The following affirmations are equivalent about a covariant functor $F: \mathcal{C} \longrightarrow \mathcal{Q}$.

(a) F is full and faithful.

(b) F is full and separable.

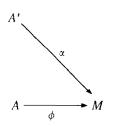
Proposition 2. Let $F : \mathscr{C} \longrightarrow \mathscr{Q}$ be a covariant functor with \mathscr{A} and $F(\mathscr{A})$ full subcategories in \mathscr{C} and \mathscr{Q} , respectively. Then,

94 J.R. García Rozas, B.Torrecillas/Journal of Pure and Applied Algebra 112 (1996) 91-107

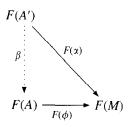
- (1) If F is full and faithful, F preserves \mathcal{A} -covers.
- (2) If F is separable, F reflects A-covers.

Proof. (1) Is easy, so we will prove (2). For that, we check: $F(\phi) : F(A) \to F(M)$ is a $F(\mathcal{A})$ -cover implies $\phi : A \to M$ is a \mathcal{A} -cover.

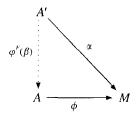
We consider the diagram



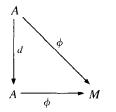
Applying F we have the commutative triangle



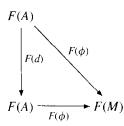
By definition of separability we deduce the commutativity of the triangle



Hence $\phi: A \to M$ is an \mathscr{A} -precover. Now, we will see that it is a \mathscr{A} -cover. We consider the commutative triangle



Applying F we obtain



F(d) is an isomorphism because $F(\phi)$ is an $F(\mathscr{A})$ -cover. Therefore, there exists a $\delta \in Hom_{\mathscr{A}}(F(A), F(A))$ such that $\delta F(d) = F(d)\delta = 1_{F(A)}$. Hence:

$$\varphi^F(\delta)\varphi^F(F(d)) = \varphi^F(F(d))\varphi^F(\delta) = \varphi^F(1_{F(A)}).$$

So $\varphi^F(\delta)d = d\varphi^F(\delta) = 1_A$, and so d is an isomorphism. \Box

Now, we give the concepts of full, faithful, and separable functor relative to a full subcategory in \mathscr{C} .

Definition 4. For $F : \mathscr{C} \longrightarrow \mathscr{D}$ a covariant functor and \mathscr{A} a full subcategory in \mathscr{C} with $F(\mathscr{A})$ full in \mathscr{D} , we say that:

(1) F is \mathscr{A} -full (resp. \mathscr{A} -faithful) in the case that for every $A \in \mathscr{A}$ and $X \in \mathscr{C}$, the abelian group morphisms

F(A,X): $Hom_{\mathscr{C}}(A,X) \longrightarrow Hom_{\mathscr{D}}(F(A),F(X))$

are surjective (resp. injective);

(2) F is \mathscr{A} -separable if $F|_{\mathscr{A}} : \mathscr{A} \longrightarrow F(\mathscr{A})$ is a separable functor.

Proposition 3. Let $F : \mathscr{C} \longrightarrow \mathscr{D}$ be a covariant functor with \mathscr{A} and $F(\mathscr{A})$ full subcategories in \mathscr{C} and \mathscr{D} , respectively.

(1) If F is \mathcal{A} -full, then F preserves \mathcal{A} -precovers.

(2) If F is \mathcal{A} -full and \mathcal{A} -faithful, then F preserves \mathcal{A} -covers.

(3) If F is A-separable, F reflects A-covers.

Proof. Easy.

Throughout we will denote by $(F,G): \mathscr{C} \longrightarrow \mathscr{D}$ an adjoint situation with $\mathscr{A} \subseteq \mathscr{C}$ and $\mathscr{B} \subseteq \mathscr{D}$ full subcategories verifying $F(\mathscr{A}) \subseteq \mathscr{B}$ and $G(\mathscr{B}) \subseteq \mathscr{A}$.

Proposition 4. If $Y' \in \mathcal{D}$ has a \mathcal{B} -precover $\phi : X' \to Y'$, then $G(\phi) : G(X') \to G(Y')$ is a \mathcal{A} -precover of G(Y').

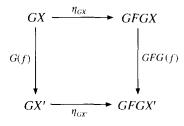
Proof. Let $f: A \to G(Y')$ be a morphism in \mathscr{C} . Then, there exists $g: F(A) \to X'$ such that $\phi g = \varepsilon_{Y'}F(f)$. Hence $G(\phi g) = G(\varepsilon_{Y'}F(f)) = f$, and so there exists a morphism in \mathscr{C} , namely G(g), such that $G(\phi)G(g) = f$. \Box

The following proposition is of preparatory nature. In [14, Theorem 1.2] appears the proof of $(1) \Leftrightarrow (3)$ in (a) and (b), respectively, and so we do not give them.

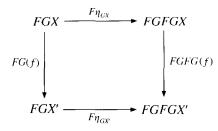
Proposition 5. Let $(F,G) : \mathscr{C} \longrightarrow \mathscr{D}$ be an adjoint situation with $\varepsilon : FG \longrightarrow 1_{\mathscr{D}}$ and $\eta : 1_{\mathscr{C}} \longrightarrow GF$ the co-unit and the unit of the adjunction, respectively.

- (a) The following assertions are equivalent.
 - (1) G is a separable functor.
 - (2) FG is a separable functor.
 - (3) ε is, as a natural transformation, a splitting epimorphism; i.e., there exists $\overline{\varepsilon} : 1_{\mathscr{Q}} \longrightarrow FG$ such that $\varepsilon \overline{\varepsilon} = 1_{\mathscr{Q}}$.
- (b) The following assertions are equivalent.
 - (1) F is a separable functor.
 - (2) GF is a separable functor.
 - (3) η is, as a natural transformation, a splitting monomorphism; i.e., there exists $\tilde{\eta} : GF \longrightarrow 1_{\mathscr{C}}$ such that $\tilde{\eta}\eta = 1_{\mathscr{C}}$.

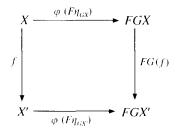
Proof. (a) First, we will prove $(2) \Rightarrow (3)$. If *FG* is separable, for each *X*, $X' \in \mathscr{D}$ there exists $\varphi_{X,X'}^{FG}$: $Hom_{\mathscr{D}}(FGX,FGX') \longrightarrow Hom_{\mathscr{D}}(X,X')$ verifying the separability conditions. We will see that $\varphi(F * \eta * G)$ (* represents the Yoneda product which throughout we will omit) is the required $\overline{\varepsilon}$. First we will check that $\varphi F\eta G$ is a natural transformation. Let $X, X' \in \mathscr{D}$ and $f \in Hom_{\mathscr{D}}(X,X')$. From the diagram



we obtain, applying the functor F

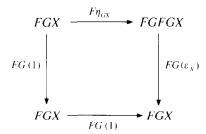


By separability, we have the commutative diagram

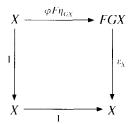


Therefore, $\varphi F \eta G : 1_{\mathscr{V}} \longrightarrow FG$ is a natural transformation.

Now, we will see that $\varepsilon(\varphi F\eta G) = 1_{\mathcal{T}}$. From the commutative diagram



(the commutativity is obtained by $G\varepsilon_X\eta_{GX} = 1_{GX}$ because (F,G) is an adjunction) we obtain by separability



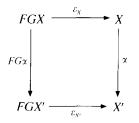
Hence $\varepsilon_X \varphi F \eta_{GX} = 1_X$, $\forall X$ and $\overline{\varepsilon} = \varphi F \eta G$.

(3) \Rightarrow (2) Suppose that there exists a natural transformation $\bar{\varepsilon} : 1_{\mathscr{D}} \longrightarrow FG$ such that $\varepsilon \bar{\varepsilon} = 1_{\mathscr{D}}$. For $X, X' \in \mathscr{D}$ we define

$$\varphi_{X,X'}^{FG}: Hom_{\mathscr{L}}(FGX, FGX') \longrightarrow Hom_{\mathscr{L}}(X,X')$$

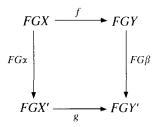
by $\varphi^{FG}(g) = \varepsilon_{X'} g \overline{\varepsilon}_X$. We verify SF1 of the definition of separability:

Let $\alpha \in Hom_{\mathscr{D}}(X, X')$, as ε is a natural transformation we have the diagram

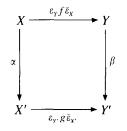


We obtain $\varphi^{FG}(FG(\alpha)) = \varepsilon_{X'}FG(\alpha)\overline{\varepsilon}_X = \alpha\varepsilon_X\overline{\varepsilon}_X = \alpha$ and we have SF1.

We will prove SF2. Let $X, X', Y, Y' \in \mathcal{D}$ and we consider the following commutative diagram:



We want to prove that the diagram



is also commutative. We have the following: $\varepsilon_{Y'}g\overline{\varepsilon}_{X'}\alpha = \varepsilon_{Y'}gFG(\alpha)\overline{\varepsilon}_X = \varepsilon_{Y'}FG(\beta)f\overline{\varepsilon}_X$ = $\beta\varepsilon_Y f\overline{\varepsilon}_X$ as we wanted (these equalities are valid only when $\overline{\varepsilon}$ is a natural transformation and not when $\overline{\varepsilon}_X$ is a splitting epimorphism $\forall X \in \mathcal{D}$).

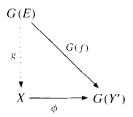
(b) The proof is analogous to (a). For completeness, if GF is separable with a map of separation φ , the natural transformation $\bar{\eta}$ such that $\bar{\eta}\eta = 1$ is $\bar{\eta} = \varphi(G\varepsilon F)$. Conversely, if $\bar{\eta}$ is the natural transformation such that $\bar{\eta}\eta = 1$ then we define φ by $\varphi(f) = \bar{\eta}f\eta$. \Box

The following corollary is a trivial consequence of the above.

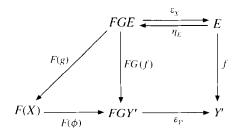
Corollary 1. Let $(F,G) : \mathscr{C} \longrightarrow \mathscr{D}$ be an adjoint situation with $\varepsilon : FG \longrightarrow 1_{\mathscr{D}}$ the co-unit of the adjunction. If FG is a separable functor, then $\varepsilon_X : FGX \to X$ is a splitting epimorphism $\forall X \in \mathscr{D}$.

Proposition 6. In the adjoint situation above, if the co-unit of the adjunction ε verifies that $\varepsilon_{Z'} : FGZ' \to Z'$ is a splitting epimorphism $\forall Z' \in \mathcal{B}$ (weaker than ε to be a splitting epimorphism as a natural transformation) then: if $Y' \in \mathcal{D}$ is such that $G(Y') \in \mathcal{C}$ has an \mathscr{A} -precover $\phi : X \to G(Y')$, then $F(X) \xrightarrow{F(\phi)} FG(Y') \xrightarrow{\varepsilon_{Y'}} Y'$ is a \mathscr{B} -precover of Y'.

Proof. Let $E \in \mathscr{B}$ and $f: E \to Y'$. Applying G we have the commutative diagram



Applying F to the later triangle we can obtain the following diagram with square and triangle commutatives



Hence $\varepsilon_{Y'}F(\phi)F(g)\eta_E = \varepsilon_{Y'}FG(f)\eta_E = f\varepsilon_E\eta_E = f$. Therefore, the morphism $F(g)\eta_E$ makes the diagram commutative and so $\varepsilon_{Y'}F(\phi)$ is a \mathscr{B} -precover. \Box

Now, the following corollary is immediate.

Corollary 2. In the adjoint situation (F,G) suppose that FG is a \mathscr{B} -separable functor, if $Y' \in \mathscr{D}$ is such that $G(Y') \in \mathscr{C}$ has an \mathscr{A} -precover $\phi : X \to G(Y')$, then $F(X) \xrightarrow{F(\phi)} FG(Y') \xrightarrow{\varepsilon_{1'}} Y'$ is a \mathscr{B} -precover of Y'.

Proof. It is routine to check that the co-unit of the adjunction is a splitting epimorphism if we restrict it to \mathscr{A} (routine with the above results). \Box

In the applications given below, we will concentrate our attention on τ -injective (pre)covers. Remember that if τ is a hereditary torsion theory defined in a Grothendieck category \mathscr{C} (for concepts about torsion theories we will refer to [5, 15]), we say that an object E in \mathscr{C} is τ -injective if $Ext^{1}_{\mathscr{C}}(X, E) = 0$ for all $X \in \mathscr{T}_{\tau}$, where \mathscr{T}_{τ} denotes the class of all τ -torsion objects. By τ -injective (pre)covers, we mean \mathscr{A} -(pre)covers, where \mathscr{T} is the class of τ -injective objects in \mathscr{C} .

Theorem 1. Let $(F, G) : \mathscr{C} \longrightarrow \mathscr{G}$ be an adjoint situation and (η, ε) the unit and the co-unit of the adjunction, respectively. Let τ be a hereditary torsion theory in \mathscr{C} and \mathscr{A} be a full subcategory in \mathscr{D} . We denote by \mathscr{I}_{τ} the class of τ -injective objects in \mathscr{C} . Suppose that it verifies the following conditions.

100 J.R. García Rozas, B. Torrecillas / Journal of Pure and Applied Algebra 112 (1996) 91-107

- (1) $F(\mathscr{I}_{\tau}) \subseteq \mathscr{A}, \ G(\mathscr{A}) \subseteq \mathscr{I}_{\tau}.$
- (2) For each $M \in \mathcal{C}$, the sequence

$$0 \to Ker \eta(M) \to M \xrightarrow{\eta(M)} GF(M) \to Coker \eta(M) \to 0$$

has $Ker \eta(M) = 0$ and $Coker \eta(M) \tau$ -torsion free.

(3) For each $D \in \mathscr{D}$, $FG(D) \xrightarrow{\varepsilon(D)} D$ is a splitting epimorphism.

(4) G is right exact.

The following statements are verified.

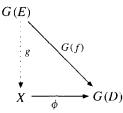
(a) If every object in \mathscr{C} has a τ -injective precover, then every object in \mathscr{D} has an \mathscr{A} -precover.

(b) If every object in \mathcal{D} in the form F(M) (for some $M \in \mathcal{C}$) has an epic \mathcal{A} -precover, then every object in \mathcal{C} has an epic τ -injective precover.

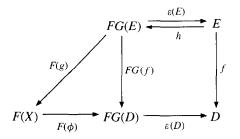
Proof. (a) Let $D \in \mathcal{D}$, then there exists a τ -injective precover in \mathscr{C} in the form $\phi: X \to G(D)$. We will see that

 $F(X) \xrightarrow{F(\phi)} FG(D) \xrightarrow{\varepsilon(D)} D$

is an \mathscr{A} -precover in \mathscr{D} . Let $E \in \mathscr{A}$ and $f : E \to D$ a morphism in \mathscr{D} . We have the completed commutative triangle



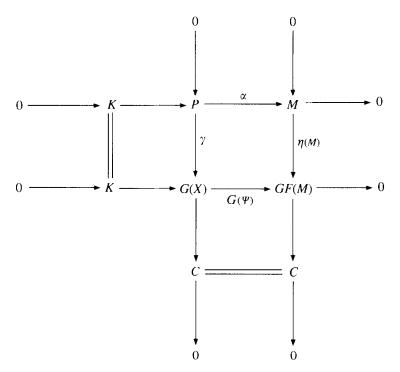
Applying F, we obtain the commutative diagram



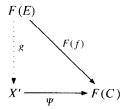
Hence $\varepsilon(D)F(\phi)F(g)h = \varepsilon(D)FG(f)h = f\varepsilon(E)h = f$, therefore there exists $F(g)h : E \to F(X)$ such that $\varepsilon(D)F(\phi)F(g)h = f$ as we wished.

(b) Let $M \in \mathscr{C}$. By hypothesis, there exists an \mathscr{A} -precover in \mathscr{D} in the form $X' \xrightarrow{\psi} F(M) \to 0$. Since G is right exact, the sequence $G(X') \xrightarrow{G(\psi)} GF(M) \to 0$ is exact.

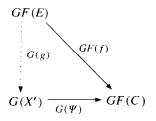
Now, we consider the following pullback diagram:



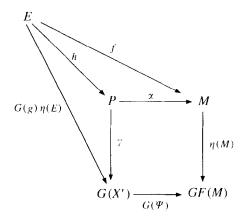
C is τ -torsion free and, by hypothesis, $Ker \eta(M) = 0$. Also, since $G(X') \in \mathscr{I}_{\tau}$ and C is τ -torsion free, it follows that $P \in \mathscr{I}_{\tau}$. We will see that $P \xrightarrow{\alpha} M \to 0$ is a τ -injective precover. We take $E \in \mathscr{I}_{\tau}$ and $f : E \to M$ a morphism in \mathscr{C} . The following diagram can be completed:



Applying G, we obtain the commutative diagram



By definition of pullback, we obtain the diagram



The commutativity of the diagram is given by: $G(\psi)G(g)\eta(E) = G(\psi g)\eta(E) = GF(f)\eta(E) = \eta(M)f$ (the last equality is obtained because η is a natural transformation) then there exists $h: E \to P$ such that $\alpha h = f$ as we wished. \Box

Remark. If we take for \mathscr{I}_{τ} the class of τ -torsion free τ -injective objects in \mathscr{C} , the theorem remains true.

3. Covers of graded modules

Let G be a multiplicative group with identity element 1. A G-graded ring R is a ring with identity 1, together with a direct sum $R = \bigoplus_{g \in G} R_g$ as additive subgroups, such that: $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$. It is well known that R_1 is a subring of R and $1 \in R_1$. If $R_g R_h = R_{gh}$ for all $g, h \in G$, then R is called a strongly graded ring. By a (left) G-graded module we mean a left R-module M with a direct sum decomposition $\bigoplus_{g \in G} N_g$ as additive subgroups, such that $R_g M_h \subseteq M_{gh}$ for all $g, h \in G$. If $N = \bigoplus_{g \in G} N_g$ is another graded R-module, then $Hom_{R-gr}(M,N)$ consists of the R-homomorphism $f : M \to N$ such that $f(M_g) \subseteq N_g$. We denote by R - gr the category of left G-graded modules and G-graded homomorphisms. It is well known that R - gr is a Grothendieck category (cf. [13]). Then it is obvious that we can define torsion theories and injective (pre)covers relative to a torsion theory in R - gr.

Following [11, Section 4], we consider the adjunction of functors $(U, F) : R - gr \longrightarrow R - Mod$, where U forgets the gradiation and for $M \in R$ -Mod, $F(M) = \bigoplus_{g \in G} {}^{(g}M)$ (where each ${}^{g}M$ is a copy of M, ${}^{g}M = \{{}^{g}m|m \in M\}$) with the structure of R-module given by $r * {}^{g}m = {}^{hg}(rm)$ for $r \in R_h$. The gradiation of F(M) is given by $F(M)_g = ({}^{g}M), g \in G$. We know that U is the left adjoint of F and, when G is finite, is the right adjoint too.

Between the Grothendieck categories R_1 -Mod and R-gr we consider the following functors:

 $(1) \ (-)_1: R - gr \longrightarrow R_1 - Mod, \ (M)_1 = M_1.$

(2) Coind: $R_1 - Mod \longrightarrow R - gr$, Coind $(N) = \bigoplus_{g \in G} Coind(N)_g$, with Coind $(N)_g = \{f \in Hom_{R_1}(R_R, N) \mid f(R_h) = 0 : \forall h \neq g^{-1}\}.$

(3) Ind: $R_1 - Mod \longrightarrow R - gr$, $Ind(N) = R \otimes_{R_1} N$.

It is known [9] that *Ind* is the left adjoint of $(-)_1$ and *Coind* is the right adjoint of $(-)_1$.

Let τ be a rigid torsion theory on *R*-gr (for the definition of rigid torsion theory see [11, Section 4]), and $\overline{\tau}$ the induced torsion theory on *R*-Mod. We know that [11, Proposition 4.2] $X \in R$ -Mod is $\overline{\tau}$ -torsion if and only if $F(X) \in R$ -gr is τ -torsion.

Let σ be a torsion theory on R_1 -Mod. σ is said to be G-stable if, for any σ -torsion R_1 -module M, $R_g \otimes_{R_1} M$ is σ -torsion, for all $g \in G$. In [13], it is proved that if R is a strongly graded ring, then there exists a bijective correspondence between rigid torsion theories on R-gr and G-stable torsion theories on R_1 -Mod. We will denote by σ^{gr} the corresponding torsion theory on R-gr induced by σ .

In fact, when R is strongly graded, R-gr and R₁-Mod are equivalent categories. The equivalence is given by the functors *Coind* and $(-)_1$; in this case *Ind* \cong *Coind*, (see [1, Theorem 2.8]).

Proposition 7. Let $R = \bigoplus_{g \in G} R_g$ a strongly graded ring and κ a G-stable hereditary torsion theory on R_1 -Mod.

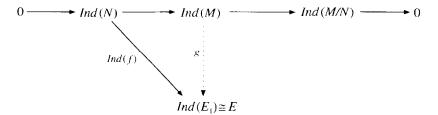
Every R_1 -module has a κ -injective cover if and only if every graded R-module has a κ^{gr} -injective cover.

Proof. First, we are going to check the following two claims:

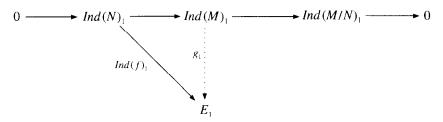
- (a) If $E \in R$ -gr is κ^{gr} -injective, then E_1 is κ -injective.
- (b) If $E \in R_1$ -Mod is κ -injective, then Ind(E) is κ^{gr} -injective.
- (a) Let $E \in R$ -gr κ^{gr} -injective. We consider an exact sequence in R_1 -Mod

 $0 \rightarrow N \rightarrow M \rightarrow M/N \rightarrow 0$

with M/N κ -torsion, and $f: N \to E_1$ an R_1 -homomorphism. Applying Ind, we can complete the triangle



(Since κ is G-stable, Ind(M/N) is κ^{gr} -torsion. Also Ind is exact in this case). Now, applying $(-)_1$ to the above diagram, we have



Since $Ind(-)_1 \cong 1_{R_1-Mod}$ and $(-)_1 Ind \cong 1_{R-gr}$, the proof of (a) is finished.

The proof of (b) is similar to (a).

Let $M \in R$ -gr, then there exists a κ -injective cover for $M_1 : \phi : E \to M_1$ in R_1 -Mod. We will see that $Ind(\phi) : Ind(E) \to M$ is a κ^{gr} -injective cover for M in R-gr. By (b), Ind(E) is κ^{gr} -injective. We consider E' a κ^{gr} -injective G-graded R-module and $f : E' \to M$ a G-graded morphism. Then there exists an R_1 -morphism $g : E'_1 \to$ $Ind(E)_1 = E$ such that $\phi g = f_1$. Hence $Ind(\phi g) = Ind(f_1)$ and so $Ind(\phi)Ind(g) = f$ as we wished. If $h : Ind(E) \to Ind(E)$ verifies that $Ind(\phi)h = Ind(\phi)$, then $\phi h_1 = \phi$, therefore h_1 is an automorphism. Since Ind is an equivalence of categories, it follows that $Ind(h_1) = h$ is an automorphism.

Conversely, let $M \in R_1$ -Mod, then there exists a κ^{gr} -injective cover for Ind(M): $\psi: E \to Ind(M)$. It is easy to check (analogous to the above) that $\Psi_1: E_1 \to M$ is a κ -injective cover for M in R_1 -Mod. \square

Now, the following result is immediate.

Corollary 3. Let $R = \bigoplus_{g \in G} R_g$ a strongly graded ring. The following assertions are equivalent.

Every R_1 -module has an injective cover if and only if every graded R-module has a gr-injective cover.

Proposition 8. Suppose that $R = \bigoplus_{g \in G} R_g$ is left noetherian and with finite support. If $\phi : E \to M$ is an injective cover in R-Mod with $E, M \in R$ -gr and ϕ a G-graded morphism, then $\phi : E \to M$ is a gr-injective cover in R-gr.

Proof. By hypothesis, the class of gr-injective objects in R-gr coincides with the class of injective objects (as R-modules) in R-gr, [9, Corollary 2.3]. Hence, let $E' \in R$ -gr an injective = gr-injective object and let $g : E' \to M$ be a G-graded morphism. Then there exists a "R-morphism" $h : E' \to E$ such that $\phi h = g$. By [13, Lemma I.2.1], there exists a G-graded morphism $h' : E' \to E$ such that $\phi h' = g$ and so $\phi : E \to M$ is a gr-injective precover. If $f : E \to E$ is a G-graded morphism verifying $\phi f = \phi$, then f is an automorphism in R-Mod. Again, by [13, Lemma I.2.1], f is an automorphism in R-gr. Therefore $\phi : E \to M$ is a gr-injective cover. \Box

Remark. When R is a graded ring with finite support, we have the equivalences [9, p. 124]:

R is left *gr*-noetherian $\Leftrightarrow R_1$ is left noetherian and R_g is a finitely generated R_1 -module for all $g \in G \Leftrightarrow R$ is left noetherian.

Therefore, when R is a graded ring with finite support, the existence of gr-injective covers for all graded R-module is equivalent to the existence of injective covers for all R-module [2, Theorem 2.1].

Now, we are going to solve the following question: if R is a G-graded ring with finite support, constructing for $M \in R$ -gr a gr-injective cover via a known object in R-Mod (using the adjunction (U,F)), and conversely, given $M \in R$ -Mod, constructing for $M \in R$ -Mod an injective cover with objects in R-gr. We will be able to prove this either in the case that $n = |\{g \in G | R_g \neq 0\}|$ is an invertible element in R or in case F is a separable functor [14, Lemma 3.2].

Proposition 9. Suppose that $R = \bigoplus_{g \in G} R_g$ is a left noetherian ring with finite support. Let τ be a rigid torsion theory on R-gr and $\overline{\tau}$ the induced torsion theory on R-Mod.

(a) If $E \in R$ -gr is τ -injective, then U(E) is $\tilde{\tau}$ -injective in R-Mod.

(b) If $\phi : E \to M$ is a $\overline{\tau}$ -injective precover in R-Mod, then $F(\phi) : F(E) \to F(M)$ is a τ -injective precover in R-gr.

(c) Suppose that F is a separable functor, if $E \xrightarrow{\phi} F(X)$ is a τ -injective precover in R-gr, then $U(E) \xrightarrow{U(\phi)} UF(X) \xrightarrow{\varepsilon_X} X$ is a $\overline{\tau}$ -injective precover, where ε is the co-unit of the adjunction (U,F), $\varepsilon_X({}^ga) = a$, for ${}^ga \in ({}^gX)$ (remember that $F(X) = \bigoplus_{g \in G}({}^gX)$, ${}^gX = X$ for $g \in G$).

(d) Suppose that F is a separable functor. Let $X \in R$ -Mod. Then X has a $\overline{\tau}$ -injective precover if and only if F(X) has a τ -injective precover.

Proof. (a) Let $E \in R$ -gr be a τ -injective object in R-gr. We consider the short exact sequence:

 $0 \to E \to \mathscr{E}^{gr}(E) \to \mathscr{E}^{gr}(E)/E \to 0,$

where $\mathscr{E}^{gr}(E)$ is the gr-injective envelope of E in R-gr. Then, applying the forgetful functor U, we obtain the short exact sequence

 $0 \to U(E) \to U(\mathscr{E}^{gr}(E)) \to U(\mathscr{E}^{gr}(E)/E) \to 0.$

By the hypothesis [9, Corollary 2.3], $U(\mathscr{E}^{gr}(E))$ is an injective *R*-module. Also, since $\mathscr{E}^{gr}(E)/E$ is τ -torsion-free, then $U(\mathscr{E}^{gr}(E)/E)$ is $\bar{\tau}$ -torsion-free (see for example [6, Proposition 2.2]). Now, it is easy to check that $U(\mathscr{E}^{gr}(E))$ is $\bar{\tau}$ -injective, with the last two considerations.

(b) and (c) follow by Propositions 4 and 6, respectively. (d) is a consequence of (b) and (c). \Box

Theorem 2. Suppose that $R = \bigoplus_{g \in G} R_g$ is a left noetherian ring and F a separable functor. Let τ be a rigid torsion theory on R-gr and $\overline{\tau}$ the induced torsion theory on

R-Mod. Then, every graded *R*-module has a τ -injective precover in *R*-gr if and only if every *R*-module has a $\overline{\tau}$ -injective precover in *R*-Mod.

Proof. Suppose that every *R*-module has a $\overline{\tau}$ -injective precover in *R*-Mod. Let *M* be an object in *R*-gr. Then U(M) has a $\overline{\tau}$ -injective precover $\phi : E \to U(M)$. By part (b) of Proposition 9, $F(\phi) : F(E) \to FU(M)$ is a τ -injective precover in *R*-gr. Since *M* is a direct summand of $FU(M) \cong \bigoplus_{g \in G} M(g)$, then it is easy to check that $F(E) \xrightarrow{F(\phi)} FU(M) \xrightarrow{p_1} M$ (where $p_1 : FU(M) \to M$ is the natural projection of FU(M) over *M*) is a τ -injective precover.

Conversely, suppose that every graded *R*-module has a τ -injective precover in *R*-gr and let us consider $N \in R$ -Mod. Then F(N) has a τ -injective precover in *R*-gr $\psi : E \to F(N)$. By part (c) of Proposition 9, $U(E) \xrightarrow{U(\psi)} UF(N) \xrightarrow{\epsilon_N} N$ is a $\overline{\tau}$ -injective precover of *N*. \Box

Remark. If we also impose the condition that G is finite in Theorem 2, then U is the right adjoint of F and the proof of the theorem is easier. In particular, in this case, it can be proved that if $\phi : E \to M$ is a τ -injective precover in R-gr, then $U(\phi): U(E) \to U(M)$ is a $\bar{\tau}$ -injective precover in R-Mod.

Finally, we give the most general result about lifting of relative injective covers involving the three categories R-Mod, R-gr and R_1 -Mod that we have been able to obtain.

Theorem 3. Let $R = \bigoplus_{g \in G} R_g$ a strongly graded ring. Let τ be a rigid torsion theory on *R*-gr. Suppose that *R* is left noetherian and that *F* is a separable functor. The following assertions are equivalent.

- (i) Every graded R-module has a τ -injective precover in R-gr.
- (ii) Every R-module has a $\overline{\tau}$ -injective precover in R-Mod.
- (iii) Every R_1 -module has a τ_1 -injective precover in R_1 -Mod.

Proof. The proof follows by Theorem 2 and Proposition 7. \Box

Example. Let G be a finite group and let S be a left noetherian ring. Suppose that the order of G is an invertible element of S. Then SG (the group ring of S over G) is in the conditions of Theorem 3. (See [14] for the separability of F in this case.)

References

- [1] E. Dade, Group graded rings and modules, Math. Z. 174 (1980) 241-262.
- [2] E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981) 189-209.
- [3] E. Enochs, O.M.G. Jenda and J. Xu. Covers and envelopes over Gorenstein rings, Preprint, 1994.
- [4] J.R. García Rozas and B. Torrecillas, Relative injective covers, Comm. Algebra 22(8) (1994) 2925-2940.
- [5] J.S. Golan, Torsion Theories, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 29 (Longman Scientific and Technical, New York, 1986).

- [6] J.L. Gómez Pardo and C. Nástăsescu, Relative projectivity, graded clifford theory, and applications, J. Algebra 141 (1991) 484–504.
- [7] O. Jenda, Injectives resolvents and preenvelopes, Quaestiones Math. 9 (1986) 301-309.
- [8] O. Jenda, The dual of the grade of a module, Arch. Math. 51 (1988) 297-302.
- [9] C. Năstăsescu, Some constructions over graded rings: Applications, J. Algebra 120 (1989) 119-138.
- [10] C. Năstăsescu and N. Rodino, Localization on graded modules, relative Maschke's theorem and applications, Comm. Algebra 18(3) (1990) 811–832.
- [11] C. Năstăsescu and B. Torrecillas, Relative graded Clifford theory, J. Pure Appl. Algebra 83 (1992) 177-196.
- [12] C. Năstăsescu, M. Van den Bergh and F. Van Oystaeyen, Separable functors applied to graded rings. J. Algebra 123 (1989) 397-413.
- [13] C. Nåståsescu and F. Van Oystaeyen, Graded Ring Theory (North-Holland, Amsterdam, 1982).
- [14] M.D. Rafael, Separable functors revisited, Comm. Algebra 18(5) 292 (1985) 155-167.
- [15] B. Stenström, Rings of Quotients (Springer, Berlin, 1975).
- [16] B. Torrecillas, T-torsionfree T-injective covers, Comm. Algebra 12(21) (1984) 2707-2726.