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Abstract

We study %-covers in the context of Grothendieck categories. Namely, we analyse when
a functor between two Grothendieck categories preserves or reflects %-covers. We apply our
general study to the category of graded modules over a graded ring, by showing that relative
injective covers with respect to a torsion theory are preserved and reflected, in some cases,
among the catcgones R-gr, R -Mod and R-Mod.

1. Introduction

Let ¢ be a Grothendieck category and .o/ a full subcategory of ¥. The general
problem of the existence of .o/-(pre)covers for every object in % is an interesting
question. For concrete %4 and .o/, the characterization of the existence of .o/-(pre)covers
has allowed to obtain special properties for 4. For example, if ./ is the full subcategory
of injective objects in %, every object in ¥ has an injective (pre)cover if and only if
% is a locally noetherian category. This result was given by E. Enochs for the case of
% = R — Mod and it has been the first step in a homology theory for modules, using
injective resolvents [2, 3, 7, 8]. In [4, 16], the existence of (pre)covers of injectives
relative to an hereditary torsion theory was considered.

In Section 2, we find some conditions under which a given functor preserves and (or)
reflects (pre)covers. For this, the concept of separable functors (cf. [12]) is fundamental.
In Section 3, we apply these results to study the relationship between (relative) injective
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(pre)covers in R-Mod and the category of graded left R-modules for R = @;;e(;Ra a
graded ring. We also obtain precovers in R-Mod from precovers in R-Mod.

The study of relative injective (pre)covers could be important for the development
of a relative homology theory.

2. General results

In this section ¥ and & will denotc arbitrary Grothendieck categories. Let ./ be a
class of objects in ¥. We recall the definition introduced by Enochs in [2].

Definition 1. Let X be an object of 4. We say that £ in &/ is a .«/-precover of X if
there exists a homomorphism ¢ : £ — X such that the triangle

El

E———X
can be completed for each homomorphism £’ — X with £’ in ./ If the triangle

E

can be completed only by automorphisms, we say that ¢ : E — X 1s a .«/-cover.

Throughout this section let /7 : % — & be a covariant functor and «/ C% a full
subcategory of % closed under isomorphisms. Suppose that F(.e/) = {F(4)|4 € ./} is
full in & and closed under isomorphisms.

Definition 2. We say that a covariant functor F : ¢ — & preserves (resp. reflect)
27-(pre)covers in the case that if ¢ : £ — X is a .</-(pre)cover, then F(¢): F(E) —
F(X) is a F(.«/ )-(pre)cover (resp. if F(¢): F(E) — F(X) is a F(./)-(pre)cover then
¢ E— X is a &/-(pre)cover).

We are going to study when F preserves or reflects .</-(pre)covers.

Proposition 1. If F is an equivalence of caregories, then it preserves and reflects
o -covers.
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Proof. Easy. ]

However, there exist a more general class of functors that preserve and reflect .o/-
(pre)covers in a separate way.
Recall the concept of separable functor given in [12, Section 1].

Definition 3. A covariant functor F:% — & is said to be a separable functor if for
all objects M, N in % there are maps ¢}, »:

@l vy Homy (F(M).F(N)) — Hom¢(M,N),

satisfying the following conditions:

SF1. For x € Homy (M, N) we have (pf:,“\,(F(x)) =2

SF2. Given M'.N’ € €, x € Homye(M.M"), § € Homy(N,N'), | € Hom,(F(M),
F(N)), g € Hom(F(M’'), F(N")) such that the following diagram is commutative:

FM) —L— Fovy
Fo U
FMY) FN')

g
Then the following diagram is also commutative:

o
Py ()
M MAN j N

M N’

50.141 ~(8)

It 1s clear that SF1 implies that a separable functor is faithful. Conversely, if F is
full and faithful (but not necessarily an equivalence), then F is separable. We collect
this fact in the next lemma.

Lemma 1. The following affirmations are equivalent about a covariant funcror
F:€¢€ — .

(a) F is full and faithful

(b) F is full and separable.

Proposition 2. Let F 1 6 — & be a covariant functor with </ and F(.</) full
subcategories in ¢ and &, respectively. Then,
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(1) If F is full and faithful, F preserves o/ -covers.
(2) If F is separable, F reflects .o/ -covers.

Proof. (1) Is easy, so we will prove (2). For that, we check: F(¢):F(4) —» F(M) is
a F(of)-cover implies ¢ :4 — M is a .o/-cover.
We consider the diagram

At

¢

with A" in of.
Applying F' we have the commutative triangle

F(A")
Ig F(2)
v
FA) — F(M)

F¢)

By definition of separability we deduce the commutativity of the triangle

x

M

Hence ¢:4 — M is an .o/-precover. Now, we will see that it is a .«/-cover. We
consider the commutative triangle

A
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Applying ' we obtain

F(A)

F
Fd) (@)

F(A)

M
F(e) FM)

F(d) is an isomorphism because F(¢) is an F(./)-cover. Therefore, there exists a
o € Homy(F(A),F(A4)) such that 6F(d) = F(d)d = lr.. Hence:

0" (8)p" (F(d)) = o' (F(d)p" (3) = @ (1))
So ¢of (8)d = def(d) =14, and so d is an isomorphism. O

Now, we give the concepts of full, faithful, and separable functor relative to a full
subcategory in %.

Definition 4. For F : ¥ — &% a covariant functor and ./ a full subcategory in %
with F(.«/) full in &, we say that:

(1) F is o/-full (resp. .o/-faithful) in the case that for every 4 € .« and X € %, the
abelian group morphisms

F(A,X): Homg(A,X) — Hom,(F(A),F(X))

are surjective (resp. injective);
(2) F is «o/-separable if F|, : o/ — F(./) is a separable functor.

Proposition 3. Let F : 6 — & be a covariant functor with </ and F() full
subcategories in € and &, respectively.

(1) If F is o/-full, then F preserves sf-precovers.

(2) If F is of-full and /-faithful, then F preserves .o -covers.

(3) If F is .o -separable, F reflects of -covers.

Proof. Easy. [

Throughout we will denote by (F,G) : ¥ — % an adjoint situation with ./ C¥
and # C 2 full subcategories verifying F(.&/)C # and G(#)C /.

Proposition 4. [f'Y' € & has a B-precover ¢ : X' — Y, then G(¢): G(X') — G(Y")
is a s/-precover of G(Y').
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Proof. Let /' : 4 — G(Y’) be a morphism in 4. Then, there exists g : F(4) — X’ such
that ¢pg = ey F(f). Hence G(¢g) = G(ey' F(f)) = f, and so there exists a morphism
in 6, namely G(g), such that G(¢)G(g) = f. O

The following proposition is of preparatory nature. In {14, Theorem 1.2] appears the
proof of (1)< (3) in (a) and (b), respectively, and so we do not give them.

Proposition 5. Let (F,G): % — & be an adjoint situation with ¢ . FG — 14 and
n: 1y — GF the co-unit and the unit of the adjunction, respectively.
(a) The following assertions are equivalent.
(1) G is a separable functor.
(2) FG is a separable functor.
(3) & is, as a natural transformation, a splitting epimorphism;, i.e., there exists
&1, — FG such that && = 1.
(b) The following assertions are equivalent.
(1) F is a separable functor.
(2) GF is a separable functor.
(3) n is, as a natural transformation, a splitting monomorphism; i.e., there
exists 1§ : GF — 1y such that ijin = 1.

Proof. (a) First, we will prove (2) = (3). If FG is separable, for each X, X' € &
there exists @4%. : Hom (FGX,FGX') — Hom,(X,X') verifying the separability
conditions. We will see that @(F x5 = G) (x represents the Yoneda product which
throughout we will omit) is the required &. First we will check that ¢FnG is a natural
transformation. Let X, X’ € & and f € Hom.(X,X’). From the diagram

GX ox GFGX
G(f) GFG(f)
GX' GFGX'

GX

we obtain, applying the functor F

Fn,.
FGX o FGFGX
FG(f) FGFG(f)
FGX' FGFGX'
Hox

By separability, we have the commutative diagram
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(FHey)
x — P opex

I FG()

(

- FGX'
@ (Fige)

Therefore, @fnG : 1., — FG is a natural transformation.
Now. we will see that ¢(@F3G) = 1.. From the commutative diagram

Frgx
FGX FGFGX
PGl FGley)
FGX FGX
FG (1)

97

(the commutativity is obtained by Geyney = lgy because (F,G) is an adjunction) we

obtain by separability

Fitgs
X — 2 pGx

X—X

1
Hence ¢y pFngy = Ly, ¥YX and & = oFyG.

(3) = (2) Suppose that there exists a natural transformation & : 1, — FG such

that 2 = 1.,. For X, X’ € & we define
00 Hom (FGX,FGX') — Hom (X,X')
F(/(

by ¢"V(y) = ¢y géx. We verify SFI of the definition of separability:

Let » € Hom (X.X'), as ¢ is a natural transformation we have the diagram

Ox

FGX X

FGX' X

£

We obtain (p”"(FG(oc)) = ey FG(2)éy = 2exéy = « and we have SFI.
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We will prove SF2. Let X, X', Y, Y’ € & and we consider the following commutative
diagram:

FGX . FGY

FGa FGB

FGX' ——— FGY’
8

We want to prove that the diagram

x ey fEx

X ——Y
€y BEy

is also commutative. We have the following: ¢y géy-a = ey gFG(2)éx = ey FG(f) fix
= fley fex as we wanted (these equalities are valid only when & is a natural transfor-
mation and not when &y is a splitting epimorphism VX € &).

(b) The proof is analogous to (a). For completeness, if GF is separable with a
map of separation ¢, the natural transformation 5 such that 77 = 1 is 5 = @(GeF).
Conversely, if 7 is the natural transformation such that 77 = 1 then we define ¢ by

o(fy=nfn 0O
The following corollary is a trivial consequence of the above.

Corollary 1. Let (F,G) : € — & be an adjoint situation with ¢ : FG — 1., the
co-unit of the adjunction. If FG is a separable functor, then ex : FGX — X is a
splitting epimorphism ¥X € 4.

Proposition 6. In the adjoint situation above, if the co-unit of the adjunction ¢ verifies
that ¢z : FGZ' — Z' is a splitting epimorphism V7' € 9 (weaker than ¢ to be a
splitting epimorphism as a natural transformation) then: if Y' € & is such that
G(Y') € € has an -precover ¢ - X — G(Y'), then F(X) "8 FG(Y') 2 ¥ is a

B-precover of Y.

Proof. Let E € # and [ : E — Y'. Applying G we have the commutative diagram
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G(E)
Gy

\
X ——— G(Y)

Applying F to the later triangle we can obtain the following diagram with square and
triangle commutatives

Ey

FGE &———
"y

Fa) FG(f) I

F(X) ———— FGY’ ~
) Ey

Yl

Hence sy F(P)F(g)ne = ey FG(f g = fegny = f. Therefore, the morphism F(g)ng
makes the diagram commutative and so &y F(¢) is a .B-precover. [

Now, the following corollary is immediate.

Corollary 2. [n the adjoint situation (F,G) suppose that FG is a A-separable functor,
ifY' € & is such that G(Y') € 6 has an .o/-precover ¢ : X — G(Y'), then F(X) e
FG(Y'Y 25 Y iy a B-precover of Y.

Proof. It is routine to check that the co-unit of the adjunction is a splitting epimorphism
if we restrict it to .« (routine with the above results). [

In the applications given below, we will concentrate our attention on t-injective
(pre)covers. Remember that if 1 is a hereditary torsion theory defined in a Grothendieck
category % (for concepts about torsion theories we will refer to [S, 15]), we say that
an object £ in % is t-injective if Extl(X,E) = 0 for all X € 7., where .7, denotes
the class of all 7-torsion objects. By t-injective (pre)covers, we mean .o/-(pre)covers,
where ./ is the class of t-injective objects in €.

Theorem 1. Ler (F,G): 6 — & be an adjoint situation and (n,s) the unit and the
co-unit of the adjunction, respectively. Let 1 be a hereditary torsion theory in € and
o be a full subcategory in &. We denote by .9, the cluss of t-injective objects in 6.
Suppose that it verifies the following conditions.
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(1) F(52) C . G(s4) C 5.
(2) For each M € €, the sequence

0 — Kery(M) — M "™ GF(M) — Cokern(M) — 0

has Kern(M) = 0 and Coker n(M) t-torsion free.

(3) For each D € 2, FG(D) PIDisa splitting epimorphism.

(4) G is right exact.

The following statements are verified.

(a) If every object in € has a t-injective precover, then every object in 2 has an
S -precover.

(b) If every object in & in the form F(M) (for some M € €) has an epic /-
precover, then every object in € has an epic t-injective precover.

Proof. (a) Let D € &, then there exists a t-injective precover in ¢ in the form
¢ : X — G(D). We will see that

Fx) 2 Fep) 2 p

1s an s7-precover in &. Let £ € o/ and f : E — D a morphism in &. We have the
completed commutative triangle

G(E)
g G(f)

v
X

J G(D)

Applying F, we obtain the commutative diagram

e E)
FG(E) +——"

F(g) FG(f) f

FX)y———" FG(D)————* D

F(¢) e(D)

Hence e(D)F(P)F(g)h =e(DYFG(f)Yh = fe(EYh = f, therefore there exists F(g)h :
E — F(X) such that e(D)F())F(g)h = f as we wished.

(b) Let M € 4. By hypothesis, there exists an .o/-precover in % in the form X' Y,

F(M) — 0. Since G is right exact, the sequence G(X') oW) GF(M) — 0 is exact.
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Now, we consider the following pullback diagram:

0 0
A A\
0 .- K iy “ M 0
v n(M)
" \
0 K G(X) — GF(M) 0
Gw)
A 2 A 4
C C
" \j
0 0

C 1s t-torsion free and, by hypothesis, Ker (M) = 0. Also, since G(X') € #, and C
is t-torsion free, it follows that P € .#,. We will see that P > M — 0 is a T-injective
precover. We take £ € #, and f : E — M a morphism in 4. The following diagram

can be completed:
F(E)
e F(f)

v
X' ———F(C)

Applying G, we obtain the commutative diagram
GF (E)
G NP

v
G(X')

G(¥) GF(C)



102 J.R Garcia Rozas, B Torrecillas! Journal of Pure and Applied Algebra 112 (1996) 91--107

By definition of pullback, we obtain the diagram

r
h /
x
G(g)n(L) P M
nim)
G(X") GF (M)

G(P)

The commutativity of the diagram is given by: G()G(gW(E) = GWgm(E) =
GF(fW(E) = n(M) [ (the last equality is obtained because # is a natural transfor-
mation) then there exists 4 : £ — P such that 24 = f as we wished. [

Remark. If we take for .#, the class of t-torsion free t-injective objects in %, the
theorem remains true.

3. Covers of graded modules

Let G be a multiplicative group with identity clement 1. A G-graded ring R 1is
a ring with identity 1, together with a direct sum R = EB;;EGR.O as additive sub-
groups, such that: R,R;, C Ry for all g, h € G. It is well known that R, is a sub-
ring of R and 1 € Ry. If RyRy, = Ry, for all g, h € G, then R is called a strongly
graded ring. By a (left) G-graded module we mean a left R-module M with a direct
sum decomposition @gE(iM‘l as additive subgroups, such that R,M, CM,, for all
g.h € G T N = @geGN‘/ is another graded R-module, then Homg_, (M,N) con-
sists of the R-homomorphism f : M — N such that f(M,}CN,. We denote by
R — gr the category of left G-graded modules and G-graded homomorphisms. It is
well known that R — gr is a Grothendieck category (cf. [13]). Then it is obvious that
we can define torsion theories and injective (pre)covers relative to a torsion theory
in R — gr.

Following [11, Section 4], we consider the adjunction of functors (U, F) : R—gr —
R — Mod, where U forgets the gradiation and for M € R-Mod, F(M) = @geG(”M)
(where each YM is a copy of M, M = {Ym|m € M}) with the structure of R-module
given by » 9 m =" (rm) for r € R,. The gradiation of F(M) is given by F(M), =
(M), g € G. We know that U is the left adjoint of F and, when G is finite, is the
right adjoint too.
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Between the Grothendieck categories R;-Mod and R-gr we consider the following
functors:

() (=) :R—gr — R — Mod, (M), = M,.

(2) Coind: Ry — Mod — R—yr, Coind(N) =P
{f € Homp (g, Rr, N) | f(RW) =0 :Yh#g '}

(3) Ind: Ry — Mod — R — gr, Ind(N) = R @, N.

It is known [9] that Ind is the left adjoint of (—), and Coind is the right adjoint
of (=)1.

Let t be a rigid torsion theory on R-gr (for the definition of rigid torsion the-
ory see [ll, Section 4]), and T the induced torsion theory on R-Mod. We know
that [11, Proposition 4.2] X € R-Mod is t-torsion if and only if F(X) € R-gr is
7-torsion.

Let ¢ be a torsion theory on R;-Mod. o is said to be G-stable if, for any o-torsion
Ry-module M, R, &g, M is o-torsion, for all g € G. In [13], it is proved that if R is a
strongly graded ring, then there exists a bijective correspondence between rigid torsion
theories on R-gr and G-stable torsion theories on R,-Mod. We will denote by a9 the
corresponding torsion theory on R-gr induced by o.

In fact, when R is strongly graded, R-gr and R;-Mod are equivalent categories. The
equivalence is given by the functors Coind and (—);; in this case Ind = Coind, (see
[1, Theorem 2.8]).

4 Comd(N )y, with Coind(N), =

Proposition 7. Ler R = P
torsion theory on Ry-Mod.
Every Ry-module has a x-injective cover if and only if every graded R-module has

a x?”

gecRy a strongly graded ring and xk a G-stable hereditary

-injective cover.

Proof. First, we are going to check the following two claims:
(a) If £ € R-gr is k" -injective, then E| is x-injective.
(b) If E € R|-Mod is x-injective, then Ind(E) is k9 -injective,
(a) Let £ € R-gr »¥-injective. We consider an exact sequence in R;-Mod

0 —>N-—-=M-—->MN -0

with M/N k-torsion, and f : N — E; an R;-homomorphism. Applying fnd, we can
complete the triangle

O0—— Ind(N) —— Ind (M)

Ind (M/N)

0

Ind(f)

v
Ind(E)=E
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(Since « is G-stable, Ind(M/N) is ¥ -torsion. Also Ind is exact in this case). Now,
applying (—); to the above diagram, we have

0 —— Ind(N), Ind(M), ———= Ind(M/N), ——— 0

&

Ind(f), :
v
El
Since Ind(—); = 1g,—moa and (=) ind = 1z_,, the proof of (a) is finished.

The proof of (b) is similar to (a).

Let M € R-gr, then there exists a x-injective cover for M| : ¢ : E — M| in R;-Mod.
We will see that Ind(¢) : Ind(E) — M is a k' -injective cover for M in R-gr. By
(b), Ind(E) is x* -injective. We consider £’ a k% -injective G-graded R-module and
f : £/ — M a G-graded morphism. Then there exists an R;-morphism ¢ : E] —
Ind(E), = E such that ¢g = f|. Hence Ind(¢g) = Ind(f1) and so Ind(¢p)ind(g) = f
as we wished. If & : Ind(E) — Ind(E) verifies that Ind(¢)h = Ind(¢), then ¢h, = ¢,
therefore 4 is an automorphism. Since Ind is an equivalence of categories, it follows
that /nd(h;) = h is an automorphism.

Conversely, let M € R;-Mod, then there exists a x%-injective cover for Ind(M):
Y E — Ind(M). It is ecasy to check (analogous to the above) that ¥, : £, — M is a
K-injective cover for M in R;-Mod. [

Now, the following result is immediate.

Corollary 3. Let R =P geRg a strongly graded ring. The following assertions are
equivalent.

Every Ri-module has an injective cover if and only if every graded R-module has
a gr-injective cover.

Proposition 8. Suppose that R = @geGRy is left noetherian and with finite support.
If ¢ : E — M is an injective cover in R-Mod with EEM € R-gr and ¢ a G-graded
morphism, then ¢ : E — M is a gr-injective cover in R-gr.

Proof. By hypothesis, the class of gr-injective objects in R-gr coincides with the class
of injective objects (as R-modules) in R-gr, [9, Corollary 2.3]. Hence, let E' € R-
gr an injective = gr-injective object and let g : £/ — M be a G-graded mor-
phism. Then there exists a “R-morphism” h : E' — E such that ¢4 = g. By [13,
Lemma [.2.1], there exists a G-graded morphism 4’ : E/ — E such that ¢h' = g
and so ¢ : E — M is a gr-injective precover. If f : E — E is a G-graded mor-
phism verifying ¢f = ¢, then f is an automorphism in R-Mod. Again, by [13,
Lemma 1.2.1], f is an automorphism in R-gr. Therefore ¢ : E — M is a gr-injective
cover. [J
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Remark. When R is a graded ring with finite support, we have the equivalences [9, p.
124]:

R is left gr-noetherian < R; is left noetherian and R, is a finitely generated R,-
module for all g € G & R is left noetherian.

Therefore, when R is a graded ring with finite support, the existence of gr-injective
covers for all graded R-module is equivalent to the existence of injective covers for
all R-module [2, Theorem 2.1].

Now, we are going to solve the following question: if R is a G-graded ring with
finite support, constructing for M € R-gr a gr-injective cover via a known object in
R-Mod (using the adjunction (U, £)), and conversely, given M € R-Mod, constructing
for M € R-Mod an injective cover with objects in R-gr. We will be able to prove this
either in the case that n = [{g € G|R; # 0}| is an invertible element in R or in case
F is a separable functor [14, Lemma 3.2].

Proposition 9. Suppose that R = P secRq 15 a left noetherian ring with finite support.
Let © be a rigid torsion theory on R-gr and T the induced torsion theory on R-Mod.

(a) If E € R-gr is t-injective, then U(E) is T-injective in R-Mod.

(b) If ¢ : E — M is a i-injective precover in R-Mod, then F(¢): F(E) — F(M)
is a t-injective precover in R-gr.

(¢) Suppose that F is a separable functor, if E LA F(X) is a t-injective precover in
R-gr, then U(E) g UF(X) X isa T-injective precover, where & is the co-unit of
the adjunction (U, F), ¢x(Ya) = a, for Ya € (°X ) (remember that F(X)=& _.(9X),
X =X for g € G).

(d) Suppose that F is a separable functor. Let X € R-Mod. Then X has a 1-
injective precover if and only if F(X') has a t-injective precover.

4eG

Proof. (a) Let £ € R-gr be a t-injective object in R-gr. We consider the short exact
sequence:

0 — E — &9(E) — 8(E)E — 0,

where £9(E) is the gr-injective envelope of £ in R-gr. Then, applying the forgetful
functor U, we obtain the short exact sequence

0 — U(E) — U(EY(E)) — U(ET(EVE) — 0.

By the hypothesis [9, Corollary 2.3], U(&%(E)) is an injective R-module. Also, since
E9(EY/E is t-torsion-free, then U(&Y(E)/E) is 1-torsion-free (see for example [6,
Proposition 2.2]). Now, it is easy to check that U(&9(E)) is T-injective, with the last
two considerations.

(b) and (c) follow by Propositions 4 and 6, respectively. (d) is a consequence of
(b) and (¢). I

Theorem 2. Suppose that R = @qeGRg is a left noetherian ring and F a separable
Junctor. Let t be a rigid torsion theory on R-gr and T the induced torsion theory on
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R-Mod. Then, every graded R-module has a t-injective precover in R-gr if and only
if every R-module has a t-injective precover in R-Mod.

Proof. Suppose that every R-module has a T-injective precover in R-Mod. Let M be
an object in R-gr. Then U(M) has a t-injective precover ¢ : E — U(M). By part (b)
of Proposition 9, F(¢) : F(£) — FU(M) is a t-injective precover in R-gr. Since M
is a direct summand of FU(M ) = @QEGM(g), then it is easy to check that F(E) £

FU(M) 2 M (where p; : FU(M) — M is the natural projection of FU(M) over M)
is a t-injective precover.

Conversely, suppose that every graded R-module has a r-injective precover in R-
gr and let us consider N € R-Mod. Then F(N) has a t-injective precover in R-gr
Y E — F(N). By part (¢) of Proposition 9, U(E) ve) UF(N) 5 N is a T-injective
precover of N. I

Remark. If we also impose the condition that G is finite in Theorem 2, then U is
the right adjoint of F and the proof of the theorem is easier. In particular, in this
case, it can be proved that if ¢ : £ — M is a t-injective precover in K-gr, then
U(¢p): U(E) — U(M) is a T-injective precover in R-Mod.

Finally, we give the most general result about lifting of relative injective covers
involving the three categories R-Mod, R-gr and R,-Mod that we have been able to
obtain.

Theorem 3. Let R = @%GR‘, a strongly graded ring. Let t be a rigid torsion theory
on R-gr. Suppose that R is left noetherian and that F is a separable functor. The
Sfollowing assertions are equivalent.
(1) Every graded R-module has a t-injective precover in R-gr.
(i1) Every R-module has a t-injective precover in R-Mod.
(1) Every R\-module has a t|-injective precover in Ry-Mod.

Proof. The proof follows by Theorem 2 and Proposition 7. [

Example. Let G be a finite group and let S be a left noetherian ring. Suppose that the
order of G is an invertible element of S. Then SG (the group ring of S over G) is in
the conditions of Theorem 3. (See {14] for the separability of F in this case.)
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