
‘JSJ __ . . _ -_ lli! 
ELSEVIEK 

JOURNAL OF 
PURE AND 
APPLIED ALGEBRA 

Journal of Pure and Applied Algebra II2 (1996) 91-107 

Preserving and reflecting covers by functors. 
Applications to graded modules 

J.R. Garcia Rozas * and B. Torrecillas ’ 
Dt;oar~nwt~r t$ Al<&ra und Anu{rsi.c. L~niniiwsif~~ qf Almrriu, 04071 Almrria, Spain 

Commumcated by C.A. Weibel; received I February 1995; revised 23 August 1995 

Abstract 

WC study %-covers in the context of Grothendieck categories. Namely, we analyse when 
a functor between two Crothendieck categories preserves or reflects %-covers. We apply our 
general study to the category of graded modules over a graded ring, by showing that relative 
injectivc covers with respect to a torsion theory are preserved and reflected, in some cases, 
among the categories R-gr, RI-Mod and R-Mod. 

I. Introduction 

Let ‘6 be a Grothendieck category and .d a full subcategory of Q?. The general 

problem of the existence of .d-(pre)covers for every object in (6 is an interesting 

question. For concrete ‘t and .cu’, the characterization of the existence of .d-(pre)covers 

has allowed to obtain special properties for %. For example, if .d is the full subcategory 

of injective objects in %, every object in (8 has an injective (pre)cover if and only if 

% is a locally noetherian category. This result was given by E. Enochs for the case of 

% = R - Mod and it has been the first step in a homology theory for modules, using 

injective resolvents [2, 3, 7, 81. In [4, 161, the existence of (pre)covers of injectives 

relative to an hereditary torsion theory was considered. 

In Section 2, we find some conditions under which a given functor preserves and (or) 

reflects (pre)covers. For this, the concept of separable functors (cf. [ 121) is fundamental. 

In Section 3. we apply these results to study the relationship between (relative) injective 
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(pre)covers in R-Mod and the category of graded left R-modules for R = @r,Ec;RcI a 

graded ring. We also obtain precovcrs in R-Mod from precovers in RI-Mod. 

The study of relative injective (pre)covers could be important for the development 

of a relative homology theory. 

2. General results 

In this section G? and t/ will denote arbitrary Grothendieck categories. Let .c/ be a 

class of objects in +Y. We recall the definition introduced by Enochs in [2]. 

Definition 1. Let X be an object of ‘6. We say that E in .d is a .rj/-precover of X if 

there exists a homomorphism & : E --i X such that the triangle 

can be completed for each homomorphism E’ + A’ with E’ in .c/. If the triangle 

E 
\ 

can be completed only by automorphisms, we say that C$ : E + X is a .el-cover. 

Throughout this section let F : % d ‘9 be a covariant functor and .d CC?? a full 

subcategory of ‘tj closed under isomorphisms. Suppose that F(.d) = {F(A)IA E d’} is 

full in B and closed under isomorphisms. 

Definition 2. We say that a covariant functor F : % - 9 preserves (resp. reflect) 

.d-(pre)covers in the case that if (i, : B +A’ is a .d-(pre)cover, then F(4) : F(E) + 

F(X) is a F(.d)-(pre)cover (resp. if F( 4) : F( E ) + F(X) is a F(.o/)-(pre)cover then 

(b : E - A’ is a .d-(pre)cover). 

We are going to study when F preserves or reflects .d-(pre)covers. 



Proof. Easy. 7 

However, there exist a more general class of functors that preserve and reflect .d- 

(pre)covers in a separate way. 

Recall the concept of separable functor given in [12, Section 11. 

Definition 3. A covariant functor F: % + Ir is said to be a separable functor if fat 

all objects M,N in % there are maps ‘pL.N: 

qG,,v: Hor?l,,(F(M).F(N)) - HomE((M,N), 

satisfying the following conditions: 

SFI. For 7: g Hom~(M,N) we have q~$,~(F(x)) = x. 

SF2. Given M’.N’ E (6, x E Homc(M,M’). /I’ E Homx(N,N’), f’ t Honz!,(F(M), 

F( N )), g E Hom~( F(M’ ),F(N’)) such that the following diagram is commutative: 

Then the following diagram is also commutative: 

M 
Y&Y (J ) 

*N 

4 t 
M’ 

CD: v(K) 
* N’ 

It is clear that SF1 implies that a separable functor is faithful. Conversely, if F is 

full and faithful (but not necessarily an equivalence), then F is separable. We collect 

this fact in the next lemma. 

Lemma 1. Thr follo~~‘ng qfirrnutions UYCJ eyuicalmt &out u cmuriant jirnctor 

F:% -9. 

(a) F is ,fdl anclj~ithfid. 

(b) F is jidl unci .sepuruhl~. 

Proposition 2. Let F : %‘ - .V he a cocuriunt .firnctor \r,ith .c// und F(d) full 
suhcutqories in % und 9, rep~cticely. Then, 
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(1) If F is fill and faithful, F prcsemes .d-couers. 

(2) If F is separable, F rt$ects .d-covers. 

Proof. (1) Is easy, so we will prove (2). For that, we check: F(4) : F(A) + F(M) is 

a F(d)-cover implies C#CJ :A --f M is a .&-cover. 

We consider the diagram 

with A’ in .PZ. 

Applying F we have the commutative triangle 

FM’) 

By definition of separability we deduce the commutativity of the triangle 

Hence 4: A + h4 is an .d-precover. Now, we will see that it is a ,d-cover. We 

consider the commutative triangle 

A 

I\ 

d 4 
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Applying F we obtain 

F(A) 

F(d) is an isomorphism because F(4) is an F(.e;‘)-cover. Therefore, there exists a 

6 E Hom~(F(A),F(A)) such that dF(d) = F(d)r5 = IF(A). Hence: 

So cp’(b)d = dqF(b) = IA, and so ~2 is an isomorphism. 0 

Now, we give the concepts of full, faithful, and separable functor relative to a full 

subcategory in V. 

Definition 4. For F : % - 2 a covariant functor and .c// a full subcategory in % 

with F(.o;‘) full in 2, we say that: 

(1) F is .d-full (resp. .&-faithful) in the case that for every A E .d and X E $9, the 

abelian group morphisms 

F(A,X) : Horni (A,X) - HonQF(A), F(X)) 

are surjective (resp. injective); 

(2) F is .&-separable if FI,,d : .d - F(.d) is a separable functor. 

Proposition 3. Let F : % - Y he a coaariant Jimctor kth .d und F(,d) ,fidf 
subcategories in % and 9, respectiuelJ1. 

(I) If F is d-full, then F preserces x2-precotjers. 

(2) If’ F is .ti-$ulI and &-fclithjid, then F preseraes .d-cocers. 

(3) !f’ F is .d-sepuruhle, F rejlects ..&-covers. 

Proof. Easy. 0 

Throughout we will denote by (F, G) : V 3 - 2 an adjoint situation with &‘c fg 

and J & % full subcategories verifying F(&) C 9 and G(9) C ,&. 

Proposition 4. Ij’ Y’ E 2 has a &-precocer 4 : X’ + Y’, then G(b) : G(X’) ---f G(Y’) 

is u .d-precotler of G( Y’). 
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Proof. Let J‘ : A + G(Y’) be a morphism in %. Then, there exists g : F(A) + X’ such 

that $g = t:vlF(,f). Hence G(&g) = G(c~JF(~‘)) = ,f‘, and so there exists a morphism 

in V, namely G(g), such that G(cb)G(g) = .f’. 0 

The following proposition is of preparatory nature. In [ 14, Theorem I.21 appears the 

proof of (1) C+ (3) in (a) and (b), respectively, and so we do not give them. 

Proposition 5. Let (F, G) : % + 9 hr un adjoint .cituation ivith E : FG + 19 and 

n : 1~6 + GF the co-unit und the tinit of the udjunction, respectively. 

(a) The follo\z~ing assertions arc eyuiculent. 

( 1) G is u sepurahle fktctor. 

(2) FG is a sepcnvhle jitnctor. 

(3) t: is, us a nuturcd trunsformution, a .splitting epimorphism; i.e., there exists 

E: 1 ‘/ + FG such that xi: = lP. 

(b) The .fijllo\4aing assertions ure ryuiculent. 

(1) F is a sepuruhle ,fimctor. 

(2) GF is a sepurahlc Junctor. 

(3) n is, us a nuturul trunsfhrmution. u splitting monomorphism; i.e., there 

exists q : GF + I,/, suclt that tin = 1%. 

Proof. (a) First, we will prove (2) + (3). If FG is separable, for each X,X’ E 9’ 

there exists (~$5, : Homy(FGX, FGX’) -+ Homi,(X,X’) verifying the separability 

conditions. We will see that cp(F * 17 * G) (* represents the Yoneda product which 

throughout we will omit) is the required tl. First we will check that (pFnG is a natural 

transformation. Let X,X’ E 9 and ,f’ t Homv(X,X’). From the diagram 

‘lGX 
Gx - G&X 

GFG‘C.1) 

GX' - GFGX’ 
‘Icx 

we obtain, applying the functor F 

FGX 
F%X 

* FGFGX 

1 FGI..G (f’) 

By separability, we have the commutative diagram 



Therefore, ~pFryG : I,, + FG is a natural transformation. 

Now. we will see that c(cPFP/G) = I,,. From the commutative diagram 

i 4 
FGX * FGX 

/(T(I) 

(the commutativity is obtained by Gr:, qc;.~ = I(;,v because (F. G) is an adjunction) we 

obtain by separability 

X ‘X 
I 

Hence t:~~pFt/~;.~ = I \, VA’ and C = qFqG. 

(3) =+ (2) Suppose that there exists a natural transformation C: : 1 y - FG such 
that c:C = I,, For X,X’ E ‘9 we define 

q:‘i, : Hom,,( FGX, FGX’) - Hotm,(X,X’) 

by c/‘( (1) = ::.~~<qi:~. We verify SF1 of the definition of separability: 

Let x E Ho~~~~,.(X,X’), as i: is a natural transformation we have the diagram 

c , 
FGX - X 

We obtain y?“(FG(x)) = cy~FG(x)tTY = w:.~C,~ = x and we have SFI. 
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We will prove SF2. Let X,X’, Y, Y’ E 9 and we consider the following commutative 

diagram: 

FGX .f FGY 

FGX’ - FGY’ 
I: 

We want to prove that the diagram 

is also commutative. We have the following: c) ,y<v(cc = ~y,gFG(r)C.v = E~,FG(IJ)J’CX 

= /Icyfix as we wanted (these equalities are valid only when E is a natural transfor- 

mation and not when cx is a splitting epimorphism VX E 9). 

(b) The proof is analogous to (a). For completeness, if GF is separable with a 

map of separation cp, the natural transformation rj such that +jv = 1 is tj = (p(GcF). 

Conversely, if rj is the natural transformation such that fq = 1 then we define 47 by 

VU) = iifV. 0 

The following corollary is a trivial consequence of the above. 

Corollary 1. Let (F, G) : W - 9 he un udjoint situution with 1: : FG - 1 v the 

co-unit of the adjunction. If’ FG is u sepuruhle ,ji(nctor, then C‘Y : FGX + X is u 

splitting epimorphism VX E k. 

Proposition 6. In the udjoint situation ahow, f the co-unit of the udjunction E verifies 

thut CZ~ : FGZ’ + Z’ is u splitting epimorpllism tiZ’ E .8 (weaker than c to he u 

splitting epimorphism us a nuturul trunsjbrmution) then : iJ’ Y’ E ?9 is such thut 

G( Y’) E %? has an d-precover q!~ : X + G( Y’), then F(X) F* FG( Y’) ‘2 Y’ is u 

B-precover of Y’. 

Proof. Let E E 98 and f : E + Y’. Applying G we have the commutative diagram 



G(E) 

Applying F to the later triangle we can obtain the following diagram with square and 

triangle commutatives 

F(X). FGY’ WY 
C-C($) E>. 

Hence cy~F( ~~)F(~)TTE = i-:y,FG(f’)q~ = ,f’+q6 = .f‘. Therefore, the morphism F(g)qE 

makes the diagram commutative and so cy,F(4) is a .+I-precover. ä 

Now, the following corollary is immediate. 

Proof. It is routine to check that the co-unit of the adjunction is a splitting epimorphism 

if we restrict it to .vI (routine with the above results). 3 

In the applications given below, we will concentrate our attention on t-injective 

(pre)covers. Remember that if T is a hereditary torsion theory defined in a Grothendieck 

category % (for concepts about torsion theories we will refer to [5, 151). we say that 

an object E in % is r-injective if E.x-t!,(X, E) = 0 for all X E .Y?, where Y7 denotes 

the class of all z-torsion objects. By T-injective (pre)covers, we mean .d-(pre)covers, 

where .~1 is the class of z-injective objects in %. 
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(1) F(9,) C cd, G(d) C Ya,. 
(2) For each M E V, the sequence 

0 -+ Ker q(M) + M ‘3 GF(M) - Coker y(M) + 0 

has Ker q(M) = 0 and Coker q(M) z-torsion free. 

(3) For each D E 59, FG(D) 3 D is a splittimg epimorphism. 

(4) G is right exact. 

The following statements are verified. 

(a) If every object in % has a T-injective precover, then every object in 9 has an 

d-precover. 

(b) If every object in 2 in the ftirm F(M) (f or some A4 E 27) has an epic d- 

precover, then every object in %? has an epic T-icjective precover. 

Proof. (a) Let D E 9, then there exists a r-injective precover in %? in the form 

4 : X --) G(D). We will see that 

F(X) F2 FG(D) E(D! D 

is an &-precover in 9. Let E E .d and f : E ----) D a morphism in 53:. We have the 

completed commutative triangle 

G W 

Applying F, we obtain the commutative diagram 

E(E) 
FG(E) F E 

F(g) 

/I 

FGU) f 

r 
F(X) - 

F(4) 
FG(D) _____t D 

E(D) 

Hence &(D)F(+)F(g)h =E(D)FG(f )h = fc(E)h = f, therefore there exists F(g)h : 

E 4 F(X) such that &(D)F(4)F(g)h = f as we wished. 

(b) Let M E $5’. By hypothesis, there exists an &-precover in 29 in the form X’ 5 

F(M) --t 0. Since G is right exact, the sequence G(X’) Gy GF(M) + 0 is exact. 
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Now, we consider the following pullback diagram: 

0 - K - G(X) - 
G(Y) 

GF(A4) - 0 

I I 
C C 

C is ?-torsion free and, by hypothesis, Ker q(M) = 0. Also, since G(F) E 9, and C 

is t-torsion free, it follows that P E 4,. We will see that P 5 M 4 0 is a z-injective 

precover. We take E E .YT and f : E + M a morphism in %. The following diagram 

can be completed: 

X’- F(C) 
Y 

Applying G, we obtain the commutative diagram 

GF (-3 

G(X’) G(y) 
- GF(C) 



By definition of pullback, we obtain the diagram 

G(Y) - GF(M) 
G(Y) 

The commutativity of the diagram is given by: G( y?)G(g)~~(E) = G(~~cJ)~(E) = 

GF(J‘)q(E) = g(M)f (the last equality is obtained because 4 is a natural transfor- 

mation) then there exists h : E --f P such that xh = ,f‘ as we wished. 0 

Remark. If we take for Jr the class of r-torsion free r-injective objects in V, the 

theorem remains true. 

3. Covers of graded modules 

Let G be a multiplicative group with identity element 1. A G-graded ring R is 

a ring with identity 1, together with a direct sum R = @cIEGRc, as additive sub- 

groups, such that: R,Rh CR!,/, for all 8, h E G. It is well known that RI is a sub- 

ring of R and 1 E RI. If R,Rh = R,,/, for all 9. h E G, then R is called a strongly 

graded ring. By a (left) G-graded module we mean a left R-module A4 with a direct 

sum decomposition @,,(; MC, as additive subgroups, such that R,Mh C M(,h for all 

c/, h E G. If N = @,,c; NtJ is another graded R-module, then Ho~T~_~,(M,N) con- 

sists of the R-homomorphism ,f‘ : .M + N such that J’(Mg)C Nq. We denote by 

R - gr the category of left G-graded modules and G-graded homomorphisms. It is 

well known that R ~ gr is a CJrothendieck category (cf. [13]). Then it is obvious that 

we can define torsion theories and injective (pre)covers relative to a torsion theory 

in R - gr. 

Following [I 1, Section 41. we consider the adjunction of functors (U,F) : R - gr + 

R - Mod, where U forgets the gradiation and for M E R-Mod, F(M) = @gEG(qM) 

(where each YM is a copy of M, YM = {“m~nz t M}) with the structure of R-module 

given by r d m =hg (rm) for Y E Rh. The gradiation of F(M) is given by F(M), = 

(“M), q E G. We know that U is the left adjoint of F and, when G is finite, is the 

right adjoint too. 



Between the Grothendieck categories RI-Mod and R-gr we consider the following 

functors: 

(l)(-),:R-p--iR,-Mod,(M),=M,. 

(2) Coind: RI -Mod + R-q, Coind(N) = @i,tCCoind(N),, with Coind(N), = 

{,f‘ E Hottt~,(~,R~, N) 1 ,f(Rt,) = 0 : V’h # .~l-‘}. 
(3) Itzd: R, - Mod - R - yr, bzd(N) = R ZR, N. 

It is known [9] that Ind is the left adjoint of (-), and Coind is the right adjoint 

of (-11. 
Let z be a rigid torsion theory on R-gr (for the definition of rigid torsion the- 

ory see [ 1 1, Section 4]), and f the induced torsion theory on R-Mod. We know 

that [l 1, Proposition 4.21 X E R-Mod is f-torsion if and only if F(X) E R-gr is 

.r-torsion. 

Let (T be a torsion theory on RI-Mod. IT is said to be G-stable if, for any o-torsion 

Rl-module M, R, j;lR, A4 is a-torsion, for all 9 E G. In [13], it is proved that if R is a 

strongly graded ring, then there exists a bijective correspondence between rigid torsion 

theories on R-gr and G-stable torsion theories on RI-Mod. We will denote by r? the 

corresponding torsion theory on R-gr induced by ci. 

In fact, when R is strongly graded, R-gr and RI-Mod are equivalent categories. The 

equivalence is given by the functors Coind and (-), ; in this case Inch ” Coind, (see 

[l, Theorem 2.81). 

Proposition 7. LP~ R = @,,(; R,, u strongly graded ring crnd K CI G-stable herediitary 

torsion theor>? on R 1 -Mod. 

Proof. First, we are going to check the following two claims: 

(a) If E t R-p is KC”‘-injective, then El is x-injective. 

(b) If E E Rl-Mod is k--injective, then Znd(E) is &“-injective. 

(a) Let E E R-yr CJ’-injective. We consider an exact sequence in RI-Mod 

with M/N K-torsion, and .f : N - El an RI-homomorphism. Applying lnd, we can 

complete the triangle 

0 - Ind(N) - Itrd(M) p Itzd(M/N) - 0 

R 

Ind(E,)r E 
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(Since K is G-stable, Zrzd(M/N) is &“-torsion. Also Znu’ is exact in this case). Now, 

applying (-)I to the above diagram, we have 

0 - Ind(N), - Znd (M), . Znd(MIN), - 0 
\ 

Since Znd(-)I 2 ~R,-M~~~~ and (-)rZnd 2 l,._gr, the proof of (a) is finished. 

The proof of (b) is similar to (a). 

Let M E R-gr, then there exists a K-injective cover for A41 : 4 : E + Ml in RI-Mod. 

We will see that Znd($) : Znd(E) --f M is a ri”‘-injective cover for M in R-gr. By 

(b), Znd(E) is Ic”‘-injective. We consider E’ a tiY’-injective G-graded R-module and 

f : E’ + M a G-graded morphism. Then there exists an RI-morphism g : E{ + 

Znd(E)l = E such that &g = ,f‘t. Hence Znd(4g) = Znd(fl) and so Znd(4)Znd(g) = f 

as we wished. If h : Znd(E) + Znd(E) verifies that Znd(#)h = Znd(4), then @zr = 4, 

therefore ht is an automorphism. Since Znd is an equivalence of categories, it follows 

that Znd(hl) = h is an automorphism. 

Conversely, let M E RI-Mod, then there exists a K-“‘-injective cover for Z&(M) : 

$ : E + Znd(M). It is easy to check (analogous to the above) that Yt : El ---f M is a 

K-injective cover for M in Rt-Mod. 0 

Now, the following result is immediate. 

Corollary 3. Let R = @ ,EC;R, a .strongly graded ring. The following assertions are 

equivalent. 

Every RI-module has an injective cover if und only if every graded R-module has 

a gr-injective cover. 

Proposition 8. Suppose that R = @ IEGRB is left noetherian and with jinite support. 

Zf C$ : E + M is an inj~ectice cover in R-Mod with E,M E R-gr and 4 a G-graded 

morphism, then C/I : E + M is u gr-inj.ective cover in R-gr. 

Proof. By hypothesis, the class of gr-injective objects in R-gr coincides with the class 

of injective objects (as R-modules) in R-gr, [9, Corollary 2.31. Hence, let E’ t R- 

gr an injective = gr-injective object and let g : E’ + M be a G-graded mor- 

phism. Then there exists a “R-morphism” h : E’ + E such that +h = g. By [ 13, 

Lemma 1.2.11, there exists a G-graded morphism h’ : E’ + E such that @’ = g 

and so 4 : E + M is a gr-injective precover. If f : E - E is a G-graded mor- 

phism verifying 4f = 4, then .f is an automorphism in R-Mod. Again, by [13, 

Lemma 1.2.11, f is an automorphism in R-gr. Therefore 4 : E + M is a yr-injective 

cover. q 
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Remark. When R is a graded ring with finite support, we have the equivalences [9, p. 

1241: 

R is left gr-noetherian H RI is left noetherian and R, is a finitely generated RI- 

module for all 9 E G H R is left noetherian. 

Therefore, when R is a graded ring with finite support, the existence of gr-injective 

covers for all graded R-module is equivalent to the existence of injective covers for 

all R-module [2, Theorem 2.11. 

Now, we are going to solve the following question: if R is a G-graded ring with 

finite support, constructing for M E R-gr a gr-injective cover via a known object in 

R-Mod (using the adjunction (U, F)), and conversely, given M E R-Mod, constructing 

for M E R-Mod an injective cover with objects in R-gr. We will be able to prove this 

either in the case that n = i{s E GIR, # O}i 1s an invertible element in R or in case 

F is a separable functor [ 14, Lemma 3.21. 

Proposition 9. Suppose that R = @ qEGRY is a left noetheriun ring with jinite support. 

Let z he a rigid torsion theory on R-gr and t the induced torsion theory on R-Mod. 

(a) If E E R-gr is T-injective, then U(E) is t-injectizje in R-Mod. 

(b) Jf qf~ : E - M is a 7-injective precoaer in R-Mod, then F(4) : F(E) + F(M) 

is u t-injectice precocer in R-q. 

(c) Suppose that F is u separable functor, if E 1 F(X) is u z-injectiae precouer in 

R-gr, then U(E) ‘2’ UF(X) 2 X is a ?-injectire precocer, where I: is the co-unit of 

the adjunction (U,F), ox = a, for ga E (“X) (remember that F(X) = @,&gX), 

“X=X for y E G). 

(d) Suppose that F is a separable functor. Let X E R-Mod. Then X has u ?- 

injectice precouer zy and only if F(X) has u z-injectitle precotier. 

Proof. (a) Let E E R-gr be a t-injective object in R-gr. We consider the short exact 

sequence: 

0 + E - Rq’(E) + gY’(E)/E ----f 0, 

where P’(E) is the yr-injective envelope of E in R-gr. Then, applying the forgetful 

functor U, we obtain the short exact sequence 

0 + U(E) + U(b”‘(E)) ---t U(t”“‘(E)/E) + 0. 

By the hypothesis [9, Corollary 2.31, U(P(E)) is an injective R-module. Also, since 

P’(E)/E is T-torsion-free. then U(P’(E),‘E) is ?-torsion-free (see for example [6, 

Proposition 2.21). Now, it is easy to check that U(CV(E)) is ?-injective, with the last 

two considerations. 

(b) and (c) follow by Propositions 4 and 6, respectively. (d) is a consequence of 

(b) and (c). Z 

Theorem 2. Suppose thut R = @ gEGRY is a lrf‘t noetherian ring and F u separable 

functor. Let 5 he a rigid torsion theor,v on R-gr and S the induced torsion theory on 



R-Mod. Then, every gruded R-module hus (I T-injective precover in R-gr if und only 

if every R-module bus u ?-injectire precowr in R-A4od 

Proof. Suppose that every R-module has a Y-injective precover in R-Mod. Let A4 be 

an object in R-gr. Then U(M) has a ?-injective precover 4 : E + U(M). By part (b) 

of Proposition 9, F(&) : F(E) + FU(M) is a r-injective precover in R-gr. Since M 

is a direct summand of FU(M) ” @,&J(g), then it is easy to check that F(E) ‘2 

W(M) 2 A4 (where pr : FL/(M) + A4 is the natural projection of /W(M) over M) 

is a r-injective precover. 

Conversely, suppose that every graded R-module has a r-injective precover in R- 

gr and let us consider N E R-Mod. Then F(N) has a s-injective precover in R-gr 

$ : E + F(N). By part (c) of Proposition 9, U(E) ‘2 l/F(N) 2 N is a f-injective 

precover of N. El 

Remark. If we also impose the condition that G is finite in Theorem 2, then I/ is 

the right adjoint of F and the proof of the theorem is easier. In particular, in this 

case, it can be proved that if 4’, : E - A4 is a r-injective precover in R-gr, then 

U(g) : U(E) + U(M) is a ?-injective precover in R-Mod. 

Finally, we give the most general result about lifting of relative injective covers 

involving the three categories R-Mod, R-gr and RI-Mod that we have been able to 

obtain. 

Theorem 3. Let R = @,,(; y R u .crrongl~~ gruded ring. Let 5 he u rigid torsion theoq 

on R-gr. Suppose thut R is /eJt noctiwrim und thut F is u .sep~r&le ,fimctor. The 

fvllou~ing ussertions are eyuiwlenl. 

(i) Every graded R-module IILIS u t-injectice precover in R-gr. 

(ii) Every R-module has u ?-injective prrcover in R-Mod. 

(iii) Every Rl-module bus a 71 -injectice prccowr in RI-Mod. 

Proof. The proof follows by Theorem 2 and Proposition 7. 0 

Example. Let G be a finite group and let S be a left noetherian ring. Suppose that the 

order of G is an invertible element of S. Then SG (the group ring of S over G) is in 

the conditions of Theorem 3. (See [ 141 for the separability of F in this case.) 
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