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Foreword

The study of information-based actions and processes has been a vibrant in-
terface between logic and computer science for several decades now. Indeed,
several natural perspectives come together here. On the one hand, logical sys-
tems may be used to describe the dynamics of arbitrary computational pro-
cesses – as in the many sophisticated process logics available today. But also,
key logical notions such as model checking or proof search are themselves
informational processes involving agents with goals. The interplay between
these descriptive and dynamic aspects shows even in our ordinary language.
A word like “proof” hdenotes both a static ‘certificate’ of truth, and an activity
which humans or machines engage in. Increasing our understanding of log-
ics of this sort tells us something about computer science, and about cognitive
actions in general.

JOHAN VAN BENTHEM, ILLC Amsterdam & CSLI Stanford

xvii

The individual chapters of this book show the state of the art in current in-
vestigations of process calculi such as linear logic, and
– with mainly two major paradigms at work, namely, linear logic and modal
logic. These techniques are applied to the title themes of concurrency and
synchronisation, but there are also many repercussions for topics such as the
geometry of proofs, categorial semantics, and logics of graphs. Viewed to-
gether, the chapters also offer exciting glimpses of future integration, as the
reader moves back and forth through the book. Obvious links include modal
logics for proof graphs, labeled deduction merging modal and linear logic, Chu
spaces linking proof theory and model theory, and bisimulation-style equiva-
lences as a tool for analyzing proof processes.

The combination of approaches and the pointers for further integration in
this book also suggests a grander vision for the field. In classical computation
theory, Church’s Thesis provided a unification and driving force. Likewise,
modern process theory would benefit immensely from a synthesis bringing
together paradigms like modal logic, process algebra, and linear logic – with
their currently still separate worlds of bisimulations, proofs, and normalisation.
If this Grand Synthesis is ever going to happen, books like this are needed!



Preface

The contributions published in this volume arose in the context of the project
Logic for Concurrency and Synchonisation (LOCUS) which was concerned
with the relationship between proof theory (à la Curry–Howard-like calculi)
and concurrency theory as well as the application
of those formalisms to the verification of group-based protocols.

The project also sought to investigate the possibility of defining a unifying
methodology (algebraic methods vs. logical methods) for the formalisation of
distributed systems, concurrency and synchronisation, using the most recent
techniques coming from mathematical logic (in particular, labelled deduction,
type theory, and modal logic), proof theory and semantics of concurrent pro-
cesses.

Four institutions participated in the project: Universidade Federal de Per-
nambuco (UFPE), Universidade Federal de Alagoas (UFAL), Universidade
Federal da Bahia (UFBA), and Universidade Federal do Rio de Janeiro (UFRJ).

Outline
Chapter 1 reviews a collection of recent and less recent work around graph-

theoretical tools used in proof theory, leading to some ideas for bringing to-
gether the old (e.g., Kneale’s symmetric proof system) and the new (Girard’s
graph-theoretic criterion to check soundness of graphs of proof) in order to
further enhance the tools for the understanding of natural deduction (ND): the
geometry of interaction of ND-proofs, their lack of symmetry and their proof
complexity.

In Chapter 2, Bellin argues that the essential interaction between classical
and intuitionistic features in the system of linear logic is best described in the
language of category theory. The main result is to show that the intuitionistic
translations induced by Girard’s trips determine the functor from the free *-
autonomous category on a set of atoms to where is
the free monoidal closed category with products and coproducts on the set of
atoms (a pair in for each atom P of

xix
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In Chapter 3, Bellin proposes a notion of symmetric reduction for a system
of proof-nets for Multiplicative Affine Logic with Mix (MAL + Mix) (namely,
multiplicative linear logic with the mix-rule the unrestricted weakening-rule),
and proves that such a reduction has the strong normalisation and Church–
Rosser properties.

In Chapter 4, Dam studies the problem of verifying general temporal and
functional properties of mobile and dynamic process networks, cast in terms
of the

In Chapter 5, Déharbe gives a tutorial introduction to CTL model checking
and its symbolic BDD-based version implementation.

In Chapter 6, Benevides presents modal logics for four classes of finite
graphs: finite directed graphs, finite acyclic directed graphs, finite undirected
graphs and finite loopless und irected graphs.

In Chapter 7, Stirling looks at the relationships between bisimulation equiv-
alence and language equivalence.
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ing from the Brazilian national council for scientific and technological de-
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FROM A STRUCTURAL PERSPECTIVE



Chapter 1

GEOMETRY OF DEDUCTION VIA
GRAPHS OF PROOFS

Anjolina Grisi de Oliveira*

Centro de Informática

Universidade Federal de Pernambuco

ago@cin.ufpe.br

Ruy J. G. B. de Queiroz†

Centro de Informática

Universidade Federal de Pernambuco

ruy@cin.ufpe.br

Abstract We are here concerned with the study of proofs from a geometric perspective.
By first recalling the pioneering work of Statman in his doctoral thesis Structural
Complexity of Proofs (1974), we review two recent research programmes which
approach the study of structural properties of formal proofs from a geometric
perspective: (i) the notion of proof-net, given by Girard in 1987 in the context of
linear logic; and (ii) the notion of logical flow graph given by Buss in 1991 and
used as a tool for studying the exponential blow up of proof sizes caused by the
cut-elimination process, a recent programme (1996–2000) proposed by Carbone
in collaboration with Semmes.

Statman’s geometric perspective does not seem to have developed much fur-
ther than his doctoral thesis, but the fact is that it looks as if the main idea, i.e.
extracting structural properties of proofs in natural deduction (ND) using appro-
priate geometric intuitions, offers itself as a very promising one. With this in
mind, and having at our disposal some interesting and rather novel techniques
developed for proof-nets and logical flow graphs, we have tried to focus our in-
vestigation on a research for an alternative proposal for looking at the geometry
of ND systems. The lack of symmetry in ND presents a challenge for such a kind
of study. Of course, the obvious alternative is to look at multiple-conclusion

* Research partially funded by a grant from PROPESQ/UFPE under the Projeto Enxoval.
† Research partially funded by a CNPq Bolsa de Produtividade em Pesquisa (“Pesquisador 1-C”), grant
301492/88-3.

R.J.G.B. de Queiroz (ed.), Logic for Concurrency and Synchronisation, 3–88.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.
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4 LOGIC FOR CONCURRENCY AND SYNCHRONISATION

calculi. We already have in the literature different approaches involving such
calculi. For example, Kneale’s (1958) tables of development (studied in depth
by Shoesmith & Smiley (1978)) and Ungar’s (1992) multiple-conclusion ND.

After surveying the main research programmes, we sketch a proposal which
is similar to both Kneale’s and Ungar’s in various aspects, mainly in the presen-
tation of a multiple conclusion calculus in ND style. Rather than just presenting
yet another ND proof system, we emphasise the use of ‘modern’ graph-theoretic
techniques in tackling the ‘old’ problem of adequacy of multiple-conclusion ND.
Some of the techniques have been developed for proof-nets (e.g. splitting theo-
rem, soundness criteria, sequentialisation), and have proved themselves rather
elegant and useful indeed.

proofs as graphs, natural deduction, multiple-conclusion, geometry of deductionKeywords:

1. Motivation
In 1980’s various studies in “Logic and Computation” were pursued with

the intention of giving a logical treatment of computer programming issues.
Some of these studies have brought in a number of interesting proof-theoretic
developments, such as for example:

the functional interpretation of logical connectives1 via deductive sys-
tems which use some sort of labelling mechanism:

(i) Martin-Löf’s Intuitionistic Type theory [53], which contributed to a
better understanding of the foundations of computer science from a type-
theoretic perspective, drawing on the connections between constructive
mathematics and computer programming;

and

(ii) the Labelled Deductive Systems, introduced by Gabbay [34], which,
arising from the need of computer science applications to handle “meta-
level” aspects of logical system in harmony with object-level, helped
providing a more general alternative to the “formulae-as-types” paradigm;

Linear Logic, introduced by Girard in [38]. Since then it has become
very popular in the theoretical computer science research community.
The novelty here is that the logic comes with new connectives forming
a new logical system with various interesting features for computer sci-
ence, such as the possibility of interpreting a sequent as the state of a
system and the treatment of a formula as a resource.

In recent years, linear logic has been established as one of the most widely
used formalisms for the study of the interface between logic and computa-
tion. One of its key aspects represents a rather interesting novelty for studying
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the geometry of deductions: the concept of proof-nets. The theory of proof-
nets developed out of a comparison between the sequent calculus and natural
deduction (ND) Gentzen systems [36] as well as from an analysis of the im-
portance of studying the structural properties of proofs through a geometrical
perspective.

Another recent work which also presents a geometrical analysis in the study
of structural properties of proofs has been developed by Carbone in collabora-
tion with Semmes [14, 15, 16, 17, 18, 22]. Again in the context of “Logic and
Computation”, the analysis of Carbone and Semmes is motivated by questions
which involve the middle ground between mathematical logic and computa-
tional complexity. In the beginning of the 1970’s, Cook used the notion of
satisfiability (a concept from logic) to study one of the most fundamental di-
chotomies in theoretical computer science: P versus NP. By the end of the
decade Cook and Reckhow had established an important observation which
puts emphasis on a relevant direction in complexity theory: NP is closed under
complementation iff there is a propositional proof system in which all tau-
tologies have a polynomial size proof [27]. This represents an important re-
sult linking mathematical logic and computational complexity since it relates
classes of computational problems with proof systems. Motivated by questions
such as the length of proofs in certain classical proof systems (in the style of
Gentzen sequent calculus), Carbone set out to study the phenomenon of expan-
sion of proofs, and for this purpose she found in concept of logical flow graphs,
introduced by S. Buss [13], a rather convenient mathematical tool. Using the
notion of logical flow graph, Carbone was able to obtain results such as, for
example, providing an explanation for the exponential blow up of proof sizes
caused by the cut-elimination process. With appropriate geometrical intuitions
associated with the concept of logical flow graph, Carbone and Semmes devel-
oped a combinatorial model to study the evolution of graphs underlying proofs
during the process of cut-elimination.

Now, if on the one hand we have

Girard’s proposal of studying the geometry of deductions through the
concept of proof-nets, (in [40] he presents various arguments in defense
of his programme, emphasizing the importance of “finding out the geo-
metrical meaning of the Hauptsatz, i.e. what is hidden behind the some-
what boring syntactical manipulations it involves”),

on the other hand, there is

Carbone’s systematic use of logical flow graph in a geometrical study
of the cut-elimination process, yielding a combinatorial model which
uncovers the exponential expansion of proofs after cut-elimination.2

Although with different ends and means these two works concern the study
of structural features of proofs by a geometric perspective. Back in the 1970’s
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we find the work of Statman [65] proposing the idea of studying proofs as ge-
ometric objects for the analysis of structural properties. Even though some of
the ideas of invertibility of rules in ND go back to Kneale’s tables of devel-
opment [49], it seems fair to say that Statman pioneered this kind of study in
his doctoral thesis [65], where he systematically analyses the global structural
complexity of proofs in ND systems.

One wonders why Statman’s work did not develop much further than his
doctoral thesis, but the fact is that it looks as if the main idea, i.e. extracting
structural properties of proofs in ND using appropriate geometric intuitions,
offers itself as a very promising one.

1.1 Relevance to proof theory: towards the
geometry of natural deduction

Before laying out the whole theory of proof-nets and with the intention of
justifying the development of such a theory, Girard makes criticisms both to
sequent calculus and to ND systems. It seems that Girard’s intention was to
construct a framework joining good features of natural deduction and sequent
calculus. The idea was to start defining proof structures, which he called “the
natural deduction of linear sequent calculus”, via the notion of links, i.e. a re-
lation between formula occurrences. Those proof structures which represented
a logically correct proof would then be called proof nets. In order to recognise
a proof-net Girard defined a soundness criterion based on a certain geometri-
cal interpretation of the logical connectives and this could be done due to the
symmetry enjoyed by the proof rules (i.e. links). Alternatives to the so-called
no shorttrip condition have been proposed over the years, and as a result, there
arose more interesting connections between logic and computation within the
context of linear logic: the paradigm of ‘proofs as (distributed) processes’.

The lack of symmetry in ND systems is one of the aspects pointed out by
Girard. In fact, ND does not have a well defined environment in terms of
symmetries, like sequent calculus where the left and right side of the ‘turnstile’

have the following dualities:
negative
conjunction

positive
disjunction

And indeed, it seems to be the case that the lack of symmetry in ND systems
turns out to be its “Achilles’ heel” since its formulation by Gentzen [36]. In
order to prove his fundamental theorem (cut-elimination theorem, the so-called
Gentzen’s Hauptsatz) about the structure of proofs, Gentzen abandoned the
ND system and formulated the sequent calculus. In [58, 59] Prawitz gives
an important result for ND systems by presenting the normal form theorems,
which correspond to the Hauptsatz. Again, because of the lack of symmetry,
Prawitz’ formulation of ND classical system does not include the constants
and as primitive. This has motivated various studies for a presentation of
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a proof of normal form theorems for full classical logic, using a formulation
including the connectives and as primitive. Statman’s work [65] was the
first presentation of the normalisation theorem for full first order classical ND
systems. Although with different and simpler methods to prove the normal
form theorems for full first order classical logic, Stalmarck [64] as well as
L.C. Pereira and C. Massi [56] follow Statman in some technical details and
present an alternative solution to the normal form theorems for full classical
logic. These works, together with the proposal of Andou [4], approach ND
classical first order system as formalised by Prawitz, i.e. through the inclusion
of the classical absurdity rule On the other hand, the works of J. Seldin
[62] and J. von Plato [57] give a proof of the normal form theorems for full ND
classical systems formulated by the use of the law of excluded middle.

We believe that the problem of the lack of symmetry in ND systems does
not have a satisfactory solution yet. As a consequence, ND does not have a
uniform treatment for both intuitionistic and classical logic. For a start, the
derivations which use the inference rule are not exactly what one might
call “natural”, such as for example the derivation of

There are plenty of other examples, such as the ND derivation of Peirce’s
law, which in addition to not being so natural have given rise to Curry’s for-
mulation of an additional rule to the system to cope with positive implicational
classical logic [24]. Moreover, with the classical absurdity rule the normalisa-
tion procedure for full classical logic turns out to be not unproblematic. For all
these reasons, we firmly believe that a “natural” solution for the classical case
should go back to Gentzen in the sense that the law of the excluded middle is
introduced as a primitive instead of the classical absurdity rule, as proposed
by Prawitz, the latter becoming a derived rule. Together with this, one should
seek to formulate a symmetric proof system to accommodate the dualities of
classical logic.

We have already mentioned a number of works which approach the clas-
sical case by the use of the law of excluded middle. In our case, we wish to
incorporate the law of excluded middle in the context of a framework based on
a geometrical perspective. Let us recall some of those approaches to normali-
sation for full classical logic which use the law of excluded middle:

The rule for the law of excluded middle proposed by Tennant [66] and
von Plato [57] has its advantages for the classical case.
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The rule proposed by Seldin is very similar to the reductio ad absurdum
(i.e. and the normalisation procedure is not as simple as Prawitz’,
although it is technically sound.

We claim that the attempt to look at the problem of symmetry in ND systems
by bringing in some geometrical intuitions offers itself as a richer perspective.

Another alternative to deal with the problem of lack of symmetry in ND
systems is to look at multiple-conclusion calculi. We already have in the liter-
ature different approaches to deal with it. We mention for example the books
by Shoesmith & Smiley [63] and the one by Ungar [67], In a footnote in [58,
p. 44] Prawitz talks about the importance of such kind of calculi:

“... one may therefore consider modifications of the Gentzen-type system for
classical logic. One rather natural modification is to make the system more sym-
metrical with respect to and In the present system, the deduction forks
only upwards, and the forking is so to say conjunctively; one could now allow
the deductions to fork also downwards, disjunctively, so that the deduction is
allowed to fork from a disjunction into two branches, starting with A and
B respectively. Such a system was presented by the author in a colloquium in
Los Angeles in 1964. (A suggestion to such a system may be found in Kneale3

but the rules are there stated without sufficient restrictions)...”

In fact, the suggestion of Kneale & Kneale (also in [50]) as originally pre-
sented needs appropriate restrictions and proper metamathematical founda-
tions. In [63] the authors refine Kneale’s proposal by presenting alternative
definitions of formal proof for use in multiple conclusion calculi. However,
neither the soundness criteria for proof graphs, nor the normalisation proce-
dure, are so well developed as Girard’s proof-nets via the soundness criteria
and the sequentialisation theorem. As a follow-up to the present survey, we
wish to draw up a proposal similar in spirit to Kneale’s, though using the tech-
niques developed in the context of linear logic (soundness criteria, sequential-
isation, etc.). Moreover, we want to deal with classical symmetries without
necessarily restricting the calculus to a multiple-conclusion. The idea is that
to a proof graph which is multiple-conclusion there should be a proof graph
whose conclusions are turned into a single formula, even if for this one has
to group the formula occurrences into ‘conclusion classes’ (a notion which is
dual to the notion of ‘assumption classes’). A future development should also
include the study of the complexity of ND derivations in the spirit of the work
of Alessandra Carbone for the sequent calculus.

1.2 Relevance to theoretical computer science:
complexity and concurrency

NP-completeness and proof systems. In a recent retrospective of
the development and the influence of the concept of NP-completeness, C. Pa-
padimitriou [55] asks himself what is the nature and the extent of the impact
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of NP-completeness on theoretical computer science and computer science in
general, and why did it become such a pervasive and influential concept. He
then adds that

one reason of the immense impact of NP-completeness has to be the appeal and
elegance of the class P, that is, of the thesis that “polynomial worst-case time”
is a plausible and productive mathematical surrogate of the empirical concept of
“practically solvable computational problem.” But, obviously, NP-completeness
also draws on the importance of NP, as it rests on the widely conjectured con-
tradistinction between these two classes. In this regard, it is crucial that NP
captures vast domains of computational, scientific, and mathematical endeavor,
and seems to roughly delimit what mathematicians and scientists had been aspir-
ing to compute feasibly. True, there are domains, such as strategic analysis and
counting, which have been within our computational ambitions, and still seem to
lie outside NP; but they are exceptions rather than the rule. NP-completeness has
thus become a valuable intermediary between the abstraction of computational
models and the reality of computational problems, grounding complexity theory
to computational practice.

The landmark for all this was S. Cook’s [25] theorem stating that “P=NP iff
there is a deterministic algorithm to recognise the tautologies of propositional
logic.” In elementary logic one learns that the method of truth tables is the most
direct way of testing whether a formula is a tautology, even though the test may
cost (in the worst-case) up to where is the number of propositional vari-
ables in the formula. No “shortcut” method is known that does any better than
this exponential growth rate. On the other hand, as proof theory, the branch
of symbolic logic which looks at proofs as their objects of study, developed to
the extent of turning its focus of attention from the “validity of proofs” to the
“structural complexity of proofs”, it made sense to ask (as did Cook and Reck-
how in the 1970s) whether tautologies have proofs of polynomial-size lengths
in any proof system. This motivated the development of the concept of poly-
nomial time simulation which formed the basis for the study of proof systems
and their complexity.

Since then, a lot of work has been done with the intention of classifying the
relative complexity of various proof systems by proving lower bounds for the
well known proof systems. For instance, in 1974 Cook and Reckhow already
define a hierarchy of various propositional proof systems. They placed resolu-
tion into the class of “known not be super” (a proof system is said to be “super”
if it admits polynomial length proofs of all tautologies). Many years later, A.
Haken [46] showed that resolution requires exponential time on the pigeonhole
formula. A recent classification of various proof systems can be found in [61]
and [68]. (See also [51]).

Proof theory and the deviation via non-classical logics. If, on
the one hand, the work on classifying the relative complexity of proof sys-
tems usually took for granted that the notion of proof system (and the logic
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it was supposed to be a proof system for) was well settled and very much a
unanimously accepted platform, on the other hand, much work on proof the-
ory since 1960s (following the work of Prawitz, Martin-Löf, Girard, Howard,
Tait, and others) and its structural aspects (mainly emphasised by Statman), to-
gether with its due impact on theoretical computer science via and
combinatory logic, have given rise to refinements of various classical systems
such as natural deduction and the sequent calculus. One such refinement has
almost turned into a school of thinking about the interactions between logic
(qua proof theory) and computation: J.-Y. Girard’s linear logic. Indeed, a
novel perspective on proof theory and the information flow arising out of cut-
elimination is given by Girard in his research programme entitled geometry of
interaction. Drawing on an analysis of the geometrical properties of Gentzen’s
Cut-Elimination Theorem, the programme offers a highly innovative account
of the connections between computation and deduction.

One can distinguish two main aspects of the programme, namely: (1) a
geometrical view of deductions and polarities, thus of invertibility of proof
rules by duality;4 and (2) the characterisation of cut-elimination in terms of the
iteration of a single operator, together with a kind of ‘normal form theorem’
(in the style of Kleene’s own).5 While the first aspect relies heavily on the
sequent calculus formulation of linear logic (together with the device of proof
nets), the second one draws on strong normalisation results for the system F
of second-order

Back to classical logic and to natural deduction, but bringing
in some geometrical intuitions. The study of structural properties of
proofs is part of the “theory of proofs” as pointed out by Statman in his doctoral
thesis Structural Complexity of Proofs” [65]. Unlike “proof theory” which is
concerned with the study of the validity of proofs, the study of structural prop-
erties of proofs refers to “meta-level” considerations, having the proof itself as
the object of study. Thus, it involves questions like: (i) how long is a proof of
a given formula; (ii) how to identify two proofs of the same theorem; (iii) what
happens if we invert a given derivation (i.e. swap hypotheses and conclusions);
(iv) what is the meaning of this inversion operation; etc. A classical general re-
sult about the structure of proofs is the cut-elimination theorem (the Hauptsatz)
for sequent calculus given by Gentzen in [36] and quoted here:

“Every LJ- LK-derivation can be transformed into an LJ or LK-derivation with
the same endsequent and in which the inference figure called a ‘cut’ does not
occur.”

LJ refers to the intuitionistic logic while LK to the classical logic.
Prawitz [58, 59] extended this result for natural deduction systems defin-

ing the normal form theorems. These theorems are very important because
they assure that if there is a derivation of a given formula, this proof, called
normal form or proof without cuts, has a specific form, besides having certain
properties, for instance the subformula property.
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The methods used in proving such theorems rely very heavily on syntactic
manipulations. On the other hand, the work of Girard has pointed to a rather
interesting direction which is to turn to the geometry of deductions, and use
geometric intuitions to look at classical results about normal forms and nor-
malisation.

Proofs as processes. In an attempt to turn the hints and speculations
in Girard’s work in linear logic about its applicability to concurrent com-
putation into a fully realised connection, S. Abramsky set out to extend the
“proposition-as-types” paradigm (encompassing the Curry–Howard interpre-
tation of intuitionistic logic) to concurrency. The idea was to try and lay out the
foundations of typed concurrent programming in such a way that concurrent
processes, rather than functional programs, would become the counterpart of
proofs. The key element in the whole approach had already appeared in an ear-
lier paper by Abramsky himself on “Computational Interpretations of Linear
Logic” [1], and it had to deal with the question of how to give a computational
interpretation of the duality in classical linear logic. The main observation was
that the cut rule of classical linear logic

is completely symmetric, and the formulas A and could be seen as com-
municating processes (input and output) such as in Milner’s

In an attempt to carry the idea further G. Bellin and P. Scott [10] presented
some fundamental facts about Milner’s process calculus, the and
about Girard’s representation of proofs in linear logic as proof-nets, detailing
Abramsky’s “proofs-as-processes” paradigm [2] for interpreting classical lin-
ear logic (CLL) into a “synchronous” version of Milner’s the trans-
lation being given at the abstract level of proof-structures. In that paper they
also give a detailed treatment of the information flow in proof-nets and show
how to mirror various evaluation strategies for proof-normalisation. Bellin and
Scott give soundness and completeness results for the process-calculus trans-
lations of various fragments of CLL.

Of course, for the extension of the propositions-as-types paradigm to con-
currency to be fully achieved, it was necessary to look at the other half of the
paradigm, i.e. “processes-as-proofs”. As already pointed out by Abramsky,
this would require showing how a process calculus, sufficiently expressive to
allow a reasonable range of concurrent programming examples to be handled,
could be exhibited as the computational correlate of a proof system. Abram-
sky claimed that this had been achieved with his subsequent work on inter-
action categories [3]. More recently,6 Bellin has raised important questions
which seem to remain unanswered such as: To which extent Abramsky’s slo-
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gan “processes-as-proofs” can be realised? Under which conditions a formal
computation in a process calculus can be called a proof? How close logical
computation can be to the dynamics of concurrent processes?

2. The idea of studying proofs as geometric
objects

We can say that the idea of studying proofs as geometric objects is motivated
by an analysis of its structural properties. In his doctoral thesis [65], Statman
begins this kind of study, where he analyzes the global structural complexity
of proofs in natural deduction systems. We quote from his thesis:

“One way to proceed from the study of the validity of proofs, which occupies
most of current proof theory, to the study of their structure is to view them as geo-
metric objects. Differences between proofs “previously judged only by aesthetic
criteria of elegance or convenience” become now principal objects of study.”

He then proposes a representation of proofs through graphs, in which the
relation between formula-occurrences is represented by incidence relation on
the vertices of the graphs. His aim was to study the global structural com-
plexity of proofs in natural deduction systems. From his geometric model,
Statman analyzes the effect of the elimination of derived rules on the complex-
ity of proofs; studies the complexity of equational proofs and also presents a
structural analysis of a normalisation procedure for classical logic.

Our intention here is to bring out some of the pioneering ideas in Statman’s
work. It is rather unfortunate that the work did not develop much further than
his doctoral thesis.

2.1 Representing proofs in a graph
The relations between formula-occurrences in proofs of natural deduction

systems are defined in the following two ways:

Relation 1 The relation between premise and conclusion of the inference; and

Relation 2 An assumption occurrence with the conclusion which cancels it.

Statman notes that Relation 2 results in non planar figures when proofs are
represented as graphs. From graph theory, we know that planar figures G are
easily embeddable in a surface S in such a way that lines representing edges
of G intersect only at points of S representing vertices of G. However, non
planar figures need more complicated surfaces to be embedded in, for exam-
ple, the surface known in graph theory as “torus”. A classical example is the
Kuratowski graph which is embeddable in the torus. Consequently, to
measure the non planar feature caused by Relation 2, Statman uses the notion
of genus of a graph G. Firstly, we give the notion of what an embeddable
graph G is [65]:
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Definition 1 (embeddable G) A graph G is embeddable in a closed orientable
surface M if G can be drawn on M in such a way that lines representing edges
of G intersect only at points of M representing vertices of G.

Definition 2 (genus of a graph) The genus of a graph G is the mini-
mum number of “handles” which must be added to a sphere so that the graph
G is embeddable in the resulting surface.

The complexity of Relation 2 in a derivation D is measured by the genus of
the graph which represents D.

Example 3 The following derivation is represented as a graph shown in Fig-
ure 1.1:

In Figure 1.1 the labels of the edges can assume two forms: (a, b, c) or
(a, c). As we will see in its formal definition, the first element, i.e. a, refers
to the number of the premise; c indicates the inference rule; and b refers to the
number of the assumption cancelled by the rule.

A propositional language (PL) is defined. It consists of:

propositional variables:

propositional constants:

connectives constants:

formulas: built up by operations (the set
of formulas is denoted by Fm). Formula occurrences are members of

Definition 4 (substitution) A substitution is a function
such that dom is finite.

The notation of rules and inferences is given as follows:

Rules
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Inferences

Where C and are formulas, is a substitution,
are given parameters).

The edges of graphs representing proofs as proposed by Statman are labelled
from a set defined as follows.

Definition 5 (set of labels) A set of labels L is defined as follows:

where:

N is a finite set of rules with parameters

is the number of premises of the rule

is the number of assumptions of the rule
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the index refers to the premises while to the assumptions of the rules.

In Example 3 we can see the edges labelled in this way.
Now, we give a precise definition of graphs of proofs.

Definition 6 (directed graph) Let L be a finite set. A directed graph D with
labels from L is a pair (V, E), where :

V is a finite set of vertices of D and

E is a subset of V × V × L and represents the edges of D.

The notation V(D) is used to denote the set of vertices of D. Similarly,
E(D) denotes the set of edges of D.

Let be the set of all directed graphs D as defined here. Then, if
the following notation is given:

if and is not the initial vertex of any member of
E(D). In terms of natural deduction systems, represents the conclu-
sion of the derivation. Once the natural deduction system has only one
conclusion and the outdegree of is zero, i.e. it is not a premise of any
rule.

if and implies that is not the

final vertex of any member of E(D). Clearly, [H] represents the set of
hypotheses of a given derivation;

Definition 7 (the set of derivations) The set of N derivations, denoted by
is the smallest set satisfying:

if and then (in this case, D contains
only one formula; the set of edges is empty);

if for and

and and whenever x is not the initial
vertex of an edge with label of the form for          then if

we have

1.

2.

3.

1.

2.

of for and
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2.2

2.2.1

Some results

Elementary results on isomorphisms.

Definition 8 (isomorphism between derivations) If we say that
is isomorphic to denoted by if there is a bijection

and satisfying
If b also satisfies, is an occurrence of the same formula as we

write

Proposition 9 Isomorphisms between derivations are unique.

Proposition 10 For each there is a such that whenever
there is a such that

2.2.2 On the genus of a derivation. Statman proves that
for each number there is derivation D such that On the other
hand, such measures of “graph theoretic” complexity as chromatic number,
connectivity, arboricity, etc. which are not topological invariants tend to be
absolutely bounded on derivations.

First he considers explicit definitions, and although his main results on com-
plexity of proofs concerning explicit definitions are purely geometrical (topo-
logical), a logical analysis is still needed: for a theory of proofs such an analy-
sis asks for (i) derived rules associated with the defined notion; (ii) a procedure
for the elimination of such derived rules. If elimination procedures commute
with substitutions, then for usual measures there will correspond functions

such that for all derivations D. Moreover, for any rea-
sonable and from this it easily follows that
Finally, an interesting dichotomy is established: for several structural proper-
ties implies that and, if, for some then
there is no f such that for

Using graph-theoretic results of Tutte and Nordhaus, Statman is able to es-
tablish the exact relation between the genus of a derivation and the number of
its cancelled assumption occurrences:

Proposition 11 Suppose G has a Hamiltonian path. Then there is a
such that (where is the first Betti number of G) and
G is isomorphic to a contraction of
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Corollary 12 Suppose and the number of cancelled assump-
tion occurrences in D, then for each and for each

positive rational there is a such that

(“I” is Prawitz’ natural deduction system for intuitionistic logic.)

2.2.3 On the relationship between the notions of direct
proof, normal proof and proof, and the subformula property.

Definition 13 If F occurs in D, let be the subgraph of G in-
duced by those members of V(D) containing F as a subformula. We say
that a proof of D, i.e. a derivation without uncancelled assumptions, is di-
rect if whenever F occurs in D it is connected to the endformula of D in
G(D) < F >.

Proposition 14 For any derivation D is normal if and only if
whenever F occurrs in D the connected component C of G(D) < F > con-
taining this occurrence contains also an uncancelled assumption occurrence,
or the end formula, of D.

(“M” is Prawitz’ natural deduction system for minimal logic.)

Corollary 15 If D is an M proof then D is normal iff D is direct.

3. Proof-nets

Proof-nets were introduced by Girard in his seminal paper [38] on the pre-
sentation of Linear logic. Since then the notation and results have evolved and
changed. The idea was to provide a graph-theoretic representation of deduc-
tions in linear logic. The latter is a substructural logic because its sequent
calculus does not include the structural rules as originally given by Gentzen
[36] for classical logic sequent calculus. The contraction and weakening struc-
tural rules are dropped. Other features of the system are: the distinction be-
tween multiplicative and additive connectives; the introduction of exponentials
(allowing contraction and weakening in a controlled form); and the introduc-
tion of linear negation. Depending on what of those features are required,
one may have various fragments of linear logic such as, multiplicative linear
logic (MLL), additive linear logic (ALL), multiplicative additive linear logic
(MALL), etc.

Proof-nets represent the main tool for Girard’s intention of studying the ge-
ometry of deductions. As we will see in Section 3.5 the soundness criterion
for proof-nets is based on a purely geometrical analysis of the structure of the
graphs representing proofs. The theory is simple and works well for multi-
plicative linear logic (MLL), although it becomes more complicated for the
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full calculus. Our presentation here will refer only to the multiplicative linear
logic without constants fragment).

Girard defends his programme of geometry of interaction by making criti-
cisms to ND and sequent calculus [38, 44, 40, 45], here shown in Section 3.1.
The claim is that his framework joins good features of those logical systems.
Girard defines proof-structures, i.e. graphs of proofs, which he calls “the natu-
ral deduction of linear sequent calculus” [38] through the notion of links, i.e. a
relation between formula-occurrences. Those proof-structures which represent
a proof logically correct are called proof-nets , or nets for short.

Here we shall try to explain the main issues involved in the criticisms to
natural deduction and sequent calculus made by Girard. After that, we present
his considerations for studying the geometry of deductions which result in the
definition of the links that form the proof-nets. Next we give the definition of
proof-structures as well as how to recognise which proof-structures are proof-
nets by showing some criteria of soundness. We conclude this section by intro-
ducing the cut-elimination in the context of proof-nets. (For further details, see
the two chapters by G. Bellin in this volume: ‘Chu’s Construction: A Proof-
Theoretic Approach’ [8], and ‘Two paradigms of logical computation in affine
logic?’ [9].)

3.1 Criticisms of natural deduction

3.1.1 Classical symmetry. In [38, 40, 45], Girard has pointed
out that natural deduction is unsuitable to deal with classical symmetries. In
fact, natural deduction does not have a well defined environment in terms of
symmetries, like sequent calculus where the left and right side of the ‘turnstile’

have the following dualities:

negative
conjunction

The lack of symmetry in ND systems has motivated a formulation of multiple-
conclusion calculi as we will see in the section after the next one.

Proof-nets can be considered as a natural deduction for linear sequent cal-
culus which accept several conclusions, and thus can deal with the classical
symmetries.

3.1.2 Global rules. Natural deduction has rules which do not
apply to formulas, but to the whole deduction. The introduction rule for is
an example of such a rule:

positive
disjunction
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This kind of inference rule is called improper rule by Prawitz [59] because
it discharges hypotheses. Besides the there are other improper
rules: and and

Proof-nets as a sort of “natural deduction for linear sequent calculus” do not
include rules with such a feature.

3.1.3 The commutative conversions. In ND, the rules of
and are framed as follows:

Girard calls “C” as “an extraneous formula” and says that because of this
the theory of normalisation “becomes extremely complex and algorithmically
awkward” [44], once we have the “commutative conversions”.7

The presence of commutative conversions is another feature of natural de-
duction system which proof-nets do not include.

In summary, Girard claims that he has constructed a system like natural
deduction, but which only keeps its good features.

3.2 Analyzing the sequent calculus

Through examples, this subsection illustrates some features of sequent cal-
culus which are the result of Girard’s investigations when he developed linear
logic and the concept of proof-nets.

3.2.1 The non-determinism of Hauptsatz. The algorithm
of cut-elimination is non-deterministic, once we face situations like the one
shown in the following example [44]:

Example 16 The usual Gentzen’s cut-elimination procedure consists of push-
ing the cut upwards. Hence, when the following fragment of proof is found:
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two choices arise:

3.2.2 Redundancies in proofs. The stages of the derivations
in the sequent calculus carry along many formulas (i.e. the context) which
do not participate of the rule which has being applied. It causes unnecessary
redundancies in proofs as illustrated in the following example given in [45]:

Example 17

The context is rewritten without any change.

As we will see here, the context is dropped in a proof-net.

3.2.3 Non-unicity of proofs. The sequent calculus (also the
linear sequent calculus) may allow different proofs of the same sequent when
the inference rules are applied in a different order [35, 45].

Example 18 The sequent

has the following two proofs

and

Using proof-nets these two proofs are identified. An important feature of
proof-nets: the proof of a theorem is dealt with as a unique object.
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3.3 Definition of links

The main intention of Girard when he provides the concept of proof-nets is
to study the geometry of deductions. The idea is to replace a natural deduction
proof

by a proof-net with several conclusions A, using the negation symbol
every time a formula is turned upside down (i.e. a premise is turned into a
conclusion and vice-versa) [40]. He then defines two identity links - axiom link
and cut link (see Figure 1.2) - which allow one to replace a hypothesis with a
conclusion and vice-versa.

The symbol CUT in a cut link is not a formula, but a place-holder. The
axiom link has no premise. Two more links, par and times, are defined as
follows.

Par link The following inference in natural deduction:

is replaced by

Consequently, the following binary rule (par link) is obtained:

The formulae C and D are premises of the link, while is the conclu-
sion.

Times link The times link is defined as:
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The formulae C and D are premises of the link while is the conclu-
sion.

The traditional rule for elimination of (modus ponens) in natural deduc-
tion:

is replaced by the inference shown in Figure 1.3.

Note that B and are turned upside down in Figure 1.3.

3.4 Proof-structures
Using the links defined in the previous subsection, proof-structures for the

fragment are constructed with several conclusions, like in sequent cal-
culus, but with a notation similar to natural deduction. The class of those
proof-structures which represent logically correct proofs is called proof-nets.
In the next subsection we will study how to define this class by applying a
global soundness criterion on the proof-structures.

Definition 19 (Proof-structures [11]) A proof-structure for
consists of (i) a nonempty set of formula-occurrences together with (ii) a set
of links between these formula-occurrences. These links are as defined in the
previous subsection: axiom link, cut link, par link and times link. Moreover,
(i) and (ii) must satisfy the following requirements:

every formula-occurrence in the structure is the conclusion of one and
only one link;

every formula-occurrence is the premise of at most one link.

The correspondence between a proof in linear sequent calculus and a
proof-structure with as conclusions the formulas of is given by the following
procedure [44]:

1 The identity axiom is associated to an axiom link:



Geometry of Deduction via Graphs of Proofs 23

2 The par rule and the par link:

where PS is a proof-structure correspondent to the proof .

3 The times rule and the times link:

where is the proof-structure associated to and to

3.4.1 Examples. Some examples of proof-structures are given
here.

Example 20 The proof-structure shown in Figure 1.4 is built from the deduc-
tions in linear sequent calculus of Example 18.

Note (Example 18) that two different proofs in linear sequent calculus cor-
respond to a single proof-structure (the one in Figure 1.4).

The proof-structure shown in this first example is a proof-net, since it can
be verified that it is logically correct. However, that one shown in Figure 1.5 is
not a proof-net.
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Example 21 Another example of proof-structure which is a proof-net is illus-
trated in Figure 1.6.

3.5 The soundness criterion

The most interesting feature of the theory of proof-nets is the definition
of soundness criteria based on a purely geometrical characterisation of which
proof-structures represent a sound proof.

There are various criteria of soundness, here we emphasise the following
three criteria:

1 No short trip condition: given by Girard in his seminal paper [38];

2 Danos–Regnier criterion: a simplification of Girard’s original criterion
[28];

3 Asperti criterion: a generalisation of Girard’s no-short-trip condition,
where trips are distributed processes, as opposed to sequential processes
like in the original formulation [6].

3.5.1 No short trip condition. In this criterion each formula is
viewed as a box, as in Figure 1.7, in which a particle or some information may
travel.

The concept of a cyclic, discrete and finite time is used to control the particle
travelling through the proof-structure.
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The trip of the particle through a given proof-structure is as follows:

An arbitrary formula is chosen to begin the trip;

there are two gates where the particle will enter and two out gates, as
shown in Figure 1.7;

the dual enter gate of the exit gates o1 and o2 are i1 and i2, respectively;

at the unit of time the particle will enter A by the gate called “i1”
and will immediately go out through the gate “o1”. This movement is
denoted by

at the moment the particle will re-enter A by “i2” and will immedi-
ately go out through “o2”. This movement is denoted by

the particle will enter another formula through the links of the proof-
structure, following the pattern of the trip for the link as defined below;

if every formula in the proof-structure is visited twice the trip is long
and the proof-structure is a proof-net. Otherwise the trip is short and the
proof-structure is not a sound proof.

Axiom link The pattern of a trip in the axiom link is shown in Figure 1.8.
The trip is performed as following:

the particle enters through gate immedi-
ately after exiting A through o1.

immediately after exiting from o1 the
particle enters A through

Terminal formula The corresponding picture is illustrated in Figure 1.9.

immediately after exiting A from o2, the particle
re-enters A through
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Times link There are two pictures associated with this link:

1 In the pattern shown in Figure 1.10 the link is switched on “L”, i.e., the
conclusion is reached through the left premise (A). In this case:

2 Respectively, in the link switched on “R”, the conclusion is reached by
the right premise (B), see Figure 1.11:

Par link As in the case of times link, associated with a par link there are
two patterns of trip:

1 The switch “L” is shown in Figure 1.12. The trip is as follows:



Geometry of Deduction via Graphs of Proofs 27

2 Figure 1.13 illustrates the switch “R”. The trip is as follows:

Proof-nets After defining the different patterns of trip, the steps used to
define the no-shorttrip condition is as follows:

1 Set the switches of all par and times link on arbitrary positions;

2 select one of the exit gates of an arbitrary formula A at time 0;

3 define as a number of formulas of the structure, and as the mo-
ment when the particle re-enters in the formula A through the dual enter
gate of the initial exit gate;
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4 if then the trip is called a shorttrip;

5 if there is a longtrip.

Definition 22 (proof-nets [38]) A proof-structure is said to be a proof-net when
it admits no short trip.

Cost of the criterion One can easily verify that the cost of the criterion is
exponential, i.e. where is the number of par links of the proof-structure.

Examples

Example 23 In this example the proof-structure shown in Figure 1.6 is checked.
Setting all switches on “L” we obtain the following longtrip, where and

Example 24 In this example the proof-structure shown in Figure 1.5 is checked
and a shortrip is obtained, where and

3.5.2 Danos–Regnier criterion. This correctness criterion,
proposed by Danos and Regnier in [28], is a refinement of the no-shorttrip
condition [38] in the sense that it is simpler and more manageable. More-
over, with this criterion Gallier in [35] gives a quadratic algorithm for testing
whether a proof-structure is a proof-net, while the previous algorithms are of
exponential time on the number of par links

The idea is to associate a set of graphs to a proof-structure. If each graph
of the associated collection is connected and acyclic, i.e. a tree, the proof-
structure is a proof-net.
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Associating graphs to proof-structures Proof-structures can be nat-
urally defined in terms of unoriented connected graphs whose vertices are la-
belled with formula-occurrences and whose edges are defined from the links
as follows:

identity links: there is an edge between the two formulas in the link;

par/times link: there is an edge from each premise to the conclusion of
the link.

From this definition of proof-structures in terms of graphs we introduce the
notion of D-R-graphs as follows:

Definition 25 (D-R graph) Given a proof-structure P defined in terms of
graphs, a D-R graph G associated with P is any spanning subgraph of P ob-
tained by removing exactly one of the two edges (i.e.
of every par link in P.

The choice of the edges of a par link corresponds to the switches (“L” or
“R”) on Girard’s trips.

Proof-nets

Definition 26 (proof-net) A proof-structure P is a proof-net iff every D-R
graph associated with P is acyclic and connected.

Examples

Example 27 The D-R graphs associated with the proof-structure of Figure 1.6
are as in Figure 1.14. They are acyclic and connected thus proving that the
proof-structure is a proof-net.

Example 28 The only D-R graph associated with the proof-structure of Figure 1.5
is cyclic as shown in Figure 1.15.
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3.5.3 Asperti criterion. Asperti’s correctness criterion [6, 5]
is based on the interpretation of proof-structures as a distributed system. In
this approach, logical formulas are seen as distributed processes, the flow of
information inside the proof structure is the computation of the system and
proof-nets are deadlock-free proof-structures.

A. Asperti gives this criterion for the multiplicative fragment of Linear
Logic (MLL) with mix rule (this fragment is called direct logic). He uses
the symbol (parallel composition) to denote the connective (par).

The mechanism The mechanism to verify whether a proof structure is
deadlock-free is based on the flow of information in the system:

Initially all final processes are active (final processes corresponding to
conclusions);

the axiom link represents synchronisation. The processes (formulas) A
and connected by the axiom link terminate if both are active;

the par link interprets parallelism. The activation of implies in the
activation of A and B. The process terminates when A and B
terminate;

the times link represents mutual exclusion. The activation of
produces first the activation of A or B. After the termination of the first
subprocess the other one is activated. The choice of which process will
be first activated is non-deterministic. The process terminates
when the second subprocess terminates.

3.6 The soundness of the criteria

In order to guarantee the soundness of the criterion established the following
two theorems must be proved:

Theorem 29 (Th. 2.7 [38], lemma 29 [35]) Given a deduction of a multi-
plicative sequent then we can naturally associate with a
proof-net P whose terminal nodes are in one-to-one correspondence with the
formula-occurrences
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Theorem 30 (sequentialisation) If P is a proof-net whose terminal nodes are
the formula-occurrences one can find a deduction of a multi-
plicative sequent

Bellin and van de Wiele in [11] give nice and simple proofs of these results
using the notion of subnets.

The proof of Theorem 29 is simple: one just shows a procedure to map a
sequent calculus proof to a proof-structure and then apply some global sound-
ness criterion to check its correctness. This procedure was already sketched
in Section 3.4. However the proof of Theorem 30 is more complicated. It
is proved by induction on the number of links in the proof-net. The original
proof is given by Girard in [38]. With this proof he proves the soundness of the
no-shorttrip condition. In [28], Danos and Regnier give a proof of the corre-
spondence between their method and Girard’s no-shorttrip condition. In [35],
Gallier presents an elegant proof based on D-R-graphs. This proof yields a
quadratic algorithm for testing whether a proof-structure corresponds to a se-
quent calculus derivation. In [44] Girard also presents a quadratic proof based
on D-R graphs.

Before we proceed to a discussion of the difficulties of the proof of theorem
30, let us first present a sketch of its proof based on [44]. The proof proceeds
by induction on the number of links of a given proof-structure P whose all
D-R graphs are acyclic and connected:

1 one link: P consists of an axiom link; the result is immediate:

2 if there is more than one link, there must be a link which is not an axiom
(otherwise P cannot be connected); such a link can be chosen terminal,
i.e. the conclusion of the link (if any: remember that a cut link has no
conclusion) is a conclusion of the proof-net. Then:

2A there is a terminal remove it, and note that the structure
one gets is still connected and acyclic, and then apply the induction
hypothesis;

2B there is no terminal as illustrated in Figure 1.16.This case
is not easy to prove. For example, if the link whose conclusion
is is chosen to be deleted, the result is not two disjoint
proof-nets. However, at the formula the proof-net
can be split into two disjoint proof-nets. Through another theo-
rem called Splitting theorem (Theorem 2.9.7, [38, p39]), Girard
proves the existence of a times link with such feature, i.e. with
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split property. Since the two components are immediately acyclic
and connected, the induction hypothesis can be easily applied. But
the link with the split property is not easy to find and the solution
is not unique as we will see below.

In order to prove the existence of a terminal link with split property Girard
needs additional notions of empire of a given formula:

Definition 31 (empire [11]) The empire of a formula-occurrence A in a proof-
net P, denoted by eA, is the largest subnet of P that has A among their con-
clusions.

Through the Trip Theorem (Theorem 2.9.5, [38, p. 39]) Girard defines how
to construct an empire of a formula. The notion of empire allows one to re-
cover the moment of the inclusion of a given times link during the construction
of a proof-net. As we will see in the section after the next one, in a multiple-
conclusion calculus one must define conditions to deal with two-premise rules,
such as that in the context of corresponds to addition
of a times link. The problem of such kind of rules is that they combine two sep-
arate derivations (proof-nets), while for example the par link operates in only
one proof-net. The criterion proposed by Girard is very interesting and innova-
tive because the logical dependencies are intrinsic in his method. Alternatively,
one could also give a definition of a set operations on proof-structures which
represent a deduction step in the proof and then give an inductive definition of
proof-nets that naturally correspond to sequent derivations. In fact, Bellin in
[7] gives such presentation of proof-nets. However, as himself analyses “this
is hardly a surprise ... the non trivial task is to provide (algebraic or geometric)
conditions that allow us to recognise whether a given proof-structure can be
generated inductively. Moreover, such conditions should be relatively simple
when compared to the formalism of sequent calculus and its allegedly exces-
sive ‘bureaucracy’ ” [7, p. 22]. Let us look at an example of construction of
the proof-net shown in Figure 1.16.

Example 32 Let us take the two proof-nets as in Figure 1.17. Then we can
connect these two proof-nets by adding a times link. The result is the proof-net
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as in Figure 1.18. Alternatively, if we would try to add a par link to connect the
two proof-nets of Figure 1.17, the result shown in Figure 1.19 would not be a
proof-net. Thus, we see that there is a priority between a times link over the par
link, because the latter operates on only one structure while the former operates
on two structures of proofs. From the proof-net in Figure 1.18 we add a par
link, resulting in the proof-net already shown in Figure 1.6. By connecting
this proof-net with an axiom link we finish the construction of the proof-net
illustrated in Figure 1.16.

In a proof-net P where all terminal formulae are conclusions either of an
axiom or of a times link, a times link with premises A and B, has the
split property if is equal to P. In Example 32 we have that:

and are the proof-nets and respectively, of Figure 1.17;

is the proof-net of Figure 1.6;

and is the proof-net with only one link, i.e. the axiom link with the
edge

Thus we can see that is not maximal, i.e. is not equal
to the proof-net of Figure 1.16, therefore the times link does not have
the split property. However, is equal to the proof-net
of Figure 1.16, hence the link has the split property.
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3.7 Cut-elimination
An important result for the theory of proof-nets is the Strong Normalisation

Theorem given by Girard [38] which says:

Theorem 33 (Strong normalisation) A proof-net of size n normalises to a
cut-free proof-net in less than n steps; the result is called the normal form of
our proof-net.

The proof of the theorem is based on the following basic reductions:

4. Logical flow graphs

The concept of logical flow graph was introduced by S. Buss [13] with the
intention of studying the complexity of certain specific proofs in the sequent
calculus for First-Order Logic. He used this notion to prove the undecidability
of k-provability, i.e. given a formula A and an integer to determine if A has
a proof with or fewer lines.

Again with the aim of studying complexity aspects of proofs in the sequent
calculus, though in a different perspective, Carbone [14, 16, 17, 18] also uses
the notion of logical flow graphs to analyze the complexity of proofs. She has
done an extensive work using the notion of logical flow graph (LFG), such

where are dual multiplicatives.
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as, for example providing an explanation for the exponential blow up of proof
sizes caused by the cut-elimination process. In [14] she proves the acyclic-
ity of cut-free proofs and the acyclicity of contraction-free proofs (possibly
containing cuts). In a recent work Carbone and Semmes [18, 22] develop a
combinatorial model to study the evolution of graph underlying proofs during
the process of cut-elimination. The model has not been completely elaborated
in [22], and it tooks its co mplete form in [18].

Here focus our attention on the study of structural properties of Sequent
Calculus via logical flow graphs (LFG)8 proposed by Carbone.

4.1 Motivation

As we have previously said, Statman was the one who first noticed the im-
portance of studying the structural properties of proofs through a geometrical
perspective. On the other hand, there are some interesting questions which in-
volve mathematical logic and computational complexity and represent a chal-
lenge for researchers in this area. A deeper understanding of structural proper-
ties of proofs might help clarify several of those questions.

A fundamental result which links mathematical logic and computational
complexity was pointed out by Cook and Reckhow in [27], where they proved
that NP is closed under complementation if and only if there is a propositional
proof system where all tautologies can be proved by polynomial size proofs in
the length of the tautology.

Since then, a lot of work has been done with the intention of classifying the
relative complexity of various proof systems by proving lower bounds for the
well known proof systems. For instance, in [26] Cook and Reckhow already
define a hierarchy of various propositional proof systems. They placed the
resolution into the class of “Known not to be super” (a proof system is said
to be “super” if it admits polynomial length proofs of all tautologies). Many
years later, Haken [46] showed that resolution requires exponential time on the
pigeonhole formula9. A recent classification of various proof systems can be
found in [61, 68].

For some proof systems the task of finding hard tautologies is very difficult.
Gentzen sequent calculus with cut is an example of such a system. There are
families of tautologies in propositional logic which have proofs with polyno-
mial size if the system has the cut rule, but with exponential size with a proof
without cuts. The pigeonhole principle is an example, and another one is given
by Carbone in [18, 20] called “a concrete example” explained here in subsec-
tion 4.3.1. Carbone concentrates her studies in understanding why a tautology
might be ‘hard to prove’ [16]. She then analyses the structure of proofs in se-
quent calculus studying the procedure of cut-elimination and the Interpolation
theorem in combinatorial terms. For instance, in [16] is given another proof of
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the interpolation theorem through LFG. Here, we present some of her results
about the cut-elimination procedure.

4.2 Defining logical flow graphs

Logical flow graphs are constructed by tracing the flow of formula-occurren-
ces in proofs in the sequent calculus. Before proceeding to the formal defini-
tion, let us first present a summary of the way in which Carbone uses the se-
quent calculus, and then give an informal definition. Once we have done that,
we will then show the formal definition as presented by Carbone [16] and Buss
[13].

4.2.1 The sequent calculus. In the context of Carbone’s work
[16] the axioms in the sequent calculus assume the form where
A is atomic and formulas occurring in are referred to as weak formulas.
The only structural rule used is the contraction and the cut rule. The sets and

are multisets, i.e. finite sets of formulas which allow repetitions.
Other definitions are given [13, 16] next.

Definition 34 (principal or main formula) The principal formula of an in-
ference is the formula in the lower sequent of the inference upon which the
inference acted.

Definition 35 (auxiliary formula(s)) The auxiliary formula(s) of an inference
are those one in the upper sequent which are used by the inference.

Definition 36 (side formulas) The side formulas are those ones which do not
participate directly in the inference.

Example 37 In the rule the formula is the principal formula, the
formulas A and B in the upper sequent are auxiliaries and the other formulas
of are side formulas:

Definition 38 (cut-formulas) The auxiliary formulas of the cut rule are called
cut-formulas.

Definition 39 (contraction formulas) The contraction formulas are the aux-
iliary formulas of the contraction rule.

4.2.2 Building a logical flow graph. Through logical flow
graphs we can trace the flow of information in a proof, i.e. the formulas. The
different occurrences of a formula in a proof are linked by the edges of the
graph. Two concepts are defined in [16, 13]:
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Definition 40 (s-formula) An s-formula is an occurrence of a subformula of
a formula occurring in an inference, where “s” stands for “semi” or “sub”.

The difference between the subformula which may occur many times in a
proof and an occurrence of a subformula is given by the notion of variants.

Definition 41 (variants) Two distinct occurrences of the same formula A are
called variants.

The orientation of the edges in the LFG is determined by the sign of the
s-formula as illustrated in Figure 1.20.10

A simple example that shows how the LFG is a helpful tool in the study of
the structure of proofs is given in [14].

Example 42 In the tautology the two q’s must have the same
name and therefore must be connected inside the proof. The two do not
need to be linked, as shown in Figure 1.21.

This example shows that for the propositional logic when in the LFG the
occurrences of some variable come in distinct connected components of the
graph, as the occurrences of we can replace these occurrences by another
formula and the proof continue to be valid.

Through this example we can illustrate other definitions given in [16].

Definition 43 (logical path) Any sequence of consecutive edges in a logical
flow graph is called logical path or simply path.

Definition 44 (bridge) Any logical path starting and ending with two (dis-
tinct) s-formulas occurring in the end-sequent is called a bridge.

Definition 45 (direct path) A logical path passing through either positive or
negative occurrences only is called a direct path.
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Note how the logical flow graphs allow us control the flow of information
in proofs of sequent calculus, i.e. they tell us where the information (formula)
came from and how it will be used later.

4.2.3 A more precise definition. There are some differences
between the definition of LFG given by Carbone and S. Buss [13]. Carbone
applies the concept of LFG only to atomic formulas, although in [19] she
considers links between non-atomic formulas.

Even though, our analysis focus on Carbone’s work, here we also include
Buss definition.

Logical flow graphs are defined by specifying the edges [14, 16, 20, 13]:

1 In an axiom there are two cases:

there is an edge directed from the left-hand A to the
right-hand A;
equality axiom:

there is an edge directed from the P(s) to the P(t);
In all other equality axioms, there is an edge from each for-
mula in the antecedent to the formula in the succeedent.

2 For side-formulas (i.e. those formulas which belong to the contexts
in any logical and structural inferences of the sequent cal-

culus:
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there is an edge directed from each side-formula in the antecedent
in the lower sequent to the corresponding side formula in the an-
tecedent in the upper sequent(s);

there is and edge directed from each side-formula in the succeedent
in the upper sequent to the corresponding formula in the lower
sequent.

3 For auxiliary formulas in any inference:

if A (or B) is an auxiliary formula which appears in the succeedent
of an upper sequent of the inference then there is an edge directed
from A (or B) to the corresponding s-formula in the lower sequent;

if A (or B) is an auxiliary formula which appears in the antecedent
of an upper sequent of the inference then there is an edge directed
towards that A (or B) from the corresponding s-formula in the
lower sequent.

4 In a cut inference there is an edge directed from the cut-formula A in the
succeedent of the left-hand upper sequent to the occurrence of A in the
antecedent of the right-hand upper sequent.

5 Finally, suppose there is a directed edge from an s-formula to and
suppose is a subformula of Since and are variants there is
a subformula of which corresponds to the subformula of ;
clearly and are variants. If occurs positively in then there
is an edge from to . If occurs negatively in then there is an
edge from to

The orientation of the edges is given by the sign of the s-formula, which is
defined as follows:

Definition 46 (sign of an s-formula) An s-formula occurs positively if and
only if it is in a sequent and either occurs positively in a formula in

or negatively in a formula in

From this notion, the orientation of the edges is easily defined: in a proof
every downward edge connects two s-formulas which occurs positively and
every upward edge connects s-formulas which occur negatively. Lateral edges
occur in an axiom and in a cut rule. In axiom, the edge is oriented from the
negative occurrence to the positive one. In the case of a cut rule, the orientation
is from positive occurrences to negative occurrences ([13, 18]). In Figure 1.20
we have already seen the orientation of the edges in a LFG.
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4.2.4 Examples. Some examples are listed here:

Example 47 This example is shown in [16]. The following proof has the log-
ical flow graph restricted to the formula A illustrated in Figure 1.22.

Example 48 The following proof has the logical flow graph restricted to the
formula A and formula B shown in 1.23 [13].

4.3 Analyzing the cut-elimination process

The cut-elimination theorem, also known as Hauptsatz, says that any proof
in sequent calculus with cut can be effectively transformed into a cut-free
proof. From the proof theory view point it has nice consequences such as
the subformula property, i.e. every formula which appears in a cut-free proof
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also occurs as subformula of a formula in the end-sequent. However in terms
of computational complexity it has a cost. In general, proofs with cuts are
smaller than cut-free proofs. There are many examples of propositional tau-
tologies, including the Pigeonhole Principle, for which proofs without cuts
must be exponentially larger than proofs with cuts. In [18] Carbone lists vari-
ous references where the reader can have such examples. Here in Section 4.3.1
we show one of these examples.

Carbone wants to explain the expansion of proofs after cut-elimination by
a geometrical analysis. In order to do this, she firstly examines the procedure
of cut-elimination looking for the cases which cause expansion. In [15] she
explains how this happens. Here we report the example used to illustrate this
situation:

Example 49 Consider the following case:

after the cut is pushed up over the contraction, the following proof is obtained:

as we can see the subproof is duplicated.

As we know the usual Gentzen’s cut-elimination procedure is performed by
pushing the cuts up until one can eliminate it.11 Roughly speaking, this is done
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systematically in such a way that the degree of the cut-formula is reduced in
each stage of the procedure [45, 36]. The proof of the theorem is made by the
verification of the various cases.12

The general scheme which illustrates the effect of pushing a cut up across a
contraction is as follows:

A concrete example of expansion of a proof after cut-elimination is shown
in the next subsection.

4.3.1 An example of expansion after cut-elimination. In
[18] the predicate sequent calculus is used with the following extension rule:

where F is a unary predicate and * a binary function symbol. The constant
symbol 2 is also added to the language. The symbol 2 can be interpreted by
the number 2 and * by the multiplication operation. The exponential function is
also freely used to denote a term written with the symbols 2, * just to abbreviate
it because it becomes very large in most cases.

The proof of in the propositional fragment of the sequent
calculus is analyzed. Using cuts the proof has lines, however any cut-free
proof has lines.

The logical flow graph of the proof looks as shown in Figure 1.24. Where
are “building blocks” proofs of illustrated

in Figure 1.25.
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Each building block contains two branches: the left for the contraction
and the right for the F : times rule. In Figure 1.26 we can see how the
building blocks are linked. In the whole proof there is a chain of pairs of
branches which are eliminated during the process of cut-elimination, where
the following expansion occurs:

As in Example 49, this “concrete example” shows the duplication of sub-
proofs which occurs during the process of cut-elimination. Based on this pat-
tern of expansion (i.e. caused when a cut is pushed up over a contraction), a
combinatorial model is developed as an attempt to explain the expansion of
proofs by a geometrical perspective.
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4.4 Cycles in proofs

The examples shown in Section 4.3 are important to understand Carbone’s
analysis about the expansion of proofs after cut-elimination. She notes that
cut-free proofs have much simpler geometrical/combinatorial structure than
the ones with cuts, i.e. they do not have oriented cycles. In other words, the
logical flow graphs of proofs with cuts may contain oriented cycles.

There are two kinds of cycles in proofs: non-oriented and oriented cycles.
The former may appear in cut-free proofs. The pigeonhole principle is an
example which has an exponential number of non-oriented cycles in its cut-
free proof, as noticed by Carbone in [19]. Moreover, the logical paths which
form these unoriented cycles cannot be eliminated.

In her studies, Carbone considers oriented cycles, which can be eliminated
by the cut-elimination process. In [16] two important theorems about acyclicity
of proofs are given. One deals with the acyclicity of cut-free proofs and the
other refers to acyclicity of contraction-free proofs possibly containing cuts.
They are reported here as follows:

Theorem 50 (acyclicity of cut-free proofs) Let be a cut-free proof.
The logical flow graph of is acyclic.

Since in a cut-free proof there are only three kinds of edges, namely upwards
(linking negative occurrences of formulas), downwards (linking positive occur-
rences of formulas) and from negative to positive (axiom), there is no way to
link a positive occurrence to a negative one and then close the cycle. The only
way to have such a kind of connection is through the lateral edge which links
cut-formulas.

Theorem 51 (acyclicity of contraction-free proofs) Let be a con-
traction-free proof (possibly containing cuts). The logical flow graph of
is acyclic.

From these theorems we can conclude that cycles are generated by the com-
bination of cuts and contractions. In [19] Carbone states the claim, more pre-
cisely through the following proposition:

Proposition 52 Let be a proof with no contractions lying above its cuts.
Then the logical flow graph of is acyclic.

Moreover, proofs with only a certain kind of cut-formulas contain cycles,
i.e. those one which have two distinguished occurrences, one positive and
the other negative. Notice that atomic cuts do not permit cycles to appear.
Figure 1.27 shows a general scheme of a cycle in a proof, where and
are distinguished occurrences of P, a subformula of A.

Cycles are eliminated by the cut-elimination procedure. The general scheme
of the split of the cycles during the cut-elimination is shown in Figure 1.28.
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4.5 A combinatorial model

In [22] a combinatorial model is introduced with the intention of relating
the expansion of a proof after cut-elimination to the geometry of its underlying
graph.13 The model tooks its complete form in [18], where the operation of
duplication on graphs, i.e. optical graphs, (defined as follows) is given.

4.5.1 Optical graphs. Through the notion of an optical graph, a
class of graphs that includes graphs of proofs is defined [18].

From this definition the notions of branch point, focussing branch, and de-
focussing branch are given:

Definition 53 (optical graph) An optical graph is an oriented graph in which
each vertex has at most three edges attached to it and no more than two edges
are oriented away from and no more than two are oriented towards
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Branch point: is a vertex in a optical graph with three edges attached to
it;

focussing branch point: is a branch point with two edges oriented to-
wards it;

defocussing branch point: a branch point with two edges oriented away
from it.

An input vertex (output vertex) is a vertex with no edges in the graph which
are oriented towards it (away from it).

The notion of labelled optical graphs is also given and Figure 1.29 illustrates
the definitions presented here.

Definition 54 (labelled optical graph) A labelled optical graph is an optical
graph with the property that the edges oriented away from a defocussing point
and the edges oriented towards a focussing point are labelled by the number 1
and 2 respectively.

4.5.2 The duplication operation. This operation is defined to
describe the changes (i.e. “topological” changes) which occur on the graphs of
a proof during the procedure of cut-elimination. We report here the definition
given in [18]:

Definition 55 (duplication operation) The duplication operation D is a bi-
nary operation applied to a labelled graph G and a subgraph of G with the
following properties:

if a vertex of is a focussing point in G then either its immediate
predecessor vertices both lie in or none of them does, and

if a vertex of is a defocussing point in G then either its immediate
successor vertices both lie in or none of them does, and

1

2
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3 at least one input vertex in is a focussing point, or at least one output
vertex in is a defocussing point.

Let be the input vertices of which are not inputs in G, and
let be the output vertices of which are not outputs in G. The
result of duplication applied to G, is a graph which is defined as
G except on the subgraph which will be substituted by two copies of it.

Namely all vertices of G which are not in lie in as well as
those edges in G which connect any two of these vertices. Moreover,
contains two copies of which are attached to the ‘rest’ of
as follows:

let be an input vertex of which is not focussing in G and let
be the two copies of it in of respectively. Add a new
vertex in and two edges from to with labels 1 and
2 respectively. If is the vertex in G with an edge to add an edge
from to in

let be an output vertex of which is not defocussing in G and let
be the two copies of it in of respectively. Add

a new in and two edges from to with labels 1 and
2 respectively. If is the vertex in G with an edge from to it, add an
edge from to in

let be an input vertex of which is focussing in G and let be
the two copies of it in of respectively. If are the
vertices in G with edges to labelled 1 and 2 respectively, add an edge
from to in and add an edge from to in

let be an output vertex of which is defocussing in G and let
be the two copies of it in of respectively. If are
the vertices in G with an edge from add an edge from in

and add an edge from in

This concludes the definition of the graph

The application of repeated operation of duplication to an optical graph
will transform it into another graph which can be linearly, polynomially or
exponentially larger, depending on the way in which the transformation is per-
formed, i.e. to which subgraphs of a given graph G one will apply the
operation of duplication. In Figure 1.31, we show an example from [18] that
illustrates this kind of transformation which has an exponential growth.

Carbone notices that the exponential growth depends on the existence of
chains of alternating branching points in the graphs. This observation is impor-
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tant to understand the expansion of proofs after cut-elimination by a geometric
analysis.

4.5.3 Connections with cut-elimination. The cut-elimination
process can be interpreted as transformations on optical graphs. In particular,
the duplication operation is the combinatorial counterpart of the step of cut-
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elimination which eliminates contractions. For example, let G be the optical
graph of the following proof:

The subgraph contains the LFG of the subproof as well as the cut
edges, as illustrated illustrated in Figure 1.32. The input and output vertices
of which are focussing and defocussing points correspond to negative and
positive occurrences of contracted cut-formulas. All of other input and output
vertices of are weak formulas or formulas passing through the side formulas

. For instance, if A is the formula as in Figure 1.32, has as an
input vertex, which is a focussing point, the negated occurrence of in
and as output vertex, which is a defocussing point, the positive occurrence of

in

As we have seen, this kind of combination of cut and contraction causes
cycles in proofs. The cut-elimination procedure drops theses cycles. From the
geometric perspective, the configurations shown in Figure 1.33 are eliminated.
They represent a focussing point followed by a defocussing one. The logical
flow graphs without these configurations correspond to cut-free proofs, they
are called H-graphs and are defined as follows [18].

Definition 56 (H-graph) An optical graph is an H-graph if none of its fo-
cussing points is followed by a defocussing one.
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Yet as a basic property of the duplication operation which is related with cut-
elimination we have that its application to a given graph can disrupt a cycle, as
shown in Figure 1.34.

In order to complete her combinatorial model to study cut-elimination, Car-
bone defines a specific strategy to transform any acyclic optical graph G into
an H-graph with no focussing vertices. This strategy is called positive reso-
lution. She also gives examples of proofs where this strategy is applied. The
notions of focal pairs and visibility graph are introduced to compute lower and
upper bounds of the size of the expansion [22, 18].

5. Multiple-conclusion classical calculi
In a previous section we have studied the well-known multiple-conclusion

calculus for linear logic, i.e. the so-called proof-nets. Here we look at two im-
portant multiple-conclusion classical calculi: Kneale’s tables of development
[49, 50] as well as the improvements proposed by Shoesmith–Smiley in [63];
and Ungar’s ND system [67]. Both systems are motivated from the difficulties
of ND classical systems.

Kneale pioneered this kind of calculus. His intention in proposing the “ta-
bles of development” was to improve Gentzen’s results in order to obtain a
symmetrical ND system. In his analysis (which first appeared in [49] and sub-
sequently in [50]) he notes that the rules which discharge assumptions (i.e.

and cause the problem of non-symmetry of ND systems.
Looking for a better way to get a good sense of duality for those rules, he
proposes what he calls tables of development, which has the following general
pattern:

where P and Q are premises and R and S the limits of the development (i.e.
conclusions).
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On the other hand, the aim of Ungar’s work [67] is to study the relationship
between normalisation and cut-elimination as did Zucker in [69]. He wants to
give more positive results than Zucker’s rather negative ones. For this he pro-
poses a representation of proofs in natural deduction by graphs, instead of the
traditional tree structure, where derivations can have more than one conclusion.

Multiple-conclusion calculi can be considered as one alternative to deal with
the problem of lack of symmetry in ND classical systems. Before we present
these two proposals we shall first look more carefully at this difficulty of ND
systems as well as some extensions to Gentzen’s original ND system which do
not change the structure of ND derivations, i.e. the tree-like structure.

5.1 Lack of symmetry in natural deduction

As we have pointed out above, it seems to be the case that the lack of sym-
metry in natural deduction systems turns out to be its “Achilles' heel” since its
formulation by Gentzen [36]. Besides not having invertible rules, the N K cal-
culus (natural deduction for classical logic) presented by Gentzen falls outside
the framework proposed for the N  J calculus (intuitionist fragment) because it
cannot be integrated to the pattern of introduction and elimination of the dif-
ferent logical constants: N K includes either the “law of the excluded middle”

where A stands for any arbitrary formula) as an axiom schema or a

new elimination of the negation connective, say

Due to the mismatch between a rather symmetrical system (classical logic)
and the system of natural deduction proof rules, Gentzen then abandoned ND
in order to be able to prove a fundamental result about the general structure of
proofs: the Hauptsatz. He went on to formulate a rather symmetrical alterna-
tive: the sequent calculus which turned out to be suitable for both intuitionistic
and classical logic. Here we quote:

“In order to be able to enunciate and prove the Hauptsatz in a convenient form,
I had to provide a logical calculus especially suited to the purpose. For this
the natural calculus proved unsuitable. For, although it already contains the
properties essential to the validity of the Hauptsatz, it does so only with respect
to its intuitionist form...”

As is well known, Prawitz in [58, 59] proved the corresponding “Hauptsatz”
for natural deduction derivations, the normal form theorems. This represented
an important progress for natural deduction systems. In his classical ND sys-
tem, instead of the law of excluded middle, the classical absurdity rule

is added to the system. Prawitz then followed the second option given

by Gentzen to formulate classical ND systems. Since A is equivalent to A,
if you begin a proofwith as assumption andfind (‘false’), then you have
a proof of A, because of the implication rule and the correspondence between
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as we can see in the scheme below:

Prawitz’ work represents a significant improvement to ND systems, how-
ever when he considers the normal form for ND classical derivations, the log-
ical constants and are not included. This restriction has motivated various
studies for a presentation of a proof of normal form theorems for full classi-
cal logic, using a formulation including the connectives and as primitive.
Statman’s work [65] was the first presentation of the normalisation theorem for
full first order classical ND systems. He was interested in establishing a con-
nection between structural and semantic properties, in particular, the length
of normal proofs in ND classical systems and their semantic properties. He
defined various systems, such as for example the second order systems with
the choice axiom, etc., and proved the strong normalisation theorem through
the definition of homomorphisms between the systems previously defined. Al-
though with different and simpler methods to prove the normal form theorems
for full first order classical logic, Stalmarck [64] as well as L. Pereira and C.
Massi [56] follow Statman in some technical details and present an alternative
solution to the problem of proving normalisation for ND with full classical
logic. These works together with the proposal of Andou [4] solve the techni-
cal problem, even if a philosophical question concerning constructive proofs
remains open. In his proposal, Prawitz restricts the application of the
rule to atomic formulas because he wanted to analyze the classical inferences
constructively. Thus, the classical operations are composed by constructive
ones plus the principle of indirect proof for atomic sentences (see [59,
pp. 244–245]).14 Thus Prawitz defines a set of reduction rules which replaces
each application of the classical absurdity rule by one or more applica-
tions in which the conclusion is atomic. For example, for the connective the
reduction rule is framed as follows:

It is at this point that the proof fails in the presence of and It is not
possible to “atomicise” the applications of the rule for these connectives.
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Statman [65], L.C. Pereira and C. Massi [56], G. Stalmarck [64] and Andou
[4] define new reduction rules that remove a compound formula which is a
conclusion of rule only if it is at the same time a major premise in an
application of an elimination rule. Hence, a closed normal derivation can end
with an application of the rule applied to a compound formula.

Another alternative to deal with a full classical ND is to approach it through
the inclusion of the law of excluded middle. Tennant [66], as well as von Plato
[57], give the following rule of natural deduction excluded middle:

where 1 and 2 are discharged.
In [62], Seldin uses the following rule to obtain classical logic from intu-

itionistic logic:

As noted by Seldin, this rule was previously proposed by Curry,15 and it is
a version of a rule which corresponds to the Peirce’s law:

For our purposes, we believe that the rule for the law of  excluded middle pro-
posed by Tennant and von Plato ([66, 57]) is a good alternative for the classical
case. Although we did not look too deeply at the details of the normalisation
procedure proposed by von Plato, it looks rather promising. The rule proposed
by Seldin is very similar to the and the normalisation procedure is not as
simple as Prawitz’, although technically it works well.

5.2 Kneale’s tables of development

The tables of development, has the following general pattern:

where P and Q are premises and R and S the limits of the development(i.e.
conclusions). Between the initial formulas and the end formulas there may be
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many intermediate expressions obtained from the basic development schemata,
shown in Table 1.1 for the propositional fragment.

Unlike Gentzen ND system, in which an inference cannot have more than
one conclusion, Kneale’s “tables of development” allows the construction of
multiple-conclusion proofs. In the propositional fragment in rules (4), (5) and
(7a) there are two formulas below the line.

Another novelty in Kneale’s development is the presence of the asterisk in
rules (5), (6) and (7a). It indicates a place where one may put any propositional
expression. Rule (5) is a formulation of the law of excluded middle while
rule (6) represents the principle of non-contradiction. In [49] Kneale puts a
propositional expression in the asterisk place, but in [50] he keeps the asterisk
to mean a ‘hole’ which can be filled in by any proposition. Through some
examples we can see how this works out in practice.

Kneale explains the rather innovative rule (7a) by showing its equivalence
to the principle that a material implication is entailed by the negation of its
antecedent:

Example 57 The development of (the notation P/Q indicates a
entailment statement - where P is the premise and Q is the conclusion):

In [50] version: Figure 1.35;

in [49] : Figure 1.36.
Here we will adopt the [50] version.
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In order to avoid fallacious proofs such as the one illustrated in Figure 1.37
Kneale defines the condition that formulas which are already connected, either
directly by one single horizontal line or indirectly through several horizontal
lines, should not be connected again in any way.

The global rule of in ND Gentzen system can be derived in Kneale’s
tables of development, as he explains in [50, p. 248], by showing that
is provable if P entails Q (if P/Q then

5.2.1 Classical and intuitionistic logic. As explained by
Kneale [49, p. 253], unlike Gentzen ND system, the rules of development is a
version of classical logic. In order to obtain intuitionistic logic, rule (5) must
be dropped and the corresponding ND system rule restored in its place. This
is a disadvantage of Kneale’s proposal when dealing with intuitionistic logic,
since the device of assumption discharge falls out of the pattern of the other
rules of the system.

5.2.2 Some examples.

Example 58
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Example 59

Example 60

5.2.3 The inadequacy. In [63] Shoesmith and Smiley point out
the inadequacy16 of Kneale’s tables of development. It is an inherent problem
of multiple-conclusion systems of proofs. Ungar in [67], Chapter 4, calls this
difficulty “the problem of substitution” in the             . In a few words,
Shoesmith and Smiley show that there may be developments of S from
and of from Q, without there being any development of S from Q. This
kind of problem does not arise in single conclusion calculi, such as ND, be-
cause there is no repetition of formulas in the conclusion and the assumptions
are grouped into equivalence classes. In order to illustrate this difficulty of
multiple-conclusion calculi, let us look at a derivation of C from in ND:

Thus, if we have a derivation of S with various occurrences of C as open
assumptions:

then we can easily construct a derivation of S from substituting a derivation
of C for each occurrence of C in . However, if we are in a context of a

multiple-conclusion calculus, such as the tables of development, the derivation
should be as follows:



Geometry of Deduction via Graphs of Proofs 57

It is not obvious how to construct a derivation of S from    from the deriva-
tions   and  .

Shoesmith and Smiley provide an example of a tautology, namely
in which there is not a Kneale development for it.

They show that there is a development of a development from
to but we cannot construct a development

from and as illustrated in Table 1.2.

5.3 Shoesmith and Smiley refinements
5.3.1 Developments as graph arguments. In order to solve
the inadequacy of Kneale’s proposal, Shoesmith and Smiley [63] refine Kneale’s
development by presenting it through a graph, called graph argument, where
vertices are labelled with occurrences of formulae and inference strokes; and
premises and conclusions have different graphical representation.

The inference strokes which label the vertices represent the horizontal line
of the developments, as in Figure 1.38. Conclusions are represented by tri-
angles premises by inverted triangles and other formula vertices by
circles An isolated vertex being both premise and conclusion is repre-
sented by the combination of the two notations

From graph theory, Shoesmith and Smiley use the notions of initial/final/
intermediate vertex and bipartite graph to formalise the definition of graph
argument.
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Definition 61 (graph argument) A graph argument is a finite bipartite graph
of formulas and strokes in which a subset of the initial and final vertices re-
spectively are specified as the premises and conclusions of the argument.

Definition 62 (standard graph argument) A standard graph argument (or stan-
dard argument for short) is a graph argument where all the initial formulas are
premises and all the final ones are conclusions.

Definition 63 (non-standard vertex) Any initial formula vertex that is not a
premise of the argument, and any final one that is not a conclusion, is called
non-standard.

In the case of a standard graph argument, there is no need for a special
notation for premises and conclusions.

The graph argument which is nonempty, connected, circuit-free and corner-
free is called Kneale argument. If it is standard, then it is called standard
Kneale argument. The developments are represented by standard Kneale argu-
ments.

The requirement of a circuit-free graph argument avoids proofs such as that
one illustrated in Figure 1.37 of Section 5.2.

In order to avoid representations of developments in which a formula ap-
pears as premise (or as conclusion) in more than one step, as illustrated in
Figure 1.39, a property called “corner-free graph argument” is required. This
property is defined as follows.

Definition 64 (corner) A corner is a set in which is a formula
vertex and and are distinct edges both going to or both from it.

Definition 65 (corner-free graph) A corner-free graph is a graph without cor-
ners.

In Figure 1.40 we can see a graph with a corner at B17
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5.3.2 Solving the inadequacy. With the definition of develop-
ments as Kneale arguments as presented above, Shoesmith and Smiley show
the situations where the problem arises and give an alternative solution to deal
with them. The notion of an operation on graphs called junction is needed.

Definition 66 (junction) Let and be graph arguments which have just
one vertex labelled by A in common, A being a conclusion of and a premise
of . The graph with premises from (other than A) and with conclu-
sions from (other than A) is the junction of and , as illustrated in
Figure 1.41.

Given a standard Kneale argument from to A and from A to Q, the
junction of and does not produce a standard proof from to Q in the
case where A occurs more than once as conclusion in       and also more than
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once as premise in , as illustrated in Figure 1.42. This same situation occurs
in the attempt to obtain the development of
from the developments and as shown in Table 1.2: occurs twice
as premise in and twice as conclusion in

Using the notational feature of graph arguments in which one can indicate
which of the initial and final formulas are meant to be premises and conclusions
together with an operation called election on the graph arguments, Shoesmith
and Smiley present a solution to the inadequacy of Kneale’s developments.

Definition 67 (election operation) An election operation transforms a graph
argument with various occurrence of the same formula A as premises into
a graph argument which is the same graph as with the exception that the
number of occurrences of the formula A as premise in is reduced. Similarly
the election operation acts over conclusions.

Election is an implicit form of defining the structural rule of contraction
in the sequent calculus. The inadequacy Kneale’s development is then solved
by representing it through graph arguments; and by reducing the number of
occurrences of a formula as premise or conclusions to just one through an
election operation before the application of a junction operation.

Now we can see how to obtain the proof of . The
corresponding graph arguments of the developments and (Table 1.2) are
shown in Figure 1.43. By “electing” one of the two occurrences of in

and the graphs and are obtained respectively, as in Figure 1.44.
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Finally, the intended proof is obtained by joining and as in Fig-
ure 1.45.

Shoesmith and Smiley (theorem 9.4, [63, p. 152]) prove that the closure of
the standard Kneale proofs under junction and election is an adequate class
of proofs. However, it is necessary to characterise which class of
der election operation is adequate. For example, the arguments shown in Fig-

proofs un-

ure 1.46 are not valid. Whenever a vertex is made non-standard by an election
operation on a graph argument there will be a path , . . . , in , where
is premise or conclusion that is an occurrence of the same formula as . If
is embedded by junction in a larger argument , the path , . . . , will also be
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a reminder that can be justified by the notion of cross-reference to
, as following defined.

Definition 68 (cross-reference path) A cross-reference path is a path , . . . ,
such that and are occurrences of the same formula and are both initial and
final in the path.

Not all cross-reference paths justify the presence of non-standard vertices
in a graph argument. In Figure 1.46 either of the initial occurrences of A in

could be justified by cross-reference to the intermediate occurrence of the
same formula. In order to recognise which cross-reference path justifies an
argument, the notion of cross-referenced Kneale argument is given.

Definition 69 (cross-referenced Kneale argument) A Kneale argument is
cross-referenced if its non-standard vertices can be arranged in a sequence

, . . . , such that there exist cross-reference paths ( , . . . , ) , . . . ,
( , . . . , ), where no appears in , . . . , for unless
In such a case we say that the sequence of paths justifies the argument.

With this definition we complete the characterisation of Kneale arguments
through cross-references paths.

5.3.3 Second solution: multiple junction. Shoesmith and
Smiley relaxed the requirement of a circuit-free graph argument and gave an al-
ternative solution to the inadequacy problem of Kneale’s developments. They
note that not all circuits in a standard corner-free Kneale argument are prob-
lematic. For example, in Figure 1.47 the argument is a fallacy while the one
in Figure 1.48 is valid. In the former the formulae A and B are distinct while
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in the latter there is a recurrence of formulae, namely the formula A, in this
case the circuit contains a cross-reference path. In order to characterise these
circuits in an argument, the notion of a cross-referenced-circuit argument is
given:
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Definition 70 (cross-referenced-circuit argument) An argument is cross-
referenced-circuit if it is connected, nonempty and corner-free, and every cir-
cuit contains a cross-reference path.

The problem of adequacy in cross-referenced-circuit arguments is solved
through the operation of multiple-junction, defined bellow.

Definition 71 (multiple-junction) Let and be arguments whose com-
mon vertices , . . . , are conclusions of and premises of
and are all occurrences of the same formula. We say that is the multiple-
junction of and , if the graph of is the union of those and , the
premises of being those of (other than , . . . , ) plus those of , and
the conclusions of being those of (other than , . . . , ) plus those of

This operation is illustrated in Figure 1.49.
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The example used in the discussion of inadequacy is now with multiple-
junction as in Figure 1.50.

There are cases where the multiple-junction operation generates some un-
wanted occurrences of the relevant formula, as in Figure 1.49, the formula A
in the conclusion of . One can deal with it by making an appropriate number
of copies of and before the application of the multiple-junction opera-
tion. If the same formula occurs times as a conclusion in and times
as a premise in , one can first bring these up to the same number by
considering copies of and copies of , and then the multiple-junction
is applied, as illustrated in Figure 1.51.

5.3.4 Third solution: identification of premises and conclu-
sions. A third solution to the problem of inadequacy is given by allowing
corners at Kneale arguments and by definition of the operation of identification
of different occurrences of the same formula as premises (or conclusions) in a
proof.
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Definition 72 (identification of premises (conclusions)) We say that is ob-
tained by a graph argument by identification of premises (conclusions) if it
is the result of omitting vertices from and replacing every edge
from (to) any of them by a corresponding edge from (to) the vertex , where
all the are occurrences of the same formula and are premises (conclusions).

Figure 1.52 illustrates this operation. is obtained from by identifica-
tion of conclusions and is obtained from by identification of premises.
After these operation is obtained by junction of and . The usual ex-
ample is illustrated in Figure 1.53.

Any circuit formed as a result of identification of premises or conclusions
contain a corner.

Definition 73 (cornered-circuit argument) A nonempty argument in which
every circuit is cornered, i.e. contain a corner, is called cornered-circuit argu-
ment.
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Through theorems 10.3 and 10.4 [63, p. 170] we have the proof that every
standard cornered-circuit argument is valid and adequate.

5.4 Ungar’s system

With the intention to study the correspondence between normalisation and
cut-elimination as did Zucker in [69], Ungar proposes in his book [67] a revised
treatment of ND systems through a multiple-conclusion calculus. He wants to
give more positive results than Zucker’s. As analyzed in Chapter 1 [67], Zucker
gave up the idea of reconciling ND and sequent calculus due to the fact that
there may be meaningful properties of proofs which are preserved by all reduc-
tions in ND, but not by those of the sequent calculus. Ungar’s analysis begins
with a discussion about some aspects of ND systems that could be improved in
a revised calculus. The main point discussed is that the elimination rule is not
a good alternative to represent the actual reasoning involved in the proof. Con-
sidering that derivations are formal representations of proofs, the presence of
             rule in derivations of ND systems does not represent the struc-
ture of the proofs they are supposed to represent. Thus, a revised treatment for
ND system should include a reformulation of this rule to one of the form
as in Kneale’s developments. Before giving a precise notion of derivation in
his multiple-conclusion version of ND systems, Ungar analyzes the problem
of substitution in this kind of calculus, which corresponds to the inadequacy of
developments studied by Shoesmith and Smiley. Ungar begins his analysis by
listing a set of propositional rules for a multiple-conclusion variant of natural
deduction, here shown in Table 1.3. Each formula-occurrence has a subscript,
which ranges over natural numbers, to indicate the class to which it belongs.

Some remarks on Ungar’s system are enumerated as follows:

Ungar includes the rule 8 only for aesthetic reasons. In the sequel, he
ignores it.
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The notation in rule 5 indicates that all occurrences of as an
assumption are discharged by the inference.

Derivations in this system are graphs whose vertices are labelled by for-
mulae.

Each axiom of the form will be represented by one-element whose
only vertex is labelled

To exclude fallacious derivations such as that one shown in Figure 1.37
(Section 5.2) as did Kneale, Ungar stipulates that the premises of rule
(1) and (6) cannot both be conclusions of a single derivation.

5.4.1  The problem of substitution.    The problem of substi-
tution in a multiple-conclusion calculus corresponds to the problem of inad-
equacy of developments, already discussed previously in Table 1.2 and sum-
marised here in Figure 1.54.

This kind of problem appears in a multiple-conclusion calculus because we
have at the same calculus rules with more than one conclusion as well as rules
with more than one premise. There are situations where the junction of two
derivations represents a fallacy as in derivation 1 of Table 1.4 whilst in other
contexts this operation represents a logically correct reasoning as in derivation
2 of the same table. One alternative to avoid derivations like 1 is to define a
condition that no cycles can occur in the proof, as did Kneale. However how
can we deal with deductions like 2? The derivation shown in Figure 1.55 is not
satisfactory. The example pointed by Shoesmith and Smiley is an instance of
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derivation 2. In this case, a reasonable solution must include the allowing of
cycles in the derivations. Ungar uses another example to discuss the issue of
adequacy in his system. He shows that it is not possible to build a derivation
of , where *(X,Y) abbreviates

. The derivation of *(A, B) would be as follows.

Although the example of Shoesmith and Smiley is easily derivable in Un-
gar’s system, both examples are instances of the same problem. In Ungar’s
system the rule has only one conclusion while in Kneale de-
velopments it has two conclusions.

5.4.2 Solving the problem of substitution. To solve the
problem of substitution a precise notion of derivations is given. The appli-
cation of a rule of inference is interpreted as an operation on graphs, called
combination. Those combinations which generate the class of logically cor-
rect derivations are called substitutions. The idea is similar to the second so-
lution of Shoesmith and Smiley, where an appropriate number of copies of the
derivations to be joined is made as well as the requirement of a circuit-free
graph is relaxed. The following example illustrates the technique used to solve
this problem.

Example 74 Let and be derivations of occurrences of A and B respec-
tively, as follows:
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By combining and with the graph as in Figure 1.56 one can

reach the conclusion . As we can note, similarly to the operation of
multiple junction, three copies of and two copies of are glued together.

6. Finale

Girard’s intention in proposing the concept of proof-nets (“ the natural de-
duction of linear logic”) was to study the geometry of deductions. In [40]
he presented various arguments in defense of his programme, emphasizing the
importance of “finding out the geometrical meaning of the Hauptsatz, i.e. what
is hidden behind the somewhat boring syntactical manipulations it involves”.

What we have seen in Carbone’s work is exactly a geometrical study of the
cut-elimination process, in which she proposes a combinatorial model to study
the expansion of proofs after cut-elimination. Like Girard in his linear logic,
Carbone notices the need to impose some restrictions on the use of structural
rules and presents an acyclic sequent calculus, called ALK [17], which is not
studied here.

We understand the essence of Carbone’s work as an attempt to explain the
expansion of proofs after cut-elimination by a geometric analysis. What we
want to emphasise in the work of Carbone is her presentation of an extensive
study of cut elimination and structure of proofs in purely combinatorial terms.
In fact she develops a combinatorial model for cut-elimination based on the



Geometry of Deduction via Graphs of Proofs 71

concept of optical graphs and the duplication operation on graphs. From this
model she explains the expansion of proofs after cut-elimination. Moreover,
her work evolves to a refined notion of logical flow graphs (core proof and
logical core proof) and some conjectures on the structural properties of proofs
of tautologies which are ‘hard’ to prove. A future survey would include these
notions, as well as the concepts of focal pairs and visibility graph, central to
compute lower and upper bounds in the expansion of proofs.

In the context of the theory of proof-nets, we emphasise the proposal of a
purely geometrical tool to approach the soundness of a graph of proof.

6.1 Towards a new perspective: N-graphs

Statman’s geometrical perspective does not seem to have developed much
further than his doctoral thesis, but the fact is that it looks as if the main idea,
i.e. extracting structural properties of proofs in natural deduction using appro-
priate geometric intuitions, offers itself as a very promising one. With this in
mind, and having at our disposal some interesting and rather novel techniques
developed for proof-nets and logical flow graphs, we have tried to focus our
investigation on a research for an alternative proposal for studying the geom-
etry of natural deduction systems. The lack of symmetry in natural deduction
systems is one of the aspects which represent a challenge for such a kind of
study. Of course, one alternative to deal with the problem of lack of symmetry
in ND systems is to look at multiple-conclusion calculi. We already have in the
literature different approaches involving such calculi. We mention, for exam-
ple, Kneale’s tables of  development (studied in depth by Shoesmith & Smiley)
and Ungar’s multiple-conclusion natural deduction. Our proposal is similar to
both Kneale’s and Ungar’s in various aspects, mainly in the presentation of a
multiple conclusion calculus inspired in natural deduction systems. However,
we wish to bring our system, which we have named as N-graphs, into the
current state-of-affairs by incorporating some of the techniques developed for
proof-nets (e.g. splitting theorem, soundness criteria, sequentialisation), and at
the same time study its structural properties via a geometrical representation
of graphs of proofs. A future development should also include the study of the
complexity of ND derivations inspired in the work of Carbone for the sequent
calculus.

Drawing on the main approaches reviewed in the paper, we outline a pro-
posal for a formalisation of proofs, called N-graphs, based mainly on the rules
of natural deduction formalism, as some structural rules of sequent calcu-
lus. Our intention is to present a propositional classical calculus similar to
the multiple-conclusion ones studied above. However we want to incorporate
the geometrical technique of the theory of proof-nets to define its soundness
criterion. Because of the presence of more connectives than in the theory of
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proof-nets, we face knew difficulties which become even more complicated
with the definition of the connective as in ND and Ungar’s system, i.e.
with a “global” feature.

In our formalism, proofs are represented by graphs which are constructed
from a set of basic links illustrated in Figures 1.58 and 1.59, which represent
the set of schema of rules of the calculus.

6.1.1 Proof-graphs. We adopt the usual propositional language
with logical constants: (conjunction); (disjunction); (implication);
(negation); the constant for absurdity (or, the false); and the constant for
truth. We use the letters A,B,C,D,E,... for arbitrary formulas (or formula-
occurrences) in the language. Formula-occurrences play a more important role
in our formalism, but sometimes we resort to some abus de langage and talk
about formulas when in fact formula-occurrences are meant.

The atomic steps in a derivation are represented by the basic links shown in
Figures 1.58 and 1.59. The class of graphs which includes N-graph derivations
are called proof-graphs. Before we give the notion of proof-graphs we will
introduce some definitions on graphs, inspired on Carbone’ s combinatorial
model (Section 4, [18, 22]).

Definition 75 (branch point) A branch point is a vertex in a digraph with two
edges oriented towards it or two edges oriented away from it.

Definition 76 (focussing branch point) A focussing branch point is a vertex
in a digraph with two edges oriented towards it.

Definition 77 (defocussing branch point) A defocussing branch point is a ver-
tex in a digraph with two edges oriented away from it.

Definition 78 (focussing link) A focussing link is the set in
a digraph in which is a focussing branch point as illustrated in Figure 1.57.
The vertices and are called premises of the link, while the vertex con-
clusion.
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Definition 79 (defocussing link) A defocussing link is the set
in a digraph in which is a defocussing branch point as illustrated in Fig-
ure 1.57. The vertices and are called conclusions of the link, while
premise.

Definition 80 (simple link) A simple link is an edge in a digraph that
does not belong to a focussing neither a defocussing link. The vertex is called
premise of the link and conclusion.

Definition 81 (proof-graph) A proof-graph is a connected oriented graph de-
fined as follows:

each vertex is labelled with a formula-occurrence;

the edges are of two kinds (“meta” and “solid”), thus they are labelled or
not by a letter, say “m” for “meta-edges” , to identify its kind.
The “meta edges” are used to indicate the cancellation of a hypothesis,
while the “solid” ones represent the logical relations between formula-
occurrences in a deductive step;

there are three kinds of links (simple, focussing and defocussing) divided
into logical and structural ones. In Figures 1.58 and 1.59 we can see its
names and how its vertices are labelled with;

every vertex in a proof-graph is labelled with a conclusion of a unique
link and is the premise of at most one link.

The set of edges in a proof-graph can be empty. In this case the proof-graph
represents an axiom.

Definition 82 (conjunctive link) The links -focussing-
weak and the expansion are called conjunctive.

Definition 83 (disjunctive link) The links - defocussing-weak
and the contraction are called disjunctive.

Note that all disjunctive links with the exception of the contraction are de-
focussing ones as well as all conjunctive links are focussing with the exception
of the expansion link.

In a proof-graph the direction of the edges defines a logical relation be-
tween the vertices rather than a temporal order between then. As we will see
below, derivations are built from the components shown in Figures 1.58 and
1.59 called basic links. Sometimes we abuse of notation in using the labels
of the vertices to denote the vertices themselves, as well as derivations and
proof-graphs, and inference rules and basic links.
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Definition 84 (solid indegree) The solid indegree of a vertex in a proof-
graph is the number of solid edges oriented towards it.

Definition 85 (solid outdegree) The outdegree of a vertex in a proof-graph
is the number of solid edges oriented away from it.

As expected, the notions of meta indegree and meta outdegree are defined
notions. The edges of the expansion and contraction links are called expansion
and contraction edges, respectively.

The set of vertices with outdegree equal to zero is the set of conclusions
of a derivation represented in a proof-graph G and is defined as CONC(G).
Similarly, PREMIS(G) is the set of vertices of G with indegree equal to zero
which denotes the premises G; as well as HY POT(G) is the set of vertices in
G with solid indegree equal to zero and meta indegree equal to 1, denoting the
set of cancelled hypothesis.

6.1.2 Unsound proof-graphs. In a multiple-conclusion calcu-
lus we have rules with more than one conclusion as well as
rules with more than one premise and . This
allows the existence of cycles in the graphs of proofs, and thus making sound-
ness difficult to prove. For example, the first kind of cycle that one wants to
avoid is the one shown in the proof-graph 1 of Figure 1.60. Kneale avoids a
corresponding development by defining the condition that formulas which are
already connected, either directly by one single horizontal line or indirectly
through several horizontal lines, should not be connected again in any way.
However, with this restriction, the graphs of proofs should not have cycles,
and new difficulties arise. For example, as we have seen, Shoesmith and Smi-
ley provide an example of a tautology, namely , in
which there is not a Kneale development for it.

Shoesmith–Smiley as well as Ungar approach this kind of problem by al-
lowing the existence of cycles in the derivation and by defining operations on
derivations with appropriate restrictions.

In the theory of proof-nets the existence of cycles is also allowed, even if in
this case we have a less ‘bureaucratic’ approach to deal with the definition of
sound proofs. In the treatment given by Shoesmith–Smiley as well as Ungar,
the links on the graphs of proofs do not always correspond to a deductive step,
sometimes they refer to combination of derivations. In the theory of proof-
nets, each link in the proof-structures corresponds to an inference rule, since it
represents a logical relation between formulas.

Inspired in the analysis of such a kind of problem in multiple-conclusion
calculus given by Shoesmith–Smiley and Ungar, as well as on the simplicity
of the technique of the theory of proof-nets, we will discuss how we shall deal
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with the existence of cycles as well as how we will define the class of sound
proof-graphs in our system.

As in the theory of proof-nets, every link in an N-graph derivation corre-
sponds to a deductive step.

We use explicit contraction rules (expansion and contraction links) as well
as the relaxation of the condition that the two premises in and



76 LOGIC FOR CONCURRENCY AND SYNCHRONISATION

STRUCTURAL LINKS

must belong to separate derivations. By doing this we allow
the presence of cycles in the derivations. This is in fact an abus de langage:
sometimes we talk about “cycles” when in fact “semicycles” are meant.

Definition 86 (semipath) A semipath in a digraph is an alternating sequence
of distinct vertices and edges in which each edge may
be either or

Definition 87 (semicycle) An alternating sequence of vertices and edges
is a semicycle provided the sequence is a semi-

path.

By having an explicit contraction rule (contraction link) as illustrated in
the proof-graph 2 of Figure 1.60, we allow the grouping of conclusions into
equivalence classes. In order to group assumptions we use the expansion link
which allows us to deal with derivations like the one llustrated in the proof-
graph 4 of Figure 1.60.
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With the introduction of the focussing contraction and defocussing expan-
sion structural links we break with the pattern of focussing links having a con-
junctive flavor as well as defocussing ones having a disjunctive flavor. The con-
traction link is disjunctive while the expansion is conjunctive. By doing this,
we face a problem similar to Girard’s with proof-nets. In the case of proof-
nets we cannot distinguish a par link from a times link: although they have
dual meaning (one is disjunctive and the other one conjunctive) their graphical
representations (i.e. the graphs) are isomorphic, i.e. both are focussing links.
The “key” example used to illustrate this problem in the theory of proof-nets
is shown in our formalism as in proof-graph 3 of Figure 1.60. As we can see,
the example shown in the proof-graph 2 of the same figure is logically correct
while in a similar example, the proof-graph 3, we have a fallacious conclusion.

The expansion link groups assumptions into equivalence classes in the same
way as the contraction link groups conclusions into equivalence classes. While
the former is conjunctive, the latter is disjunctive. Thus, in Figs. 1.61 and 1.62
the leftmost proof-graph is sound while the other one is not.

The presence of the connective with its introduction rule as in ND sys-
tems also complicates the task of identifying sound proof-graphs. For example,
the proof-graph 5 in Figure 1.60 is logically sound while the proof-graph 6 is
not.
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6.1.3 Global soundness criterion. We shall define a geomet-
rical criterion to test whether a proof-graph is logically sound. Like the Danos
and Regnier criterion [28] studied in Section 3, we associate a set of graphs to
a given proof-graph and then give the notion of N-graph derivations, i.e. those
proof-graphs which are logically correct.

Definition 88 (switching) Given a proof-graph G, a switching graph S asso-
ciated with G is a spanning subgraph of G in which the following edges are
removed:

one of the two edges of every expansion link;

one of the two edges of every contraction link;

all meta edges.

Definition 89 (switching expansion) Given a proof-graph G, a switching ex-
pansion graph associated with G is a spanning subgraph of G in which all
meta edges are removed as well as one of the two edges of every expansion
link is removed.

Definition 90 (meta-condition) Given a proof-graph G, we say that the meta-
condition holds for it, iff for every meta-edge of a defocussing link

in G, there is a path or a semipath, without passing through
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, from to in every switching expansion graph associated with G
and the solid indegree of is equal to zero.

Definition 91 (N-graph derivation)  A proof-graph G is an N-graph deriva-
tions, or N-graph for short, iff the meta-condition holds for G and every switch-
ing graph associated with G is acyclic and connected.

6.1.4 The soundness of the criterion. In order to assure that
every N-graph derivation represents a proof logically correct we need to prove
the following two theorems:

Theorem 92 (map to N-graph [30]) Given a derivation of        ,...,
, . . . , in the classical sequent calculus, it is possible to buil a cor-

respodent N-graph whose the elements of PREMIS and
CONC are in one-to-one correspondence with the occurrences of
formulae ,...,      and , . . . , respectively.

Theorem 93 (sequentialisation [30]) Given an N-graph derivation G then there
is a sequent calculus derivation SC(G) of , . . . , , . . . , in the
classical sequent calculus whose the occurrences of formulae , . . . , and

,..., are in one-to-one correspondence with the elements of
PREMIS(G) and CONC(G) respectively.

Next we formulate our version of the splitting theorem which again will be
proved in a forthcoming publication.

Theorem 94 (splitting [30]) Let G be an N-graph whose every initial link is
disjunctive defocussing and every final link is conjunctive focussing. Then
there must be either (i) some disjunctive defocussing initial or conjunctive fo-
cussing final with the split property or (ii) a cut branch point.

Corollary 95 ([30]) If G is an N-graph as in theorem 94 then:

1 If is a initial disjunctive defocussing link with the split
property, then removing it from G we obtain three subgraphs
and which are also N-graphs as follows:

is the vertex

has among its premises;

has among its premises;
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2 if is a final conjunctive focussing link with the split
property, then removing it from G we obtain three subgraphs ,
and which are also N-graphs as follows:

is the vertex

has among its conclusions;

has among its conclusions;

3 if is a cut branch point of a expansion link then re-
moving this link from G we obtain two subgraphs which are also N-
graphs as follows:

has among its conclusions;

has and among its premises;

6.1.5 Some examples. In order to understand the technique of
building proofs using the N-graph formalism we will look at a few examples
of deductions in N-graph, ND and sequent calculus.

Example 96 The N-graph deduction of is as
in Figure 1.63 while in ND and sequent calculus is respectively as follows:

Example 97 The N-graph deduction of (Peirce law)
is as in Figure 1.64 while the ND and sequent calculus deduction is as follows:
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Notes
1. Associated with Curry’s early discovery of the correspondence between the axioms of intuitionistic

implicational logic and the type schemes of the so-called ‘combinators’ of Combinatory Logic [23], and has
been referred to as the formulae-as-types interpretation. Howard’s [47] extension of the formulae-as-types
paradigm to full intuitionistic first order predicate logic meant that the interpretation has since been referred
to as the ‘Curry–Howard’ functional interpretation or Curry–Howard isomorphism.

2. In a recent work [21], Carbone relates the expansion of proofs with quantifiers to the group-theoretical
notion of distorsion for finitely presented groups, as wells as the worse-case super-exponential expansion
of proofs is related to the super-exponential distorsion of Gersten’s finitely presented groups. Exponential
expansion relates in similar ways to exponential distorsion in the Baumslag–Solitar’s group. Groups are
read from proofs out of cyclic structures.

3. The Province of logic. Contemporary British Philosophy (ed. H. D. Lewis), third series, pp. 235–
261, Aberdeen, 1956.
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4. Cf.: ‘Linear logic makes us hope that a final answer to the problem of inversion of rules might be
found.’ [40, p. 100].

5. Cf.: ‘In a previous paper [41], we gave a purely geometrical interpretation of Gentzen’s Hauptsatz
for constructive (i.e. intuitionistic and linear) logics. This paper is the main piece in a general program of
mathematisation of algorithmics, called geometry of interaction.’ [42, opening lines]

6. Cf. ‘Processes as Proofs?’, abstract in Logic Journal of the Interest Group in Pure and Applied Log-
ics 6(4):660, July 1998, Oxford University Press. Abstract of a paper presented at the Logic for Concurrency
and Synchronisation - First Workshop, March 4–6 1998, DI–UFPE, Recife.

7. The commutative conversions, also called “permutative conversions” or “permutative reductions”
[32, 31] establish the non-interference of the newly open branch of the proof (the local hypothesis open in
the elimination of and ) with the main branch. They are the following basic transformations between
proofs:

8. All along the text we only consider the propositional calculus. However LFG are used, both by Buss
and Carbone, to find interesting consequences in the context of predicate logic. Buss shows his results on
k-provability for first order logic, and Carbone has two papers, [20] and [21] where the dynamics of proofs
with quantifiers is analysed together with the super-exponential expansion (occurring, in the worst case).

9. The pigeonhole principle is a largely used example to prove lower bounds in various proof systems,
it says that there is no injective function which maps to In other words,

pigeons sit in n holes then some hole contains more than one pigeon.”
10. NB: Vertical edges in this figure make sense only if you specify that formulas are intended to be

specific occurrence in a proof which is “embedded” in the plane.
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11. Originally, in order to simplify his proof, Gentzen [36] uses the mix rule instead of the cut:

where , are respectively and without all formulas of the form M (mix formula). M may be
any arbitrary formula.
One could then ask if the main source of expansion of cut-free proofs is actually the combination of cut and
contraction, once in his original proof Gentzen uses the mix rule, instead of the cut one. However we have
already made some study of cases and we concluded that no matter if one use the mix or cut rule. In all
cases a splitting occurs either by the combination of cut and contraction or by the combination of mix and
contraction.

12. There are other cut-elimination procedures which are possible. One of them is presented in [16],
where Carbone studies some properties of proofs which is not preserved by the transformations in the usual
Gentzen’s cut-elimination procedure.

13. The model that Carbone and Semmes propose turns out to be a very general framework to study
“expansion”, implicit versus explicit descriptions and symmetries in combinatorial structures. It applies to
proofs as well as to circuits, automata and graphs in general as studied in [22].

14. Also in [p. 248][59], Prawitz explains why he wanted to keep the applied only to atomic
formulas and then paying the price of having a “restricted”  version of first order classical ND system:

“Note in particular that the principle of indirect proof when not restricted to
atomic formulas constitute quite a new principle for inferring compound formu-
las (which is not at all justified in the terminology of sec. 2.2.2 by the meaning
given to the constants by the introduction rules). Our restriction that the conclu-
sion of the application of the rules     and       are to be atomic are motivated by

these considerations. It is by this restriction that these extra rules do not disturb
the pattern of introduction and elimination...”

15. Proposed by Curry in [24] and also in Foundations of Mathematical Logic.

16. In [63, p. 26], Shoesmith and Smiley give a notion of adequacy:

“A set of rules is adequate for a calculus if it is both sound and complete.”

In [67, p. 62], Ungar gives the following definition for adequacy:

“I propose to call a notion of derivation adequate for if the relation of deriv-
ability by which it determines coincides with the consequence relation for

.”
where is the set of rules of the system.

17. The property of a corner-free graph argument corresponds to the requirements in the definition of
proof-structures (in linear logic), that every formula-occurrence in the structure is the conclusion of one and
only one link and is the premise of at most one link.
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Abstract The essential interaction between classical and intuitionistic features in the sys-
tem of linear logic is best described in the language of category theory. Given
a symmetric monoidal closed category with products, the category
can be given the structure of a *-autonomous category by a special case of the
Chu construction. The main result of the paper is to show that the intuition-
istic translations induced by Girard’s trips determine the functor from the free

*-autonomous category on a set of atoms to         where
is the free monoidal closed category with products and coproducts on the set of
atoms (a pair in for each atom P of 0.

Keywords: Chu spaces, proof-nets, linear logic

1. Preface
An essential aim of linear logic [16] is the study of the dynamics of proofs,

essentially normalization (cut elimination), in a system enjoying the good proof-
theoretic properties of intuitionistic logic, but where the dualities of classical
logic hold. Indeed classical linear logic CLL has a denotational semantics
and a game-theoretic semantics; proofs are formalized in a sequent calculus,
but also in a system of proof-nets and in the latter representation cut elimina-
tion not only has the strong normalizability property, but is also confluent. Al-
though Girard’s main system of linear logic is classical, considerable attention
in the literature has also been given to the system of intuitionistic linear logic
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ILL, where proofs are also formalized in a sequent calculus and in a natural
deduction system. A better understanding of the relations between CLL and
ILL is one of the goals to which the present work is intended as a contribution.

The fact that intuitionistic logic plays an important role in the architecture
of linear logic is not surprising: as indicated in the introductory section of Gi-
rard’s fundamental paper [16], a main source of inspiration for the system was
its denotational semantics of coherent spaces, a refinement of Scott’s seman-
tics for the Fundamental decisions about the system CLL were
made so that CLL has a semantics of proofs in coherent spaces in the same
way as intuitionistic logic has a semantics of proofs in Scott's domains. But
linear logic is not just a refinement of intuitionistic logic, such as ILL: there
are expectations that CLL may tell us something fundamental about classical
logic as well, indeed, that through linear logic a deep level of analysis may
have been reached from which the “unity of logic” can be appreciated [17].
Therefore the relations between classical and intuitionistic components of lin-
ear logic deserve careful investigation.

A natural points of view to look at this issue is categorical logic. It has been
known for years that monoidal closed categories provide a model for intuition-
istic linear logic, though a fully adequate formulation of the syntax and of
the categorical semantics of ILL especially with respect to the exponentials,
has required considerable subtlety and effort [4, 5, 6]. It is also well known
that *-autonomous categories give a model for classical linear logic [3]. The
appendix to [2] provides a method, due to Barr’s student Chu, to construct
*-autonomous categories starting from monoidal closed ones.

In our proof-theoretic investigation we encounter a special case of Chu’s
construction, namely where is a symmetric monoidal closed cat-
egory with terminal object More specifically, given the free *-autonomous
category     on a set of objects (propositional variables)    and given
the symmetric monoidal closed category with products, free on the set

(a pair in for each atom P of    ,, the category
can be given the structure of a *-autonomous category by Chu’s construction.
Indeed, since the dualizing object is the terminal object, is just

and the pullback needed to internalize the homsets is in fact a prod-
uct. Here the tensor product must be an object of the
form and the identity of the tensor
must be Dually, the par is defined as

and the identity of the par must be
Now since   is free, there is a functor F of *-autonomous categories from
to taking P to This is well-known, but so far no famil-
iar construction had been shown to correspond to the functor F given by the
abstract theory. The main contribution of this paper is to show that a familiar
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proof-theoretic construction, namely Girard’s trips [16] on a proof-net, repre-
sent the action of such a functor on the morphisms of     . Of course one could
state the same result using Danos–Regnier graphs, as it was done in [8], but as
we shall see a simpler definition of orientations is possible in terms of Girard’s
trips.

The key idea is simple enough and may be illustrated as a logical translation
of formulas and proofs in CMALL into formulas and proofs in IMALL. In
the translation a CMALL sequent becomes polarized: a selected
formula-occurrence A is mapped to a positive formula-occurrence in the
succedent of an intuitionistic sequent (the output part of a logical computa-
tion); all other formula-occurrences in are mapped to negative in the
antecedent of     (the input part). The polarized occurrences of an atom A be-
come just two copies of A. Negation changes the polarity. For other
complex polarized formulas, the polarization of the immediate subformulas is
uniquely determined – for instance, becomes – except in
the cases of and In these cases we take the product (log-
ically, the with) of two possible choices (the “switches” in a proof-net): for
instance, is encoded as The intuitive
motivation is clear: has a reading simultaneously as the internalization
of the function space and of the function space
The fact that the translation is functorial here means, roughly, that it is defined
independently on the formulas (objects) and on the proofs (morphisms) and
that it admits the rule of Cut (composition of morphisms); it is also compatible
with cut-elimination. In this form the result can be easily proved within the
formalisms of the sequent calculi for CMALL and IMALL. However, when
we ask questions about the faithfulness and fullness of such a functor, thus
also asking questions about the identity of proofs in linear logic, we find it
convenient to consider the more refined syntax of proof-nets.

On the other hand, proof-nets are also useful to highlight the geometric as-
pect of certain logical properties; indeed ideas related to the present result
have already proved quite useful in the study of what is sometimes called
the géometrie du calcul (geometry of computations). Our own investigation
has been motivated by the desire to understand and clarify the notion of a
proof-net and the present result appears to reward many collective efforts in
this direction. Given a proof-structure, i.e., a directed graph where edges
are labeled with formulas, a correctness criterion characterizes those proof-
structures which correspond to proofs in the sequent calculus. Girard’s original
condition (“there are no short trips”) [16] is exponential in time on the size of
the proof-structure, but other quadratic criteria were found soon after (among
others, one was given in [7]). Thus it is natural to ask what additional informa-
tion is contained in the construction of  Girard’s trips other than the correctness
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of a proof-structure. The beginning of an answer came in 1992, when Jacques
van de Wiele and the author, inspired by Danes’ notion of a pure net, defined
the trip translation: every Girard’s trip on a cut-free proof-net corresponds to
a derivation in the fragment of intuitionistic linear logic with times and linear
implication. But the significance of this result seemed limited by the fact that
the treatment of cut was quite cumbersome and the result itself did not seem
to extend beyond the multiplicative fragment. A better understanding of its
significance – and, as we hope, the possibility of its generalization – has come
only from an explicit effort to formulate the trip translation as a functorial op-
eration. In this way it became evident that classical multiplicative linear logic
has to be related to intuitionistic multiplicative and additive linear logic and the
categorical result followed, for which we gratefully acknowledge the influence
and the support of Martin Hyland.

There is a conspicuous literature on Chu’s spaces and linear logic. Moreover
Chu’s construction is related to many other more concrete semantics that yield
full completeness results for fragments of linear logic, from R. Loader’s Linear
logical Predicates [22] to various game-theoretic semantics (cf. [26]). Clearly
this is not the place to survey such a body of literature. It is impossible how-
ever not to mention the work of V. Pratt, who has advocated this direction of
research for a long time (see, e.g., [25]) and has recently obtained (with Plotkin
et al. [11]) a full completeness result for multiplicative linear logic (without
units) with respect to Chu spaces. Chu’s construction where is
a Heyting algebra, is also explicitly used by Anna Patterson in her thesis ([24],
Section 6.7.), to show that the algebra of constructive duality is a model of
CLL with Mix (we are grateful to an anonymous referee for this reference).

Among the researchers who have worked on proof-nets and developed ideas
related to the trip translation, we should mention F. Lamarche, who introduced
the notion of essential net for intuitionistic linear logic [20] in the context of
his research on the game-theoretic semantics [21]. Arnaud Fleury has con-
sidered trips and intuitionistic translations in a non-commutative context with
explicit exchange rule [13], giving one of the most interesting and least under-
stood developments in this area. Already in 1992-93 the consideration of trips
as translations from classical to intuitionistic linear logic had suggested the
possibility of giving a linear time correctness condition for proof-nets: after
all, just one unsuccessful trip suffices to discard a proof-structure as incor-
rect, and just one successful trip, if appropriately translated to an intuitionistic
derivation, suffices to test the correctness of a proof-net. However only in 1999
Murawski and Ong [23] were able to prove such a conjecture, making essential
use of a result of Gabow and Tarjan [15].

When the languages and the aims of different scientific communities meet
in a new theory and new structures are identified, the conceptual architecture
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may look different from the different points of view and it may be hard to
say which structures are fundamental. From the point of view of categorical
logic Chu’s construction seems to suggest a fundamental status to monoidal
closed categories with respect to the *-autonomous ones. However, such a
view must accompanied by the warning that the correspondence established by
our interpretation of Chu’s construction is not an isomorphism, as the functor
F is not full, and its faithfulness at the moment is only a conjecture. Research
towards a refinement of the present result, in particular with respect to the
units and the additives is in progress, as well as towards its extension to the
exponentials. Finally, further work is needed to spell out intriguing analogies
between our version of Chu’s construction and the game theoretic semantics
of linear logic.

2. The trip translation

In this section, after the basic formal definitions we present our functorial
translation from the sequent calculus for CMALL to that for IMALL , we state
the categorical result and sketch the proof.

2.1  Languages, intuitionistic and classical MALL

The syntax of propositional classical Linear Logic CLL is given in Girard
[16]: formulas are in “negation normal form”, i.e., they are built from propo-
sitional constants and 0, atoms and negations of atoms using
the connectives and and the exponential operators ! and ?; linear
negation for nonatomic formulas is defined and linear implication is also de-
fined, see in Table 0.

CMALL [CMLL] is the fragment of CLL without exponentials [without
exponentials and additives]; is CMLL without propositional con-
stants.

Recall that the sequent calculus for propositional CMALL is defined by the
axioms and rules given in Table 1:
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The propositional language of intuitionistic Linear Logic ILL is built from
a set of propositional atoms and the propositional con-
stants 1, and 0, using the connectives (linear implication) and & and

and the exponential !. (We take the point of view that there is no symbol
for “multiplicative falsity” in ILL. Thus and may be regarded as

“positive and negative atoms”, respectively). Again IMALL is the fragment
of ILL without exponentials, etc.

The sequent calculus for propositional IMALL has the axioms and rules
given in Table 2.
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When a derivation (in CMALL or IMALL) ends with a cut inference and
the immediate subderivations are we use the notation for

2.2 The functorial trip translation for MALL

Definition 1 (Trip translation) (i) The trip translation maps formulas of
CMALL to pair of formulas of The formulas of
CMALL are first polarized and then translated into IMALL formulas. To say
that a formula A is polarized is to say that it is regarded either as an output
(positive polarization) or as an input (negativepolarization).

(ii) The trip translation maps polarized atoms to atomic formulas of
IMALL (also denoted by respectively). For polarized constants and
polarized complex formulas the trip translation is defined inductively accord-
ing to the table in Table 3.
(iii) A pointed sequent A is a sequent with a selected formula occurrence,
i.e., with a switch choosing one of its formulas. The chosen formula will be
written in boldface.
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(iv) The polarization of a sequent is defined as follows: the selected
formula A is regarded as an output all other formulas C in are regarded
as inputs we write to indicate this fact.

(v) The trip translation maps a pointed sequent A of CMALL to a
sequent of IMALL, where and are translated as in (ii).
Notice that since a sequent may be regarded as the par of all its formulas,
by Table 3 the translation of the pointed sequent is the
product (with) of the translations of all the “pointings” of

(vi) The trip translation maps sequent derivations of CMALL to sequent deriva-
tions in IMALL according to the definition in Table 4.

Proposition 2 For any formula A of CMALL, the translation satisfies
and Therefore the translation of the cut-rule is well-

defined.

PROOF. By induction on the logical complexity of A.

Theorem 3 (i) The trip translation maps a CMALL proposition A to a pair
of IMALL propositions and a CMALL derivations   of an
IMALL derivation A is a pointing of  then a
branch of contains a derivation of

(ii) The trip translation is functorial in the sense it preserves the cut rule.
Namely, given a derivation ending with a cut

and a pointing of there is a unique pair of pointings of
and of such that

(iii) Moreover, if  S is translated to S' and S reduces to by cut-elimination,
then there exists which is the translation of and S’ reduces to
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Remark 4 (i) The concise notation of part of Theorem 3 can be spelt
out as follows. Here is the trip translation of restricted to
the given pointing        of  Depending on whether is in or in

we have either the pair of pointings or the pair
Moreover, and are the trip translations of

and restricted to the appropriate pointings, i.e., either is a derivation of
and a derivation of                 or      is a derivation of

and a derivation of The theorem says that is the same
as the derivation which is obtained by applying cut to and

(ii) Notice that there is no anomaly in the rule. One pointing of
selects and thus one branch in the derivation    of 
is given by the axiom Such a branch adds no information in addition
to that contained in the derivation of which is also contained in the
other branches of

Fact 5 (i) To the trip translation there corresponds an obvious map in the op-
posite direction, let us write it as in proof-theoretic terms it amounts to
regarding IMALL as a fragment of CMALL, namely:

writing formulas in “negation normal form”, using De Morgan laws as
in Table 0 and then rewriting
for propositional letters P;

writing proofs in the sequent calculus with “right-hand sequents” only.

(ii) Unfortunately, in general it is not true that

3. Chu’s construction

We follow the categorical semantics for IMLL in [5]:

Theorem 6 Let A be the free * -autonomous category on a set of objects {P,
P', ...} and let C be the symmetric monoidal closed category with products,
free on the set of objects (a pair for each atom
P of A).

(i) We can give the structure of a * -autonomous category thus:

with unit and involution

where 1 is the unit of in and the terminal object of

Therefore there is a functor F from A to sending an object P
to If is a morphism of A represented as a proof-net
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with conclusions then the morphism is given
by all the Girard’s trips on in the precise sense spelt out in Proposition 15
below.

(ii) If in addition C has also coproducts, then has also products:

The functor F preserves also the structure of the products.

PROOF. [Sketch] In define and
and show that gives the closed structure for By the defini-

tions

We exhibit a natural bijection of hom-sets

Indeed a map in consists of a map
and of a pair of maps a map in

consists of a pair of maps
and of a map But and

by the natural bijections given by the symmetric monoidal closed structure of
C. Similarly, there is a natural bijection between and

and also a natural bijection between and
composing and we get Therefore    is  a right

adjoint for in

To see how the action of the functor is given by Girard’s trips in the case of
CMLL without units, the proof in [8], pp. 37-44, (briefly reviewed in the fol-
lowing section) shows that a Danos–Regnier graph on a cut-free proof-net
with conclusions C (with C the selected conclusion) determines an orienta-
tion (polarization) of the formulas in the proof-net and a reduced translation
of into a cut-free derivation       of in (The  same result
holds if we start with a Girard trip, as indicated below; indeed each Girard trip
uniquely determines a Danos–Regnier graph.)

Now it is easy to see that a derivation can also be obtained as follows:
consider the IMALL derivation given by the trip translation of (a se-
quentialization of) and remove all &-left and &-right inferences, modifying
the formulas in the derivation accordingly. The result is a family of
derivations, a pair of derivations for each &-right application in Ev-
ery derivation determined by some Danos–Regnier switching is equivalent
modulo permutations of inferences with one derivation in and, moreover,
every derivation in is equivalent to a derivation for some induced
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we have: where are all the
Danos–Regnier switchings of

A simpler formulation of the above result could be given by mapping proof-
nets for classical to F. Lamarche and A. Tan’s proof-nets for intu-
itionistic (see [20, 26]). For an extension to CMLL with units and
to CMALL, see Remarks 7 and 17 below.

Remark 7 (i) The functor F is not full. For instance, and
there is a morphism                  in namely, the map

where however, the free
category A does not have a morphism i.e., is not provable in MLL.
The system has been studied, e.g., in [14], and perhaps this
extension of linear logic deserves further consideration, but it is not the answer
to our concern here. The task is rather to characterize a subcategory of
for which the functor F is full.

(ii) Is the functor F is faithful? This question raises the issue of the identity
of proofs in linear logic. Proof-nets provide a solution to this problem for
the multiplicative fragment without units, because in this fragment proof-nets
represent sequent derivations up to permutations of inferences and the Church-
Rosser property holds strictly (see the next section). Notice that in [5] cut re-
ductions in IMALL correspond to equality of the terms which express the
maps in the free symmetric monoidal closed category and commutative con-
versions correspond to natural isomorphisms between them. If in we
consider terms up to equivalence, then faithfulness is obtained by making
the corresponding assumption about A, i.e., by stipulating that the morphisms
of A are represented by proof-nets up to cut-elimination and
For an extension to this result to MLL with units, see the note in Section 4.4.
However, in the case of proof-nets for MALL the notion of identity of proofs
is not well-understood, and thus the issue of faithfulness must be left to further
research.

4. Proof-nets, trips and translations

In this section we summarize some results about proof-nets that illustrate the
geometric connections between Girard’s trips and translations into fragments
of intuitionistic linear logic.

4.1 Proof-nets: basic definitions

Definition 8 (i) Proof-structures for CMALL are directed graphs with at least
one external point and where each vertex is typed and has the form indicated
in Figure 2.1. The dashed line in a is called an attachment. When a

by a Danos–Regnier switching .  ( in the terminology of Proposition  15 below
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is attached to an edge A, we may think of the attachment as resulting
from an axiom linked to a times link 1 A, i.e., as an application of the
isomorphism

(ii) On proof-structures for CMLL Girard’s trips are defined according to the
drawings in Figure 2.2; the choice of the form of a trip at a par link is called
a left or right switch. Proof-nets for MLL are proof-structures satisfying Gi-
rard’s no-short-trip condition, namely, that for every switching of the par links
and every conclusion the trip starting at returns to after visiting each
edge precisely twice (cf. [16])

(iii) Perhaps more familiar is the equivalent characterization of proof-nets for
in terms of Danos–Regnier graphs [10] (which is readily extended to

MLLwith units using attachments as above). Given a proof-net for
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a switching   of  in the sense of Danos–Regnier is an assigment to each par
link in of a choice of the left or right premise and, moreover, a “pointing”
of the conclusions of Given a proof-net and a switching  of it, the
Danos–Regnier graph (determined by ,s) is the graph resulting from
by removing the edge which enters a par link from the premise which is not
selected by  . The standard correctness condition for proof-nets is the
following: a proof-structure for is a proof-net if for every switching
   the Danos–Regnier graph is acyclic and connected (an undirected tree).

In the case of CMALL we have true boxes which behave like
axioms. Moreover, a boolean valued polynomial is associated with each edge,
a distinct boolean variable   is associated with each with link, and
being added to the polynomials associated with the left and right premise of
the with link in question. The polynomial of the conclusion of a link is the sum
of the polynomials of the premises. All the conclusions of the proof-net must
have 1 as associated polynomial. A proof structure is sliced by substituting
arbitrary boolean values for the variables and erasing the edges whose poly-
nomial evaluates to 0; in a sliced proof-structure additive links are all unary.
(For a more precise definition, of additive proof-nets, see Girard [18].) All
said, a CMALL proof-structure is a proof-net if for every evaluation of the
polynomials, the resulting slice has no short trip.

What matters here is that the following theorem can be proved:

Girard’s Theorem. There exists a ‘context-forgetting’ map from sequent
derivations in MALL to proof-nets with the following properties:

Let d be a sequent derivation of then is a proof-net with
conclusion

(Sequentialization) If  is a proof-net with conclusion then there is a
sequent calculus derivation d of such that

(a)

(b)

About proof-nets for more can be proved (see [9], Theorem 2):

Permutability of Inferences Theorem. Let d and d' be a pair of derivations
of the same sequent in Then if and only if there
exists a sequence of derivations such that and
differ only for a permutation of consecutive inferences.

Remark 9 A corollary of the latter theorem is that the syntax of proof-nets
for solves the problem of identity of proofs in this fragment; for this
reason proof-nets have found applications to coherence problems in category
theory.
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4.2 Trips and linear terms

A trip in the sense of Girard induces the structure of a in any suitable
graph with a selected external point (pointed graph):

Theorem 10 (J. van de Wiele) Every connected pointed graph with vertices
of incidence 1 and 3 corresponds to a linear (and vice versa). The
correspondence is established in linear time by a trip starting with the selected
external point.

We perform a trip in the style of Girard according to the figure below; during
the trip we determine whether a vertex is to be regarded as (1) a variable, (2)
an application or (3) a Case (2) occurs when during the second
visit to a vertex of incidence 3 the trip enters the vertex through the same edge
from which it had exited after the first visit; case (3) occurs when the second
visit is through the other edge; case (1) is that of an external vertex different
from the selected one.

The proof is by induction on the number of vertices. Notice that if we re-
move the first vertex of incidence 3 encountered during the trip then the re-
sulting graph is disconnected in case (2) but remains connected in case (3).
Different variables are assigned to different external points in case (1). Since
linear are always typable, van de Wiele’s result also shows that every
such connected pointed graph corresponds to a proof in the implicative frag-
ment of intuitionistic linear logic.

Reduced translations from to4.3
Essentially the same technique applied to a proof-net for yields

a translation of the proof-net into a derivation in the implication and tensor
fragment of intuitionistic multiplicative linear logic. These translations shall be
called reduced trip translations or simply reduced translations. Trips always
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have a starting point in a conclusion and the order of the passages across a link
matters. To state our result we need a definition.

Definition 11 Given a proof-net for and a selected conclusion A,
we say that a Girard trip starting from A is covariant on an edge if the second
passage of the trip is in the same direction as the edge; otherwise, the trip is
contravariant on the edge. Now a trip starting from A induces an input-output
orientation thus: an edge X is an output or an input
depending on whether the trip is covariant or contravariant on it.

Theorem 12 (Bellin and van de Wiele) (i) Every Girard’s trip on a cut-free
proof-net for starting from a selected conclusion corresponds to a
sequent calculus derivation in
(ii) Conversely, every sequent derivation in corresponds to a trip on a
proof-net.

The following proposition follows almost immediately from the definition of
orientation and the basic properties of trips.

Proposition 13 Every orientation makes the selected conclusion an output, all
other conclusions are inputs. Every link is oriented in one of the admissible
ways indicated in Figure 2.4.
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Given an orientation the formulas in the proof-net are
translated as follows:

For further details, see [8], pp. 37–44.

Remark 14 (i) Theorem 12 could be stated in terms of Danos–Regnier graphs,
as it was done in [8]; notice that every Girard’s trip determines a unique Danos–
Regnier graph [10]. Girard’s trips allow us to give a more concise definition of
orientation, but Danos and Regnier’s characterization yields the refinements in
Proposition 15 below.

(ii) Reduced translations of formulas are not functorial, in the sense that they
depend not only on the given CMLL formula, but also on a trip on a given
proof; i.e., the map on objects depends also on morphisms. Reduced transla-
tions of proofs are not functorial, in the sense that they may not be compatible
with cut. Indeed, the orientation induced by a switching may be computation-
ally inconsistent: e.g., consider the orientation on the cut formulas
and induced by a left switch on the par link.

(iii) The above result does not extend to full CMLL :  let be the selected
conclusion in the cut-free proof-net with conclusion

(iv) The above result does not extend to CMALL: consider the cut-free proof-
net with conclusions

However, reduced translations suffice to characterize the action of the func-
tor F of theorem 6 on a derivation in the fragment in the following
sense. Let  be a switching in the sense of Danos–Regnier on a proof-net R
for Let be IMALL without plus. Consider the set of maps

with the following properties:
(a) acts on the propositions as follows:

(i) or

(ii) or

(b) acts on    derivations     by removing all &-right and &-left infer-
ences

Clearly, given such a defined arbitrarily on propositions we do not know
whether there is a proof such that is a proof of

Moreover, given any derivation in needs not
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be a derivation in (for instance, if the map on derivation removes a &-
left inference with active formula and the map on propositions
yields However, Danos–Regnier switchings allow us to define
well-behaved maps as functions of a proof-net and of a switchings.

Proposition 15 Let be a cut-free proof-net for with conclusions
and let  be a Danos–Regnier switching of Let be the derivation of

in given by the Chu functor. Then there exists a map
such that is a derivation of  in Moreover,

iff

Remark 16 (i) It can be shown that and the map depends only on the val-
ues of   on the par links which in a Girard trip are reached from below, i.e., the
par links whose conclusion is oriented as an “output” and which correspond to
formula-occurrences of type (i) in

(ii) Let be a reduced translation in of a derivation d in and
let be its translation back to according to Fact 5. Then d and
are equal (possibly modulo permutations of inferences).

4.4 Chu’s construction in MLL with units

As indicated in the Preface, one of the original motivations for this paper
was to find a functorial definition of the trip translation, in view of a possi-
ble extension to the whole system CLL and given the fact that the reduced
trip translation does not extend beyond We have now a functorial
translation and a satisfactory explanation of its meaning in terms of Chu’s con-
struction. But what about extensions to MLL with units and CMALL?

As indicated in Remark 7, the problem with fullness may require a basic re-
formulation of the construction, e.g., the definition of a subcategory of
for which the functor is full. Moreover, faithfulness for CMALL requires a
reconsideration of additive proof-nets. On the other hand, the proof of faithful-
ness for MLL with units seems at hand, thanks to A. Tan’s thesis [26], although
we cannot spell out the details here.

Remark 17 (MLL with units) (i) We do not know how to define proof-nets
for MLL with units so as to extend the theorem on Permutability of Inferences
to MLL with units, thus it is no longer true that the the proof-net representa-
tion solves the problem of identity of proofs in MLL with units (cf. Remark 9).
Any permutation of the nil rule with other inferences in a derivation d results
in a rewiring of i.e., in a modification of the ‘attachment’ of the corre-
sponding (Of course, this problem would not occur in the system MLL



Chu’s Construction: A Proof-Theoretic Approach 107

with the axiom Therefore the obvious way to characterize the identity
of proofs for MLL with units is to give explicit equations between proof-nets.

(ii) A similar problem occurs for the representation of proofs in IMLL: in fact
the systems of Natural Deduction or Sequent Calculi with term-assignments
for ILL in [4, 5, 6] are given together with an axiomatic characterization of
the identity of proofs in the form of an equational theory of terms. Similarly,
Lamarche’s proof-nets for ILL [20] require a theory of rewiring already in the
case of MLL with units. This work has been done in Chapter 6 of A. Tan’s the-
sis [26]: after a careful definition of the correspondence between sequent cal-
culus with term assignments and proof-nets for IMLL, the process of rewiring
is defined so that it does preserves the correctness criterion, it does not affect
the (equivalence classes of) terms which the proof-net interprets, it is strongly
normalizing and confluent and, moreover, the process of cut-elimination, in-
corporating unit rewirings, remains strongly normalizing and confluent.

(iii) Rewiring in CMLL proof-nets is also defined in such a way that it pre-
serves the correctness criterion. Since classical proof-nets may have several
conclusions, it is not obvious how to define a canonical element in each equiv-
alence class of proof-nets.

(iv) Let us consider the again action of the functor
on the units. If is a proof of then an axiom, i.e.,
the proof is erased. It follows that a single reduced translation, regarded as
a CMLL proof, no longer contains the same information as the original proof
(cf. Remark 16.(ii)).

(v) Considering the definition of reduced translations from Danos–Regnier
graphs, we may follow the hint of Definition 8.(i) and define the orientation as
if an attachment resulted from an axiom 1 where the edge 1 enters a times
link with conclusion The definition extends without problems
when the orientation of is indeed the corresponding IMLL proof-net
has a 1-link with a suitable attachment. If the orientation is we may no
longer have a coherent orientation for the edge A (in the case where we would
give the different orientations but this is still fine, because

and we may certainly take an axiom in the reduced
translation.

(vi) Finally, let us consider the effect of rewiring of CMLL proof-nets
on a reduced trip translation of Given a link in the rewiring in question
may

preserve the orientation or
preserve the orientation or
change an orientation into or
vice versa.

(1)
(2)
(3)
(4)
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In case (1) the effect of the rewiring is either null or a rewiring in IMLL as
described in [26]. In case (2) the effect is either null or a commutation of a
axiom, in accordance with standard equations between IMALL-proofs. Only
cases (3) and (4) do reserve some surprises; e.g., in case (iii) the IMLL proof-
net resulting from a switching ¨       may be obtained from the IMLLproof-net
corresponding to only through some complicated “surgery”.
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1. Introduction

1. Classical Multiplicative Affine Logic is classical multiplicative linear logic
with the unrestricted rule of weakening, but without the rule of contraction.
Classical affine logic is a much simpler system than classical logic, but it pro-
vides similar challenges for logical computation, both in the sense of proof-
search and of proof normalization (or cut-elimination). For instance, the prob-
lem of confluence of cut-elimination (the Church–Rosser property) is already
present in affine logic, but here we do not have the problem of non-termination.
Affine logic is also simpler than linear logic from the point of view of proof-
search: e.g., propositional linear logic is undecidable, yet becomes decidable
when the unrestricted rule of weakening is added. Provability in constant-only
multiplicative linear logic is NP-complete, yet it is decidable in linear time for
constant-only multiplicative affine logic, as it is shown below.

The tool we will use here, proof-nets for affine logic, is older than the notion of
a proof-net for linear logic. In a 1984 paper [15], J. Ketonen and R. Weyhrauch
presented a decision procedure for first-order affine logic (called then direct
logic) which essentially consists in building cut-free proof-nets, using the uni-
fication algorithm to determine the axioms. The 1984 paper is sketchy and it
has been corrected (see [3, 4], where the relation between the decision proce-
dure and proof-nets for are discussed), but it contains the main ideas
exploited in the present paper, namely, the construction of proof-nets free from
irrelevance through basic chains. Yet neither the 1984 paper nor its 1992 re-
visitation contained a treatment of cut-elimination.1

2. The problem of non-confluence for classical affine logic is non-trivial: the
following well-known example (given in Lafont’s Appendix to [14]) reminds
us that the Church–Rosser property is non-deterministic under the familiar
asymmetric cut-reductions.

Example 1

Asymmetric reductions.

Indeed classical logic gives no justification for choosing between the two in-
dicated reductions, the first commuting the cut-rule with the left application of
the weakening-rule (“pushing up into thus erasing the second com-
muting the cut-rule with the right application of the weakening-rule (“push-
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ing up into thus erasing Therefore the cut-elimination process in
MAL, a fortiori in LK, is non-deterministic and non-confluent.

Compare this with normalization in intuitionistic logic. In the typed  calculus
a cut / left weakening pair corresponds to substitution of : A for a variable

: A which does not occur in : B; such a substitution is unambiguously
defined as Moreover in Prawitz’s natural deduction NJ [19] the
rule corresponding to weakening-right is the rule “ex falso quodlibet” and the
normalization step for such a rule involves a form of

Such a reduction does not yield cancellation. Thus the cut-elimination proce-
dure for the intuitionistic sequent calculus LJ inherits one sensible reduction
strategy from natural deduction: “push the left derivation up into the right
one”. In the case of a weakening / cut pair it is always the left dedution to be
erased.

Example 1 cont.

Symmetric reduction.

Instead of choosing a direction where to “push up” the cut-rule, we do both
asymmetric reductions, using the mix-rule.

The idea is loosely related to a procedure well-known in the literature for the
case when both cut-formulas result from a contraction-rule, with the name
cross-cut reduction. Let and be derivations of the left and right premises
of the cut-rule:

3. Here we are interested in exploring an obvious remark: for classical logic
in addition to the asymmetric reductions of Example 1, there is a symmetric
possibility, the “Mix” of and
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Example 2

Let be obtained by commuting the cut-rule with the left application of the
contraction-rule and symmetrically, let be obtained by commuting the cut-
rule with the right application of the contraction-rule. The cross-cut reduction
is defined as follows:

Cross-cut reduction.

4. As it stands the symmetric reduction of Example 1 could not be taken very
seriously as a confluent notion of cut-reduction. One issue is the fact that a
weakening inference may be permuted with many other inferences in a sequent
derivation, and such permutations may considerably modify the structure of
the proof; it would therefore be useful to have some notion of a normal form
for weakening. Two standard notions can be found in the literature: these
amount to applying the weakening-rule either (i) as high as possible, i.e., at
the level of axioms, or (ii) as low as possible. The first solution is not available
for multiplicative connectives without the contraction-rule; the second solution
still leaves room for many ambiguities.

But there is one case where no ambiguity is possible, that of a weakening /
multiplicative disjunction pair, where the weakening-rule introduces a formula
which is active in the disjunction-rule and the other active formula has ances-
tors in axioms (or, similarly, the case of a weakening-rule introducing a con-
clusion of the derivation). It turns out that every derivation can be transformed
into one where all applications of the weakening-rule are of this form, through
weakening-reductions. This property may adopted as a notion of weakening
normal form, but there are two problems: first, if we apply the cut-rule to two
derivations in weakening normal form, the resulting derivation may not be in
weakening normal form and, second, if we define weakening-reductions like
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permutations of inferences in the sequent calculus, then they do not yield a
unique normal form (Section 2).

A second issue is the nature of the mix-rule: this rule does not simply represent
distinct possibilities of proof-transformation. On the contrary, it contributes to
create proofs with very rich and complicated structure. However using the un-
restricted weakening-rule if a sequent is derivable with Mix then it is derivable
without Mix, i.e., the structural rule Mix is eliminable:

The ambiguity may be resolved by taking both reducts. More generally, for
all we may introduce an rule Additive Mix building a derivation of

out of derivations of

Then every application of Additive Mix may be permuted below other infer-
ences. Thus the replacement of the multiplicative mix-rule with the additive
mix-rule seems to capture the practice of disentangling simpler and more basic
arguments from a more complicated one; conversely, the use of the multiplica-
tive mix-rule may be explained as a compact notation unifying different ways
of proving the same conclusions (Section 3). But the procedure Sep which
eliminates the multiplicative mix-rule and permutes occurrences of Additive
Mix below other inferences is computationally very expensive: therefore it
would be desirable to find a more effective procedure to eliminate the multi-
plicative mix-rule.

5. If we look again at the direct logic decision procedure [15, 4], we see that
two of our problems had already been solved there by the notion of a chain.
Given a sequent and a formula C in the procedure selects one (positive
or negative) atomic subformula P in C and tries to find another subformula P
of opposite polarity in some in the terminology of proof-nets, it builds
an axiom Then the paths of subformulas from C to P and from to
D are included in the chain; moreover, if a conjunct is in the chain, say A in

but the other conjunct B is not, then the procedure selects an atomic
subformula   of B and tries to find another axiom and so on. The
procedure will stop if all conjuncts have been matched by exactly one axiom.
Now we apply this procedure within a proof-net for multiplicative affine
logic with Mix (MAL + Mix): it yields a path through the proof-net; if only
one premise of a par link in in the path, then we introduce the other premise by
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a weakening-link; similarly for conclusions which are not reached by the path.
The substructure     obtained in this way is a proof-net for MAL, multiplicative
affine logic without Mix. If we repeat this procedure for all possible choices
of axioms, we have a more efficient proof-net counterpart of the Sep proce-
dure above. Moreover, the proof-net corresponds to a sequent derivation in
weakening normal form: we call it a proof-net free from irrelevance.

6. Given a proof-net for multiplicative affine logic with Mix, we may define a
linear-time pruning algorithm, which yields a proof-net free from irrelevance,
as follows ([4], Section 7.5):

a weakening-formula is irrelevant;

if the conclusion of a link is irrelevant, all its premises are irrelevant;

if a formula in a logical axiom is irrelevant, so is the other;

if one premise of a times-link or of a cut-link is irrelevant, so is the
conclusion and the other premise;

if both premises of a par-link are irrelevant, then the conclusion is irrel-
evant.

(0)

(1)

(2)

(3)

(4)

Clearly this resembles Girard’s definition of the empire of a formula in
without Mix (cf. [11], Facts 2.9.4). What is important for us is that from the
linear-time pruning algorithm we can draw two consequences, one relevant to
problems of computational complexity, the other to the definition of confluent
normalization procedures.

Given a proof-structure without attachments for the weakening-links and
satisfying the acyclicity property (of every Danos–Regnier graph), consider
the problem of deciding whether attachments may be added to the weakening-
links of so that the resulting proof-structure is a proof-net. By a result of
P. Lincoln and T. Winkler [16] this problem is NP-complete in the strong sense,
thus it is as hard as the problem of finding a proof of given any
sequent But if we consider only proof-nets without irrelevance the problem
of attaching the weakening-links is trivial, as they can be attached to a premise
of a par-link or to a conclusion: the elimination of irrelevance algorithm yields
a proof-structure free from irrelevance in linear time. It follows that provability
in constant-only affine logic is decided in linear time by the pruning algorithm:
since axioms are precisely the subformulas 1, a sequent is provable if and only
if the result of pruning the subtree of its formuals is non-empty.

Another remarkable feature of the pruning algorithm is that, regarded as a no-
tion of reduction of proof-nets for MAL + Mix, it is confluent. It should be
noticed that this algorithm cannot be defined by permutations of inferences in
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the sequent calculus: this follows from the study of the subnets of proof-nets
[3], see examples in Section 4.3. It is this remark that allowed the research to
take off, as it showed that proof-nets could be used to identify some invariants
of proofs with respect to the behaviour of the weakening-rule.

7. The use of the proof-net representation of proofs and the notion of the ir-
relevant part in a proof-net are essential also to define a confluent
notion of cut-reduction. Irrelevance is not stable under cut-elimination: if
reduces to and reduces to then we may have but
also Therefore we cannot actually eliminate irrelevance dur-
ing cut-elimination: we may metaphorically say that we need cut-elimination
without garbage collection. The goal is to eliminate cut through stricly local
operations, e.g., by reducing the logical complexity of the cut-formula in a
weakening / cut pair. This could be achieved if we could expand weakening-
links following the model of natural deduction. Unfortunately such an expan-
sion is incorrect in the sequent calculus: let P be atomic, then
is derivable in MAL using one weakening-rule, but there is no way to expand
the application of the weakening-rule into two weakening-rules with atomic
conclusion P.

The solution proposed here is to define proof-nets modulo irrelevance. Given a
proof-structure without attachments for the weakening-links and satisfying
the acyclicity property of every Danos–Regnier graph, we require
as an additional correctness condition; namely, we require that it should be
possible to eliminate irrelevance without annihilating the proof-structure, but
we do not actually eliminate irrelevance as in [15, 4]. Then the “incorrect”
expansions can be introduced, since they belong to the irrelevant part; the
additional weakening-links introduced in this way will eventually be annihi-
lated by the cut-elimination procedure. As a consequence, in the intermediate
steps of the cut-elimination procedure only the pruning of i.e.,
will be sequentializable. Moreover, during the cut-elimination procedure some
weakening-links may be annihilated whose attachments guaranteed the con-
nectedness condition for the original proof-net; therefore we may start with a
proof-net with cut links in multiplicative affine logic without Mix and obtain a
cut-free one in multiplicative affine logic with Mix.

8. Many researchers have studied the cut-elimination process for classical logic
and defined well-behaved notions of reduction and reduction strategies, enjoy-
ing the confluence and strong normalization properties. A common feature
of many works is that they recognize the non-determinism of classical cut-
elimination as the root of both non-confluence and non-termination and then
try to to eliminate non-deter- minism by disambiguating classical logic. A way



118 LOGIC FOR CONCURRENCY AND SYNCHRONISATION

to do so is through translations into intuitionistic and linear logic. Such a use of
linear logic is exemplified in Girard [12] and it has been developed extensively
by V. Danos, J-B. Joinet and H. Schellinx, see, e.g., [8, 9]. Through the modal-
ities of linear logic the area of a proof-net which may be erased in a weakening
/ cut reduction is always determined modulo permutation of !-boxes. Inter-
esting properties of classical cut-elimination are identified in this way, which
can be related to known reduction strategies for the However, it
should be clear that the translations of classical logic into linear logic have the
same function as the translations into intuitionistic logic, namely to extend the
computational paradigm of intuitionistic logic to classical logic. In the case of
affine logic, such translations yield “computations with garbage collection”.

Another approach is to look for dynamical properties of classical logic that
are alternative and irreducible to those of intuitionistic and linear logic. It
would be natural to expect that the classical cut-elimination should reflect the
symmetries that arise from the fact that classical negation is an involution. In
Girard [12] a mathematically precise notion of symmetry is given for the notion
of cut-reduction in the proof-net representation. The set of substitutions

where is an atom in a proof-net may be regarded as the set of generators
of a group acting on the graph. A notion of cut-reduction is symmetric if every
proof-net which is invariant under the action of the group of substitutions is
transformed by such a reduction into a proof-net which is also invariant. An
example in [12] shows that a symmetric cut-reduction for classical logic cannot
be defined without the use of the mix-rule. Our definition of cut-reduction for
MAL with Mix would appear to be symmetric this technical sense. The cross-
cut reduction of Example 2 is not symmetric, but a symmetric variant of it may
perhaps be defined using the mix-rule (see Section 6 below).

Most recently, Bierman and Urban [7] have developed a term calculus for
classical logic which represents a very large variety of strongly normalizing,
but non-confluent reduction strategies for classical sequent calculus. Bierman
and Urban also regard non-determinism as the distinguishing feature of clas-
sical dynamics. The treatment of Mix in the present paper, in particular the
elimination of the multiplicative mix-rule through Additive Mix, suggests that
our proof-net representation may provide a concise notation for classical non-
determinism. Indeed the notion of cut-elimination without garbage collegion
may also have a common-sense explanation in terms of non-determinism: if
we cannot predict the future development of a process, we should be very con-
servative about what may be discarded or not.

Can we conclude with a positive answer to the question in the title? Do we re-
ally have a notion of cut-elimination for classical affine logic whose properties
are alternative and irreducible to the familiar reduction strategies for intuition-
istic and linear logic? It may be premature to give an answer. But the time may
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be ripe for a reconsideration of proof-nets for affine logic. Indeed an increas-
ing number of researchers (e.g., [21]) seem to agree today that although the
dynamics of classical logic may not be as elegant and pleasing as that of intu-
itionistic logic, a task of research is to develop tools to study it as it is, allowing
the possibility that it may be very different from what we already know.

2. Sequent calculus of MAL + Mix

Definition 3 (i) The propositional language of Multiplicative Affine Logic
MAL is built from the propositional constants 1 and and propositional vari-
ables, using the connectives (times) and (par) of Multiplicative Linear
Logic.

(ii) The language of Constant-only MAL is the fragment of MAL consisting
of the formulas which do not contain propositional variables.

(iii) The sequent calculus for propositional MAL + Mix is given by the follow-
ing axioms and rules:

Given a derivation in MAL + Mix, let us write for the number of
occurrences of logical axioms and of 1 axioms, and and

for the number of applications of the times-, cut-, mix-, weakening- and
par-rules and finally for the number of conclusions in

Lemma 4 Every sequent derivation in MAL + Mix satisfies the following
equations:

PROOF. By induction on the length of the derivation. For instance, let the last
inference of be a times-rule with immediate subderivations and let
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and be the number of logical axioms in and in
respectively and similarly for the other axioms and rules. Then we have

2.1 Mix and weakening permutations

Definition 5 (i) Let be a pair of consecutive inferences in a derivation
where is an instance of Mix and either is not a par-rule or is a par-

rule but all the ancestors of its active formulas occur in the same branch above
the mix-rule. Then the inferences are permutable, i.e., we may obtain a
derivation which is like except for having a consecutive pair of inferences

in place of Thus the only exceptions to the permutability of the
mix-rule below other inferences are of the following form:

For every occurrence of the mix-rule in there is a set of applications of the
par-rule such that cannot be permuted below

(ii) Similarly, if is a consecutive pair of inferences, where is an instance
of the mix-rule, then the inferences are permutable, but if is a times-rule, cut-
rule or mix-rule rule, then there are two ways of permuting, i.e., pushing the
mix-rule up to the left premise of or to the right one.

(iii) Let be a pair of consecutive inferences in a derivation where is
an instance of the weakening-rule introducing a formula X and X is not active
in then the inferences are permutable, i.e., we may obtain a derivation

which is like except for having a consecutive pair of inferences in
place of

(iv) Similarly, if  is a consecutive pair of inferences, where  is an instance
of the weakening-rule, then the inferences are permutable, but if is a times-
rule, cut-rule or mix-rule, then there are two ways of permuting, i.e., pushing
the weakening-rule up to the left premise of  or to the right one.

Remark 6 Weakening and Mix permutations are reversible.



Two Paradigms of Logical Computation in Affine Logic? 121

2.2 Weakening reductions and expansions

Definition 7 (i) In the sequent calculus for MAL we have the following
weakening-reductions:

(ii) The inference eliminated by any one of the above reduction will be called
irrelevant. A sequent derivation which contains no irrelevant inference is said
to be in weakening normal form.

Lemma 8 In the sequent calculus for MAL every sequent derivation d can be
transformed into a derivation in weakening normal  form. The derivation
is not unique.

(ii) A derivation in weakening normal form has the following properties:

1 every formula introduced by an application of the weakening-rule be-
comes active only in the premise of an application of the par-rule where
the other active formula has an ancestor in an axiom;



122 LOGIC FOR CONCURRENCY AND SYNCHRONISATION

2 both premises of an application of the times-rule have ancestors in (dif-
ferent) axioms.

PROOF.(i) For every instance of the weakening-rule, permute below all
inferences until either (a) the formula X introduced by is active in the infer-
ence immediately below, or (b) there is no logical inference below In the
first case a weakening-reduction applies, unless is a par-rule and the other
active formula has not been introduced by a weakening-rule. The process is
non-deterministic: in cases when weakening / times reductions to the right
and to the left are both applicable, a random choice is required. (ii) By induc-
tion on the length of a derivation in weakening normal form.

Remark 9 (i) Weakening / par reductions are always reversible, i.e., we have
the following expansion rule:

(ii) All other reductions are irreversible and produce a genuine loss of infor-
mation.

(iii) In the sequent calculi for classical or intuitionistic logic the use of the
weakening-rule can be standardized in two ways, by prescribing that all ap-
plications of the weakening-rule must occur either as low as possible or as
high as possible (i.e., at the level of the axioms) in a derivation. In MAL, in
absence of the contraction-rule only the first option is available for multiplica-
tive connectives. In particular, in MAL + Mix we cannot assume that every
formula introduced by Weakening is atomic: consider a cut-free derivation of

where P is an atom different from 1.

(iv) On the other hand, for additive connectives in absence of the
contraction-rule only the second option is available, i.e., applying the weakening-
rule as high as possible.

More precisely, we could define the propositional language of Additive Affine
Logic AAL using the additive connectives & (with) and (plus):
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Proposition 10 In the sequent calculus for AAL every sequent derivation
can be transformed into a unique derivation with the property that every
formula introduced by the weakening-rule is atomic.

PROOF. Repeatedly apply permissible permutations of inferences and the fol-
lowing expansions:

3. Additive mix

For all we have an rule Additive Mix which builds a derivation of
out of derivations We use the following notation:

We have the following reduction:

3.1 Properties of additive mix
The rule Additive Mix has the following properties:
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1. The order of the premises is immaterial, i.e., we assume an AM-exchange
rule of the form

2. The derivations of the premises are paiwise distinct, i.e., we assume an
AM-contraction rule of the form

3. Consecutive applications of AM can be unified, i.e., we assume an AM-
merging rule of the form

4. The rule AM-contraction can be strengthened according to different notions
of identity of proofs. For instance, let us put if and only if and

are the same proof-net with attachments. Then the AM-contraction rule
becomes:

5. A sequent derivation in MAL + AM is in AM normal form if it has at most
one application of Additive Mix as the last inference.

Convention. We assume that the AM-contraction in the strong form (4) is
always applied without mention, and similarly for the AM-merging rules. We
work with derivations modulo the AM-exchange rule.

3.2 Additive mix: reductions and permutations
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We define a procedure Sep of elimination of Mix, which takes a derivation
in MAL + Mix and returns a derivation in MAL + AM without Mix,
in AM normal form:

Given a derivation and a mix-rule in permute as low as possi-
ble, obtaining a derivation where either is the last inference or
is immediately followed by a par-rule such that cannot be permuted
below

Apply the mix-elimination rule to the mix-rule in yielding a
derivation which contains an application AM(2) of Additive Mix.

Permute the inference AM(2) below all inferences of thus obtaining
a derivation ending with an application of Additive Mix.

Let contains no mix-rule; otherwise, select a new
application of the mix-rule in and start again with (1).

1

2

3

4

The procedure Sep has the desirable property that it does not create irrelevant
inferences.
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Theorem 11 (i) Let be a derivation of in MAL + Mix. The result of
applying the procedure Sep to

is a derivation in MAL + AM without Mix in AM normal form.

(ii) If  is in weakening normal form, then so is

PROOF. (ii) If at the end of step 1 the mix-rule is the last inference, then no
irrelevant inference is created at steps (2) or (3), so is still in weakening
normal form. Otherwise at the end of step (1) the Mix is followed by some
par-rule which are not permutable above therefore none of their
active formulas is introduced by a weakening-rule; since is in weakening
normal form, it follows from Lemma 8.(ii) that all the formulas active in all
have ancestors in axioms. Therefore at the end of step (2) the Additive Mix
AM(2) is immediately followed by an application of the par-rule which is not
irrelevant and, moreover, after one application of the AM / par permutation
both conclusions of the new par-rules have ancestors in some axiom. Finally,
if a times-rule occurs below in at the end of step (1), then a formula
active in is descendant of the conclusion of one of the otherwise, in step
1 would be permutable above The same holds for cut-rules occurring in

below It follows that the Additive Mix permutations at step (3) do not
introduce irrelevant inferences, i.e., is still in weakening normal form.

4. Proof-nets for MAL + Mix

4.1 Proof-structures and proof-nets

Definition 12 (i) A proof-structure for MAL + Mix is a directed graph whose
edges are labelled with formulas and whose vertices (links) are of one of the
forms in Figure 3.1.

In link the incoming edges are called the premises and the outgoing edges are
the conclusions of the link. The transitive closure of the relation between
links (equivalently, between edges) determined by the direction of the edges is
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a partial ordering (since the edges are typed with propositional formulas) and
it is called the structural orientation. reads “A is a hereditary premise
of B” or simply “A is above B”. A bottom link is just a special case of a
weakening-link.

(ii) Given a proof-structure for MAL + Mix an attachment of a weakening-
link is an edge from the weakening-link to a new vertex which lies in another
edge     of We write for toghether with a set of attachments for all
the weakening-links of The geometric properties of attachments are fully
determined as follows:

a weakening-link with its attachment has the same properties as
a logical axiom;

the new vertex where the attachment and the edge meet has the
same properties as a times-link.

(iii) A switching for a proof-structure is a choice for every par-link in of
one of its premises.

(iv) Let be a proof-structure with attachments for the weakening-links.
Given a switching for the Danos–Regnier graph is the graph result-
ing from by deleting from each par-link the edge which is not the premise
chosen by

(v) A proof-structure with attachments for the weakening-links is a proof-
net if for every switching the Danos–Regnier graph is acyclic (correct-
ness criterion for MAL + Mix).

Theorem 13 (i) There exists a map from sequent derivations to proof-
structures together with choices of attachments for the weakening-
links such that is a proof-net, the attachments being given by any

far

(ii) (Sequentialization Theorem) Conversely, if  is a proof-net, then there
exists a sequent derivation and a choice of attachments for the
weakening-links such that and  for some

PROOF. (ii) For every weakening-link in let A be its conclusion and let
be the edge, labelled with B, which is attached to: replace

and with a logical axiom ax followed by a times-link The proof-structure
thus obtained is labelled with different formulas than but it has exactly

the same geometric properties, so it is a proof-net in + Mix and can
be sequentialized as usual. In a sequent derivation such that let

be the times-rule whose principal formula corresponds to the new
times-link Since the only active ancestor of is in the axiom ax, we may
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permute upwards to the left so that ax and are consecutive inferences and
then replace them both with a weakening-rule:

By repeating this procedure for all weakening-links of we clearly obtain a
derivation such that

4.2 Computation and elimination of irrelevance
One of the uses of proof-nets for multiplicative logic without Weakening

is to classify sequent derivations: we prove that given sequent deriva-
tions and in we have if and only if there exists a
sequence of derivations such that for all and

differ only for a permutation of two consecutive inferences (cf. [6]). A
similar result holds for + Mix (cf. [3]).

In presence of the weakening-rule, thus already in MLL with Weakening re-
stricted to a we do not know how to obtain such a theorem. In [11]
proof-nets are defined using weakening-boxes, thus the position of each
weakening-rule in a given sequential proof is fixed in the proof-net

The standard solution, which we have followed above, is the use of attachments
for the weakening-links. But from the point of view of the classification of se-
quent derivations the notion of proof-nets with attachments is perhaps worse
that that of proof-nets with weakening-boxes: given a box, there are several
ways of making the attachment. In any event, this notion fails to identify se-
quential proofs modulo permutations of weakening-rule.

We turn now to the notion of a proof-net modulo irrelevance, which at least
succeeds in minimizing the disturbances caused by weakening-links. As re-
called in the Introduction, given a proof-structure without attachments for
the weakening-links and satisfying the acyclicity property (of every Danos–
Regnier graph), the problem of deciding whether attachments may be added to
the weakening-links of so that the resulting proof-structure is a proof-net
is NP-complete in the strong sense [16]. On the other hand in a proof-net free
from irrelevance the weakening-links can only be attached to a premise of a
par-link or to a conclusion. Moreover, the following algorithm identifies and
possibly eliminates irrelevance in linear time.

Definition 14 (computation of irrelevance algorithm, cf. [11, 4]) Let be a
proof-structure without attachments.
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(i) The irrelevant part of determined by a weakening-link is the
smallest subgraph closed under the following rules:

the weakening-link and its conclusion are in

if the premises A and B of a par-link are in then and its con-
clusion are in

if either premise A or B of a times-link is in then and its
conclusion are in similarly, if A and B are premises of a
cut-link;

if and is in then and its conclusions are in in
particular, if is a logical axiom in then both its conclusions are
in

(ii) The doors of in are the edges which are in and are premises
of links whose conclusions are not in Clearly all the doors of are
either conclusions of or premises of par-links.

(iii) Let be a weakening-link in Write for with the addition
of a weakening-link with conclusion D for every door D of If
has attachments and is attached to an edge through then we may
assume that otherwise such an attachment would generate a cyclic
D–R-graph and could not be a proof-net. Therefore we may define a set of
attachments for as follows:

if occurs both in and in

is attached to for all doors D of otherwise.

(iv) The pruning map given by for may be regarded as a
notion of reduction, which has the Church–Rosser property.

Lemma 15 Let and be weakening-links in Then

PROOF. Let be a door of thus a premise of a par-link Suppose that
the other premise of the same par-link is in and apply the irrelevance
computation algorithm and eliminate in and in . In both
cases the conclusion D of is included in the irrelevant part or
and the par-link is removed both in and in

Definition 16 (Definition 14 cont.) (v) Let be all the weakening-
links in By Lemma 15 for any permutation
of The irrelevant part of the proof-structure is defined as
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where are all the weakening-links of A proof-
structure is irrelevance free if We write
for the pruning operation given by the computation of irrelevance algorithm.

(vi) A proof-structure for MAL + Mix is a proof-net modulo irrelevance if
is non-empty and (without attachments) satisfies the acyclicity

condition for all D–R graphs.

Remark 17 Notice that if then a canonical attachment for is
given simply by a choice of a conclusion C to which we may attach all conclu-
sions of which are introduced by a weakening-link. Indeed all conclusions
of a weakening-link which are premises of a par-link may be canonically at-
tached to the other premise (which is not introduced by a weakening-link).
Therefore if has just one conclusion, there is only one canonical attachment

and we may omit mentioning it.

Theorem 18 There exists a ‘context-forgetting’ map from sequent deriva-
tions in MAL + Mix to proof-nets with the following properties:

(i) Let be a sequent derivation, and let be the proof-net such that
is non-empty (in fact, it contains at least one

axiom and at least one conclusion); if  is in weakening normal form,
then

(ii) (Sequentialization) If is a proof-net modulo irrelevance, then there
is a sequent calculus derivation d in weakening normal form such that

PROOF. (see [4] for the special case MAL without Mix.) (i) By induction on
the length of (ii) In weakening-links can be given canonical attach-
ments: as a consequence, the usual proof of sequentialization for +
Mix goes through without the detour used in the proof of Theorem 13 (ii).

Corollary 19 Provability in Constant-only MAL + Mix is in P.

PROOF. In Constant-only MAL we may consider only proofs whose axioms
are 1-axioms (a logical axiom can be replaced by a 1 axiom together with a

Thus to test whether is provable, we need only to check
whether the proof-structure which consists of the tree of subformulas of

is a proof-net modulo irrelevance. To decide this in linear time, apply the
computation of irrelevance algorithm to and check whether



Two Paradigms of Logical Computation in Affine Logic? 131

4.3 Examples and properties of irrelevance
elimination

We need to justify our algorithm for the computation of irrelevance. For
this purpose we recall some facts about the structure of subnets of proof-nets
in with Mix (cf. [3]).

Definition 20 (i) A non-logical axiom in a proof-structure is a link with no
premise and conclusions, for some Danos–Regnier graphs for proof-nets
with non-logical axioms are defined as before and so is the notion of a proof-net
with non-logical axioms for MAL + Mix (with attachment of weakening-link).

1

2 If is an axiom with conclusions then

3 If is a times-link with premises X, Y, then

4 If is a par-link with premises X, Y, then

where ranges over all switchings of

(ii) Let be a proof-structure for MAL + Mix and let be a substructure of
with conclusions The complementary substructure of in
consists of all edges and links in with the addition of a non-logical

axiom with conclusions

(iii) Let be a proof-net for MAL + Mix. A subnet of is a normal
subnet if the complementary substructure of in is a proof-net with
a non-logical axiom. A normal subnet of has the property that there
exists a sequent calculus derivation and a subderivation       of such that

(iv) Let be a proof-net for MAL + Mix; let A be an edge and let be a
link in The kingdom [or the empire of A in is the smallest
[the largest] normal subnet of which has A as a conclusion. The kingdom

[or the empire of in is the smallest [the largest] normal subnet
of which has as a lowermost link (so that the conclusions of are all
conclusions of

(v) The kingdom of A in is the smallest set closed under the inductive
conditions:
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(v) The empire of a link in is the smallest subnet of containing the set
of all links such that for no switching there is a path reaching

“from below” (in the structural orientation).

Remark 21 (i) The computation of irrelevance algorithm was presented first
in Section 7.5 of [4]. It is similar to Girard’s characterization of the empire of
a formula in a proof-net for cf. Facts 2.9.4 in [11]. More precisely, for
any edge A in a proof-structure write A for the part of satisfying Gi-
rard’s characterization. Now let be any weakening-link in a proof-structure

for MAL without attachments and let us introduce an attachment con-
necting to some other edge. Then i.e., may be re-
garded as the result of applying Girard’s algorithm for the empire of the edge

Notice that has different properties in and in +
Mix. In + Mix is a subnet, but not necessarily a normal subnet
(cf. [3] Section 2.3), i.e., it may not be possible to find a sequentialization of

such that A corresponds to a subderivation of this remains true in the
case of MAL + Mix as it is shown by the following examples.

Example 22

(ii) Consider the proof-net in Figure 3.2 with conclusions
1, where the irrelevant part (marked with a solid broken line)

is a subnet which is not normal:
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A sequentialization of such a proof-net is the following derivation

The proof-net obtained by pruning the irrelevant part is sequentialized in the
following derivation, which is not obtainable from by permutation of infer-
ences:

(iii) Suppose irrelevance computation algorithm had been defined using the
notion of kingdom: if the conclusion of a par-link is in then we
should let We show that this procedure, regarded as a no-
tion of reduction, does not have the Church–Rosser property. Consider the
following proof-net with conclusions

Example 23

If we eliminate irrelevance starting from the weakening-link with con-
clusion X, then is included in and pruned first, so the
link is removed. Next we proceed to the weakening-
link with conclusion Y, so is pruned: but now the only links

(a)
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in it are the par-link itself, a weakening-link with conclusion and an
axiom Finally we prune and we are left with a non-empty
subnet with conclusions in addition to
two 1 links (and weakening-links).

(b) If we eliminate irrelevance starting with then is pruned,
and the times-links
and are removed as they belong to Therefore af-
ter pruning we are left with nothing else than two 1-links (and
weakening-links).

Notice that our official computation of irrelevance algorithm yields in the more
conservative pruning which is also given by (a).

4.4 Mix-elimination

Definition 24 Let be proof-nets with attachments for weakening-
links.

(i) A map preserves links (different from weakening-links) if it
is a morphism of labelled directed graphs with respect to the links other than
weakening-links. In other words, for every vertex other than a weakening-
link in if has incoming arrows labelled and outgoing arrows
labelled then is a vertex of with incoming arrows also
labelled and outgoing arrows also labelled However,

may map a weakening-link to a link of another kind.

(ii) A one-to-one map of labelled graphs is an embedding if it
preserves links and whenever a weakening link of has a non-canonical
attachment then

(iii) A covering of is a set of embeddings such
that every edge in is in the image of some

(iv) The same definitions obviously apply to proof-nets without attachments.

We are going to define a procedure S that given a proof-net for MAL +
Mix generates a covering (cf. [15, 4]).

(I) Let C be a conclusion of We generate a data structure chain(C) as
follows:

Select a link with no premises such that C and let
chain(C);

1

i.

ii.
if is a logical axiom or a 1 axiom, then go to step (2);
if is a weakening-link then consider the edge which
is attached to: if is the lowermost edge such that and
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chain(C) then let chain(C); finally, repeat step (1),
choosing a link with no premises such that

For every times-link or cut-link in chain(C), select a link with no
premises such that and let         chain(C); if is a weakening-
link, then go to step (1.ii.);

For every logical axiom ax in chain(C), if B is a conclusion ofax which
is not in chain(C), then let be the lowermost edge such that and

chain(C) and let chain(C). Then return to step (2).

2

3

(II) We repeat this procedure making different choices at steps 1, 2, 3 and with
different conclusions until no new chain is generated. Let

be the chains eventually obtained, where is the restriction of to

(II) For we transform into a proof-structure by adding
weakening-links with canonical attachments:

let be a vertex in corresponding to a par-link of such that
one premise is in but the other premises C is not: introduce
a weakening-link labelled C in together with an attachment

to the premise

let be a conclusion of which does not belong to introduce
a weakening-link labelled in with an attachment to a
selected conclusion C.

(IV) Let be the data thus obtained. We denote by S the oper-
ation such that Let we write

Theorem 25 (i) Let be a proof-net with conclusions in MAL + Mix. The
operation yields a covering
where the are proof-nets in MAL without Mix.

PROOF.(i) Let be a proof-net with conclusions Each is a proof-
structure: the inclusion map preserves times-links and cut-links
by step (I.2.), axiom links by step (I.3.) and each has conclusions by
step (III). Moreover is an embedding because the attachments

contain the restriction of to and all other weakening-links have
canonical attachments. Also by construction it is clear that every edge in
is in the image of some Therefore yields a covering.

(ii)
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Each is a proof-net: a cyclic Danos–Regnier graph in would be one in
We need to show that is a proof-net in MAL without Mix. The number

of axioms, times-links and cut-links in is determined by the procedure S,
which after the first axiom selects an axiom for each times-link or cut-link en-
countered. Therefore by Lemma 4 any sequentialization of is a derivation
with no mix-rule.

(ii) Notice that Indeed the chains obtained by the procedure
S applied to are also obtained by the procedure S applied to starting
with a conclusion C in and remaining in by selecting a logical
axiom or a 1 axiom at steps (1) and (2) of the procedure; this is always possible
since The chains obtained in this way will be
called basic chains. Let

Furthermore notice that the procedure P applied to transforms chains
into basic chains. Indeed computing and eliminating irrelevance from a link

considered at a step (I.ii.) has the effect of removing the part of the chain
visited up to that step: but this would also have been achieved by starting with
the conclusion below and by selecting and so on. We conclude
that P transforms into and therefore

Definition 26 Let be a proof-structure for MAL + Mix such that
Let ax be an axiom of and let be the result of replacing ax in

with two weakening-links if ax is a logical axiom or with one weakening-
link if ax is a 1 axiom. The set of axioms in is minimal if for every ax in

We give a direct proof that the connectedness condition of all D–R graph is
equivalent to the minimality condition on axioms. We need the following fact:

Fact 27 Given a proof-net with attachments  for MAL + Mix and any D–R
switching any connected component of containing a weakening-link
contains also an axiom of which is reached from  by crossing attachments
and then always proceeding upwards in the structural orientation.

PROOF. Let the attachment be connected to an edge let be the
smallest substructure ending with and consider the uppermost links in
which are connected to in If any such vertex is an axiom link, then
we are done. Otherwise given a weakening-link let be the edge which

is connected to, and consider the substructure ending with and so on.
In every case we proceed upwards in the structural orientation. Eventually we
must reach an axiom.
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Proposition 28 ([4], Section 6) Let be a proof-net for MAL + Mix.
be a proof-net for MAL without Mix if and only if its set of axioms is mini-
mal. Thus the minimality condition on axioms is equivalent to the condition of
connectedness of all D–R graphs.

PROOF. Since is a proof-net, by Theorem 18 Suppose
is disconnected, for some switching If consists of disconnected proof-
structures, then the removal of an axiom in one substructure does not affect the
computation of irrelevance in another disconnected substructure so does
not satisfy the minimality condition on axioms.
If as a proof-structure is connected, then we may assume that there are par-
links such that their premises belong to different connected compo-
nents of Select a switching so that if the D–R graph determined by
reaches a premise of then choses the other premise and a switching

which makes the opposite choices. Therefore the switchings and
termine two connected components and of and respectively,
where and contain different premises of the links It is easy to see that
the removal of one axiom in   may at most make   irrelevant, but not

Conversely, if every D–R graph is connected, then as a proof-net with
attachments, has properties similar to those of proof-nets for and it is
easy to show by induction on the ordering of the kingdoms (cf. Lemma 3 in
[6]) that the removal of one axiom in induces

Example 29 (See Figure 3.4.)

Example 29 shows a proof-net in + Mix (top figure), representing
a proof of

together with namely, (below, from left to right). Here:

is determined by the chain which starts either with or with
and reaches the axioms and

is determined by the chain which starts either with or with
reaches the axioms and chooses

is determined either by the chain which starts with
reaches the axioms and after choosing or by
the chain which starts with and reaches the axioms
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5. Cut-elimination modulo irrelevance
In this section we define a procedure of cut-elimination for proof-nets mod-

ulo irrelevance: this notion of reduction is based on a notion of weakening-
expansion which applies to the irrelevant part of a proof-net, but is not admissi-
ble in general. Therefore this notion of reduction does not extend to proof-nets
with attachments of the weakening-links.

It is essential to notice that the notion of the irrelevant part of a proof-net is
highly unstable under our notion of reduction: if reduces to and
reduces to it may very well be the case that but also

Therefore in the cut-elimination process we will mark the
irrelevant part of a proof-net, not remove it.

The cut-reduction for proof-nets modulo irrelevance for MAL + Mix
(Figure 3.5) are the same as those of MLLwithout units. In addition, there is
the two weakenings / cut reduction which annihilates a cut-link whose premises
are both conclusions of weakening-links. Moreover there are the weakening-
expansions:

if a premise of a cut-link is conclusion of a times-
link [par-link] and the other premise of the cut-link is conclusion of a
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weakening-link then is replaced by a par-link [times-link] whose
premises are conclusions of weakening-links and

Theorem 30  (i) If      is aproof-net modulo irrelevance and reduces to
then is a proof-net modulo irrelevance.

(ii) The cut-elimination process for proof-nets modulo irrelevance for MAL +
Mix has the strong normalization and Church–Rosser property.

PROOF. (i) If is acyclic for every switching where there is no attachment
for weakening links in then the usual argument for + Mix shows
that is acyclic for every switching If is non-empty, then
is non-empty by Lemma 31. (ii) Notice that if a cut-link occurs in then
exactly one among the five reduction or expansions applies to it. Moreover,
such operations are strictly local.

Lemma 31 Let be a proof-net modulo irrelevance for MAL + Mix. If
reduces to then is non-empty.

PROOF. [of Lemma 31] First notice that weakening-expansions cannot make
any relevant part of the proof-net irrelevant. Also in a times reduction if
one premise of the times-link is in the irrelevant part, then the cut-link itself is
irrelevant, and similarly if both premises of the par-link are irrelevant. Con-
sider a times reduction where the par-link with conclusion has
one and only one irrelevant premise, e.g., is conclusion of a weakening
link Suppose both cut-links resulting from the reduction were irrelevant in

Since but it must be the case that by
computing in we reach either Now the algorithm for the
computation of starts with the conclusion of and continues as in
the computation of but since is like except for the local rewriting
of the cut-link in question, it follows that not only in but already in we
must have It is easy to show that for some switching

there exists a path or in But this contradicts
the acyclicity condition of the Danos–Regnier graphs for

Remark 32 Let be a proof-net with attachments and suppose a weakening-
expansion is applied to yielding with a new times-link: then there may
be no system of attachments such that is a proof-net. This can be seen
by Lemma 4: if satisfies then in the number
of times-links is increased by one coeteris paribus. A stronger result would be
to show that if is the cut-free proof-structure resulting from cut-elimination,
then there exists a system of attachments such that is a proof-net. We will
not pursue the matter here.
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Example 33

Remark 34 Example 33 shows that the Church–Rosser property is lost if we
erase the irrelevant part, instead of just marking it, during the cut-elimination
process: e.g., after one reduction step, we would erase either or
Notice that after two more steps, (an axiom reduction and a two weakenings
/ cut reduction) we obtain two disconnected proof-nets: therefore our cut-
elimination process essentially requires the use of the mix-rule.

6. Symmetric reductions require Mix

Can we define a symmetric reduction for proof-nets with contraction-links?
An example in the Appendix B2 of Girard [12] shows that in order to do so we
need the rule Mix. Let and atomic formulas and consider the proof-net
associated with a proof of and the proof-net

to which reduces as indicated in Figure 3.7.
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Example 35

The reduction in Example 35 is the only one which has the following property
of symmetry. Let the substitution operation which replaces every edge a
with an edge throughout the proof-net. Consider the group of substitutions
S consisting of

on the graphs and This group acts transitively on both and both
and are invariant under the substitutions of S – under the assumption that
axioms, cut-links and contraction-links are symmetric, i.e., not ordered. It is
easy to see that every asymmetric reduction, sending to one of the connected
components of does not preserve the property of invariance under substi-
tution. Therefore Girard’s example shows that there cannot be any symmetric
cut-elimination for classical logic which does not use the rule Mix. It is also an
easy exercise to see that (the proof-net translation of) the cross-cut reduction
(as described in the intoduction) applied to the proof-net yields a proof-net

which is not invariant under some substitution. The problem of finding a
proof-net representation for classical logic is therefore entirely open.



REFERENCES 143

Notes
1. Ketonen’s notion of a chain was independently rediscovered by A. Asperti [ 1 ] in his characterization

of proof-nets for + Mix through distributed processes. Therefore all the results in this paper can be
interpreted in terms of Asperti’s distributed processes.
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Abstract We study the problem of verifying general temporal and functional properties of
mobile and dynamic process networks, cast in terms of the Much
of the expressive power of this calculus derives from the combination of name
generation and communication (to handle mobility) with dynamic process cre-
ation. In the paper we introduce the an extension of the modal
mu-calculus with name equality, inequality, first-order universal and existential
quantification, and primitives for name input and output as an appropriate tem-
poral logic for the A compositional proof system is given with the
scope of verifying dynamic networks of agents against properties
specified in this logic. The proof system consists of a local part based, roughly,
on the classical sequent calculus extended with data structures for private names,
and rules to support process structure dependent reasoning. In addition the proof
system contains a rule of discharge to close well-founded cycles in the proof
graph. The proof system is shown to be sound in general and weakly com-
plete for the non-recursive fragment of the specification logic. We also obtain a
weak completeness result for recursive formulas against finite-control calculus
processes. Two examples are considered. The first example is based on Milner’s
encoding of data types into the specifically the natural numbers. This
encoding is interesting from the point of view of verification, since it makes es-
sential use of all the distinguishing features of the  including dynamic
process creation. Corresponding to the encoding of natural numbers into the

we propose an encoding of the type of natural numbers into the
and establish some type correctness properties. As the second example

we consider a garbage-collecting unbounded buffer (which dynamically create
and destroy buffer cells) and show how to establish absence of spurious output
of such a system.
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1. Introduction

In this paper we study the problem of verifying general temporal and func-
tional properties of mobile and dynamic process networks. In such a network
processes can be created, and process interconnection topology can be modi-
fied during execution. Mobility is often achieved by a mechanism for generat-
ing inter-process links, and passing them between processes. For instance, in
the [12] links are primitive names of communication channels, and
in the programming language Erlang [3] links serve as both communication
channels and process identifiers. The combination of mobility with dynamic
creation of processes is very powerful. For the case of this is wit-
nessed by the encodings into the of, e.g., data types, functions, ob-
jects, and higher-order processes [10, 11, 19, 16]. But it is also a power which
is used extensively in everyday programming practice, to dynamically set up
data and process structures, to adapt applications and systems to change in
their environments, to support fault tolerance and code replacement in running
systems, to name just a few scenarios (cf. [3]).

The cost of this power is the unbounded and essential growth of state spaces
as processes compute, rendering analyses by global state space exploration in
general impossible. An alternative which was explored in [5] for CCS is to take
a compositional, proof-based approach. In this paper we extend this approach
to the and show how a compositional proof system can be built with
the scope of verifying quite general properties of processes.

It is important to note that this is an ambitious and difficult task. There are
few approaches to verification around that can deal satisfactorily with this kind
of problem even in settings that are computationally simpler than that of the

We do not claim to give the definite answer to this problem in this
paper – much more work will be required before stable methods and criteria
for measuring their usefulness have been found. What we do claim, however,
is to present one possible approach that does, according to some set of criteria
(soundness, weak forms of completeness, non-trivial examples) address and
adequately solve the problem.

The investigation is cast in terms of judgments of the form
where E is an open term, is a general temporal formula, is a
sequence of assumptions governing agent variables free in E, and is a set
of channel names local to E. Verification in such a setting must be inherently
compositional, since the behaviour of E is defined only up to properties of its
constituent parts, as determined by Temporal specifications are given in an
extension of the modal with name equality, inequality, first-order
universal and existential quantification, and primitives for name input and out-
put along the lines of [4]. We present a proof system for judgments which is
sound and weakly complete for recursion-free formulas, and for general for-
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mulas we show that the proof system is sound in general and weakly complete
for finite control processes. As the CCS-based proof system of [5] the proof
system consists of a (rather large) number of proof rules that account, roughly,
for the modal fragment, plus a single rule of discharge to handle fixed points.

We illustrate the use and scope of the proof system by means of two ex-
amples. First an example based on Milner’s encoding of data types into the

shows how the type of natural numbers can be encoded. While
we have no inherent interest in the natural numbers the example is of interest
since it exercises all important aspects of both the (dynamic pro-
cess creation, name generation, scope extrusion, and communication), and of
the temporal logic (fixed points, alternation, quantification, equality and in-
equality, input and output). Moreover, it illustrates well an important point of
the proof system, namely its capacity to uniformly prove properties pertain-
ing to infinite collections of essentially distinct agents. Finally the example is
surprisingly subtle: It is not at all trivial to arrive at a suitable encoding of the
property of “representing a natural number”, let alone to formally prove type
correctness properties such as those we consider.

As a second example we consider bounded and (in particular) unbounded
buffers and show, as the main example, absence of spurious output from an
unbounded directional buffer which is “garbage-collecting” in the sense that
buffer elements which become empty are terminated.

The chosen setting for the is introduced in Section 2. We work
with a largely standard version of the polyadic [10], using recursive
process definitions and incorporating a standard conditional. We then proceed
to introduce the a version of first-order in the style
of Park [14], extended with primitives. In Section 4 we
present a few example specifications, notably some examples of specifications
addressing basic buffer properties (order preservation, absence of spurious out-
put, absence of message loss) and a formalisation of the “type of natural num-
bers”. Then we proceed to present the modal fragment of the proof system,
the shape of judgments, their semantics, and the proof rules along with a few
example derivations. The modal fragment of the proof system is grouped nat-
urally into several collections of rules. Some (the logical rules, governing the
first-order connectives) are largely standard. Others (the structural rules and
– to a slightly less extent – the rules for equality and inequality) are some-
what interesting in the way private names are handled. Two further collections
of rules are the rules for transition modalities and the rules for modalities re-
flecting name input and output, the io-modalities. The modal fragment of the
proof system is shown to be sound and weakly complete in Section 6. We then
proceed to consider fixed points. In Section 7 the semantics and proof rules
for fixed point formulas is introduced. The handling of fixed points follows
a novel approach, introduced first in [6]. This approach exploits approxima-
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tion ordinals in an explicit way paving the way for a logical account which
is far simpler and more elegant than the story given in [5]. The proof rules
are grouped in two: First is a collection of local rules, providing support for
fixed point unfolding, and introduction and unfolding of approximated formu-
las. The second and final part of the proof system consists of a single rule
of discharge, providing, roughly, a formal correlate of well-founded induc-
tion. In Section 8, then, we go on to prove a weak form of completeness, by
reducing proofs in a “global”, model-checking oriented version of the proof
system which is known to be complete, to proofs in the compositional system.
Sections 9 and 10 contain verification examples pertaining to the natural num-
ber and buffer examples and Section 11, finally, contains our conclusions and
pointers for future work. Proofs of the main completeness results have been
deferred to appendices.

2. Preliminaries on the
In this section we introduce the its syntax and operational se-

mantics.

Syntax. Assume denumerable sets of agent (abstraction) identifiers D
and of (channel) names We use ã to denote vectors
Processes along with abstractions, and concretions,
are generated by the following abstract syntax:

The notation is largely standard. We use a standard if-then-else notation for
the conditional in place of the matching/mismatching notations and

more common in contexts. This is to avoid excessive
proliferation of the “box” notation which is used later also for one of the modal
operators.

Agents are interpreted relative to an environment which determines, for each

agent identifier a defining equation An alternative to such
recursive definitions is to use the “bang” operator !P, easily definable by the
identity !P = P \!P. It is also possible, though a little more involved, to derive
recursively defined processes using the “bang”.

Binding. The calculus has two binding operators:

Abstractions (a) A  binds a in A
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Restrictions binds in

Agent expressions are considered only up to renaming of bound names.
and are the free names, bound names, and names (free or bound)

of respectively. We use or in vectorized form,
as the notation for uniform and simultaneous substitution, here of names.

Actions. An action,       is either the internal action an input action
or an output action of the shape where and Actions

are used as derived notation, by the clauses

By means of the identifications

it is possible to rewrite each process A or into one of the shape
Given the binding conventions, the functions              and     are extended to
actions in the obvious way.

Transition semantics. The intended semantics is quite well known
from CCS [9] and the original papers [12]:

0 is the inert process, incapable of performing transitions.

is the CCS choice construction: A transition of is a tran-
sition of either or of

is an agent offering just one transition, labelled with with as
the resulting next state.

Actions of the shape represent internal, or unobservable, actions. Ac-
tions of the shape represents input actions, and actions of the shape

represents output actions.

In the case the process concerned is emitting a private
name to the receiver, causing the scope of that to be extruded, i.e.
extended, possibly involving alpha conversions, to encompass the re-
ceiving process.

149
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is parallel composition offering the transitions of P and Q sep-
arately, as well as internal transitions arising from (synchronous) com-
munication between P and Q. Communications cause input and output
actions to be matched.

if then else is the conditional.

declares a new name to be used by P.

is invocation of the process defined by

Example 1 The agent D defined by

is a recursive agent, parametrised on which declares a new local name
which is passed along to the environment whereupon a name can be re-
ceived along resulting in the agent

The transition rules are given in Table 4.1. The table does not include symmet-
ric versions of the rules SUM, COM, and PAR. Those should be assumed. Since
terms are identified up to alpha-conversion many side conditions intending to
prevent confusion of scope can be avoided.



Proof Systems for Logics 151

Example 2 Let   and                              Up to choice of bound
names there are three transitions enabled from namely

We conclude the section by introducing the two running examples of the paper.

Example 3 (Buffers) A 1-place buffer reads a name from an input port and
delivers it to an output port

Inductively, if is an buffer abstraction
similar to then

is an buffer abstraction. Unbounded buffers need to be able to
allocate new buffer cells dynamically:

Whenever a data item is input by a new buffer cell is allocated, never to
be deallocated. This is clearly wasteful. We may also consider an unbounded
buffer with reclaimable cells, organised as a linked list as shown in Fig. 4.1.
The main component is the buffer cell which holds the
value and waits to either output along and then terminate and communi-
cate and “upstream” along or else receive a new output port and a
new “down-link” along

and
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Start cells are responsible for the creation of buffer cells:

A “garbage collecting” unbounded buffer then consists initially of just a start
cell:

Example 4 (Natural numbers) We consider an encoding of natural numbers
based on Milner’s encoding of data types in the polyadic (cf. [10]).
The idea is to represent a natural number “located” at a name as a process
which expects two names, say and along and then proceed to either
synchronize on to signal to the receiver that the “value” of is 0, or else to
output the location of another natural number along to signal that the value
of is

Define the constants and in the following way:

Given a location inputs two names along to attempt an output
along the second of the two, the “zero” channel. Similarly, re-
ceives two names along to attempt an output along the first, the “successor”
channel, passing along it the location of Thus we can represent, eg., the
natural number 1 as the agent

A variety of operations on naturals can be defined, including addition, multi-
plication, and as a very basic one the “copying” operation

that turns a natural at location into a natural at location Addition can be
defined as follows:
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3. A

In this section we introduce the logic which we use for specifying properties
of agents. The logic is a first-order version of the modal extended
with operations that describe input/output behaviour.

Syntax. Assume a denumerable set of predicate variables X. Formulas
in the are generated in the following way:

In this grammar we use to range over names, and co-names, and we
use to range over names, co-names, and A monadic formula is one with
strict alternation between “transition” modalities (of the shape             or
and “io” modalities (of the shape                                              or where
we also require that any outermost modal operator be a transition modality.

The connectives. The language is based on a first-order modal
with name equality and inequality, universal and existential name

quantification, boolean connectives “and” and “or” modal operators
and and (parametrised) least and greatest fixed points. A

modal formula is a formula in the fragment with neither fixed points nor pred-
icate variables. An elementary formula is a formula in the first-order language
of equality (over names). It is often convenient to treat elementary formulas
differently from other formulas as they do not depend on the agent being pred-
icated.

The connectives and are used for input, free output,
input of a fresh name, and bound output, respectively. For instance,
predicates an abstraction and is taken to mean that, when applied to the name a,
the resulting agent satisfies Observe that is not bound in Similarly

predicates a concretion term, and states that the term is of the shape
such that and are equal and holds of the continuation. For bound

outputs the operation is used. The operation was introduced
in a slightly different shape in [1]. This connective predicates abstractions and
means that whenever the agent being predicated inputs a name which is fresh
then holds of the continuation. Both the modalities and
bind in The syntax presented here divorces handling of transition labels,
or subjects, from handling of the parameters, or objects. An alternative which
we return to in more detail below, is to devise connectives in the style of those
used by Milner et al [13] which combine the two, in modalities which reflect
action capabilities more directly.
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Example 5 The formula

expresses of an agent that it can perform a bound output of a along channel
After this whenever a is received along the continuation satisfies

Bindings, sentences. We use to range over and to range
over the modalities         and Formulas are considered only up to alpha-
renaming of bound predicate and name variables. Name binders are the first-
order quantifiers, the bound output connective, and the fixed point operators.
For instance, in names in occur freely and names in bind
their occurrences in We can without loss of generality assume that fixed
point formulas do not contain free names. A sentence is a formula that do not
contain free occurrences of predicate variables. Unless otherwise specified we
restrict attention to sentences.

Predicate and name interpretations. Names serve a double
role, both as constants (two distinct names occurring freely at the top level
of a process term are regarded as distinct) and as variables (since names can
be bound and instantiated). A name interpretation is a mapping
which assigns names (as values) to names (as variables). We require of name
interpretations that is an infinite set. A name is said
to be fresh for if and is the update of that maps

to and otherwise acts as Let and if
then Observe that the operation is generally only
applied to for which is fresh. Name interpretations are extended to actions
by the clause

Predicate variables depend for their semantics upon a list of argument names
and a name interpretation. Thus, a predicate variable interpretation can be
taken to be a mapping Maps are
ordered by defined as subset containment lifted pointwise to functions.

Semantics, validity. The semantics is given in terms of a mapping
where is a predicate variable interpretation and is a name in-

terpretation. The definition of is given in Table 4.2. In the clauses for bound
input and bound output the notation fresh means that does not occur freely
in neither A nor and is fresh for For sentences the is immaterial,
and we abbreviate                 by                Sometimes we write
in place of A sentence is said to be valid if for all
name interpretations Sentences and are equivalent, written if
for all
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The clauses for the modal operators lead to derived notation for the transi-
tion relation:

We can thus simplify the transition modality clauses in the following style:

Abbreviations. We introduce the following derived forms:

Observe that holds of processes, of (non-trivial) abstractions, of
free outputs and is of bound outputs. Let range over these four “typing
formulas”. Two typing formulas are said to be complementary if one of them
is and the other either or

An alternative to the definitions of and is to set

and similarly These definitions are easily shown to be
equivalent to the original ones in the proof system below.

The logic is closed under negation, as we can define the operation by the
usual De-Morgan rules plus:

With classical negation a number of standard abbreviations like
becomes available (but observe that recursion variables can in general

only be negated an even number of times). There would in principle be no
problem in taking negation as primitive. We choose not to do so, mainly as
a matter of convenience, as otherwise the proof rules, which are cluttered up
enough as they stand, would become even harder to read.
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modalities. Comparing with earlier attempts to define
modal and temporal logics for the we consider first the modal logic
of Milner, Parrow, and Walker [13]. Their basic modalities are rendered in our
framework as follows:

We refer to these operators as the “MPW modalities”. We leave aside the issue
of whether a reduction in the other direction exists (of modal monadic formulas
to formulas in the logic of [13]). Trivially this is not so since the logic of [13]
lacks a modality for bound input. With the addition of such a modality the
matter is less easily resolved, however.

Other logics for have been proposed in work by Milner [10],
Dam [4], and Amadio and Dam [1]. In [10] dependent sum and product con-
structions were proposed, used also in [4]:

We use “primed” versions of the quantifiers here so as not to confuse with the
standard first-order quantifiers. Observe that, even in the absence of bound
input modalities, the logics of [10, 4] are strictly less expressive than that of
[13] as the former does not separate free and bound output. The modalities of
[1], finally, are easily derivable as well. We leave out the details.

Logical characterisation. An important property of a modal logic
such as the one considered here is its capability to separate models. In [13] it
was shown that the MPW modalities could be used to characterise a particu-
lar, quite strong, process equivalence called late bisimulation equivalence (cf.
[12]).

Definition 6 (Late bisimulation equivalence) A binary relation on is a
late simulation if implies:

1 If and   is not an input action then there is some such that
and
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2 If then for some and

for all

The relation is a late bisimulation if both and are late simulations.
and are late bisimilar, if for some late bisimulation

In the second clause of Definition 6 the arities of vectors and are required
to coincide. Observe that the simplicity of the definition, both for input and
output actions, relies heavily on alpha-conversion to avoid accidental capture
of bound names.

Other equivalences appear in the literature. Early bisimulation
([12]) is strictly weaker than late bisimulation. It is obtained by swapping
the quantifications over and in clause 2 of Definition 6. Open bisimula-
tion [15] is strictly stronger than late bisimulation and requires the bisimula-
tion relation to be closed under substitution. Ground bisimulation, finally, is
standard (CCS) bisimulation equivalence [9] applied to the Thus
ground bisimulation avoids quantification entirely in its defining clauses, and
it is strictly weaker than early bisimulation equivalence. For a substantially
constrained version of the eliminating the conditional, matching (a
conditional of the special form if then else 0), and continuation un-
der output prefix, it can be shown, however, that all four equivalences coincide
[15].

We obtain the following logical characterisation result:

Proposition 7 (Logical characterisation) Two processes and are late
bisimilar if and only if  for all sentences and all name interpretations

implies

PROOF. In [13] the logical characterisation result is proved for the logic con-
structed using equations, inequations, conjunction, disjunction, and the MPW
modalities. The adaptation of this result to the present setting is easy and left
out. It thus suffices to show that all formulas in our language respect bisimu-
lation equivalence in the sense that if and then
as well. To cater for fixed points the assertion need to be generalised: Say a
predicate interpretation respects if whenever and
then too. We show by induction in the structure of that if

respects and then The details of this
induction are not difficult and left to the reader.

By constraining the nesting of transition and io modalities a similar charac-
terisation of early bisimulation can be given. In effect the formation of the late
input MPW modality needs to be prevented, as shown by [13].
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4. Example specifications

In this section we give some examples of agent properties that can be spec-
ified using the above logic.

Example 8 (Weak modalities) One can easily derive modalities which are in-
sensitive to the number of initial

Example 9 (Wildcard input and output) Often one wishes to ignore the iden-
tity of names being input or output:

This definition presupposes that does not appear freely in

Example 10 (Buffer properties) We consider some properties one might like
to impose of a buffer taking input along the channel and producing
output to the channel The formulas in this example are due to Joachim
Parrow (personal communication).

Order preservation (of first data item).

The idea is quite simple: holds until something (the
is input along Then takes effect. This fixed point
holds invariantly (along and transitions) until something is output.
That something must be
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No spurious output. Consider the following formula:

The formula expresses, roughly, that an  must be input before it can
be output. Observe that in the context of the this gives an
operational meaning to the notion of authenticity: it can be trusted that
information emitted on really was received along

No lost input.

For must hold invariantly, and whenever an is
input then holds. The latter property expresses that some
transition is enabled, and whatever transition is taken (among and

either the transition was an output of along or else
continues to hold. However, since we use a least fixed point eventually
the former case must hold, so is eventually output.

Example 11 (Natural numbers) We wish to define the property
of “possessing a natural number object located at Keeping in mind

the concrete representations of Example 4, should be expected to hold
of a process under the following circumstances:

It should be possible to force to synchronize along if not immedi-
ately then after an initial number of steps.

No sequence of steps can disable an

All take two arguments.
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Whenever fresh names and are provided along the following prop-
erties will hold:

At least one outgoing synchronisation along or is possible, but not
both.

Only unary outgoing synchronisations along or along are possible.

No sequence of internal steps can disable an   - or

Whenever a transition takes place, the result is a process.

Whenever an takes place a new name is output, serving as
the location for the “predecessor of

We do not claim that these points unambiguously pin down the intended be-
haviour of “a natural number object” – in fact most of the points above leave
room for debate. Resolving this we formalize the intuition in the

We describe the behaviour of natural number objects as a state machine
wrapped inside a least fixed point reflecting the well-foundedness property of
natural numbers. We propose the following definition:

The definition uses higher-order parameters in a manner which goes beyond
the syntax as presented in the start of this section. However, at the expense
of a more monolithic and less readable notation it is quite easy to rewrite the
definition to eliminate the higher-order abbreviations.

The idea of the definition is the following: We describe the behaviour of a
natural number object as a sort of state machine formalizing a sort of natural
number protocol. The state machine has two states, and Outside the
state description is a least fixed point, used to reflect progress of entire protocol
runs. The description of each state must bring out what actions are enabled,
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and how, and it must describe, since it will be used in a compositional manner,
for each type of action, what the effect of performing such an action will be. In
several case studies we have performed over the years we have found this sort
of abstract state description very useful for proving properties of infinite state
systems, and more examples will be given toward the end of this paper.

Now, suppose that possesses a natural number object located at Then
is enabled and can be supplied with first a fresh and then a fresh If is

supplied with a or an which is not fresh we can say little about the behaviour
of the resulting system, as unintended internal communications can result. This
is an important point, and it is the main reason why we have chosen to include
fresh input as a primitive. Continuing the protocol either or is offered, but
not both. If is offered the result is a process and the protocol is terminated. If

is offered a new location is output, and the agent will continue to behave
as a natural number object located at Moreover, because of the least fixed
point, the first option must eventually be selected, so the natural number object
is ensured to be well-founded.

The natural number type given here is a candidate for the type of “one-shot”,
or ephemeral natural numbers. Expressing a property such as is the location
of a natural number object from now until some future event takes place” is an
easy embedding of into an invariant. Many variations on the definition
of are possible. For instance we might not insist on well-foundedness, or

might be permitted to diverge.

5. Proof system, modal fragment

A closed correctness assertion is an assertion of the shape where
is an arbitrary process and is a sentence. For certain so-called
finite-control agents that refrain from creating new processes dynamically (by
avoiding parallel compositions in recursive contexts, or the replication opera-
tor) the problem of deciding validity of closed correctness assertions is decid-
able [4]. This is due to the fact that, up to choice of names and a little garbage
collection, the state spaces of finite-control agents are finite [4]. Many inter-
esting agents, however, fall outside the class of finite-control agents, including
the natural number agents of Example 4 and the unbounded buffers of Exam-
ple 3, because processes are created dynamically. In fact it is just this dynamic
process creation capability that in conjunction with the capability of creating
and communicating new names gives the its remarkable expressive
power, and it is also the feature that makes verification difficult.

Limits  of  global  state  exploration.          Approaches to verification
which merely chase transitions and global states are unlikely to be very suc-
cessful in proving interesting properties of non-finite-control agents. Consider
for instance the unbounded buffer of Example 3. A temporal property
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that depends on being continually able to input new data items will give
rise to an unbounded state space quite trivially, as each input action gives rise
to the creation of a new component process. But it may also be that despite
being non-finite-control the state space is in fact bounded. As an example we
may consider any process of the shape

which can only perform a bounded number of actions despite the dynamic
process creation involved in the definition of However, the interest-
ing correctness property of is less the collection of facts that (for
instance) represents a natural number located at
but rather the fact that              is type correct, ie. that for any which repre-
sents a natural number located at represents a natural
number located at But this latter assertion is not a closed correctness asser-
tion, and it is not within the scope of model checking techniques such as that of
[4] that explore global state spaces since the agent expression being predicated
is open.

Open correctness assertions. We thus need to address more general
open correctness assertions that allow correctness properties to be made
conditional upon properties of the parameters of (such as: represents a
natural number located at This can give a handle on dynamic process cre-
ation in the following way: Suppose the goal is to prove a correctness assertion
of the shape

Assume that involves dynamic process creation and that through a number
of steps the proof goal (4.8) is “reduced” to one the shape

For instance may be the agent of Example 3. The idea now is to
apply a cut, guessing a property to hold of and then reduce (4.9) to the
proof goals

and

representing the assertion that holds on conditional upon holding on
Say, for instance, that we can choose which turns out to be the case in

many examples. Then the proof goal (4.10) is an instance of (4.8) and it may
consequently be that the subgoal (4.10) for this reason can be discharged. If in
turn  does not involve dynamic process creation the problem (of dealing with
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this feature) may have been resolved, and if it does we will want to iterate the
approach, keeping in mind that we now have to deal with more general open
correctness assertions.

5.1 Basic judgments
In [5] this idea was worked out for CCS. A delicate issue in generalising the

approach to the is how to deal with private names, name generation,
and scope extrusion. In general one will wish to verify properties of a process

relative to a property of must be allowed to depend on
Consider for instance the property that is a natural number
located at given that is a natural number located at But if we take alpha-
conversion for granted then should be indistinguishable
from provided no name clashes arise, and the dependency
upon is lost. We thus need a mechanism to “freeze” to extend its scope to
cover also formulas to the left of the turnstile. In [1] we suggested annotating
the turnstile with a “restriction set” for this purpose. We are following this
suggestion here. Thus judgments take the more general form
where is a finite set of names with a scope extending over both and but
not over In fact a very similar annotation was introduced already by Stirling
[18]. Here, however, the annotation has a somewhat deeper function, due to
the richer name discipline of the

Term variables and open terms. Before defining formally the
notion of judgment and its semantics observe that we need to extend the basic
syntax of the to open terms. We use and as term variables
(to range over processes, abstractions, and concretions). Terms in  or
may from now on be open, i.e. involve term variables. A closed term will be
a term which does not contain term variables (but it may contain free names).
We use   to range over

The consideration of open terms also leads us to extend the syn-
tax slightly, by allowing the parallel composition operator to be applied not
only to processes but also to abstractions and concretions (cf. [10]). This is
done by rewriting (where symmetric versions are assumed to be added implic-
itly):

We assume that symmetric versions of these rewrite rules are added implicitly,
and appeal to alpha-conversion to prevent variable capture as ever.
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Definition 12 (Basic judgments, validity) A basic judgment is an expression
of the form

where

is a finite set (of assumptions) such that the
are sentences,

is a finite set of names, the restriction set,

is a finite set of sentences, and

  is an open term.

1

2

3

4

An agent variable occurs freely in if either occurs freely in
or contains an assumption on ie. an assumption of the shape

For the semantics name interpretations are extended to general substitu-
tions by mapping both names to names and term variables to closed terms. In
doing so the sets of names and of term variables are assumed to be distinct.
We can then extend to substitutions by restricting to names. Then, the
judgment is valid (or true, written if for all substi-
tutions if forall then for
some

Notation. For sets such as and we use a standard sequence-like
notation, writing eg. in place of
or in place of For a basic judgment

is elementary (so that the holding of does not depend
on we allow the judgment to be abbreviated by

Restrictions sets and scoping. The point already made concerning
scope of restriction sets deserves to be reiterated. Observe that in a judgment of
the shape both and maymention Let be an arbitrary
name interpretation, and suppose that Then occurrences of
in refer, because of the use of the name interpretation to occurrences
of in Moreover, no other name occurring in can be confused with

in In forming the in   and the in are identified
(they are equal). An occurring in on the other hand, can, through be
identified with or distinguished from any name occurring freely in
but in that agent itself is bound. So the scope of in extends
to and but not to This is reflected in the proof system below by the
rule (ALPHA).



166 LOGIC FOR CONCURRENCY AND SYNCHRONISATION

5.2 A proof system for the modal fragment

We now turn to the problem of proving validity of basic judgments, restrict-
ing attention for now to the modal fragment. A proof system will consist of a
number of clearly discernible parts:

A group of structural rules governing aspects like the introduction and
use of assumptions.

A group of logical rules to deal with connectives like conjunction, dis-
junction, and the quantifiers.

A group of rules for name equality and inequality.

A group of rules for the process modalities and

A group of rules for the input/output modalities
and

5

4

3

2

1

The first three groups of rules are based on a standard sequent-style formali-
sation of first-order logic with equality. The adaptation is not completely triv-
ial, however, due to the presence of agent terms and variables, and restriction
sets. An important and delicate issue concerns the choice of rules to include as
primitive. Our strategy here is to include only rules that are needed in a com-
pleteness argument, but it is probably useful to bear in mind that this is far less
clearcut and definitive a criterion than may be thought at first glance, and other
less tangible criteria like “elegance”, or “orthogonality” are important too in
the detailed formulation of rules.

We go through each group of rules in turn.

5.3 Structural rules

We first have a minimal set of rules for introducing and applying assump-
tions, namely the identity, weakening, and the cut, bearing in mind that in
general these rules are affected by the presence of restriction sets:

As the and are sets no rules for contraction and permutation are needed.
We comment on the need for weakening later. The cut rule comes in three
flavours. The first, (CUT-1), is essential to accomodate reasoning on agent
structure and it is not in general eliminable.
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We here introduce two new pieces of shorthand, writing for the condition
that does not contain an assumption on and for an elementary
formula expressing that all names in are distinct from each other, and from
any name occurring in     or

To illustrate the complications involved in the first cut rule assume that the
judgments and  are valid, and that a
substitution is given such that all assumptions in are validated for the name
interpretation The substitution validates also the condition
so we can conclude that Now does not occur in so can be
extended to the substitution which validates both

and for the restriction set But then as
required.

The second cut rule will be needed when we come to consider logical fixed
points and discharge by loop termination by providing garbage collection of
restrictions that are no longer used. For the modal fragment, however, (CUT-2)
is admissible, as can be seen from the completeness proof below.

Here is used in the sense of requiring also names in to be distinct
from names in To see the soundness of this rule assume

and Let be given such that
is a process for all Assume that
whenever By the first assumption, But then

as desired.
The third cut rule is the following:

where does not occur in For the modal fragment (CUT-3) is admissible.
We conjecture that this is not so in general. However for the  rule (CUT-
3) is derivable quite easily using the logical rules introduced in the following
section.

Finally we need the following rule to reflect the scoping rule for restriction
sets:

where is injective, the range of is disjoint from
and the postfixing of is the extension of to agents, restriction

sets, and assumption sets Other substitution rules such as injective substitu-
tions of unrestricted names, or of term variables, are admissible.
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5.4 Logical rules
As a first approximation we require standard rules for introducing elemen-

tary connectives to the left and to the right.

In the rules and we use fresh as a shorthand for the condition that
is not free in the conclusion judgment and, in the case of neither does
occur in

Since the logic is closed under classical negation we further need rules e.g.
to reflect that contradictory assumptions can be made governing the same agent
variable. We suggest the following two rules, left and right dilemma:

Two further rules are needed to reflect the fact that elementary formulas do not
depend on the agent term being predicated:

where both rules require that is elementary.

Lemma 13 The following rules are derivable:

PROOF. Easy derivations using weakening and dilemma.

5.5 Rules for equality and inequality

For equality and inequality we suggest four axioms and one rule of infer-
ence. The four axioms, first, express the following properties:

1 Names are equal to themselves.



Proof Systems for               Logics 169

Even possibly restricted names are equal to themselves.

A name can not be identified with a name in the restriction set unless it
is textually identical.

There are infinitely many names.

The addition is a rule of substitution of equals for equals.

2

3

4

To see the soundness of (NEW1) observe that it can not simultaneously be the
case that and that and are distinct names. Observe
also that the rule is needed only for We note the derivability of a
number of useful proof rules.

Lemma 14   The following rules are derivable:

PROOF. (EQ-I): Use (SUBST)  and (REFL).

Use EQ-I) and the dilemma rules along with the logical rules and
structural induction in

Use (D-L), weakening, and  (SUBST).

This case is slightly more delicate than the previous ones. We prove
given a proof of First observe that
by weakening. Then observe that so that
by (SUBST).Then the proof is complete by  (CUT-3).

The remaining derivations are easy exercises.

(ELEM-I):

(ELEM-I),

(SYM1):

(INEQ):
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5.6 Rules for transition modalities
We then arrive at the rules for the modalitites and Proof goals in

this case have the following shape:

where is used as a wildcard ranging over and Observe that this
shape is not quite as general as we would wish it to be. Rather we would
want to permit sets of modal formulas to the right of the turnstile instead of the
single formula permitted here. The restricted format (4.13) is chosen for the
following reasons:

Modal proof rules for more general multi-conclusioned judgments would
become unduly complicated.

The restricted format suffices for both the examples and the weak com-
pleteness results which we present here.

The transition capabilities of   in (4.13) are determined by the structure of
   according the operational semantics given earlier, and according to the as-
sumptions made in on variables occurring freely in   . As the operational
semantics is determined by induction in the structure of   it is hardly sur-
prising that in general the number of rules governing proof goals of the shape

depends on the number of primitive operators,
and for each operator, the number of operational semantics rules of Section 2
determining its behaviour.

We then proceed by induction in the structure of the right hand agent term
being predicated to give rules that show how (typically modal, but in some
cases quite general) properties of an agent with a specific outermost connective
can be inferred in terms of properties of its immediate constituents.

Term variables. The case for    a variable corresponds to the mono-
tonicity rule familiar from sequent-style formalisations of modal logic:

For both rules we require that With this proviso the rules are clearly
sound.

Nil.

1

2
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Summation.

Prefixing.

In the two last rules the notation â is used to indicate overbarring which is
optional in the sense that either both transition labels indicated are overbarred,
or else none is.

The rule reveals where (ALPHA) is required: To show
(which is a valid judgment for any A) first we need to use (ALPHA) to

rename the restricted then use to reduce to a goal of the shape
which is then resolved by (NEW1).

Parallel composition. The rules for parallel composition are shown
on Table 4.3. The rule comes with a symmetric version. All rules
for are marked * indicating that they are subject to the side-condition that

and are fresh (ie. do not appear free in the conclusion judgment), and the
typing formulas and (where they appear) are complementary. The typing
formulas have the important role of matching input and output. This is evident
in the rule In the role is implicit: The rule requires an
ancillary rule schema

to ensure that inputs are matched with outputs of the proper sort.
To see the soundness of eg. assume that the antecedents of that

rule are valid. Assume also that a substitution 7  is given such that
for all Then and Thus and

are processes, and there are and such that and
Moreover we can assume that and have complementary arities by the
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third and fourth antecedents. Moreover,
But then as desired.

The rule is at first sight ridiculously complex. On closer inspec-
tion, however, we argue that the rule merely brings out the quite complex
modal behaviour of parallel composition, and thus the complexity
is inherent in the problem rather than due to the specificities of our formali-
sation. This is not to say that simpler formulations can not be found. In fact
this may very well be possible, for instance by appealing directly to the oper-
ational semantics transition relation in a way which we have chosen not to do.
However, we do believe quite strongly that a truly compositional and modal
analysis of parallel composition will have to perform the sort of
quite convoluted case analysis brought out by the rule.

Conditional.

Restriction.

Identifiers.

Of these final three rules the rule (NEW2) is the least trivial. Assume that is
fresh for and that Let be given such that

whenever Pick now  a which is fresh and not in
free in any Let Then so,
by the assumption, and substituting uniformly for But
then too.

Of all the rules for process modalities clearly the rule is the most
complex. It is nonetheless quite intuitive. To prove a property of the shape

of a parallel composition we have to describe in sufficient detail,
by formulas and the properties of and after a transition has been
performed. For almost all and will be false. The formulas

and have to be shown to hold for or in the prescribed fashion,
and they have to be shown to compose in the correct way, given that synchro-
nisations must result in agents of complementary types.

Many variations can be played on the formulation of these rules. As an
example we consider a version of given in [5] (for CCS, so typing
formulas and restriction sets were not needed there).
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Proposition 15 The following rule is derivable where and do not occur
free in

PROOF. The proof goal is

We get the following list of 6 subgoals:

To prove (4.15) and (4.16) we use a few logical and equational rules along with
Subgoals (4.17) and (4.18) are trivial. To prove (4.19) and (4.20)

apply weakening to eliminate the “old” version of    (or    ), and then apply
to arrive at the subgoal (for (4.19)) as

desired.

A small but important difference between the rules and
is that in (as elsewhere) we permit multiple assumptions on term vari-
ables. This is inessential for the modal fragment (the version with multiple
assumptions can easily be derived), but when we come to consider recursive
formulas the distinction will turn out to be more significant.

5.7 Rules for input / output modalities

Except for two rules needed for conversion between the free and bound input
modalities, the rules for input and output modalities follow the pattern estab-
lished for the process modalities in the previous section. As there introduced
variables like and below are subject to the side condition that they do not
appear in

Term variables. The rules for term variables are shown on Table 4.4.
The side-condition    fresh in and  means, as before,
that does not occur freely in the conclusion, nor is a member of

The most delicate of the motonicity rules is To see that it is
sound assume for simplicity that is empty. Let and be given such
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that for all Then can be written as
for all where is fresh. Assume

that Then
too, since was fresh. Thus

showing that as required.

Parallel composition. The rules for parallel composition are shown
on Table 4.5.

Input.

In the context of a rule such as we use   fresh as abbreviation of the
formula not fresh}.

Output.

Input modality conversion. Falling a little outside the patterns so
far established we also need rule to convert between the free and bound input
modalities:

and
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As an example we show how to derive a rule matching bound output with
free input.

Proposition 16 The following rule is derivable:

PROOF. From the antecedents concerning A first fresh are introduced using
and then the resulting free inputs are converted to bound inputs using

so that can be used to yield the result.

5.8 Examples

In this section we give a first little more substantial proof example. More
proof examples are given later.

Example 17 Consider the processes

In      first is passed as a private name from   to   along then is
returned along itself back to   again. Clearly the judgment

is valid. First CUT-1 is applied. Let

twice we can reduce (4.21) to the following three subgoals:

To prove (4.22) first apply and (REFL) to reduce to

Using CUT-1
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and then using (NEW2) and to

A few more steps in a similar vein suffices to complete the proof of (4.22), and
the proof of (4.23) is similar. To prove (4.24) we first reduce to the following
list of subgoals

using The first two subgoals are just instances of (I). For (4.29)
we just need to use the monotonicity rule and for (4.30) the rules

and Finally, for (4.31), we first use
to get

where is fresh, and then, using along with

which is reduced, by to

along with two goals resolved immediately by (I). Proceeding, we use
to reduce to

We now use and to reduce to

which is resolved very easily using and some elementary reasoning.

(CUT-1), to
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Variable naming. Observe that, because of the shape of the rules,
proofs tend to introduce long sequences of variables like in the
example above. It is very often the case that, once transitions or input-output
actions are taken (in the form of an application of a modal or an input-output
rule), old variables can immediately be forgotten using weakening. In the ex-
amples that follow, for this reason we often identify variables like and
assuming implicitly that when is introduced, assumptions concerning are
immediately forgotten about, whence can be renamed to

6. Soundness and completeness for the modal
fragment

Before pushing on to add rules of discharge that allow interesting recursive
properties to be proved we pause to establish soundness and completeness for
the modal fragment. Proofs in this section have been deferred to Appendix A.
Soundness of the most delicate rules was shown as the proof system was pre-
sented, so here we can just state soundness as a fact.

Proposition 18 (Soundness, modal fragment) If                            in the proof
system of Section 5 then

Concerning completeness we consider this only in a rather weak form, namely
that if where is elementary (i.e. all formulas in are elementary)
then is provable. We first introduce some basic tools.

Definition 19 Let be a partition and N a finite set of names.

denotes a sequence of the form where
each has the form or with and where

is in if and only if

Let where all are elementary. Then
if and only if                for all

We can now show the following property that deals with the first-order part.

Proposition 20   Let N include the set of non-fresh names of

If is boolean then if and only if

if and only if for all such that

From this point onwards we shall not be very explicit about the handling of
elementary connectives. We prove completeness via a kind of “Decomposition
Lemma” allowing us to decompose a goal into subgoals for subagents.

1

2

1

2
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Lemma 21 (Decomposition) Let N include
and Suppose is closed, and suppose is non-
recursive. Let If then
there are of modal depth not exceeding that of such that

for all and

Theorem 22 (Completeness, modal fragment) Suppose that
is boolean, and all formulas in are non-recursive. Then

1

2

7. Proof rules for recursive formulas
We now proceed to address fixed points. All approaches to analysis or veri-

fication of relies at some level on approximation ordinals and well-
founded induction, using the Knaster-Tarski Fixed Point Theorem. So indeed
does ours. In some cases when fixed point formulas are unfolded it is possi-
ble to determine suitable approximation ordinals which provide progress mea-
sures towards satisfaction. This applies, in particular, when unfolding least
fixed point formulas to the left of the turnstile, and when unfolding greatest
fixed point formulas to the right. Approximation ordinals are reflected explic-
itly in the proof system, by specific ordinal variables. This provides a simple
framework for dealing with a variety of complications including alternation of
fixed points and, more importantly in fact, a number of complications related
to fixed point interference which we explain below.

The material in this section is based on corresponding material in the pa-
per [6]. For this reason, proofs of some theorems have been left out of this
presentation.

Ordinal approximations. Soundness of fixed point induction re-
lies on the well-known iterative characterisation where least and greatest fixed
points are “computed” as iterative limits of their ordinal approximations. Let

range over ordinal variables. Name interpretations are extended to map or-
dinal variables to ordinals. Let U, V range over fixed point formula abstrac-
tions of the form New formulas are introduced of the shape and

Ordinal inequalities have their obvious semantics, and abbre-
viates as usual. For approximated fixed point abstractions
suppose first that                       and Then
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where the condition (*) is that and whenever then
Dually, if

with the same side condition (*) as above. We get the following basic mono-
tonicity properties of ordinal approximations:

Proposition 23 Suppose that and whenever then

1 If U is a greatest fixed point abstraction then

2 If U is a least fixed point abstraction then

PROOF. By wellfounded induction.

Moreover, and most importantly, we get the following straightforward applica-
tion of the well-known Knaster-Tarski fixed point theorem.

Theorem 24 (Knaster–Tarski) Suppose that Then

As the intended model is countable the quantification in Theorem 24 can be
restricted to countable ordinals.

7.1 Rules for fixed point unfolding and
approximation

The main rules to reason locally about fixed point formulas are the unfold-
ing rules. These come in four flavours, according to whether the fixed point
abstraction concerned has already been approximated or not, and to the nature
and position of the fixed point relative to the turnstile.
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The first unfolding rules, and are the expected unfolding
rules. These rules are always used when unfolding least fixed point formulas
occurring to the right of the turnstile, or, dually, greatest fixed point formu-
las occurring to the left. In these cases the proof task is an existential one,
to identify some approximation ordinal making the statement true, which the
first unfolding rules merely serve to delay. On the other hand, in the case
of least fixed point formulas occurring to the left of the turnstile, or greatest
fixed point formulas occurring to the right, the task is a universal one, suggest-
ing well-founded induction as a suitable proof strategy. The approximation
rules, (APPRX-L) and (APPRX-R), serve to introduce ordinal variables for this
purpose. Having introduced ordinal variables they need to decremented as ap-
proximated formulas are unfolded. This is the purpose of the second pair of
unfolding rules, and

Now, since ordinal approximations are introduced at only certain positions
in a judgment (to the left for least fixed points and to the right for greatest
ones), if the positions of approximated formulas would be unaffected by the
local proof rules, the six rules so far discussed would have been sufficient.
Unfortunately, due to the cut rules, this is not so. Consider for instance the
following (quite typical) application of the process cut rule:

In this example may be a greatest fixed point formula which, through some
earlier application of (APPRX-R) has been assigned the ordinal variable The
second antecedent has occurring to the left of the turnstile. The third pair
of unfolding rules are needed to handle this situation.
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In addition to the above 8 rules it is useful also to add versions of the identity
rules reflecting the monotonicity properties of ordinal approximations, Propo-
sition 23:

Additionally a set of elementary rules are needed to support reasoning about
well-orderings, including transitivity and irreflexivity of <. These rules are left
out of the presentation. For the soundness proof (which is uncontroversial) we
refer to [6].

Theorem 25  The rules (APPRX-L), (APPRX-R),
are sound.

7.2 Rule of discharge
In addition to the local rules for unfolding and approximating fixed point

formulas, a rule is needed for discharging valid induction hypothesis instances.
The fundamental problem in devising such a rule is that fixed points may in-
terfere as proofs are elaborated. The problem is illustrated in Figure 4.2. The
formula is assumed to be a least fixed point formula, and the formula is
a greatest fixed point formula. The node labelled * can be interpreted locally
as an instance of an induction hypothesis, using induction on and the node
labelled ** similarly uses induction on However, for the node * there is
no information as to the relationship between and and similarly for the
node ** there is nothing relating and This easily happens in practice,
viz. the examples below. The problem is that in this case the unfolding of fixed

and
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points interfere: With the information provided we are unable to cast the proof
as a proof by well-founded induction with the nodes * and ** corresponding
to applications of an inductive hypothesis for the simple reason that such an
argument would be unsound. On the other hand, if we knew at node **, say,
that such a casting would exist, as nested induction first on and then
in

That this problem indeed arises in practice is illustrated by the following
two examples. The first example shows where discharge should fail because of
fixed point interference.

Example 26 Consider the proof goal

The assumption states (in the absence of name passing which is not needed to
illustrate the problems) that any infinite sequence of transitions labelled or

can only contain a finite number of consecutive transitions labelled while
the conclusion states that any infinite sequence of transitions labelled or
can only contain a finite number of transitions, never mind if consecutive or
not. Thus (4.37) is false. We attempt to build a proof for (4.37) to see where
the construction breaks down.

Let us introduce the following abbreviations:

We start by refining (4.37) to the subgoal

using the rules (UNF-L-1), (UNF-R-1), (APPRX-L) and (APPRX-R). Continuing a
few steps further (by unfolding the fixed point formulas and treating the con-
junctions on the left and on the right) we obtain the two subgoals

Subgoal (4.39) is refined via rule Mon2 to
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and after unfolding using (UNF-L-1) and then approximating we arrive at

This judgment we might hope to be able to discharge against (4.38) by induc-
tion on By the same token when we refine (4.40) to

we would expect to be able to discharge against (4.38) inductively on This
does not work, however, since derivation of (4.42) from (4.38) fails to preserve
the induction variable needed for (4.43), and vice versa, is not preserved
along the path from (4.38) to (4.43).

Secondly we give an example showing where discharge should succeed.

Example 27 Consider the (reversed) proof goal

stating that if all infinite sequences of transitions labelled or can only con-
tain a finite number of transitions, then these infinite sequences of or
transitions can only contain finite sequences of consecutive  t  ransitions. This
goal is clearly valid.
The abbreviations we shall use are:

First we apply rules (APPRX-L), (APPRX-R), (UNF-L-2) and (UNF-R-2) to reduce
(4.44) to the subgoal

Continuing in much the same way as in the preceding example we arrive at the
two subgoals
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These subgoals are refined, using (UNF-R-2) and (UNF-L-2) respectively, to

In this case it is safe to discharge both judgments against (4.45), since the
unfolding of does not interfere with that of

The rule of discharge. There are two key task in providing a sound
and generally applicable rule of discharge:

The first task is to ensure that each discharged node determines a “pro-
gressing cycle” in the proof structure: That is, that the node determines
a cycle, and that along that cycle some ordinal variable is decreased in a
recursive manner.

The second task is to ensure that progress required for the safe discharge
of one node can not be undone by cycles induced by the discharge of
some other node. Or in other words, in traversing cycles induced by
node discharge critical progress ordinals belonging to other cycles must
be regenerated.

It would be possible to use games to completely characterize the conditions
under which discharge is safe. Such a game-based characterisation, however,
would be too global a condition to be very useful for proof construction (which
is the main aim of the work reported here), and it is often helpful to trade a
complete, but global, rule for an incomplete one which is more local. Other
versions of a rule of discharge than the one presented here can be devised, cf.
[7] for an example applied to CCS. The present rule of discharge is based on
[6].

The rule of discharge relies on some fixed, but arbitrary linear ordering <
on fixed point formula abstractions . .  Assuming such a single fixed linear
ordering can be too restrictive when recursive proof structures are independent.
For the purpose of the examples and theorems of the rest of the paper this
is, however, not a problem. Below we briefly discuss ways of relaxing the
construction to allow the linear ordering to be built incrementally.

Below we define the critical notions of regeneration, progress, and dis-
charge. We use to range over proof structure nodes. Discharge is applied
when facing a proof goal which is unelaborated (no rule has been applied to
that node), such that, below we find some already elaborated node such
that is in a sense an instance of This requires names and term variables
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present in to be interpreted as names in This is what the substitution
of the following definition serves to achieve.

Definition 28 (Regeneration, progress, discharge) Let be a
path such that is not elaborated. Suppose that is labelled by

for all

1 The path is regenerative for U and the name interpretation if when-
ever there is a such that is a subformula of then there are
also such that for all is
a subformula of and Moreover we require
that

2 The path is progressive for U and if we can find such
that:

(a) For all is a subformula of and

(b)

(c) For some

3 The node can be discharged against the node if we can find some
U and substitution such that:

(a) is regenerative for all and

(b) is progressive for U and

(c) and

(d) For all assumptions in and all assertions
in then

In this case we term a discharge node and its companion node.

In this definition we are being slightly sloppy with our use of U’s:  Really we
are identifying fixed point formula abstractions up to ordinal approximations
except where they are explicitly stated.

Condition 28 first states that discharge can take place on an unelaborated
node if we find some ancestral node which is “more general” (Condition 28.3.C
and d) than the node being discharged, provided that the cycle thus induced
satisfies the regeneration and progress constraints given. Observe that an ef-
ficient approximation of Condition 28.3.d would be to test for membership,
ie. and respectively. With this condition the name
interpretation becomes extendable to a substitution making
identical to a weakened version of
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There does not appear to be any obvious way in which the equality con-
straint 28.3.C on restriction sets can be eased. Instead the second cut rule (CUT-

2) must be used to explicitly garbage-collect unused names as proof elaboration
proceeds.

The progress condition, 28.2, requires the existence of a cycle on an ordinal
variable such that, along the cycle, the value associated to that ordinal variable
is somewhere strictly decreased.

Finally, the regeneration condition, 28.1, is the condition required to ensure
that progress cycles on formulas V with “higher priority” (smaller in the or-
dering <) than the formula U currently being considered can not be undone
when the cycles are nested.

Concerning the examples, it is quite easy to verify that for Example 26 no
linearisation of the fixed point formulas can be devised such that the nodes
(4.41) and (4.42) can be discharged. On the other hand, for Example 27, any
linear ordering which (up to approximation ordinals) has will do.

Observe that the linear ordering on fixed point formula abstractions can be
chosen quite freely. One might expect some correlation between position in the
linear ordering and depth of alternation, viz. Example 27 above. In practice this
is in fact a good guide to choosing a suitable linear ordering. However, as we
show, we do not need to require such a correlation a priori. Moreover one can
construct examples, using cut’s, of proofs for which the above rule of thumb
does not work.

Now, the compositional proof system is obtained by adding the proof rules
for fixed points, including the rule of discharge, to the local rules of Section 5.
We write if thejudgment is provable in the composi-
tional proof system. For the proof of soundness of this proof system we refer
the reader to [6],

Theorem 29 (Soundness, compositional proof system)   If   then

8. Finite control completeness

We then turn to the issue of completeness and consider generalisations of the
completeness result (Theorem 22) to recursive formulas. The generalisation of
Theorem 22 which we seek is to general formulas and finite control processes.

Definition 30 (Finite control agent) Say that an agent term E uses the agent
identifier D, if either D occurs in E or else D occurs in the body of an identifier

such that E uses A finite control agent is a closed agent term E such
that the parallel operator does not occur in the body of any identifier used by
E.
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The notion of finite control process is a direct generalisation of the notion of
finite state process in the case of CCS. Completeness for finite state (CCS) pro-
cesses vs a compositional proof system related to the proof system considered
here was proved in [5]. However, the details of that formalisation, in particular
the rule of discharge, was quite different from the proof system presented here.

To prove completeness for finite control processes we formulate a model
checker, an alternative, non-compositional proof system and show that
whichever judgment is provable using the model checker is also provable in
the proof system presented in the preceding sections. Model checkers based
on non-compositional proof systems such as the one we go on to present have
been considered and proved complete for finite control processes several times
over [4,1]. Similar techniques can be used to prove completeness of the present
version.

Definition 31 (Model checking judgments) A model checking judgment is a
judgment of the form for which all formulas in are elementary
and for which E is of finite control.

We define a proof system to apply to model checking judgments. The proof
system consists of all rules defining the compositional proof system (restricted
to model checking judgments) excluding the transition and io modality rules.
That is, the proof system includes the structural rules (which due to the restric-
tion to model checking judgments become rather standard, for instance the
first two cut rules become superfluous), the logical rules, and the rules equal-
ity/inequality.

The transition rules are replaced by the following two schemes:

(Poss) If for all such that there is an E such that

and has been inferred,
infer then

(NEC) If has been inferred for all E such that
and infer then

together with the rules and

The rule of discharge applies to the model checker without modification. In
effect the conditions in this case degenerate to those of the model checker
presented in [4]. Observe that the rules (Poss) and (NEC) are infinitary due
to the quantification over name interpretations. Name interpretations are only
significant, however, up to the names that are not fresh (of which there is only
a finite supply). Write if there is a model checker proof of
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We state soundness and completeness of the model checker proof system
without proof:

Theorem 32 (Soundness and completeness of model checker) For all model
checking judgments if and only if

One main obstacle in proving the completeness result we seek is that we need
to devise a strategy for choosing cut-formulas in order to apply the dynamic
rules in the compositional proof system. There are many ways of doing this. In
practice one normally takes a lazy approach and just introduces a logical vari-
able to stand for the required cut formula, and then gradually instantiate this
variable as the need arises. In fact such a strategy may be quite efficient and
it is moreover well suited for parallel or distributed implementations. Here,
however, we choose a non-lazy approach instead, mainly because it makes the
proof easier. Because processes are assumed not to contain in recursively
defined contexts in turns out that such processes can be characterised com-
pletely up to (in this case strong late) bisimulation equivalence by a so-called
characteristic formula. We have already shown this to be the case for a related

logic in earlier work [1]. Assume that P is a finite control pro-
cess. Assume for each well-formed process term   and name interpretation
a unique formula variable Let range over sequences of pairs of pro-
cess terms and name interpretations (those pairs that have already been visited
once in constructing the characteristic formula). The formula
is the characteristic formula for P, given name interpretation and visited list

Here, describes the potential transitions possible from P assuming
and describes the property “necessarily” holding in the continuation:

For abstraction and concretions we define:

Abbreviate by
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Observe that only finite conjunctions and disjunctions are used in the defini-
tion of Char. Thus, the only reasons why could be ill-defined
would be if the computation of failed to terminate, and this
could easily happen if care is not taken when choosing names of bound vari-
ables. However, if we adopt the conventions that

1 names are linearly ordered, and every time a variable is bound it is cho-
sen to be minimal in the ordering, and

2 va.E is identified with E whenever a does not appear freely in E,

then it can be shown that is in fact well-defined using the tech-
niques of e.g. [4] or [1]. Here we just state this as a fact.

Proposition 33 Suppose that P is   finite control process. Then
is well-defined.

For the completeness proof we need to resort to the following correctness prop-
erty for characteristic formulas. We leave out the proof of this quite easy
lemma. A similar result was proved in [1]. In the statement of this lemma and
for the remainder of this section we abbreviate by where
the set N is any set of names including those free in the judgment under con-
sideration.

Lemma 34 For all finite control processes P and partitions

Before embarking on the main completeness result we need one further lemma,
used to pass from results concerning terms with substitutions to results con-
cerning open terms governed by assumptions.

Lemma 35 For all finite control processes P and partitions
then

PROOF. (Hint) The compositional proof mimicks the model checker proof by
appealing to the monotonicity rules.

The proof of the finite control completeness theorem is deferred to Appendix B.

Theorem 36 If                         then

In view of Theorem 32, completeness for finite control processes is then a
direct corollary:

Corollary 37 (Finite control completeness) For all model checking judgments
then
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9. Natural numbers
In this section we consider the specification of N at given in Section 4, and

show how one can use the proof systems to formally demonstrate that the op-
erations (of ZERO, SUCC, COPY, and ADD) satisfy the desired proper-
ties. Observe that while ZERO and SUCC are very simple static processes,
COPY and ADD are not.

Proposition 38 The following judgments are derivable:

We concentrate in this section on giving an outline proof of (3), proving (2)
along the way. The proof of (1) is quite straightforward, and the proof of (4) is
a variation on the theme.

The main problem which the proof (of (3)) has to face is process creation
in the definition of COPY. That is, the continuation of contains
a term of the shape To deal with this
we use a process cut, replacing each of the subprocesses and

by abstract state-oriented descriptions, and continue proving
correctness based on those.

Finding an appropriate cut formula for SUCC is easy:

The correctness of Succ is easily proved:

Proposition 39
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Observe that this establishes Proposition 38.2 by means of a process cut.
The next step is to find a cut formula for COPY. Our intention is to define

a property characterising, to a sufficiently precise degree, the behaviour of a
process term of the shape

Again we use a state machine-oriented style of specification. The machine
being predicated will, as (4.50) have two components, each with a two-state
behaviour, namely a component corresponding to the successor processes, and
a component corresponding to the copy process. Each of these component can
to a large extent execute concurrently. We thus propose the following definition
of the cut formula Gcopy (generalized copy) as a greatest fixed point formula:

The definition of is given in equational terms. However, the definition
is easily rewritten as a proper greatest fixed point formula. The correctness of

 is reflected by the following proposition:

Proposition 40
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The formal proof of Proposition 40 is quite sizable though (since we have
identified the cut formulas) routine and likely to be mechanizable. Observe that
the proof of 40.2 uses 40.1 through two process cuts. Finally Proposition 38.3
is a direct corollary of Proposition 40.2 and 40.3 using a process cut.

It may be worthwhile to make clear that we do not intend to advocate the
use or representations of data types in actual practice.
There are much simpler accounts of data types around useful for practical pro-
gramming and specification. What the example serves to illustrate, however,
is that while fairly trivial as a data type, as processes executing in parallel,

representations of data type embody a simple sort of mobility pro-
tocol the behaviour and correctness of which is not trivial. Observe in this
connection also that we achieve genuinely more than the corresponding type
correctness results of [10] which are, in effect, results in the meta theory of
the whereas here the reasoning has been “internalised” using the

proof system.

10. Buffers

In this section we consider buffer properties in the style of Example 10.
Consider for instance the formula describing absence of spuri-
ous output. Our task in this section is to show that holds of the
unbounded garbage-collecting buffer As usual, since
creates processes dynamically, we use process cut’s using cut-formulas which
reflect a state machine-like behaviour. First, for start cells define:

and then for buffer cells define
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It is a straightforward task to translate the above equational property descrip-
tions into proper greatest fixed point formulas. This task is left to the reader.
The main lemmas and the final correctness property (item 5) is stated in the
following proposition:

Proposition 41

Most of these items are proved in a straightforward manner. The exception,
if any, is 41.2. The goal-directed proof starts with the desired judgment:

We start by approximating and unfolding the right hand side fixed point, then
introducing the conjunctions to the right. The result is the following three
subgoals:

First, for (4.52), we observe that of each of or give immediately
cause for discharge. Furthermore, no communication between and is en-
abled: may input along or but may only output along – neither of
these can be identified given the assumption and the restriction set. Also
may only output along but may only input along – again these can not
be identified. Thus we can dispense with subgoal (4.52).

Then, for subgoal (4.53), there are two possibilities for input, along and
along (and these are known to be distinct channels). First, in the case of input
along the subgoal is (after some initial reasoning steps) reduced to
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which is resolved almost immediately. Second, in the case of input along the
subgoal is reduced to

which can be discharged against the top-level goal (Proposition 41.2).
For subgoal (4.54), then, we need to consider output along We obtain the

following reduced subgoal:

Again we need to approximate and unfold the right hand-side formula, and
consider each case of action type in turn. This analysis is simpler than the
one we’ve already done except for the situation characteristic of of out-
putting along (in this case) to The result (after enacting the reductions
corresponding to this scenario) in this case is a subgoal of the shape

which is an instance of a generally (and easily) provable fact, that parallel
composition with the STOP process does not affect behaviour. We can thus
regard absence of spurious output for our garbage-collecting unbounded buffer
as proved.

11. Conclusion
Earlier work on modal and temporal logic and the includes [13],

[4] and [1]. The work by Milner, Parrow and Walker did not consider tempo-
ral connectives. In [4] we attempted an automated, model checking approach
restricted to finite control processes. In [1] we reconsidered the model check-
ing problem and also gave a proof system, however for non-recursive formulas
only. Also in the present paper the details are very different: the temporal
logic is somewhat different, the proof system is cleaner, and we use a symbolic
approach which is essential for efficiency in practical applications.

There are several important lines of enquiry for future work. The first con-
cerns the practical applicability of the proof system. The sheer number of rules
involved in the proof system may seem disheartening. On the other hand most
rules are actually very intuitive – given the number and nature of the basic
process and formula connectives there are just a lot of cases to be considered.
Thus, for any given judgment, only a small and easily comprehensible collec-
tion of rules are actually applicable. Moreover by far the large majority of
proof steps are entirely mechanical, and only at very specific places (choice
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points, cut’s, applications of the (DILEMMA) rule) is intelligence required. Thus
the proof system is much better geared to computer aided tools than to pen-
and-paper. At SICS we are currently extending the work reported here to a
core fragment of Ericsson’s Erlang programming language [3] including fea-
tures such as asynchronous buffered communication, data types such as natural
numbers, lists, atoms, pairing and process identifiers (pid’s), dynamic pid cre-
ation, process spawning, sequential composition, pattern matching.

An equally important and related line of enquiry concerns the source of in-
completeness of the proof system. Intuitively the key problem is that in proving
properties of a parallel composition one must guess properties of the compo-
nents. But it is not always possible to find such properties as it may very well
be the case that has a property like divergence (the capability of perform-
ing an infinite sequence of internal computation steps) because    and   have
properties (context-free, context-sensitive, or beyond) that are inexpressible in
our logic. It has sometimes been argued that this problem makes the entire
problem of devising compositional proof systems a futile one. We do not at
all subscribe to this view, however. Compositionality should not be viewed as
an all-or-nothing matter, rather, compositionality is a useful tool, to be brought
to bear when warranted by the specific situation. But: is expressiveness the
only source of incompleteness? If this is the case we ought to be able to prove
completeness, or maybe even decidability, for judgments like

If it is not we would still like to ask whether derivability of judgments like
(4.60) is decidable as this would have obvious implications for the utility of our
approach. Results like these would be particularly important as we as yet only
have examples such as the ones given to bring out our intuition that the princi-
ples we are exploring are essential improvements upon those basing themselves
solely on global state exploration (including, for instance, the approach of [2]).
For observe that the completeness results for finite control agents established
here only suffice to show that the power of our compositional proof system is
not worse than what one can achieve using much simpler global approaches
such as [4].

Other issues concern the fundamentals of the proof system. The rule of dis-
charge needs better motivation than the one we are giving here. Really one
should view the discharge conditions given here as finitary approximations of
conditions applying to infinite proof structures, leading to automata based char-
acterisations. Even the shape of the local rules themselves, as well as the choice
of logical connectives is open to debate. Why do we choose some connectives
over others? Certainly the private input modality considered in [1] is poten-
tially very valuable in applications. Does it make sense to devise a separate
logical connective for restriction? Concerning the shape of basic judgments,
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how important is the use of the relativized turnstile? We use restriction sets
in the style of [1] (and [18]) in order not to violate alpha-convertibility, even
in the presence of free process variables. On the other hand, expecting alpha-
convertibility of open terms may be unreasonable and counterintuitive, and by
abandoning this requirement judgments, and hence the entire proof system,
may be simplified rather considerably.

Further, we need to obtain characterisations of expressiveness along the
lines explored for the modal itself by a number of authors, e.g.
[8]. Concerning the choice of proof rules better completeness and decidabil-
ity results will give much sharper handles on the kind of rules that should be
admitted. A promising approach is to embed directly into the proof system
the operational semantics proof rules in the style suggested by Simpson [17]
for Hennessy-Milner logic (without fixed points). First investigations in this
direction for CCS and the modal are reported in [7]. Progress in
this direction would be useful to remove some apparent arbitrariness in our
choice of process calculus. Really we should expect to be able to construct
similar logics and proof systems for whichever versions of or other
calculus for that matter, one might want to come up with. Not all logics or
proof systems would be equally attractive, and indeed some effort has been put
into the choice of a version of the which remains both faithful to
the original while at the same time permitting as orthogonal treat-
ments of the different modalities as possible. In particular we have chosen to
avoid the issue of sorting. In our calculus local deadlocks may arise in case the
number of arguments in sending and receiving actions does not match. What
the deeper relations should be between sorting (and more generally types and
static analysis techniques), and semantically based proof systems as the ones
we consider here, however, is outside the scope of this paper.
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Appendix A. Proofs for Section 6
Proposition 20. Let N include the set of non-fresh names of

1 If is elementary then if and only if

2 if and only if  for all such that

PROOF. (1) If: Use soundness. Only-if: By induction on the structure of
Let Reduce to
where      by            Using (D-L) this is reduced, using elementary reason-
ing, to the set of judgments where is
required to agree with on N. But each element in this set is provable by the
induction hypothesis. Let then Since we find

such that Either can be chosen in N in
which case by the ind. hyp. so that

by or else in which case
thus also

by Butthen

too (by definition (19)), and then

But then it suffices to use (INFTY) and (CUT-1) to prove    as
desired. The remaining cases are quite easy.
(2) By induction on the complexity of

If then In the other
direction use (D-L).

Suppose first that and Reduce the
goal to the two subgoals

The second subgoal is easily dealt with using (CUT-1) and the induction hypoth-
esis by showing that whenever is a hypothesis in

The first subgoal is proved first using to reduce to
and then by (D-L) to all goals of the form
where agrees with on N. Using the induction hypothesis this
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can be reduced to the single goal
which is directly provable by (I) and (E-L). Conversely

we need to show from the assumption that
whenever First reduce to

where Using (CUT-1) and (INFTY) this is reduced to

Now, by and this is reduced to

where is fresh, and then using (CUT-1) and finally to

But observe that if and only if
whence the result follows by

the induction hypothesis.
The remaining cases are left for the reader.

Lemma 21 (Decomposition). Let N include
and suppose is closed, and

suppose is non-recursive. Let If
then there are of modal depth not exceeding that

of such that

1 for all fresh and

2

PROOF. Assume the preconditions of the Lemma hold. The proof is by induc-
tion on the modal depth of then structure of E, and then structure of The
first-order connectives can be dealt with in a generic manner.

Contradiction.

Let for all We obtain fresh
and by elementary reasoning and

Proposition 20.1. The cases for an inequation or are similar.

For or By the
induction hypothesis we find           (of sufficiently small modal depth)
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such that fresh for all and
Then we are done by

Suppose that is not in N. We obtain
By the induction hypothesis we find appropriate such

that

Let Since was chosen not in N, and by the
too. The case for is similar.

We find a such that
thus by the induction hypothesis we find (appropriate) such that

for all and Then, by
and we are done.

Secondly we can deal with some process connectives in a generic manner
too:

if             then  else  Assume Assume
(other case is symmetric). Then By the 2nd level induction
hypothesis we find          such that fresh for all and

Since by Proposition 20.1,
by (W-L) also Then we use (COND)

along with elementary reasoning to conclude
as desired. Let then (e.g.) and We obtain that
since in the context and can not be identified. We then use the 2nd level
induction hypothesis to find           such that fresh and

By (W-L),
and by (NEW1),  so

by (COND),  as desired. Remaining is the case
for and In that case we obtain so by the 2nd level
induction hypothesis we find           such that fresh and

By (W-L),
and by (IRR), Thus

as desired.

We obtain so by the 2nd level induction hypothesis
we find           such that fresh for all and

thus by
(NEW2). Moreover,   fresh  too since is fresh.

For the remaining connectives we proceed by induction first on modal depth
and then on agent structure.
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We continue by induction on the structure of E.

E = 0. Contradiction.

for or By the 2nd
level induction hypothesis find of desired properties. Then

fresh for all and
by

Contradiction.

In this case and By the outer
level induction hypothesis and we are then done.

Assume and (the other case
is symmetrical). By the outer level induction hypothesis we find
such that fresh fresh and

Let and We obtain
fresh fresh and

by and some elementary reasoning. Now use
the 2nd level induction hypothesis to find              such
that fresh for all and and

fresh Let then and the result is
obtained using elementary reasoning and some cuts.

and Contradiction.

Since is closed, for some
We can then proceed by induction on the structure of

Given the previous case, and observing that all rules relevant to
the modality have correlates for the only subcase warranting atten-
tion is the case for Assume first that and

such that and
Then By the outer induction hypothesis we find
and such that (since is fresh)

Let  and Then fresh
and the goal we need to show is
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Use to reduce this to the subgoals

The first two subgoals are quite trivial, and 4.69 is resolved by
COM) to reduce to

Use then (V-L) and (NEW1) to obtain the subgoal

which is proved (4.65). The other case, where the communication between
and is free, is similar and left for the reader.

Similar to the case for

We consider only the case for We identify formulas
for such that fresh

and similarly formulas for such that         fresh
such that the premises of

become derivable. So, assume first that
so that There are six cases of interest:

1 such that

2 and such that

3 and such that

Cases (4)–(6) are symmetric to the above. In case (1) we find, using the outer
level induction hypothesis, and such that fresh

fresh and In case
(2) we find      and such that fresh fresh

and In case (3)
we find      and such that fresh fresh

and In the
symmetric cases and are identified similarly. Define now
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where  fresh abbreviates the conjunction of inequations for all that
occurs freely in F. The formulas are defined symmetrically. We
need to show that fresh Each
conjunct is considered separately. The first two are quite easy and left aside.
For the third we need to show, e.g., that

This is reduced to

for all such that So assume
Assuming fresh we then need to show

but this follows by the induction hypothesis. The remaining conjuncts of
and are verified similarly.

We also need to show

By we need to show the following:

along with a few other subgoals which are easily proven from the assumptions.
To show (4.72) use  first      and then to reduce to a goal of the form

fresh

fresh   fresh

fresh
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which is provable by the
induction hypothesis. (4.73) is proved similarly. To show (4.75) reduce the
goal, using elementary reasoning, to a subgoal of the form

To show this let and and, using
we have to show

This is then reduced, using to

which is in turn reduced, using to

which is provable by the induction hypothesis. Now it just remains, using
the 2nd level induction hypothesis, and observing that modal depth has not in-
creased, to identify the desired and to put the desired proof together
using(CUT-1).This is routine.

Again we proceed by induction on agent structure.

First we deal in one blow with any E which is not an abstraction since
these cases are contradictory. The remaining cases are:

The only relevant case is when is an abstraction and
is a process (or symmetrically). We can write as (b) Then

Since is of smaller size than E
the 2nd level induction hypothesis applies to produce such that

fresh and fresh and
Now  fresh

and as desired, by
and a little elementary reasoning.
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Then so by the 2nd
level induction hypothesis we find           such that fresh

for all and Then we
are done by

In this case and we can proceed by induction in the
structure of

Similar to previous case.
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Appendix B. Proof of Theorem 36
Theorem 36.      if         then

PROOF. Observe first that it is safe to assume that, up to names that are not
fresh, determines a unique such that If this is not the case then
the dilemma rules apply on both sides to reduce the problem to a number of
problems that do possess this property. Now, since is uniquely determined
we might as well assume that is the identity on names. Let then be the
substitution Consider a model checker node labelled

where the variables occurs linearly in E. The aim is to produce a
proof tree of where and
show that, for the tree constructed from the root model checker node, all non-
axiom leaves can be discharged. The proof is by induction on the number of
occurrences of in and then following the structure of the model checker
proof. Most subcases of the base and inductive steps for the outer induction
are common so we proceed directly to a case analysis on the structure of the
model checker proof.

Suppose first that is an axiom leaf, i.e. an instance of (I), (REFL), (IRR),
(NEW1), (INFTY), or (NEC) (where, in the last case, there is no such that

In this case we obtain by Theorem 22.
Leaves that are discharged are not considered until later.
So, assume that is an internal node. We consider each possible rule in

turn. There is nothing to do until we get to the rules that are unique to the
model checker proof system.

(POSS)Assume that  and that the model checker rule application

infers by showing that there is an such that
and Observe that will have the form We proceed

by induction on size of inference that and then by cases on E.

1 E is a variable In this case and we obtain (by Lemma 35)
that

2 (SUM). Let If then for or
and then by the innermost induction hypothesis,

so by

3 (PRE). Let In this case  so by the (2nd or
3rd) level induction hypothesis, whence by
or
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4 (PAR). Let Assume for simplicity that and that the

inference of has the shape

(such that To build up the proof tree from the node
first apply (CUT-1) to reduce to the following two sub-

goals:

Now, by Lemma 34 we know that and so,
by the outermost induction hypothesis,

too. Thus only (4.80) is left. By unfolding the lhs fixed point, and by
introducing to the left (4.80) is reduced to

which in turn is reduced to

along with the subgoal which is proved by The-
orem 22. The goal (4.83) stands in the desired relation to the model
checker node

The remaining cases for    are easily proved in a similar fashion.

5 (COM) – free communication. Let Again we assume that

and that the inference of has the shape

such that First use Lemma 34 to obtain

Let
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The goal is to prove

Use two cuts to reduce to

Subgoals (4.87) and (4.88) are obtained, as before, by the outermost
induction hypothesis. By (4.89) is reduced to the subgoal

We are now almost done except that the communication needs to be
completed. Observe that

We now reduce (4.90), using to

and then, by and boolean reasoning, to

where the is present in the case is provably distinct from all free
names in If the is absent we are done immediately, and if not
we only have to observe that and we are
done.

6 (COM) – bound communication. Let Assume again that
and that the inference of has the shape

The proof follows the previous subcase quite closely. Let
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The goal is reduced, using two cuts and the
outermost induction hypothesis to a judgment of the form (4.89). As the
previous subcase this is further reduced to a subgoal of the form (4.90).
Observe now that

while isunchanged from (4.92). Now, instead ofusing
we use (observe that we can use alpha-conversion to
identify the bound in with the bound in to reduce the current
goal to the following:

and then further, using boolean reasoning, to

which is the required result.

7  (RES), (OPEN). Let and assume that the inference of
has the shape

where and and where The reduction is
simple, of   to using(NEW2).

8 (ID). Let and assume that the inference of has the
shape

because In this case the reduction is straightforward from
(FIX).

This completes the case for a diamond formula. The case for a box formula
is quite similar, as are the cases for input/output. These cases are therefore
omitted. We thus need to pay attention to the proper discharge of hypotheses.
These, however, are dealt with quite simply by observing that, as the struc-
ture of the model checker proof, and in particular the pattern of unfoldings of
greatest fixed point formulas, is reflected in the structure of the compositional
proof system proof, and in particular leaves discharged in the former proof will
correspond to leaves that can be discharged in the latter.
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Abstract Symbolic model checking is a powerful formal verification technique that, con-
trarily to theorem proving, requires no user assistance. It is able to verify that
an implementation, modelled as a labelled finite-state transition graph, satisfies
its specification, given as a set of terms in some temporal logic. This chapter
introduces the basics of symbolic model checking. We first give the definition
of Kripke structures, our model for finite-state transition graph. Temporal logic
model checking, including the specification language CTL (Computation Tree
Logic), a less powerful verification technique, is then defined. Symbolic model
checking itself is then defined. Throughout this tutorial, we use as a running
example the alternate bit protocol to illustrate the different concepts.

Keywords: formal methods, verification, model checking, temporal logic

1. Introduction
Model checking is a decision procedure to check that a given structure is

a model of a given formula. [11] and [29] presented independently a fully
automatic model checking algorithm for the branching time temporal logic
CTL in finite-state transition systems. The verification was performed as a
graph traversal, linear in both the size of the formula and in the size of the
model. This algorithm has been used to verify systems of up to several million
states and transitions, which is enough in practice only for small systems.

A major breakthrough has been achieved when [25] proposed to represent
the state-transition graph and implement efficiently the search algorithms using
binary decision diagrams [6] (BDDs), which are a concise representation for
the propositional logic. In this algorithm, called symbolic model checking,
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the BDDs are used to represent and operate on the characteristic functions
of both sets of transitions and sets of states of the graph. Since sets are not
explicitly enumerated, but represented by their characteristic functions, the size
of the verified model is not bound by the memory of the computer carrying the
verification. This turns possible the verification of systems that are several
orders of magnitude larger than was previously achieved.

Outline: We present these techniques by first discussing Kripke structures,
the state-transition model of preference in the literature on the subject (Sec-
tion 2). We then introduce the temporal logic CTL and a corresponding de-
cision procedure, temporal logic model checking (Section 3). We present the
connection between propositional logic and Kripke structures, the binary de-
cision diagram representation for propositional logic formulas, and symbolic
model checking algorithms (Section 4). Finally, we conclude with a discussion
on some of the ongoing research on the subject (Section 5).

2. Kripke structures

2.1 Definitions

Among the numerous concurrency models proposed in the last 20 years [33],
Kripke structures are one of the most commonly used in the scope of temporal
logic model checking. Kripke structures are interleaving, non-deterministic,
state-based models and suitable to represent a wide-range of practical prob-
lems: hardware, protocols, software, to name some of the most important.

Informally, Kripke structures are finite-state transition systems, where the
labelling is associated with states, instead of the more traditional labelling of
transitions.

Definition 1 (Kripke structure) Let P be a finite set of boolean propositions.
A Kripke structure over P is a quadruple M = (S, T, I, L) where:

S is a set of states (when S is finite, we say that M is a finite Kripke
structure);

is a transition relation, such that

is the set of initial states;

is a labeling function.

The labelling function L associates each state with a set of boolean proposi-
tions true in that state.

Example 2 (Kripke structure) The Kripke structure ABP sender describes
the sender component in the alternating bit protocol. The set of atomic propo-
sitions is and where:
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the set of states is such that

the transition relation is such that

The state transition diagram of ABPsender is displayed in Figure 5.1.
In this protocol, the sender tags messages with a control bit alternatively

set high and low. The receiver shall acknowledge each message, attaching the
corresponding control value. The sender waits for the acknowledgement and
checks that the control value is correct before sending another data message. If
necessary, the same data is sent again. In this Kripke structure, indicates the
state of the control bit. is set when the sender is getting the data from the user.

states that the sender is sending the message to the transmission medium.
Finally, indicates that the sender is waiting for the acknowledgement. The
data messages are not modeled in this version of ABP sender.

A path in the Kripke structure M is a possibly infinite sequence of states
such that is the state of The

set of states reachable from I, denoted RS, is the set of states such that there
exists a path to this state:

2.2 Computation tree
The computation tree of a Kripke structure is obtained by an operation sim-

ilar to that of unfolding in CCS [27]. Consequently, computation trees form

the set of initial states is such that

the labeling function is such that
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a special class of Kripke structures, such that the transition relation is acyclic,
and only branches away from the initial states.

Definition 3 (Computation tree) Let P be a finite set of boolean proposi-
tions. A computation tree is a Kripke structure M = (S, T, I, L ) over P,
such that:

every state is reachable;

Let the transitive closure of

For any Kripke structure M, it is possible to associate a computation tree
M' such that the sets of states of M' is isomorphic to the set of the finite paths
of M.

Definition 4 Let M = (S, T, I, L ) be a Kripke structure. The computation
tree of M, denoted ct (M), is the Kripke structure  (S', T', I', L') such that:

S' consists of all finite paths of M that start at initial states;

I' consists of all paths of M with only one (initial) state;

For  any path of M,

Example 5 (Computation tree) Figure 5.2 depicts the initial part of the state
transition diagram of the infinite Kripke structure ct (ABPsender). For in-
stance, state      in ct (ABPsender) corresponds to path in ABP sender.
Note how the labeling function is preserved between the origin and destination
of the transitions in the original Kripke structure and the corresponding com-
putation tree.

3. Temporal logic model checking

Computation tree logic
Computation Tree Logic (CTL for short) is a logic to reason about Kripke

structures and is interpreted over their computation tree. Within the framework
of modal and temporal logics, CTL can be classified as a branching-time, dis-
crete temporal logic.

and
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3.1.1 Syntax.  The set of Computation Tree Logic (CTL
for short) formulas over a set of propositions P is the smallest set such that

 and, if and are in then
are in

Each temporal logic operator is composed of:

a path quantifier: E, for some path, or A, for all paths;

followed by a state quantifier: E, next state on the path, U, until, G,
globally, or F, eventually.

3.1.2 Semantics. The semantics of CTL are defined with respect
to a Kripke structure M = (S, T, I , L) over a set of atomic propositions P. If

is in M, means that holds at state of M.
Let and be in then

1

2

3

4

5

iff

M, iff

M, iff M, and M,

M, iff there exists a state of M such that and
I.e., has a successor where is valid.

M, iff there exists a path of M such that and
I.e., is at the start of a path where holds

globally.

M
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6 M, iff there exists a path of M such that and
I.e., is at the

start of a path where holds eventually and holds until becomes
valid (nothing is said about when turns valid).

The other temporal logic operators can be defined in terms of EX, EG and
E[U]:

Figure 5.3 pictures the semantics of the four universal temporal operators
(vertical dots indicate paths where holds infinitely).

Definition 6 A formula   is valid in structure M if it is valid for all initial
states:

Example 7 (CTL formulas) The following CTL formulas state properties of
the ABPsender Kripke structure:
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The sender is always in one of the three states: getting
from the sender, sending a message, or waiting for an acknowledgement.

There is an execution path of the sender such that it is
never sending or waiting.

3.2 Algorithm

Given a Kripke structure M = (S, T, I, L) over a set of propositions P and
a CTL formula its specification, the algorithm given in [12] repeatedly labels
the states of M with the sub-formulas of starting with the sub-formulas of
length 1 (i.e. atomic propositions in P) and finishing with itself.

Figure 5.4 sketches this algorithm. Function Emc first calls the graph la-
beling function with the given formula and then checks that all initial states are
labeled. Labelling function Label recurses down the structure of the formula
(function args, given a CTL formula returns the set of sub-formulas of
The terminal case is when the formula is an atomic function. If the formula is a
boolean function, each state is labeled according to the previous labeling of the
function arguments. Finally, to deal with temporal operators, special-purpose
labeling functions are invoked.

Function Label EX deals with formulas and is given in Figure 5.5. For
each transition if is labeled with has a successor where
is valid, and formula is added to the label of the

Function Label EU handles formulas (Figure 5.6). is valid
in a state if and only if there is a finite path starting in this state, where is
always valid but in the last state, where is valid. First, each state already
with is also labeled with Then, function Label EU aux is invoked
and backtracks along the transitions while appears in the labels of the states.
Each state found along such paths is labeled with formula To avoid
infinite loops, this backtracking also stops as soon as it meets a state already
labeled with

Finally, function Label EG handles formulas (Figure 5.7). is
valid in a state if, and only if, there is an infinite path, starting at and where

holds on each state. To detect such situations, it is necessary to find cycles in
the transition graph along which is always valid. This is the role of auxiliary
routine Label EGaux. Label EGaux has an additional parameter which is
the state currently visited, and returns a boolean to indicate if is valid
in Additionally, two flags are associated with each state: checked(s) and
mark(s). checked(s) indicates if the algorithm has already computed if
is valid or not in state mark(s) is true if the algorithm has not yet checked
if holds in and if starts a finite path along which always hold.
Label EGaux does a depth-first search along the transition graph as long as:
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1

2

3

It does not reach an already checked state If it does, it stops back-
tracking and returns a boolean to tell if is valid in or not.

It does not reach a state that is marked. If it does, then it has found a
cycle where is always valid. In this case it returns true.

It does not reach a state where does not hold. If it does, then the
value returned is f alse (this is implicit in this algorithm).
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4 Otherwise is valid in and is potentially valid in The algorithm
then calls itself recursively and checks if is valid in one of the
successors of As soon as one such successor is found, then formula

is added to the label set of and the algorithm returns immediately
true. If no such successor is found, then formula is not added to
the label set and the algorithm returns f alse.

Example 8 (Verification of ABPsender) To illustrate the model checking al-
gorithm, we apply it to the verification of the ABPsender (Figure 5.1). More
specifically, we check that formula is verified by ABPsender,
which is computed with the function call Emc(ABPsender,

The first step of the algorithm Emc (Figure 5.4) consists in labeling recur-
sively the structure with the formulas and its sub-formulas. This is done by
invoking algorithm Label with parameters ABPsender and
Algorithm Label first labels the states of the graph with each one of the sub-
formulas of the specification that are valid in those states. Since these sub-
formulas are all boolean, the application of Label is trivial and yields the fol-
lowing state labeling:
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Next, function Label invokes Label EG(ABPsender, (Figure 5.7).
The flags checked and mark of each state are initialized to f alse. Then func-
tion Label EGaux is invoked on each state. We suppose that the first state to be
inspected is and we trace the corresponding call Label EGaux(ABPsender,

Since is not yet checked and formula belongs to
the mark flag of is assigned true and for each transition leaving

function Label EGaux is called on the destination. Suppose transition
is chosen first. Then Label EGaux is invoked again on state tests the flag
mark, which is now set, and returns true. The execution flows continues
from the first invocation of Label EGaux and adds formula to set
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sets true the checked flag and returns true. This operation is repeated
for each state of the structure. When Label EG returns, the state labeling of
ABPsender is:

The second part of Emc executes then and checks that for each initial state of
ABPsender the formula belongs to the label set, which is the case. Therefore
ABPsender

3.3 Experimental results and conclusion

To illustrate the original model checking algorithm, a fully-functional im-
plementation was demonstrated with a version of the complete alternating bit
protocol that had a total of 251 states, with running times taking about 10 sec-
onds for each formula to be verified [12]. After further optimizations, a parallel
version of the model checking algorithm, implemented on a vector architec-
ture, was able to verify a Kripke structure with 131,072 states and 67,108,864
transitions, its specification being a CTL formula with 113 sub-formulas. The
time reported for this experiment was 225 seconds.

Despite these somehow impressive sounding results, in practice, the model
checking presented above is not efficient enough to deal with industrial de-
signs. In concurrent systems, the size of the state space grows exponentially
with the number of components. For instance, the model of a sequential circuit
with  flip-flops is a Kripke structure with potentially states: for the
order of magnitude of the number of potential states is This phenomenon
is known as the state space explosion, makes it practically impossible to rep-
resent exhaustively the set of states and the set of transitions of most systems.

4. Symbolic model checking

One possible way to avoid (or, at least, to delay) the state space explosion is
to represent sets of states and transitions by their characteristic function rather
than by enumeration. It is the purpose of Section 4.1 to explain how proposi-
tional logic may be used as a language to define and manipulate the character-
istic functions. In Section 4.2, we present binary decision diagrams (BDDs),
an efficient graph-based implementation of propositional logic. Finally, Sec-
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tion 4.3 details the symbolic version of the model checking algorithms pre-
sented in the previous section.

4.1 Kripke structures and propositional logic

4.1.1 Representing states and transitions. Let M =
(S, T, I, L) be a Kripke structure over Let v denote

The characteristic function of a state denoted is de-
fined as:

The definition of the characteristic function is extended to sets of states with
the following definitions:

Let be a set of fresh boolean propositions. The character-
istic function of a transition denoted is defined as:

This definition can be extended to represent sets of transitions as for sets of
states.

Example 9 (Characteristic function) In the Kripke structure ABPsender,
the characteristic functions of the initial state of the transition and
of the initial states I are, respectively:

To simplify notations, in the rest of the paper we will identify [X] with X.

4.1.2 State space traversal. Let M = (S, T, I, L) be a Kripke
structure over P. The image of a set of states is the set of states that
can be reached in one transition from X:
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The characteristic function of the image of X, denoted Forward(M, X ) , is:

Conversely, the inverse image of a set of states is the set of states
from which X can be reached in one transition:

The characteristic function of the inverse image of a set of states X, denoted
Backward(M, X), is:

4.2 Binary decision diagrams
Binary Decision Diagrams (BDDs for short) form a heuristically efficient

data structure to represent formulas of the propositional logic. Let P be a
totally ordered finite set of boolean propositions. Let be a boolean formula
over P, is the BDD representing and is the size of this
BDD. [6] showed that BDDs are a canonical representation: two equivalent
formulas are represented with the same BDD:

Moreover, most boolean operations can be performed efficiently with BDDs.
Let denote the size of BDD

is computed in constant time O(1).

is realized in

is performed in

In this paper, we will use usual boolean operators to denote the corresponding
operation on BDDs, e.g.

We explain the basic principles of the BDD representation on an example.
Fig. 5.8 presents the binary decision tree for the reachable states of Kripke
structure ABPsender: The binary tree representation of a for-
mula is exponential in the number of free boolean propositions in the formula.

The corresponding BDD is obtained by repeatedly applying the following
rules:

remove duplicate terminal vertices, i.e. after this operation there should
be only two leafs, labeled respectively with 0 and 1;

remove duplicate vertices bottom-up (two vertices are duplicate when
they have the same label and their children are identical),
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remove opposite vertices (two vertices are opposite when they are la-
beled with the same variable, and they have opposite children),

remove redundant tests (a node is a redundant test if its children are
identical).

Fig. 5.9 presents the BDD of the characteristic function for the reachable states
of Kripke structure ABPsender, with variable ordering
Dotted edges indicate that the function on the target node shall be negated.
Therefore, the same BDD node is used to represent both a function and its
negation (in Figure 5.9, the BDD represents as well), it is interpreted
differently according the type of the edge that is pointing to it. With variable
ordering the BDD for the transition
relation has 22 nodes.
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[6] showed that some functions have an exponential BDD representation
for any variable ordering, and that finding the optimum variable ordering is
NP-hard. However, in practice, heuristic methods generally achieve a good
variable ordering, when such ordering exists.

In a Kripke structure, states, transitions and sets thereof can be character-
ized with propositional logic formulas. These formulas can be represented and
manipulated via their BDD representation. BDDs proved to be an efficient data
structure to perform computations on large Kripke structures.

In the remainder, we will use the following operations on BDs:

BddFalse, BddTrue return the BDD for the boolean constants;

BddAtom takes a boolean proposition as parameter and returns the
BDD that represents

BddN ot takes as parameter the BDD of a boolean formula and returns
the BDD of formula

BddAnd (resp. BddOr) take as parameters the BDDs of two boolean
formulas and and returns the BDD of

BddImplies is a predicate that takes as parameters the BDDs of two
boolean formulas and and checks wether is a logical implication
of

Algorithms

4.3.1 Fundamentals of lattices and fixpoints. A lattice is
a set with a partial order on the elements of this set, a least element and a
greatest element

Let P be a non-empty finite set of atomic propositions. Let M = (S, T, I, L)
be a finite Kripke structure over P. We consider the lattice of subsets
of S with set inclusion as the ordering. The empty set {} and S are respec-
tively the least and greatest elements of this lattice. Since a subset of S can
be identified with its characteristic function, this lattice can also be interpreted
as the lattice of characteristic functions, with boolean implication as ordering,
false is the least element, and the characteristic function of S is the greatest
element.

A function is called a predicate transformer. is mono-
tonic iff implies Also is
continuous) when (resp. implies that

[32] showed that if is mono-
tonic, then has a least fixpoint, denoted and a greatest fixpoint,
denoted Moreover, since the lattice is finite and  is monotonic,

4.3

(resp.
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it is also and cap-continuous, and:

4.3.2 Fixpoint characterization of CTL operators.    CTL
symbolic model checking uses the BDD representations of the characteris-
tic functions of sets of states and transitions. The algorithm is based on the
fixpoint characterization of the different temporal operators of CTL defined
in [11]:

computes the states of M where is valid (Figure 5.11).
It first computes F, the BDD for the characteristic function of the set states of

The symbolic model checking algorithm, named Smc, is shown in Fig-
ure 5.10, is a predicate that takes as arguments a Kripke structure M and a
CTL formula It uses the auxiliaryroutine SmcAux, that returns the char-
acteristic function of the states of M that satisfies and checks if is valid in
each initial state of M. SmcAux itself relies on auxiliary routines SmcEX
(Figure 5.11), SmcEU (Figure 5.12) and SmcEG (Figure 5.13). All these
routines are used to recurse over the syntactical structure of CTL formulas,
and have as arguments M a Kripke structure, a CTL formula, and as result
the BDD of the characteristic function of the set of M states where is valid.

function Smc(M : Kripke structure, CTL): boolean
begin

return BddImplies(M.I, SmcAux(M, f))
end function Smc
function SmcAux(M : Kripke structure, CTL): BDD
begin
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M where is valid, and returns the inverse image of F. The inverse image is
computed with Backward, a routine that implements Equation 5.3.

Similarly, computes the states of M where is
valid (Figure 5.12). It first computes F and G, characterizing the states of
M where and are valid, and then computes the least fixpoint defined in
Equation 5.7.

computes the states of M where is valid (Figure 5.13).
It first computes F, the BDD for the set of states of M where is valid, and
then computes the greatest fixpoint defined in Equation 5.6.

Example 10 (Symbolic verification of ABPsender) To illustrate the sym-
bolic model checking algorithm, we apply it to the same verification as Exam-
ple 9: we check that the formula is verified by ABPsender,
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which is computed with the function call Smc(ABP sender,
(Figure 5.10).

Most of the computation is carried out by the call
SmcEG(ABPsender,          (Figure 5.13). Figure 5.14 contains a trac
for the values of the expressions Q, Backward(ABPsender, Q), Q' and
Q = Q' on the while statement test at the different iterations of the fix-
point computation1. The result returned by the function call is the BDD for

which is also that of the characteristic function for the set of initial
states. Therefore the symbolic model checking returns a true answer, stating
that the formula is valid in the Kripke structure ABPsender.

4.3.3 Results and extensions to symbolic model checking.
Symbolic model checking has been used to verify a large variety of systems:
hardware descriptions [19], software [2], protocols [26, 13]. The size of the
Kripke structures used in these verification has been routinely much larger than

An extremely useful feature of model checking is the possibility to compute
counterexamples (or witnesses) when a universal formula is false (when an
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existential formula is true) [15]. For instance, the counterexample of an
formula is a path from an initial state to a state where is not valid.

In practice, symbolic model checking is well-suited for the verification of
the control components of a system. However it performs poorly with data
parts. The reason is that BDDs are ill-suited to represent arithmetic expres-
sions or other data-intensive operations. Practically this means that symbolic
model checking cannot be used to uncover bugs such as the one found in the
Pentium chip floating point division unit. An approach to verify this type
of systems has been to combine model checking using other data structures
than BDDs to represent the data parts of the system under verification. Word-
level model checking [17] is an example of such approach. Word-level model
checking uses functions mapping boolean vectors into the integers to model the
system under verification. The internal representation of these functions is a
combination of two different classes of data structures: multi-terminal binary
decision diagrams (MTBDD) represent the control parts and binary moment
diagrams [7] (BMD) represent the data parts.

Another limitation of symbolic model checking lies in the expressiveness
of the specification logic CTL. Properties asserted in CTL are of a qualitative
nature, for instance if A happens then necessarily B happens in the future. To
express quantitative properties, such as if A then necessarily B will happen be-
tween 4 and 8 time units in the future it is necessary to nest several X operators
into syntactically complex and error prone formulas. One possible solution is
to write a preprocessor that converts formulas in a quantitative variant of CTL
into an equivalent CTL formula and use the standard symbolic model checking
algorithm [20]. Another solution is to develop special-purpose algorithms or
model representations for this type of formulas. Some tools [9, 30] have an
even more powerful capability of computing the lower and upper bound of all
possible intervals between two given events. To consider also continuous-time
systems it is necessary to develop completely different techniques based on
timed automata [1].

5. Conclusion
We have introduced the main concepts necessary to get the reader familiar

with the fundamentals of temporal logic model checking and symbolic model
checking. A more advanced treatment of the subject is also presented in [16].
Symbolic model checking is the subject of intensive and diversified researches
that all tend to cope with the state-space explosion. These approaches may be
classified under the following categories:

Composition: The behavior of a system can be seen as the combination of
the behavior of its parts. Therefore one may verify a system based on
the verification of its components. The decomposition into elementary

233
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proofs and the combination of the results need to be controlled by a
compositional proof system. In our case, we would have to combine
a compositional proof system for CTL (or a subset thereof) with the
symbolic model checking algorithms [21].

Abstraction: The verification of a property needs only consider the aspects
of a system that are relevant to this property. Using techniques similar
to abstract interpretation, it is possible to directly generate an abstract
model of the system being verified on which the verification can take
place [14, 23].

Alternative algorithms: More efficient algorithms may be found for some
classes of CTL formulas [22, 18]. Also alternatives to the representation
of propositional logic with BDDs are now being investigated (e.g. [4]).

BDD improvements: The verification engine basically consists in BDD-based
data and operations. Improving BDD management and BDD uses has
a direct impact on the performances of symbolic model checkers [31,
35, 34]. Important issues are variable ordering [3], more efficient im-
age and inverse image algorithms [28], and intrinsic implementation is-
sues [10, 5, 24].

Notes

1. Actually the values displayed in this table are that of the boolean formulas represented by Q and
Q', instead of the less human-friendly BDDs.
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Abstract We present modal logics for four classes of finite graphs: finite directed graphs,
finite acyclic directed graphs, finite undirected graphs and finite loopless undi-
rected graphs. For all these modal proof theories we discuss soundness and
completeness results with respect to each of these classes of graphs. More-
over, we investigate whether some well-known properties of undirected graphs
are modally definable or not: planarity, connectivity and properties
that a graph is Eulerian or Hamiltonian. Finally, we present an axiomatization
for colouring and prove that it is sound and complete with respect to the class
of finite          graphs. One of most interesting feature of this approach is
the use of the axioms of Dynamic Logic together with the Löb axiom to ensure
acyclicity.

Keywords: Dynamic Logic, Löb axiom, Graphs

1. Introduction

Graphs are among the most frequently used structures in Computer Science.
In this discipline, usually many important concepts admit a graph representa-
tion, and sometimes a graph lies at the very kernel of the model of computation
used. This happens, for instance, in the field of distributed systems, where the
underlying model of computation is built on top of a graph. In addition to this
central role, in distributed systems graphs are also important as tools for the de-
scription of resource sharing problems, scheduling problems, deadlock issues,
and so on. The case of distributed systems is also particularly appealing from
the standpoint of the use of graphs as modeling tools because it illustrates well
two different levels at which graph properties have to be described. One is the
”local” level, encompassing properties that hold for vertices or constant-size
vertex-neighborhood. The other level is ”global” and comprises properties that
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hold for the graph as a whole, as for example planarity, acyclicity,
connectivity, and so on.

In this work, we present a description language and a proof theory to express
and reason about properties that hold at vertices of finite graphs. It is inspired
by [2, 1], where a proof theory is presented to reason and express properties
of finite trees. We prove soundness and completeness using techniques used
in Dynamic logic [4] and in [2, 1]. One of most interesting features of these
approaches is the use of the axioms of Dynamic Logic together with the Löb
axiom to ensure acyclicity. We propose five proof theories and discuss their
completeness w.r.t. five classes of finite graphs.

First, we present modal logics for four classes of finite graphs: finite directed
graphs, finite acyclic directed graphs, finite undirected graphs and finite loop-
less undirected graphs. For all these modal proof theories we discuss sound-
ness and completeness with respect to each of these classes of graphs. More-
over, we investigate, for a mono-modal language, whether some well-known
properties of undirected graphs are modally definable ornot: pla-
narity, connectivity and properties that a graph is Eulerian or Hamiltonian.
Finally, we present an axiomatization for colouring and prove that it is sound
and complete with respect to the class of finite            graphs.

A finite directed graph G is a pair (V, E), where V is a finite set of vertices
and is a set of edges. G is said to be an undirected graph if E is a
symmetric relation. We call a graph G loopless if E is irreflexive. A path in a
graph G is a sequence of vertices where
for A cycle is a path where A graph G is said to be acyclic
if there is no cycle in it, otherwise it is cyclic. If G = (V, E) is an undirected
graph and we say that and are adjacent to each other. If
G is a directed graph we say that is adjacent to and is adjacent from

The out-degree of a vertex is the number of vertices adjacent to it.
The binary relations and are used to express the fact that for every

edge is adjacent to and is adjacent from
Figure 6.1 illustrates this fact.

In Section 2 we present a modal proof theory and discuss its completeness
with respect to the class of finite directed graphs. In Section 3, we present a
modal logic that is an extension of the one presented in Section 2 with Löb
axioms and prove its completeness with respect to the class of finite acyclic di-
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rected graphs. In Sections 4 and 5, we extend the two modal systems presented
in the previous sections and discuss their completeness with respect to the class
of finite undirected graphs and finite loopless undirected graphs. In Section 6,
we investigate the issue of whether some well-known properties of undirected
graphs are modally definable or not: planarity, connectivity, and
the Eulerian and Hamiltonian properties. In Section 7, we present a axiomati-
zation for colouring and prove that it is sound and complete with respect to the
class of finite graphs.

Finite directed graphs

Language and models

The language is a multi-modal language with four modal operators:
and and their duals for

A formula for is true at a vertex if for some vertex
and A is true at A formula for is true at

a vertex if there exist a seguence of verteces such that
and      ˆ           for                      and A is true at

Let G be the finite graph shown in Figure 6.2 (we are only representing the
relation is its converse). In order to illustrate the use of the language
the following formulas are true at vertex supposing A is true at vertex

Definition 1 The directed graph language is a multi-modal language consist-
ing of a set of countably many propositional symbols (the elements of are
denoted by p, q, ..), the booleans connectives and and four modal opera-
tors: and and the formulas are defined as
follows:

We freely use the standard boolean abbreviations and and also
the following abbreviations for the duals:                          for

2.

2.1

and
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Definition 2 A finite directed graph is a tuple where
V - is a finite set of vertices;

and are binary relations over S, i.e.,
And the following condition must be satisfied:

and are converse relations;

Definition 3 A model for a directed graph language is a pair
where DG is a directed graph and V is a valuation function mapping proposi-
tion symbols into subsets of V, i.e.,

The notion of satisfaction is defined as follows:

Definition 4 Let be a model. The notion of satisfaction of
a formula A in a model at a vertex notation can be inductively
defined as follows:

Here and denote the transitive closure of and respectively.

If for every vertex v, we say that A is valid in the model
notation And if A is valid in all models we say that A is valid,
notation

2.2
The proof theory presented below is based in the one presented in [2, 1].

The axioms are all classical tautologies (1), the distribution axioms for the
modalities and the converse axioms for and (3 and 4)
and the Segerberg axioms (5 and 6). The inference rules are Modus Ponens,
Universal Generalization and Substitution.

In order to make the proof theory presented below more elegant, we intro-
duce some abbreviations for the reflexive and transitive closures and for some
special constants:

1

iff there exists a and

iff there exists a

iff there exists a

iff there exists a

and

and

and

and

2

3

4

5

6

7

Proof theory
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and its dual for

Special constants:

Axioms

Inference Rules

and

and

where is a map uniformly substituting formulas for propositional vari-
ables.

A formula A is said to be a theorem of a set of formulas notation
iff there exists a sequence of formulas such that is ei-

ther an axiom or was obtained by applying an inference rule to formulas of
and A is the last item We say that a set formula is

inconsistent iff otherwise is said to be consistent. A formula A is
consistent iff {A} is consistent.

1 All tautologies

for

for

for

Soundness and completeness results

The modal theory presented above is clearly a fragment of PDL with con-
verse and only four actions and It is shown in [6] that PDL with
converse has finite model property and completeness of our logic follows from
the completeness of PDL. From the canonical model construction [3, 4, 2] it
is easy to prove that for every consistent formula we can build a finite model
which satisfies it and, moreover, this canonical model is a finite directed graph.

SUB.

M.P.

U.G.

2

3

4

5

6

2.3
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Finite acyclic directed graphs

In this section, we extend the proof theory presented in Section 2 with Löb
axioms for modalities and In order to prove completeness we make
a filtration and then using a breadth-first search we assign levels to atoms. We
present a construction that takes the result of the filtration and the levels and
yields a finite acyclic model.

The language is the same as for finite directed graphs.

Definition 5 A finite acyclic directed graph is a tuple
where

V - is a finite set of vertices;
are binary relations over S, i.e.,

And the following conditions must be satisfied:

are converse relations;
are conversely well-founded (this means that there is no cycle).

The notions of model and satisfaction are the same as for finite directed
graphs.

Proof theory

In order to obtain a proof theory for the modal logic for finite acyclic di-
rected graphs, denoted by DAG, we add Löb axiom for and and
axioms for the constants sink and source (9 and 10) to the proof theory DG
presented in the previous section.

Axioms

1 All tautologies

for

for

for

3.

3.1

2

3

4

5

6

7

8

9
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10  sink

Inference Rules

and

where is a map uniformly substituting formulas for propositional vari-
ables.

Intuitively, axiom 7 and 8 (Löb) assure that relations and have no
cycles and axioms 9 and 10 say that from every vertex we can always reach a
sink via and a source via

Canonical models

The canonical model construction is analogous to the one used for PDL.
First, we define the Fisher–Ladner closure for a set of formulas and
then we define the set of atoms of

Definition 6 (Fisher–Ladner closure) Let  be a set of formulas. The closure
of notation is is the smallest of set formulas satisfying the following
conditions:

It is easy to verify that if is a finite set of formulas, then the closure
of is also finite.

Definition 7 Let be a set of formulas. A set of formulas is said to be an
atom of if it is a maximal consistent subset of  The set of all atoms
of is denoted by

1 is closed under subformulas;

then

then

then

then

if

if

if

if

and

and

if and A is not of the form then

SUB.

M.P.

U.G.

2

3

4

5

6

7

8

3.2
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Lemma 8 Let be a set of formulas. If  and A is consistent then
there exists an such that

PROOF. We can construct the atom as follows. First, we enumerate the
elements of as We start the construction making

then for we know that
is a tautology and therefore either is consistent.

We take as the union of with the consistent member of the previous
disjunction. At the end, we make

The canonical relations are defined based on the notion of consistency.

Definition 9 Let be a set of formulas. The canonical relations over
and          on are defined as follows:

is consistent, for

Definition 10 Let be a set of formulas. The canonical model over is a
tuple where for all propositional
symbols and for all atoms we have

and           are the canonical relations and their transitive clo-
sure.

We say that is the canonical valuation. For the sake of clarity we avoid
using the subscripts.

The following lemma ensures that the canonical model behaves well.

Lemma 11 Let be a set of formulas and Then for all formulas
where we have

iff there exists such that and

PROOF. Proof for

Suppose By Definition 7, we have that
is consistent. By a modal reasoning, using the tautology

we have that either
is consistent or is consistent. So,

by the appropriate choice of for all formulas we can
construct an atom such that and
is consistent and by Definition 9

Suppose there is a such that and Then
is consistent and also is consistent. But

and by maximality
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Proofs for are analogous to the previous case.

It is important to notice that Lemma 11 is proved only for relations
where But, we would like to have it for relations and

In order to prove this, we must show that the relations are included
in relations This is what Lemma 12 does.

Lemma 12 Let Then

if then for

PROOF. Suppose for Let and
It is not difficult to see that is

inconsistent. By a simple modal reasoning using Segerberg axiom (axiom 6),
we have By supposition, is consistent
and so is Therefore, for at least one we know that
is consistent. By maximality, we have that And by the definition of

Lemma 13 Let Then, for

PROOF. Proof for

iff for some and

Suppose By Lemma 11, there is an atom such
that and by Lemma 12 we have

Suppose that for some and Then, for some
We can prove by induction on

and By Lemma 11, From
axiom 5, we know that and by the
definition of and maximality we have

By the induction hypothesis and
From axiom 5, we know that

and by the definition of and maximality
we have

Another nice property of canonical models is that the relations and
are converse relations.

Lemma 14 Let G be a canonical model over Then and are converse
relations. That is, for every iff

Proof for is analogous to the previous case.

we have
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PROOF.
is inconsistent, and By generaliza-

tion,
By hypothesis, is consistent (**).
From (*) and (**) is also consistent. By ax-
iom 6, and hence

is consistent, which is a contradiction.

Suppose and it is not the case that So,

is analogous to the previous case.

The only problem is that finite canonical models are not acyclic directed
graphs. Our strategy now is to construct a finite acyclic graph out of our canon-
ical models and then prove soundness and completeness w.r.t. the class of finite
acyclic graphs.

Completeness for finite acyclic directed
graphs

In order to prove completeness, we first assign levels to atoms using the Löb
axiom. Second, we propose a construction that takes finite canonical models
and levels and yields a finite acyclic model. Third, we prove that this con-
struction halts and the finite acyclic model is indeed a finite acyclic graph.
Finally, we prove completeness by showing that for every consistent formula
we can build a finite model which satisfies it and, moreover, this model is a
finite acyclic graph.

The techniques used in this section to prove completeness with respect to the
class of finite acyclic directed graphs is based on [2, 1], which the presented
paper extends. First, they only use Löb axiom in one direction (daughter-of 
relation,      but not for its converse (mother-of relation,       In our approach,
we have to take Löb in both direction. Second, while, in their construction,
unsatisfied points (atoms which contains a formula of the form
for and do not another atom which contains A), in the

are cared for, no such precautions are taken for unsatisfied points in
the On the other hand, our construction takes care of unsatisfied
points in both direction Finally, they have only one definition of
levels for the while we use a breadth-first search to assign levels to
atoms, which is a unique assignment, that can be used in both directions.

In the left-hand side picture, of Figure 6.3, a cyclic graph (model) obtained
by the filtration defined in Section 3.2 is shown. If our construction only treats
unsatisfied points w.r.t. the we can obtain an acyclic graph (model),
like the one on the right-hand side, which contains no unsatisfied points w.r.t.
the but contains unsatisfied points w.r.t.

3.3
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Next lemma plays an important role in the proof of the following lemmas.
Intuitively, it says that from a sink (source) vertex we cannot make any

Lemma 15 Let Then

PROOF.

Lemma 16 Let G be a canonical model over and
and Then and

PROOF.        by Definition 6 (7), as         is
closed under subformula sink, source Using Lemma 8, there exists
atoms such that and

ii. is analogous to the previous case.

Suppose by Lemma 11, there exists
such that and As then which
is a contradiction, because atoms are maximal consistent sets.
Suppose By axiom 5 and closure conditions
2 and 3, we have either

In both cases, there exists such that As
then which is a contradiction.

Suppose there is no formula                         or
In particular, by closure conditions 6 and 8 and
maximality and Therefore,

i.  iff there is no formula        or

ii.  iff there is no formula  or

i.           Suppose
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Next lemma ensures that the following definition of levels is correct. Here,
the Löb axiom plays an important role.

Lemma 17 Let be a set of formulas, be a non-empty set and
and be disjoint non-empty sets such that

Then for some we have,

is consistent.

PROOF. Let and
and

We know that is consistent and as  source for all then
is also consistent. But, is consistent.

Using the counter positive of Löb axiom and Segerberg axiom we obtain
is consistent.

Using the tautology we can prove
Therefore, is consistent, and

is consistent too. And, for some we also have is
consistent.

Lemma 18 Let be a set of formulas, be a non-empty set and
and be disjoint non-empty sets such that

and  for Then for
some we have,

is consistent.

PROOF. Analogous to the proof of Lemma 17.

Definition 19 Let be a set of formulas and a non-empty set. We
define the levels of as follows

halt and assign the level to all atoms in

while  is not empty do

and for some
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Lemma 20 The above construction halts at level after a finite number
of steps.

PROOF. Lemma 17 ensures that each level is non-empty, and as is
finite and each atom belongs to a unique level and at each iteration the set
increases and decreases, eventually          will be empty and
level will be assign to the atoms in

Next two lemmas ensure that the above definition of levels behaves well.

Lemma 21 Let If and then
for some where and

PROOF. Suppose and We have two possibili-
ties:

i) is a source and by Definition 19 Suppose for the sake of
contradiction that there is no where such that
and By Lemma 11, there is a C such that             and
By supposition, and therefore is a source. By Lemma 14,

and But, this is a contradiction with Lemma 15.

ii)  is not asource. Let and
Suppose that it is not the case that for some and
Then, for all is inconsistent,
and hence By modal reasoning
By Lemma 17 and Definition 19, we have is consistent
and therefore is also consistent. As then

is consistent, which is a contradiction.

Lemma 22 Let If and then for
some  where  and

PROOF. Suppose and We have two possibili-
ties:

i) is a sink and by Definition 19 Suppose for the sake of contradic-
tion that there is no where        such that             and
As by Lemma 11, there is a C such that and

By supposition, and therefore is a sink. By Lemma 14,
and But, this is a contradiction with Lemma 15.

ii) is not a sink. Let and
Suppose that it is not that case that for some

and Then, for all
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is inconsistent, and hence By
modal reasoning From Definition 19 and Lemma 14,
we can see that the same definition of levels could have been done using
the relation so by Lemma 18 and Definition 19, we have

is consistent and therefore is also consistent. As
then is consistent, which is a

contradiction.

Definition 23 Let and For
we define the set of For
we define the set of

Lemma 24 Let

i. for then the t-target of is non-empty;

ii. for then the f-target of is non-empty;

PROOF. i. Suppose then and by Lemma 15 for
some By Lemma 21, there exists a where

and By the Definition target of
and therefore, the target of is not empty.

ii. analogous to the previous case.

Definition 25 Let a finite acyclic directed graph where
for some formula A. We say that a vertex is

if for some there is no vertex such that
and

if for some there is no vertex such that
and

unsatisfied if it is or

Now we are ready to construct a finite acyclic graph out of canonical models.
Intuitively, we start with the source vertices at step 1, and then for every vertex

which has a formula and there is no vertex such that
and we add the pair                 for every in

the set t-target (f-target) of By Lemma 24, we know that t-target (f-target)
of is non-empty and by Lemma 21 (Lemma 22) for at least one

Constructing a finite acyclic graph

Let A be a consistent formula, be the set of atoms over A and
a finite acyclic directed graph where
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step 1:

step n+1:

if there are no unsatisfied vertices

then

halt

else case

choose an t-unsatisfied vertex so there is a for-
mula by Lemma 24 has a non-empty t-target
set

Lemma 26 Let G be directed graph constructed by the construction presented
above. For all and for then there exists a in
the of such that

PROOF.

Suppose and By Lemma 21, there
exists a such that and By the
Definition 23 of t-target, is in the t-target of

Proof for is analogous to the previous case.

Lemma 27 The above construction halts after a finite number of steps.

PROOF. For each unsatisfied vertex  we add at most vertices

choose an f-unsatisfied vertex so there is a for-
mula by Lemma 24 has a non-empty f-target
set

Proof for
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corresponding to its t-target/f-target set. By Lemma 26, all un-
satisfied formulas are going to become satisfied by these additions, and as each

belongs to a strictly lower/upper level, and the number of levels is
finite we can only add new vertices finitely many times. Hence, all branches
reach a sink/source eventually, where, by Lemma 15, there is no t-unsatisfied/f-
unsatisfied formulas. Therefore, the construction halts after a finite number of
steps.

Lemma 28 Let G be a directed graph constructed by the construction pre-
sented above. For all vertices and for

if then

PROOF. This proof is straightforward from the definition of target (Defini-
tion 23) and from the construction.

Next lemma ensures that the graph generated by the construction behaves
well.

Lemma 29 Let G be a directed graph constructed by the construction pre-
sented above. For all and for

if then there exists a such that and

PROOF. Proof for

Suppose Also, suppose for the sake of contradiction that
there is no such that and We have two possibilities:

i) is a sink, and by Lemma 15, for all formulas
which is a contradiction;

ii) is an unsatisfied vertex, which is a contradiction, because the
construction only halts when there is no unsatisfied vertex, and by
Lemma 27 it always halts.

Proof for is analogous to the previous case.

Lemma 30 Let G be a directed graph constructed by the construction pre-
sented above. For all and for

if  then there  existsa such that and

PROOF. Proof for

Suppose by Lemma 15 is not a sink. Suppose, for
the sake of contradiction, that for all and

Also, suppose, for the sake of contradiction, that for some
and By Lemma 11, and by Lemma 29, there
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exists a such that and which is a contradiction.
Therefore, for all such that By Lemma 11,

so by maximality and Definition 6 and by
Lemma 29, for some and

We can apply the same argument to yielding such that
and If we apply the same argument many times we
can obtain But, it can only be applied finitely many
times since G is a finite acyclic graph (Lemma 31). Hence, it must end
up in a sink and we have but by Lemma 15

which is a contradiction. Therefore,

Proof for is analogous to the previous case.

Lemma 31 G is a finite acyclic directed graph.

PROOF. G is finite because is finite;

and are converse relation. This follows straightforward by the
construction of these relations;

G is acyclic. By the construction, for all paths where
and and for all vertices and  in this path, if

then level Therefore we cannot have cycles.

Lemma 32 (Truth lemma for finite acyclic directed graph) Let G be a fi-
nite acyclic directed graph constructed over by the construction presented
above and a model according to Definition 3. For all atoms
and all

PROOF. By induction on the structure of A

Atomic formulas: straightforward from the definition of V (Definition 3);

Boolean operators: straightforward from the definition of V (Defini-
tion 3);

Modality

Suppose then there exists such that
and By Lemma 28 and by the induction
hypothesis by Lemma 11 we have

Suppose We have two possibilities:

i) is a sink, and by Lemma 15, for all formulas
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ii) For all and By the induction hypoth-
esis by Lemma 29 we have

Modality Analogous to the case of modality

Modality

Suppose then there exists such that
i.e., there is a finite sequence of and

By the induction hypothesis Apply-
ing Lemma 28 finitely many times we have by
Lemma 13 we have

Suppose We have two possibilities:

i) is a sink, and by Lemma 15, for all formulas

ii) For all and By the induction hypoth-
esis by Lemma 30 we have

Modality Analogous to the case of modality

Theorem 33 (Completeness for finite acyclic directed graph) The modal logic
for directed graphs is complete with respect to the class of finite acyclic di-
rected graph.

PROOF. For every formula A we can build a canonical model and then we use
the construction to build a finite acyclic directed graph Using Definition 3
we can obtain a model by Lemma 8 there exist an atom

such that and by the truth Lemma 32 Therefore,
our modal system is complete with respect to the class of finite acyclic directed
graphs.

Theorem 34 (Soundness for finite acyclic directed graph) The modal logic
for directed graphs is sound with respect to the class of finite acyclic directed
graph.

PROOF. The proof of soundness is analogous to the proof of soundness for
dynamic logic, it can be found in [4]. It is not difficult to see that every finite
acyclic directed graph is a model for DAG.
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Undirected graphs

Now, we extend the language with a new modality and the proof theory
with the following definition:

Definition 35
And its dual

We denote by UG the proof theory presented in Section 2.2 plus Defini-
tion 35. It is easy to verify that the following facts can be demonstrated in
UG:

Dual

Distribution

Symmetry

Universal Generalization

We extend our frame defined in Definition 2 with a new relation express-
ing the that we can either make or transitions.

Definition 36 A finite undirected graph is a tuple
where
V - is a finite set of vertices;

and - are binary relations over S, i.e.,

And the following condition must be satisfied:
and are converse relations;

UG is a definitional extension of the modal logic presented in Section 2 and
thus soundness and completeness follow. It is important to notice that a frame

is a finite undirected graph only with respect to the
relation.

Loopless undirected graphs

In order to obtain a proof theory for finite loopless undirected graphs we
extend the language presented in Section 3.1 DAG with a new modality
and the Definition 37 presented below. We denote by IUG the proof theory
presented in Section 2.2 plus the following definitions:

Definition 37
And its dual

It is easy to verify that the following facts can be demonstrated in IUG:

5.

4.
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Dual

Distribution

Symmetry

Universal Generalization

Definition 5, of frame, can be extented with a new relation expressing the
fact that we can either make or transitions.

Definition 38 A finite loopless undirected graph is a tuple
where

V - is a finite set of vertices;
and are binary relations over S, i.e.,

And the following condition must be satisfied:
and are converse relations;

and are conversely well-founded (this means that there is no cycle).

IUG is just a definitional extension of the modal logic presented in Section 3
it is straightforward to prove soundness and completeness. It is important to
notice that a frame is a finite loopless undirected
graph only with respect to the relation.

6. Modal definability
In this section, we investigate if some well-known graph properties are

modally definable or not. Among this properties are: coloring, connectivity,
Eulerian graphs, Hamiltonians graphs and planarity. We use a mono-modal
language.

We start presenting some well-known facts about modal definability, and
then we prove some theorems for graphs properties using these facts.

Definition 39 Let and be two frames. A function
is a bounded morphism if

i) is a homomorphism (if then

ii) if then there is a s.t. and
We use if is a bounded morphic image of

Definition 40 Let be a collection of frames. The
disjoint union is defined

W - the disjoint union of
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the disjoint union of

Theorem 41 Let and be two frames such that
Then

If then

Theorem 42 Let be a collection of frames. And
their disjoint union.

If  for every then

It is important to notice that according to our definition an undirected graph
is just a directed graph which relation is symmetric. As a

convention, whenever we draw an undirected graph we omit the arrows as
shown in the Figure 6.4.

Colouring

Let G be an undirected graph and be the number of colours available. We
say that G is iff every vertex of G is painted with a colour and
every edge of G has endpoints of different colours.

Theorem 43 Colouring is not modally definable.

PROOF.

From Figure 6.5, let It is straightforward
to prove that is a bounded morphism. By Theorem 41, colouring is not
preserved under taking bounded morphic image, therefore it is not modally
definable.

6.1
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Hamiltonian graphs

A connected undirected graph G is said to be Hamiltonian if there exists a
cycle which passes exactly once through each vertex of G.

Theorem 44 The class of Hamiltonian graphs is not modally definable.

PROOF. From Figure 6.6, let It is
straightforward to prove that is a bounded morphism. By Theorem 41,
Hamiltonian property is not preserved under taking bounded morphic image,
therefore it is not modally definable.

Eulerian graphs
A connected undirected graph G is said to be Eulerian if there exists a closed

path (cycle) which includes every edge of G exactly once and if edge
belongs to the path, then edge cannot belong to the path.

Theorem 45 A connected graph G is Eulerian iff the out-degree of every ver-
tex of G is even.

Theorem 46 The class of Eulerian graphs is not modally definable.

PROOF.

From Figure 6.7, let It is straight-
forward to prove that is a bounded morphism. By Theorem 41, Eulerian

6.3

6.2
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property is not preserved under taking bounded morphic image, therefore it is
not modally definable.

Connectivity

A graph G is said to be connected if for every two vertices there is a path
connecting them.

Theorem 47 Connectivity is not modally definable.

PROOF. The disjoint union of connected graphs is not a connected graph. By
Theorem 42, connectivity is not preserved under taking disjoint union, there-
fore it is not modally definable.

Planarity

A planar graph is an undirected graph drawn in the plane such that no two
edges intersect geometrically except at a vertex to which they are both incident.

A planar graph is a graph which is isomorphic to a planar graph.
Let G be a graph and be one edge of G. A edge subdivision of

is a path where each has degree
two. A graph is a subdivision ofa graph if can be obtained from
by making a sequence of edge subdivision in

Theorem 48 (Kuratowski) A graph is planar iff it contains no subgraph which
is a subdivision of or

Theorem 49 Planarity is not modally definable.

PROOF.

Let be a morphism from the graph presented in Figure 6.8 into
(Figure 6.10). It is straightforward to prove that is a bounded morphism. By
Theorem 41, planarity is not preserved under taking bounded morphic image,
therefore it is not modally definable.

graphs
The problem with colouring is due to the fact that the frame can have reflex-

ive points. But in our modal logic for finite loopless undirected graphs IUG
frames are irreflexive. In this section, we present an extension of IUG which
is sound and complete w.r.t the class of graphs.

In order to obtain a proof theory for graphs we first extend our
modal language with operators And then, we add the fol-
lowing axioms to the proof theory presented in Section 5 IUG. In Section 7.1,
we prove that this new axiomatic is sound and complete with respect to the

7.

6.4

6.5
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class of finite              graphs. The proof methodology is analogous to
the one used in the previous sections. We denote by the proof theory
presented in Section 2.2 plus the following axioms:

axioms

Definition 50

Completeness for graphs

We extend our frame defined in Definition 5 with a family of new unary
relations expressing the fact that vertex is coloured with colour

Definition 51 A graph is a tuple
where

V - is a finite set of vertices;
and are binary relations over S as defined in Definition 38

are unary relations over S

And the following frame conditions must be satisfied:

Frame conditions and express the fact that every vertex has a unique
colour and that adjacent vertices have different colours.

The definition of a model is exactly the same as in Definition 3 and in the
definition of satisfaction 4 we add the following condition:

Definition 52 (satisfaction) 1,2,3,4,5,6 and 7 as in Definition 4;

8.                          iff  

Definition 53 (Fisher–Ladner closure) Let be a set of formulas. The clo-
sure of notation is the smallest set of formulas satisfying the fol-
lowing conditions:

1,2,3,4,5,6,7,8 and 9 as in Definition 6;

7.1
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10.

The definitions of canonical relations, and canonical model are exactly the
same as presented in Section 4.

It is important to notice that, although the modal formulas and
are all Sahlqvist [5] formulas, it does not imply that their first order correspon-
dent are valid in the result of our construction.2

Now we are ready to construct a finite loopless undirected
graph out of canonical models.

Constructing a graph

Let A be a consistent formula, be the set of atoms over A and
a finite loopless undirected graph constructed ac-

cording to Section 5. We can construct a graph
by defining the relations

as follows:

Definition 54 For all

Lemma 55 The above construction halts after a finite number of steps.

PROOF. This proof is straightforward from the fact that the construction for
finite loopless undirected graph halts by Lemma 27 and that and are
finite.

Lemma 56 Let Then    iff        for every

PROOF. suppose and for the sake of contradiction suppose for
some As is consistent, we cannot have and

because that would contradict axiom

suppose for every By maximality of and by axiom

Lemma 57 Let Then

i. If   then iff  for

ii. If then iff for

iii. If then iff  for

i. suppose and suppose by Lemma 11(1)
which is inconsistent with axiom

PROOF.
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suppose by Lemma 11(1) As is
consistent, by axiom By Lemma 56 for some

ii. Analogous to the proof of i.

iii. suppose by the definition of S relation iff or
In both case, by i. and ii. we have              iff               for

Lemma 58 Let Then

If then      0     iff               for

PROOF. Suppose By Lemma 28 But by Lemma 57 (iii.) we have
iff for

Lemma 59 G is a finite loopless undirected graph.

PROOF. From Section 5, G is finite loopless undirected graph;

By Lemma 56 we know that each vertex has precisely one colour;

By Lemma 58 we know that adjacent vertices have different colours.

Therefore, G is a graph.

Lemma 60 (Truth lemma for graphs) Let G be a
graph over and a model according to Definitions 51, 3. For
all atoms and all iff

PROOF. By induction on the structure of A

Atomic formulas, Boolean operators and modalities
and are analogous to Lemma 32;

Modalities for

Suppose by the Definition 52 of satisfaction
by the construction iff

Theorem 61 (Completeness for graphs) The modal logic for
graphs is complete with respect to the class of finite loopless

undirected graphs.

PROOF. For every formula A we can build a canonical model and then using
Definition 51 and 3 we can obtain a model by Lemma 8
there exist an atom such that and by the truth Lemma 60

Therefore, our modal system is complete with respect to the class
of finite loopless undirected graphs.

iff        ,
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Conclusions

We have presented five modal systems and shown that they are sound and
complete to the classes of finite directed graphs, finite directed acyclic graphs,
finite undirected graphs, finite undirected loopless graphs and fi-
nite loopless graphs.

One of most interesting features of these approaches is the use of the axioms
of Dynamic Logic together with the Löb axiom to ensure acyclicity.

We have also investigated, for a mono-modal language, whether some well-
known properties of undirected graphs are modally definable or not: planarity,
connectivity and properties that a graph is Eulerian or Hamiltonian. Although
all results are negative, it is well-known that modal definability is sensitive to
the language used. So, if we use a richer language many properties which are
not modally definable for the mono-modal language can become definable.

This work opens up possibilities to investigate some interesting related prob-
lems. First, we would like to extend our completeness results for a full Dy-
namic logic with Löb axiom. Also, we would like to investigate axiomatiza-
tion for other classes of finite graphs, for instance: planar graphs, connected
graphs, Eulerian graphs and Hamiltonian graphs. And finally, it would be in-
teresting to see if the use of universal modality and the D operator could help
to overcome some of the negative results of Section 6.
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Notes

1. It is important to notice that if G = (V, E) is an undirected graph, a subdivision of an
edge is obtained by adding edges and to E and
removing edges and from E.

2. It is well-known that Sahlqvist theorem does not hold for models obtained by filtration. A classical
example is transitivity it is a Sahlqvist formula but if we make a filtration the model yielded
is not necessary transitive.
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Abstract We contrast bisimulation equivalence and language equivalence. There are two
threads. First is that because bisimulation is more intensional, results in lan-
guage and automata theory can be recast for bisimulation. The second thread
is the contrast between definability of language equivalence and bisimulation
equivalence. Bisimulation equivalence is definable as a “simple” formula in
first-order logic with fixed points. We show that language equivalence is not
definable as an unconditional projection of simple least fixed point.

Keywords: bisimulation, formal languages

1. Introduction
One way to understand an interactive system is firmly rooted in language

theory, that a system is its set of runs (or words). Properties of systems are
described in a linear time temporal logic. Relationships between automata,
language theory and logic are then utilised, such as the theory of
languages and Büchi automata.

An alternative viewpoint is that an interactive system should be understood
as its capability for interacting with other systems. Language and automata
theory then have less relevance because a more intensional account of system
behaviour is needed than that given by sets of words. Bisimulation equivalence
has a pivotal role within this approach.

Bisimulation is a rich concept which appears in various areas of theoretical
computer science. Besides its origin for understanding concurrency, it was in-
dependently developed in the context of modal logic. In this paper we make

269

R.J.G.B. de Queiroz (ed.), Logic for Concurrency and Synchronisation, 269–284.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.



270 LOGIC FOR CONCURRENCY AND SYNCHRONISATION

some contrasts between bisimulation equivalence and language equivalence.
There are two threads. First is that because bisimulation is more intensional,
results in language and automata theory can be recast for bisimulation. The
second thread is the contrast between definability of language equivalence and
bisimulation equivalence. Bisimulation equivalence is definable as a “simple”
formula in first-order logic with fixed points. Language equivalence is not de-
finable as an unconditional projection of a simple least fixed point. This should
be contrasted with a known normal form result for least fixed point logic: any
least fixed point definable relation is definable as a projection of a simple least
fixed point under equality conditions on its components. It should be noted
that undefinability of language equivalence in least fixed point logic per se
would actually imply In Section 2 we consider the two origins of
bisimulation. In Section 3 we describe some results which contrast bisimula-
tion equivalence and language equivalence on automata. The final two sections
discuss logics and the undefinability result.

2. Background

Labelled transition systems are commonly encountered in operational se-
mantics of programs and systems. They are just labelled graphs. A transition
system is a pair G = where S is a non-empty set (of
states), A is a non-empty set (of labels) and for each is a binary
relation on S. We write instead of Sometimes there is
extra structure in a transition system, a set of atomic colours such that each
colour (the subset of states with colour q).

Consider the transition systems pictured in Figure 7.1. Here and are
simple vending machines, and is a person who wishes to obtain tea. The
language accepted by {coin coffee, coin tea}, is the same as that accepted
by When is placed in parallel with then deadlock is possible be-

fore a tea action because of the joint transition we assume here
that parallel composition requires both components to do the same action. In
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contrast and tea is then the only next possible action. Therefore
the language accepted by {coin, coin tea}, is different from the language
accepted by {coin tea}. Consequently language equivalence is not a con-
gruence for interacting “automata”. Because of this Milner and others sought
a more intensional notion of equivalence which would be preserved by com-
municating automata.

Bisimulations were introduced by Park [16] as a small refinement of the
behavioural equivalence originally defined by Hennessy and Milner between
basic CCS processes (whose behaviours are transition systems).

Definition 1 A binary relation between states of a transition system is a
bisimulation just in case whenever and

1 if then for some such that and

2 if then for some such that

In the case of an enriched transition system with colours there is an extra clause
in the definition of a bisimulation that it preserves colours: if then

Simple examples of bisimulations are the identity relation and the empty rela-
tion. Two states of a transition system and are bisimulation equivalent (or
bisimilar), written if there is a bisimulation relation with
The machines and in Figure 7.1 are not bisimulation equivalent. The tran-

sition cannot be matched either by because does not have

a tea transition or by because does not have a coffee transition.
Transition systems are models for basic process calculi, such as ACP, CCS

and CSP. Bisimulation equivalence is a congruence for all the operators of
these calculi. By permitting more general operators, whose rules for transi-
tions belong to a general format, bisimulation equivalence turns out to be the
least congruence induced by language equivalence [9]. Models for richer pro-
cess calculi capturing value passing, mobility, causality, time, probability and
locations have been developed. The basic notion of bisimulation has been
generalised, often in a variety of different ways, to cover these extra features.
Bisimulation also has a nice categorical representation via co-algebras due to
Aczel, see for example [18], which allows a very general definition. It is an in-
teresting question whether all the different brands of bisimulation are instances
of this categorical account.

It is common to identify a root of a transition system as a start state. Above
we defined a bisimulation on states of the same transition graph. Equally we
could have defined it between states of different transition systems. When

0. for all colours                iff
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transition systems are rooted we can then say that two systems are bisimilar
if their roots are. A family of rooted transition graphs is said to be closed
under bisimulation equivalence when the following holds.

Given a rooted transition system there is a “smallest” transition system which
is bisimilar to it: this is its canonical transition graph which is the result of first
removing any states which are not reachable from the root, and then identifying
bisimilar states (using quotienting). For instance Figure 7.2 is the canonical
graph of Figure 7.3.

An alternative perspective on bisimulation closure is from the viewpoint
of properties of transition systems. Properties whose transition systems are
bisimulation closed are said to be bisimulation invariant. Over rooted transi-
tion graphs property $ is bisimulation invariant when the following holds.

(By we mean that is true of the transition graph G.) On the
whole, “counting” properties are not bisimulation invariant, for example “has
32 states” or “has an even number of states”. In contrast temporal properties
are bisimulation invariant, for instance “will eventually do an or
“is never able to do a Other properties such as “has an Hamilto-
nian circuit” or “is 3-colourable” are also not bisimulation invariant. Later we
shall be interested in parameterised properties, that is properties of arbitrary
arity. We say that an property on transition systems is
bisimulation invariant when the following is true.

if             and                then

if              and               then
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(By we mean that is true of G when
is interpreted as state for each An example of a property which is not
bisimulation invariant is is a cycle”, and an example of a bisimu-
lation invariant property is is language equivalent to The notions of
bisimulation closure and invariance have appeared independently in a variety
of contexts, see for instance [2, 3, 4, 5, 15].

Bisimulation was first introduced in the context of modal logic by Van Ben-
them [2] to give an account of which subfamily of first-order logic is definable
in modal logic. Let M be the following modal logic where ranges over A:

The inductive stipulation below defines when a state of a transition graph G
has a modal property written however we drop the index G.

In the context of an enriched transition system one adds propositions for
each colour to the logic, with semantic clause: iff Modal
formulas are bisimulation invariant: if and then for any
modal

First-order logic, FOL, over transition systems contains binary relations
for each (and monadic predicates for each colour if extended
transition systems are under consideration). Formulas of FOL have the follow-
ing form.

A formula with at most the free variables will be
true or false of a transition system G and states in the usual
way. For example

Not all first-order formulas are bisimulation invariant. An example is the for-
mula which says has at least two
different

Van Benthem introduced bisimulation to identify which formulas of
FOL are equivalent to modal formulas (to M formulas) [3]. A formula is
equivalent to a modal formula provided that for any G and for any state

Van Benthem proved the following characterisation.

iff
iff
iff

iff
iff
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Proposition 2 A FOL formula is equivalent to an M formula iff is
bisimulation invariant.

3. Caucal’s hierarchy
Bisimulation equivalence is a very fine equivalence between states. An

interesting line of enquiry is to re-consider classical results in automata and
language theory, replacing language equivalence with bisimulation equiva-
lence. These results concern definability, closure properties and decidabil-
ity/undecidability.

Grammars can be viewed as generators of transition systems. Let be a
finite family of nonterminals and assume that A is a finite set (of terminals). A
basic transition has the form where and A state
is then any member of and the transition relations on states are defined as
the least relations containing the basic transitions and satisfying the following
prefix rule.

Given a state we can define its rooted transition system whose states are just
the ones reachable from An example is a pushdown automaton over the
alphabet A = {a, b, c, d} whose basic transitions are as follows (where is the
empty stack sequence).

The transition graph generated by is pictured in Figure 7.3. For any

the transition is derived from the basic transition

using the prefix rule when In this example the set of
nonterminals is divided into two, states Q' and stack elements Each basic
transition belongs to

if                 then
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In the table below is the “Caucal hierarchy” of transition graph descrip-
tions, which depends on how the family of basic transitions is specified. In
each case we assume a finite family of rules. Type 3 captures regular gram-
mars (whose graphs are finite-state), Type 2 captures context-free grammars in
Greibach normal form, and Type in fact, captures pushdown automata. For
Type 0 and below this means that in each case there are finitely many basic
transitions. In the other two cases and are regular expressions over
The idea is that each rule stands for the possibly infinite family of
basic transitions and stands for the family

For instance a Type –1 rule of the form
includes for each the basic transition

This hierarchy is implicit in Caucal’s work on understanding context-free
graphs, and understanding when a graph has a decidable monadic second-order
theory [5, 4, 6]. With respect to language equivalence, the hierarchy collapses
to just two levels, the regular and the context-free. The families between Type 2
and Type –2 are equivalent: for every G of Type –2 and root there is a
of Type 2 and root such that the language of is the same as the language
of

The standard textbook transformation from pushdown automata to context-
free grammars (Type to Type 2) does not preserve bisimulation equivalence.
In fact, with respect to bisimilarity pushdown automata are richer than context-
free grammars. Caucal [5] shows that there is not a Type 2 transition graph and
root which is bisimulation equivalent to of Figure 7.3. He also shows that
Type 0 transition systems coincide (up to isomorphism) with Type There
is a strict hierarchy between Type 0 and Type –2. Therefore, with respect to
bisimulation equivalence there are five levels in the hierarchy. An interesting
consideration is to what extent this hierarchy is closed under canonical tran-
sition graphs. Figure 7.2 is clearly not a Type 0 graph but it is the canonical
graph for Figure 7.3, and therefore this shows that Type 0 is not closed under
canonical graphs, see [4] for further details and results.

Baeten, Bergstra and Klop proved that bisimulation equivalence is decid-
able for a subset of Type 2 transition systems1 [1]. The decidability result was
generalised in [7] to encompass all Type 2 graphs. Groote and Hüttel proved
that other standard equivalences (traces, failures, simulation, 2/3-bisimulation
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etc..,) on Type 2 graphs are all undecidable using reductions from the undecid-
ability of language equivalence for these graphs [10]. The most recent result is
by Sénizergues [20], who shows that bisimulation equivalence is decidable for
transition systems somewhere between Type 0 and – 1. This result is a small
generalisation of his formidable proof of decidability of language equivalence
for DPDA [19, 20]. Using ideas developed in concurrency theory (tableaux
methods) we have simplified his proof of the DPDA result [22]. This leaves
as an open question whether bisimulation equivalence is also decidable for
Type –1 and Type –2 systems.

4. Richer logics
Modal logic M of Section 2 is not very expressive. For instance it cannot

express temporal properties, such as safety or liveness properties, of transition
systems. Such properties have been found to be very useful when analysing
the behaviour of concurrent systems. Modal mu-calculus, introduced by
Kozen [13], has the required extra expressive power. The new constructs over
and above those of M are

where X ranges over a family of propositional variables, and in the case of
there is a restriction that all free occurrences of X in are within the

scope of an even number of negations (to guarantee monotonicity).
The semantics of M is extended to encompass these extra constructs. The

inductive definition of satisfaction stipulates when a state of a transition sys-
tem has the property when each is interpreted as the set of
states Si, written and the semantic clauses for the modal fragment
are as before (except for the presence of the state sets).

The stipulation for the fixed point follows directly from the Tarski-Knaster
theorem, as a least fixed point is the intersection of all prefixed points. (Again
we would add atomic formulas if we are interested in extended transition
systems.)

Second-order propositional modal logic, 2M, is defined as an extension of
M as follows.

The modality is the reflexive and transitive closure of
and is included so that 2M includes As with modal mu-calculus we define
when Thenew clauses are:

iff
iff then
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There is a straightforward translation of into 2M. Let Tr be this translation.
The important case is the fixed point:
X ) .

Formulas of M and closed formulas of are bisimulation invariant. This
is not true in the case of 2M, for it is too rich for characterising bisimulation:
for instance, a variety of “counting” properties are definable, such as “has at
least two different expressible as This
means that two bisimilar states need not have the same 2M properties.

FOL over transition graphs is also not rich enough for capturing interesting
properties. One extension of first-order logic is monadic second-order logic,
2OL, with the extra formulas

The semantic clauses are generalised as follows:

Formulas of 2OL need not be bisimulation invariant. An interesting question is
the relationship between and 2OL. Van Benthem’s result was generalised
by Janin and Walukiewicz [12] as follows.

Proposition 3 A 2OL formula is equivalent to a closed formula iff
is bisimulation invariant.

One corollary of this result is that the bisimulation invariant closed formulas
of 2M has the same expressive power as the closed formulas of

A different extension of FOL is first-order logic with fixed points,
where there is the following extra formulas

In the case of there is the same restriction as in that all
free occurrences of X in lie within the scope of an even number of negations.
The interpretation of a predicate with arity is a set of a subset of

The semantic clauses are therefore as follows (where we use the notation
for sets of tuples).
The new semantic clauses are (where

iff
iff

iff
iff
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When the alphabet A is finite, bisimulation equivalence is definable in
as a dyadic greatest fixed point formula

where is An interesting open
question is how to characterise the bisimulation invariant sublogic of

5. Finite model theory

Finite model theory is concerned with relationships between complexity
classes and logics over finite structures. It is interesting to consider bisim-
ulation invariance in the context of finite model theory. Rosen showed that
Proposition 2 (in Section 2) remains true with the restriction to finite transition
systems [17]. It is an open question whether Proposition 3 also remains true
under this restriction.

Part of the interest in relationships between and 2M or 2OL with re-
spect to finite transition systems is that within 2M and 2OL one can define
NP-complete problems: examples include 3-colourability on finite connected
undirected graphs. Consider such a graph. If there is an edge between two
states and let So in this case and 3-
colourability is given by:

In contrast, formulas over finite transition systems can only express PTIME
properties.

An interesting open question is whether there is a logic which captures ex-
actly the PTIME properties of transition systems. Otto has shown that there is
a logic for the PTIME properties that are bisimulation invariant [15]. The right
setting is over canonical transition systems (where = is ~, and a linear
ordering on states is thereby definable).

We now consider emaciated finite transition systems whose set A is a sin-
gleton. That is now where S is finite. We write
if there is a sequence of transitions of length from to (and by convention

A state is terminal if it has no transitions. The language of state is

therefore the set of words and is terminal}. Con-
sequently, and are language equivalent if The property “x
is language equivalent to y” as was noted earlier is bisimulation invariant. The

where which says that every vertex has a unique colour, is

and
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definition in of bisimulation equivalence of the previous section remains
correct when transition systems are finite. However it is unlikely that language
equivalence is definable in because of the following result, proved in
[23].

Proposition 4 Language equivalence on (canonical) emaciated finite transi-
tion graphs is co-NP complete.

Hence language equivalence over finite transition systems is definable in
iff PTIME = NP. Dawar offers a different route to this observation [8].

A classical result (due to Immermann, Gurevich and Shelah) in a slightly
normalised form is:

Proposition 5 A formula over finite transition systems
is equivalent to a formula of the form

where is first-order and contains at most free.

The argument places in the application ( . . . ) from to are all filled by
the same element This allows for the arity of the defining fixed point to
be larger than the arity of the formula Consequently, if one can prove
that is language equivalent to is not definable by a formula in
normal form, then this would show
that PTIME is different from NP.

The result below has the consequence that language equivalence is not de-
finable by a normal formula of the form We
present the theorem in the most general form possible, that language equiva-
lence is not definable as an unconditional projection of a simple fixed point.

Theorem 6 Language equivalence is not definable by a normal formula of the
form (over finite transition systems).

That is, language equivalence is not definable as an unconditional projection
of a simple fixed point. The rest of the paper is devoted to its proof. One
popular method for showing non-definability is to use games. Here we use a
variant method which introduces “proofs” of formulas. A sufficiently concrete
account of when a formula is true of a transition system is given by a tableau
proof. The aim is to provide a proof system for showing

when is a formula of the form
containing the single fixed point it is straightforward to extend the
proof system to formulas with multiple fixed points. The property checker is a
tableau system, a goal directed proof system. Assume that the starting formula
is and let be the simultaneous
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substitution of each for We assume that in all negations are moved
inwards in the usual way. The tableau rules are therefore as follows.

To test if one tries to develop a
proof of by building a tableau, a
finite proof tree whose root is labelled with this initial sequent. The sequents
labelling the immediate successors of a node are determined by an application
of one of the rules. One keeps building a proof until we reach a terminal
sequent.

A terminal sequent has one of the following forms

and in the proof tree above this sequent there is the
same sequent

1

2

3

Terminal sequents of type 1 or 2 which are true are successful. A tableau proof
is successful if all of its leaves are successful, as shown by the next result
whose proof is straightforward.

Lemma 7 iff there is a successful
tableau whose root is

PROOF. [of Theorem6] Suppose  defines language equiv-
alence. That is for any transition graph G and states of S
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We assume that is in prenex normal form where is in
DNF: each clause in contains atomic formulas of the form

and where the variables range over the set
(where could be the same as

Consider the transition systems in Figure 7.4. The vertices have an “early”
branching point whereas the and vertices have a “late” branching point. Let
G be the graph whose vertices are and and let be the similar graph
whose vertices are and Notice that but
when Moreover We assume that
where is the number of quantifiers and is the arity of Z, and we assume
that and

There is a tableau proof of by
Lemma 7, where is any sequence of vertices Consider any
such that there is a shortest depth tableau proof of The argu-
ment proceeds by showing that there is also a proof of First
we define the elements

Assume We define as follows. If is then
and if then Otherwise and

Consider all such in decreasing order, say (where If
then the corresponding element is otherwise it is

and in the second case all the other corresponding elements are for 1 <
Assume then that for the first element the index

Consider now the second element If the index then the
corresponding element is otherwise it is and again in this second case
the rest of the corresponding elements are for Repeat this
construction as long as where the corresponding element
is and otherwise it is and the rest of the corresponding elements are

for
Consider the sequence of elements in G and the correspond-

ing sequence in The index in the second sequence is
either or Let be the pivot point in the sequence where all indices
to the left also occur in the first sequence and all indices to the right including
that of are 1 plus the index of the corresponding element in the first sequence.
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Note that the difference in the index between element and the next element
to the left is greater than

We now show how a proof of can be used to develop a
proof of The goal reduces to the subgoal

Similarly the goal
reduces to the subgoal

We consider the quantifiers in turn, and at each stage the pivot point may
become updated.

Suppose The goal re-
duces to subgoals one for each

For each such subgoal we associate a subgoal of the second proof
which has the following form
so that all are dealt with. If then Let be the index of
the pivot element If and then otherwise
In the circumstance that but then the pivot element is
updated to that of

The argument is similar when Now there is only one subgoal
The corresponding subgoal

is chosen as above, and again
the pivot element may be updated.

The argument continues for the remaining quantifiers. Suppose the goal
is and the
corresponding goal is

in the second proof. If is then we proceed as
above except if is the index of the current pivot element and and

then otherwise The pivot element is
updated to when but

As quantifiers are eliminated the sequence of elements in
G and the corresponding sequence in may be expanded,
and the pivot element in the second sequence updated. However at each stage,
after eliminating quantifier the difference in the index between the pivot
element and the next element to the left is greater than

Finally all the quantifiers are removed, and a subgoal of the first proof
has the form and in the second proof has the form

The formula is in DNF. Assume that where
each is a conjunction of atomic formulas. Suppose the subgoal of

is then the corresponding subgoal is
Consider any atomic formula B in If B has the form

or then because of the construction of and it follows that
iff The only other possible atomic sen-

tences have the form Suppose a subgoal of
is It follows that and are not and (for other-
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wise the proof of must be shorter than that of
contrary to assumption). Hence either or and where

But then there must also be a successful proof for
as
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Notes

1. They proved it for the normed subfamily. G is normed if for every state there is a word such
that
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