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Introduction

The language of exact categories allows finite limits and quotients of equivalence
relations and has an axiom which states that quotients are preserved by inverse
images of maps. This paper shows in detail how such a language is precisely what is
needed to formulate the concept of cohomology class in each dimension n=0 and to
establish the functorial properties of cohomology. Given a particular exact category
%, one obtains a family of abelian group valued functors H"(%, —) defined on
abelian group objects of #. A cohomology class from H"(%, A) is realized directly in
# as an algebraic structure called an ‘n-torsor’, a certain kind of group action of the
coefficient group A. There is no intervening construct such as, for example, a
resolution.

For an introductory illustration of a ‘l-torsor’, consider the following classical
example. Let G be a group and let #C denote the (exact) category of G-sets. Given a
G-module A, (an abelian group object of #Y), an element of H!(G, A4) is a short
exact sequence of G-modules

(/.8):0-A—E—-Z-0

where G acts trivially on Z. In the category of G-modules (which is also exact), the
map f:A—E determines an action of 4 on £ defined by ya=—fa+y, yeE,a€A,
with two characteristic properties: (1) the map £ x A — E X E sending (¥, a) to (y, ya)
is a monic whose image is an equivalence relation on E and (2) the quotient of this
equivalence relation is g: E— Z. These data, summarized in the ‘exact diagram’ of
G-modules

action
EXAT—F—7Z
proj. 4

comprise a ‘1-torsor under 4 over Z°.
Since properties (1) and (2) can be interpreted in non-abelian exact categories, one
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may instead consider the same cohomology class of H'(G,A) as follows. Let
Ey={yeE|gy=1}.The action of A on E given above restricts to an action of 4 on
Ey in 79 and has the property that the map sending (y,a) to (¥, ya) is an
isomorphism of G-sets EgxA—EoxE, The corresponding exact diagram
EyxA3E;—1in ¥ is again a 1-torsor under A over 1. This torsor represents the
zero cohomology class iff there exists a G-map 1—E, (or, equivalently, G fixes an
element of Ey). The group structure of H'(G, A) correlates the Baer sum of two
cohomology classes in the abelian category of G-modules with the Whitney sum of
the two corresponding torsors in the exact non-abelian category .

The l-torsor just considered possesses another important structure — that of a
groupoid — where E, comprises the vertices, Eyx A the edges, and where the
groupoid multiplication is defined by (y,a)(ya,a’) =(y,a+ a’). Note the special way
in which A is involved, in particular that the projection EyxA—A is a groupoid
homomorphism. In fact, since any groupoid related in this manner to the G-module
A determines a 1-torsor whose groupoid it is, one is led to focus, in dimension 1, on
groupoids and projection maps (‘fibrations’) into A.

The concepts of groupoid and fibration can easily be exiended so as to yield a-
dimensional torsors which represent cohomology classes of H". Simplicial algebra is
used to accomplish this extension because it yields very concise workable definitions
and the easy and natural transition between dimension 1 and dimension n>1
structures. The role played in dimension 1 by groupoids is played in dimension n by
an algebraic structure called an ‘n-dimensional hypergroupoid’ whose structure
consists of a kind of generalized composition law satisfying certain equations.
Hypergroupoids and hypergroupoid actions (again, fibrations) comprise the
technical framework of the entire theory.

In order to realize an n-dimensional cohomology class with coefficients in A, one
associates to A a basic kind of n-dimensional hypergroupoid denoted K(A4, n). (As
the notation suggests, this hypergroupoid is a simplicial Eilenberg—MacLane space.)
Cohomology classes are represented by actions of K(A, n) called ‘n-torsors’. These
actions are characterized by properties analogous to those observed in the example
of a 1-torsor. One may then systematically develop the functorial properties of H”,
its group structure, and the long exact sequence.

The axioms for n-dimensional hypergroupoids and n-torsors are really axiom-
schema in exact category language with ‘»#’ as the only parameter. In effect, one
uniform theory applies in all dimensions. We will prove that every n-torsor is a
1-torsor in the category of (n — 1)-dimensional hypergroupoids. This reinterpretation
again emphasizes the uniformity of the torsor concept by detaching it from depend-
ence on dimension as much as possible: “‘all torsors are 1-torsors”’. It also results in
simplified proofs of functoriality, etc.

When % is a category for which cohomology groups can be defined in the
traditional manner (4, 14], the question arises of how these groups compare with the
ones defined in this paper. The answer, in the case of group cohomology, Ext, sheaf
cohomology and many others, is that the groups are isomorphic.
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The methods described in this paper serve both to define and concretely realize
cohomology classes in categories to which the traditional methods do not apply.
Examples and applications in such categories will be discussed in later papers.

I am happy to acknowledge my great debt to J.W. Duskin for his mathematical
ideas and advice concerning the results presented here. This paper is based on my
thesis [8] which was written under his direction and which took his earlier work
on torsors [7] as a starting point. I would also like to thank F.W. Lawvere and
S. Schanuel for their help while I was working on my thesis, and J.C. Cole for his
helpful remarks leading to a (corrected) proof of Theorem 5.7.5.
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1. Exact categories and simplicial objects

1.1. Definition of exact category

Let # be a category.

Definitions. The kernel pair of a map p:E — X is a pair of maps py, p;: R — E such
that ppy= pp, and such that if pgy= pg; then g; = p;u, i=0,1 for a unique map u. A
pair of maps f,g:R—E is an equivalence pair if for every T the function
#(T,R)— ¢(T,E) x #(T,E) sending h to (fh, gh) is a monomorphism whose image is
an equivalence relation on %(T, E).

Definition. The category 7 is exact if it has all finite limits, if all its equivalence
pairs have coequalizers, and if the pullback of any coequalizer is again a coequalizer.

Note that any kernel pair is an equivalence pair. In any exact category, an
equivalence pair is the kernel pair of its coequalizer and a coequalizer is the
coequalizer of its kernel pair.

Definition. The diagram R33E — X is called exact if E—X is the coequalizer of
R=E and R 3 E is the kernel pair of E—+X.

In an exact category, any map factors uniquely as a coequalizer followed by a
monic: the coequalizer is that of the kernel pair of the map. The composite of
coequalizers is a coequalizer and g is a coequalizer if gp is. From here on,
‘epimorphism’ will be used in place of ‘coequalizer’.

Some examples of exact categories are: the category .# of sets, the category &+ of
functors % —.%, the category Sh(X) of set-valued sheaves on the topological space
X, any topos (in fact), any category monadic over ¥ (e.g. groups, rings, k-algebras,
etc.), any abelian category.
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1.2. Yoneda-elements

Let F: 7 — % be a functor. It follows from Yoneda’s lemma that X—::ligp,- F()iff
#(T,X)=lim #(T,F(i)) forall T in 7.

Definition. A Yoneda-element (or simply element) of X is a map x: T—X. Write
Xx € X (abusing notation).

The following example illustrates how the concept of Yoneda-element will be
used. The diagram

E—4

o

B—Xx
is a pullback in # iff for any T,
UTLE)—— (T, A)

|

#“(T,B)— 4(T.X)

is a pullback in ¥ with the functions induced by composition. If a:T—A4 and
b:T—B, then (q,b)eE iff fa=gb. Note that pry(a,b)=a and prg(a,b)=5b. The
reference to ‘T’ in discussing Yoneda-elements may be deleted so long as one
understands that ‘elements’ are morphisms.

If f:X—Y, and x€ X, then fxe Y. (Yoneda’s lemma implies that every function
of Yoneda-elements, actually a natural transformation %(—, X), %(-,Y), arises
from a morphism f:X—-Y). f:X—-Y is a monomorphism iff fx=_fx’ implies
x=x'. gf =hiff gfx=hx for all (suitable) x.

1.3. Barr-elements

In {1] and [2] Barr proved an Embedding Theorem one of whose consequences is
that for any small exact category ¢ there is a family {F;}, of set-valued limit- and
epi-preserving functors which are collectively faithful and collectively limit- and epi-
reflecting. ‘Collectively faithful’ means that if F;(f)=F;(g) for all i then f=g.
‘Collectively limit-reflecting’ and ‘collectively epi-reflecting’ have obvious analogous
meanings.

Suppose one has a diagram in ¢ involving finite limits and coequalizers.
Applying an arbitrary limit- and epi-preserving F:% —.7 to the diagram yields a
diagram in # having the same limits and epis (surjections) as the original. As a
consequence of Barr’s theorem, any conclusion one may come to about this diagram
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in .# (e.g. that it commutes or that something in it is a limit or a surjection) must
hold for the original diagram also since among the arbitrary F: #— .7 are the F; of
Barr’s theorem.

1.4. Simplicial objects

Definition. A simplicial object X, in # is a collection of objects X, (n=0) together
with maps

X ¢ d. Xn+l 5. n+2

for i=0,...,n+1 which satisfy the following (simplicial) identities:

d,'dj =dj_1d,' for l<j, d,'Sj =Sj-|d,' for l<j,
$iS;=8j+15; for IS_[, d,'Sj =de,'_| for izj+2,
diyisi=dis;=1.

One may visualize xe X, (an n-simplex) as an n-dimensional polyhedron with
vertices vp,...,U,. In that case, d;xeX,_, is the polyhedron spanned by
Ugs +++5 Vi~ 15 Vit 15 -, Up (the ‘face opposite v;’). The simplicial identities ‘d;d;’ (face
maps) are faces-of-faces incidence relations. The equations involving °‘s;’
(degeneracies) do the same for ‘degenerate’ polyhedra.

§

Definition. A simplicial map f:X,—Y, is a family f,:X,—Y, (n=0) which
commutes with all the d;’s and s;’s.

The category of simplicial objects in % is denoted Simpl(?%).
Definition. An augmented simplicial object, denoted X,— X, is a simplicial object
X, together with a map p: Xo— X such that pdy= pd,. A simplicial map between
X,—X and X]— X is a simplicial map £, such that p’fy=p.

1.5. n-truncation, n-th simplicial kernel and COSK”

Definition. An n-fruncated simplicial object, denoted X, ., consists (only) of
Xo, ...y X, and the usual face and degeneracy maps between these.

The process of n-truncating is a functor. If % has finite limits, then a right adjoint
denoted cosk” exists and can be described using the concept of ‘simplicial kernel’.

Definition. Let n> 1. The n-th simplicial kernel of X, is an object denoted 4°*(n)(X,)
together with maps p;:4°(n}(X,)—X,_,, i=0,...,n, universal with respect to
satisfying d;p; =d;_ p; for all i< j.
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An element of A4°(n)(X)) is (xq,...,X,) where x;e X,,_,, dix;=d,;_,x; for all i</
and p;(xo, ..., X,) =X;. It may be visualized as a collection of (# — 1)-simplices whose
faces match so as to form a ‘hollow’ n-simplex.

The projections p; play the role of face maps. Using the simplicial identities one
may define q;: X,_,—4%(n)(X,), 0=<j=n-1, which play the role of degeneracies,
e.g. gox=(xx50dX,...,50d,_1x). Thus, if one begins with an n-truncated
simplicial object X, ,, one may build up a new simplicial object by iterating the
simplicial kernel construction (starting at dimension n+ 1). The result is denoted
cosk™(X, ().

The functor Simpl(%)— Simpl( %) obtained by truncating to dimension »n and then
applying cosk” is denoted COSK?”. The assertion X, = COSK"(X,) is a brief way of
saying that X, is a simplicial kernel for all m> n.

The canonical projection X,—4°(n)(X,) sending x to (dyx, ..., d,x) need not be
epic. If it is epic, X, is said to be aspherical at dimension n. Complexes which are
aspherical at all dimensions are called aspherical.

1.6. Vector and matrix notation

Suppose X,=COSK"*(X,). Denote the (n+ I1)-simplex (xg,...,X,4,) by x. An
(n + 2)-simplex consists of a sequence (xg, Xy, ..., X,.2) which may be organized as a
matrix [x;], 0<i=n+2 and 0<j<n+1, whose i-th row is x;. The simplicial
identities d;d; =d,_,d; for i<j determine a pattern in the entries of [x;] namely:
Xxji=x; ;1. Here, for example, is a 3-simplex in COSK (X,):

Xp X1 X2 X3
Xo XI X3 X3
’ ” ”
X1 X1 X2 X3
’ » ”
X2 X X2 X3
¥ ”n »
X3 X3 X3 X3

Note that any row is completely determined by the other rows.
1.7. Open i-horns and Kan complexes

Definition. Given X,,n>1 and 0<i=<n, denote by A'(n)(X,) the object universal
with respect to having projections pj:A"(n)(X,)—>X,,_, for O0<j<n and j#i
satisfying d;py=di_p; for j<k, j, k#i.

An element of A/(n)(X,) is, in effect, a ‘hollow’ n-simplex whose face opposite v;
is ‘missing’: hence the term ‘open i-horn’ for an element of A{(n)(X,).

If the map X,,— A/(n)(X,)sending x to (dyX, ...,d;_ X, =, di+ X, ...,d,X) is epic for
each i=0,...,n, then X, satisfies the Kan extension condition at dimension n. If this
map is epic for all n, X, is called a Kan complex.

Given X, consider the diagram of canonical maps:
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X,
F, / \K"(i)

4 X) 57 AKX

Lemma 1.7.1. F, epic implies H,, (i) epic.

Proof, We will apply Barr’s Embedding Theorem and prove the lemma in #. Given
(KOs wees = ees Xno 1) EANNX,) we must find xe X, such that (xg,...,X, ...,X,) €
4°(n+ 1)(X,). Since the faces of such an x are determined by the x;’s (i.e.
dix=d;_\x; for k<iand dyx=d;x; . for k=i) we have (dyx, ...,d,x)e 4°(n)(X,).
F, surjective implies a suitable x € X, exists. Hence A, (i) is surjective. [

Corollary 1.7.2. ‘Aspherical’ implies ‘Kan’.
Proof. Since F, is epic for all n, so is H,, (/) and hence K, ,({) is. O

Some terminological loose ends: Given X, —~ X, 4°(1)(X,) =Xy Xx Xp. Otherwise
set A°(1)(X,) = Xy X Xy. A/(INX,) =X, for i=0,1. Thus A, and K, are always epic.
X, being aspherical implies p: X,— X is epic.

Any simplicial object without a specified augmentation may be regarded as
augmented over 1.

1.8. Split simplicial objects, DEC, and (-)°P

Definition. A simplicial object X, is spfit if there is a family of maps
{Sne1: XnXns1}nso (called a contraction for X,) satisfying all the simplicial
identities involving degeneracies. A contraction for an augmented complex X,—» X
includes a map s3: X — X, such that psy=1.

Given X, one can form a split augmented complex denoted dec(X,) where
dec(X,),= X, . and where the face and degeneracy maps are those of X, except that
d,: X,— X, _, is omitted for each n. This construction is a functor to the category of
split augmented simplicial objects and contraction-preserving maps whose left
adjoint is the functor which ‘forgets’ (omits) the augmentation and contraction. The
composite functor which deletes X, and the maps d, and s, coming from each X,
and which shifts all dimensions down by one is denoted DEC(-). The co-unit of the
adjunction, DEC(X,)— X, is, at dimension »n, the face map d,,,;: X, , 1~ X;.

Lemma 1.8.1. If X, =COSK™(X,), then DEC(X,) = COSK {DEC(X.)).

Proof. For every m=zn+1,

4*(m)DEC(X.)=A"*(m+1)(X,)= X, =DEC(X))p+1. O
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Lemma 1.8.2. Let X, be an augmented aspherical simplicial set. Then X,—X is
split.

Proof. Begin by choosing any section sy: X — X;. Assume inductively that a suitable
Spi X,-1—X, has been defined. Let g;: X,—4"(n + 1)(X,) be the i-th degeneracy for
the simplicial kernel and define g, : X,~4°(n+ 1)(X,) by

Gn i1 X=ndox,5,d1 X, ..., Spd % X).

Now choose a splitting s’:4*(n+ 1)(X,)— X,,,, for the surjection F:X,,,—
A*(n+1)(X,) such that s, =5s'g; for each i =0, ...,n. Then define s, ,: X, —~ X, by
Sn+1=5'q,,1. This satisfies all the applicable identities since q,,;=F5'q,.1=
an+l- W

Given X, one may define another simplicial object (X,)°® by reversing the
numbering of the face and degeneracy maps, e.g. dP: X P - X P is d,_;.

Later we will need the simplicial object DEC(XP)°® which we will denote
DEC®°?(X,). The functor DEC®°?(-) is like DEC except that it ‘forgets’ the low
numbered face and degeneracy maps at each dimension.

1.9. Exact fibrations
Definition. The map f,: X,— Y, is an exact fibration at dimension n if the square

£
X, Y,

_

A{n)(X,) — Al(n)(Y.)

is a pullback for each i=0,...,n. It is an exact fibration if this condition holds for
all n.

One may visualize this concept as follows: if the image in Y, of an open i-horn in
X, is filled by y € Y, then there’s a unique x € X, which fills the open i-horn in X, and
such that f,x=y. An element of X, is thus

((X0s +vvs =5 +ees Xn), V) EANNX,) X Y,
such that d;y =x; for all j#1.
Lemma 1.9.1. Suppose f,: X,— Y, is an exact fibration. Then:
() Y, is a Kan complex implies X, is a Kan complex.

(ii) Y, aspherical implies X, aspherical.
(iii) Y,=COSK"(Y,) implies X,=COSK"(X,). O
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2. Groupoids, groupoid actions and torsors

2.1, Groupoids

Recall that a groupoid G is a partial binary operation on a given set where
x(y2)=(xy)z if either side is defined, and where each element has unique left and
right units and a unique inverse. One may visualize elements of G as directed edges
with specified vertices. Then the equation xy = z corresponds to the picture:

Vo™V

\/

The property that any element of this equation is uniquely determined by the other
two suggests the following reformulation.

Definition. A groupoid in ¢ is a simplicial object G, satisfying the axiom
GPD: For all m>1 and each i=0,...,m, the map G,—AYm)G.) is an iso-
morphism.

Let us examine this definition in some detail. The isomorphisms G,—A'2)(G,)
imply that G, is a subobject of 4°(2)(G,). An element of G, is thus (x, x;,x;) where
any two of the components uniquely determine the third.

The picture is

X2
Vo™V,

\ /-

L2

and one traditionally writes x; = Xox,. There is no reason to single out x; for special
attention however.

The axiom GPD also implies that G, = COSK?*(G.,) since for any m=3 an element
of A{(m)(G,) is a matrix whose i-th row is missing; the missing row is uniquely
determined by the given ones and must be in G,,_; by GPD. An element of G; is
thus a matrix whose rows are in Gj:

Xo X1 X2
Xo X| X3
X, Xy X3
Xy X3 X3

The simplicial identity d,d,=d,d, applied to this matrix yields xox3=xo(x2Xx3) =
X1x5 = (xoX2)x3, i.e. associativity. Given xeG;, then spx=(x,x50d,x) and
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51X = (5odgx, X, X). Thus x(sod;x)=x = (spdpx)x, yielding right and left units for x.
Denote these .1 and 1, respectively. One may find ‘x !’ using (x, 1, -)e A2(2XG.)
and then constructing an appropriate matrix to show that (x, 1,,x~ ') and (x 7\, ,1,x)
are in G,.

The class of groupoids and simplicial maps between them forms a category
Gpd(%). The category of group objects of # is the full subcategory of GPD(%)
consisting of those G, with Gy=1.

2.2. Groupoid actions

Recall that the action of a group G on a set E is a map E x G— E which sends
(»,x)e ExG to an element of E denoted yx and which satisfies the equations
yxx')=(yx)x" and yl=y.

This concept has a simplicial description. Consider the simplicial object E, where
Ey=E,E,=ExGand E;=E xG? The face maps dy, d,: E,~Ejare do(y,x) = y and
d\(y,x)=yx. The map s¢: Eg—E is so(¥) =(», 1). The face maps do,d,,dy: E; E;
are do(y,x,x") = (,%), d\(3,%x)=(y,xx) and dy(y,x,x")=(yx,x’). In fact E, is a
groupoid where (¥, x)(yx,x’) =(»,xx") and (y,x)"'=(yx,x7").

If we regard G as a groupoid G, (i.e. with Gy=1 and G,=G) then there is a
groupoid map a,: E,— G, defined by ,(y,x) =x. It is easy to check that an arbitrary
a,:E,~G, corresponds to an action of G, on Eg iff @, is an exact fibration in
dimensions =1.

Definition. A groupoid action of the groupoid G, is a simplicial map «,: E,— G,
which is an exact fibration in dimensions =1.

It follows immediatly from this definition that E, must be a groupoid. Given a
groupoid action a, then aqdy=dya; is a pullback and, since G, =A‘2)(G,), then also
E,=A'Q2)(E,). An element of E| is (y,x) where oy =dyx, and an element of E; is a
matrix

[}’o Y )’2]

Xo X1 X2

where (xg, X1, X;) € G, and (y;,x,) € E,. Denote d,(y,x) by yx. The simplicial identity
dyd,=d,d, applied to this element of E; yields (ygxg)xs= yo(xox2) since y;=yo,
Y2= YoXo, and xy=xgx,. Similarly, y(sqpy)=y where soapy is a unit of the
groupoid G.

Definition. A groupoid action a,: E,—G, is principal if E|3E, is an equivalence
pair.

Assuming a, is a principal groupoid action in an exact category, then £,=3 Eyhas a
coequalizer p: Ey— X of which it is the kernel pair.
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Definition. A groupoid action «,: E,—~G, is a |-dimensional torsor over X (or
simply ‘1-torsor’) if E, is augmented over X, £, = COSK®(E,) and E, is aspherical.

Remarks. The condition E,=COSK%E,) implies E,3E, is the kernel pair of
Ey— X. ‘Asphericity’ implies Fy— X is the coequalizer of dy, d.

Lemma 2.2.1. Given E,» X where E,=COSK%E,) and given a simplicial map
a,:E,— G, where G, is a groupoid, then a, is a 1-torsor iff Ey—X is epi and
apdo=dya, is a pullback.

Proof. E,=COSK%E,) implies «, is an exact fibration in dimensions >1. The
pullback assumption makes a, a groupoid action. Ey— X being epi makes E,

aspherical. [J

Definition. A map of 1-torsors under G, over X is a simplicial map ¢, : £, = E such

that
G.
o/
.
ET—*E.'
X/
Denote the category of 1-torsors over X under G by TORS(X; G,).

2.3. Basic facts concerning torsors
We begin with an important lemma due to Grothendieck [10, Proposition 4.2].
Lemma 2.3.1. In the diagram below, suppose p is an epi, po and p, the kernel pair

of p, qo and q, the kernel pair of q, fopi=q.fi for i=0,1 and fp=qfy. Then if
Sopo=qufy is a pullback, so is qfy= fp.

P
K ——=f —F—x
Py
A fo S
K’ E’ X’
q

Proof. Apply the Embedding Theorem. Suppose E” is the pullback of

X— X ——F".

f q
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We will find the inverse of the unique map E - E” defined by y ~ (py, fo¥). Write
Yo~y iff (¥o, ¥1) € K iff pyy= py,. Similarly yy~ y; for elements of E’. (These are
equivalence relations.) Let s: X —FE be a section for the surjection p. Since
JSoPo=qo/f11s a pullback, y’'~ foy implies there exists a unique y, € E such that y,~y
and y’'= fyy,. If (x, y') € E” (so that fx=gqy’) then fosx~ y’since gfosx = fpsx=fx=
gy’. Thus there is a unique y,€E such that y;~sx (equivalently py,=x) and
Sfy1=y’. Then define E"—E by (x, y') ». O

Proposition 2.3.2. TORS(X; G.) is a groupoid.

Proof. A map ¢,: E,— E, of 1-torsors includes the diagram

Ey—— E{——G,
dO d] dO dl
Ey——p— Eg—3— Go
P P
X X

Then @¢dy=dyp, is a pullback and Grothendieck’s lemma implies p’go=1yp is a
pullback. Hence ¢, is an isomorphism. Similarly, ¢, is an isomorphism for all
m=1., O

Given f:X’'— X, any augmented simplicial object £E,— X may be ‘pulled back
along f’ to yield a simplicial object E;— X’ where

E,, E,
pdg’
X’ X

is a pullback. An element of Ej, is (x', y)e X' X E,, such that fx’= pd{’y. In that
case, d;(x’, y)=(x',d;y).

Proposition 2.3.3. Pulling back along f: X' — X induces a functor
TORS(f; G,): TORS(X; G,)— TORS(X"; G,).

Proof. Pullbacks preserve simplicial kernels and epimorphisms, and the composite
of pullback squares is a pullback square. Apply Lemma 2.2,1. O
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Remark. By Grothendieck’s lemma, every map of 1-torsors arises from a pullback.
Definition. The 1-torsor E,— G, is split if E, is split as a simplicial object.
Proposition 2.3.4. For any groupoid G,, DEC(G,)—~G, is a torsor over G,.

Proof. DEC(G,) is augmented over G, and split. Now

A°(1)(DEC(G,))= A*(2)(G,)= G,=DEC(G.);;
similarly, DEC(G,),= A'(m)(DEC(G,)). Hence DEC(G,)= COSK°DEC(G,)). Also,
the pullback of

—_—
G] do Go‘To"" Gl

A'2)G.)=G,=DEC(G.),.
Apply Lemma 2.2.1. O

Remark. As a torsor under G,, DEC(G,) is just the action of G, on itself by right
translation. It is a split torsor.

Lemma 2.3.5. If a,: E,— G, is a split torsor, then a, factors through DEC(G,)—G.,.

Proof. Define f,: E,»DEC(G,) by f: X =Gy, f=apso and f,=a, . S,.1. (Recall
that s,,,:G,,,— G, is part of the contraction for DEC(G,).) O

Remark. The pullback of the torsor DEC(G,)— G, along any X —Gj is a split
torsor over X. Hence the split torsors in TORS(X; G,) are the elements of the
groupoid #(X,G,).

2.4. Extension of the structural groupoid

The goal of this section is to prove that a groupoid map ¢, : G, — G, induces a
functor (up to isomorphism)

TORS(X; ¢.): TORS(X; G,)—TORS(X; G)).

To motivate the construction, suppose ¢ : G— G’ is a homomorphism of groups and
that G acts principally on E with coequalizer p: E— X. Then G acts principally on
Ex G’ by (3,x)x=(yx,¢(x)"'x). Denote the set of orbits of this action by E’, and
denote the orbit (y,x’) represents by [y,x’]. Then there’s an action of G’ on E’
defined by [y,x']x"={y,xx"] which is principal and has orbit set X. Here, the
map E£’'— X sends [y, x’] to the orbit py. E'is a torsor under G’ over X.

This construction appears classically in the construction of a coordinate bundle
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from a system of coordinate transformations [18]. Another example occurs in a
diagram of short exact sequences in an abelian category:

0 A E — X 0

¢ (% t

0 A’ — E’ > X -0

where (*) is a pushout. A acts on E over X, and ¢ induces an action of A’ on E” over
X corresponding to the bottom short exact sequence.

We will rephrase the classical extension of the structural group construction in
simplicial terms so that it will apply to groupoid actions in an exact category %.

Theorem 2.4.1. Let ¢,:G.— G and y,:G.— G be groupoid maps. Then:

(A) There is a functor TORS(X; ¢.): TORS(X; G,)— TORS(X; G.)

(B) TORS(X; w.¢.)=TORS(X; w.)TORS(X; ¢,). (That is, TORS(X; -) is a
Sunctor up to isomorphism.)

Proof. (A) Consider diagram (1) in Simpl(¥%).

---(DEC°®)YG)) DEC°P(G)) G!
?,
N G, 0))
E «G.,, E «Gl4 E./
The top row is itself a simplicial object which, written fully, is diagram (2).
; ————— ' _;dl—.; ' do '
Gs— G, —/—— G, G,
dO
’ ’ dl , 0
Gs G, G; G
dD
dy| |ds d! |92 7))
dl
G; G; Gi Go
dO
d, d,
dl
G, G Go
dO

The n-th row of (2) is DEC*(G!) and (2) commutes simplicially. The bottom row



48 P.G. Glenn

of (1) is the simplicial object (in Simpl(%)) obtained by pulling back along
p.a,: E,—G,~G,. The object E,*G., , is augmented over what we will denote £,
(a coequalizer). This results in a simplicial £/ augmented over X together with an
induced a/: E]— G.. We will show that a! is a torsor.

Diagram (1), when drawn fully, is a rectangular lattice of objects and maps. That
part of it which corresponds to the bottom will be called the ‘front plane’; the top
row will be called the ‘rear plane’. The key portion of this lattice is shown in
diagram (3).

G do G dy G
3 2 1
d Pl
— 1 | ]
E+G; 112G, E\"a dy| ld,
G — _ % G dy G
2 —| | | = 0Uo
V] GO/“"O 3)
EyG} EosG| Ey" %
d, d
q 9o P
e, O —| == _Gp
/dl A
E " ——— g X
d, p

Every row of the front plane, E,*G! ., is the pullback along ¢,a,: E,— G,— G,
of DEC"*Y(G,), and is, in fact, a torsor under G’ since DEC"*!(G,) is.

It is easy to verify that Dy, D;: E «G33 Ey*»G) is an equivalence pair since
d\,d,:G33G/ and dy,d,: E;3 E, are. Similarly, E,*G,3Ey*»G,_, is an equi-
valence pair for all n> 1.

Let us write down Dj and D, explicitly, observing that E|*G; is the pullback of

E, o, Gy 7 G;
and that E,* G is the pullback of
Ey——— G +—— Gi.

We have ((, x), (x0, X1, X3)) € E; Gy where (3, x) € E|, (x5, X1, X3) € Gyand ¢ (3, X) =
@1(x) = do(xg, x{,%2) = xo. Eliminating redundant elements (e.g. xj=¢,x and x;=
x7'x1), an element of E|*Gj3 is (y,x,x")€ Egx G, X G| such that (y,x)€E, and
(¢1x,x", —)€ A*(2)(G!)= G;. The maps D, and D, are then determined component-
wise as Do(y,x,x") =(»,x) and D,{y,x,x") = (yx, ¢, x " 'x"). {Compare with the intro-
ductory remarks of this section.) Eq* G| — Ej is the coequalizer of Dgand D,.
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We will apply Lemma 2.2.1 to show that ¢ : E,— G/ is a torsor over X. That is, we

must show
(i) E!=COSK%E)),

(i) agdy=doa; is a pullback,

(iii) p’is epic.
The first two facts will follow from lemmas we will establish separately (see Lemma
2.4.4 for (i) and Lemma 2.4.5 for (ii)). As for (iii), p'q, is the composite of epis
EyxG —E, - X. Hence p’is epic.

(B) Let

E;=TORS(X; ¢ )E.), E’=TORS(X; v.0 ) E.),
and
E¥ =TORS(X; v XE)).

Consider diagram (4).

G; G; Gy
pdl A yd
/El"'G3 || /El*G;H E;
E]"'G; || E]"'Gé’ H El/
1| e =l=llzer —|| — || ~ s
Ly' : iy’|l u// ° )
l E(GS \_.E{)*G]’——— —E,
/,, | , | //
EO*GZ Eo*G] l EO
1/0,” a— :1 3Go
E} 2 Ef — X
yd yd A
E) Ey X

The front plane of (4) is from the lattice diagram for TORS(X; w.¢.)(E,) and the
middle plane of (4) is the front plane of the lattice for TORS(X; w,)TORS(X; ¢.).
In order to obtain the map E’— E*— G/ at the bottom, we will define maps
En *G, = EL,*G, ., so that each square

EnxGny) P En*Gpyy
,dp (Ldp
En+Gp En*Gy,
h, el
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is a pullback, thus showing that the horizontal plane of (4) is a G-equivariant map.
To do this we use the simplicial map A, : E, = E! given at dimension 0 by Ay(y) =
qo( ¥, So@oQoy) With gg as in diagram (3).

Ep Ey* Gy

(L sgpoay) 9

Ey.

This extends uniquely to A, and is equivariant: a h, = ¢, a,. (See Lemma 2.4.3.) Now
define (4,,* 1)), x") = (1,7, x"). This induces a torsor map E'~E*. O

Theorem 2.4.2 (naturality of TORS(X; —) and TORS(—; G,)). Given f: X' — X and
a groupoid map ¢.:G,— G., then the diagram

TORS(X; G.) TORS(X; G.) E,—E.

TORS(X"; G.) TORS(X"; G.) E?

commutes up to isomorphism,

Proof. The commutative diagram (5) contains the proof.
G; G,

el /

I
E|*G£‘_—_—’E|

’

G,
o

gl T
|l /1l
Ef*G; T El#*Gz——lT——’El#
il
| |
EgrGy———| |3 Eg+G|—— | |— E{ © )
| A e
E; +G; E§*G; E§
o= =30
/E; == & —/»X
. i
E| Eg X’

Its front plane is from the lattice diagram for TORS(X"; ¢ NEF) and the middle
plane is from the one for TORS(X; ¢,)(E)). E* is TORSY(f; G.)(E.). The maps
from the front to the middle plane are uniquely determined; in fact

E()*G,In G;n

Ef+G,,

E,

pr PoQ
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is a composite of pullbacks. The dotted map £, — E. is thus determined and is easily
seen to be G.-equivariant. By Lemma 2.3.1, E,=TORS(f; G/XE). O

Lemma 2.4.3. Let ¢,: G,— G, be a groupoid map. Let a,: E,— G, be a torsor over X
and let a.:E.— G. be TORS(X; ¢ )E.). Then there is a G,-equivariant map
h,: E,— E! over X which is universal for G,-equivariant maps from E, to torsors in
TORS(X; G)).

Proof. Consider the following portion (6) of the lattice diagram for TORS(.X; ¢ ) E,).

5,
G, G — Gl
2 1 =0
,/ | 4, / l > oo
Eo*Gz p EO"GI Eo
1 ° l 6)
q, dy P
oy dl / p
E; E) : X
dO

Define hg: Eg— Ej by y — qo(¥,500000y). Clearly py=p’hyy and aghg=goay. The
map h, is G,-equivariant if hod,=d A, where h;(y,X)=(hyy, ¢,x). That is,
ho(yx) = (hoy)(p1X). We will use the following facts.

(A) go(¥,x)=qo(¥x, (@1x)"'x’) whenever yx is defined.

(B) The left and right units, respectively, of ¢,x are sod;¢,x=500¢Q(yx) and
Sodo®1X =S0P000)-

(C) qo(y, x0)x2=qo(¥, Xox3) from qod, =d,q,.
Now

ho( yx) = qo( yx, So@0o( X)) = qo( ¥, 1%) = @o ¥, So® 0y V)91 X = (Ao Y) (@1 X).

Thus A, is equivariant. Now suppose A.: E,— E!is any G,-equivariant map where
E’e TORS(X; G.). Define v: Eg+Gi— Eq by v(y,x")=h§(»)x". Then v induces a
unique uy: Eg— E; because vDg=vD;. It is easily checked that the resulting
u,: E!— Eis equivariant and that it satisfies u h, = h’.

DO

E,:GQTEO-G;

E, O

Lemma 2.4.4, In diagram (7) below, assume
(i) K3 E— X is exact
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(i) Kn3 En— X, is exact forall m=n
(iii) K,=COSK"(K,) and E,= COSK"(E,)

@iv)
d”'
Ky K
| i
dy l l o
Ep—e

is a pullback for all m.
Then X, =COSK"(X,) iff Ko |1 B Ep 1= Xy is exact.

K. E, X.

r q P (7)
&

K E X

is a pullback for all m < n. Assume first that X, = COSK*(X,). Then in the diagram

Kn+l En+l Xn+l

K E X

the top row is the pullback of the bottom and is thus exact.
Conversely, suppose K,. 3E,.1— X, is exact. Let T=4(n+1)}X,) and
consider diagram (8).
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K,

E, ®

The sequence 7" = T"— T is exact since it is the pullback of K,= E,—~ X,, along 1.
The maps 7"—K,., and T"—E,,, exist because K,,, and E,,, are simplicial
kernels. But since 7"— Tis a coequalizer, a unique 7 — X, , | exists making the whole
diagram commute. This shows that X,,, is a simplicial kernel. Similarly,
Xy=A4°(m)X,) forallm>n+1. O

Lemma 2.4.5. In diagram (9) below, assume that the columns are exact and that the
indicated squares are pullbacks. Then the bottom ‘horizontal’ square

is a pullback.

T, Y,— T,
El——_"Xl/ I ] i=0,1
E,— X;
— T (‘horizontal squares’) )]
Eo—"‘—’Xo/ E,— X Y,—T,

AT

/ EO_—*XO Yo_—’ To

E—m—m

Proof. By Grothendieck’s lemma (Lemma 2.3.1),
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EO—"XO YO_’TO
e [
F——X Y—T

are pullbacks. In the following diagram (10) suppose maps W —X and WY are
given so that

W——>Y

o

X—T

commutes. Suppose further that W, =3 Wy— W is the exact sequence obtained by
pulling back the ‘Y-column’ along W — Y. Then the maps i#;— X, are determined so
that everything commutes. Since the upper two ‘horizontal’ squares are pullbacks,
there are unique maps W;— E;. These induce (by the exactness of the ‘W-column’)

W--E,
/ TI
ydl
|

. .

— T

e /

W. » E X

3. Hypergroupoids, hypergroupoid actions and torsors

An n-dimensional hypergroupoid is an algebraic structure involving a generalized
composition defined simplicially. A groupoid is a 1-dimensional hypergroupoid.
The discussion of hypergroupoid actions and torsors closely parallels that for the
groupoid case and involves the key concept of ‘attached 1-torsor’. The analog of the
extension of the structural groupoid theorem will be proved in Chapter 4.
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3.1. Definition and examples

Definition. An n-dimensional hypergroupoid (n=1) is a simplicial object G,
satisfying the axiom
n-HYPGPD: G,,~ A{(m)(G,) is an isomorphism for i=0,...,m and all m>n.

A map of n-dimensional hypergroupoids is just a simplicial map. The category of
n-dimensional hypergroupoids in the category « is denoted Hypgpd,(?#).

Example 1. A groupoid is a I-dimensional hypergroupoid since GPD=
1{-HYPGPD.

Example 2. If X, = COSK”!(X.), then X, is an n-dimensional hypergroupoid. (See
Section 1.6).

Example 3. Any n-dimensional hypergroupoid is also an a’-dimensional hyper-
groupoid for each n’>n since the isomorphisms of n-HYPGPD include those of
n’-HYPGPD.

Example 4. Let A be an abelian group object. Fix n= 1. Define the simplicial object
K(A, n) as follows. For m=0,...,n-1, set K(4,n),,=1. Set K(4,n),=A and

K(A,n),,+1= {(ao, ...,a,,H)EA’”"']a,,,l-—a,,+a,,_l— s +(—‘1)"+](10=0}.

All face and degeneracy maps below dimension n—1 are the identity map. The
degeneracy maps 1—A are all the ‘zero’ element of 4. At dimension n,
si@=(0,...,a,a,...,0) where the first ‘a’ occurs in the i-th slot. The face maps
di:K(A,n),,,—K(A4,n), are diay,-..,a,+1)=a;. In higher dimensions K(A4,n)
consists of simplicial kernels. Thus, an (n + 2)-simplex is a matrix whose rows are in
K(A,n), .. Any one of these rows is completely determined by the others; the
standard double-sum argument shows that it must be in K(4,7n),,,. If n=1, then
K(A, 1) is simply the group object A written as a simplicial object. K(A, n) is a Kan
complex whose n-th homotopy group is A and all of whose other homotopy groups
vanish. K{A4, n) is also an abelian group object in the category Hypgpd, (7).

Example 5. Let X, € Simpl(:#) be a Kan complex. (X, could be the singular complex
of a topological space, for example.) There is an equivalence relation defined on X,
by: x~ y if there is a ze X, ; such that d;z=5,_,d;x for i=0,...,n—1, d,z=x and
dn.1z2=y. (This implies d;x=d,y for all i.) Now define the simplicial object G, by
Gn=X,, for m=0,...,n—1 and G,=the equivalence classes of the equivalence
relation just defined. Let [x] denote the equivalence class x € X, represents, and set
di([x]) =d;x. Now consider an element

(—s [xlla “ees [xn+ l]) EAO(II + l)(G.)-
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Then (=, X, ..., X4 1) € A%n + 1)(X,). Since X, is a Kan complex, thereisa ye X, .,
such d;y=x; for i=1,...,n+1. We then have a map A%n+ 1)(G.)—G, sending
(= [ards ooy [xns1]) to [doy]. This map is well defined because the class [dyy] is
independent of the choices of representatives x; and the choice of y. Now set
G 1=A%n+1)G,), take the map just defined as d, and the projections to the
other [x;]’s as the other face maps. The result is an n-dimensional hypergroupoid
called the n-th fundamental hypergroupoid of X,. The 1-dimensional version of this
is the fundamental groupoid of X,. One may recover from the n-th fundamental
hypergroupoid all the n-th homotopy groups of X,.

3.2. Hyper-associativity and hyperunit laws

There are analogs for hypergroupoids of the associativity and unit laws for
groupoids. We will choose one of the (n+ 1)-ary operations (the choice being
suggested by technical convenience) to illustrate these laws.

Suppose G, is an n-dimensional hypergroupoid. Write x,.,=[xg,...,Xx,] iff
(X0y--+»Xn, Xn+1) € G, 1. The following matrix represents an element of G, ».

Xoo Xor ' Xon+1

X10 Xip ot Xa+

Xp+2,0 Xn+21 " Xn+2n+l

Since the i-th row is (xjg, ..., Xin+ 1) then x; , oy = [Xjg, ..., Xn]. Since x;; =x, ;_ fori<j
(see Section 1.6) we have

Xns2n+1= [xn+2.0’ ---,xn+2.n] = [XO.IV+ tseesXnn+ l]
= [[X005 «+- s Xon)s [X105 << s Xtn)s + oo s [Xiigy +ev s Xnnll-

Also, since

Xn+2,n+1=Xn+1,n+1= [xn+ 1,00 <o+ s Xn+ l,n] = [x0m ---rxnn]y

we have the ‘hyper-associativity law’:
HAII: [[xOOs see ’xOn]v [xlOr ove ,xln]; [RRX) [an’ voe ’xnn]] = [xOn’xlm .o ,X,m]-

For example HA; is

({00, X015 X02)s (X005 X115 X12]s (X015 X115 X22]] = [X02, X 12, X22]-

The ‘hyper-unit laws’ correspond to the degenerate elements s;x€ G, .
HU, ;: Sidp 1 Xx=[sj_1dox,s;_1d1 X, ..., X, X, ..., 5;d,X]

where the x’s appear in the j-th and (/ + 1)-st slots.
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3.3. Substructures of hypergroupoids

Let G, be an n-dimensional hypergroupoid. For each positive m<n, a certain
subobject of G, comprises the graph of an m-dimensional hypergroupoid. The
groupoid (m=1) so determined plays a significant role in higher dimensional
torsors. We’ll consider the general m=1 case first and then spell out the m =1 case
in detail and give a few examples.

Fix m between | and n— 1. Let (»n, m) denote the set of conditions:

(*n, m) dix=Sp_m1didy_mx, 0sisn-m-1,

where x is any simplex of dimension bigger than n — m. Define the simplicial object
G! by setting Gy to be G, _,, and, for k>0

Gi={x€ G,_m.|x satisfies (xn,m)}.
The face operators D; and degeneracy operators S; of G, are the restrictions of

d,_m.iand s,_,.; respectively.

Example (n=5 and m=3).

dy
& 4
-3
G, d G, : G,
— dz
‘\/ —
52
DZ
D, ——
I(_—-_— ’ Dl ’
Gy Dy G, G;
— DO
\_-/
- 0
SO

Lemma 3.3.1. G! is an m-dimensional hypergroupoid.

Proof. An element of G, iS X=(Vgy..esVpe 1, Ugs ---» Um+1) € G-y satisfying

(*n,m). Forisn—-m-1,
di-x=Ui'_‘sn—m—ldidn—mx=sn—m—ldiu0=55—m—ldidn-mu0-

(Ugy ooy Um 1) €A (M +1)G,) since for i<,
Diuj=dn_msiln-msjX=08pn_msj-1dn-m+iX=Dj_yu;.

Furthermore, given (Ug, ..., =, ..., Up +1) € AX(m + 1)(G]), then
(V0s voe s Unm— 13Uy oees =3 oeerUms1) €A™ K0+ 1)(G,).

The hypergroupoid structure of G, determines a unique &€ G, which is easily
verified to satisfy (+n,m). Hence G, =A*(m +1)(G.). Similarly G,=A*(g)(G))
forallg>mandallk, O
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Remark. Any map of n-dimensional hypergroupoids restricts to a map of their
associated m-dimensional hypergroupoid substructures. Thus, the construction just
given determines a functor Hypgpd,(#)—Hypgpd,.(¥).

Example 1. Take m=1. Then
Gi={xeG,|ldx=s,_,did,_x for 0<i=n-2}.

For xe G|, Dox=d,_,x and D;x=d,x. HA, for G, ‘collapses’ to HA, for G, (and
similarly for HU, )).

Example 2. Let G,=K(A,n) and consider the associated groupoid. We have
(ag,a,,a;) e G; iff (0,0, ...,0,ay,a,,a;) e K(A,n), . iff a—a,+ag=0. That is, the
associated groupoid is K(A4, 1), the group A itself.

Example 3. Let X, € Simpl(#) be a Kan complex. Choose a base point *€ X, fix
n=1, and consider the subcomplex X7C X, where Xi=X, for k<n and
X,f:{xeXk[dé‘x:*} for k=n. The n-th homotopy hypergroupoid of X7 is
K({T,(X,,*),n) whose associated groupoid is I7,(X,; *). Thus the singular n-
simplices of a topological space have an algebraic structure (the n-th homotopy
hypergroupoid) encompassing all the n-th homotopy groups of the space.

3.4. The hypergroupoid/groupoid identities

Lemma 3.4.1. Let G, be an n-dimensional hypergroupoid and let G be its
associated groupoid. Fix i,0<i<n—1. Suppose Xy, ...,X;...,X,_; and x; are
elements of GG, and suppose x;x| is defined in G|. Then

[0s «ee s XiXiy wons Xl = [X0y <oy Xy ooy X5 [Lgs ooe s X ooy L5 Xnl)

Proof. Recall that for xe Gj,1,=SoDox=5,_:d,_,x and that 1. x=x in Gj. If
[X0s ey XiXjy ooy Xy =y is defined, then [xg,...,X;, ..., 2] =y for some z determined,
as follows, by the hypergroupoid structure. Consider the matrix in G, . , defined by
setting R; = j-th row =s,x; for 0<j=<n-1 and j #/, setting

’ ’ ’
Ri=(*) meey "xi)xixi!xi)e GZC’Gn+ 1

and setting R, , 1= (Xg, ..., XiX], ... Xz, ¥). (‘»’ denotes various degenerate elements).
R,and R, ,are then uniquely determined; R, = PRIV Lo, X 2) defines z,
and Rp.2=(X0, X1y eoesXfseeesXn1,% V)E€Gp1. Ryyy and R, ., together yield the
conclusion of the lemma. O

Corollary 3.4.2. Suppose XpX(,X1X1,...,Xn_1Xn_1 are all defined in the associ-
ated groupoid G! of the n-dimensional hypergroupoid G, and suppose
[X0X0s -+ Xn - 1Xn - 1, Xn] is defined. Then

[Xé, '--,xrln—la [-XO, ...,X,,-],X,,” = lxoxé» ""xn—lx;r—l’xn]-
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Proof. Apply Lemma 3.4.1 repeatedly to obtain the equalities:
[xoxé, ey X lxrll— lvxn] = [X(I),XIXI, eees Xn— lx;l— I [xo, 1, seey erO]]

= [X0s X1, X2X3, ceuy X1 Xm_ 15 [LX1, 1,000, 1, BY]]

- [0, X105 eees Xn_ 1, [ 1, oo, LXp — 4y Byl
where By=x,, By, 1=[1,1...,Xx, ..., 1,B4]. Then
B.=[l ..., 1, [,y L,xp 2, L, By 2]l =11, oo, X 2X0— 1, Br_2)
=[l, .., Lxg_ 2 Xn- o[l ey Lxgos, 1, 1, B, _5]]

==X Xpy e s Xno 1, Xn]: O

Example. Let n=3 and i=1. The matrix of the lemma is

* * lyy X0 Xo
* X X|X] X
* 1, xox

l,, x1 1o x3 2
’

Xop X X3 X2 X3 y

[ Xo X1 X2 2z Y

y= [Xo,X;,Xz, [lxofxlr 1x2’x3” = [Xo,xleyxz,xal-
3.5. Hypergroupoid actions

Definition. A hypergroupoid action of the n-dimensional hypergroupoid G, is a
simplicial map «,: E,— G, which is an exact fibration in dimensions =n. An
equivariant map between the hypergroupoid actions ,: E,— G, and a,: E;—~ G, is a
commutative square

G. G.
a a
E, E;

Remarks. When n =1, this definition reduces to the definition of groupoid action
given in Chapter 2. If a,: E,— G, is a hypergroupoid action, then E, itself is an n-
dimensional hypergroupoid where the isomorphism E,,— A{(m)}(E,) for m>n is the
pullback of the corresponding isomorphism for G,. (See Section 2.2.) The identity
map G,— G, is a hypergroupoid action. Given two actions of the hypergroupoid G,,
a G,-equivariant map is a commutative triangle
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G.

/N

E, E.

The collection of such actions of G, forms a category.

3.6. Torsors under G,

Definition. Let G, be an n-dimensional hypergroupoid. An action ¢,: E,— G, is an
n-dimensional torsor over X under G, if E, is augmented over X, E,=COSK"~/(E,)
and E, is aspherical. (Compare with Section 2.2).

When all the other data of this definition are clear from the context, we will speak
of ‘the n-torsor E,’.

Denote by TORS(X; G,) the category of torsors under G, over X and ‘torsor
maps’ under G, over X where a torsor map is a commutative diagram:

The following lemma is convenient for checking whether a given simplicial map is a
torsor. (Compare with Lemma 2.2.1.)

Lemma 3.6.1. Let G, be an n-dimensional hypergroupoid and let a,: E,—~ G, be a
simplicial map such that

E,

Gr

A{n)E) A(n)(G.)

If E,.=COSK"~Y(E,), then a, is a hypergroupoid action.

Proof. Immediate from the fact that £, = COSK"~!(E,) implies E,,= A'(m)(E,) for
mz=n+1. [

Example. Let G, be a n-dimensional hypergroupoid and consider DEC(G,)—G.,.
It follows immediately from n-HYPGPD that this map is a hypergroupoid action
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(compare with remark after Proposition 2.3.4) and using that DEC(G,)=
COSK"~Y(DEC(G,)). If G, happened to be aspherical, e.g. if G, is K(A4,n), then
DEC(G.) e TORS(Gy; G,).

3.7. The attached 1-torsor

Let G, be an n-dimensional hypergroupoid and suppose a,: E,— G, is a torsor.
Consider diagram (11).

7
R —— E, —/— G,
I
En—l 1 ﬁEn—l o Gn—l (11)
d
K ——3E,_,

In this diagram, K =4°(n— )(E,), and R 3 E, _, is the kernel pair of the canonical
epic projection d: E,_,— K. The monomorphism §:Rc» E, is defined by

0(}’, y’)=(s,,_2d0y,s,,~2d1y, ---sSn-zdn-z}’, A y')-

Now a,8(»,»’) satisfies (n, 1) (see Section 3.3) since for i=0,...,n -2,
dia, 0y, y)=an 1dif(y, Y)=0p_1Sn-2d;y =Sp_2di0n_1 ¥
=Sn-2didn—lan0(y» y)

Let E, | denote cosk'(K < E,_; £ R) and let G, denote the associated groupoid of

G,. (See Section 3.3.) We then have a map @,: E, |— G,

R — G, —— G,
Po|| P~ Dy} | Dy d, i |d,
gy A
E, - > Go = G-y
d
K

Go=0,_;and @,(», ¥')=a,0(y, y). An element of R in the pullback
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=

Go
is (y,x)€ E,_1x G, such that a,_,y =Dgyx. If (¥,x)€ R then
(Sn—ZdOy""’Sn—Zdn—Zyr —,X)=Z

is an element of E,. Define R— R by (3, y")~(»,@,8(y, ¥')) and define R—R by
(»,X)—(y,d,z). The maps are inverses of each other. One similarly verifies that R is
also the pullback of

E,,_ 1 T Go ‘—5— G| .
By Lemma 2.2.1 we have:
Lemma 3.7.1. @,:E, ,—»G,e TORS(K; G,). O

E,  is called the attached 1-torsor of E,. It is in fact the associated groupoid of E,

regarding E, as an n-dimensional hypergroupoid.

3.8. Basic facts concerning n-torsors

The following series of propositions explain the relationship between n-torsors
and their attached 1-torsors in detail. They are useful in reducing questions about
n-torsors to (easier) questions about their attached 1-torsors.

Proposition 3.8.1. Let a,:E,— G, be an n-torsor over X and suppose
Sorw:E.wu=TR""XE,)) is a simplicial map of the indicated (n-2)-truncated

simplicial objects. Then f, ,; extends to a G,-equivariant map f,: E,— E,.

Proof. Consider diagram (12).

R
N
X‘E \E,, G,

|l g
E”_l E"l’l
J \En—l £, \En—l a Gn-l (12)
-1 l n-1
K
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In this diagram, K=4*(n—1)E.), K=4(n—1)E,) and R3E,_,—K is the
pullback of the attached l-torsor R=E,_,—K along K—K. Define E, to be
cosk”~(E, ;) and f: E,— E, to be the simplicial map thus induced. To prove that f,
is G, -equivariant we will show that e f.: E,— G, is a hypergroupoid action. By
Lemma 3.6.1 this reduces to showing that the composite square

E, E, Gn

Al(n)(E.) Al(n)(E.) Aim)(G.)

is a pullback for each i =0, ..., n. Since the right hand square is already known to be
a pullback it suffices to show that the left hand square is. Let 2=(2y, ..., 2,) denote
an element of K where z;=d;z. Then an element of £, _, is (z, ) e K X E,,_ such that
JSa-2z;=d;y. An element of A{(n)(E,) is thus

((ZO) J’O)»---,—,---,(Zm J’n))
where for j<k and j, k+i we have djzk=ij=Zj'k-1=dk_|Zj- It follows that
(yo,...,—,...,y,,)eAi(n)(E_).

Let W denote the pullback of A/(n)(E,)—A'(n)(E,)—E, (the left-hand square). An
element of W is

((Z(), y())’ erey Ty -")(zru yn)) y(,)’“w Tyeeey yrll)

in A/(n)(E,) X E, such that y;=y; for all j#i. But a unique (z;, y;) in E,_| is thus
determined (y;=y/) which provides a map W—E,_, and establishes that the left
hand square is a pullback. O

Remark. E, =COSK"~!(£,) by construction. If E, . was aspherical and augmented
over Y, then E, e TORS(Y; G,).

Corollary 3.8.2. Any map of torsors E,— E,— G, arises from TR"~¥E)—TR"~%E.)
as in the previous proposition.

Proof. Apply Grothendieck’s lemma (Lemma 2.3.1) to the induced map of the
attached 1-torsors. [

Corollary 3.8.3. Any map f:Y — X induces a functor
TORS(f; G,): TORS(X; G,)»TORS(Y; G.).
Also, TORS(fg; G,)=TORS(S; G,)TORS(g; G.).

Proof. Given E, e TORS(X; G,), form the pullback truncated simiplicial object
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E, TR"*(E,)
S
Y X

and apply Proposition 3.8.1. O

Proposition 3.8.4. Let a,: E,— G, be an n-torsor. Suppose y,eE,_, and x;e G,
where G, is the associated groupoid of G,, and assume y;x; is defined fori=0,...,n.
Then

(@) @n(VoX0s vy VuXn) = [X0y eees X I t] where ( = Qn(Y0s+evs Yn—1s YnXn)-

() Xp=[V0, .. Vn—2,An( Vo, ---s Yn), ] Where v;=s,_2a,_ Y.

Proof. Denote (yy, ..., ¥,) by y and (yoxo, -.., YaXs) by ¥x. Consider the element of
E,. in (13).

* e * Yo YoXo
* e * Yn-1 Yn-1Xn-1 (13)
Yo Yn-2 Yn-1 YnXn

YoXo >t Yn-2Xn-2 Yn-1Xn-1 YnXn

Thei-throw,0=<i=<n-1,is 8(y,;, y;x;)€ E,. The (n+ 1)-st row is yx. The n-th row
is then uniquely determined, as shown. Identity (a) follows from applying «,,, to
this matrix.

To obtain identity (b) consider the two matrices in (14).

Yo Yioo Yn-t VYnXn » * o Yo YnXa
Yo Y1 Yn- Yn * LIRS 4 Yn
noon e cor ] g
Yn-1 Va-1 = * * Yn Yn e * *
| YnXn Yn * * LYnXn Yn o=0 * *

The i-th row, 2=<i <n, of the first matrix is sy y;. In the second matrix the 0-th row
is 8( V., VnXn), the 1-st TOW is 5,,_ ¥, the i-throw 2<i<n—1)is s,_150dn-1Vi-1,
and the n-th row is sqy,. After applying a,.; to each matrix, one gets the bottom
two rows of the matrix in G, shown in (15).

- -

Yo 77} e Ap)y t Xy

* * v Qpy 0y o*

* * eee & * * (15)
any a,y e * *

t a,y 4
L Xn AnSp-1Vn *** Z ]
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Row lis s, a,y, thei-throw RQ<isn—1)isS,_1Soln-1Yi-1 and the n-th row is
So@ny. The 0-th row shows identity (b). U

Remark. This proposition relating the groupoid action of the attached 1-torsor to
the hypergroupoid action a, will be used to prove the ‘extension of the structural
hypergroupoid’ theorem in Chapter 4.

4. Extension of the structural hypergroupoid

Theorem 4.1. Let g.:G,— G be a map of n-dimensional hypergroupoids. Then
there is a functor

TORS(X; £.): TORS(X; G,)— TORS(X; G.).
If g.:G.— G is another hypergroupoid map, then
TORS(X; g.g.)=TORS(X; g.)TORS(X; g.).

Proof. Outline: Let a,:E,—G,e TORS(X; G,). The map g, induces a map
§.:G.— G of the associated groupoids. Let E, , be the attached 1-torsor of E, and
E.! =TORS(K; &)(E,,,) where K=A4'(n—-1)E,). (See Section 2.4.) This new
1-torsor will be the attached 1-torsor of an n-torsor under G,. Diagram (16)
summarizes the construction.

g &’
R O E, —— G, ﬁ'\& E, —— G,

Gn-s
(16)

As the picture suggests, we form a new simplicial object E. from E, by truncating
E, at dimension n -2, replacing E,_, by Eg and setting E,, to be the simplicial
kernel for m=n. E_ is aspherical and satisfies E,=COSK"~!(E}) by construction.
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We will show that a map a): E,— G! exists making E. an n-torsor under G, with
attached I-torsor E ;.

In other words, the extension of the structural hypergroupoid reduces, at the
attached 1-torsor level, to the extension of the structural groupoid.

The proof that E_ is an n-torsor is divided into two parts: (I) the definition of a/;
(II) the verification that & is a hypergroupoid action.

Part (I): For reference, diagram (17) shows the key portion of the lattice-
diagram for E] | =TORS(K; g.)(E. ). Recall that (y,x")eE,_*G|SE,_ X G, if
&n-1Qn-1Yy=d,_,x’, and x’ satisfies (sn, 1). Similarly, an element of E,_,*G,*G1is
(x,xVeE, | XG,xG,ifg,_10p_y=d,_x and a,_,y=d,_;x. (It then follows
thatd,_;g.x=d,_x".)

G2 G
N _,/II e
E,_+G,+G; E,_*G,
Dy | |D,
/G; /G(, a7
. |
En—l*GI, En—l
d,
do d
. Go
E,_, K

Recall also that Dg(y,x,x)=(y,x") and D,(y,x,x)=(yx,g,x 'x") and that
Goqo(y,x’)=d,x’. Now consider diagram (18).

- ~ dn-l
S) /== E,-*G*G; = Ep_;
0
Dyl | D, Dy | D, 1|t
- dn-l
S === E, 1G] === E,, (18)
dy
N 70 \ 1\
q , - , I RN ,
’ G,, — — G,,_l —_—t ] — G,,_z

.

’
En—l

E,’

In this diagram, dy(y,x")=d,;y=d(y,x,x’), Sy and S, are horizontal simplicial
kernels, and the right and middle columns are exact. The left-most column is
therefore also exact (a simple diagram chasing argument). We will define {:Sp— G,
so that {Dy={D,. This will determine a,, in the quotient.

An element of S, is (g, X0)---r (VmrXp)) With (¥, x))eE,_,*G, and
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(¥o»---» Yn) € E,. We will abbreviate this by (y,x’). Similarly, an element of §, is
(3, x,x’) where (¥;,x;,x)eE,_+G,*G for i=0,...,n and yeE,. Note that if
(y,x)eSgthen for0=<i<j=<n-—1 one has

d ’
dixj=sn—2didn—1x;=sn—2dign—Ian—lyj=sn—2dj-lgn—lan—lyi'-_dj—lxi-

Also, d,g,0,y =d,_x|. Now let (,x’) € S and consider the matrix of G, ; shown
in (19).

r- ’ ’ 7
* e X Xg * * 0
* * eee x; XI * *
oo ; ; : :
*x s Xpl3 Xpo2 * * | n-2
’ ’ ’ ’ (19)
Xo Xy *** Xp-2 Xp-i 8ntpy I | n-1
X0 Xi *t Xn-2  Xnpo v z|n
I T A, v X, |+l
L* * e x t b4 Xp| n+2

Ri=i-th row=s,_,x; for 0<isn-2. Since (X3,...,Xn_2,&xQx¥,—) is in
A" Y n+1)(G)), a unique ¢=[xg,...,Xn_2, &~ ¥] exists, thus determining R,_;.
Similarly, v is determined in R, ;. Finally, z € G, is determined as shown in R, and
Rn+2~

Now define {(y,x") =z by the equation:

’ ? ’ ’ ’ ’
Xn=[5p_2d1X0s ey Sno28nXn_2,1X0s X105 e s Xn~1,&n % ¥}, 2]

Verification that {Dy={D,. Recall that Dy(y,x,x")=(y,x’) and Di(y,x,x') =
(¥x, g(x)~'x’) abbreviating

((YoXo» 8n(X5 )XQ)s +ves (VnXns 8nlXn )X 1))
Let
E=[X0y o0y X015 81 Un Y],
Xn=[Sn-2n_1X0s oesSp_2dn -1 Xn_ 28,0 ¥, V]
= [Sn—2dnX0s -5 Sn-2dnXn_2,42],

and z =[xy, ...,X,_1, V] as in the matrix above. The analogous matrix for D,(y,x,x")
will have

1= (2405 )X, v, 8alXn L 1)X0_ 1, 8nn YX]
and will have
a7 W= [Sn - 20 - 1(8n0XG WX0), - Sn 28— 184 (XL 2)X7 -2, 8n Y2, V']
= [Sn—20n8n(X0 )X0, o, Sn—2dn&ax7 1 X0 2,1, 2]

= [Sn_2dnX0s -+ sSn-2dnXp_2, 1,2’} (because d,g,(x~")x'=d,x’).
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Our goal then is to show z=7".
Consider the matrix in G, ; given in (20).

- P

* e X * * 10
L JECERINE * * * n—-2
* o x " wln-1 (20)
* * t Iz Xp|n
* x0T U n+d
| * W oXx, U |n+2

For O0<i<n-2, R,-=s,2,~2d,,x,f. R, comes from the matrix defining {(y,x")=z.
The hypergroupoid structure of G, then determines a unique w’ in R,_,, and a
unique uin R, .. R,,,is then also uniquely determined. It follows from a straight-
forward verification that w’,u € GG, and that x, = w'u (reading from R, ).

Now compare the following elements from G, ;:

’ ’ -1
(Sn—2d,x0, ...,S,,_zd,,X,’,_z, 1,2, galx, )x;,)
from R, ., in the matrix above;
’ ’ -1 ’
(S,,_zd,,X(’), ---»Sn-Zdnxr’r-Zytyz sy gn(xn )xn)

from the matrix for {(yx, g(x~')x’). This shows that z=z’ iff u=g,,(x,,“)x,’, iff
w’'=g,x,. So we will now verify w’ =g,x,.
Now ' =[g,(x5 x5, ..., 8altr )X5_ 1, 8nttn ¥X]. By Corollary 3.4.2,

U'=(x0, - Xn-1,[8nX0 )y oon, 8671 1), Bnapx]).
Using Proposition 3.8.4 we get
8nQnYX =[80X0,s s 8nXn~1,8nAn(Yos s Yn-15 YnXn))-
So again by Corollary 3.4.2,
[84XG " -+ s 8nXn > 1,8nCn ¥ X] = [80%G s -1 8nXa L1, [80%0s -+ 1 &nXn—1,8nP]]
=[1,...,1,P]

where ‘P’ stands for a,(¥g, ..., Ya-1, YaXn). Once again applying Corollary 3.4.2 we
obtain:

”=[x6"'-sxf’l—l$gnP]'

Consider the matrix in G, > given in (21).

’ ’
(t * o Xp Xo * = [0
™ ’ eee xl’l—z x;1—2 * * n-2
’ ’ ’ ’
Xo Xy vt Xp_2 Xp-1 8n@py ! | n-1 @n
’ ’ 4 ’ ’
Xo Xy Xp_z Xpoy &P U |n
* % e o gay g.P w|n+l
L* % = % t t’ w' | n+2
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ForO<i<n-2,R;=$,_:x/. R,_,is from {(y,x’). R,is from the expression for ¢’
we just derived and R, » is from the previous matrix in which w’ was defined. R, , ,,

which is then uniquely determined, shows:

’ ’
w'= lsn-zdn—lxo’ -~-v5n—2dn-lxn—2’ 8nQnl, gnP]-

By Proposition 3.8.4 (part (b))

Xn=[Sn-20n_1Y0s -+ sSn-20n—1Yn-2, 0¥, P].

Then since g,8,_2@,_1Yi=S,-2d,_1Xi, we have g,x,=w’. This completes the

verification of {Dy={D,.

Part (I): In order to show that @] is a hypergroupoid action we will show that

(22)

E, - G,
a’l
A(n)E) A(n}(G))
is a pullback for each / and then apply Lemma 3.6.1. We will work with diagram
(22).
/G;. > An)G))
i A .
S ANE,_*G,*Gy)
11 i1
DO Dl
/G; > 4G
, f S
SO pr A‘(EH—I*GI)
1
qy J, r
P Gn Ain)(G))
E, —  Aln)(E))

In diagram (22), AYE,_,*G}) denotes the open i-boxes for

dO
E, \*Gi—/——=—==3E,_,.

-1

Recall that d;(y,x") =d,y. Similarly, A(E,_» G, *G)) denotes the open i-boxes for

E,_1#*G*G| =33 E,_,. The maps ¢ and q, are defined by:

EUD0s X0 - s =5 woes (Do X)) = (A X0y ooy =5 ooer X ),
111(()’0,)‘6), ERX) (ymxr,r)) = (Q(;(‘yO)x(,))f secy qo(ymxr,r))-
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A straightforward diagram chase shows that
A(Eq-1* G xGDBAUE, 1+ G~ A(n)(EY)

is exact. All the other columns of (22) are exaci. The rear plane of (22) is (trivially) a
pullback of exact sequences. After we show that the horizontal squares involving S,
and S, are pullbacks, it will follow that the front plane of (22) is also a pullback of
exact sequences. The hypotheses of Lemma 2.4.5 then hold for (22) and we can
conclude that the bottom of (22) is a pullback. That will complete part (II) of the
proof,

Suppose

Wo G,

A(E,+GY)

Ain)(G)

is a pullback. We may apply the Barr Embedding Theorem (Section 1.3) and assume
this square is in . We will show W,=S,. (A similar argument works for S,.) An
element of W, is

(P, X0) +es =1 ooy (Pms Xn), 2) € AUE, 1 *G) X Gy

where djz=d,,x}. Since E, is aspherical, there is a p,€E,_; such that

(yOs--ﬂyi»'--ryn)eEn' .
Case i #n: A unique ve G, is defined by the hypergroupoid structure from

(Sn—Zdn-1x6»-'-vsn—zgn—lan—lyiv ---;Sn—zdn-lx;-zvgnany’U,x)eG;H»l'
A unique %/e G{cG; is then defined by the hypergroupoid structure from
(X('), ...,X}, ...,X;,_ 1 v,2)E Gr’l+ 1.

Then (g, X0)s -++ s (Fis &1 s oo s (¥ns X1)) € So. This provides a map Wy— Sp which is an
inverse to the canonical Sy— W,.
Case i = n: Define v immediately by (xg, ..., Xn_1,0,2) € G, .. Then define x, by

’ ’ ’ ’
(Sn-zdn—lxo» ceesSpn-28p _1Xn_2,8n0n Y, U, Xp) € Gnsie

Again Sy= W,. This completes part (II).

We now complete the proof of the theorem by observing that the functoriality of
TORS(X; g.) follows from that of the extension-of-the-structural-groupoid cons-
truction (Theorem 2.4.1) since TORS(X; g.) was defined using that construction on
the attached 1-torsor of E,. Similarly, the isomorphism

TORS(X; g.¢.)=TORS(X; g)TORS(X; g.)

follows from the analogous one in Theorem 2.4.1. [
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Theorem 4.2. Let g,: G,— G, be a map of n-dimensional hypergroupoids and X' —X
an arbitrary map. Then

TORS(X; G,)

TORS(X; G))

TORS(X"; G,)

TORS(X"; G))
commutes up to isomorphism,

Proof. Both composites are equal on the (n-2)-truncation of a torsor
E, e TORS(X; G.). They are isomorphic on the attached 1-torsor level by Theorem
242, O

We will conclude this chapter with two additional facts about TORS(X; g.).

Proposition 4.3. Let g,:G,—~ G, be a map of n-dimensional hypergroupoids, let
a,:E— G, be a torsor over X and let E!=TORS(X; g.). Then there is a
G.-equivariant map h,: E,— E! such that

G, G,
&,
a, a,
E, W, E!

commutes.
(Compare with Lemma 2.4.3).

Proof. For0sm=<n-2, set h,,= 1g . At dimension n—1 define 2,_, by h,_y=
qo(Y,Sn-18n-1an-1y). See diagram (18) and recall that (y,8,_ (8, 1Qn_1Y)E
E,_,»Gj. This definition applies Lemma 2.4.3 at the attached 1-torsor level. The
simplicial map A, is then determined for all m=n since E,, and E,, are simplicial
kernels for m=n. We must show g, a, =a’h,. Now g,,an=a,h, for m=n—2since,
by definition, a,,=gna., and h,=1. Now let y=(y,,..., y,) € E,. Abbreviate
Sn-1@n-1Yiby 1;and g,1;=5,_18,-1,_1¥; by 1;. Then

a;,h,,y= a;l(qO(y09 16)’ eue qu(ym 1;1))
= a;lql((yO) 16)’ eee :(ym l;l))
=C(()’o, 16), '"1(an l;l)) =2

as defined in the proof of Theorem 4.1. So we need to show that g,a,y=z=
$(( Y0, 10)s -+« 5 (Vs 11)). Now z satisfies the hypergroupoid equation

1;l= [S,,_zd,,l{), "~,sn—2dnl;l—2: [l(,)! ceey ll’l—]:gnanylyz]'
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By Proposition 3.8.4,
any =an(Yolos s Yaln) =[los ooy Lno 1, @nl(Yos ovvs Y- 15 Vi)l
Hence g,a,¥=[1g,...,1,_1, 8,2,¥]). We thus have
(Sn-2dnlos.eesSn_2dnln 2,810, .2, 1) € Groy.

But the hyper-unit identity s,_,g,a,y€ G,., implies that z=d,5,_18,2.(¥)=
gn0ny. U

Corollary 4.4. Let g,:G,— G, be a map of n-dimensional hypergroupoids and
suppose also that g, is an exact fibration in dimensions zn—1. If «,:E,— G, is a
torsor over X, then the composite g a,: E,— G is a torsor under G, over X. Further-
more, TORS(X; g XE) isg,a.: E,—G..

Proof. It is easy to see that g, ¢, is an exact fibration in dimensions =n—1 and
hence is a hypergroupoid action. The condition COSK"~}(E.) still holds, obviously,
as does asphericity, and so g,a, defines a torsor in TORS(X; G.). Let
E!=TORS(X; g.)(E,). By Proposition 4.3 we have a diagram

G, G!
I-£8
a, o,
E. h. E!

h, is a torsor map in TORS(X; G!)since g, «, defines a torsor. On the attached 1-torsor
level, the G/-equivariant map A, is an isomorphism in TORS(4*(n — 1)(E.); G1) since
E, = E] | is the pullback of an identity map. Hence ¢, =g,a,. 0O

5. Torsors and cohomology groups

In this chapter we will consider torsors under the n-dimensional hypergroupoid
K(A, n) where A is an abelian group object in the exact category %. The equations
derived in Chapter 3 which characterized the interplay between n-dimensional
torsors and their attached l-torsors simplify in this case because K(A, n) has only
one degenerate n-simplex, namely 0 A.

A torsor under K(A, n) has a substructure, called its fiber, for which there is no
clear analog in the general hypergroupoid case. The fiber is an (» — 1)-dimensional
hypergroupoid. It plays a key part in establishing the long exact sequence of
cohomology and also shows how an n-torsor under K(A,n) can be regarded as a
1-torsor.

The category TORS(X; K(A4,n)) has special properties not possessed by
TORS(X; G,) for general G,. First, it contains a distinguished torsor and thus is
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non-empty. Second, it has a rather simple connected components structure. Third,
the addition map for A yields a functorial associative and commutative binary
product defined on torsors which determines a way of adding connected
components. The result is an abelian group of connected components which is by
definition the n-th cohomology group of X with coefficients in A.

5.1. n-torsors under A

Let A be an abelian group object. Denote TORS(X; K(A4, n)) by TORS?(X; A) for
short. A torsor in this category is an ‘n-torsor under A (over X)’. The results of
Chapter 3, as they apply to K(A4, n) and an n-torsor «,: E,— K(A, n) include:

1. The associated groupoid of K(A4,n) is K(A, 1), i.e. the group A itself.

2. E,isa l-torsor iff A acts principally and effectively on Ey with quotient p: Ey— X,

the map onto the ‘orbits’.

. The attached 1-torsor of E, (if n>1) is a 1-torsor under A over 4°(n— 1)(E,).

4. (Notation). Given aq,...,a,€ A, then A.S.(ay,...,d,) abbreviates the alternat-
ing sum a,-a,_;+ -+ (—1)"a,. In the hypergroupoid structure of K(A,n),
fags ...,a,] =A.S.(ay, ...,a,). Since all degenerate simplices of K(A4, n) are ‘0’, the
equations in Proposition 3.8.4 take the form

W

0n( Yooy «ovs Yn@n) = 0p( Vo, -vr Yo) + A.S.(ag, ..., ap).

5.2. The fiber of an n-torsor

Let 1, denote the simplicial object consisting of 1 at every dimension and let
e,:1,— K(A,n) be the simplicial map defined by setting e, to be 0:1=A4 in
dimension n.

Definition. Let «,: E,— K(A, n) be an n-torsor. The pullback simplicial object

G.(E)) E

a,

1

is called the fiber of E,.

K(A,n)

This concept defines a functor on TORS"(X; A). For0<sm<n-1, G,(E.)=En,
and G,(E,) consists of all y € E, such that @,y =0. Since E,=A{(n)(E,) X A with a,
the projection on 4, it follows that G,(E,) = A (n)(E,). Similarly, G,(E,)= A(m)E.)
for every m > n. This proves:

Proposition 5.2.1. G,(E,) is an (n— 1)-dimensional hypergroupoid. T
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5.3. Every n-torsor under A is a 1-torsor
Let a,: E,— K(A, n) be an n-torsor with attached 1-torsor
E, \XA3E,_|—4°(n-1)(E)).

The object E,_, has an (n— 1)-dimensional hypergroupoid structure (as part of
G,(E))). The group A is an (n—1)-dimensional hypergroupoid also (from
K(A4,n—-1)) as is 4°(n—1)(E,) from being part of COSK”~2(E,). The action of
A on E, _ respects these hypergroupoid structures. Also, one can reconstruct from
such a l-torsor the n-torsor whose attached 1-torsor it is.

Theorem 5.3.1. (i) If a.: E.— K(A, n) is an n-torsor, then its attached 1-torsor is a
1-torsor in the category of (n— 1)-dimensional hypergroupoids.

(ii) Let n=1 and let G, be an (n-1)-dimensional hypergroupoid which is
augmented over X and aspherical. If

G | XA3G,_ =4 (n-1)G,)
is a 1-torsor in Hypgpd, _ (%) then E, = COSK"~(G,) is an n-torsor under A over X
whose fiber is G, and whose attached 1-torsor is the given one.
Proof. (i) The map E,_,>d4°(n-1)(E)) is obviously an (n- 1)-dimensional
hypergroupoid map as is the projection

Po
E,_xXA—E,_,.

As for the other map

E,_xA TEn—l’

we must show that the following diagram commutes for all / and j:

[4

G(E)XK(A,n—-1), G.(E,)
di di
En— ! XA En— !
Py
d; d;
E, E,

An element of G.(E,))xXK(A,n~1), is (¥g,-.-» Vn, 4o, ..-,80) Where a,y=0 and
A.S.(ap, ...,a,)=0. The map p sends (y,a) to (¥oday, ..., ¥x@,). The top square then
obviously commutes. The bottom square commutes because d;y =d;(ya) for all /.
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(i) E, is isomorphic to COSK”~!(E,) by definition and is aspherical over X. We
need to define a,: E,— K(A4, n) (and it suffices to do so at dimension n) and show
that it is a hypergroupoid action. First observe that at dimension n the action of
K(A,n)on G, sends (¥g, -«s Yny gy o+, @) 10 (Yodog, -5 Ynay)- Since ¥, =Yg, .., ¥Yn 1]
and

a,=lag,...,a,_11=A.S.(ag, ...,Qn_1)
we have
[.yOaO» veey yn—lan—|]=ynan=[.y0v ‘--’yn—l]A-S-(aO’ ces@p_ )

Thus: (¥g, .+vs Yn-1, Yaa) € G, iff, for each i, (yg, ..., yi(=1)""‘a,..., y,) € G,. Now
suppose (¥, ..., Yn) € E;=A"(n)(G,). Then the exactness of

Gn1xA3G,_ 1 —4°(n-1)(G))

implies d;([¥g, ..., Yn-11)=diy, for all i and therefore that y,=[yg,..., ¥a_]a for
some unique aeA. Now define a,(yg, ..., ya)=a iff y,=[yg, ..., Yn_1]a. This
definition of «, is forced by Proposition 3.8.4 together with the first observation
above. To show that q, is a hypergroupoid action we must show E,= A(n)(E,) X A.
The map E,— A/(n)(E,) x A defined by

(yOs ceey )’n)"" (}’0,---, Ty ey )’ma’nJ’)
has as its inverse the map

(Fos ves=seees Vs @)= (Fos oo Yi(=1)""a, ..., ¥,)

where y; is uniquely determined by the hypergroupoid structure of G,. It is
immediate from this construction that G, is the fiber of E, and that E, ; is the
originally given 1-torsor. [

Corollary 5.3.2. Suppose ¢.: E,—E! is a simplicial map between n-torsors under A.
Then ¢, is an n-torsor map iff @, restricts to a map between the fibers.
Proof. If ¢, restricts to a map between the fibers, then

Q’n()"o, evey Ty eeny yn»a) =(¢n~1y0) sery Ty '"»(on—lynra)
and thus restricts to a 1-torsor map in Hypgpd,, _ ;(%). It is then clear from Theorem
5.3.1 that ¢, is an n-torsor map. (J
5.4. Quasi-split torsors

The canonical map d,:DEC(K(A, n))—~K(A,n) is a hypergroupoid action (see
Section 3.6); in fact, it is an n-torsor over 1 under A. The attached 1-torsor is

l——AT——AXA,
+

the group A4 acting on itself by right translation.



76 P.G. Glenn
Definition. An n-torsor is quasi-split if its attached 1-torsor is split.

Denote DEC(K(A,n)) by K,(A,n) for short. It is the ‘canonical’ quasi-split
torsor. It is also split as a simplicial object. Generally, a quasi-split torsor is not split
however.

Recall (from Proposition 3.8.1) that any map E,,,,—+Tr”‘2K,, (A,n) can be
extended to an n-torsor map E,— K,(A, n) of torsors under 4. The attached 1-torsor
of E, is the pullback torsor of that of K,(A, n) and is thus split. That is, E, is quasi-
split. This characterizes being quasi-split.

Proposition 5.4.1. «a,: E,—~ K(A,n) is quasi-split iff a, factors through K,(A,n)—
K(A,n).

Proof. If a, factors through K,.(A,n), then E, is quasi-split (Proposition 3.8.1).
Conversely, if E, is quasi-split then E,_;=A4°(n— 1)(E,) X A and E,, as a simplicial
kernel, has elements of the form: ((yg, ap), .-., (¥n,a,)) Where y;=(Yips-++s Yin-1) €
4*(n— l)(E.) and d,-yj=yj,~=y,~,j_,=dj_|y,~ for l<j Define E._’Kg(A’”) at
dimension n by sending ((¥o,40), ---»(¥n,a@n)) to (ag,...,d,). Since K,(A,n),—A
sends (ay, ...,a,) to A.S.(ay, ...,a,) we must show that

a,((¥o,ag)y o s (Vns@s)) =A.S.(ay, ..., a,).

Now the A-action on the attached 1-torsor of E is (y,a)a’=(y,a+a’). Then

a7 ((¥0,a0) - s (Pnr @) = @, ((¥0, 0)ag, ..., (¥, 0)as)
=a,((Y0,0), ..., (¥n, 0)) + A.S.(ag, ..., a,).

To see that a,(...,(»,,0),...)=0 consider the matrix in E,,; whose bottom
((n+1)-st) row is (..., (»;,0),...) and whose i-throw for0<i<niss,_;(¥,0). Then

(..., (¥ 0),...) =dp, | p, (Matrix)

=A.S.(a,,S,,_|(yo,0),--.,ansn-l()'mo))=0- 0
Corollary 5.4.2. TORS"(X; A) is non-empty.

Proof. For any X there is the constant truncated complex consisting of X at every
dimension and with all face and degeneracy maps ly. There is a unique truncated
map from this complex to Tr"~2K,(A4,n) which extends to an n-torsor map
E*— K,(A,n). This is a quasi-split torsor over X and E¥ —K(A4, n) is unique by
Proposition 5.4.1. [

Remark. If E,— E; is a torsor map and E. is quasi-split, then so is E£,. But one
cannot conclude that E! is quasi-split from E, being quasi-split.



Realization of cohomology classes 77
5.5. Connected components of TORS™(X; A): preliminary facts

Definition. A connected component of % is an equivalence class of the equivalence
relation generated by the following relation: X ~ Y iff %(X, Y)#0.

Let [X] denote the equivalence class represented by X and TORS"[X; A] the class
of connected components of TORS"(X; A). Note that [X]=[Y] iff one has a series
of maps

X"Ao"‘Al""‘—’An“Y.

We will see later that two torsors in the same component can always be linked by
one intervening pair of maps.

The following two facts will suffice to prove that TORS"[X; A] is an abelian
group.

Lemma 5.5.1. Given any [E,] and [E!] in TORS"[X; A), one can find representa-
tives from each component having equal (n— 2)-truncations.

Proof. Choose any representatives E, and E] and form the pullback of (n-2)-
truncated complexes

E. .

Tr"~(E))

Tr"~X(E,) Con(X)

where Con(X) is the simplicial object consisting of X at every dimension with all the
face and degeneracy maps equal to Iy. E,,— X is pd{'.
E, .. is aspherical. (This is easily verified in sets. Apply the Embedding Theorem.)
Then E, ,—Tr"~%(E,) and E, ,,—Tr"~%(E.) extend to torsors maps £,— E, and
E:— E! (by Proposition 3.8.1) where E, and E! have equal (n—2)-truncations by
construction and [E,]=[E] and [E/]=[E!]. O

Lemma 5.5.2. If E, is quasi-split then [E,] = [E?)| where E¥ is the canonical quasi-
split torsor over X defined in Corollary 5.4.2,

Proof. For m<n-1, we have maps pd{:En,—E; =X. Since E, is quasi-split,
E,_ 1=4°(n—1)E,)xA. Define E,_,—»XXA by (y,a)—~ (pd{ yo,a). We thus
have E,— E? which, since it restricts to a map of the fibers, is by Corollary 5.3.2 a
torsor map. Therefore [E,]=[E*]. O
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5.6. Abelian group structure on TORS"[X; A). Functoriality

We will now define a binary operation on torsors which will determine an abelian
group addition of connected components.

Definition. Let E,, E;€ TORS"(X; A). Let 4x: X =X x X denote the diagonal map
and let +: 4 x A— A4 be the addition map for 4.
Set E,® E!=TORS™(X; +)TORS™(dy; A*)(E, X E!).

Remarks. E, X E! is the product simplicial object formed of products dimension by
dimension. E, X E/e TORS"(X? A?). The addition map + is a homomorphism
since A is abelian. Since ‘®’ is defined by a composite of functors, it is functorial in
each variable and, in particular, respects connected components.

Lemma 5.6.1. If [E,®QE!]=[E!] in TORS"[X; A], one may choose representatives
E, E, E! with equal (n—2)-truncations so that E! | =E, \®E, | on the attached
1-torsor level in TORSY(K; A) where K=A°(n = 2)(E,)=A4°(n - 20E)=A4"(n - 2)(E]).

Proof. Choose, according to Lemma 5.5.1, representatives E, and E. with equal
(n - 2)-truncations, say £, ;. Let E,» E] denote TORS"(dx; A*)(E, X E)).

E;

E +E]

E X

Then E, ,,~Tr"~%(E, *E) (the diagonal map over X), extends to a torsor map
E*—E, »E!. We thus have

E’=TORS"(X; +)(E}»—E.QE!,

showing that [E”] = [E.® E]]. E! clearly has the same (n - 2)-truncation as E, and E;
and it is easily seen that E] ,=E, \®E, ; in TORS!(4*(n—1)(E,); A). O

Proposition 5.6.2. For torsors in TORS"(X; A) the following statements are true.
() EEQE=E/®E..
(ii) [E.® ES)=[E.] where E} is any quasi-split torsor.
(iii) [E.®EQE)))=(E.QE)DE,]).

Proof. (i) Obvious from the definition.

(ii) By Lemma 5.6.1 we can assume that E,, E7 and E]=E,®E; have equal
(n—2)-truncations and that E ,=FE, | @E;,. The assertion is thus reduced to
dimension 1; its straight-forward verification is left to the reader.

(iii) Form the torsor E,xE!xE’e TORS"(X’ A% and pull back along
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A,\«J:X—'X3 to obtain E, +E’+E’e TORS™(X; A%). The addition homorphism
0:A— A yields
E,QE®E=TORS"X; o)E,+E/+E]).

It suffices to compare this to E,® (E®E). By Lemma 5.6.1 one can arrange for
both torsors to have equal (n~ 2)-truncations. This reduces the comparison to the
attached 1-torsors level. Again the details are left to the reader. [

Remark. In fact, it can be shown that

EQEQEN=(EQE)QE.

Corollary 5.6.3. The addition defined by [E,}® [E.) = |E,® E.} makes TORS"[X; A]
an abelian group.

Proof. @ is well defined since ® is functorial. The identity element is 0 = [E}] where
Ef is any quasi-split torsor. Associativity, commutativity and the equation
[E.1®[EF] =[E,] follow immediately from Proposition 5.6.2 . Given E, define ~E,
to be equal to E, as a simplicial object and (-a),, = —(@,,). It is straight-forward to
verify (again using Proposition 5.6.2) that a quasi-split torsor maps to £, ® —E, and
hence that [E,®—E,]=0. O

Theorem 5.6.4. Given X'—X and a homomorphism A— B,
TORS[X; A] TORS"[X; B]

{

TORS"[X"; A] TORS"X"; B]

is a commutative diagram of abelian groups.

Proof. The diagram commutes in sets, by Theorem 4.2, The fact that the maps are
homorphisms follows from repeated applications of Theorem 4.2 and the definition
of ®, using the commutativity of

AXA BxB
+ + d
A B

5.7. Main connected components theorem

From Proposition 2.3.2 we know that every torsor map in TORS!(X; A)is an iso-
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morphism. Thus the connected components of I-torsors are isomorphism classes.
The situation is more complicated for 7> 1 since there are n-torsor maps which are
not isomorphisms. In particular, the connected component of the canonical quasi-
split torsor contains not only all other quasi-split torsors (Lemma 5.5.2) but certain
non-quasi-split torsors as well.

Given a homomorphism f:A4— B, one may ask about the kernel of

TORS[X; f1: TORS"[X; A]=TORS"[X; B].

(We will consider this in Chapter 6.) If TORS"[X; f][E,] =0, we can only infer that
TORS™X; f)E.) is in the connected component containing the quasi-split torsors
under B but not that it is quasi-split itself. It is clearly important to know how
‘close’ TORS™(X; fYE,) is to a quasi-split torsor. That is: how many maps are
needed to connect it to a quasi-split torsor? The answer is: one map. We will give a
complete proof of this important technical fact.

To begin, let X, be an arbitrary simplicial object. Then we may define a simplicial
object called the ‘prisms of X,’.

Definition. Set
Pr X, ={(Xp: ..., Xn) € Xp) |djX0_j=djxn_j+\ fOr 1=j=<n},
di(Xoy «oe s Xp) = (@i X0y oo diXpn_ -1, 8is 1 Xn_ s 15i 1 Xn—iv 20 o Dis 1 Xn),
Si(Xgy eoe s Xn) = (SiX0gs evrsSiXn iz 1sSiv 1Xn—i—19Sit1Xn—is oo+ sSi+1Xn)-
An element of Pr, X, is an n-prism. Pr_X, is a simplicial object.
Remarks and notation. 1. PryX = X}, clearly. The word ‘prism’ is motivated by the

following pictures for elements in dimensions 1 and 2. A 1-prism is (xg, X)) eXz2 such
that dyxp=d,x,.

Vo —

X0
Xy

Wo W)

A 2-prism is (,\’0,,\’1,,\'2)6/\’33 such that d,xo=d,x, and dyx|=d>x,.

Vg Wg
N
N —\} wa (23)

(557

L aa—— |
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Xp is spanned by vy, v;,v; and w,. x| is spanned by vg, vy, w; and w;. x; is spanned
by v, wp,wy and  wi.  do(Xg, Xy, X2) =(doXo, doX)).  di(Xo, Xy, X2) = (d1 X0, d2X2).
d>(xg,X1,X3) = (d3x,,d3x3). That is:

do(xp, X1, X3) =vy————=w,

VW,

etc.

2. For n>2 the geometric visualization is impractical but the following matrix-like
notation can be very helpful in its stead. Given (xy, ...,Xx,) € Pr,,X,QX,f’fl form the
matrix whose i-th row (0=<i=<n) is (dyX;,d X, ...,dn+1%). The defining equations
for Pr, X, and the faces of (xo, ...,x,) appear in easily noted patterns. For example
let (xg, ..., X3) € Pr;X,C»Xf.

dOXO d4X0

dy— doxl d4x| /d3 (24)
dOXZ d4X2
dOXJ d4X3

The defining equations d,x;=d X3, d,x; =dx; and dyxy=d;x, are indicated by
the boxes in (24). The faces of (xg, x,,X3, x;) are circled and labeled. The entries dyx;
and dyxg will be called the ends of (x,, ..., x;). (See the picture in (23).)

3. There are two simplicial maps, the ‘end’ maps, €*:Pr,X,— X, and e!:Pr. X,— X,
defined by e%(xq, ..., X,) =d, . 1 xp and e}(xg, ... X)) =doXp.

Suppose X, is a groupoid. Note then that a 1-prism is a commutative square and
that a 2-prism is a commutative prismatic diagram. Any of the faces (rectangular
sides) of a 2-prism is uniquely determined by the other two faces using the groupoid
structure of X. This observation is the gist of the proof of:

Proposition 5.7.1. If X, is an n-dimensional hypergroupoid, then so is Pr X,.

Proof. We must show A™(/)(Pr, X,)=Pr, X, for all />nand 0sm=/. It will suffice
to use the n-dimensional hypergroupoid structure of X, to show A™(n+ 1)(Pr, X,) =
Pr,, X, because a similar argument using the /-dimensional hypergroupoid
structure of X, (/>n, see Example 3 of Section 3.1) will verify all the other
isomorphisms.

For the rest of the proof, fix m, 0<m=<n+ 1. Consider

(Jos -» Yns1) €4°(n+ 1)(Pr, X)) (Pr,X,)" +2
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where y;= (20, ...,Z;s) is an n-prism, Then z;€ X,,, and d,v;=d;_y;for0<si<j=
n+1. The z;’s form a matrix just as if y consisted of the faces of an (n + I1)-prism.
That is, (M) in (25).

[z o T 0 v Zn fend 0] ]

201 Zn £43) Z31 In+1,0

202 212 i 2 Znt Zn+1,1

Zn-1,2 Zn2 Zn+1,2

o)
2,n-2
Z,n-1

Zon L2n-1 " Za-ln-1 -1 Ln-ln-l

_[end l] Zin Z2n *** Zp-tn Znn Ln+ln ]

2%

The empty boxes show where defining equations would equate faces if there were
an (n + 1)-prism whose faces were yy, ..., ¥,. The k-th row of this matrix:

(Zok 21k " Zn-kk I—l U Zns2-kk-1 """ Zn+lk—1)

consists of (n+ 1)-simplices whose faces match so as to form a hollow (n+ 2)-
simplex except for missing faces in slots n—k+1and n—-k+2.

An element of A™(n+ 1)(Pr,X) is like the matrix (M) with ¥, =(Zms ---sZmn)
missing. We will use the hypergroupoid structure of X, to fill in this missing element
uniquely in terms of the other y,’s.

Since z;;€ X, ., we have z;=(¢), ..., * ") with tfe X,,. Thus in order to determine
Zmj=(eeey t,f,j, ...) it will suffice to determine any n + 1 of its faces; the hypergroupoid
structure of X, will then fill in the remaining face.

Consider the row of (M) in which z,,; appears. As we observed, this row forms a
hollow (n + 2)-simplex with two missing faces. Thus the face identities applied in the
row containing z,,; yield all but two faces of z,,;. Those two faces are d,,_;z,,; and
dp-j+12Zmj. Now since y, is an n-prism, we have d,_;Znj=d,_;Zm j+1 and
dy_j+1Zmi=dn_j+12m j-1. Thus the two missing faces of z,,; also appear as faces of
Zm, j+1and Z,, ;. We need therefore to find to determine just one of the z,,’s (for
any value of j); all the others would then be determined by the hypergroupoid
structure of X,.

Case m=<n. We will find z,,4. It will appear in the top row of (M):

(Zoo 210 *** Zm-1,0 (Zmo) *** Zno ﬂ [end 0]).

di(end 0)=d,, zjo for i=0,...,nand i£m. d,, (end 0)=d, .2+ 1,0 (using row 1
of the matrix). The hypergroupoid structure of X, then determines d,(end 0)=
d, . 1Zmo and hence z,.



Realization of conomology classes 83

Case m=n+1. Find 2z, ,, using the bottom row of (M) by first finding (end 1)
as in the case above. [J

Proposition 5.7.2. If X, is aspherical then so is Pr, X,.

Proof. Let (yg, ..., Yne1) €4°(n+ 1)(Pr, X,) with y;=(Zig, ..-,Zin) € Pr,X and form
(M) as in the proof of Proposition 5.7.1. We must ‘fill in’ end 0 and end 1 and all
the missing entries in the blank boxes of (M). The rows of such a filled-in matrix
would then comprise an element of 4°(n + 2)(X.). By the asphericity of X, it would
then follow that each row consisted of the faces of a Z€ X,,,, so that we’d have
(2o, .. Zp+1) €Pr, . X, whose i-th face is y;. That would complete the proof.

Now all but one face of end 0 and end 1 are already determined by (M). Since X,
is a Kan complex (Corollary 1.7.2) we may choose (n + 1)-simplices of X to fill in
for end 0 and end 1. When this is done, each row of (M) is missing only one (n+ 1)-
simplex and all of the faces of that simplex are already determined by the face
identities. The asphericity of X, at dimension n+ I allows these missing elements to
be filled in also. O

Proposition 5.7.3. If X,=COSK"(X,) then Pr,X,=COSK"(Pr, X,).

Proof. We will show how to equate (yg,...,Vas1)€d(n+1)(Pr,X,) with
(Wps .., Wn11) € Pr,, 1 X, using the correspondences
(1) (2)
(Yoses Vns1) e (M) — (wy, ..., Wy ).

Correspondence (1) was discussed in Proposition 5.7.1. (Note that y,e X, is
determined by its faces because X, ., is a simplicial kernel). For correspondence (2)
consider the matrix (M*) whose i-th row is (dow;,...,d,,2w;). If end 0, end 1 and
diw,_;jand d;w,_;, (1=j=n) are deleted from (M*) then one obtains an ‘(M)’
matrix. This process is reversible because the faces of, the deleted entries can be
recovered from the undeleted entries using the simplicial identities. [

Lemma 5.7.4. Given simplicial maps

A e

X,——Z——Y,
let T, be the limit indicated in the diagram

T,

|

X, Pr.Z

Y
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Then: (i) If X ,=COSK"(X,), Y,=COSK™(Y,) and Z,=COSK"(Z,), then
7,=COSK™(T,).
(ii) If X, and Y, and Z, are aspherical, thenso is T,.

Proof. (i) This follows from the commutativity of limits.
(ii) An element of T, is (x, (29, ...,2n), Y)E X, XPr,Zx Y, such that f,x=
€9(Z0s -++2n) =dn 4120 and g,¥ =€3(Zo, -+.»Zn) = dyZ,. An element of A*(n+1)(T,) is

thus
Xo (ZO’ ---1zn)0 Yo

Xns1 (20seesZndnst Yn+d
with (x;, (2o, ---,2n)i» ¥i)€ T, and (2, ..., 2,); abbreviating (z,o, ..., 2in). Also,
di(Xjs (Zos - 2n)j» V) = (diX}, di(Z0 .-, 20), diY))
= j—l(xis(ZOv"')zn)is yl) for I<./'

Clearly, (xo,...,Xs+1)€4°(n+1)(X,) and (yo, ..., Yp+1) € 4°(n+ 1)(Y,). By hypo-
thesis there exist e X,,,, and g€ Y, such that d,¥=x;and d;§ = y; for each i. We
then need to find (g, ..., 2, +1) € Pr, .1 Z, such that

dilZ20s -3 Zn s 1) = (205 -+ » 20)i=(Zios - -+ » Zin)-
This can be done by Proposition 5.7.2 so that zgand z,, ; satisfy d, . ;2o=f,. X and
doZn+1=8n+1 Y thus yielding (%, (2o, ..., Zps 1) NV E Ty . U
Theorem 5.7.5. Let

L v,

E,——E «—FE
be torsor maps in TORS"(X; A). Then there is a torsor E, e TORS"(X; A) and maps
E «E—E"

Proof. Using ¢, and w, as in Lemma 5.7.4, form 7., set £, = T, and take E,— E,~E?
to be the projections. We have £, = COSK”~!(£.) and aspherical by Lemma 5.7.4.
We must show £, is a torsor and that the projections are torsor maps. An element of
4'(n)(E,) is

Yo (Voreees¥n-1)o Yo
}."= Yi (Y6»---,y;:—1)i yl”

Yn (.V(I),---,y;—l)n y:

We must show that the i-th row is uniquely determined by the other rows and by the
element aeA to which 7 is sent by the composite £,—E,—A. This will
simultaneously verify E,=A/(n)(E,)xA and that £, —E, and E,—E. are torsor
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maps. First, y;and y; are uniquely determined by the torsor structures of E, and E.
As fOr (¥0y-es Yn-1)i=(Vios---» Yin_1), Observe that we must have ¢,_,y;=d,yio
and y,_,y; =doy;,-, and that

("°’(y6) meesy y:l—l)i’ ...)EA.(H)(PT.E:).

These conditions determine all but one face of y/, and y;,_, (use matrix (M) for
this). The (n—1)-dimensional hypergroupoid structure of the fiber of E, then
determines yjpand y;,_, uniquely. Similarly, we can successively determine y;, and
-y;,n—Z’ y;Z and y;.n—S’etc' O

Corollary 5.7.6. If E, and E. are in the same connected component of
TORS"(X; A), then there is a torsor E, and maps E,—E,~E..

Proof. A sequence of torsor maps connecting E, and E] looks like

E, \TI/TZ\\T{/T‘ T'"\T’H l'/E’.

Each ‘corner’

Tk TI:+2

AN

Tk+l

can be replaced by

Tk Tk+2

Repeating this replacement process eventually yields E,—E,—E!. O

Corollary 5.7.7. If [E.]=0e TORS"[X; A), then there is a torsor map ES—E,
where E* is quasi-split.

Proof. We have E,—E,—E* where E* is the canonical quasi-split torsor. £, must
then be quasi-split, by Corollary 3.8.2. O
6. The long exact sequence of cohomology

In this chapter we will show how a short exact sequence

0—A4A—B—C—0
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of abelian group objects in the exact category # determines a homomorphism
J,: TORS"[X; C]—> TORS"*![X; A]
for each n>0 and also show that the long sequence of cohomology groups:

---— TORS"[X; A] — TORS"[X; B]—> TORS"[.X; C]

5,
—5 TORS™[X; A]— -

is exact. The proofs involve the material on fibers of torsors, torsors under hyper-
groupoids and connected components of TORS"(X; A) developed in earlier
chapters.

6.1. Preliminary facts

Let f:A—B be any homomorphism of abelian group objects. For future
reference in this chapter, let us review the functor TORS"(X; f): TORS*(X; A)—
TORS"(X; B). If TORS™(X; fXE,)=E., then on the attached 1-torsor level we have
TORS!(4°(n - 1)(E,); f)E, 1)=E,, and the diagram

E,,_IXAXB E,,_]XA
Dy | | Dy dy} | d,
E, \xB pr E,_,

q P
E,_ pr A4*(n-1)E,)

with Do(y,a,b)=(3b), Dy(»ab)=(ya,~fa+b), q(»b)b'=q(y,b+b’) and
p'q(y,b)=py.
Lemma 6.1.1. Given f:A— B and E, e TORS™(X; A), let

¢.: E;~>TORS"(X; f/)E,)=E,

be an n-torsor map in TORS"(X; B). Then there exists a torsor map ¢,: E]—E, in
TORS"(X; A) such that TORS™(X; f)(@.)=@..

Proof. By Proposition 3.8.1, the map Tr"~%(@,): Tr"~¥(E)—=Tr"~XE,)=Tr"~XE,)
extends to a torsor map ¢,: E/—~E, in TORS"(X; A). Suppose TORSY(X; f)(o,)=
pr: Er—E,. It will suffice by Corollary 3.8.2 to show that ¢ factors through @,.

El—FE.

‘t
A

E,
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Consider diagram (26). The dotted arrows exist because

2.1
! —
., 1

a,l
is a pullback. Thus
i E,_

K ————K'

is a pullback. This shows in fact that TORS™(X; fE)=E’=E].

Dy

E;,_[XBXA?E,I,_IXB —_— E,I:_l """" 4 E,’,_l E,,_]
1
pr p (pb)
E\_ xA —— E,_, K ——— K K
(26)

(K'=A"(n—-1)E}) and K =A°*(n— 1)(E.)).

6.2. The connecting homomorphism
Fix a short exact sequence

S g
0 A B C 0

of abelian group objects in #. This means that f is monic, g is epic and gb=0 iff
b= fa. Equivalently, f and g determine a 1-torsor

where the action of A on B is defined by ba=b+ fa.

Now the n-dimensional hypergroupoids K(A4,n), K(B,n) and K(C, n) are abelian
group objects in Hypgpd,(#) and thus f and g also determine a 1-torsor

K(B,nxK(A,n—33K(B,n—— K(C,n)

in that category. By Theorem 5.3.1 there is a corresponding (n + 1)-torsor under A
over 1.
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Suppose now that ¢,: E,— K(C, n) is an n-torsor. Let G,(E,) be the fiber of E,.
Recall (Section 5.2) that G,(£,) is an (n— 1)-dimensional hypergroupoid (and thus
also an n-dimensional hypergroupoid). We have ye G,(E,)S E, iff @,y =0. Now

[ PR F | | FOSRI [P T S .
form the pullback 1-torsor in Hypgpd,(%):

G.(E) X K(B,n) x K(A,n) =—= G(E,) X K(B,n) —— G,(E,) X K(C, n)

lpr pr pr
KB,nmxK(A,m K(B,n) K(Cn)
By Theorem 5.3.1 this yields an {(n+ !)-torsor ): E/—=K(4,n+ 1) over X
GuE)XBXA)—— E,., A
H H
G.(E,)xB E, > 1 (27)

{ 1l

X

The attached 1-torsor of E; is circled in (27).
The correspondence d,: TORS"(X; C)—TORS"* ! (X; A) defined by d,(a,)=a!is

ab £
obviously functorial.

Let us determine a,, ., explicitly. Suppose (¥, b) € G,(E.) X B=E,. Using the iso-
morphism G,(E,)=A"(n)(E,) we then have d{(y,b)=y; for 0<i=n-1 and
d,(y,b)=y,g(b). Since E, . | is a simplicial kernel, an element of E,_, is

(Y0, b0}y -++s (Pns156n41))
where di(y;,b))=d,;_ (¥, b)) for all i <j, as usual. We must define
perlees (Finbidy o)
Following the proof of Theorem 5.3.1, consider
(P0:50)s -+ (Fns D)y (P41, 67241)) € Gy ((E) X K(B, 1)y - 1.
Here, d{(¥n.1)=dryi=yinand A.S.(bg, ..., bn, by, 1)=0. Thensince d(¥n+1,0n41)=
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d{(¥ni1,basy) foreach i=0,...,n, it follows (see the attached 1-torsor of E;) that

(Yrsrs bn+1)=(y;v+lv b;wl)a:(y;u—la b1+ f@

for some unique @€ A. Then a,, (...,(¥ib),...)=a. Now b, +fa=b,,, and
thus

Ja=b, 1 —by1=bn1—AS.(bos....0)=AS.(by, ..., Dy1 1)

Proposition 6.2.1. Given a commutative diagram of short exact sequences

S g
0 A B > C —0
h h h

0 > Al B — C’ 0
then

TORS".X; C] “— TORS"*'[.X; A]

TORS"[X; C'] —5— TORS"*'[X; A']
commutes. "

Proof. Let E, be in TORS™(X; C) with fiber G,(E,) and consider diagram (28). The
left-most column is the attached 1-torsor of §,(E,). The column involving £, is
the pullback torsor of B"x A'3B’—~C’ along h” prc: G,(E,)) x C—~C— C’ and is the
attached 1-torsor of E, e TORS"*'(X; A"). The induced maps between these torsors
is readily checked to be equivariant.

G, (E))xB'xA’
AT pr
E,. X T B'XAN_,
I H
G (E)XBxA 1l BxA
H Gn(E)) X B! “
'/ pr
e N \ 28)
| | »
G.(E,)xB T B
quh, G,,(E,’)xC{lg’ .
GE)XC pe c .
Prc x
G.(E,)xC C

pr
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It follows from Proposition 4.3 and Lemma 2.4.3 that the map J,(E,)—E, factors as
On(E,) —— TORS"*!(X; h')o(E,) —— E,

where the second map is an (n+ 1)-torsor map. It is, in fact, an isomorphism
because it consists of identity maps in dimensions <n—1. The center column
containing G,(E)) x B’ is the attached I-torsor of J,(E))=0,(TORS"(X; h")XE.)).
The map GE)XC—-G.(E)XC’ sends (y,c) to (qy, h"c) where qy=
(¢(¥0,0), ...,q(¥,,0)) and q is as in Section 6.1. One has gy € G,(E) because f is
monic. The dotted (#+ 1)-torsor map can then be defined sending (y,¢,6")€ E, ., 10
(qy,b')e G,(E!)x B'. We thus have

TORS"* Y (X; H')S,(E,)— 6,TORS"(X; h")E,)
and therefore TORS"*![X; f16,=0,TORS"[X; #"]. (]

Proposition 6.2.2. Given the short exact sequence

f g
0 -+ A - B——C 0

and a map Y- X, then
TORS"[X; C]

TORS"*![X; A]

TORS"[Y; C] TORS"+![Y; A]

commules.

Proof. Given E, e TORS"(X; C) let E! be the pullback torsor of E, along Y —X.
Then the projection E/—E, is a C-equivariant map which determines an
A-equivariant map J,(E,)—5,(E,). It is obvious from the definition of J, that d,(E.)
is the pullback torsor of J,(E,), and this proves the proposition.

Corollary 6.2.3. J,: TORS"[X; C]—=TORS"*'[X; A] is @ homomorphism.

Proof. Consider the map of short exact sequences

0 AXA BxB CxC 0
+ J+ +
0 A B > C 0

The claim follows by applying Propositions 6.2.1 and 6.2.2 to the definitions of ®
and ®. O
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The case of dy: (X, C)— TORS!(X; A) goes as follows. Given t: X = C, y(t) is
the 1-torsor formed by pulling back along ¢ as shown:

Eyx A BxA
E, B
l l
l (pb) 1
X C

The theorems corresponding to 6.2.1-6.2.3 are easily established and left to the
reader.
6.3. The exactness of the long sequence

We are now ready to show that the long sequence of cohomology determined by
the short exact sequence (f, g):0—~A—B—C —0 is exact. For readability we will use
‘f* to denote both TORS"[-; f] and TORS"(—; f).
Theorem 6.3.1.

o, f*
TORS"[X; C] —— TORS"*![X; A] —— TORS"*![X; B]

is exact.

Proof. Let £,e TORS"*![X; A] and set E/=f*E,. First we will show f*d,=0.
Suppose n=0, t: X—C, and E, =dyt.

EyxAXB Eyx A BxA
Dy | LDy
EyxB — E, or B
90 p 4
E; — X — C
P t

Recall that p is the pullback of g along t. Define h,: E, X K,.(B,1)—= K,(B,1) by
setting h,(y,b)=b +pr(y). Then h;Dy=h,; D, since

h\D\(y,a,b)=h,(ya, —fa+b)=—fa+b+pr(ya)
=—fa+b+ fa+pr(y)=b+pr(y)=h Dy(y,a,b).
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Thus A, factors through E yielding

w

E!——K,.(B,1)—— K(B, 1).

This proves f*dy;=0.

In dimensions 7> 0 the same argument shows that the attached 1-torsor of f*J,E,
is split and hence that f*8,[E.]=0.

Next we must show ker(/f*)¢im(d,). Assume f*[E,]=0. By Corollary 5.7.7 we
then have (quasi-split torsor)— f*E, and by Lemma 6.1.1 we know there is a torsor
in the same connected component as £, which f* maps to the quasi-split one. Let us
then suppose that we have chosen a representative of [E,], E, itself without loss of
generality, such that f* sends this representative to a quasi-split torsor in
TORS"*(X; B).

Consider the case n=0. There is a map v: E;— B defined by vy = woqy(y, 0). Also,

v(ya) = wyqo(ya, 0) = wo(qo( ¥, 0).fa) = woqo( »,0) + fa=vy + fa.

Hence we have

uxl

EoxA BxA
E, B
X --eee--- + C

which induces ¢: X = C in the quotient. Obviously E, =dJ,¢ and so we have shown
ker(f*) Cim(dy).
Now consider the case n>0. Regard E, e TORS"*!(X; A) as a 1-torsor

Fib(E,) x K (4, n) ——= Fib(E,) — COSK"~ (E.)

in the category Hypgpd,(¢) according to Theorem 5.3.1. As we just saw in the n=0
case, f*E, being split (in Hypgpd,(#)) implies there is a map 7,: COSK"~!(E,)—
K(C, n) such that E, is the pullback torsor of

K(B,n) x K(A,n) —= K(B, n) — K(C, n)

along ¢,. At dimension 7 the square

E, B
4
4°(n)(E,) C

ly
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is a pullback.

The identity map on the n-dimensional hypergroupoid COSK"~!(E,) makes this
hypergroupoid a torsor under itself. This special torsor is sent by the functor
TORS(X; t.) to an n-torsor £/ € TORS™(X; C). We will now show that §,([£]]) =
{E.] by finding a torsor map E,—J,E!. From the definition of the functor
TORS(X; t.) (see Theorem 4.1, diagram (17)) we are concerned with the diagram in
(29) where G, is the associated groupoid of COSK"~(E,).

E,,_]*G]XC E,,_|XG|
E,_,xC E,_, (29)
dn_1
E;_, A*(n-1)(E,)
We need to define the dotted arrows in (30) representing ¢,: E,—~Jd,E..
EyXA:---mmmmmmmen » ker a, x Bx A
S |
-------------------- » "
En+1 Cni Ll (6nE.)n+] A
Epzmcrmemaeee N IR sker @, X B | ;
T T
E,----=-=~---==~--~-skera, X B
Pn
. I . (30)
A’(n)(E.)i“: ------- sker a,‘,’xc\ :
\E,,_, L __{p_”:l________)E’,;_l
Nk l
Ep oo - ;_; """" YE;_,

(al: E!— K(C,n) is the action for E”).
In this diagram set ¢,=1 for m=0,...,n-2 since £, =E, for such m. Set
On_1Y=q,_1(»,0). Recall the definition in Section 6.2 of the face maps

di:kera,xB—E,_,.

For i<n, d( 9o, ..., 90, D)= 7; and d,( 9o, ..., P, b) = 7,8(b). This forces the defini-
tion of ¢, to be:

0nY =(@n-1(dp},0)s ....@n_1(dr-13,0),qn-1(dry, ~gUY), 0y,
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observing that q,.(d,y, —gvy)=q.-(d,y,0)(—gvy). This determines ¢, as a
simplicial map since everything in higher dimensions consists of simplicial kernels.
In order to see that ¢, is a torsor map, consider diagram (31).

P
E, ker o’ x B —2— B
£ 31
A. ”
(n)(E,) o kera, xC oo C

Note that prg¢,=v. We also have prc¢,_,=t,. To see this, recall that
ker a, xC=E,. Thus

PrC @n-1¥=0nPn_ 1 ¥ =0n(.er;@n_1(i0), ...)
=ar’l'qn("'9(yi’0)’ --')’ --')=C("-:(yi’0)y "')

where ‘{’ is the map defined in the proof of Theorem 4.1 and which appears in
diagram (18). Following the definition of ‘{’ as it applies in this particular case,

C((y07 CO)’ (AL} (yn! Cn)) = A'S-(CO’ ,C,,) + tn(y)'

Thus (..., (¥ 0),...)=1,(»). Since v is the pullback of g along ¢, the outside square
of diagram (31) is a pullback. The right-hand square of that diagram is also a
pullback and therefore the left-hand square is a pullback. By Corollary 3.8.2, ¢,
must then be a torsor map. This completes the proof that ker(f*) Cim(5,). U

Theorem 6.3.2.

*

On
TORS"[X; B]-—g—*TORS"[X; C]—— TORS"*![X; A]

is exact.
Proof. First suppose 7 =0. We must show

g J
#(X: B)—— #(X,C)—— TORS![X; A]

is exact. To see that dyg*=0 consider the diagram

(dogU)o Bx*B — B
g
X B C
u g

where both squares are pullbacks. Since B » B— B is split by the diagonal, dpgu is a
split torsor,
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Next, if E, = do(t: X —C) is split we have

pr

Ey B

X

C

t

and so f =g pr s =g*(prs). Thus ker(dy) =im(g*).
Now suppose n>0. First we will show §,g*=0. Let a,: E, —~ K(8, n) be an n-torsor
under B. Consider diagram (32) in the category Hypgpd,.(#).

K,(A,n)x COSK"~Y(E,) x K(A,n)*----> G,(g*E.) X K(A,n) — K(B,n) X K(A4, n)

K4(A,n) x COSK"~E,) x K(A,n) -==-~-~ = G.(g*E,) K(B,n)
w

K4(A,n)x COSK"~YE,) -----;----’ g*E, K(C,n)

g*a,

(32)

G.(g*E,) is the fibre of £, and the middle column is the 1-torsor corresponding to
J,8*E, in the category Hypgpd,(%). The right side of the diagram is a pullback of
1-torsors. The left-most column is the product of COSK”~!(E,) with the canonical
split 1-torsor under K(A,n), again in the category Hypgpd,(#%). The existence
of the dotted maps to produce a pullback diagram of 1-torsors will show that
[6,2*E.]=0. Indimension n, an element of K,(A4,n) x COSK"~ WE.)is(a, y,b)e A %
ker(a,) X B. An element of (g*E.), is (Po, ..., Fa, ) wWhere (Jy, ..., ¥,) €Ker(g*a,),
and (g*a.)n(Fos .-, Fur€) =c¢. Recall, from the definition of g*, the diagram

E,xC E,_,
dn-1
(8*E)n-1 4*(n-2)(E,)

Define ¢.(a, ¥,0)=(qn-1(¥0,0), ..., @n-1(¥n,0), 8b). Thus (g*a.)s0.(a, y,b)=2gb.
Now it is easy to check that the pullback of g.: K(B,n)— K(C, n) along (g*a,)¢, in
dimension 7 is (K,(A4,n)x COSK"~!(E,) X (K(A4,n)),. A unique map y, is thus
determined and so it follows that d,8*=0.

Finally we will prove that ker(d,) ¢ im(g*). Assume a,: E,~ K(C, n) is given and
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6,[E.] =0. Then there is a torsor map ¢,: E/—J,E, in TORS"*'(X; A) where E_ is
quasi-split. Consider diagram (33) in Hypgpd,.(#):

COSK"-(E!) x K(A,n)? = G,(E)) x K(A,n) = G,(5,E.,) x K(A,n) = K(B,n) x K(A, n)

|

COSK"~YE})x K(A,n) - G.(E) G.(S,E,) - K(B,n)
p, &,
COSK"~I(E)) -] COSK"~!(E)) o E, - K(C,n)
(33)

In this diagram, ¢ is determined by ¢, on the (7 - 1)-truncation, y, is the
restriction of ¢, to the fibres G,(E)) of E! and G,(6,E,) of §,E, and p,:G.(E))—
COSK”"~(E!) is the canonical projection. In dimension n

Pn=proj.: A*(n)}(E)) x A ——> A (n)(E,), s,=(1,0).

Thus p, is split by s,. Let G.=COSK”~!(E.) for brevity. Regard G. as a torsor
under itself using 1,: G,— G, and consider the torsor

E,=TORS(X; 5,)(G)) e TORS(X; G, (E))).

By extending the structural hypergroupoid along ¢.p, we have

TORS(X; 0.p.)(E)—2— E,
a!

K(C,n)

where 8. is both a hypergroupoid action and an n-torsor map. Thus
[TORS(X; ¢.p ME,)] = [E.]

in TORS"[X; C].
Similarly, by extending the structural hypergroupoid along oy, we have

E”’=TORS(X; a/w.)(E.) e TORS"(X; B).
But g.(e;w.) =(a.9.) p. and 50

g*((E!)) = [TORS(X; ¢.p NE.)]) =IE.].
This proves ker(d,) Cim(g*). O
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Theorem 6.3.3.
S g*
TORS"[X; A] —— TORS"[X; B] —— TORS"(X; C]

is exact.

Proof. First the case n=1. To show im(f*) C ker(g*) consider g*f*=(gf)*=0*. If
E!=0*E, we have (from diagram (3) in the proof of Theorem 2.4.1) the diagram
D,
EyxA XC?EOXC———'E()
1
where Dy(y,a,¢)=(y,c) and D;(y,a,¢)=(ya,—0a+c)=(ya,c). The projection
pre: Egx C—C satisfies pre Dyg=pre D, and induces the factorization E—
K4(C, 1D)=K(C,1). This shows [E!]=0. Next, to show ker(g*)<im(f*), let
E e TORS'(X; B) and assume g*E, = E! is split. Ey appears in the exact sequence

EyxBXAT—=3 E;xB—E

and one has a map w!: E/ = K,(C, 1) since E! is assumed split. The map wy: E;q—C
defined by wgy = wgq(y,0) yields a pullback of torsors under A:

EfxA BxA
E§ B
E, C

Wo

There is a principal action of B on E{ defined by (y, b)b’=(yb’, b+ b"). (Note that
wo(¥b)=wo(¥) +gb’' =gb + gb’ so that (yb',b+b)e EJ.) If we set r: E§—Ej to be
the coequalizer of E§ x B3 E] then the actions of A and B on Ej fit into a
commutative diagram with exact rows:

EfXxAXBT———33EfxA EjxA.
E}xB ————= E} Eq
EyxB /2 E, X
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The left column is

(E§XAT—= E§—— Ey)x B
and the top row is

(E¢XBT—/—= E§—— Eg) X A.

It then follows that the right-most column is exact and thus is the 1-truncation of a
torsor E] under 4. Now apply f*to E,. There is a map of exact sequences

EfxA E;xAXB
Ej EjxB
Ey (S*ED)o

determined by Eg— Eg, (y,b)— (r(¥,b),b) where the right column is from the
extension of the structural groupoid construction. (To check that this works, note
that the action of 4 on E is defined by (y, b)a=(y, —fa+b)). The map in the
quotient is a torsor map E,— f*E” and this completes the proof that
ker(g*) cim(f*).

Now consider the case n>1. Suppose g*[E,] =0. By Corollary 5.7.7 and Lemma
6.1.1 we may choose a representative of [E,], E, itself say, such that g*E, =E/ is
quasi-split. If we regard these n-torsors as 1-torsors in Hypgpd,,_ ;(#) then the n=1
case applies and it follows that E,= f*E. for £ obtained as in that case. This
proves ker(g*) ¢ im(f*) and completes the proof of the theorem. T

7. Connections with classical theories

7.1. Yoneda’s theory of Ext

Let # be an abelian category. A cohomology class in Ext"(X, A) is represented by
an n-fold extension of X by A4,

O——-—»A——»Nn_l——p...—>No——>X—>O_

A map of such extensions is a commutative ladder whose ‘rungs’ point in the same
direction and which has identity maps at X and A. This yields a category which we
will denote n-fold(X,A) whose connected components are the elements of
Ext"(X, A). See [16, Chapter VII}.

The well-known Dold-Kan equivalence [5, 12} between Simpl(%) and (positive)
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chain complexes of % restricts to an equivalence between TORS"(X; A) and
n-fold(X, A). Here are the details.
Let E, be augmented over X and, for 1 si<j, set

NJ(E.)=E;Nker(dg)Nker(d;)N ---Nker(d,_,).

Abbreviate N/(E,) by N/ and N/(E,) by N{(E,) or N;. Thereis a functor N:Simpl(#)—
Simpl(#) defined by N(E,),,,=N,l,+, whose face maps d;: N(E,) 1~ N(E,)m are
the restrictions of d;,:Epn,2~En,; (and degeneracies s;=s;,, similarly). N*
denotes the k-th iterate of N. Diagram (34) summarizes the relationship between
E,,N(E,),N*(E,), etc. The face maps of N¥(E,) are shown with the subscripts of the
maps of which they are the restriction.

d, dy d, d,
Xe——FEy—E /=< E,&==—E;—=—E, E

, Iy d, dy 3 d, N d,

d; J d Y 4
X e——Nye——— Ny =N, === N; &==N, N(E,) (34)

d I d, d, I

U dy U d, lJ
Ny =—=N}===N{ NXE.)

2 a, a,

The chain complex 0 X <Ny« N, < --- is called the Moore normal complex; we
will denote it N=(E,). . 4

Observe that the short exact sequence 0—'Nj‘”~*Nj’ — N/_|—0 is split by
si:Ni_;=N/. Thus N/=N/*"'®N/_, and E,=Ns@E,_, may be decomposed
inductively into a direct sum of N;’s. Also, the face and degeneracy maps of E, can
be expressed in terms of the differentials in N*=(E,). (The precise details are not
required here.) This observation establishes the Dold—Kan equivalence.

Lemma 7.1.1. E, is aspherical iff N(E,) is aspherical.

Proof. For each n one has the following commutative diagram of exact sequences
where K=A4*(n)(E)), K'=4*(n—-1)(N(E,)) and where the left-hand square is a
pushout:

0

er 'En En—l 0

0 — K’ > K E,_, —0

If N(E.) is aspherical then N]—K’ is epic and hence so is its pushout E,—K.
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Conversely, if E, is aspherical then E,~K is epic and hence so is N,—K’ by a
standard abelian category diagram chase. []

Lemma 7.1.2. Let E, be augmented over X. Then E, is aspherical at dimension 0 iff

d, p
N —— Ny—— X

is exact (note Ny=Ej).

Proof. The maps in question are

Po
E,—;—’K?Eo——*z\’
1

where (py, p)) is the kernel pair of p and d is the canonical projection defined by
dz=(dyz,d,z). By definition, E, is aspherical at dimension 0 iff d is epic. Assume d
is epic and py=0. Then (0, y) € K and (0, y) =dz for some z€ E;. Then ze N, and
d,z=y, thus showing im(d;)=ker(p). Conversely, if ker(p)=im(d,) and
(yo, y)€K, then y,—y,eker(p) so that y,—y,=d;z for some zeN,. Then
(¥o, Y1) =d(z + 50¥0), whence d is epic. [

Corollary 7.1.3. Let E, be augmented over X. Then E, is aspherical iff N®(E,) is
exact,

Proof. By induction: E, is aspherical at dimension n iff N(E,) is aspherical at
dimension n—1 iff N®(N(E,)) = N*=(E,) is exact at N,_|(NYE.) =N, (E,). O

Lemma 7.1.4. If E,=COSK™(E,) then Ny, ,»(E,)=0.

Proof. An element of N, ., is a matrix in 4°(m + 2)(E,) whose first m +2 rows
consist of zeros. But then the bottom row must also consist of zeros. [J

Theorem 7.1.5. E, e TORS™(X; A) iff N*(E,) e n-fold(X, A).

Proof. If E, is an n-torsor then
(/,d):07A—E,_ ;= 4°(m—1)(E,)—0

is exact. Thus y=fa iff d;y=0, 0=i<n-—1. It follows that 0= A—>N,_ |7 N, _, is
exact. Thus, using that E, is aspherical, N*(E,) is the exact sequence

0—>A—>Nn_l—>... —DNO—DX—DO

in n-fold(X, A).
Conversely, let the n-fold extension 0—A—+N,_— - > Ny— X —0 be given, and
let E, augmented over X be the corresponding simplicial object determined by the
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Dold—Kan equivalence. E, is aspherical by Corollary 7.1.3. The sequence
0—=A—E, =A%(n-1)(E)—0

is exact where (A—E,_))=(A~N,_,—E,_ ). Similarly,
0—0—E,—~ A (mXE,)~0

is exact by the same argument in dimensions m = n, thus showing E, = COSK"~|(E.).
We must find an appropriate (n ~ 1)-dimensional hypergroupoid structure on £, _,
in order to show that E, is a torsor. First note that A = N,(E,) is a direct summand of
E,. Let a:E,— A be the projection. Since A={yeE,|d;y=0,0<j<n-1}, an
element of 4 may be represented by (0, ...,0,4,0, ...,0) where all but one component
is 0. Observe that if ye E, and ay =a, then y decomposes as

(yo,...,y,-,...,y,,)=(y0,...,y,-+(—l)”"a,...,y,,)—(O,...,(—l)”'ia,...,O).
A hypergroupoid structure on E,_, may then be obtained as follows: given
(Vs 2vvs = eoes V) € A'(N)(E,), choose as y; € E,, _ to fill the open component. Define
A'(n)(E,)—~E,_, by
(yo,---,",---,)’n)"‘)’i+(—l)"—]a()’0,---,)’iyo--r)’n)-

It is easy to check that this definition is independent of the choice of y; by using the
decomposition of y as above together with the fact that any two choices of ‘y;” have
the same faces and thus differ by an element of A. These maps determine a hyper-
groupoid structure, Fib, on E,_; and one has a monic K(A4,n— 1)~ Fib defined in
dimension n~1 by A— E,_, and in dimension n by

(agy...,an_1)—(ag, ..., a,_1, =) A" (n)E,).
The short exact sequence of (n— 1)-dimensional hypergroupoids
0—K{(A,n—1)—~Fib—»COSK"~%(E,)—0
establishes that E, is an n-torsor under 4 whose fiber is Fib. O
It is clear that torsor maps correspond to maps of n-fold extensions so that

TORS"[X; A] =Ext"(X,A). The correspondence between the group structures
reduces to a verification in dimension 1 which is routine and will be omitted.

7.2. Comonad cohomology

Let ¥ be monadic over ¥ (sets) and denote the associated adjoint pair F,U: ¢ — 7.
The functor G=FU:¥ — % together with natural transformations obtained from
the unit and co-unit of the adjunction determine an augmented simplicial object

G'X=(X-GX £G2X ")

called the standard resolution of X,. Given an abelian group object 4 of %, there is
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a cochain complex defined by C"(X,A)=%(G""'X,A) and 3,:C"~C"*! the
alternating sum of the maps induced by the face operators G”~2X—G"*'X. The
homology groups of this complex, denoted HE(X; A), are the comonad cohomology
groups of X with co-efficients in A relative to the comonad G.

Duskin showed how to represent an element of H3(X; A) as a ‘K(A, n)-torsor’
and did so in the more general case where .# can be replaced by any finitely complete
category [7]. The concept of a ‘K(A, n)-torsor’ is the immediate predecessor of the
concept of torsor defined in this paper. We will show that the two are almost the
same (actually coinciding in many examples) and thus relate the groups
TORS"[X; A] to those classical cohomology theories which were earlier shown to
coincide with comonad cohomology groups. See [3].

The functor U: % — 7 creates limits and coequalizers of U-contractible pairs.
(See [13, Chapter VI] for details). It follows easily that % is exact and that
E, e TORS"(X; A)in % iff UE,e TORS"(UX; UA)in 7. Since every l-torsor in ¥ is
split, UE,_,=UA4*(n—-1)(E,) X UA where UA acts on UE,_, by translation on the
right-hand factor. Note also that UE, is split as a simplicial set (and E, is then said to
be U-split) because it is aspherical (Lemma 1.8.2). The definition in [7, p. 66] is, in
effect, that E,~K(A4,n) is ‘K(A, n)-torsor rel U’ if E, is U-split, E,= COSK"~!(E.)
and UE,— K(UA, n) is an n-dimensional hypergroupoid action. A map of K(A4, n)-
torsors is one which is equivariant and which preserves the U-splittings. We will
denote the resulting category TORS{/(X; A). These observations show:

Proposition 7.2.1. TORS"(X; A) is a subcategory of TORS{(X; A). O

The standard resolution G*X is U-split and has the following universal property:
if E, is any U-split simplicial object augmented over X, then there is a uniquely
determined simplicial map G*X —E, which preserves the U-splitting. Hence, given
any E, e TORS{(X; A), the (n — 2)-truncation of the unique G°X —E, determines by
Proposition 3.8.1, a K(A4, n)-torsor map E/—E, where TR” "%(E/) = TR"~%(G*X). E!
is called the standard torsor associated with E,. Duskin established his interpretation
bijections [7, Chapter 8] correlating K(A, n)-torsors with n-cocycles by use of the
standard torsor. Further, given an abelian group object homomorphism f:4—B,
the functor TORS{[X;f] induced by extension-of-the-structural-group
corresponds to the functor H3(X; f) induced by composing f with n-cocycles.

Proposition 7.2.2. The induced map TORS"[X; A= TORS[X; A] is a mono-
morphism. (O ‘

Remark. A K(A, n)-torsor map is, in particular, a torsor map. That is why no
collapsing occurs in TORS"[.X; A]—TORS{[X, A].

The distinction between K (A, n)-torsors and n-torsors is that the former need not
be aspherical. Nevertheless, examples where TORS"{—; —] = TORS{/[—; ~] abound.
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Lemma 7.2.3. If the simplicial set E, is split and is a Kan complex, then it is
aspherical.

Proof. Given (xg,...,X:) €A (n)E,), then (5,Xq, ...,S, X, —) €A Y (n+1)(E.) and
there exists z € E,, , , such that d;z=5,x,;,, 0 <i=<n, because E, is a Kan complex. Then
Xg, .-+, X, comprise the faces of d,,,2z. U

Every simplicial group is a Kan complex [15]. Hence U-split simplicial groups are
aspherical.

Corollary 7.2.4. TORS"=TORSY, if % is a category monadic over ¥ whose objects
have an underlying group structure. []

In order for coincidence to occur, it is not necessary that every simplicial object in
# be a Kan complex. For example, K(A, n)-torsors in the category of G-sets, #¢
(G a group) need not be Kan complexes. However, the standard resolution,
XxDEC(U(G), 1), is a Kan complex. Thus every K(A, n)-torsor E, is mapped into
by a torsor (the associated standard torsor) and it follows easily that TORS*[X; A]—
TORS{[X; A] is an isomorphism.

For another example, Duskin pointed out in [6] that if the objects of # admit a
‘Mal’cev operation’ (a ternary operation W satisying W(x,x, y) = W(y,x,x)=y) then
the conclusion of Corollary 7.2.4 still holds. The reason is that the standard
resolution of a Mal’cev algebra is aspherical (see [17, Proposition 612]) so that
standard K(A, n)-torsors are torsors in the sense of this paper. Any group has a
Mal’cev operation defined by W(x, y,z) =xy~'z.

7.3. Sheaf cohomology

Let & be an arbitrary topos. The category Ab(¢) of abelian group objects of £ is
an abelian category. If Ab(4$) has enough injectives (as is the case when £ is a
Grothendieck topos), then the derived functors of &(1,—):Ab(¢)—Ab are the
cohomology groups, H*(&, —), of &. Now, regardless of whether or not Ab(£) has
enough injectives, one may consider the cohomology groups TORS}[1; —]. We will
show that if ¢ is a Grothendieck topos then TORS? = H*, The proof consists of
showing that TORS} vanishes on injectives [9,4]. A Grothendieck topos £ has a
‘free abelian group object’ functor F: & = Ab(4) left adjoint to the forgetful functor
U:Ab(&)—~ 6. We will use that H"(4, —)=Extaps)(Z,—) where Z=F(1). See
[11, Chapter 8] for details.

Proposition 7.3.1. Exthy)(Z,4)=TORS}[1; A4].

Proof (following Johnstone [11]). An element (f,g):0—»A—E—Z—0 of Ext!
yields a 1-torsor ExX A3 E—Z in Ab(¢) where the action of 4 on E is defined by
ya=—fa+y. If this torsor is pulled back along the unit of the adjunction evaluated
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at 1,1—Z, one obtains a 1-torsor in TORSL(1; A4).

Conversely, given E,e TORS}(1; A), define nE,=FE.&®---QE, (ntimes) if n>0, set
nE,=(—n)~E))if n<0, and OF, = the trivial torsor over 1. Let nEy= (nE,),. Define
E to be 11, ,nEy, E has an abelian group operation ExE—FE induced on
summands by the maps nEyx mEy—(n+ m)E,. An epimorphism E—~Z=11_,,1 is
induced by nEy—1I, 1. The kernel of this map is 0Ey=A and thus the torsor E,
determines the short exact sequence 0 A—=E—Z—0and E;—E—Z=Ey—~1—2Zis
clearly a pullback. O

Given X € &, the functor X*: 6 —&/X is defined by X*Y =pr: Y x X~ X.
Lemma 7.3.2. X* preserves injective abelian group objects.

A proof is given in Théorie des Topos et Cohomologie Etale des Schémas SGA 4,
IV, Proposition 11.3.1, pp. 498—499.

Theorem 7.3.3. TORSL[X; —) vanishes on injectives.

Proof. The conclusion follows from Proposition 7.3.1 if X =1. Otherwise,
TORS,(X; I) =TORS/x(1; X*I) = Exthysx)(Z; X*I),

again by Proposition 7.3.1. Since X*I is injective if / is, the theorem follows. O
Corollary 7.3.4. TORS;[1; —=]1=H"(4,-) if & is a Grothendieck topos.

Proof. If I'isinjective then the attached 1-torsor of any £, e TORS;(1; I) is split, by
Theorem 7.3.3. Thus TORS[1; —] vanishes on injectives and the isomorphism
follows., [J
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