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6.1 INTRODUCTION 

The nature and properties of vegetation are fundamental attributes of landscapes. 
The nature of the vegetation in an area is determined by a complex combination of 
effects related to climate, soils, history, fire and human intluences which can date 
back several millenia in some locations. People have been interested in 
understanding the distribution of vegetation types since the times of Theophrastus, 
with significant contributions coming from such noted historical figures as 
Alexander von Humboldt and Lord Alfred Wallace. When viewed from this 
historical perspective, vegetation mapping has a long history which includes a 
variety of contexts and a wide range of geographic scales. 

From a more modern perspective, one common distinction in vegetation 
mapping separates attempts to map 'potential' and 'actual' vegetation. Maps of 
potential vegetation attempt to determine what the vegetation type would be in the 
absence of human influences (Box 1981; Kuchler and Zonneveld 1988). 

Maps of 'actual' vegetation attempt to characterize the vegetation as it exists 
in an area. Different vegetation maps emphasize different attributes of the 
vegetation. Some are floristic in orientation and focus on taxonomic differences 
between places. Others are focussed on more structural attributes of the vegetation, 
emphasizing the basic lifeforms of the vegetation and the size and density of cover. 
The characteristics emphasized in vegetation maps and their scale are typically 
dependent on the needs and interests of the users of the maps. At one end of the 
spectrum are global vegetation maps which are often used to study the relationship 
between vegetation types and climate (K6ppen 1931; Olson ct al. 1983; also see 
Chapter 4). 

More local scales of vegetation maps are often made to serve the needs of 
local land management. Vegetation can be viewed in a myriad of ways from the 
land management perspective, including as: a source of food and/or fiber; habitat 
for wildlife; protector of soils; a recreational resource; a regulator of the 
interactions between the surface and the atmosphere with respect to heat, gases, and 
moisture; or simply as a fundamental attribute and descriptor of landscapes. Thus, 
vegetation is fundamental to many environmental processes and as a result plays a 
central role for the focus of this book, or the use of GIs for environmental 
modelling. 

The goal of this chapter is to provide some history and context to recent and 
current efforts to map and monitor vegetation, while providing some indications 
regarding the way vegetation maps are used in environmental modelling. Kemote 
sensing has revolutionized vegetation mapping, as the synoptic perspective is ideal 
for mapping landscape attributes. The focus here will be on the use of satellite 
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remote sensing for vegetation mapping and monitoring, and the discussion attempts 
to characterize the recent innovations and ongoing areas of active research. Please 
note that this chapter focuses on vegetation maps at local to regional scales. 
Discussion of the use of satellite imagery for continental to global scales is 
included in Chapters 4 and 5.  

6.2 VEGETATION MAPPING 

6.2.1 Historical overview 

The first vegetation maps made with the help of remote sensing were based on the 
visual interpretation of aerial photographs. The basic mapping scenario involves 
delineation of homogeneous patches, or stands of vegetation, for which labels are 
provided concerning the properties of the vegetation within the polygon. Typical 
vegetation properties included are the overall lifeform of the vegetation, dominant 
species, height and density of the vegetation, and the presence and nature of 
understory vegetation. Some of these properties are measured using 
photogrammetric methods, such as vegetation height measurements using a parallax 
bar (Lillesand and Kiefer 2000). Other vegetation properties are inferred from the 
tone, color, shape, texture, pattern, site, context and association observed in the 
aerial photograph (Estes et al. 1983) based on the knowledge of the interpreter and 
augmented with field visits to the area being mapped. 

With the advent of the Landsat programme in 1972, there was an immediate 
interest in the potential for mapping vegetation over larger areas in a more efficient 
manner than traditional air photo interpretation. The primary initial advantages 
derived from the digital format of the imagerywhich made it possible to use 
computers to do automated interpretation. The use of computers for analysis held 
great promise for reducing time and effort in vegetation mapping. Another 
immediate savings resulted from the digital format and geometric fidelity of the 
data which greatly facilitated integration of the resulting vegetation maps into GIs. 

Vegetation mapping from satellite imagery has been dominated by use of data 
from the reflective wavelengths of the solar spectrum, primarily the visible, near- 
infrared and mid-infrared. The initial sensor used for vegetation mapping was the 
Landsat Multispectral Scanner (MSS) which has four broad spectral bands in the 
visible and near-infrared wavelengths. Landsat 4 included a new sensor called the 
Thematic Mapper, which has 6 reflective bands with 30 m spatial resolution and a 
thermal band. The SPOT HRV provides finer spatial resolution (20 m) than 
Landsat TM but fewer spectral bands and the images cover a smaller area (see 
Chapter 3 for a review of sensor characteristics). Landsat TM and SPOT HRV 
have been the most commonly used sensors for vegetation mapping and 
monitoring. 

The strong reliance of air photo interpretation on the skill and experience of 
the interpreter is both the strength and weakness of this approach to vegetation 
mapping. In general, digital analysis of satellite imagery cannot match the quality 
of vegetation maps derived from outstanding air photo interpretation. Many 
vegetation maps are still made via air photo interpretation, particularly for areas 
small enough that the economies of scale associated with digital analysis of satellite 
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imagery are unimportant, or where the requirements for spatial detail or accuracy of 
the vegetation maps are beyond those achievable with satellite remote sensing. 
Vegetation mapping was one of the first uses of satellite remote sensing imagery 
and has been one of the most common ever since (see for example Hoffer and Staff 
1975). 

There have been many approaches and developments involving vegetation 
mapping from satellite remote sensing. The discussion below is organized by the 
information sources exploited to map vegetation, presented in roughly the order in 
which they were pursued and developed. 

6.2.2 Multispectral data and image classification 

The first and most common approach used to map vegetation from satellite imagery 
is the use of multispectral data in image classification. In this approach patterns of 
spectral reflectance, or 'spectral signatures', are associated with different 
vegetation types. In the image classification step, each pixel in the image data is 
assigned to a particular vegetation type, resulting in a map. This paradigm has used 
data primarily from the solar reflective wavelengths, but other kinds of data were 
later included, such as texture data or other kinds of map data such as topographic 
variables. 

Image classification algorithms can be sorted into those which are 
'supervised' or 'unsupervised'. The supervised classification approaches require 
training sites as input prior to the image classification step which are used to 
characterize the spectral signatures of the vegetation types. Initially, parametric 
statistical classifiers such as maximum likelihood dominated (Swain and Davis 
1978). 

Unsupervised classification proceeds by allowing the computer to define 
spectral clusters of pixels, or groups of pixels in the image with similar spectral 
properties. Each pixel is then assigned to one such cluster. User input is necessary 
to associate vegetation types with spectral clusters. The primary difference between 
the supervised and unsupervised approaches is the timing of the user input relative 
to the classification step. When the input is provided ahead of classification, the 
approach is said to be supervized. Unsupervised approaches require user input after 
the classification step. 

The maximum likelihood classifier assumes that the spectral signatures of 
vegetation types are distributed in a multivariate normal fashion, which is often not 
true. Vegetation classes often exhibit multimodal or non-normal shapes in their 
distributions, which is the result of the inherently complex nature of remote sensing 
images in the optical domain. Many factors influence the reflectance from 
vegetation canopies, some diagnostic of the vegetation types of interest in the 
mapping process and others unrelated. The vegetation factors known to influence 
the spectral reflectance of vegetation canopies include the overall life form of the 
vegetation, leaf properties (leaf area and leaf angle distribution and spectral 
reflectance properties), vegetation height or tree size, the fractional cover of 
vegetation, and the health and water content of leaves. In addition, the soil colour 
and wetness contribute to the spectral response at any given location in the image. 
The net effect is that the same vegetation type may have many spectral 
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manifestations in the image, which significantly complicates the image 
classification process. 

There have been many approaches proposed and tested to attempt to 
accommodate the complex nature of spectral signatures of vegetation types in the 
classification process. Unsupervised image classification can be formulated to 
include many more spectral clusters than the number of intended vegetation types, 
thus allowing many spectral clusters within each vegetation type. In supervised 
classification, many training sites can be used for single vegetation types, with 
individual training sites or small groups of training sites used separately through the 
image classification step to identify subpopulations of the intended vegetation 
types. These subpopulations can then be merged after the classification step to 
produce the final map. 

There has also been significant innovations in image classifiers driven by the 
problems posed by vegetation mapping. For example, Skidmore and Turner (1988) 
developed nonparametric classification algorithms to accommodate the problems 
associated with non-normal distributions. More recently algorithms based on 
decision trees and artificial neural networks are proving to be more effective than 
traditional methods (Foody et al. 1995, Fried1 and Brodley 1997, Carpenter et al. 
1997). It should be noted that not all investigators are finding improvements with 
these algorithms (Skidmore et al. 1997), and they often are more difficult to 
implement as they require more training data and are not available in common 
image processing packages. The main strength of these algorithms with respect to 
vegetation mapping is to allow association of many spectral patterns to single 
vegetation types using a supervized approach without requiring separation of the 
training data into subpopulations. 

One issue that confronts the use of digital satellite images for mapping 
vegetation concerns scale, or the relationship between the size of individual pixels 
and the desired scale of the resulting map. Frequently, the pixels in satellite images 
are too small to be classified individually in the final map. For example, at map 
scales common for use in local land management, such as 1:25,000, minimum 
mapping units are typically on the order of 1-2 hectares, or 25-50 pixels in a 
SPOT HRV image or 11-22 pixels in a Landsat TM image. This issue remains one 
of active research, and several approaches exist for this situation, including: 
filtering of the images resulting from per-pixel classifiers (Kim 1996); using spatial 
or contextual information in the classification process (Kettig and Landgrebe 1976; 
Stuckens et al. 2000), and the segmentation of images into polygons in a step 
independent of image classification (Woodcock and Harward 1992). 

6.2.3 Vegetation mapping, ancillary data and GIs 

The relationship between vegetation mapping and GIs  is mutually beneficial. On 
the one hand, vegetation maps are used extensively within GIs  for the purposes of 
environmental modelling, as illustrated in many ways in this book. However, the 
integration of other kinds of map data with remote sensing images through the use 
of GIs  has greatly improved the vegetation mapping process. It is this dimension of 
the relationship between vegetation mapping and GIs  which is emphasized in this 
section. 
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Vegetation mapping based solely on image classification of multispectral data is 
limited with respect to the vegetation attributes that can be provided in a reliable 
manner. Particularly apparent in this regard is the difficulty of mapping vegetation 
at the level of detail of individual plant species. This problem arises because many 
species often have overlapping spectral signatures which makes their identification 
impossible or of poor accuracy. 

The use of topographic data to improve or augment maps made using satellite 
imagery dates from some of the earliest attempts to use satellite remote sensing to 
make vegetation maps (Hoffer and staff 1975; Strahler et al. 1978). The primary 
intent of the use of topographic data was to capture the influence of climate on 
species distributions, with topographic variables of elevation, aspect and slope 
being used as surrogates for temperature and moisture conditions. Such approaches 
have proven highly successful and are used frequently in vegetation mapping 
efforts (Skidmore 1989; Woodcock et al. 1994). 

The detailed example given below helps illustrate the ways in which ancillary 
data are being integrated with remote sensing in vegetation mapping efforts. 

6.2.3.1 Modelling example: mapping Eucalyptus species distribution using solar 
radiation data 

Introduction 

A number of response models have been developed to investigate the relationships 
between different environmental factors and the distribution of forest species (e.g. 
McColl 1969; Austin et al. 1984; Austin et al. 1990; Moore et al. 1991). These 
models have included environmental variables such as nutrient availability, rainfall, 
temperature (Moore et al. 1991), topographic position (Austin et al. 1983; Austin 
et al. 1994), elevation, aspect, exposure to wind (Mosley 1989), slope position 
(Twery et al. 1991), soil structure (Florence 1981) and soil nutrients (Turner et al. 
1978). 

Some of these models have used a solar radiation index for vegetation 
mapping (Kirkpatrick and Nunez 1980; Austin et al. 1983; Moore et al. 1991; 
Ryan et al. 1995), with Kirkpatrick and Nunez (1980) reporting a strong correlation 
between solar radiation and the distribution of several species of eucalyptus along a 
single transect in the Risdon Hills in Tasmania. These models have calculated solar 
radiation over individual field plots through field measured parameters using the 
method suggested by Fleming (1971) or have used radiation measuring devices, 
such as pyranometers (Kirkpatrick and Nunez 1980). While solar radiation data 
collected in the field are generally the most reliable, it is very difficult to 
extrapolate these data to other sites or over a large area, especially in mountainous 
areas where solar radiation is strongly influenced by terrain. Such data, based on 
point samples measured in the field, are not suited to spatial modelling in a GIs. 

Solar radiation indices based solely on slope aspect and slope gradient are 
crude estimates as they do not take into account shading by adjacent terrain. While 
such a method may be acceptable in flat areas, it will not work adequately in hilly 
regions where shading by topographic features can account for large differences in 
the radiation received at a site (Kumar et al. 1997). Simulations in a mountainous 
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area by Hetrick et al. (1993) showed that topographic shading was more important 
than surface orientation. Simulations at different field sites have shown that when 
shading by topographic features is included, approximately 30 per cent of grid cells 
had their total radiation reduced by 10 per cent. 

Previous research (e.g. Austin et al. 1984) showed the distribution of 
vegetation responding directly to environmental factors including temperature, 
moisture regime and nutrient availability; and since temperature and moisture 
regime may be linked to solar radiation (Ahrens 1982), it is hypothesized that the 
distribution of vegetation should be related to solar radiation. The aim of this study 
was to confirm whether the distribution of Eucalyptus species are related to 
differences in solar radiation incident at a grid cell. 

Solar radiation data 

Solar radiation for the study area was calculated using the method proposed by 
Kumar et al. (1997). In brief, solar radiation received at a site is dependent on the 
azimuth and elevation of the sun, surface gradient (slope) and orientation (aspect), 
as well as position relative to neighbouring surfaces. Variables such as solar 
azimuth and solar elevation angles change continuously throughout the day and so 
they have to be calculated every time the intensity of solar radiation is computed. 
Another important factor that needs to be calculated instantaneously is shading by 
topographic features. In contrast, solar declination may be calculated daily, as it 
varies more gradually. 

Aspect and slope may be easily calculated from a DEM. The additional inputs 
required to derive solar radiation are the latitude of the site and the Julian date 
(note that if calculations are required for more than one day, the start and end day 
are needed). For integrating the total radiation over a period (i.e. days, weeks or 
months), the repeat period between the instantaneous calculation of solar flux must 
be specified by the user. While it would be ideal to have a very short time interval 
to obtain accurate results, this is not always feasible because of constraints such as 
computational expense and the availability of a fast computer. The time interval 
chosen can be larger for flat terrain but has to be smaller for mountainous regions 
as shadowing effects will be prominent in such environments (Kumar et al. 1997). 
The radiation flux is calculated at the mid-point of each time interval to reduce 
shadowing effects. 

Due to the forest having a natural mix of species in each plot, the data were 
pre-processed before analyzing the relationship between species distribution and 
solar radiation. In order to generate an index of solar radiation adjusted for the 
species composition of the plot, the radiation values for each plot were normalized 
according to the number of trees of each species present. Thus, for a particular 
species (such as Eucalyptus sieberi), a 'weighted mean' of the radiation values was 
calculated by multiplying the radiation value of each plot by the number of trees of 
Eucalyptus sieberi in the plot, adding up these values, and then dividing by the total 
number of trees of E.sieberi in all the plots. The 'weighted mean' radiation value 
therefore represents the overall radiation zone in which species are located. This 
index emphasized the plots in which a particular species is located, as the 
frequency of occurrence gives an indication of the environment in which those 
species are located. If the plot data are not normalized by the number of trees, then 

Copyright 2002 Andrew Skidmore



Vegeration mapping and monitoring I03 

a plot with say 100 trees of E.sieberi has the same weight as a plot which has only 
one tree of E.seiberi, and both will contribute equally to the analysis. The decision 
to normalize is based on the observation that the forest structure is composed of 
'old growth' that is dominated by an overstorey of large and medium sized trees. 

A research hypothesis that the 'mean weighted' radiation values differed 
between species was tested using the F-test. Stated formally, the null hypothesis is 
that the mean solar radiation for different species are equal, that is: 

Ho: Pspecies I = Pspecies 2 

while the alternative hypothesis is that there is a difference in mean solar radiation 
between species 1 and species 2, 

for a' < 0.05. 

Species groupings were investigated using multivariate techniques such as 
cluster analysis. Due to the large number of cases the K-Means cluster analysis 
algorithm, based on the nearest centroid sorting (Anderberg 1973), was used for 
determining cluster membership. 

Results 

Figure 6.1 shows the variation in short wave solar radiation across the study area 
for the different seasons, ranging from 3600 to 11200 ~ ~ / m ~ / ~ e a r .  Exposed sites 
received almost 3 times as much solar radiation as shadowed sites. 

The seasonal difference in the solar radiation is large, and as expected, the 
summer season receives more radiation than the winter season. The mean radiation 
is highest in summer, followed by spring, autumn and winter respectively, with the 
mean winter value being 60 per cent of the summer value. Many gully sites do not 
receive any direct radiation during winter as adjacent ridges continually shade 
them. 

The variance in solar radiation is least during summer and largest in winter, 
especially for the south, southeast and southwest aspects (Note that the study site is 
located in the southern hemisphere). These aspects have the largest variation on 
their midslopes, caused by shading when the sun is lower in the winter sky. 

North facing slopes receive far more radiation than the south facing slopes, 
with other aspects ranging between these two extremes. While the radiation values 
for north, north-east and north-west aspects stay almost constant with slope, those 
for south, south-east and south-west fall off fairly sharply as the slope increases. At 
low slopes, there is little difference in the radiation values for the different aspects, 
with the differences between aspects being least in the summer months. 
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Figure 6.1: Solar radiation distrihution for the different seasons. 

Figure 6.2 shows that different species are located in certain radiation zones. 
Of the 12 species in this study, E.smithii and E.coizsideniarza occur at sites with the 
lowest radiation values. E.sieberi, E.globoideu and E.virninalis are consistently 
placed at the high end of radiation values. Seasonal variation in solar radiation was 
also found to influence the occurrence of Eucalyptus species. Results of Student- 
Newman-Keuls Test showed that, for many of the species, the differences in the 
mean radiation were statistically significant. For example E.con.sideniana had 
insolation values which were significantly different from all species for all the 
seasons, except in spring and summer where E.srnithii was an exception. Similarly 
E.obliqua was significantly different from all the species for all the seasons. Some 
other species that returned significance with many of the species were 
E.agglornerata, E.bosistoana, E.cypellocarpa, E.globoidea and E.rn~ic.lleranu. 
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Figure 6.2: Relationship between the 'weighted mean' solar radiation and the different species. 

Figure 6.3: Species position in relation to their summer and winter radiation values. 
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Another important aspect that was noted was that the confidence intervals 
shifted between seasons, indicating that seasonal differences in radiation may assist 
in characterizing species. For example E.sieberi had a confidence interval placed at 
the high end of radiation in summer and was at the upper end of the interval for 
E.viminnlis but moved lower in autumn and winter seasons and, when compared to 
E.viminalis, was at the lower end of its confidence interval. Therefore, while the 
confidence intervals changed by seasons, much as expected, they also shifted 
position relative to other species by seasons (Kumar and Skidmore 2000). It is 
these changes in position relative to other species over different seasons that may 
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be used to characterize species. The winter season showed the greatest variation in 
mean radiation and the confidence intervals were more separated. Figure 6.3 shows 
how species separate when winter insolation values for each species are plotted 
against their summer values. 

Possible uses of irzsolation data in forestry rnodellirzg 

Since many species show that their radiation regimes are significantly different 
from other species, this information can be utilized to delineate individual species 
or to find the most likely habitats of the species. The different seasonal confidence 
intervals of means for each species can be combined to make the selection criteria. 
For example, from the means tables, the conditions for the different species would 
be used to produce probability maps as given in Figure 6.4. Diagrams such as these 
can then be used for planning logging operations, habitat mapping, conservation 
work, etc. These figures do not confirm with 100 per cent certainty that the 
particular Eucalyptus species would be found at the mapped site, but they pinpoint 
the most probable sites of occurrence and hence a good starting point. The 
Australian Koala Foundation is already using the insolation model for the 
prediction of koala populations. Koalas feed on specific species of Eucalyptus and 
if the habitat of these species is mapped out then the possible locations of koalas 
can be predicted. 

Habitat likelihood 

IZ3 
low high 

Figure 6.4: Possible locations of E.sreberi (a) and E.considmiana (b) based on seasonal insolation 
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Similar work can be extended to forest types as well. If a large number of plots are 
surveyed and confidence intervals of means are produced as done for the species 
distribution, then a similar set of conditions can be coded. This should show the 
most likely locations for the different forest types. 

However the main use of solar radiation in modelling vegetation distribution 
would be as a value added layer in other environmental models (Figure 6.5). As 
mentioned before, solar radiation is one of a number of environmental factors that 
affect species distribution. Other researchers have shown the correlation between 
species and a number of other environmental factors. These factors can be 
combined with solar insolation to model the species more effectively. In a GIs,  
each of these factors can be stored as a different layer and Boolean conditions can 
be coded to model the different species. Solar radiation modelled in this manner 
can also be used as an input parameter in expert systems or neural networks. 

6.2.4 Use of spatial and temporal patterns 

Two additional kinds of information which have been used in vegetation mapping 
based on satellite imagery are spatial and temporal patterns. The use of spatial 
patterns, or texture, is based on the long recognized value of texture in air photo 
interpretation for differentiating vegetation types. To  use texture in vegetation 
mapping using satellite imagery, a new texture band is created from one of the 
original spectral bands. The texture band (or bands) are then combined with the 
original spectral bands in the image classification process, increasing the number of 
input bands. It represents an attempt to exploit in automated image classification 
one kind of information which contributes greatly to visual interpretation of air 
photos. Several studies have shown the use of texture data to improve vegetation 
maps derived from satellite imagery (Franklin et al. 1986; Franklin and Peddle 
1989; Jakubauskas 1997). 

Temporal patterns, or the change in reflectance properties over time, have 
been used extensively for mapping vegetation at continental to global scales using 
NOAA AVHRR imagery (See Chapter 3). The NOAA imagery has coarse spatial 
resolution but high temporal resolution, so phenological patterns of vegetation can 
be captured using AVHRR imagery (DeFries and Townshend 1994). The basic 
approach is to use multiple dates of imagery as input bands to image classification 
procedures. More recently, several investigators have found that use of 
kultitemporal imagery can improve vegetation mapping at local to regional scales 
using imagery such as Landsat TM or SPOT HRV (Wolter, et al. 1995; Mickelson 
et al. 1998). The use of multitemporal imagery appears most promising in 
environments with mixes of evergreen and deciduous species. 
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Model output as an input to other more sophisticated models 

I ' d  

Figure 6.5: Solar radiation data form the CIS model as input into another larger (;IS model. 
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6.2.5 New kinds of imagery 

There are a variety of new kinds of imagery being used, or at least experimented 
with, for vegetation mapping. They hold great potential for improving the kinds of 
information that can be provided about vegetation via remote sensing in the future. 
These new types of imagery are described in detail in Chapter 3. 

6.2.5.1 Hyperspectral imagery 

While data obtained from broadband sensors (such as the Landsat TM and ETM+ 
and SPOT HRV) have been useful in many respects for vegetation mapping, they 
also have their limitations. Because of their limited number of channels and wide 
bandwidths, a lot of the data about plant reflectance is lost. Most natural objects 
have characteristic features in their spectral signatures which distinguish them from 
others and many of these characteristic features occur in very narrow wavelength 
regions (Figure 6.6). 

Hence to sense these narrow features the use of narrow band sensors is 
required. Broadband sensors integrate the reflectance over a wide range and so the 
narrow spectral features are lost or masked by other stronger features surrounding 
them. F& this reason hyperspectral remote sensing, often with bandwidths of only 
5-10 nm, offers a powerful tool for significant advancement in the understanding 
of the Earth and its environment. A number of these narrow-band imaging 

- - 

spectrometers have been discussed in Chapter 3. 
Figure 6.7 shows typical spectral reflectance data of vegetation as collected 

by a spectrometer (GER IRIS) and a simulated model of what the resulting signal 
would be from Landsat TM. Notice that the hyperspectral data includes detailed 
spectral features characteristic of vegetation which are lost in broadband sensors. 
Thus hyperspectral data holds the potential for providing more detailed information 
about vegetation than is possible with broadband sensors. While several 
hyperspectral sensors are planned for future satellites, current research is based on 
airborne systems, which are reviewed briefly in Chapter 3. Research has shown that 
hyperspectral remote sensing has a lot to offer with respect to species identification 
(Kumar and Skidmore 1998). 

Also, data from airborne imaging spectrometers have been found to yield 
higher quality information about vegetation health and cover than those obtained 
from broadband sensors (Collins et al. 1983, Curran et al. 1992, Peuelas et al. 
1993, Carter 1994, Carter et al. 1996, Kraft et al. 1996). Gamon et al. (1993) 
used the narrow AVIRIS spectral bands to evaluate the spatial patterns of 
vegetation type, productivity, and physiological activity in annual grasslands and 
the results showed the major vegetation types and fine scale patterns not discernible 
from broadband data. 
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Figure 6.6: Hyperspertral data showing some spectral fine features in green leaves and different 
bark types in Eucalyptus sieberi. Note the features around 1750 nm, 2270 nm, 2300 nm and 

2350 nm. 

Figure 6.7: Data content of broadband (Landsat) and narrow-band (IRIS) sensors. 
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6.2.5.2 Radar imagery 

Experiments with the use of radar for studying vegetation have demonstrated 
considerable promise. Research has found that radar can be sensitive to vegetation 
structure and biomass, particularly with multiband radar systems including lower 
frequencies (P- and L-band) with cross polarizations (Kasischke et al. 1997). There 
has also been progress on the use of radar imagery for general land cover mapping, 
which provides information on basic vegetation types. One of the main benefits of 
radar imagery is the independence of sensing from solar illumination, which allows 
for effective sensing during cloudy periods or even at night. This benefit is 
particularly valuable in areas characterized by high frequency of cloud cover, as is 
the case in many equatorial regions. Many new spaceborne radar systems have been 
launched recently, and a review of their characteristics has been provided in 
Chapter 3. The improving availability of radar imagery is destined to speed the 
pace with which radar imagery is adopted for vegetation mapping. The potential for 
combining radar and optical imagery to improve vegetation mapping is high and 
largely untapped at this point in time. 

6.2.5.3 High spatial resolution imagery 

One trend is toward the collection from satellites of imagery with high spatial 
resolution. Currently there is one operational satellite system, IKONOS, providing 
1 m panchromatic and 4 m multispectral imagery. Other private sector systems are 
planned with similar spatial resolutions (see Chapter 3 for details). In anticipation 
of such capability, a number of airborne systems have been developed to allow for 
development of methods for analyzing high spatial resolution images (Franklin 
1994). 

Particularly in Canada there has been considerable effort devoted to learning 
how to use high spatial resolution imagery for vegetation mapping. The high 
resolution imagery contains effects associated with individual trees, and progress 
has been made on the problem of how to identify individual tree crowns and their 
size (Wulder et al., 2000). Another area of active research is the estimation of tree 
size and cover from high resolution imagery through the analysis of observed 
spatial patterns in images (St Onge et al. 1997). The availability of satellite imagery 
with very high spatial resolution is destined to improve the quality of information 
about vegetation canopies, at least for selected areas. 

6.2.6 Accuracy assessment 

One important issue regarding the use of vegetation maps derived from remote 
sensing is accuracy. All vegetation maps contain errors, and the significance of 
those errors is dependent on the manner in which the vegetation maps are used. 
One result is that the accuracy requirements for the same map may vary between 
potential users of the map! Thus, careful characterization of the accuracy of 
vegetation maps is essential for their informed use. The most common approach 
used to determine the accuracy of vegetation maps is to conduct an accuracy 
assessment. While there are many ways to conduct an accuracy assessment, the 
most common is to populate an error matrix (also referred to as a confusion matrix) 
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based on samples selected from the vegetation map. Such an approach allows 
estimation of the categorical nature of the errors and their overall frequency. Jensen 
(1996) provides a helpful discussion of the many issues and decisions involved in 
conducting an accuracy assessment. 

Table 6.1 is an example of a hypothetical accuracy assessment for a 
vegetation map including four vegetation types. By convention, most confusion 
matrices are created with the map labels on the rows, and the reference data, or 
truth, down the columns. Below the confusion matrix, the Producer's and User's 
Accuracies are calculated for each class, as well as the overall accuracy and an 
accuracy estimate that removes the effect of random chance on accuracy, referred 
to as the Khat statistic (Skidmore 1999). 

Many useful things can be learned from analysis of the accuracy assessment. 
The simplest statistic to derive is the overall accuracy. This is simply the sum of the 
diagonal elements divided by the total number of pixels (or sites) evaluated. In this 
case, the overall accuracy is moderate at 82 per cent, but the level of accuracy is 
highly variable between classes. 

To better understand the variability of the accuracies of the different classes, 
one can also calculate the Producer's and User's accuracies. The Producer's 
accuracy is the number of correct elements for a class divided by the total number 
of pixels (or sites) given that map label (the row total). The User's accuracy is the 
number of correct elements divided by the total number of pixels that should truly 
have that label (the column total). In this context, analysts often discuss errors of 
omission and errors of commission. Errors of omission are those pixels which were 
missed by the Producer and thus are calculated as 100 minus the Producer's 
accuracy. By extension, errors of commission are the pixels wrongly assigned to a 
class and are calculated as 100 minus the User's accuracy. Thus, each error of 
omission from one class is also and error of commission for another class. 

Table 6.1: A hypothetical result from an accuracy assessment, including a confusion matrix, and 
calculation of the Producer's, User's and overall accuracies (see Jensen 1996 for details). 

Map Reference Data 
Classification A B C D Row Total 

Map Class A 178 3 10 0 191 
Map Class B 0 3 8 2 0 40 
Map Class C 5 25 58 19 107 
Map Class D 2 9 0 68 79 
Column Total 185 75 70 87 417 

Producer's Accuracy User's Accuracy 
Class A: 1781185 = 96% 1781191 = 93% 
ClassB: 38/75 =51% 38140 = 95% 
Class C: 58/70 = 83% 581107 =54% 
Class D: 68/87 = 78% 68/79 = 86% 

Overall Accuracy 3421417 = 82% ; Khat Statistic = 74% 

In the example, Class A is clearly the most accurately mapped, with high 
Producer's and User's accuracies (96 per cent and 93 per cent respectively). In 
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contrast, Class B has a high User's accuracy (95 per cent), meaning you can be 
very confident of sites identified as Class B on the map, but the Producer's accuracy 
is very low (51 per cent) meaning the mapping process missed about half the area 
that is truly class B (49 per cent errors of omission). 

Class C on the other hand has a high Producer's accuracy (83 per cent). The 
mapping process has found most of Class C, but a site on the map identified as 
Class C is only correct about half the time (54 per cent User's accuracy and 46 per 
cent errors of commission). 

Finally, Class D is moderately accurate, but examination of the confusion 
matrix shows that most of the problems are errors of omission. The 78 per cent 
Producer's accuracy means 22 per cent errors of omission. Most of the errors of 
omission (19130) are mislabelled as Class C. Thus, to improve the accuracy of class 
D, one might begin with reevaluation of the areas mapped as class C. 

6.3 MONITORING VEGETATION CHANGE 

Vegetation health, condition and change through time are of great interest from a 
variety of perspectives. Satellite imagery, primarily due to its synoptic views of 
landscapes and multitemporal sensing, is well suited for monitoring vegetation 
health and change through time. One of the benefits of continued collection of 
satellite imagery by programs like Landsat and SPOT is the ability to study changes 
in landscapes over time, with changes in vegetation being among the most common 
features studied. The historical archive of satellite imagery for studying landscape 
change continues to grow and its duration now covers more than a quarter of a 
century. While this chapter highlights many ways in which this imagery is being 
used to study vegetation change, it is noteworthy that recently there has been a 
dramatic increase in studies using the archive of historical satellite imagery. This 
trend indicates the growing value of this archive of imagery and points to a future 
where remote sensing data plays a key role in our understanding of how landscapes 
are changing and how humans are influencing the health of vegetation. 

Like vegetation mapping, imagery from the optical domain (Landsat and 
SPOT) have dominated efforts to monitor vegetation change. Many kinds of 
vegetation changes have been monitored in many different contexts and regions of 
the world and using a wide variety of methods. The simple taxonomy presented 
below emphasizes the different kinds of vegetation change being monitored with 
remote sensing and the numbers of images being used. The examples mentioned are 
far from a complete inventory of the ways remote sensing is being used in this 
context, but they are intended to serve as representative of the kinds of problems 
and range of geographic locations being studied. 

6.3.1 Monitoring vegetation condition and health 

Many factors influence vegetation condition and health, ranging from drought and 
pests to acid rain and air pollution. While it is necessary to characterize the nature 
of the problem and the ranges of magnitude of effects on the vegetation through 
field samples, it is difficult to determine the geographic extent and locations of the 
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areas affected using conventional field methods. Remote sensing offers an 
alternative approach whose strengths are in spatial coverage, which when merged 
with field samples has been shown to be extremely helpful for monitoring 
vegetation health. 

6.3.1.1 Single date assessments 

Damage from insects is a key concern for forest health monitoring. Information on 
the location of damage and its severity is essential to local resource management. 
Williams and Nelson (1986) report on the ability to use Landsat MSS data and 
ratios of NIR to red reflectance to map defoliation due to insects in the hardwood 
forests of the north-eastern USA. Ekstrand (1990) similarly found Landsat TM data 
useful for monitoring levels of insect damage in Swedish conifer forests using 
single dates of Landsat TM imagery in the late summer. 

Some of the most dramatic anthropogenic effects on vegetation health arise 
from air pollution and associated acid rain. Vogelmann and Rock (1988) mapped 
forest damage in high elevation forests of the North-eastern US using Landsat 
imagery. They found that a ratio of the mid IR reflectance to near infrared 
reflectance was diagnostic of forest damage due to acid rainlair pollution in conifer 
forests. Ardo et al. (1997) were able to map three classes of forest damage, in the 
form of levels of needle loss, in spruce forests in the Czech Republic using Landsat 
data. The forest damage classes were defined on the basis of regressions between 
needle loss and TM spectral data. Their study helped quantify the magnitude of 
deforestation and forest damage resulting from extreme acid rainlair pollution 
problems in this region. 

6.3.1.2 Multitemporal analysis 

While there has been success at times using single acquisitions of satellite imagery 
to map the locations of vegetation affected by such factors as insects and air 
pollution/acid rain, it has been much more common to use multitemporal satellite 
imagery to monitor vegetation health. In this approach, images from different dates 
for the same location are coregistered such that spectral values from the two dates 
can be directly compared. 

In several settings, analysis of multidate images has proven effective for 
monitoring defoliation of forests due to insects. Muchoney and Haack (1994) used 
multitemporal SPOT imagery for identifying changes in hardwood forest 
defoliation due to gypsy moths in the eastern US. They tested a variety of methods 
and found the best results using image differencing and principal components 
analysis. In a later study, Radeloff et al. (1999) used spectral mixture analysis to 
measure the magnitude of defoliation in pine forests in north-western Wisconsin, 
US. Their study illustrated the importance of controlling for factors like the 
presence of hardwoods within pine stands on the effectiveness of defoliation 
monitoring. In related studies, Macomber and Woodcock (1994) and Collins and 
Woodcock (1994) studied drought-induced mortality in conifer forests using 
multitemporal Landsat imagery. The vegetation change in this case is still caused 
by insects, but the insects kill the trees, which is measured as a change in canopy 
cover or basal area. They tested a variety of methods and found that many worked 
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well for estimating mortality within forest stands, providing an encouraging 
indication of the ability to detect subtle changes in canopy cover over time with 
multispectral satellite imagery. 

Coppin and Bauer (1994) report on development of methods for operational 
monitoring of forest change in Minnesota, US. Their methods identify changes in 
forest cover due to a variety of reasons, including storm damage. They used 
multitemporal images and found that changes in the overall brightness and 
greenness of forest stands were reliable indicators of forest change. Another cause 
of vegetation change is air pollution, which was found to significantly damage the 
forests in the Kola Peninsula of northern Russia (Rigina et al. 1999). The air 
pollution was the result of the smelting industry and caused extensive damage 
which was monitored using satellite imagery from 1978 and 1996. Analysis of the 
patterns of vegetation damage indicated the influence of the surrounding mountains 
on the location of areas protected from damage. 

6.3.2 Vegetation conversion and change 

Another kind of change in vegetation of great interest is wholesale conversion of 
vegetation types. The most obvious example of this kind of change is deforestation, 
which is one of the most significant forms of land-use change occurring on Earth. 
Whether deforestation is due to the harvest of wood products, conversion of land to 
other uses such as agriculture or urban uses, the result of forest fires, or some 
combination of the above, monitoring of deforestation is a concern in many regions 
of the world. Remote sensing has been the primary tool used for monitoring 
deforestation. Experience has shown that deforestation is best monitored using 
medium resolution sensors such as Landsat and SPOT, as coarse resolution sensors 
such as AVHRR often produce misleading estimates of the total area deforested. 

There are a variety of reasons for monitoring forest clearing, or deforestation. 
One reason is to understand the role of forest change in the global carbon budget, 
which requires data on deforestation over large areas. The best known example in 
this regard is the ongoing effort to monitor deforestation in Amazonia (Skole and 
Tucker 1993). Another reason for monitoring forest clearing is local land 
management. In Finland, where forests are actively managed for wood products, 
multitemporal Landsat TM images have been shown to be useful for providing 
timely information on rapid changes in forest cover (Varjo 1997). India is suffering 
from serious depletion of its forest cover, and remote sensing is playing a valuable 
role in providing information on the location and extent of forest clearing (Singh 
1986; Jha and Unni 1994). Research continues with regard to how to best monitor 
forest clearing over large areas Much of the initial deforestation work was based 
on visual interpretation of images, but recent efforts have indicated the viability of 
using automated analysis of multitemporal images to monitor forest change (Cohen 
et al. 1998). 
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6.4 CONCLUDING COMMENTS 

Vegetation is a fundamental attribute of landscapes which influences a whole host 
of environmental processes. Mapping of vegetation via remote sensing is providing 
information on vegetation properties for large parts of the world in sufficient spatial 
detail to aid environmental modelling. Vegetation mapping at local to regional 
scales is currently dominated by imagery from the Landsat and SPOT satellites, but 
future vegetation mapping will be improved by use of hyperspectral imagery, radar 
imagery, and high spatial resolution imagery. Monitoring of vegetation change 
using remote sensing is providing an improved understanding of the health and 
condition of vegetation as well as rates of conversion of natural vegetation to other 
land uses. The value of the historical archive of satellite imagery is being 
repeatedly demonstrated in an increasing number of vegetation monitoring projects. 
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