
Lecture Notes
in Control and Information Sciences 356

Editors: M. Thoma, M. Morari

Andrei Karatkevich

Dynamic Analysis of Petri
Net-Based Discrete Systems

ABC

Series Advisory Board
F. Allgöwer, P. Fleming, P. Kokotovic,
A.B. Kurzhanski, H. Kwakernaak,
A. Rantzer, J.N. Tsitsiklis

Author
Dr. Andrei Karatkevich
Institute of Computer Engineering and Electronics
Faculty of Electrical Engineering,
Computer Science and Telecommunications
University of Zielona Góra
Ul. Pogfórna 50
65-246 Zielona Góra
Poland
Email: A.Karatkevich@IIE.UZ.ZGORA.PL

Library of Congress Control Number: 2007923719

ISSN print edition: 0170-8643
ISSN electronic edition: 1610-7411
ISBN-10 3-540-71464-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71464-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or
parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in
its current version, and permission for use must always be obtained from Springer. Violations are liable for
prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
c© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

Typesetting: by the authors and SPS using a Springer LATEX macro package

Printed on acid-free paper SPIN: 11903901 89/SPS 5 4 3 2 1 0

Preface

Design of modern digital hardware systems and of complex software systems is almost
always connected with parallelism. For example, execution of an object-oriented pro-
gram can be considered as parallel functioning of the co-operating objects; all modern
operating systems are multitasking, and the software tends to be multithread; many
complex calculation tasks are solved in distributed way. But designers of the control
systems probably have to face parallelism in more evident and direct way. Controllers
rarely deal with just one controlled object. Usually a system of several objects is to be
controlled, and then the control algorithm naturally turns to be parallel.

So, classical and very deeply investigated model of discrete device, Finite State
Machine, is not expressive enough for the design of control devices and systems.
Theoretically in most of cases behavior of a controller can be described by an FSM,
but usually it is not convenient; such FSM description would be much more complex,
than a parallel specification (even as a network of several communicating FSMs).

The engineers and researchers became aware of practical necessity of developing of
parallel discrete models about forty years ago. There were (and are) two main ap-
proaches to such models. One is a direct development of the FSM, being enhanced by
parallelism and hierarchy. Another one is based on the parallelism “from the very
beginning”. The most famous and popular model of this second kind is Petri nets. A
big family of more or less detailed behavioral specifications of parallel systems is
based on this formalism.

Design and, especially, analysis and verification of systems, which behavior is
specified by the parallel models, is a remarkably more complex task, than design and
analysis of strictly sequential systems.

In this book, we are concerned about the formal analysis and verification of the
parallel systems, specified by the Petri nets and the extended Petri net models. Be-
sides, some results presented here are related to the FSM networks (but, again, we
model them by means of Petri nets) and to the sequent automata (a kind of parallel
descriptions other than Petri nets). To formulate some general affirmations, we use a
general model of a parallel discrete system, which covers all specific models studied
in the book.

We have focused on the approach of reduced exploration of state spaces. This ap-
proach is selected here as the basic one, because the state exploration provides the
most detailed information about system behavior among other analysis approaches,
and, on the other hand, such exploration does not have to be full to decide many im-
portant properties of the systems (especially with restricted structure).

The analysis methods of such kind are thoroughly developed; our work was in-
spired by the results of many authors, first of all of A. Valmari and P. Godefroid. For
inspiration of another kind (the interesting parallel models and the methodology of
research) we are grateful to A. Zakrevskij. The original results presented in this book

 Preface VI

are mostly connected to generalization of the known methods or, vice versa, to apply-
ing them to specific subclasses of parallel systems, which sometimes allows to obtain
more information than in general case.

We intended this book to be useful to CAD researches and designers of parallel
control systems. Content of the book is mostly theoretical, but it was written bearing
in the mind possible practical applications. It may also be useful for the students of
electrical engineering and computer science.

March 2007 Andrei Karatkevich
 Zielona Góra

Symbols

Main symbols

A FSM or parallel automaton
C incidence matrix of a Petri net
D siphon
e event
E set of edges of a graph
F set of arcs of a Petri net
G graph
I set of input (external) events
k elementary conjunction; implicant of a Boolean function
L cycle in a graph
M marking or global state
Md deadlock
M0 initial marking or initial global state
mp macroplace
N FSM network
O set of output events
p place or local state
pi Boolean variable corresponding to place or local state pi

P set of places or set of local states
P in set of input places
P out set of output places
Q path in a graph
Qpi code of local state pi (an elementary conjunction)
R partial order relation
s sequent
S sequent automaton
t transition
T set of transitions
TP persistent set
TS stubborn set

VIII Preface

u elementary disjunction
V set of nodes of a graph
w weight (of an arc)
X set of input variables
Y set of output variables
Z set of internal variables or events
Γ set of events
∆ step of concurrent simulation
εi Boolean variable corresponding to event ei

µ initial label of a parallel automaton transition
ν terminal label of a parallel automaton transition
ρ priority relation
σ firing sequence
Σ Petri net
ϕ left part of a sequent
ψ right part of a sequent

Main operators and functions

enabled(M) set of transitions enabled in M
M(p) number of tokens in place p or activity of local state p at M
M(P) sum of tokens in places belonging to P at M
[M〉 set of markings or global states, reachable from M
P (p) set of local states parallel to p
V (G) set of nodes of graph G
•x set of predecessors of node (place or transition) x of a Petri net
x• set of successors of node (place or transition) x of a Petri net
[x] cluster of Petri net containing node x
|σ| length of firing sequence σ

Main abbreviations

BDD binary decision diagram
CAD computer aided design
CNF conjunctive normal form
DNF disjunctive normal form
EFC extended free choice
FSM finite state machine
HPN hierarchical Petri net
IPN interpreted Petri net
JPVM Java Parallel Virtual Machine
LS live and safe
OPN operational Petri net
OPT ”optimal simulation”
PN Petri net

Preface IX

PNSF Petri Net Specification Format
PSS ”parallel selective search”
PDG program dependency graph
RRG reduced reachability graph
SCC strongly connected component
SFC Sequential Function Chart
SM state machine
TC terminal component
UML Unified Modelling Language
XML Extensible Markup Language

Contents

1. Introduction . 1
1.1 Analysis of Parallel Discrete Systems . 3
1.2 Preliminary Remarks . 5
1.3 The Scope of the Book . 6

2. Main Notions, Problems and Methods . 9
2.1 Models and Specifications of Parallel Discrete Systems 9

2.1.1 Parallel Discrete Systems (General Definition) 9
2.1.2 Petri Nets and Their Extensions . 10
2.1.3 Parallel and Sequent Automata . 16
2.1.4 Sequential Function Charts . 17
2.1.5 Statecharts . 17
2.1.6 Finite State Machines and FSM Networks 20

2.2 The Tasks of Analysis . 21
2.3 The Methods of Analysis . 23

3. Reduced Reachability Graphs . 27
3.1 Review of Known Methods . 27

3.1.1 Persistent Set Methods . 27
3.1.2 Other Methods . 32

3.2 A Generalization of Stubborn Set Method 33
3.3 Weak Persistent Sets . 34
3.4 On Combining the Persistent Set Approach and Concurrent

Simulation . 37
3.4.1 Concurrent Simulation and Persistent Sets 37
3.4.2 Comparison with the Janicki-Koutny’s Method 39
3.4.3 Conflicts, State Explosion and Decomposition 41

3.5 Analysis of Special Classes of Petri Nets . 42
3.5.1 Properties and Analysis of α-Nets . 42
3.5.2 A Hypothesis on EFC-Nets . 53
3.5.3 Analysis of s-Nets . 53

3.6 Minimization of Space . 56

XII Contents

3.6.1 Dynamic Reduction of Reachability Graphs 57
3.6.2 Reducing the Space for Various Analysis Tasks 59
3.6.3 Example . 60
3.6.4 Conclusive Notes on the Method . 61

4. Decomposition for Analysis . 63
4.1 Block Decomposition . 63

4.1.1 Operational Petri Nets . 63
4.1.2 Analysis of Operational Petri Nets . 64
4.1.3 Analysis of a Class of Cyclic Nets . 66
4.1.4 Example and Experimental Results 67

4.2 Hierarchical Decomposition . 69
4.2.1 A Conception of Hierarchical Decomposition

of Petri Nets . 70
4.2.2 Properties of P-Decomposition . 74
4.2.3 Finding P-Blocks . 75

4.3 Decomposition and Persistent Sets . 78
4.4 Parallel Analysis . 79
4.5 Distributed Analysis . 82

4.5.1 A Method of Distributed Analysis . 82
4.5.2 Implementation of the Method . 84
4.5.3 Experimental Results and Concluding Remarks 85

5. Analysis by Solving Logical Equations – Calculation of
Siphons and Traps . 87
5.1 Known Methods of Calculation of Siphons and Traps 88

5.1.1 Calculation of Siphons and Traps by Means of Solving
Logical Equations . 88

5.1.2 Other Approaches to Calculation
of Siphons and Traps . 89

5.2 Algorithm to Find Siphons and Traps . 90
5.3 Example . 91

5.3.1 The Proposed Method . 91
5.3.2 Some Other Symbolic Methods . 92
5.3.3 The Linear Algebraic Method . 92

5.4 Concluding Remarks . 93

6. Verification of Detailed System Descriptions 95
6.1 Application of the Described Approaches to Other Parallel

Discrete Models . 95
6.1.1 Interpreted Petri Nets and Sequent Automata 95
6.1.2 Statecharts . 102
6.1.3 FSM Networks . 108

6.2 Verification of Parallel Automata Implementation 113
6.2.1 Testing Approach . 113
6.2.2 Analytical Approach . 117

Contents XIII

7. Conclusion . 123

Acknowledgments . 127

A. A Theorem on the Stubborn Set Method 129

B. Decyclization of the Oriented Graphs . 131

C. Intersecting P-Blocks . 135

D. Improvements of Thelen’s Prime Implicant Method 137
D.1 Introduction . 137
D.2 Thelen’s Method . 138
D.3 Heuristics for Thelen’s Method . 139

References . 145

Index . 161

1. Introduction

Design of modern discrete devices and systems often deals with parallel pro-
cesses and structures. For that reason practically all modern hardware design
languages and formalisms used for system specification (such as VHDL, Verilog)
allow describing concurrency. Design of complex, VLSI-based electronic devices
is possible only with the help of CAD systems, so the design and verification
methods have to be (and mostly are) formalized. Formalization and automatiza-
tion of system design requires developing of formal models for parallel discrete
systems and low-level description languages based on these models.

Specifications of devices and systems described in VHDL, Verilog or other
popular languages of logical control, as LD, IL or ST [159], are very difficult
for formal verification, because it is practically impossible to create adequate
and at the same time simple formal models for such specifications (if these
languages are used without restrictions). The problem can be solved by using
of restricted specifications based on models which are easy to analyze and have
enough expressive power.

There are two main directions of developing such models, each having its
good and bad aspects. Both of them are, in a sense, extensions of the finite state
machines (FSM) - the basic model of sequential discrete devices, which is, of
course, in its ”pure” version not convenient for practical needs of specifying of
complex systems.

One direction is the composition of FSMs in various ways. The simplest im-
plementation of this approach is the FSM network - a system of communicating
automata [23, 147]. Studies on the automata networks have started in 1960-s,
but rapid development of the methods of behavior specification by means of such
networks began in 1980-s. Adding hierarchy to FSM networks leads to obtaining
the model known as HCFSM (Hierarchical Concurrent Finite State Machines)
[71]. One of the most popular and well-adapted to HCFSM languages has been
developed within a frame of the universal specification language UML (Unified
Modelling Language [209]), describing hierarchical objects and dependencies be-
tween them. We talk about the Statechars, invented by D. Harel [56, 83]. There
exist several other models and languages based on automata networks such as

A. Karatkevich: Dynamic Analysis of Petri Net-Based Discrete Sys., LNCIS 356, pp. 1–8, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

2 1. Introduction

SMV [177], Promela [89, 90], CFSM [18], Requirements State Machine Language
and visualState [200]. Probably the best implementation of this approach is the
Ptolemy project, developed in Berkeley university [52, 157].

Another direction is the Petri nets and Petri net-based models and languages.
A ”pure” Petri net can describe a structure of parallel algorithm in convenient
way, but it cannot describe interaction with the outer world (controlled objects).
In order to develop Petri net models useful for discrete system design, the nets
have to be enhanced at least by input and output signals. Often also such ele-
ments, as internal signals, time dependencies, operations on integers and other
non-binary data are used. Probably the first successful attempt to create a Petri
net-based language for control specification was the model known as GRAFCET.
Its first version was developed in France by the working group called ”Logical
Systems” from AFCET (Association Française de Cybernétique Economique et
Technique) in the 1970s [51, 205]. In 1988 it was adopted by the International
Electrotechnical Commission as an international standard under the name of
”Sequential Function Chart” (SFC)[159]. Translators have been developed to
implement GRAFCET on programmable controllers. In the late 1970s and the
early 1980s intensive researches in similar direction have started in the USSR
(Institute of Engineering Cybernetics, Minsk [236, 238, 239, 240]; Institute of
Control Sciences, Moscow [232, 233]) and in Poland (Technical University of
Zielona Góra [3, 224]); parallel automata models [4, 240] and PRALU language
[245, 249] arose, the methods of implementation and verification of such descrip-
tions were designed1. Later various kinds of colored, interpreted, object and
hybrid Petri nets and similar models have been developed, studied and applied
(see e.g. [12, 34, 67, 94, 95, 100, 137, 143, 195, 196]). Most of these models allow
hierarchical description, which is necessary for modern system design. In this
case a net place or (more rarely) a net transition may be considered at lower
level as a net.

These two approaches are equivalent in their expressiveness, each of them
has its ardent supporters, the Petri net models and FSM-based models can be
transformed into each other [148], and the question, which of them is ”better”
for system design, is still discussed. Both of them are used in CAD systems
(see, for example, [56, 253]; however, Petri net models, being popular among the
researchers, are definitively less popular among industrial CAD designers), and
there is practical need to develop analysis methods for the models of both kinds.

A control system can be implemented using one or several microcontrollers,
FPGA devices, specialized or general-purpose computers and so on. At the level
of control algorithm specification and its verification there is no difference, which
way of implementation will be used at further steps of design. So, in this book
analysis and verification tasks are considered independently of the implementa-
tion details.

1 These researches were preceded by studying the sequent descriptions [4, 80, 234,
237, 250], probably inspired by the theory of logical inference introduced by Gentzen
[204]. Now sequent descriptions (sequent automata) are used as one of the interme-
diate specifications during implementation of parallel automata [5, 243, 248, 249].

1.1 Analysis of Parallel Discrete Systems 3

1.1 Analysis of Parallel Discrete Systems

Methods of formal verification are a necessary part of any methodology of
computer-aided design of hardware or software systems - and, in most cases,
the verification is a bottleneck of the designs. Verification of parallel safety-
critical systems differs from the verification of sequential designs, because there
are some additional important properties, guaranteed or easy to check in case
of sequential systems. The main conditions of a ”good” parallel system are the
next: [200, 245, 249]:

• lack of redundancy (lack of unreachable local states2 and operations which
are never executed);

• deadlock-freeness (in some cases the specified deadlocks must be reachable
in a system; generally, detection of global and local deadlocks - situations, in
which some or all parts of the system cannot react on input events because
of mutual blocking - is one of the main analysis tasks) and a wider property,
liveness (which implies lack of redundancy); often (for the cyclic systems)
the condition of reversibility is added;

• safeness - no operation can be re-initialized during its execution;
• determinism - for parallel systems it additionally means, that parallel branches

never destroy conditions and results of each other.

Of course, a designer may choose and formalize some specific conditions for
specific designs. Checking of most conditions can be reduced to solving of reach-
ability problem (reachability of a specified state or one of the states belonging to
a specified class). Reachability is usually not a property difficult to check for a
sequential system such as FSM, but for parallel systems the situation is different.

Analysis and formal verification of the parallel systems is a much more com-
plex task than verification of a single FSM. The main problem is caused by the
fact, that the parallel systems may have huge number of reachable states (it
may depend exponentially on the of system size; for example, number of states
of an FSM, equivalent to a parallel automaton with n states, may be maximally
3n/3/n [249]. A parallel system may even have the infinite state space, such as
an unbounded Petri net). That’s why analysis by reducing of a parallel system
to sequential one or by generating its state space in explicit form is practically
impossible even for relatively simple systems (a parallel automaton with several
dozens of local states may have milliards of global spaces). Model checking, a
popular technology of formal verification based on state space analysis (using
some tricks to prune the state space and, in most cases, representing state space
in compact form like BDD), is practically used to verify properties of state spaces
of size as large as about 1000 states maximum (accirding to [177]; however, in
the earlier publication [45] the specific examples with an extremely large num-
ber of states - about 1016, 1020 and even 10120 - are mentioned, successfully

2 For parallel systems the global states (state of the whole system) and local states
should be distinguished; formal definitions will be given later.

4 1. Introduction

”model-checked”). Communication between concurrent processes in a system
also complicates the verification.

The methods of analysis of Petri nets have been developed since the model
has been designed by C.A. Petri [184]. They are deeply investigated in 3 main
directions, complementary to each other: dynamic analysis (analysis by state
space search), structural analysis and reduction methods [24, 26, 86, 172, 183].
Two main problems exist here. First is that in general case analysis of some
important properties requires exponential time and memory. Second is that the
methods working well for the objects like classical Petri nets usually cannot take
into account the additional details important in the applications. For example,
behavioral properties of an interpreted Petri net may differ from the properties of
its underlying ”pure” Petri net because of possible interaction between parts of
the system via internal signals. So, a live Petri net may correspond to a non-live
interpreted Petri net with the same structure, and vice versa.

Generally, we can say that modern CAD systems for discrete devices have in-
sufficient possibilities for verification of parallel systems. They are usually unable
to perform analysis tasks like deadlock detection, liveness and safeness checking.
Such analysis is the designer’s responsibility and is usually performed by means
of simulation [71]. Of course, there is no guarantee of defects covering. In fact
the CAD systems rarely provide any formal verification of designs, except syntax
analysis (dynamic testing methods are also not sufficiently developed).

That is why further development of the analysis methods for Petri nets is
important, such as studying the particular cases for which analysis tasks can be
solved in polynomial time and working out the methods allowing to decrease
time and memory amount in other cases, increasing in this way maximal size of
the structures which can be practically analyzed. It is also important to develop
the methods of analysis of the models which can describe the real-life devices
and systems, such as interpreted Petri nets.

Discrete devices and systems, also parallel systems, may be synchronous or
asynchronous. Methods of their analysis and synthesis differ for these two in-
terpretations. Behavior of the asynchronous systems is in a sense more difficult;
synchronous system can be considered as a particular case of asynchronous sys-
tem and not vice versa. For a synchronous parallel automaton there always exists
a behaviorally equivalent sequential automaton, but that is not always the case
for an asynchronous parallel automaton [235]. However, some analysis tasks can
be solved easier in case of the asynchronous systems.

Petri nets are asynchronous by their nature. So, methods of their analysis are
”asynchronously oriented”. We mentioned difficulties connected with applying
methods of analysis of classical Petri nets to the interpreted Petri nets; similar
difficulties appear when a Petri net with synchronous interpretation has to be
analyzed. In both cases the main problem can be formulated as follows: an
interpretation may forbid some of the possible evolutions of the underlying net.
These forbidden evolutions are difficult to detect, and lack of them and may
change remarkably the net properties (an unsafe net may become safe, some
deadlocks may become unreachable etc.). The same is true for the FSM networks

1.2 Preliminary Remarks 5

and their analysis. Generally, only two main properties are ”resistant” with
respect to interpretations: 1) if a Petri net is safe, all its interpretations are safe;
2) if an asynchronous system is deadlock-free, the corresponding synchronous
system is also deadlock-free.

A system designer deals more often with asynchronous systems, although most
of discrete devices are synchronous. Synchronousness is important at the low
level, but a complex parallel system, even consisting of synchronous blocks, be-
haves asynchronously (a system of controllers of an automatized production line,
for example, or a computer operating system). At the low level, asynchronous
devices also find an important place, especially in the area of logical control
(reactive embedded systems), because they are generally more quick.

This book is devoted to the analysis of asynchronous systems by means of
reduced (selective) state space search.

1.2 Preliminary Remarks

Author’s experience and inspiration in design of analysis methods for parallel
algorithms have been formed during his work with two research teams: group
of prof. A.D. Zakrevskij in the Institute of Engineering Cybernetics, Belorus-
sian Academy of Sciences, Minsk, and group of prof. M. Adamski, University of
Zielona Góra, Poland. During his work with the first team, the author’s main
interests were concentrated on optimization of sequent and parallel automata
and analysis of sequent descriptions and α-nets (representing structure of paral-
lel algorithms [242])[104, 106, 108, 138, 139]. Results of the researches had been
summarized in the Ph.D. thesis [105]. Working with the second team, the author
has been involved in developing the advanced methods of analysis of Petri nets
[114, 118, 119, 228] and verification of specifications for parallel logical control
systems described by FSM networks [115, 116], SFC [124] and Statecharts [113].

The two teams have developed similar methodologies of design of digital con-
trollers implementing parallel logical control algorithms, both based on Petri
nets and sequent descriptions. The Minsk team has developed a convenient for-
mal description language for parallel control algorithms and has deeply investi-
gated the problems of formal verification and state encoding of parallel automata
[39, 40, 235, 243, 245, 249]; the Zielona Góra team has concentrated on sequent
description of parallel algorithms and their implementation in FPGA and, gen-
erally, in programmable matrix structures [4, 12, 19, 35, 68, 144, 151, 199]. Both
teams developed concepts of parallel algorithm and parallel automaton, and
their results complement each other. In [6] selected results of both teams are
presented.

In this book the conceptual apparatus of these methodologies is used. Formal
definitions will be given in Chapter 2, but it is reasonable to explain informally
some basic notions here.

A parallel discrete system is a dynamic system, for which a state is character-
ized by a vector of discrete (often Boolean) variables, and some of these variables
may change independently of each other. It is evident, that every discrete device
may be considered as a parallel system at ”low enough” level. The state of whole

6 1. Introduction

parallel system is called its global state, to distinguish from the local states , spec-
ified by the components of the state vector. At a given moment a system can be
in one global state, but in more than one local state. For example, in case of a
Petri net its marking corresponds to the global state, and its places to the local
states.

A parallel automaton [4, 151, 240] is an extension of the finite state machine,
which may be in several (local) states simultaneously. Its underlying structure
can be specified by a safe Petri net (usually an EFC-net) [252].

State space, or reachability graph of a parallel discrete systems is the set of
its reachable global states and the direct transitions between them.

Logical control is a control performed by binary (logical) signals. Here signals
flowing in both directions - from control system to controlled objects and vice
versa - are logical. Logical control systems are widely used in industry, transport,
communication networks, home automation and so on [249]. A logical control al-
gorithm is a formal specification of logical control (behavior of a control system
in interaction with the controlled objects). This algorithm is parallel , if some of
its operations can be performed simultaneously. Parallel automation is a repre-
sentation of a parallel logical control algorithm - one of the main objects under
research in this book.

Dynamic analysis is an approach based on simulation of a system and extract-
ing knowledge about its behavior from the state space. The ”direct” method of
dynamic analysis is constructing of the full state space. But it is evident, that
sucvh method can be practically applied only to relatively small (and bounded)
parallel systems. For unbounded Petri nets there is a trick (the famous ”ω”
[172, 183]), allowing to ”pack” infinite state space into a finite graph; of course,
some information is lost. For the systems, which are bounded but have ”too
many” reachable states, a wide range of methods is developed based on the idea
of constructing reduced state spaces and extracting behavioral properties from
them. Those methods are known as lazy state space constructions [85, 86] or
partial order reduction [10, 44, 45, 77, 211]. Another family of methods which
can be considered as belonging to the dynamic analysis approach are the com-
pression techniques , representing the state spaces in a memory efficient manner,
often (but not always) using BDD (see [34, 86, 89, 134, 150, 156, 167, 200, 217]).
Such methods are beyond the scope of this book.

1.3 The Scope of the Book

Different aspects of analysis and verification of the parallel discrete systems, Petri
nets and parallel logical control algorithms are discussed in hundreds of papers.
The aim of this book is to present in systematic form the dynamic analysis
approach to solving tasks of verification of Petri net and FSM network models
and specifications, intended for implementation in embedded reactive systems.
The dynamic analysis approach was selected here as the main strategy of system
verification, because it allows not only deciding the behavioral properties, but
also obtaining paths in state space, leading to the undesirable states or events,
which is of much help for the design process. The Valmari’s stubborn set method

1.3 The Scope of the Book 7

[211, 212, 213, 215, 217], one of the most known methods of dynamic analysis of
parallel systems, has been selected as the basic one. However, other approaches
are also used in the book.

There exist good monographs describing theory and methodology of dynamic
analysis of parallel systems (e.g. [77, 145, 187, 217, 221]). Contribution of our
work in comparison to them is formed mostly by new results on properties and
analysis of special classes of Petri nets, on combining different methods within
the dynamic analysis approach, on net analysis by decomposition and, last but
not least, on applying the approach to the detailed system descriptions such
as interpreted Petri nets. One of the problems preventing wide practical use of
dynamic analysis methods is that most of them is developed for too ”abstract”
state-transition systems, and usually they do not take into account some aspects
of real-life parallel systems, important for their behavior. Dealing with this prob-
lem by adapting the dynamic analysis methods to the low-level descriptions is
one of the central topics of the book.

To be brief: the main subject of this book is behavior analysis of parallel discrete
systems by means of dynamic methods with partial construction of state spaces .
The proposed methods are oriented to analysis of specifications and models of
logical control systems.

There are 6 general directions of research, new results of which are presented
in the book:

• studying additional possibilities of the known methods, such as stubborn
set method, to obtain information about the properties of Petri nets. We
show, that the stubborn set method can provide more information, than it
was supposed before. Especially interesting results are obtained on analysis
of the models corresponding to typical structures of parallel logical control
algorithms - α-nets [109, 119, 124], nets with single-token initial marking
[114] (Chapter 3);

• developing methods of net analysis with minimization of memory amount
(on-the-fly reduction of reachability graphs [112, 118, 123, 131]); such meth-
ods can be useful, when memory is more critical parameter than time (Section
3.6);

• studying possibilities of simplifying net analysis by means of decomposition.
A known method of analysis by decomposition was generalized for a class of
cyclic nets [251]; an original approach to net decomposition for analysis has
been developed [16, 107, 126, 127] (Chapter 4);

• developing methods of concurrent and distributed analysis of large nets (with
the next motivation: it seems to be natural to analyze parallel structures
in parallel way. Two variants of such analysis are considered: on common
memory [130] and distributed [128]) (Sections 4.4, 4.5);

• developing algorithms of verification of the low-level, detailed specifications
of embedded real-time systems, presented as interpreted Petri nets, State-
charts, SFC and FSM networks [14, 113, 117, 124]. A generalization of the
stubborn set method has been considered, which can be easily concretized for
many special parallel discrete models [121] (Section 3.2). Another approach,

8 1. Introduction

used for analysis of Statecharts and FSM networks, is based on symbolic
calculation of siphons in the modelling Petri nets [113, 116, 153] (Section
6.1). The improved algorithms of calculation of siphons and traps by means
of solving logical expressions are applied for that purpose [228] (Chapter 5);

• verification of transformations and implementation of parallel automata spec-
ifications. Dynamic (testing) [120] and static (symbolic) [122] approaches to
such verification are considered (Section 6.2).

Besides, some new theoretical results and algorithms are presented, obtained
as the by-products of our main research. They are related to such topics as
behavioral properties of Petri nets [110, 119] (subsection 3.5.1), cycles in oriented
graphs [111] (Appendix B), and generating prime implicants of Boolean functions
[32, 33, 228] (Appendix D).

2. Main Notions, Problems and Methods

2.1 Models and Specifications of Parallel Discrete
Systems

This section contains definitions of main models used in the book and their prop-
erties. Other necessary definitions will appear in the text when correspondent
notions will be introduced; they, unlike the definitions in this section, will be
numbered.

2.1.1 Parallel Discrete Systems (General Definition)

By a parallel discrete system we mean a system which (global) state M is de-
scribed by a vector of discrete variables and can be changed by firing (execution)
of the transitions ; every transition has a necessary condition of firing being a
binary function defined on M (when it is satisfied, the transition is enabled). A
transition firing changes values of some elements of M . Several transitions can
be enabled in the same state M . Set of all enabled transitions at M is denoted
as enabled(M).

If transition t is enabled in M and its firing transforms the state into M ′, that
is denoted by MtM ′. This denotation and the notion of enabled transition can be
generalized for firing sequences (the sequential firing of the transitions, such that
each transition is enabled in the state created by firing of the previous transition).
A state M ′ that can be reached from M by a firing sequence σ = t1t2...tn is
called reachable from M ; we write MσM ′; |σ| = n; ti ∈ σ (1 ≤ i ≤ n). For a
state M , [M〉 denotes the set of all states reachable from M .

A transition is live, if there is a reachable state in which it is enabled; otherwise
it is dead . A state in which no transitions are enabled is called a (global) deadlock .

A (full) reachability graph is a graph G = (V, E) representing state space of
a system. V = [M0〉; d = (M, M ′) ∈ E ⇔ MtM ′ (then t marks d). A strongly
connected component (SCC) of a reachability graph is its maximal strongly con-
nected subgraph. A terminal component of a graph G is its SCC such that each
edge which starts in the component also ends in it [74, 217]. A system is cyclic,
if its reachabilty graph is strongly connected.

A. Karatkevich: Dynamic Analysis of Petri Net-Based Discrete Sys., LNCIS 356, pp. 9–26, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

10 2. Main Notions, Problems and Methods

All models described below are concretizations of this general model. The
notions presented above will be used for those models.

2.1.2 Petri Nets and Their Extensions

Petri Nets

An (ordinary) Petri net [172, 188] is a triple Σ = (P, T, F) where:

P is a finite nonempty set of places ;
T is a finite nonempty set of transitions ;
P ∩ T = ∅;
F is a set of arcs : F ⊆ (P × T) ∪ (T × P).

Sets of input and output transitions of place p are defined respectively as
follows:

•p = {t ∈ T : (t, p) ∈ F},
p• = {t ∈ T : (p, t) ∈ F}.

Sets of input and output places of transition t are always nonempty and are
defined respectively as follows:

•t = {p ∈ P : (p, t) ∈ F},
t• = {p ∈ P : (t, p) ∈ F}.

These notions can be generalized for sets of places (transitions); for example,
•T is the set of all input places of the transitions belonging to T .

Graphically a Petri net is represented as a bipartite oriented graph, which
nodes correspond to places and transitions, and arcs are going from transitions
to their output places and from places to their output transitions (Fig. 2.1).
A net is said to be connected (strongly connected), if its graph is connected
(strongly connected).

A state of a Petri net, called a marking, and is defined as a function M :
P → N. It can be considered as a number of tokens situated in the net places
(p contains M(p) tokens). M(P ′), where P ′ ⊆ P , denotes

∑
p∈P ′ M(p). When

a place or set of places contain token(s), it is marked . A marking M is safe, if
∀p ∈ P (M(p) ≤ 1), otherwise it is unsafe. We will specify the safe markings as
the sets of marked places. A transition t is enabled and can fire (be executed),
if ∀p ∈• t(M(p) > 0). Transition firing removes one token from each input place
and adds one token to each output place. A marking can be changed only by
transition firing. The initial marking M0 is usually specified (then the Petri net is
represented as a tuple Σ = (P, T, F, M0)). (M ≥ M ′) ⇔ ∀p ∈ P (M(p) ≥ M ′(p));
(M > M ′) ⇔ (M ≥ M ′) ∧ (∃p ∈ PM(p) > M ′(p)).

Transitions t, t′ are parallel, if ∃M ∈ [M0〉{t, t′} ⊆ enabled(M) and •t∩•t′ = ∅.
Transitions t, t′ such that •t ∩• t′ �= ∅ are in conflict .

It is supposed, that transitions of a Petri net fire one by one; however, for
the simulation purposes a notion of stepstep (of simulation) (of concurrent sim-
ulation) is sometimes useful. The stepstep (of simulation) is a set ∆ of enabled

2.1 Models and Specifications of Parallel Discrete Systems 11

t16

p8

t8

p9

t9

p10

t10

p7

p6

t6

t7

p4

t4

p5

t5

p3

t3

p13

t13

p14

t14

p15

t15

p12

p11

t11

t12

p16

p2

p1

t1

t2

Fig. 2.1. A Petri net

mutually independent transitions [97] (see Definition 3.1); transitions belonging
to a step can fire in any order with the same marking resulting. Notion of firing
sequence can be generalized for step sequences . A linearization of a step is a
sequence of all transitions belonging to it in any order. A linearization of a step
sequence is the concatenation of linearizations of all steps in the sequence.

A net is live, if for every reachable marking every transition of the net is live.
A net is quasi-live, if for the initial marking every transition of the net is live.
A net is bounded (n-bounded), if ∃n : ∀p ∈ P ∀M ∈ [M0〉(M(s) ≤ n) (there
is an upper bound of number of tokens for all the net places in all reachable
markings). A net is safe (1-bounded), if ∀p ∈ P ∀M ∈ [M0〉(M(s) ≤ 1). A
live and safe (LS) net is often called a well-formed net. A net is reversible, if
∀M ∈ [M0〉 M0 ∈ [M〉 (it can return to the initial marking from any reachable
marking). A net is conservative, if the number of tokens in all reachable markings
is the same (or, in more general formulation, if such non-zero coefficients can be
associated with the places, that the weighted sum of tokens is constant for all
reachable markings).

12 2. Main Notions, Problems and Methods

A Petri net Σ′ = (P ′, T ′, F ′) is a subnet of Petri net Σ = (P, T, F), if:

T ′ ⊂ T ;
P ′ =• T ′ ∪ T ′•; (2.1)
F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)).

It follows that a subnet of the given net is completely specified by the set
T ′. We will use set-theoretical operations for the subnets, interpreted as follows:
Σ1 � Σ2 = Σ3, where T3 = T1 � T2, � is a set-theoretical operation, and Σ3 is
specified by T3 according to (2.1).

A projection of marking M of a net Σ on its subnet Σ′ is marking M ′ of Σ′

such that ∀p ∈ P ′ M ′(p) = M(p).
A net belongs to the class SM (State Machine), if ∀t ∈ T : |•t| = |t•| = 1. A

net Σ′ = (P ′, T ′, F ′) belonging to the class SM, such that for a net Σ = (P, T, F)
P ′ ⊆ P , T ′ ⊆ T , F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)), is called an SM-component
of Σ.

A net belongs to the class EFC (Extended Free Choice) [55], if ∀p ∈ P : (t ∈
T, t′ ∈ T, p ∈• t, p ∈• t′) => (•t =• t′). A set of transitions of EFC-net with the
same input sets of places is a cluster ; clusters specify a partition of the set of
places and of the set of transitions. An EFC-net is called an α-net [249], if in
the initial marking it contains only one token. For every element x ∈ P ∪ T , [x]
denotes the smallest set containing x which includes p• for every place p ∈ [x]
and •t for every transition t ∈ [x]. The set [x] is called a cluster of Σ [54] (the
set of all clusters of Σ constitutes a partition of P ∪ T ; for every cluster c of an
EFC-net, every place p ∈ c and every transition t ∈ c: (p, t) ∈ F . All transitions
in a cluster an EFC-net can be enabled or disabled only simultaneously; so, a
cluster of an EFC-nets is enabled, if all transitions belonging to it are enabled;
otherwise it is disabled). A free choice net is an EFC-net with the property that
no cluster has simultaneously more than one transition and more than one place.

A siphon is a set of places such that every transition which outputs to one of
the places in the siphon also inputs from one of these places. This means that
once all of the places in the siphon become unmarked, the entire set of places
will always be unmarked; no transition can place a token in the siphon because
there is no token in the siphon to enable a transition which outputs to a place
in the siphon [183] (Fig. 2.2). Formally, a nonempty subset of places D of a net
Σ is a siphon if •D ⊆ D•.

A trap is a set of places such that every transition which inputs from one of
these places also outputs to one of these places. This means that once any of the
places in a trap has a token there will always be a token in one of the places of
the trap. Firing of transitions may move the tokens between places but cannot
remove all tokens from a trap [183] (Fig. 2.3). Formally, a nonempty subset of
places U of a net Σ is a trap if U• ⊆• U .

Union of two siphons (traps) is again a siphon (trap). A siphon (trap) is called
a basic siphon (basic trap) if it cannot be represented as a union of other siphons
(traps). So all the siphons (traps) in a Petri net can be generated by the union
of some basic siphons (traps). A siphon (trap) is said to be minimal if it does

2.1 Models and Specifications of Parallel Discrete Systems 13

p1

p2

p3

p4

p5

t1

t2

Fig. 2.2. Example of a siphon D = {p1, p2, p3}, •D = {t1}, D• = {t1, t2}

p1

p2

p3

p4

p5

t1

t2

Fig. 2.3. Example of a trap U = {p1, p2, p3}, U• = {t1}, •U = {t1, t2}

not contain any other siphon (trap). Minimal siphons (traps) are basic siphons
(traps), but not all basic siphons (traps) are minimal.

The Petri net shown in Fig. 2.4 contains 10 siphons and 10 traps (excluding
the entire set of places, which is both a siphon and a trap). In Table 2.1 all those
siphons and traps are listed; minimal siphons and traps are marked.

For a set U ⊆ P , χ[U] denotes the characteristic vector of U with respect to
P .

The incidence matrix C : P × T → {−1, 0, 1} of Σ is defined by C(−, t) =
χ[t•] − χ[•t].

Petri Nets with Multiple Arcs

A Petri net with multiple (weighted) arcs [172, 183] is a Petri net with a weight
function defined on the set of arcs: W : F → {1, 2, 3, ...}. For such nets:

1. A transition t is enabled, if each input place p of t is marked with at least
w(p, t) tokens, where w(p, t) is the weight of the arc from p to t.

2. A firing of an enabled transition t removes w(p, t) tokens from each input
place p of t, and adds w(t, p) tokens to each output place p of t, where w(t, p)
is the weight of the arc from t to p.

14 2. Main Notions, Problems and Methods

p6

t5

p3

p1

t1

p2

p4

t4

p5

t2

t3

Fig. 2.4. A Petri net (taken from [140])

Table 2.1. Sets of siphons and traps of the Petri net shown in Fig. 2.4

siphon minimal
siphon

trap minimal
trap

{p5, p6} + {p1, p2} +

{p4, p5, p6} - {p1, p2, p5, p6} -

{p1, p2, p3, p6} + {p1, p2, p4} -

{p1, p2, p5, p6} - {p1, p2, p4, p6} -

{p1, p2, p3, p5, p6} - {p1, p2, p3, p5, p6} -

{p1, p3, p4, p6} + {p1, p2, p4, p5, p6} -

{p1, p2, p3, p4, p6} - {p1, p3, p4, p6} +

{p1, p4, p5, p6} - {p1, p2, p3, p4, p6} -

{p1, p2, p4, p5, p6} - {p1, p3, p4, p5, p6} -

{p1, p3, p4, p5, p6} - {p1, p3, p5, p6} +

An example of net with multiple arcs see in Fig. 6.5c.

Interpreted Petri Nets

An interpreted Petri net in narrow sense is a Petri net enhanced with possibilities
of information exchange (by means of binary signals) with the outer world, and
with exact determination when an enabled transition fires. Interpreted Petri nets
are mostly used as models of parallel discrete devices, such as logical controllers
[7, 12, 13, 14, 19, 20, 34, 51, 67, 103, 218, 225, 249].

Interpreted Petri nets can be, like the FSMs, of Mealy or Moore type. An
interpreted net of Mealy type is a Petri net such that a sequent is associated
to every transition ti of it. A sequent [4, 237, 249] is an expression of the form
ϕi � ψi, where ϕi is a Boolean function, and ψi is an elementary conjunction.

2.1 Models and Specifications of Parallel Discrete Systems 15

An enabled transition of such net fires, when in the corresponding sequent ϕi =
1. Firing of the transition leads to assigning to all variables occurring in ψi

the values, for which ψi = 1. The Boolean variables occurring in the sequents
are divided into 3 sets: X - input variables, occurring only in left parts of the
sequents; Y - output variables, occurring only in the right parts; and Z - internal
(shared) variables, occurring in both (often Z = ∅). These variables are the
signals of communication between the net and outer world (and, when Z �= ∅,
also of communication between processes inside the net. Values of input variables
depend on the outer world; values of the internal and output variables can be
changed only by the transition firing. An example of interpreted Petri net of
Mealy type is shown in Fig. 6.1. Underlying net of an interpreted Petri net is
the classical Petri net with the same sets of places, transitions and arcs (it can
be obtained from an interpreted Petri net by removing all information about the
signals). The underlying net for the net from Fig. 6.1 is the net shown in Fig.
3.1.

An interpreted net of Moore type is such Petri net that a condition (a Boolean
function of the input variables, belonging to the set X) ϕi is associated to every
transition ti of it, and a set of Boolean variables (maybe empty) being a subset of
the set of output variables Y is associated to every place. An enabled transition
of such net fires, when the corresponding condition ϕi = 1. At every marking the
output variables, which are associated with the places having tokens, have value
1, other output variables have value 0. Values of the input variables depend on
the outer world; so, input and output variables provide an interface between a
Petri net and outer world. An example of interpreted Petri net of Moore type is
shown in Fig. 6.15.

Input and output variables of an interpreted Petri net can be understood,
among others, as input and output signals of a logical controller, and the whole
net as a specification of parallel logical control algorithm.

Nets with Inhibitor Arcs

Modelling power of Petri nets is limited by lack of possibility of zero-test (there
is no possibility to check whether a place is empty). That’s why for modelling
systems and describing control algorithms the extended Petri net model known
as Petri nets with inhibitor arcs [43, 183] is often used. An inhibitor arc, leading
from a place to a transition, unlike the "traditional" arcs, disables the transition,
if the place has a token.

An inhibitor arc is denoted graphically by an arc with a small circle (see
Fig. 6.4). The set of places from which the inhibitor arcs lead to transition t is
denoted by (•t)(inh).

Nets with Priorities

A Petri net with (static) priorities [30] is a Petri net such that a priority relation
ρ ⊆ T × T is defined on the set of transitions; (t1, t2) ∈ ρ means, that transition
t2 has higher priority than t1. A transition can be enabled in a marking, only

16 2. Main Notions, Problems and Methods

when no transition with higher priority is enabled in this marking. A transition
which is disabled but has no empty input place is active

An example of a net with priorities and its reachability graph is shown in Fig.
6.5.

2.1.3 Parallel and Sequent Automata

Parallel Automata

Parallel automaton [4, 41, 186, 201, 239, 240, 249] is a model equivalent to the
interpreted Petri net (with the restriction: the underlying Petri net should be
a safe α-net). Such automaton is considered as a dynamic system which can
be in several local states simultaneously. A marking of a Petri net corresponds
to a global state of a parallel automaton; a place corresponds to a local state
(active, when the corresponding place is marked, passive otherwise). A set of
simultaneously active local states specifies a global state. Any two local states
which can be active simultaneously are called parallel .

A parallel automaton is described by set of transitions of the form µ − ϕ �
ψ → ν, where ϕ and ψ are elementary conjunctions of Boolean variables that
define the condition of transition and the output signals respectively, µ and
ν are labels that represent the sets of local states of the parallel automaton
[186, 240, 247, 249]. Every such transition should be understood as follows. If
a global state of the parallel automaton contains all local states from µ and
ϕ = 1, then the transition is executed (fired), which yields a new global state
that differs from the previous one by containing local states from ν instead of
those from µ. The values of output variables in this case are set to be such that
ψ = 1.

A local state p is reachable, if such global state is reachable that p is active.
This notion relates to parallel automata, Statecharts and FSM networks (defined
below).

Sequent Automata and State Encoding

A sequent automaton [237, 249] is a system S of sequents si = ϕi � ψi, defining
the "cause-effect" relation between an event represented by Boolean function ϕi

and an event represented by conjunction term ψi [250]. Set of the arguments
of all functions in the system is divided into 3 sets, as for the interpreted Petri
nets. If at a moment ϕi = 1 (the sequent is enabled), then conjunction ψi will
attain value 1 (after an arbitrary delay, in case of asynchronous interpretation;
at the next moment of discrete time, in case of synchronous interpretation);
such change of the values of corresponding variables is called sequent firing. The
internal and output variables are inertial (keep their values, when no sequent
firing changes them).

A simple sequent automaton is defined as a system of simple sequents - the
sequents where both parts ϕ and ψ are the elementary conjunctions.

2.1 Models and Specifications of Parallel Discrete Systems 17

Sequents si and sj are called parallel if they could be enabled simultaneously.
A sequent automaton is consistent, if for any parallel sequents si and sj relation
ψi ∧ ψj �≡ 0 holds [250].

A safe interpreted Petri net or a parallel automaton can be converted into
behaviorally equivalent system of sequents. The main operation of such con-
version is state encoding (or state assignment) [40, 41, 186, 245, 247]. In state
assignment of a parallel automaton, local states are encoded by ternary vectors
(elements of which can have values "0", "1" or "-") in the space of introduced
internal (coding) variables, non-orthogonal vectors being assigned to parallel
states (non-parallel states are usually, but not always, coded by orthogonal vec-
tors) [246]. The orthogonality of ternary vectors means existence of a component
having opposite values (0 and 1) in these vectors. After state encoding is per-
formed, a sequent automaton is obtained from the parallel automaton in the
following way: for each transition µ − ϕ � ψ → ν a sequent ϕfz � kzψ is ob-
tained. Here fz =

∧
p∈µ Qp, kz =

∧
p∈ν Qp, where Qp is the code of local state

p, interpreted as the conjunction of coding variables [40, 249].

2.1.4 Sequential Function Charts

Sequential Function Charts (SFC) is a graphical language for logical control
systems specification, allowing parallel branches description. It is one of the
IEC (International Electrotechnical Commission) programming languages for
industrial control systems [159].

An SFC consists of steps and transitions (Fig. 2.5a). A step of SFC represents
a particular state of a system being controlled. It may be active or not. A step
can be associated with one or more actions. A transition is associated with a
condition; if all steps before a transition are active and the condition is true,
the transition occurs. Then all steps before the transition become inactive, and
all steps after the transition become active. Relations "before" and "after" are
specified by the lines at SFC diagram (we do not explain in detail the SFC
graphical specification; details can be found in [159]). Initially only one step is
active.

An SFC is unsafe if a step can be activated when it is already active (Fig.
2.5b); this situation would mean an unpredictable behavior of the controller.
Another case of defected SFC (unreachable) is when there are steps that never
can be activated (Fig. 2.5c; all examples in Fig. 2.5 are taken from [159]). SFC
may have one or more terminal steps . From any reachable global state, a global
state with an active terminal step should be reachable. If there are no terminal
steps, the initial state should be reachable from any reachable state.

2.1.5 Statecharts

Statecharts [83, 88], like SFC, is a graphical language used for specification of
control systems. We use the restricted model, not including such elements of
classical Statecharts, as negated trigger events, timeout events, and assignment
to variables. The definitions are based on [46, 149, 151, 173].

18 2. Main Notions, Problems and Methods

Step1

Step2

Step3

Step4

Step5

Step6

Step7 Step8

Step9

Step10

a)

Step1

Step2

Step3

Step4

Step5

Step6

Step7 Step8

Step10

b)

Step1

Step2

Step3

Step4

Step5

Step6

Step7 Step8

Step10

c)

Fig. 2.5. The examples of SFC

Syntax of Statecharts

A Statechart is an 11-tuple consisting of the following elements:

(P, hrc, type, default, history, Γ, T, out, in, tlabel, saction),

where:

1. P is the finite non-empty set of states.
2. hrc: P → 2P is the hierarchy function, which assigns to every state p ∈ P the

set of immediate substates of p. Transitive closure of the relation of being an
immediate substate is the relation of being a substate (the reversed relation
specifies being a superstate). It is supposed that the graph specified by the
relation of being an immediate substate is a tree (no two states are the
substates of each other; no state is an immediate substate of more than one

2.1 Models and Specifications of Parallel Discrete Systems 19

state; there is a state root for which all other states in the diagram are the
substates). (parent(p) = p′) ⇔ p ∈ hrc(p′).

3. type: P → {AND, OR} is the state-type function.
4. default: P → P is the default function (which for every state p ∈ P such that

hrc(p) �= ∅ and type(p) = OR assigns default state of hrc, and is undefined
otherwise.).

5. history: P → {true, false} is the Boolean history function.
6. Γ is the finite set of events; Γ = I ∪ Z; I ∩ Z = ∅ (I - the set of external

events , Z - the set of internal events).
7. T is the finite set of transitions .
8. out: T → P\{root} is the source function: out(t) = p if transition t originates

from state p.
9. in: T → P\{root} is the target function: in(t) = p if transition t ends in

state p.
10. tlabel: T → 2Γ ×2Z is the transition labelling function. The first component

of tlabel is trigger(t) ⊆ Γ , the second is called transition action and is
denoted as taction(t) ⊆ Z.

11. saction: P → 2Γ is the state labelling function, defining the set of events
which are available when the state is active.

For every transition t ∈ T , the following predicate holds: parent(out(t)) =
parent(in(t)) = p with type(p) = OR.

In Fig. 2.6 an example of Statechart is shown (taken from [151], with minor
changes. The transitions are described as t : trigger(t)/taction(t), or as t :
trigger(t), if taction(t) = ∅).

p3

t3: {e2}/{e1}

H

p1

p5

p4

p2

t1: {e3}

p11 p12

p6 p7

exit: {e1,e2}

do: {e3}

do: {e4}
t2: {e1}

t4: {e3}/{e2}

t5: {e1}/{e2}

Fig. 2.6. An example of Statechart

Behavior Specified by Statecharts

As far as we consider Statecharts as a description of system behavior, it is nec-
essary to specify their behavioral interpretation. So, a global stateM is defined

20 2. Main Notions, Problems and Methods

as a set of active states , and function M(p) is defined such that M(p) = 1 if
and only if p is active in M . Initial global state M0 is defined by the default
function: M0(root) = 1; ∀p ∈ (P\{root}) : M0(p) = 1 ⇔ (M0(parent(p)) =
1 ∧ ((type(parent(p)) = AND) ∨ (default(parent(p)) = p))).

A transition t ∈ T is active and can fire in M , if and only if M(out(t)) = 1
and all the events from trigger(t) occur. Firing of a transition t changes the
global state: out(t) and all its substates become inactive; in(t) becomes active,
and its substates become active similarly as it is defined for the initial state
(according to the default function). The exception is a state with history; when
it becomes active, its immediate substate last being active becomes active again.
Occurrence of the events from I depends only on the external world and can
happen asynchronously. An event e ∈ Z occurs, if and only if a transition t
is firing such that e ∈ trigger(t) (dynamic event) or state p is active such
that e ∈ saction(p) (static event). An active transition t fires immediately, if
it is not in conflict with another active transition; in case of a conflict only
one of the conflicting transitions can fire. An event e is consumed by firing of
transition t such that e ∈ trigger(t) (becomes unavailable; if it is necessary to
keep the event available, it can be generated again by t). If an event had not been
consumed by a transition immediately, it becomes unavailable. But although an
event is available only during an instant of time, for analysis purposes we have
to complement the notion of global state by the notion of available events (if e
is available, M(e) = 1). A transition t ∈ T is enabled if M(out(t)) = 1 and all
the events from Z occur. Intuitively, a transition is enabled if it is active or if it
lacks only the external events to be active. Otherwise it is disabled .

A global deadlock of a Statechart is such a global state that no transition can
fire, independently of the occurring external events. A local deadlock is a set Ud

of the active states such that no transitions originating from them can become
active, because each of them waits for the events which cannot be generated
without firing of other transitions originating from the states belonging to Ud.
A simple example of a deadlock is provided by Fig. 2.7 [151].

p1

p5

t2: {b}/{a}

p4

p11 p12

p3

t1: {a}/{b}

p2

Fig. 2.7. Example of a deadlock

2.1.6 Finite State Machines and FSM Networks

A finite state machine (FSM) is usually defined [73, 75, 91] as a 5-tuple
(S, I, O, λ, δ), where S is a finite set of states, I is a finite input alphabet, O is a
finite output alphabet, λ : S×I → S is a state transition function, δ : S×I → O

2.2 The Tasks of Analysis 21

is an output function. However, we will use an alternative, event-based definition
[157], which is more convenient for our purposes.

An FSM is a 4-tuple A = (I, O, P, T), where I is a set of input events, O is
a set of output events, P is a set of states, T is a set of transitions. An event
is a named variable that is either present or absent . Each transition t ∈ T is
t = (ps, guard, pd), where ps ∈ P is the source state, guard ⊆ I, pd ∈ P is the
destination state. A set of events Oi ⊆ O is associated with every state (Moore
FSM) or every transition (Mealy FSM). A transition is triggered when the FSM
is in the transition’s source state and all the events belonging to the guard are
present. Then the FSM goes to the destination state. An event e ∈ O is present,
if and only if the FSM is in such state pi that e ∈ Oi (Moore FSM) or transition
ti such that e ∈ Oi is being executed (Mealy FSM).

An FSM network N = {A1, A2, ..., An} is a set of FSMs, in which the situ-
ation is possible such that Ii ∩ Oj �= ∅. A global state of an FSM network is
an n-tuple M = (p1

p, p
2
r, ..., p

n
m), where pi

j is a state of automaton Ai. A global
state Mk is reachable from Ml, if and only if for Ml there exists such input se-
quence (sequence of input events), that after applying it the local states can form
Mk, according to the transition guards. We assume asynchronous interpretation
of FSM networks: state of a component automaton changes with an arbitrary
delay. A deadlock is a situation where two or more FSMs cannot proceed (are
deadlocked) because each is waiting for events from the others.

FSM networks can be considered as a particular case of Statecharts - the
Statechart diagrams such that

type(root) = AND,

∀p ∈ hrc(root) : type(p) = OR,

∀p ∈ hrc(hrc(root)) : hrc(p) = ∅. (2.2)

It is easy to see, that a Statechart satisfying (2.2) describes communicating
automata without hierarchy and is equivalent to an FSM network, as defined
above.

Some other models, such as Petri net models, can be converted into FSM
networks, if their underlying nets are covered by SM-components (which is usual
for logical control applications) [172, 249].

Description of FSM networks by means of Statecharts is used in this book.
The top indexes at states and transitions are used to denote to which FSM they
belong.

2.2 The Tasks of Analysis

Analysis of parallel models such as Petri nets is important in most of their ap-
plications. And, however the applications may differ very much, there are some
Petri net properties, which are typical for the nets modelling the "correct" sys-
tems. For example, usually the modelled or specified systems are supposed to be
finite (especially in the digital design applications). Then the corresponding Petri

22 2. Main Notions, Problems and Methods

nets should be bounded. Practically in most of cases the condition is stronger -
the nets should be safe (then a global state is described by a binary vector).

Another typical condition is liveness (or, in some cases, quasi-liveness). If a
net is not live, then the system has fragments which can become "dead" (if it
is not even quasi-live, then there are fragments, which are initially "dead" and
hence redundant). Usually it means, that something is wrong with the system. A
particular case of non-liveness is existence of reachable deadlocks: if the system
is live, then no deadlocks exist; if it should have one or more terminal states,
then the reachable deadlocks should exactly correspond to the specified terminal
states.

From the above two very important Petri net analysis tasks can be formulated.
One of them is deciding "well-formedness" (liveness and safeness together) of a
net (for certain classes of nets there are methods, checking whether the net
satisfies both properties, liveness and safeness (or boundedness), or not [54, 104,
105, 124, 135, 243, 245, 249]). Another is deadlock detection. Probably most of
developed methods of Petri net analysis are dedicated to solving those tasks.

Other well-known tasks of Petri net analysis are deciding behavioral properties
of the net, such as persistence and reversibility, and also the reachability and
coverability analysis [74, 86, 172, 217]. Most of them can be applied to analysis of
parallel algorithms. In the detailed theory of logical control algorithms described
in [39, 40, 235, 243, 245, 247, 248, 249] an algorithm of the type examined is
termed correct if it is compact, restorable, self-consistent, noncontradictory, and
stable. First three of those properties are satisfied if the underlying Petri net is
well-formed; two others are related to the level of interpreted Petri nets and can
be easily decided, if the relation of parallelism between the transitions is known.

Localizing of the faults localization would be also useful for verification of
algorithms. But for some faults related with parallel branches interaction local-
ization in terms of the algorithm units (or Petri net places and transitions) seems
to be impossible That is the case, for example, when a Petri net is not live but
there are no reachable deadlocks. Then the most acceptable way of localization
is obtaining a path (a firing sequence) leading to a "wrong" situation.

One else important area of Petri net analysis is structural analysis. Structural
properties, unlike the behavioral ones, do not depend on the initial markings
(there exist, however, the properties which can be considered as "intermediate"
between behavioral and structural ones, such as structural liveness and struc-
tural boundedness [172]; those properties are formulated as "exists such initial
marking, that ... " or "for any initial marking ... "). Relation between structural
and behavioral properties of Petri nets is illustrated e.g. by the well-known re-
sults on free choice nets [82] and EFC-nets [29]. Also, structural analysis, such
as detection of SM-components, is important for some synthesis tasks [8, 249].
Usually the tasks of structural analysis can be reduced to calculation of siphons
and traps [172, 183].

In this book we concentrate mostly on the analysis of behavioral properties,
paying special attention to localization of faults. Deadlock detection is selected
as the "basic" analysis task; other tasks, as deciding liveness and safeness, are

2.3 The Methods of Analysis 23

also considered. Chapter 5 is the only chapter dedicated to structural analysis
(calculation of siphons and traps).

2.3 The Methods of Analysis

The methods using lazy state space constructions are reviewed in Section 3.1,
some linear- and logical-algebraic methods - in Chapter 5. Here we present a
short review of other methods of parallel discrete system analysis.

The most known method of Petri net analysis is the coverability graph
(coverability tree) method [172, 183, 217]. We present it in the variant of
coverability graph. For given Petri net Σ = (P, T, F, M0):

Algorithm 2.1

1. Introduce M0 as a node and tag it "new".
2. While "new" markings exist, do the following:

a) Select a new marking M .
b) If no transitions are enabled in M , tag M "deadlock".
c) While there exist enabled transitions in M , do the following for each

enabled transition t in M :
i. Obtain the marking M ′ that results from firing t from M .
ii. If there is no node M ′, introduce M ′ as a node and tag M ′ "new".
iii. Introduce an arc (M, M ′), labelled by t.
iv. If on a path from M0 to M there exists a marking M ′′ such that

M ′ > M ′′, then replace M ′(p) by ω for each p such that M ′(p) >
M ′′(p).

d) Remove label "new" from M .
3. The end.

In the case of bounded nets the coverability graph directly represents the state
space and thus completely describes the behavior. In the case of unbounded nets
(infinite state space) coverability graph is still finite (see the example, taken from
[183] - Fig. 2.3). For the unbounded nets construction of coverability graphs in
general case is not enough neither for reachability analysis, nor for liveness check-
ing (examples see in [172, 183]). The coverability graph method demonstrates
the state explosion at full extend.

The idea of net reduction methods [24, 25, 26, 172, 235, 249] is simplifying
the net in a way preserving the properties we want to decide (usually liveness and
safeness). As an example a set of transformations preserving liveness, safeness
and boundedness is depicted in Fig. 2.9 (taken from [172]). Usually the net
reduction methods have to be used in combination with other methods; however,
in some cases reduction is enough to decide if a given net is well-formed. In [235]
the next reduction rules are proposed:

Elimination of Loops: transition ti can be removed from the net, if •ti = t•j
and there is another transition tj ∈ T such that •ti ⊆• tj or t•i ⊆ t•j .

24 2. Main Notions, Problems and Methods

p1

t1

p3

t3

p2

p4

t2

1 0 0 1

1 ω 1 0

1 ω 0 0

1 0 1 0

t3

t2

t1

t3

1 ω 0 1

t2

Fig. 2.8. A Petri net and its coverability graph1

Substitution: let π ⊂ P be such set of places that M0(π) = ∅, ∀t ∈ T ((•t ∩
π �= ∅) ⇒ (•t = π)), ∀t ∈ T ((t• ∩ π �= ∅) ⇒ (π ⊆ t•)), ∃t ∈ T (t• ∩ π �= ∅). Then
the net can be transformed by removing all transitions ti such that •ti = π, and
replacing every transition tj such that π ⊆ t•j by the set of transitions obtained
from it by substitution to t•j instead of subsets π the sets t•i from those transitions
ti, where •ti = π.

It is shown, that those rules preserve liveness and safeness of the nets [235,
249], and that they reduce every LSα-net to the net with single place and single
transition [208, 243]. For further information on this subject, the reader is re-
ferred to [235, 243, 249]. More general results, describing reduction rules which
reduce all and only structurally live and bounded free choice nets to the nets
with one place and one transition, are presented in [55].

The state equation method [172, 183], the most known one among the
integer programming methods based on incidence matrix of the Petri net,
checks a necessary condition for the reachability of a marking M . The state
equation for a Petri net can be written as follows:

M = M0 + Cx, (2.3)

where markings are written as the column vectors. If M is reachable from M0
in the Petri net, then there exists a non-negative integer solution of (2.3), being
the Parikh vector of a firing sequence σ such that M0σM . The next example
presents transformation of the initial marking of the net shown in Fig. 2.3 into
the marking {p1, p2, p3} by the firing sequence t3t2:⎡

⎢⎢⎢⎢⎢⎢⎣

1

1

1

0

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0

−1 1 0

−1 1 −1

0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0

1

1

⎤
⎥⎥⎥⎦ . (2.4)

1 Note that here the nodes of coverability graph are presented as vectors, unlike the
nodes of reachability graphs in other figures in this book, presented as sets.

2.3 The Methods of Analysis 25

⇒ ⇒

⇒ ⇒

⇒
⇒

Fig. 2.9. Reduction transformations preserving liveness, safeness and boundedness

Some other methods using incidence matrix are mentioned in Section 5.1.

Compression techniques try to manage the state explosion problem by
means of compact representation of state space. Kronecker algebra has been
successfully used for representation of the state space of Petri nets [134]. But
the most popular approach here is representing the sets of states of parallel
discrete systems by their characteristic function. For such representation differ-
ent versions of BDDs are usually used [34, 150, 151, 156, 181, 200]. BDD-based
methods have proved to be efficient, however still there are many optimization
problems, such as optimal ordering of variables, which affects the size of BDD
greatly. In [168] representation of the state space of safe Petri nets by means
of special monotonic Boolean function is proposed. It describes the state space
unambiguously, and can be presented in more compact form than the character-
istic function, but it is not clear, how to extract data from such representation
efficiently. Encoding of places of Petri nets is used in some analysis approaches
to minimize number of arguments of characteristic functions [45, 180]. Hierar-
chical decomposition of Petri nets helps to minimize representations of state
space characteristic function [106, 167]. In [105, 138] obtaining the state space
of sequent automata in form of ternary matrix is described.

26 2. Main Notions, Problems and Methods

Compression techniques can be successfully combined with the stubborn set
method [217].

Another approach to avoid the state explosion problem is based on partial
order representations of the behavior of a parallel system. It is known as the
unfolding method [57, 58, 59, 74, 85, 86, 87, 165, 217]. This method represents
state space not by a reachability graph, but by an unmarked Petri net (so-called
occurrence net, or unfolding), where places correspond to the local states of a
system, and the maximal sets of parallel places (where relation of parallelism is
specially defined) correspond to the reachable global states. An occurrence net
is acyclic by the construction (many places may correspond to the same local
state), so for cyclic systems it is infinite and cannot be constructed as such. But
its finite prefix (finite unfolding) can be constructed, capturing entire behavior of
the system. In many cases (but not always) such prefix is much smaller than the
reachability graph. Some properties can be checked easily from an unfolding, such
as reachability of a state where a certain transition is enabled. Usually unfolding
techniques are used to represent behavior of finite-state systems; however, in
[1] an unfolding algorithm for infinite-state systems (unbounded Petri nets) is
described.

3. Reduced Reachability Graphs

3.1 Review of Known Methods

Content of this section relates to the parallel discrete systems in general sense,
unless otherwise stated.

3.1.1 Persistent Set Methods

The methods based on calculation of a subset of successors from a global state
are known as ”persistent set” methods. Informally, a persistent set is a subset
TP of transitions such that no transition firings outside TP affect TP . The formal
definition is given below, but preliminarily we need the notion of independent
transitions [77, 226].

Definition 3.1. Transitions t1, t2 are independent in a global state M , if the
following two conditions hold:

1. if t1 (t2) is enabled in M and Mt1M
′ (Mt2M

′), then t2 (t1) is enabled in M ,
if and only if t2 (t1) is enabled in M ′ (independent transitions can neither
disable nor enable each other);

2. if t1 and t2 are enabled in M , then there is a unique state M ′ such that
Mt1t2M

′ and Mt2t1M
′ (commutativity of enabled independent transitions).

Transitions t1 and t2 are globally independent, if they are independent in all
reachable global states.

If the conditions do not hold, the transitions are said to be dependent (in a
state or globally, correspondingly).

For the classical Petri nets and, generally, for all systems for which the diamond
rule holds, the second condition is redundant. The diamond rule is a well-known
property of Petri nets (see, for example, [22, 43]), which can be formulated as
follows.

Diamond Rule: If Mt1t2M
′ and Mt2t1M

′′, then M ′ = M ′′.

A. Karatkevich: Dynamic Analysis of Petri Net-Based Discrete Sys., LNCIS 356, pp. 27–62, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

28 3. Reduced Reachability Graphs

This property does not hold for many parallel models, such as some kinds of
interpreted Petri nets.

The persistent set methods are often explained in terms of Mazurkiewicz traces
[163]: a trace is a set of firing sequences, which can be obtained from each other
by successively permuting adjacent independent transitions. One can say, that
the persistent set methods tend to represent a trace with only one of firing
sequences belonging to it (one of its linearizations) [77].

Definition 3.2. [77,78] A set TP of transitions enabled in a state M is persis-
tent in M if and only if, for all sequences in the full reachability graph M1t1M2t2
M3...tn−1MntnMn+1 starting from M (M = M1) and including only transitions
ti /∈ TP (1 ≤ i ≤ n), tn is independent in Mn of all transitions in TP .

A selective search operates as a classical state space search except that, for each
state M reached during the search, it computes a subset of the set of transitions
that are enabled in M , and explores only the transitions in this subset, the other
enabled transitions being not explored. Let a persistent-set selective search be a
selective search of the reachability graph which, for each state M that it reaches,
selects a nonempty set of enabled transitions TP that is persistent in M . Then
the next theorem holds [77, 226].

Theorem 3.3. Let M be a state reached in a persistent-set selective search, and
let Md be a deadlock. If Md is reachable from M , then Md will also be reached
by the persistent-set selective search1.

The stubborn set method developed by A. Valmari [212,215] is considered as
the most elaborate technique in the family of persistent set methods2. Its main
notion is the stubborn set , defined for classical Petri nets as follows.

Definition 3.4. A set TS of the transitions of a Petri net at marking M is a
stubborn set, if (1) every disabled transition in TS has an empty input place p
such that all transitions in •p are in TS; (2) no enabled transition in TS has
a common input place with any transition (including disabled ones) outside TS;
and (3) TS contains an enabled transition.

Strictly speaking, this is one of possible definitions of a strong stubborn set ;
for the alternative definitions see [217]. Below, whenever the stubborn sets are
mentioned, we talk about the strong stubborn sets, if not stated otherwise. There
also exist the notion and theory of weak stubborn sets [212,215,216,217], which
provide better possibilities for reduction of state spaces, but are more difficult
to construct. One of possible definitions of weak stubborn sets is the following.

1 In [77,226] Theorem 3.3 is proved for the labelled formal concurrent systems (LFCS).
This model is less general than the parallel discrete systems defined in subsection
2.1.1. But it is easy to show that the Theorem holds for the general model; it is
enough to directly apply the corresponding proofs (of Lemma 4.2 and Theorem 4.3
from [77]) to it.

2 Historically, the theory of stubborn sets arose before the theory of persistent sets.

3.1 Review of Known Methods 29

Definition 3.5. A set TwS of the transitions of a Petri net at marking M is
a weak stubborn set, if (1) every disabled transition in TwS has an empty input
place p such that all transitions in •p are in TwS; (2) for every enabled transition
t in TwS all the transitions with which t shares input places or all the transitions
for which output places are the input places of t (including disabled ones) are in
TwS; and (3) TwS contains an enabled transition, which has no common input
place with any transition (including disabled ones) outside TwS.

The next properties hold for (strong) stubborn sets [217].

Lemma 3.6. if t ∈ TS, t1, ..., tn /∈ TS, M0t1t2...tnMn, and MntM ′
n, then there

is M ′
0 such that M0tM

′
0 and M ′

0t1t2...tnM ′
n.

Lemma 3.7. If transition tk ∈ TS is enabled in M0, t1, ..., tn /∈ TS and M0t1t2...tn
Mn, then tk is enabled in Mn.

Lemma 3.8. If TS is a stubborn set at M , t1, ..., tn /∈ TS, tk ∈ TS is enabled in
M , and firing sequence t1t2...tn is enabled in M , then there exists M ′ such that
MtkM ′ and t1t2...tn is enabled in M ′.

The basic stubborn set method builds a reduced reachability graph (RRG) in
the following way: for every considered state TS is calculated, and only firing
of enabled transitions belonging to TS is simulated. Below RRG means a re-
duced reachability graph that has been constructed using the basic stubborn set
method, unless otherwise stated.

The next statement describes the fundamental property of the stubborn set
method [217].

Theorem 3.9. RRG contains all deadlocks of the system that are reachable from
the initial states. Furthermore, all deadlocks of the RRG are deadlocks of the
system.

Relation between stubborn sets and persistent sets is described by the next
theorem [77].

Theorem 3.10. The set of all enabled transitions of a stubborn set is a persis-
tent set.

Relation between weak stubborn sets and persistent sets is discussed in Section
3.3.

So, the stubborn set method allows to detect all reachable deadlocks of a Petri
net. It also allows to detect at least one infinite firing sequence, if the net has
any (this property had been mentioned for the first time in [210]).

The method is unable - directly and for a net without restrictions - to analyze
most of other important net properties because of the so-called ignoring problem
(the method may generate infinite firing sequence, infinitely ignoring the enabled
transitions not belonging to the stubborn sets [215, 217]). However, there are
some additional possibilities of the basic stubborn set method, especially when
certain restrictions are imposed on the net. It will be shown in the next section
of this chapter. Formally, ignoring can be defined as follows.

30 3. Reduced Reachability Graphs

Definition 3.11. Ignoring of transition t occurs in the RRG, if there is a state
M in it such that t is enabled in M and there is no path in the RRG corresponding
to firing sequence σ such that MσM ′, t ∈ TS for M ′.

The methods solving the ignoring problem have also been developed (see, for
example, [212]). The main idea is to ”force” the ignored transitions firing, to
guarantee that all the ”interesting” firing sequences have been investigated.

The question of optimal construction of stubborn sets is of great practical
importance, because size of RRG may considerably depend on it. However this
question is beyond the scope of the book.

In Fig. 3.1 an example of the applied method is shown. For comparison, in
Fig. 3.2, the full reachability graph for the same net is shown (in the nodes of
reachability graphs the numbers of marked places are listed).

p7p6

t5

t7
p3

t3

p5

p9

p1

t1

t2

t6

t8

p2 p4

t4

p8

t8

t2 t4

t3

t7

 1

2,3,4

3,4,5 3,4,6

4,6,7 4,5,7

6,7,8 5,7,8

t1

t5 t5 t7

t6 t6

 9

Fig. 3.1. A Petri net and RRG for it

It is easy to see that both graphs contain the same set of deadlocks (one-
element in this case), but the first one is much smaller and simpler. It is difficult,
however, to evaluate in general case the difference between RRG and the corre-
sponding full reachability graph, because it depends greatly on the net structure
and selected stubborn sets.

Another similar approach to analysis of Petri nets and, generally, of parallel
discrete systems, is based on the idea of decomposition [19,175,251]. The task
of net analysis is reduced to the task of analysis of the blocks of its decomposition,
which may be considerably smaller than the net itself [249]. This approach can
simplify analysis of large nets.

Definition 3.12. A subnet Σj = (Pj , Tj, Fj) of a Petri net Σ = (P, T, F) is
a block, if and only if ∀ti ∈ T \ Tj : t•i ∩ Pj ⊆ P in

j ,• ti ∩ Pj ⊆ P out
j , where

P in
j =• Tj \ T •

j is the set of input places, P out
j = T •

j \• Tj is the set of output
places.

3.1 Review of Known Methods 31

2,3,4

3,4,5 3,4,6 2,4,7 2,3,8

2,7,8 4,6,7 3,5,8 4,5,7

 1

3,6,8 6,7,8 5,7,8

 9

Fig. 3.2. Full reachability graph for the net from Fig. 3.1

Informally, a subnet is a block, if any transition outside it may be incident only
to the input or output places of the subnet, and in the first case they are the
output places of the transition, in the second case they are its input places.

Definition 3.13. Two transitions are in the relation of alternative joint if their
input or output sets of places intersect.

Lemma 3.14. Transitive closure of the relation of alternative joint of the set of
transitions of a Petri net specifies its decomposition into minimal blocks.

The Zakrevskij’s method of analysis (in particular, deadlock detection) of Petri
nets, using block decomposition, is described in details in Chapter 4 (and also
in [249,251]).

The ample set method proposed by Peled [31,44,45,182] is based on similar
ideas as the stubborn set method, but has been designed to check different
properties (which can be expressed in the temporal logic LTL with the next-
time operator omitted) and takes into account the output signals of a system.
An ample set is defined below.

Definition 3.15. A set ample(M) of the transitions of a parallel system for
global state M is an ample set, if (0) ample(M) = ∅ iff enabled(M) = ∅; (1)
in the full reachability graph, on any path starting from state M , a transition
dependent on a transition from ample(M) cannot appear before some transition
from ample(M) is executed; (2) if M is not fully expanded, every transition
t ∈ ample(M) has to be invisible; and (3) a cycle (in the reachability graph) is
not allowed if it contains a state in which some transition t is enabled, but it is
never included in ample(M ′) for any state M ′ on the cycle.

32 3. Reduced Reachability Graphs

A transition is invisible when its execution does not change the value of the
output variables of the system. For details see [44, 45].

It is evident, that unlike the definition of stubborn set, definition of ample
set is not constructive - condition (1) seems to require knowledge about the
full reachability graph. To avoid constructing the full graph, the algorithms
have been developed producing sets of transitions for which condition (1) is
guaranteed [2,44,45]. Another difference is that condition (3) prevents occurring
an ignoring.

The ample set method is suitable, in particular, for solving safety properties
[182] or coverability problem [2]. The method has been primarily implemented
in the SPIN model-checking tool developed by G. Holzmann and D. Peled [44,
45, 89, 90].

3.1.2 Other Methods

The sleep set method proposed by P. Godefroid [76, 77, 226] is based on the
following idea: if firing of two or more independent transitions in any order leads
to the same state, then it is enough to simulate one of these orders. The strategy
is to compute, in each state M encountered, a set of transitions which are enabled
but will not be explored from M (a sleep set). The sleep set for a given marking
is calculated from the sleep sets of its predecessor markings, the independence
relation, and the order in which enabled elements are explored in the predecessor
markings. The method has been initially developed for deadlock detection.

This method, in its pure form, reduces only arcs in reachability graph and
preserves all its nodes, hence it is not of much help. But it is compatible with
the stubborn set method, and the combination leads to better results than each
of the methods alone [77, 219].

The symmetry method [45, 93, 145, 187, 220] is applicable to the systems
containing several identical (or nearly identical) components, called symmetric
(such situation is rather common). The main idea is to construct, instead of
the full state space, a condensed state space in which all states which differ
only by permutation of symmetric components are presented as one state. Such
condensed state space may be orders of magnitude smaller than the full state
space, but the same dynamic properties can be directly analyzed from it [145].

The symmetries may be calculated automatically, but it is a time-consuming
task. On the other hand, the analyst (system designer) can usually select sym-
metric components in the model [187].

One interesting approach, offering unfortunately limited applicability, is the
maximal concurrent simulation. Its rule is: ”always choose a maximal set
of independent transitions to be executed next” [99]. The approach is not suffi-
ciently expressive in general case, because it may lead to removing tokens from
input places of a transition without further simulation of this transition firing.
This is not the case for free choice systems, so maximal concurrent simula-
tion is completely applicable for EFC-nets. In Fig. 3.3 the reduced reachability

3.2 A Generalization of Stubborn Set Method 33

2,3,4

4,5,7 4,6,7 5,7,8 6,7,8

 1

t1

t2,t5,t7
t4,t5,t7 t2,t5,t6

t4,t5,t6

t8

t7

t6

t3, t6

Fig. 3.3. RRG for the net of Fig. 3.1, constructed with maximal concurrent simulation

graph for the net from Fig. 3.1 built using maximal concurrent simulation ap-
proach is shown.

In [97] a more refined method of optimal simulation is described, based par-
tially on maximal concurrent simulation approach and allowing to decide a num-
ber of interesting system properties such as deadlock-freeness and liveness.

3.2 A Generalization of Stubborn Set Method

Notion of independent transitions is important for the persistent set methods.
But, as it can be seen from Definition 3.4, it is also essential to distinguish
between the cases when one of dependent transitions can disable another one
and when one of them can enable another. For the systems for which the diamond
rule does not hold it is important also to consider the kind of dependency which
breaks the second condition of Definition 3.1.

The definition of stubborn sets can be re-formulated using different kinds of
dependency between transitions. Below we formulate the definition for general-
ized parallel systems.

Definition 3.16. A set TS of the transitions of a parallel discrete system at
global state M is a stubborn set, if (1) for every disabled transition in TS all the
transitions that can enable3 it are in TS; (2) for every enabled transition in TS

all the transitions it can disable, all the transitions which can disable it, and all
the transitions which are not commutative in respect to it are in TS; and (3) TS

contains an enabled transition.

The next theorems constitute theoretical base of the stubborn set method for
the generalized parallel systems.

Theorem 3.17. Let TS be a stubborn set at a global state M according to Def-
inition 3.16. Then the set TP of all enabled transitions in TS is a persistent
set.
3 Here by ”t can enable (disable) t′” we mean ”exists a global state, in which firing of

t enables (disables) t′”.

34 3. Reduced Reachability Graphs

Proof. According to the definition of persistent sets (Definition 3.2), it is enough
to prove that for any sequence in the full reachability graph Mt1t2...tn−1Mntn
such that ti /∈ TP (1 ≤ i ≤ n) transition tn is independent in Mn with respect
to all transitions in TP .

The proof proceeds by induction on n. Let n = 1 (then Mn = M). Every
enabled transition outside TS is independent of any enabled transition in TS by
definition (condition (2) of Definition 3.16), and for n = 1 the theorem holds.

Now, assume that the theorem holds for every sequence of length (n − 1) and
let us prove that it holds for a sequence of length n. Suppose transition tn is
dependent on a transition t ∈ TP in Mn. It follows from the inductive hypothesis,
that t ∈ enabled(Mn). Then the next variants are possible: (1) tn can disable t;
(2) tn can be disabled by t; (3) tn and t are not commutative. In all three cases,
according to Definition 3.16, tn ∈ TS . But tn /∈ TP , hence tn /∈ enabled(M), and
then there is transition ti (0 ≤ i < n) which enables tn. According to Definition
3.16, ti ∈ TS. If ti ∈ enabled(M), then there is contradiction with assumption
that ti /∈ TP . If ti /∈ enabled(M), then there is transition tj (1 ≤ j < i) enabling
ti, and the same reasoning leads to the contradiction.

Theorem 3.18. Reduced reachability graph of a parallel system, created in such
way that in every considered global state only firing of enabled transitions belong-
ing to a set TS being stubborn in sense of Definition 3.16 is simulated, contains
all deadlocks of the system that are reachable from the initial states. Furthermore,
all deadlocks of the RRG are deadlocks of the system.

Proof of the first part follows directly from Theorem 3.17 and Theorem 3.3.
The second part follows from the third condition of Definition 3.16.

Applying Definition 3.16 to the Petri nets, we can note that it is stronger than
Definition 3.4; the first condition of Definition 3.16 in terms of Petri nets would
look as follows: for every disabled transition in TS and its every input place
p all transitions in •p are in TS . Practically it means, that the stubborn sets
for Petri nets, according to Definition 3.16 will be the same, as according to
Definition 3.4, when the stubborn sets consist of the enabled transitions only
(as in the case of EFC-nets), and can be remarkably bigger otherwise. Definition
3.16 can be, however, re-formulated in such a way, that applied to the Petri nets
it would be equivalent to Definition 3.4. In this variant (let us call it Definition
3.16a) condition (1) looks as follows: for every disabled transition in TS and an
unsatisfied necessary condition of its enabling, all the transitions firing of which
can satisfy this condition are in TS ; the rest of conditions remain as in Definition
3.16. It is easy to see, that Theorem 3.17 and Theorem 3.18 hold for Definition
3.16a.

3.3 Weak Persistent Sets

Persistent set methods in many cases successfully avoid interleaving. Sometimes,
however, they fail to do that. Consider, for example, the following net (Fig. 3.4).

3.3 Weak Persistent Sets 35

p3

p5

p1

p2 p4

t1

t2

t3

Fig. 3.4. A Petri net

Here, according to Definition 3.2, the only persistent set is {t1, t2, t3}, but
transitions t1 and t2 are independent (see Definition 3.1), and execution of both
of them from the marking shown in Fig. 3.4 leads to interleaving, which the
persistent set approach tries to avoid.

In the example under discussion, any element from the pair of independent
transitions could be dropped from the persistent set, and the same deadlock will
be reached in such reduced search. However it is not always the case.

Below we present the definition of weak persistent set , having potential of
better reduction than the classical persistent sets (compare with Definition 3.2)4.

Definition 3.19. A set TwP of transitions enabled in a marking M of a Petri
net5 is a weak persistent set, if (1) for any firing sequence in the full reachability
graph Mt1t2...tn such that ti /∈ TwP (1 ≤ i ≤ n) there is a transition t ∈
TwP such that any transition ti is independent of t and all enabled transitions
dependent on t belong to TwP , and (2) in the full reachability graph there is
no sequence Mt′1t′2...t′mMmt′m+1...t

′
kMk such that t′j /∈ TwP (1 ≤ j ≤ k) and

a transition t′ ∈ TwP at M is disabled in Mm and enabled in Mk
6, and (3)

no transition in TwP has an input place p which is at the same time input and
output place of a transition outside TwP .

Lemma 3.20. Every persistent set is also a weak persistent set, but not vice
versa.

Proof. ⇒ Follows from the definitions.
⇒ See Fig. 3.4: {t1, t3} is a weak persistent set, but not a (Godefroid’s) persistent
set.

Lemma 3.21. Let M be a marking, Mt1M1t2M2...tnMn be a sequence in the
reachability graph, t is a transition enabled in all markings M, M1, ..., Mn, and
there is no such transition ti in the sequence that •ti ∩ t•i ∩• t �= ∅. Then the
sequence tt1t2...tn is enabled in M and leads to the same marking M ′ as the
sequence t1t2...tnt.
4 In [77] (Note 4.31) Godefroid writes: ”...following the idea of Valmari, ”weak” ver-

sions of our notions of persistent set ... can easily be defined”. In fact that is what
Section 3.3 about.

5 Content of this section relates only to the ordinary Petri nets.
6 Informally, the second condition prevents t′ ∈ TwP from first being disabled and

later enabled again by transitions outside TwP .

36 3. Reduced Reachability Graphs

Proof. The effect of the firing of a transition is an addition of an integer valued
vector to the marking. Vector addition is commutative, so if two sequences of
transition firing are enabled in the same marking and differ only in the order
of transitions, the resulting marking will be the same. So, it is enough to prove
that the firing sequence tt1t2...tn is enabled in M .

The proof proceeds by induction on n. Let n = 1. Suppose that t disables t1.
Then t and t1 share an input place p, which has 1 token in M . But as far as t1
does not disable t, p ∈ t•1, which contradicts the assumption •ti ∩ t•i ∩• t �= ∅. So,
t and t1 do not disable each other, and for n = 1 the lemma holds.

Now, assume that the lemma holds for every sequence of length (n − 1) > 0
and let us prove that it holds for a sequence of length n. It follows from the
inductive hypothesis, that sequence tt1t2...tn−1 is enabled in M . It leads to
the same marking M ′′ as t1t2...tn−1t. Firing of t from Mn−1 does not disable tn,
which follows from the same reasoning as at the first step of induction. Hence the
sequence Mt1t2...tn−1tM

′′tnM ′ exists. From the above it follows also that the
sequence Mtt1t2...tn−1M

′′tnM ′ exists, so the lemma holds for n. This together
with the inductive hypothesis proves the lemma.

Let a weak-persistent-set selective search be a selective search of the reachability
graph which, for each marking M that it reaches, selects a nonempty set of
enabled transitions TwP that is a weak persistent set at M .

Theorem 3.22. Let M be a marking reached in a weak-persistent-set selective
search, and let Md be a deadlock. If Md is reachable from M , then Md will also
be reached by the weak-persistent-set selective search.

Proof. Let Mt1M1t2M2...tnMd be a sequence in the full reachability graph. The
proof proceeds by induction on n. For n = 1 if t1 ∈ TwP , the result is immediate;
supposing t1 /∈ TwP , we obtain that there exists a transition t enabled in M and
independent of t1, then t is enabled in Md, which contradicts the assumption
that Md is a deadlock.

Now, assume the theorem holds for every sequence of length (n−1) > 0 and let
us prove that it holds for a sequence of length n. If no transition in the sequence
belongs to TwP , then there exists a transition t enabled in M and still enabled in
Md, which contradicts the assumption that Md is a deadlock. So, there is at least
one transition in the sequence, which belongs to TwP . Let ti be the first such
transition. Then ti is enabled in all markings between M and Mi−1 (condition
(2) from Definition 3.19) and in the sequence t1...ti−1 there is no transition tk
such that •tk ∩ t•k ∩• ti �= ∅ (condition (3) from Definition 3.19). From Lemma
3.21 the sequence MtiM

′t1...ti−1Miti+1...tn exists in the full reachability graph.
But ti ∈ TwP , hence M ′ will be reached by the weak-persistent-set selective
search. As far as a firing sequence of length n − 1 from M ′ to Md exists in the
full reachability graph, it follows from the induction assumption that Md will
be reached by the weak-persistent-set selective search. This together with the
inductive hypothesis proves the theorem.

Relation between weak persistent sets and weak stubborn sets (for safe Petri
nets) is described by the next theorem.

3.4 On Combining the Persistent Set Approach and Concurrent Simulation 37

Theorem 3.23. Let TwS be a weak stubborn set of a Petri net at marking M
(according to Definition 3.5). Then the set Te of all enabled transitions of TwS

is a weak persistent set.

Proof. We have to prove, that for any sequence Mt1M1...tnMntn+1, such that
ti /∈ Te, 3 conditions of Definition 3.19 hold.

1. For the first condition it is enough to prove, that transition tk ∈ TwS such
that tk is enabled in M and has no common input place with any transition
outside TwS, is independent of any transition ti in the marking Mi−1 in the
sequence mentioned above. Suppose there are transitions in the sequence,
dependent on tk, and let tm be the first such transition. Then tm has a
common input place with tk (as far as both tm and tk are enabled in Mm−1,
there is no other possibility), tm ∈ TwS, tm /∈ enabled(M) (otherwise tm ∈
Te), and for any input place p of tm empty at M there is a transition ti
(1 ≤ i < m) such that p ∈ t•i . At least one of such transitions ti ∈ TwS . If ti
is enabled in M , then ti ∈ Te, and there is a contradiction. If ti is disabled in
M , the same reasoning can be applied to it as to tm above, until we’ll come
to the contradiction, considering transition t1.

2. From Definition 3.5, for any enabled transition t in TwS (which by construc-
tion belongs to Te) every transition, which can enable it, or every transition,
which can disable it, is in TwS. Supposing that sequence of the transitions
outside Te can disable, and later enable t, we come to the conclusion, that
at least one transition in this sequence is in TwS and is disabled in M . And
from the reasoning given in item 1 we see, that it leads to a contradiction.

3. Condition 3 is satisfied by Definition 3.5.

3.4 On Combining the Persistent Set Approach and
Concurrent Simulation

3.4.1 Concurrent Simulation and Persistent Sets

Is it possible to unite in one method, advantages of the persistent set approach
and of concurrent simulation? Direct combination of these two approaches seems
to be impossible, because the main ideas are almost opposite: generally, if two
non-conflicting transitions are simultaneously enabled, the first approach sup-
poses that their firing will be simulated one-by-one, and the second - simultane-
ously.

But, as it was mentioned in Section 3.1, the maximal concurrent simulation
approach is not sufficiently expressive; for example, it is easy to show, that, being
directly applied, it may fail to detect some deadlocks. (See Fig. 3.5; here maximal
concurrent simulation investigates the only step sequence {t1, t2}{t4}, and the
deadlock with token in p5 will remain undetected). So, maybe the concurrent
simulation approach can be improved by the idea of persistent sets? We claim
that the answer is positive. In [109] a very particular case of this possibility is
presented; here we present a generalization of the idea described there.

38 3. Reduced Reachability Graphs

p3

p5

p2p1

p4

t2

t4

t3

p6

t1

Fig. 3.5. A Petri net (taken from [98])

Theorem 3.24. Let Σ =(P, T, F) be a safe Petri net, let U = {TP1, TP2, ...TPn}
be a set of non-intersecting persistent sets at M0. Execute from M0 every step
∆k = {tk1 , t

k
2 , ..., tkn} such that tki ∈ TPi. Repeat the operation for every newly

obtained marking. Every deadlock reachable from M0 in Σ will be reached by
such search.

Proof. Let Md be a reachable deadlock. Then exists sequence M0σMd. As far
as no transition is enabled in Md and no transition outside a persistent set can
disable a transition in the persistent set, for every TPi ∈ U there is a transition
ti ∈ σ, such that all previous transitions in σ are independent of it; all such
transitions (belonging to different persistent sets) are mutually independent.
From Lemma 3.21, every such transition can be moved to the beginning of the
sequence, and the sequence will remain enabled and leading to the same marking.
Then there exists a sequence M0t

′
1t

′
2...t

′
nσ′Md being an interleaving of σ, such

that there is a step ∆1 = {t′1, t
′
2, ...t

′
n}, which will be executed from M0. So,

M0∆1M1σ
′Md. If |σ′| = 0, then M1 = Md and the theorem is proved; otherwise

the same reasoning, as was applied above to M0 and Md, can be repeated for
the markings M1 and Md. As far as |σ′| < |σ|, Md will be reached in a finite
number of steps.

p5

p9

p2p1

p6

t2

t4

t3

p10

t1

p3 p4

p7
p8

p11

t5 t6

1,2,7,8

2,6,7,11 9,7,11

1,3,4,5

t2,t5,t6

t1,t7 t3,t7

10,7,11

t4

Fig. 3.6. A net (taken from [98]) and reachability graph generated by PSS

3.4 On Combining the Persistent Set Approach and Concurrent Simulation 39

Below we will refer to the combined method of simulation described in The-
orem 3.24 as parallel selective search (PSS). An example of applying of PSS is
shown in Fig. 3.6.

Consider the net shown in Fig. 3.4. PSS does not allow in this case to simulate
transitions firing in parallel, because there is only one persistent set. However it
seems to be intuitively clear, that firing of transitions t1 and t2 (belonging to the
same strong stubborn set) can be simulated in parallel. They are independent,
and independency seems to be a necessary condition for parallel simulation. But
this condition is not sufficient, as illustrated by Fig. 3.5: transitions t1 and t2 are
independent, but their parallel simulation makes impossible detection of one of
the deadlocks.

The next theorem provides a theoretical possibility to capture such situations.

Theorem 3.25. Let Σ = (P, T, F) be a safe Petri net, let M0∆1M1∆2...∆nMd

be a step sequence, and let Md be a deadlock. Let Tp ⊂ enabled(M0) be a set
which is persistent at M1 (not necessary at M0), and all transitions in TP are
independent of all transitions in ∆1. Then exists transition t ∈ Tp such that
M0∆M , where ∆ = ∆1 ∪ {t}, and firing sequence σ such that MσMd and
|σ| <

∑i=n
i=2 |∆n|.

Proof. As far as no transition is enabled in Md and no transition outside
a persistent set can disable a transition in the persistent set, exists transition
t′ ∈ TP such that t′ ∈ ∆i, where 2 ≤ i ≤ n. Let t = t′. From Definition 3.2,
without lost of generality we can suppose, that t is enabled in all markings
M0...Mi−i and every transition t′′ ∈ ∆j such that 1 ≤ j < i is independent of
t. Let σ′ be a linearization of ∆1∆2...∆n. From Lemma 3.21, t can be moved to
the beginning of the sequence, and the sequence (let it be σ′′; |σ′′| = |σ′|) will
remain enabled and leading to the same marking. By the construction, t is the
first transition in σ′′, and the next |∆1| transitions (a linearization of ∆1) are
independent of t and can be executed in parallel from M0. Then M0∆MσMd,
where σ is σ′′ without first |∆| transitions, and |σ| =

∑i=n
i=2 |∆n| − 1.

It is not clear however, how to compute a set TP from Theorem 3.25 without
previous simulation of ∆1; and without a method of such calculation practical
application of Theorem 3.25 for improvement of PSS is doubtful.

3.4.2 Comparison with the Janicki-Koutny’s Method

It is interesting to compare PSS with the method of concurrent simulation by
R. Janicki and M. Koutny, described in [96, 98]. Janicki and Koutny claim [98],
that their method provide the optimal simulation (OPT), because:

1. Some behavioral properties are common to full simulation and optimal simu-
lation by their method; for example, they generate the same set of deadlocks.

40 3. Reduced Reachability Graphs

2. OPT involves a minimum set of step sequences; each proper subset of OPT
is less expressive and may not be used, e.g., to verify the deadlock-freeness.

3. OPT uses the shortest step sequences. Each deadlock will be generated by
following shortest possible step sequence leading to it.

Let us compare the reachability graphs generated by OPT and PSS. The
corresponding graphs are shown in Fig. 3.6-3.9.

1,2

2,4 5

 1,3

t2

t1 t3

6

t4

1,3

2,4 1,2

t1,t2 t2

6

t4

5

t3

a) b)

Fig. 3.7. Reachability graphs generated by OPT (a) and by PSS (b) for the net from
Fig. 3.5

1,3,4,5

2,6,7,8 1,2,7,8

t1,t2,t5,t6 t2,t5,t6

7,10,11

t4,t7

7,9,11

t3,t7

Fig. 3.8. Reachability graphs generated by OPT for the net from Fig. 3.6

The essential differences between PSS and OPT are:

1. OPT generates shorter firing sequences, but PSS simulates in some cases less
transition firings.

2. OPT is defined only for the state machine decomposable (SMD) nets, PSS
works for any safe Petri net (probably for any ordinary Petri net).

3. In general case in a reachability graph generated by OPT there may exist
different nodes for the same marking. PSS constructs the graph in which no
more than one node corresponds to a marking.

4. In some cases PSS (not taking into account Theorem 3.25) fails to avoid an
interleaving which is avoided by OPT (Fig. 3.9)

3.4 On Combining the Persistent Set Approach and Concurrent Simulation 41

p7p6
p4

t4

p5
p3

t3

p2

p1

t2

t1

1,2

3,4 5,6

t4 t1,t2

5,7

t3

b)

a)

1,2

2,5
1,6 3,4

t1
t2

t4

5,6

t2

5,7

t3

t1,t3

c)

Fig. 3.9. A Petri net from [98] (a), its reduced reachability graphs generated by OPT
(b) and PSS (c)

3.4.3 Conflicts, State Explosion and Decomposition

Concurrent simulation cannot avoid state explosion if the Petri net contains
lots of conflicts, because such simulation would require checking of all mutual
combinations of alternative variants in all parallel branches. That is the same
problem as with unfolding of such nets [217]. Consider a net with r parallel
branches, each consisting of n alternative branches and having length q. The full
reachability graph would consist of (nq)r nodes, RRG with maximal concurrent
simulation - of nrq nodes, and RRG created by stubborn set method - of nqr
nodes. It means that comparative effectiveness of those methods does not depend
on the length of branches but does depend on the extent of conflicts.

This problem seems to be in certain respect similar to the problem of avoiding
interleaving. Different ordering of firing of independent transitions leads to the
same result, so why consider all mutual combinations? This is the background
of persistent set approach. On the other hand, sometimes the final result (i.e.
a deadlock) does not depend on alternative choices in the parallel branches of
a system. In terms of blocks (Definition 3.12) it can be formulated as follows:
the choices made inside the blocks affect the behavior of the rest of the system
only through terminal markings of the blocks. Why then should we consider all
mutual combinations of these choices?

The net of Fig. 2.1 has 3 parallel branches, each of which consists of 2 al-
ternative branches, starting and ending in the same place. Such two-pole blocks
are typical for structures of control and computational algorithms [249]. The

42 3. Reduced Reachability Graphs

parallel simulation approach, as it has been described so far, would check 2x3=6
variants of execution, but there is only one reachable deadlock, and intuitively
it seems to be clear, that there is no sense to check all these variants.

The idea of blocks and block decomposition together with the idea of concur-
rent simulation allows to develop analysis method excluding such checking. It is
described in Chapter 4.

3.5 Analysis of Special Classes of Petri Nets

Usually the parallel algorithms start from a sequential process (or single step),
which branches later into several parallel processes. Therefore some languages
for parallel control algorithms (SFC, PRALU etc.) require single initial step. The
same is true for parallel computational algorithms. The underlying Petri nets of
such algorithms usually have single-token initial markings. Such nets are called
below the s-nets.

On the other hand, free choice nets and EFC-nets [55,82] constitute the espe-
cially convenient classes of Petri nets for describing structure of parallel control
algorithms. Such nets can be efficiently analyzed; some properties can be decided
for them in polynomial time, while for general-case nets such check requires in
worst case exponential time (see for example [54,61,133,135,141,142]). Checking
independency of transitions, producing stubborn and persistent sets is extremely
simple for such nets - two transitions are dependent if and only if they belong
to the same cluster; an enabled cluster constitutes a minimum stubborn set and
a minimum persistent set.

Intersection of those two classes constitutes the class of α-nets [242] - a well-
studied model used for specifying algorithm structure in PRALU.

It have been mentioned that the s-nets and especially the α-nets have some
specific relations between their behavioral properties [110], and some of their
properties can be efficiently decided [104, 109, 119, 124]. This section describes
methods of their analysis and corresponding theoretical background. Some re-
sults from [105] are recalled; several mistakes have been corrected, new, more
compact and structured proofs of most affirmations are given. New theoretical
and experimental results are presented. Also, an interesting ”by-product” has
been obtained during research of these topics: it has been shown, that the ba-
sic stubborn set method can do more than it was supposed before - it detects
at least one reachable marking, from which no deadlock is reachable, if such
marking exists. Proof of this result is presented in Appendix A.

3.5.1 Properties and Analysis of α-Nets

Properties of α-Nets

In general case of Petri nets the three properties - liveness, safeness and re-
versibility - are independent from each other; in [172] examples of nets are given

3.5 Analysis of Special Classes of Petri Nets 43

with all possible combinations of these properties. But for the subclasses consid-
ered here, certain dependence exists between these properties. In this subsection
some results on that subject are presented.

The nets used for illustration are taken from [172] and [110]. If needed, the
reachability graph is also shown.

``

p7p6

t5

t7
p3

t3

p5

p1

t1

t2

t6

t8

p2 p4

t4

p8

Fig. 3.10. A live and safe α-net

Below p1 denotes the place marked in M0 (M0(p1) = 1).

Lemma 3.26. A live and safe s-net is reversible (Fig. 3.10).

Proof. Suppose a live and safe s-net Σ is not reversible. Let M be a marking
such that M ∈ [M0〉 and M0 /∈ [M〉. A transition t such that •t = p1 is live
=⇒ ∃M ′ ∈ [M〉: M ′(p1) > 0. Σ is safe =⇒ M ′(p1) = 1. Σ is not reversible =⇒
∃pi(i �= 1) : M ′(pi) = 1. M ′ ≥ M0 =⇒ the firing sequence σ such that M0σM ′ is
allowed in M ′, M ′σM ′′ and M ′′(pi) = 2. This contradicts the assumption that
Σ is safe.

Lemma 3.27. [172] If a connected Petri net is live and safe, then it is strongly
connected.

So we can see that certain coordination exists between liveness, safeness and
reversibility.

Lemma 3.28. If for an α-net Σ = (P, T, F, M0) ∃M ∈ [M0〉 : M > M0, then
the net is not reversible (Fig. 3.12).

Proof. Suppose Σ is reversible. Let MσM0. Let T ′ = {t ∈ T :• t �= {p1}}.
Without lost of generality we may suppose, that all transitions in T ′ are dis-
abled in M (otherwise fire all such transitions in σ, which can be fired before
firing transition t1 such that •t1 = {p1}, and consider the resulting marking
as M). Reorder σ by permuting the independent transitions to obtain sequence
σ′σ′′ such that σ′ is the longest sequence enabled in M0. Let Mσ′M ′, M0σ

′M ′′.
Suppose there is transition t enabled in M ′′. Then there should be transition

44 3. Reduced Reachability Graphs

p3

t3

p1

t1 t2

p2

p4

t4

2,3

4

 1,3

t2 t1

t3

3

t4

Fig. 3.11. A non-reversible Petri net and its reachability graph

p5p4

t4

p3

p1

t1

p2

t4

t3

Fig. 3.12. A non-reversible and unsafe net (places p2 and p1 can be marked at the
same marking)

t′ ∈ σ′′ removing tokens from •t (M ′ > M ′′; even if •t = {p1}, on the path from
M ′ to M0 should exist marking M ′′′ such that M ′′′(p1) = 0). As far as Σ is
EFC, •t =• t′. Then t′ is enabled in M ′′ and should belong to σ′, not to σ′′. It
is a contradiction; hence enabled(M ′′) = ∅, M ′′ ∈ [M0〉 is a deadlock, and Σ is
not reversible.

Lemma 3.29. If a live and strongly connected α-net Σ = (P, T, F, M0) is not
safe, then ∃M ∈ [M0〉 : M > M0.

Proof. Let M ′ ∈ [M0〉, M ′(pi) > 1. Let Q be a simple path in the net graph,
leading from pi to p1 (Q exists, because Σ is strongly connected); let V (Q) be
the set of nodes on Q. Denote two of the tokens present in pi at M ′ as a and b.
Suppose, that if a transition t ∈ V (Q) fires, and a is present in pj ∈• t, after its
firing a is removed from pj and added to its output place pk ∈ V (Q); otherwise,
if b is present in pj ∈• t, after firing of t, b is removed from pj and added to

3.5 Analysis of Special Classes of Petri Nets 45

its output place pk ∈ V (Q). So, a and b by definition are situated in the places
belonging to Q. Let U ⊂ [M ′〉 be the set of markings for which a and b are
defined. Let M ′′ ∈ U , a is in pa, b is in pb. Σ is live =⇒ there is a marking
M ′′′ ∈ [M ′′〉 such that {ta, tb} ∩ enabled(M ′′′) �= ∅ (where pa ∈• ta, pb ∈• tb),
M ′′′ ∈ U . But Σ is EFC, hence {t′a, t′b} ∩ enabled(M ′′′) �= ∅, where pa ∈• t′a,
pb ∈• t′b and {t′a, t′b} ⊂ V (Q). Executing of t′a or t′b from M ′′′ leads to a marking
belonging to U , for which sum of distances between p1 and the places, in which
a and b are situated (calculated as number of corresponding arcs in Q), is less,
than for M ′′′ (and for M ′). Applying such construction to this new marking we
obtain, in finite number of steps, a reachable marking M such that a is in p1
and b exists somewhere in the net, so M > M0.

Lemma 3.30. If a live and strongly connected α-net is not safe, then it is not
reversible.

Proof follows directly from lemmas 3.28 and 3.29

Lemma 3.31. If an α-net Σ is strongly connected, reversible and has at least
one live transition, then it is live (Fig. 3.10).

Proof. Suppose Σ is not live. It is reversible =⇒ it has an initially dead tran-
sition t. Let p be a place such that p ∈• t. The net is strongly connected, hence
there is a path in the net graph from p1 to p. Let t′ be the last non-dead transi-
tion on that path. Without lost of generality we can suppose, that p ∈ t′•. (At
least the first transition on the path is live, because at least one transition t′′

such that •t′′ = p1 is live and any other transition with p1 as its input place has
no other input places (the net is EFC) and hence is live.) Then a marking M is
reachable such that M(p) > 0. M0 ∈ [M〉 and M0(p) = 0 =⇒ to reach M0 from
M , a transition which has p as an input place, has to fire. But if that transition
is live, then t is also live (because they share the same set of input places), which
contradicts to the assumption that t is dead .

Lemma 3.32. If an α-net Σ is strongly connected and reversible, then it is safe.

Proof. If Σ has no live transitions, it is safe. If it has a live transition, from
Lemma 3.31 Σ is live. Then, according to Lemma 3.30, it is safe.

Now we have all the necessary affirmations to prove the main theorem of this
subsection.

Theorem 3.33. An α-net is live and safe, if and only if it is reversible, strongly
connected and has a live transition.

Proof. Follows directly from Lemmas 3.26, 3.27 (=⇒); 3.31, 3.32 (⇐=).

Analysis of α-nets

There exist several efficient methods to decide liveness and safeness of EFC-
nets and α-nets (for example, the reduction methods and the methods using

46 3. Reduced Reachability Graphs

linear algebraic approach [47, 60, 141, 248]). Some of them allow deciding some
important properties such as liveness and safeness in polynomial time. But if
the net under consideration turns to be incorrect, these methods are unable to
localize breaches of correctness. At most, the reduction techniques allow finding
the ”bad” markings (such as deadlocks), but without obtaining firing sequences
leading to them from initial marking. For practical applications such, as verifi-
cation of software or hardware systems, this information would be very useful.
Methods based on constructing reduced reachability graphs allow to perform
such a profound analysis; and, as it will be shown below, for the α-nets the
stubborn set method allows to decide whether the net is live and safe.

Theorem 3.33 describes dependency between reversibility, liveness and safe-
ness of α-nets. So it is enough to check reversibility (and strong connectedness,
which can be performed in linear time - see, for example, the algorithm described
in [48]). On the other hand, if a non-live or unsafe α-net is not reversible, it would
be useful to get for such net a firing sequence, leading to a marking from which
it is impossible to return to the initial one. A method is proposed below, which
allows doing that by constructing a subgraph of the reachability graph.

Theorem 3.34. Let Σ = (P, T, F, M0) be a strongly connected α-net, G =
(V, E) - its full reachability graph, GR = (VR, ER) - its RRG created with the
stubborn set method. G is strongly connected, if and only if GR is strongly con-
nected.

Proof. If all transitions of Σ are dead in M0, then the theorem evidently holds.
Suppose there is an initially live transition in Σ.

=⇒ Consider a net Σ′ = (P ′, T ′, F ′, M ′
0) such that: P ′ = P ∪ {pd}; T ′ = T ;

∀t ∈ T ′ : (•t′ =• t; if p1 /∈ t• then t′• = t•, else t′• = t•\{p1}∪ {pd}), M ′
0 = M0.

Informally, p1 is replaced by 2 places, one (pd) is only an input place for some
transitions, another is only an output place; the rest of the net remains as in Σ.
Let G′ = (V ′, E′) and G′

R = (V ′
R, E′

R) be full and reduced reachability graphs
of Σ′ correspondingly, where G′

R is constructed so, that for every M such that
M ∈ V ′

R and M ∈ VR, the same enabled cluster is selected for exploration,
as when constructing GR. If G is strongly connected, then Σ is reversible, and
from Theorem 3.33 Σ is live and safe. Then the only reachable marking of Σ
such that M(p1) > 0 is M0. Hence Σ′ has the only deadlock Md such that
Md(pd) = 1, Md(P ′\{pd}) = 0, and ∀M ∈ [M ′

0〉(Md ∈ [M〉); V ′ = V ∪ {Md};
V ′

R = VR ∪ {Md}. By construction, GR is a subgraph of G. Let M ∈ VR. Then
M ∈ V ′

R, and there is a path in G′ from M to Md. From Theorem 3.9 there is a
path from M to Md in G′

R and hence a path from M to M0 in GR. Hence GR

is strongly connected.
⇐= Suppose G is not strongly connected, GR is strongly connected. Let M ′

be such marking of Σ that M ′ ∈ [M0〉, M0 /∈ [M ′〉. Then M ′ /∈ VR; in G on
the path from M0 to M ′ there is M ∈ VR (all enabled transitions in an initial
marking of an α-net share an input place and constitute the stubborn set, so
for any path in G starting from M0, at least its first arc is present in GR). Let
MσM ′. If a transition t, belonging to the stubborn set selected for M , exists
in σ, move it to the beginning of σ obtaining sequence tσ1; if there is no such

3.5 Analysis of Special Classes of Petri Nets 47

transition, add it to the beginning of σ. Let MtM1. In the first case let M ′
1 = M ′;

t is independent of all transitions preceding it in σ, hence tσ1 is enabled in M ,
and M1σ1M

′
1. Tn the second case let σ1 = σ, let M ′

1 be such marking that
M ′tM ′

1, M1σ1M
′
1 (from Lemmas 3.6 and 3.7 it exists). In both cases M1 ∈ VR,

M0 /∈ [M ′
1〉, M ′

1 /∈ VR. Applying this construction repeatedly, we will have at
each step MiσiM

′
i , Mi ∈ VR, M ′

i /∈ VR, |σi| ≤ |σi−1|. If at certain step σi will
be reduced to 0 length, there will be a contradiction (Mi = M ′

i at the same
time belongs and does not belong to VR). If for every possible choice of t in the
selected stubborn set, there is such step j that ∀i > j(σi = σj), then the first
transition in σj is ignored at Mj (and at all markings reachable from Mj in GR).
Then M0 is not reachable from Mj in GR, hence GR is not strongly connected.

It follows from Theorem 3.34, that the stubborn set method allows to check
reversibility of an α-net.

Theorem 3.35. A strongly connected α-net is live and safe, if and only if its
RRG is strongly connected and has more than one node.

Proof. Apply Theorem 3.33 and Theorem 3.34.

Theorem 3.36. Let Σ = (P, T, F, M0) be a strongly connected α-net, let GR =
(VR, ER) be its RRG, let M ∈ VR. If M ∈ VR and in GR there is no path from
M to M0, then M0 /∈ [M〉.
Proof. Suppose M0 ∈ [M〉, MσM0 (Mt1M1t2M2...tnM0). Let TS be the cluster
(stubborn set), selected for M . If t1 ∈ TS , then M1 ∈ VR. Suppose t1 /∈ TS. As
far as M0(P) = M0(p1) = 1, ∀p ∈ P \{p1}(M(p) > 0 ⇒ (∃ti ∈ σ p ∈• ti)). Then
∃tj ∈ TS (tj ∈ σ, t1...tj−1 /∈ TS). Then from Lemma 3.6 MtjM

′
1t1...tj−1Mj ;

M ′
1 ∈ VR. In both cases there is a marking M ′ ∈ VR such that (M, M ′) ∈ ER,

M ′σ′M0 and |σ′| = |σ| − 1. Applying this construction |σ| times, we obtain a
path in GR from M to M0. When such path does not exist, M0 /∈ [M〉.
Theorems 3.35 and 3.36 show, that the stubborn set method allows to decide
whether an α-net is well-formed, to obtain a path from the initial marking to a
non-desirable one (if such markings exist) and so, in certain respect, to verify
correctness of a parallel system such as a parallel algorithm, structure of which
corresponds to an α-net, and to localize a fault if it exists.

The complete algorithm of analysis of an α-net Σ is given below.

Algorithm 3.37

1. Check whether the net is strongly connected. If it is not, go to 6.
2. Construct a RRG GR for Σ:

a) Introduce the initial marking M0 as a node and tag it ”new”.
b) While ”new” markings exist, do the following:

i. Select a new marking M .
ii. While there exist enabled transitions in M , select a cluster containing

enabled transitions and do the following for each transition t in this
cluster:

48 3. Reduced Reachability Graphs

A. Obtain the marking M ′ that results from firing t at M .
B. If there is no node M ′, introduce M ′ as a node and tag M ′

”new”.
C. Introduce an arc with label t from M to M ′.
D. If M ′ is not safe, go to 8.

iii. Remove label ”new” from M .
3. If GR is strongly connected, go to 7.
4. If there is in GR a deadlock Md, find in GR a path from M0 to Md; find σ

such that M0σMd; go to 10.
5. Find in GR a marking M from which there is no path to M0 in GR; find σ

such that M0σM ; go to 11.
6. Σ is not live or not safe; go to 12.
7. Σ is live and safe; go to 12.
8. Find in GR a path from M0 to the unsafe marking Mus; find σ such that

M0σMus.
9. Σ is not safe; σ is a firing sequence leading from M0 to an unsafe marking.

Go to 12.
10. Σ is not live; σ is a firing sequence leading from M0 to a deadlock. Go to 12.
11. Σ is not live or not safe; σ is a firing sequence leading from M0 to a marking

M such that M0 /∈ [M〉.
12. The end.

The expensive step of Algorithm 3.37 is its step 2 (the construction of the
reduced state space), which requires in worst case exponential time and memory.
An experimental evaluation of its efficiency will be presented below.

Examples and Discussion

Consider the examples of SFCs shown in Fig. 2.5; first of them is correct, others
are not. Structure of all examples can be represented by the α-nets (Fig. 3.13).

The RRG constructed as a result of applying Algorithm 3.37 to the net from
Fig. 3.13a is shown in Fig. 3.14b. For comparison, full reachability graph of the
same net is shown in Fig. 3.14a. Grayed are the nodes of the full graph, present
in the RRG. RRG is strongly connected, and the net turns to be live and safe.

Fig. 3.15 shows RRGs for the nets from Fig. 3.13b,c. First of those graphs is
infinite, so only its part is shown, built until an unsafe marking is not detected (as
in Algorithm 3.37). It is easy to see that the graphs are not strongly connected,
and it is easy to find a firing sequence leading to an unsafe marking (Fig. 3.15a)
or a deadlock (Fig. 3.15b; for example, t1t2t3t4t5).

Main advantage of the proposed method is that it allows not only to decide
liveness and safeness, but also to find a path to a non-desired state and in that
sense to localize the fault, if it exists. Main disadvantage of the method is that in
general case it does not decide liveness independently from safeness. Of course it
is not the case, when an unsafe marking (Fig. 3.15a) or a deadlock (Fig. 3.15b)
is detected; but if an ignoring occurs, we can only say that the net is not live or
not safe. It can be illustrated by a simple example.

3.5 Analysis of Special Classes of Petri Nets 49

a)

p6

t4

p5

p1

t1

p2

t5

t2

p7p4

t7

p3

p8

p9

t3
t6

t8

p10

t9

t10

b)

p6

t4

p5

p1

t1

p2

t5

t2

p7 p4

t7

p3

p8

p9

t3
t6

t9

t8

c)

p6

t4

p5

p1

t1

p2

t5

t2

p7p4

t7

p3

p8

p9

t3
t6

t8

Fig. 3.13. α-nets corresponding to SFCs from Fig. 2.5

50 3. Reduced Reachability Graphs

2,5

4,5 3,6 2,7 2,8

2,9 3,8 3,7 4,6

 1

3,9 4,8 4,7

3,5 2,6

4,9

10

a)

2,5

4,5

4,6

1

4,8 4,7

3,5

4,9

 10

t1

t2

t3

t4

t5 t6

t7
t8

t9

t10

b)

Fig. 3.14. Full reachability graph (a) and RRG (b) for the net from Fig. 3.13a

The net of Fig. 3.16a is safe, but not live. The net of Fig. 3.16b is live, but not
safe. And the net of Fig. 3.16c is neither live nor safe. But applying Algorithm
3.37 (if numbering of the clusters corresponds to the numbering of transitions),
for all the three the same graph will be obtained (Fig. 3.17).

In such cases the method always detects non-reversible markings, as follows
from Theorems 3.35 and 3.36.

Experimental Results

For experimental evaluation of the method effectiveness, analysis of randomly
generated α-nets has been performed, using full reachability graph construction
and Algorithm 3.37. The algorithm for generation of pseudorandom nets was
implemented according to [185].

In Table 3.1 the experimental results are shown. Net parameters are presented
as m×n, where m is number of places, n is number of transitions. The average per-
centage of time cost of RRG construction with respect of the time cost of the full
graph construction is given for 10 randomly generated α-nets for every considered
combination of parameters. The bottom row presents average percentage.

The arithmetic average of time cost percentage for all given examples is 63.9%,
but as far as the gain increases when the full reachability graph becomes larger
(the largest reachability graphs considered were constructed for the nets with
parameters 72 × 40, and for such nets Algorithm 3.37 demonstrates maximal

3.5 Analysis of Special Classes of Petri Nets 51

2,5

4,5

4,6

 1

4,84,7

3,5

 9

t1

t2

t3

t4

t5 t6

t7

t8

t9

2,5,8

4,5,8

4,6,8

 1,8

4,8,8 4,7,8

3,5,8

t1

t2

t3

t4

t5 t6

Unsafe marking!

a)

2,5

4,5

4,6

1

4,84,7

3,5

t1

t2

t3

t4

t5 t6

Dead markings

b)

Fig. 3.15. RRGs for the nets from Fig. 3.13b (a) and Fig. 3.13c (b)

a)

p4

t3

p3

p1

t1

p2

t2

b)

t3

p3

p1

t1

p2

t2

c)

p4

t3

p3

p1

t1

p2

t2

Fig. 3.16. Nets representing different breaches of correctness

1

2,3

Fig. 3.17. RRG of the nets from Fig. 3.16

time saving), it makes sense to calculate average time costs also in the different
way - from total time amount of analysis of all considered examples for each
method. Such calculation brings result 42.5% for Algorithm 3.37.

52 3. Reduced Reachability Graphs

Table 3.1. Results of experiments with Algorithm 3.37

net Algor. 3.37 net Algor. 3.37

param. (%) param. (%)

12×20 55.8% 72×40 13.1%

36×20 38.4% 84×20 94.0%

36×40 89.8% 84×40 17.3%

36×60 92.1% 96×20 90.3%

48×40 74.4% 96×40 54.3%

60×20 94.6% 96×60 78.9%

60×40 65.8% 108×60 28.0%

72×20 71.7% 120×60 63.6%

average: 72.8% 54.9%

Table 3.2. Average numbers of arcs of full reachability graphs and RRGs

net parameters

48×10 60×20 72×30 84×40 96×50

full graph 10.5 21.6 34.5 67.7 86.6

RRG 9.7 17.4 27.2 31.9 38.1

For the relation between size of full and reduced reachability graphs, see
Table 3.2, in which average numbers of arcs of the full reachability graphs and
RRGs are given. Reducing of size and, correspondingly, construction time with
growing of net parameters, which can be observed for some examples, is caused
by increased number of interconnections of the nets for some combinations of
parameters, which in turn may decrease number of reachable markings.

Other performed experiments also show that Algorithm 3.37 allows to save
about 50% of average analysis time and space for the nets with up to 140
reachable markings. With growing size of the full reachability graph, gain of
Algorithm 3.37 in comparison with full reachability graph construction grows.
But, of course, Algorithm 3.37 remains exponential in the size of the net. If time
or memory cost of the algorithm turns to be too high, other methods should
be used, such as the net reduction method, briefly described in Section 2.3 (al-
lowing to decide liveness and safeness, and - by building reachability graph for
the reduced net - also to obtain a ”bad” marking, but not a firing sequence
leading to a ”bad” marking. For details see [201,235,249]). Experiments demon-
strate, that for all examples considered the net reduction method works quicker
(49.4% of time of full reachability graph construction, calculated as average
value for all examples; 29.2%, if calculated from total time amount of analysis
of all considered examples). Of course, the net reduction method also requires
less memory.

3.5 Analysis of Special Classes of Petri Nets 53

3.5.2 A Hypothesis on EFC-Nets

Hypothesis: A strongly connected EFC-net is live and bounded, if and only if its
RRG is finite and every transition of the net occurs in every terminal component
of the RRG.

If this is true (and it turns to be true for many examples we checked), then the
stubborn set method directly applied to an EFC-net allows to decide whether
it is live and bounded. Structure of the proof of similar result obtained for α-
nets, presented in subsection 3.5.1, does not seem to be applicable for this more
general case, because it is essentially based on the fact that the initial marking
of an α-net is single-token.

The hypothesis mentioned above specifies an interesting direction of further
research.

3.5.3 Analysis of s-Nets

Lemma 3.26 demonstrates importance of s-nets - single-token initial marking
is something more than just a particular restriction of initial state. A live and
safe s-net is a model of a cyclic system, which starts its operation from single
initial state and returns eventually to the same state. This is how almost any
engineering object (and, at certain abstraction level, a natural object) can be
described.

Below an affirmation (Theorem 3.41) is presented, showing that liveness of a
bounded s-net can be decided by means of the stubborn set method. Theorem
3.41 was proven in [114], but the proof presented below is new and much shorter.
We start with some preliminaries.

Lemma 3.38. [74,212] Ignoring does not occur in an RRG, if the net is bounded
and strongly connected.

Lemma 3.39. [217] If in a RRG no ignoring occurs, then a transition t is live,
if and only if it is live in the RRG.

Lemma 3.40. [217] If in a RRG no ignoring occurs, then if the full reachability
graph is finite and contains a terminal component TC, then the RRG contains
a terminal component TCR such that TCR ⊆ TC, and a transition t occurs
in TCR if and only if it occurs in TC; in the reverse direction, each terminal
component TCR of RRG is a subgraph of some terminal component TC of the
full reachability graph such that t occurs in TCR if and only if it occurs in TC.

Theorem 3.41. A bounded and strongly connected s-net Σ = (P, T, F, M0) is
live, if and only if its RRG GR = (VR, ER) is strongly connected and every
transition t ∈ T occurs in it.

Proof. =⇒ According to Lemma 3.38, there is no ignoring in GR. Consider a
terminal component TCR of GR (it exists, because Σ never reaches a deadlock).

54 3. Reduced Reachability Graphs

TCR is strongly connected by definition. According to Lemma 3.40, there is
terminal component TC in the full reachability graph with the same set T ′ of
occurring transitions. Σ is live =⇒ T ′ = T . Then ∃t ∈ T ′ :• t = {p1}, and there
is M ≥ M0 in TCR. Σ is bounded, hence M = M0. Then GR = TCR, GR is
strongly connected and every transition t ∈ T occurs in it.

⇐= If GR is strongly connected and every transition occurs in it, then there
is no ignoring in GR. Hence Lemma 3.39 can be applied, and according to it
every transition t ∈ T is live, so Σ is live.

Theorem 3.41 shows, that by means of the stubborn set method in its basic
form it is possible to decide liveness of the bounded Petri nets with single-token
initial marking. It is generally considered that the basic stubborn set method
needs some modifications to be able to verify liveness properties [212, 215].

Example

Below an example of applying the analysis approach, based on Theorem 3.41,
to a parallel real-time algorithm for a controller is shown. The algorithm is
taken from [9]. It is intended to control a chemical reactor. The reactor is fed
after start signal with two kinds of liquids from measuring vessels, which feed

P5

P3 y2 N

x3

P1

x0

P10

NOT x4

P12

y4 N

P6 y9 N

NOT x7

P13

P2 y1 N

P4

x1

P9 y3 N

P11

NOT x2

P8

P14 y5 N

P7 y7 N

x5 & x6

NOT x5

P15

P16

x8

NOT x6

NOT x9

y8 N

y6 N

Fig. 3.18. A controller program in SFC

3.5 Analysis of Special Classes of Petri Nets 55

from the storage vessels. When reaction between the liquids is completed, the
reactor is discharged into catch vessel. When the reactor is empty, the pro-
cess product is transported to the storage vessel using a carriage. To ensure
complete reaction the liquid in the reactor is agitated by a stirrer. For details
see [9].

In Fig. 3.18 the SFC control algorithm is shown, Fig. 3.19 presents the corre-
sponding Petri net. Note that the net does not belong to the class of EFC nets
and it is an s-net. Full reachability graph of this net contains 29 nodes and 58
arcs (Fig. 3.20).

A reduced reachability graph (one of possible versions) is shown in Fig. 3.21.
It has only 12 nodes and 13 arcs. It is easy to see that the graph is strongly
connected and contains an arc for every transition of the net. It follows from
Theorem 3.41 that the net is live (supposing that it is bounded). It means
that the algorithm will never attain such a state that part of its code becomes
unreachable (and that initially there is no unreachable code). In this respect the
algorithm is correct.

p6

t4

p4

p1

t1

p2

t5

t2

p7

t7

p3

p8

p9

t3

t6

t8

p5

p15

t12

t13

p10

p11 p12

p13

p14

p16

t10

t11

t9

Fig. 3.19. Petri net corresponding to SFC shown in Fig. 3.18

56 3. Reduced Reachability Graphs

3.6 Minimization of Space

Methods of lazy state space constructions, such as described above, evidently
reduce not only time, but also space of analysis algorithms (in comparison to the
full state space exploration). Theoretically there is no necessity of huge memory

2,3,6

3,4,6 2,5,6

 1

2,3,13

4,5,6 3,4,13 2,5,13

6,7,9,10 4,5,13 6,8,9,10

6,8,10,11 8,9,10,13 6,8,9,12

6,7,10,11 7,9,10,13 6,7,9,12

6,8,11,12 8,9,12,13 8,10,11,12

6,7,11,12 7,9,12,13 7,10,11,12

7,11,12,13 8,11,12,13

7,14 8,14

15

15

Fig. 3.20. Full reachability graph of the net shown in Fig. 3.19

3.6 Minimization of Space 57

2,3,6

3,4,6

 1

4,5,6

6,8,9,10

6,8,10,11

16

15

8,14

8,11,12,13

6,8,11,12

7,14

 t1

 t2

 t3

 t4

 t7

 t8

 t9

 t10 t5

 t6
 t11

 t12

 t13

Fig. 3.21. RRG of the net shown in Fig. 3.19

to solve Petri net analysis problem; there is a polynomial-space algorithm of
deadlock detection in a safe Petri net, but it is absolutely inapplicable because its
time consumption is woeful. Generally, all known algorithms solving verification
tasks in relatively small memory are extremely slow [217].

In this section we discuss a less radical approach, reducing memory, keeping
it however exponential in the worst case. The approach is based on removing
from memory some of the intermediate states. Some results are recalled from
[112,118,123,131]; several mistakes are corrected.

3.6.1 Dynamic Reduction of Reachability Graphs

Consider the problem of deadlock detection. There is no necessity to keep in
memory the whole (even reduced) reachability graph with all intermediate (non-
deadlock) markings. It is also evident that throwing away all these states may
cause eternal looping (if the reachability graph has cycles). Therefore some of
intermediate markings should be kept. Which ones? The following lemmas [112]
give the answer (or at least one of the possible answers).

Lemma 3.42. If the graph of a Petri net Σ is acyclic, then the corresponding
reachability graph Σ is acyclic.

Proof. If the graph of Σ is acyclic, then it specifies a partial order on the set
of places. Assign to every place p a number n(p) according to this order, so
that for every place p and transition t ∈• p: n(p) > Σp′∈•tn(p′). Let f(M) =
Σ(M(pi)n(pi)). Then for any t MtM ′ ⇒ f(M) < f(M ′). Then no two markings
can be mutually reachable, and reachability graph of the net has no cycles.

58 3. Reduced Reachability Graphs

Lemma 3.43. For every cycle L in the reachability graph of a Petri net there
is a cycle LΣ in the net graph such that every transition belonging to LΣ marks
an arc in L.

Proof. Let σ be a firing sequence corresponding to a cycle in the reachability
graph (MσM). Suppose that the transitions belonging to σ constitute no cycles
in the net graph. Then ∃t ∈ σ ∃p ∈• t ∀t′ ∈ σ p /∈ t′•. Then MσM ′ ⇒ M(p) >
M ′(p) ⇒ M �= M ′ - a contradiction.

Lemma 3.44. Let MσM ′, M and M ′ are comparable7. Then there is a cycle
LΣ in the net graph such that every transition belonging to LΣ belongs to σ.

Proof is analogous to the proof of Lemma 3.43 (should be repeated twice: for
the cases M > M ′ and M < M ′).

Lemma 3.45. Let MσM . Then every transition t ∈ σ belongs to a cycle of the
net graph, such that all transitions of this cycle belong to σ.

Proof. Suppose the opposite. Then ∃t ∈ σ ((∃p ∈• t ∀t′ ∈ σ p /∈ t′•) ∨ (∃p ∈
t•∀t′ ∈ σp /∈•

t′)). Then MσM ′ ⇒ M(p) �= M ′(p) ⇒ M �= M ′ - a contradiction.

The algorithm presented below is a modification of the well-known algorithm of
reachablilty graph construction for a Petri net Σ = (P, T, F, M0).

Algorithm 3.46

1. Introduce M0 as a node and tag it ”new”. B := {M0}.
2. Select K ⊆ T such that for every cycle in the net graph at least one transition

belongs to K.
3. While ”new” markings exist, do the following:

a) Select a new marking M .
b) If no transitions are enabled in M , tag M ”deadlock”.
c) While there exist enabled transitions in M , do the following for each

enabled transition t in M8 :
i. Obtain the marking M ′ that results from firing t from M .
ii. If there is no node M ′, introduce M ′ as a node and tag M ′ ”new”.
iii. Introduce an arc (M, M ′), labelled by t, and tag M ′ ”new”.
iv. If on a path from M0 to M there exists a marking M ′′ such that

M > M ′′, then communicate ”The net is unbounded” and go to 4.
v. If t ∈ K, add M ′ to B.

d) If M is not a ”deadlock” and M /∈ B, do the following:
i. For every pair of arcs (a, M) and (M, b) draw an arc (a, b).
ii. Remove node M with all its incident arcs.

e) Else remove label ”new” from M .
4. The end.
7 The corresponding relation is defined in subsection 2.1.2.
8 As Algorithm 3.46a, the variant of Algorithm 3.46 will be referred, in which step 3c

has the form: ”While there exist enabled transitions belonging to TS at M , do the
following for each enabled transition t ∈ TS”.

3.6 Minimization of Space 59

Theorem 3.47. Algorithms 3.46 and 3.46a stop for every Petri net.

Proof. Let G = (V, E) be the graph constructed by the algorithm. Suppose that
the net is bounded and the algorithm never stops. That means that there exists
a cycle in the reachability graph such that every marking of it is added to V and
then removed, and the loop never stops. From Lemma 3.43 it follows, that at
least one of these markings will be included in set B and never deleted from V .
Hence it cannot be tagged as ”new” more than once, and such eternal looping
is impossible - a contradiction.

Suppose that the net is unbounded and the algorithm never stops. Then the
algorithm considers new markings (never considered before) infinitely often (an-
other possibility of looping is excluded by Lemma 3.43). Any ”long enough”
firing sequence leading to new markings will go through markings M and M ′

such that M ′ > M , which follows from the fact that P is finite. Then, as follows
from Lemma 3.44, a marking M ′′ between them will be added to B and never
removed from V . That means that graph G will grow infinitely.

It follows that sooner or later there will be a ”long enough” path in G such
that there will exist some markings M and M ′ in it, such that M ′ > M . Then
the algorithm will detect unboundedness (step 3c.iv) and stop.

The proof is completed; note that it is valid for both variants of the algorithm.

Theorem 3.48. Algorithms 3.46 and 3.46a detect all deadlocks of a Petri net
or its unboundedness.

Proof follows from the algorithm description and Theorem 3.9.

Note that execution of step 2 of Algorithm 3.46 is a non-trivial task, if we
want to minimize cardinality of set K (which would reduce the needed memory
amount). It can be formulated as a task of minimal decyclization of an oriented
graph or of finding minimum feedback arc set [158]. This task has applications
in electrical engineering, design of discrete devices, scheduling and so on. The
topic is discussed in Appendix B.

3.6.2 Reducing the Space for Various Analysis Tasks

Application of modified Algorithm 3.46 to solving some other analysis tasks is
discussed below.

• Boundedness. It is easy to see, that n-boundedness can be decided by Algo-
rithm 3.46, if number of tokens in the places is checked on-the-fly. Algorithm
3.46 also detects unboundedness, as follows from Theorem 3.48.

• Liveness. Algorithm 3.46 in its basic form cannot decide liveness. Consider
the following modification: add to step 3d.i ”label arc (a, b) by all transitions
labelling (a, M) and (M, b)”. Let this variant be denoted as Algorithm 3.46b.
Graph built by Algorithm 3.46b allows liveness checking of any bounded net -
it is enough to check, whether every transition marks an arc in every terminal
component.

60 3. Reduced Reachability Graphs

• Reversibility. A bounded net is reversible, if and only if graph G con-
structed by Algorithm 3.46 for this net is strongly connected.

• Reachability, coverability and conservatism. Algorithm 3.46 by con-
struction considers every reachable marking of a bounded Petri net, so the
properties mentioned above can be checked by means of it (with slight evident
modification).

• Firing sequences. To check whether, for given net and given initial mark-
ing, firing sequence σ is possible, Algorithm 3.46 should be modified by for-
bidding removing from the graph the markings belonging to a path, which
corresponds to an initial subsequence of σ (unless it is certain that this sub-
sequence cannot be continued forming σ).

3.6.3 Example

Consider the Petri net shown in Fig. 3.13c. Its reachability graph is shown in
Fig. 3.22. It has 13 nodes. In Fig 3.23 graph G is shown; Fig. 3.23a presents
the graph at a stage of Algorithm 3.46 execution, when its number of nodes
is maximal (assuming search in BFS order); Fig. 3.23b presents its final form.
Maximal number of nodes of G is 6; every marking has been considered only
once. The situation differs if the state space is searched in DFS order; then
maximal number of nodes is also 13, but some markings have been considered 2
or even 3 times.

2,5

4,5 3,6 2,7 2,8

3,83,74,6

 1

4,8 4,7

3,5 2,6

Dead markings!

Fig. 3.22. Reachability graph of the net shown in Fig. 3.13c

3.6 Minimization of Space 61

4,5 3,6 2,7 2,8

 1

2,6

a)

1

4,84,7

b)

Fig. 3.23. Intermediate (a) and final (b) graph G constructed by Algorithm 3.46 for
the net shown in Fig. 3.13c

It is also interesting to compare RRG built using the stubborn set method
and graph G′ built according to Algorithm 3.46a for this example. RRG contains
7 nodes, G′ has maximally 3 nodes. Similar situation arises with combination of
the proposed approach and maximal concurrent simulation (such modification
of Algorithm 3.46 is not described here): graph (let it be G′′) has maximum 3
nodes, when the graph created by maximal concurrent simulation has 5 nodes.

3.6.4 Conclusive Notes on the Method

How much do we gain (and loose) when using the method proposed above?
Exact analytical evaluation of its space- and time- complexity turns to be a

difficult task even for the nets with very restricted structure, and we do not have
sufficient evidence to decide how good it is generally. There are lot of ”good”
and ”bad” examples. Some general notes on the complexity of the method are
presented below.

• Gaining in memory, we loose in time. In most cases the described algorithms
re-calculate some of the states several (sometimes many) times.

• BFS search order seems to be preferable here. DFS allows in many cases
to save more space, but it leads to multiple re-calculation of markings and
increases time consumption drastically.

• Combination of the method with the stubborn set method is efficient, because
the stubborn set method, by avoiding interleaving, reduces radically the num-
ber of paths leading to a node in the reachability graph. So, re-calculation of
the states occurs rarely for such combination.

The space-complexity is reduced here at the expense of time-complexity, and
practical using of this approach makes sense in the cases when memory size
is more critical parameter than time. The approach seems to be especially ef-
ficient for deadlock detection and reachability analysis and, generally, analysis
of safeness properties. It is compatible not only with the stubborn set method,

62 3. Reduced Reachability Graphs

but also with maximal concurrent simulation (which implies in fact BFS search
order, and, as we have seen, it is preferable here).

The methods described in Chapter 4 (except Section 4.2) also avoid keeping in
memory all investigated markings, however using a different approach.

4. Decomposition for Analysis

A perspective approach to analysis of Petri nets and, generally, of parallel dis-
crete systems, is based on the idea of decomposition. The task of net analysis
is reduced to the task of analysis of the blocks of its decomposition, which may
be considerably smaller than the net itself. That procedure can simplify anal-
ysis of large nets. Decomposition turns to be useful also for the synthesis pur-
poses. More about theory and applications of net decomposition can be found
in [15, 19, 36, 102,169,249,251].

4.1 Block Decomposition

In this section the method of block decomposition and analysis, developed by
A. Zakrevskij [244, 249, 251], is briefly described. This information is necessary
for understanding next sections. New results are presented in subsections 4.1.3
(modification of the method for analysis of cyclic nets) and 4.1.4 (experimental
results). The main idea of the method is following: a net is decomposed into
blocks, and every block is analyzed separately; a partial order relation between
the blocks is specified, according to which the blocks can be analyzed. The
method is intended first of all for analysis of a special class of nets called the
operational Petri nets [244, 251].

4.1.1 Operational Petri Nets

Definition 4.1. A Petri net Σ = (P, T, F) is an operational Petri net (OPN),
if it has nonempty sets of input (P in = •T \ T •) and output (P out = T • \ •T)
places.

It is easy to see, that Definition 4.1 is similar to Definition 3.12, with the dif-
ference that a block is defined as a subnet, unlike an operational Petri net. In
both cases for any transition t belonging to an OPN or a block, P in ∩ t• = ∅,
P out ∩ •t = ∅.
Definition 4.2. An initial marking M0 is correct for an operational Petri net
Σ = (P, T, F), if the following conditions are satisfied.

A. Karatkevich: Dynamic Analysis of Petri Net-Based Discrete Sys., LNCIS 356, pp. 63–85, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

64 4. Decomposition for Analysis

1. M0(P \ P in) = 0.
2. Σ is safe for M0.
3. From any marking M ∈ [M0〉, a deadlock is reachable.
4. All reachable deadlocks are the terminal markings (in the deadlocks only the
output places contain tokens).

In Fig. 4.1 an example of operational PN is shown. The correct initial markings
for this net are {p1, p2} and {p3}.

p1

p2

p3

p4

p5

p6

p7

p8

Fig. 4.1. An example of operational Petri net

Union of the nets Σ1 and Σ2 such that P in
1 ∩ P in

2 = ∅ and P out
1 ∩ P out

2 = ∅
will be called their composition. For such nets only those places can be common,
which are input for one net and output for the other. In Fig. 4.2 (taken from [249])
possible variants of composition of two operational PNs are shown.
For the theory of operational Petri nets (properties of correct initial markings,

relations that can be implemented by such nets, the net decomposition) see
[249,251]
An operational PN can be used as a specification of a structure of parallel

algorithmalgorithm!parallel, which is initiated by some correct input state and
terminates attaining one of the output states. In particular, such net may have
only one input place and one output place. Such two-pole structures are typical
for computational and control algorithmsalgorithm!logical control [249].

4.1.2 Analysis of Operational Petri Nets

Block decomposition of a Petri net can be performed using Lemma 3.14 [249,251].
For the analysis of an operational PN its decomposition into blocks should be

first performed. It can be made by finding transitive closure of the relation of
alternative joint on the set of transitions (see Definition 3.13 and Lemma 3.14).
Then in the oriented graph corresponding to relation R on the set of blocks,
where (Σ1, Σ2) ∈ R ⇔ P out

1 ∩P in
2 �= ∅, all the cycles should be united (it can be

4.1 Block Decomposition 65

T1 T1

T2

T1 T2 T2

a) Parallel composition
b) Complete sequential

composition
c) Partial sequential

composition

T1 T2

d) Complete cyclic composition

T1

T2

e) Partial cyclic composition

Fig. 4.2. Variants of composition of two operational Petri nets

performed in linear time, using the algorithm of detection of the strongly con-
nected components [48]), i.e. all blocks belonging to the same strongly connected
component should be composed into one block (step 2 of Algorithm 4.3). After
that R becomes a relation of partial order. Then it specifies the order of the net
analysis: a block can be analyzed only when all the blocks, with which it shares
its input places, have already been analyzed. The main task of analysis of oper-
ational PN is to check whether the given initial marking is correct and, if it is
correct, to obtain all terminal markings reachable from it. Block decomposition
allows analyzing operational nets using the following algorithm given in [251].
Let Σ = (P, T, F, M0) be an operational PN.

Algorithm 4.3

1. If M0(P \ P in) > 0, go to 8.
2. Decompose Σ into minimal blocks.
3. Calculate the relation of partial order R.
4. Unite all the cycles composed by blocks.
5. B := {M0}.
6. While ∃M ∈ B M(P \ P out) > 0, do:
a) Select a block Σi such that ∃M ∈ B M(P in

i) > 0 and there is no block
Σj not analyzed yet for which (Σj , Σi) ∈ R.

66 4. Decomposition for Analysis

b) For each marking M ∈ B such that M(P in
i) > 0, find the terminal

markings of Σi reachable from it and replaceM in B by those markings
(tokens outside Σi do not change their positions).1

c) If at least one of the initial markings for Σi is found to be incorrect, go
to 7.

7. The initial marking M0 is correct, and B contains all the terminal markings
reachable from it in Σ. The end.

8. The initial marking is incorrect. The end.

4.1.3 Analysis of a Class of Cyclic Nets

A cyclic Petri net satisfying some conditions can be ”unfolded” into an opera-
tional PN. This transformation can be easily performed if the initial marking
contains a single token (see Fig. 3.10 and Fig. 3.1). This condition can be gen-
eralized - if all transitions, such that their input places are marked in the initial
marking, share the same set of input places, then the net can be transformed
into an operational PN. The same occurs, if the similar condition holds for the
sets of output places. It is easy to see, that if and only if the original net is live
and safe, the resulting operational PN will be quasi-live and will have only one
correct initial marking and one terminal marking.
So, if a Petri net is supposed to be reversible, and if it satisfies the condition

formulated above, then it can be transformed into an operational PN and ana-
lyzed by the method described. Such analysis would allow deciding liveness and
safeness of the original net. Also, if the net is not live or not safe, it would allow
to obtain an unsafe marking or marking from which the net cannot return to
the initial one, together with firing sequence leading to such marking, or the list
of dead transitions.
It follows that next algorithm (taken from [251], with some modifications) can

be used for liveness and safeness analysis of a net, such that all tokens can be
removed from the places containing them in the initial marking (or put there)
only by a single transition firing. That means in particular, that it is applicable
to analysis of α-nets. The algorithm can be easily extended in such way that for
a non-LS net it will allow to localize its faults, as described above. But for such
localization all explored paths in the reachability graph should be remembered,
otherwise it is enough to keep in memory the set D.
Let Σ = (P, T, F, M0) be a PN satisfying the above condition.

Algorithm 4.4

1. Add to P a new place for each place marked in M0. Replace all edges in
the net graph, leading to a place marked in M0, by the edges leading to the
corresponding new place (from the same transitions). An operational PN
Σ′ is obtained. The places marked in M0 are its input places, and the new
places are its output places.

1 In [249, 251] it is supposed, that the blocks are analyzed by constructing their full
reachability graphs. Possible combination of block decomposition and the stubborn
set method is considered in Section 4.3.

4.1 Block Decomposition 67

2. Check the initial marking M0 for Σ′ using Algorithm 4.3.
3. If M0 is found to be incorrect:
a) if from a reachable marking no terminal marking is reachable:
i. if such marking is reachable that all output places are marked to-
gether with some internal places, then Σ is not safe;

ii. else Σ is not live;
b) if an unsafe place is found, then Σ is not safe.

4. If M0 is found to be correct:
a) if a terminal marking is found such that not all output places are marked
or if some transitions have not fired during simulation, then Σ is not live;

b) else Σ is live and safe.
5. The end.

4.1.4 Example and Experimental Results

Consider the net shown in Fig. 3.10; it can be transformed into an operational
PN (step 1 of Algorithm 4.4) (Fig. 3.1). In Fig. 4.3 block decomposition of the
net is shown.
In Fig. 4.4 the RRG is shown, constructed de facto by Algorithm 4.3 for the

net shown in Fig. 3.1. The full reachability graph of this net has 14 nodes and
32 edges (see Fig. 3.2).
In Fig. 4.5, 4.6 the analysis of the net similar to the net shown in Fig. 3.1,

but with the reachable dead non-terminal markings, is shown.
For the experiments a random net generator [185] and the program imple-

menting the described method were used. For the largest nets investigated -
with 65 transitions and 120 places - maximum time of analysis was 3 ms (the
experiments were performed on a PC with processor K6 II). As far as it is

p7p6

t5

t7

p3

t3

p5

p9

p1

t1

t2

t6

t8

p2

p4

t4 p8

Fig. 4.3. Block decomposition of the net shown in Fig. 3.1

68 4. Decomposition for Analysis

2,3,4

2,3,8

3,5,8

 1

3,6,8

6,7,8

t1
t7

t6

t2 t4

t3

t5

t8

 9
terminal
marking

Fig. 4.4. RRG for the net shown in Fig 3.1

p7p6

t5

t7
p3

t3

p5

p9

p1

t1

t2

t6

p2 p4

t4

p8

Fig. 4.5. A net with non-terminal dead markings

supposed that the blocks are analyzed by constructing the full reachability
graphs, most critical parameter of net decomposition is the size of largest block.
The size of a block means here the number of transitions in it. Average results
(size of the largest minimal blocks of the nets with given parameters) obtained
in the series of experiments are shown in Table 4.1.
Results of another series of experiments (with different set of nets) are shown

in Table 4.2. Here we compare number of markings explored by the presented
method with number of all reachable markings. The experiments demonstrate,
that the method explores about 40% of the state spaces of the considered nets.

4.2 Hierarchical Decomposition 69

2,3,4

 1

t1
t7

t6

non-terminal
dead markings

2,3,8

t5

2,7,8

t4

6,7,8 5,7,8

t2

Fig. 4.6. RRG for the net shown in Fig. 4.5

Table 4.1. Average number of transitions in largest blocks after the net decomposition

transitions

places 20 40 60

20 16 35

40 18 7 21

60 18 10 6

80 18 17 7

100 19 21 5

120 6

average: 17.8 18.0 9.0

Next conclusion follows from these results: with growth of the net, the relation
between its size and the size of its largest block increases. This means that the
method is efficient for large nets. It is less efficient for the nets with |P | << |T |;
it is intuitively clear that the structure of such nets prevents deep decomposition.

4.2 Hierarchical Decomposition

A Petri net model in its original form has no hierarchical structure. But, on the
one hand, hierarchical structures are required in many applications of Petri nets
in system engineering. On the other hand, decomposition is useful for reducing
complexity of many synthesis and analysis tasks. In many publications hierar-
chical net models and the ways of hierarchical decomposition of nets of different
kinds have been proposed (see, for example, [13,37,62,79,100,101,136,146,175,
179,191,214]).

70 4. Decomposition for Analysis

Table 4.2. Reduction of state space by the block decomposition method

net� reachable explored percentage

markings markings

1 49 11 22.45%

2 66 23 34.85%

3 43 13 30.23%

4 19 7 36.84%

5 47 10 21.28%

6 11 11 100.00%

7 26 13 50.00%

8 10 7 70.00%

9 126 31 24.60%

10 51 16 31.37%

11 29 9 31.03%

12 141 41 29.08%

average: 51.5 16 40.14%

A hierarchical structure is easy to deal with if all elements at all levels are
of the same kind and need no special ways of description. Below we describe
an algorithm that allows to transform an ordinary, live and safe Petri net into
a hierarchical one. The method proposed, being a combination of hierarchical
and block decomposition, is rather simple; on the other hand, it allows selecting
the subnets of complex structures. Such decomposition simplifies reachability,
liveness and deadlock analysis of the nets.

4.2.1 A Conception of Hierarchical Decomposition of Petri Nets

If we are going to introduce a hierarchical Petri net, then of course each level of
the model will consist of Petri nets and all we have to do is to define dependencies
between the nets of different levels, adding maybe some necessary restrictions.
In the approach we use, the places of a higher-level net may correspond to the
lower-level nets.
For example (see Fig. 4.7): the high level of a hierarchical net corresponding

to the flat (not hierarchical) net shown in Fig. 3.19 is presented [8]. Macroplace
mp1 corresponds to a subnet, specified by transitions t12, t13; mp2 corresponds
to t2; mp3 - to t3, and so on2.
In such system some processes may take place ”inside” a macroplace. Another

possible variant is a net with macrotransitions (see for example [79, 100, 191]);
we believe, that it is less convenient for our purposes, because it contradicts the
conception of immediate transition firing.
Let us consider properties of a subnet that can be replaced by a place. Let

Σ′ = (P ′, T ′, F ′) be a subnet of Σ = (P, T, F). First of all, Σ′ must have an
2 Another possibility of decomposition of this net is selecting a macroplace corre-
sponding to transitions t2, t3 and a macroplace corresponding to t7 and t8. See [8].

4.2 Hierarchical Decomposition 71

mp1

t1

mp2

t4

mp3

p14

t11

t10

mp4

mp5 mp6 mp7

Fig. 4.7. A net with macroplaces corresponding to the net from Fig. 3.19

interface - a set of places P ′i/o incident to some external transitions. P ′i/o has
two subsets (maybe intersecting) - P ′in (input places) and P ′out (output places),
consisting of the places that are output and input for the external transitions,
correspondingly. The following condition must be satisfied:

∀t ∈ (T \ T ′)
((t• ∩ P ′in �= ∅) ⇒ (t• ⊇ P ′in)) ∧ ((•t ∩ P ′out �= ∅ ⇒ (•t ⊇ P ′out)). (4.1)

It means that a subnet can get the tokens from outside only in all of its
input places simultaneously, and it can loose tokens from all its output places
by an external transition firing also only simultaneously. To guarantee this, the
initial marking should also be taken into account. It implies one more necessary
condition:

(∃p ∈ P ′ M0(p) > 0) ⇒ (p ∈ P ′in ∧ (∀p′ ∈ P ′in M0(p′) = M0(p))) ∨
(p ∈ P ′out ∧ (∀p′ ∈ P ′out M0(p′) = M0(p))). (4.2)

Denote by M ′
in the marking such that M ′

in(p) = 1 if and only if p ∈ P ′in

and by M ′
out the marking such that M ′

out(p) = 1 if and only if p ∈ P ′out. It is
reasonable to consider M ′

in as an initial marking for the subnet (M ′
in = M ′

0).
The following condition is also important:

∀M : (M ∈ [M ′
in〉) ⇒ (M ′

out ∈ [M〉). (4.3)

And finally, if all places in P ′out obtain tokens, no tokens should be allowed to
remain ”inside” the subnet. This condition is described by the following formula:

∀M : (M ∈ [M ′
in〉) ⇒ (M ≯ M ′

out). (4.4)

72 4. Decomposition for Analysis

Definition 4.5. [107] A P-block is a subnet Σ′ of Petri net Σ, satisfying con-
ditions (4.1-4.4)3.

If a subnet Σ′ of Petri net Σ is a P-block, let us construct the net ΣH =
(PH , TH , FH) (where H denotes the higher level; mp ∈ PH is the macroplace):

PH = (P \ P ′) ∪ {mp};
TH = (T \ T ′); (4.5)

FH = {(x, y)|(((x ∈ PH ∧ y ∈ TH) ∨ (x ∈ TH ∧ y ∈ PH)) ∧
(x, y) ∈ F) ∨ ((x = mp) ∧ (y ∈ TH) ∧ (∃p ∈ P ′ (p, y) ∈ F)) ∨
((y = mp) ∧ (x ∈ TH) ∧ (∃p ∈ P ′ (x, p) ∈ F))}.

Correspondence between markings of ΣH and Σ, when Σ is safe, is described
by next formula:

MH(p) =

⎧⎨
⎩

M(p), p ∈ P

max(M(p′)), p′ ∈ P ′, p = mp.
(4.6)

Lemma 4.6. Let Σ be a safe Petri net, Σ′ its P-block, ΣH constructed according
to (4.5), M ′ is a projection on Σ′ of marking M of Σ. Then for Σ M1 ∈ [M2〉,
if and only if:

1. for ΣH: M1H ∈ [M2H〉, M1H(mp) = M2H(mp) = 0, or
2. for ΣH : M1H ∈ [M2H〉, M1H(mp) = 0, M2H(mp) = 1; for Σ′: M ′

out ∈ [M ′
2〉;

or
3. for ΣH: M1H ∈ [M2H〉, M1H(mp) = 1, M2H(mp) = 0; for Σ′: M ′

1 ∈ [M ′
in〉;

or
4. for ΣH : M1H ∈ [M2H〉, M1H(mp) = M2H(mp) = 1; for Σ′: M ′

1 ∈ [M ′
2〉,

if the firing sequence in ΣH leading from M2H to M1H does not contain
transition t such that mp ∈ •t, or (M ′

out ∈ [M ′
2〉, M ′

1 ∈ [M ′
in〉), otherwise; or

5. M1H = M2H , M ′
1 ∈ [M ′

2〉.
Proof.⇐= Let σH be a firing sequence in ΣH such thatM2HσHM1H , σ′ a firing
sequence in Σ′ such that M ′

inσ′Mout.

1. If ∃t1 ∈ σH : mp ∈ •t1, then before t1 in σH there is transition t2 such that
mp ∈ t•2 (because M1H(mp) = M2H(mp) = 0). Insert σ′ into σH before t1;
replace t1 by transition t′′1 such that

•t′′1 = (•t1 \ {mp}) ∪ P ′
out, t

′′•
1 = t•1;

3 The essential differences between P-blocks and Zakrevskij’s blocks (see Definition
3.12) are the following: (1) sets of input and output places of a P-block may intersect;
(2) those sets are defined for P-blocks only by their external relations; in Zakrevskij’s
blocks their internal relations are also taken into account; (3) Definition 3.12 does
not contain condition (4.1) or an equivalent condition; (4) a P-block can have only
one correct initial marking. There are subnets satisfying both definitions (the two-
pole blocks, for example), but the notions of blocks and P-blocks do not cover each
other.

4.2 Hierarchical Decomposition 73

replace t2 by transition t′′2 such that t′′•2 = (t•2 \ {mp}) ∪ P ′
in,

•t′′2 = •t2. If
∃t3 ∈ σH : mp ∈ (•t3 ∩ t3

•), then insert σ′ into σH before t3; replace t3 by
transition t′′3 such that

•t′′3 = (•t3 \ {mp}) ∪ P ′
out, t

′′•
3 = (t•3 \ {mp}) ∪ P ′

in. If
there are more transitions in σH satisfying the condition (mp ∈ •t) ∨ (mp ∈
t•), then make the corresponding changes as described above. The sequence
thus obtained leads fromM2 toM1 in Σ. If ∀t ∈ σH : mp /∈ •t, thenM2σHM1
in Σ.

2. In this case there is t1 ∈ σH such that mp ∈ •t1. Replace t1 with t′′1 as
described above. Insert at the beginning of σH the sequence leading from
M ′

2 to M ′
out. If there are more transitions in σH satisfying the condition

(mp ∈ •t) ∨ (mp ∈ t•), then make the changes as in item 1. The obtained
sequence leads from M2 to M1 in Σ.

3. In this case there is t2 ∈ σH such that mp ∈ t2
•. Replace t2 with t′′2 as

described in item 1. Insert at the end of σH the sequence leading from M ′
in

to M ′
1. If there are more transitions in σH satisfying the condition (mp ∈

•t) ∨ (mp ∈ t•), then make the changes as in item 1. The sequence thus
obtained leads from M2 to M1 in Σ.

4. If, on the path from M2H to M1H in ΣH , there exists a transition t such
that (mp ∈ •t) ∨ (mp ∈ t•), then act as in items 2 and 3, obtaining a
firing sequence leading from M2 to M1 in Σ. Else M2σHσ′′M1 in Σ, where
M ′

2σ
′′M ′

1 (firing sequence σHσ′′ is enabled in M2, because in this case all
transitions in σH belong to T and are independent of all transitions in σ′′).

5. In this case evidently M2σ
′M1 in Σ.

=⇒ Let σ be the sequence such that M2σM1 in Σ. Replacing in the sets
of input and output places of transitions subsets P ′

in and P ′
out by {mp} and

removing all transitions that do not belong to TH , we obtain the sequence σH

such that M2HσHM1H in ΣH (if M1H = M2H , then |σH | = 0). The removed
transitions constitute one or more enabled sequences for Σ′, that lead from M ′

2
to M ′

out, from M ′
in to M ′

1, from M ′
in to M ′

out or from M ′
2 to M ′

1 (all possible
situations are described in items 1-5).

The following three theorems are the main results of this subsection; they demon-
strate how the hierarchical decomposition simplifies the Petri net analysis. The-
orems 4.7 and 4.8 relate to liveness and deadlock analysis, correspondingly;
Theorem 4.9 describes dependency between cardinality of reachability sets of
decomposed net and the elements of decomposition.

Theorem 4.7. 4 Let Σ be a safe Petri net, Σ′ its P-block, ΣH constructed
according to (4.5). Σ is live, if and only if ΣH is live and Σ′ is quasi-live.

Proof follows from Lemma 4.6.
4 Theorem 4.7 is similar to the Reduction theorem from [191]; but in [191] the sub-
nets corresponding to modules, being in fact the macrotransitions, belong to such
restricted class of Petri nets as marked graphs. Another difference between our ap-
proach and the approach presented in [191] is that the decomposition proposed there
is in principle two-level; our decomposition can be easily generalized for multiple
levels.

74 4. Decomposition for Analysis

Theorem 4.8. Let Σ be a safe Petri net, Σ′ its P-block, ΣH constructed accord-
ing to (4.5). Σ has a reachable deadlock Md, if and only if ΣH has a reachable
deadlock MdH. Then

Md(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

MdH(p), p ∈ PH

0, p ∈ P ′ \ P ′out

MdH(mp), p ∈ P ′out.

(4.7)

Proof follows from Lemma 4.6.

Theorem 4.9. Let Σ be a safe Petri net, Σ′ its P-block, ΣH constructed ac-
cording to (4.5). Then

|[M0〉| = (4.8)

= |{MH ∈ [M0H〉|MH(mp) = 0}| + |{MH ∈ [M0H〉|MH(mp) = 1}||[M ′
in〉|,

where [M0〉 concerns Σ, [M0H〉 - ΣH , [M ′
in〉 - Σ′, correspondingly.

Proof follows from Lemma 4.6.

For example, the reachability graphs of the net given in Fig 4.7 and the subnets
corresponding to its macroplaces together have 19 nodes and 14 arcs. Compare
it with 29 nodes and 58 arcs of the net from Fig. 3.19 (see Fig. 3.20). Such
reduction is possible, because in the first case interleaving is completely avoided.
Suppose that we want to know, whether the marking {p7, p14} is reachable in

the net from Fig. 3.19. Searching directly the state space of this net, we obtain
this marking after at least 9 steps (transition firings). Analyzing the hierarchical
net (Fig. 4.7), we have to check whether the marking {mp5, p14} is reachable (3
steps), and then whether in the subnet corresponding to mp5 marking {p7} is
reachable (1 step). It takes together only 4 steps.
Of course, a net can be decomposed into (or composed from) many subnets in

hierarchical way; the affirmations analogous to presented above but describing
multi-level decomposition can be easily proved by using induction. Let us call
a net decomposition P-decomposition, if all the subnets, the net is decomposed
into, are the P-blocks (except of the net at the highest level).

4.2.2 Properties of P-Decomposition

Lemma 4.10. If the nets Σ′ and Σ′′ are P-blocks of net Σ and Σ′′ is a subnet
of Σ′, then Σ′′ is a P-block of Σ′.

Proof follows from the definition of subnet and Definition 4.5.

This ensures the possibility of multi-level decomposition.

Lemma 4.11. If the nets Σ′ and Σ′′ are P-blocks of net Σ and neither Σ′′ is a
subnet of Σ′, nor Σ′ is a subnet of Σ′′, but T ′ ∩ T ′′ �= ∅, then Σ1 = (Σ′ \ Σ′′),
Σ2 = (Σ′ ∩ Σ′′), Σ3 = (Σ′′ \ Σ′) and Σ4 = (Σ′ ∪ Σ′′) are the P-blocks of Σ.

4.2 Hierarchical Decomposition 75

P’

P’’

P’out
P’in

P’’out P’’in

Σ1

Σ3

Σ2

P’out

P’’ P’ P’’in

P’’out P’in

Σ1

Σ3

Σ2

a)

b)

Fig. 4.8. Variants of intersection of P-blocks

The lemma can be proved by demonstrating, that there are only two possible
kinds of intersecting of P-blocks (parallel and sequential, as shown in Fig. 4.8),
and that for each kind of intersection result of corresponding operations on
the P-blocks is a subnet satisfying (4.1-4.4). The complete proof is given in
Appendix C.
It does not mean that for a Petri net there exists only one P-decomposition

with maximal number of blocks, because the P-blocks may intersect by places,
having no common transitions. It is easy to see, that all blocks Σ1, Σ2 and Σ3
in Fig. 4.8b cannot be replaced all together by the macroplaces.

4.2.3 Finding P-Blocks

Of course, the most comfortable situation for analysis is when we deal with a
system synthesized with the top-down approach, where the well-formed blocks
correspond to the macroplaces [146, 191, 253]; then we have a ”ready-made”
decomposition. Otherwise we have to decompose the given net. As it is shown
by Theorem 4.9, even finding some P-blocks can simplify the net analysis.
In order to check whether a subnet is a P-block, it is by definition enough to

check conditions (4.1-4.4). Checking conditions (4.3,4.4) in general case requires
constructing the reachability graph, which is a task of exponential time- and
space-complexity; but if it is known that the net is live and safe, the checking
can be performed easier.

76 4. Decomposition for Analysis

Lemma 4.12. If the net Σ is live and safe and a subnet Σ′ of this net satisfies
(4.1,4.2), then Σ′ is a P-block.

Proof. If Σ is live, then after firing of a transition t1 such that P ′in ⊆ t1
• a

marking is reachable in which transition t2 such that P ′out ⊆• t2 is enabled.
It means that in Σ′ ∀M ∈ [M ′

in〉 : (M ′ ∈ [M〉 : (∀p ∈ P ′out : M ′(p) > 0)).
As far as Σ is safe, M ′(p) = 1. Let M ′

inσM ′. Now it is enough to prove, that
M ′(P ′ \ P ′out) = 0. Suppose the opposite. Then consider marking M ′

add in Σ′

such that M ′
add(p) = 1 if and only if M ′(p) > M ′

out(p). If ∃M ′′ ∈ [M ′
add〉 :

M ′′(P ′out) > 0, then Σ is not safe. Otherwise, as far as Σ is live, there is
markingM1 ∈ [M0〉 such thatM1 > M ′

add andM1 > M ′
out, and there is marking

M2 ∈ [M1〉 such that M2 > M ′
add and M2 > M ′

in. Then σ is enabled in M2,
and executing of σ from M2 leads to an unsafe marking (the places marked in
M ′

add will be unsafe). So, supposing that M ′(P ′ \ P ′out) �= 0 we have come to a
contradiction. Then conditions (4.3,4.4) hold for Σ′, and Σ′ is a P-block.

Even in a case when it is easy to decide whether a subnet is a P-block, decompo-
sition is not a simple task, because the number of subnets exponentially depends
on the net size.
One of the ways to found some of P-blocks is selecting in the Petri net the

subnets being the SM-components (different variants of such approach can be
found in [8, 17, 175]). The net shown in Fig. 4.7 corresponds to the macronet
shown in Fig. 4 in [8] - all its macroplaces correspond to the SM-components.
Of course, the P-blocks may have more complex structure; for detecting such
blocks, another method is needed.
It is easy to see, that any P-block Σ′ such that P ′in = •T ′ \ T ′•, P ′out =

T ′• \ •T ′ is a block in the sense of Definition 3.12 (let us call such blocks the
P-blocks), but not every block is a P-block. Lemma 3.14 [249] provides a simple
way to find for a given Petri net its partition into minimal blocks. This partition
can serve as a base for finding a P-decomposition. Some blocks have to be united
to obtain P-blocks.
We propose the following algorithm for finding P-blocks for a given live and

safe Petri net Σ (a modified algorithm from [107]).

Algorithm 4.13

1. Find the partition of Σ into minimal blocks (according to Lemma 3.14).
2. For each block Σ′ such that

∀t ∈ T : ((t• ∩ P ′in �= ∅) ⇒ (t• ⊇ P ′in)), (4.9)

check conditions (4.1,4.2). If Σ′ satisfies these conditions, it is considered
as a P-block. If Σ′ does not satisfy (4.2), continue with another block not
checked yet. Else attach the blocks Σ′′ such that P ′′in ⊆ P ′out expanding Σ′

until it is possible and Σ′ does not satisfy (4.1,4.2). If the expanded block
satisfies these conditions, it is considered as a P-block.

4.2 Hierarchical Decomposition 77

3. For the blocks that are not included in P-blocks at the previous step consider
combinations of their parallel composition satisfying (4.9) and process them
as in step 2.

Theorem 4.14. Algorithm 4.13 detects every minimal P-block of an LS-Petri
net.

Proof. Let Σ′ be a minimal P-block. As far as minimal blocks specify a partition
on a Petri net (Affirmation 5.14 from [249]), and a union of the blocks is a block
(Affirmation 5.15 from [249]), Σ′ is a minimal block or a union of minimal blocks.
In the first case it will be detected immediately in step 2 of Algorithm 4.13. In
the second case there is a block Σ1 such that P ′in is the set of its input nodes,
Σ1 satisfies (4.9) and (4.2), but does not satisfy (4.1). Σ1 is either a minimal
block (then it will be processed by step 2), or a parallel composition of minimal
blocks (then it will be detected in step 3 and then processed by step 2). Adding
another minimal block Σ2 to Σ1, as described in step 2 of Algorithm 4.13, is
possible in every case while Σ1 < Σ′, and then Σ2 ⊂ Σ′. So, in finite number of
steps the situation will be attained such that Σ1 = Σ′, and Σ′ will be detected
as a P-block, because it satisfies (4.1,4.2) and, as far as the net is live and safe,
from Lemma 4.12 it also satisfies (4.3,4.4).

What will happen, if we apply Algorithm 4.13 to a net which is safe, but not nec-
essarily live? Then the blocks it will detect, will of course satisfy Definition 3.12,
but additional analysis will be necessary to check whether they satisfy (4.3,4.4).
Such analysis can be performed for all those blocks in any order, because for
each of them not more than one correct initial state is possible (and specified by
its structure). Then, if all detected blocks turn to be the P-blocks, reachability
(according to Lemma 4.6) and liveness (according to Theorem 4.7) can be de-
cided for the net. It is easy to show, that if for any of the blocks condition (4.3)
or (4.4) is not satisfied, the net is not live.
After applying Algorithm 4.13 to a flat net and composing the P-blocks into

the macroplaces, the same algorithm can be applied to the highest-level net ΣH ,
and so on, while the highest-level net is decomposable. In such a way a multi-level
hierarchical net can be constructed in the bottom-up order. Some notes should
be taken into account here: first, if some of the P-blocks detected by Algorithm
4.13 intersect by places, but have no common transitions, then, unlike for the
blocks , partial composition is impossible for them; they may be only in a complete
composition (see Fig. 4.2). In such cases the sum of cardinalities of reachability
set of the P-blocks equals cardinality of reachability set of their composition,
and considering those P-blocks as separate macroplaces seems to have no sense;
for analysis purposes those P-blocks should be united. In particular, there is no
sense to build a macroplace from an SM-component, if it can be built from a
”larger” SM-component. So, to step 1 of Algorithm 4.13 the following statement
can be added: ”Unite all the complete sequential compositions of the blocks”;
then there will be no guaranty of minimality of the P-blocks obtained, but it will
simplify the net structure and the net analysis. On the other hand, there is no

78 4. Decomposition for Analysis

sense in our analysis to consider several P-blocks being in parallel composition
as a single macroplace (as it is done in [8]).

4.3 Decomposition and Persistent Sets

One of the reasons why decomposition is useful for analysis is that it allows
to ”reuse” results of analysis of the particular blocks of a system. Analysis by
constructing the state spaces usually does not allow such reuse and can lead to
repetitive analysis of the same subsystems. See Fig. 4.9: here during simulation
using stubborn sets, the block specified by transitions t4, t5 is simulated twice. In
case of constructing the full reachability graph, this block and the block specified
by t2, t3 would be simulated 3 times. Both decomposition methods described
above avoid such duplication.

p6

t4

p3

p1

t1

p2

t2

p5

t3

p7

t5

p4

2,3

 1

t1

t3

3,4

t5

3,5

t4

t2

4,6

4,7 5,6

5,7

t4
t5

Fig. 4.9. A Petri net (with block decomposition) and RRG

On the other hand, for complete analysis of a block we have to know all
its possible initial states. That is why certain limitations of applicability exist,
and for this reason both decomposition methods are intended for the safe nets
(which means limited number of initial markings of the blocks; the methods can
be generalized for the bounded nets).
In spite of certain differences, the methods of analysis by means of decomposi-

tion can be considered as belonging to the family of persistent set methods [130],
which follows from the next theorem.

Theorem 4.15. Let Σ = (P, T, F) be an operational Petri net, Σ1 = (P1, T1, F1)
a block in it, at marking M there are enabled transitions in Σ1 and there is no
such block Σ2 in Σ, that in Σ2 there are enabled transitions atM and (Σ2, Σ1) ∈
R̂ (where R̂ is a transitive closure of relation R defined in subsection 4.1.2). Then
T1 ∩ enabled(M) is a persistent set.

4.4 Parallel Analysis 79

Proof. T1 contains an enabled transition; no enabled transition in T1 has an
input place in common with any transition outside T1 (which follows from Def-
inition 3.12); so, T1 satisfies two of 3 conditions of a stubborn set (Definition
3.4). If it satisfies the remaining condition (every disabled transition in T1 has
an empty input place p such that all transitions in •p are in T1), then T1 is a
stubborn set and the statement holds. Suppose T1 is not stubborn; then there is
a disabled transition t ∈ T1 and an empty place p such that p ∈ •t, •p ∩ T1 �= ∅.
It follows from Definition 3.12, that the situation t1 ∈ •p, t2 ∈ •p, t1 ∈ T1,
t2 /∈ T1 is impossible. Then every transition t′ ∈ •p is in a block Σ′ such that
(Σ′, Σ1) ∈ R and is disabled (because in such block there are no enabled tran-
sitions). To construct stubborn set TS , we should add to T1: transition t′, all
transitions from •p′, where p′ is an empty place in •t′, and so on, while it is
possible. Every transition t′′ added in such way belongs to a block Σ′′ such that
(Σ′′, Σ1) ∈ R̂ and hence it is disabled. So, if T1 is not a stubborn set, then there
exists a stubborn set TS such that T1 ⊂ TS and enabled(M)∩TS \T1 = ∅. Then
enabled(M) ∩ TS = enabled(M) ∩ T1 and, from Theorem 3.10, it is a persistent
set.

The block decomposition method and the stubborn set method in their classical
form have very similar purposes. So, two questions arise here: first, which of
two approaches is preferable in a given situation; second, whether and how it is
possible to combine them.
These questions can be answered in the following way: the stubborn set

method is more universal, than the block decomposition method (it can be ap-
plied only to certain classes of nets, as it is described in Section 4.1); on the
other hand, every block in this method is analyzed to detect the terminal states
(deadlocks), so using the stubborn set method for analysis of blocks would be
an evident improvement. However, there is one restriction: if the net should be
checked for safeness (boundedness), generation of the full state space of a block
cannot be substituted by generation of an RRG by means of the stubborn set
method, because in some cases it would not allow to decide these properties.
What can be said about hierarchical decomposition and the persistent sets?

Hierarchical decomposition can be applied to analysis of a wider range of prop-
erties than the classical stubborn set method; but any analysis based on the
hierarchical decomposition, like the analysis based on the block decomposition,
would require detection of terminal states of the blocks, which can be performed
by means of the persistent set methods. Therefore the decomposition methods
and the persistent set methods can be successfully combined (see also section
”Discussion” in [214]).

4.4 Parallel Analysis

”Lazy state space construction” approaches for Petri net analysis use the fact
that parallel branches of a Petri net can be considered as independent, so such
approaches analyze the nets locally (the same is true for the reduction approach).

80 4. Decomposition for Analysis

On the other hand, the algorithms of analysis usually remain sequential; and
parallel structure of Petri nets would allow a essential reduction of analysis
time, if the analysis is performed by a multiprocessor system. So the next prob-
lem arises and is considered in this section: a Petri net is given, and n parallel
processes are given; each of them is able to perform certain operations. How the
net can be efficiently analyzed by these processes?
Of course, the methods constructing the state spaces can be parallelized, and

concurrent versions of the algorithmsalgorithm!parallel of lazy state space con-
structions, such as stubborn set method and the maximal concurrent simula-
tion, can be developed. But every thread of such parallelized algorithmalgo-
rithm!parallel would have to consider the whole net. So it seems to be more
prospective to develop the parallel algorithmsalgorithm!parallel using decompo-
sition methods.
Two questions should be answered for organizing efficient parallel analysis:

how to distribute the functions between the processes and how to organize proper
communication between them [130]. Some efforts have been made to parallelize
examining protocol states (without direct use of Petri nets, see for example
[203]), performing Petri net unfolding [87] and the complete reachability analysis
(distributed algorithm for modular analyzer of Petri nets ”Maria” [160]).
The block decomposition method can be parallelized in the natural way. Such

parallelization is described and discussed below. In this section we suppose that
the processes communicate through the common memory containing Petri net
description and current data.
Let us try to produce the concurrent version of Algorithm 4.3. The problem

is how to organize non-conflicting concurrent processing of the net and effective
synchronization of the processes. Every process may analyze a block and then
write the results of its work into the common memory. But in this approach
there is no sense to use always the minimal blocks, because it may unnecessarily
increase the synchronization costs.
The following algorithm of block decomposition is proposed to be used for

parallel analysis. Let Σ be an OPN.

Algorithm 4.16

1. Find the minimal blocks by using transitive closure of the relation of alter-
native joint of transitions.

2. Unite all cycles composed by blocks.
3. Unite all complete sequential compositions of the blocks (see Fig. 4.2).
4. If some blocks are sufficiently small for evaluated time of their analysis be
less than evaluated time of updating the set B5 by a process, unite them
with their neighbors. If some new complete sequential compositions have
arisen, go to 3.

5. The end.

A concurrent version of Algorithm 4.3 is presented below.

5 Where B is the set of markings, as in Algorithm 4.3.

4.4 Parallel Analysis 81

Let Σ be an operational PN, M0 its initial marking.

Algorithm 4.17

f := 0 (f enables/disables write access to the common data); r := 0 (a global
variable containing error code).

1. Decompose the net Σ into blocks applying Algorithm 4.16.
2. Calculate the relation of partial order R.
3. B := {M0}.
4. Parbegin. For every concurrent process
a) Wait when there is a block Σi such that there is no block Σj not analyzed
yet for which (Σj , Σi) ∈ R, and Σi is not marked as ”under processing”
or ”analyzed”, or there are no blocks not analyzed yet, or r �= 0. If there
are no blocks not analyzed or r �= 0, go to 5.

b) Mark Σi as being ”under processing”.
c) For each marking of Σi being the projection of a marking M ∈ B, find
the terminal markings of Σi reachable from it.

d) If at least one of the initial markings for Σi is found to be incorrect, set
r := 1 and go to 5.

e) Wait until f = 0.
f) Set f := 1.
g) Replace markings in B, such that input places of Σi are marked by the
markings, where the initial markings of Σi are replaced by correspon-
dent terminal markings (tokens not belonging to the places of Σi do not
change their positions).

h) Set f = 0; mark Σi as ”analyzed”.
i) Go to a).

5. Parend
6. If r = 0, the initial marking M0 is correct, and B contains all terminal
markings reachable from it in Σ. Else the initial marking is incorrect. The
end.

Of course, this approach can be used also for analysis of a cyclic net satis-
fying condition, formulated in Subsection 4.1.3. The corresponding algorithm is
presented in [130].
Let us try to evaluate effectiveness of parallelization of analysis algorithms. If

the analysis of a net Σ by single process (using Algorithm 4.3) requires c1(Σ)
time, how much time will be required for analysis of the same net by n processes
(cn(Σ), Algorithm 4.17)?
First of all, it depends on the number of blocks that can be analyzed simulta-

neously. Sets of such blocks correspond to the cliques of the graph representing
concurrency relation between the blocks. Let m be the average number of such
blocks.
Then cn ≈ (c1 − ci)/min(n, m) + ci + cs, where ci is the time needed for

initialization, cs is the time needed for synchronization between processes.
On the other hand, for effectiveness evaluation, the methods of critical path

calculation in the project networks can be used [53, 171] - and the graph of

82 4. Decomposition for Analysis

partial order relation R between the blocks can be easily converted into a project
network, if time of processing of every block is evaluated. Then the total time of
processing by means of a multiprocessor system will correspond to the length of
critical path in the network, and time of processing using single processor will
be the sum of processing time needed for all blocks.

4.5 Distributed Analysis

4.5.1 A Method of Distributed Analysis

Algorithm 4.17 is intended for a multiprocessor structure with common memory.
It can be implemented as a multithread application. But analysis of large nets
would be more efficient by using computer networks, and in this case Algorithm
4.17 cannot be applied directly. In this section the modification intended for
distributed analysis is described.
The problem with distributed version of the analysis algorithm is that al-

though analysis of the blocks can be performed in parallel by different processors,
at every step of analysis a set of markings of the whole net (set B in Algorithm
4.17) should be kept; in our method it is kept in a centralized way. So, we have
chosen the following decision: there is a master computer which keeps description
of set B and controls the analysis process. The rest of computers in the network
are slaves; each slave has the description of some subnets (blocks) of the Petri net
in its memory and, obtaining the sets of possible initial markings of the subnets
from the master, performs the analysis. The master obtains the sets of reachable
terminal markings of the subnets and the messages about incorrectness from the
slaves .
Before starting the net analysis, the blocks of the decomposed net should be

assigned to the computers in the way which minimizes the analysis time. Accord-
ing to the structure we have selected, there is no direct communication between
slaves; the whole inter-computer communication goes through the master. We
suppose that the number of input and output places of the blocks is much less
than the number of their internal places (that is usual situation in practical
applications), hence communication time is not taken into account in the algo-
rithm of processor assignment (however, according to experimental results, it
does affect the analysis time considerably and should be taken into account in
further work). For optimal partitioning, the partial order in which blocks have
to be analyzed and evaluated analysis time of each block should be considered.
We use the partitioning algorithm described in [164]. Our experiments with

randomly generated nets show, that time complexity of a block analysis (by
means of full state space construction) can be evaluated by the function 3(|Pi|/6),
where Pi is the set of places of the block. Using this evaluation, the program
dependence graph (PDG, [164]) is built having the same structure as the oriented
acyclic graph specifying relation R, and to every node i the weight wi is assigned
according to the following empirical formula:

wi = 3(|Pi|/6). (4.10)

4.5 Distributed Analysis 83

The method of distributed analysis of OPNs is described below. It consists of
3 algorithms: initialization and the algorithms for master and for slave.
Let Σ be an OPN, M0 its initial marking.

Algorithm 4.18

(Initialization)

1. Decompose the net Σ into minimal blocks.
2. Unite all cycles composed by the blocks.
3. Create a PDG: nodes correspond to the blocks; arcs correspond to relation R
between the blocks. To every node a weight is assigned according to (4.10).

4. Build a parse tree for the PDG [164].
5. Perform processor assignment (using the algorithm from [164]).
6. Write to every processor’s memory the descriptions of the blocks correspond-
ing to the assigned nodes of PDG.

Algorithm 4.19

(Master)

1. B := {M0}.
2. While not all blocks are analyzed, do:
a) Find a block Σi such that Σi is not analyzed and there is no block Σj

not analyzed yet, for which (Σj , Σi) ∈ R.
b) For each marking M ∈ B such that M(P in

i) > 0, send the projection of
M on Σi to the processor to which the block is assigned. Do not consider
Σi as ”not analyzed” any more.

c) If, from any slave, the description of terminal markings of block Σi reach-
able from given initial markings is obtained, replace markings in B, such
that input nodes of Σi are marked, by the markings, where the initial
markings of Σi are replaced by the corresponding terminal markings.

d) If, from any slave, the message is obtained that a marking is incorrect,
go to 4.

3. The initial marking M0 is correct and B contains all the terminal markings
reachable from it in Σ. The end.

4. The initial marking is incorrect. The end.

Algorithm 4.20

(Slave)
When, from the master, description of an initial marking of block Σi (Mi0)

is obtained:

1. Find all terminal markings reachable from Mi0.
2. If Mi0 is correct for Σi, send to master description of all terminal markings
reachable from it. Else send the message that Mi0 is incorrect for Σi.

84 4. Decomposition for Analysis

4.5.2 Implementation of the Method

The method described above has been implemented in Java6. This program-
ming language has been chosen for the following reasons: availability of the
mechanisms supporting distributed programming, support of multithreading and
availability of parsers for XML language. As a distributed environment for the
project, Java Parallel Virtual Machine (JPVM) [69] was selected. Advantages
of JPVM are: its interface close to the interface of Parallel Virtual Machine
(PVM) [72] and semantics fitting for the object-oriented programming language
Java. JPVM has been completely implemented in Java, and can be used in a
heterogeneous distributed environment.
Input of the program implementing the method is an OPN described in the

format PNSF3 [?]. The input data are initially validated according to the corre-
sponding document type definition (DTD). The master performs block decom-
position of the net. After that, according to the obtained block structure, the
master (Fig. 4.10) performs processor assignment by means of Algorithm 4.18.
The threads are initiated to control the slaves. Number of threads corresponds
to the number of blocks ready to be processed, and number of the initiated
threads corresponds to the number of slaves, each of which has some blocks to
process, assigned by the module ProcessorAssignment. At each step a thread
sends the initial markings of the corresponding block(s) to the slave. A slave’s
task is verification of the given block and computing of its terminal markings.
Result of the slave’s work is sent back to the master, to the corresponding thread
being in waiting mode. If the initial markings are correct for the block, the de-
scription of its terminal markings is sent to the main process of the master for
further analysis of the net; otherwise the program exits and further analysis is
not performed.

Fig. 4.10. Distributed analysis of Petri nets: operating model of Master and Slave

6 The method was implemented by Tomasz Gratkowski [128].

4.5 Distributed Analysis 85

Table 4.3. Time of the distributed analysis of Petri nets

net parameters

computers 128×118 238×228 360×349
1 2377 7277 12095

3 3202 6684 9092

5 3060 5893 8920

7 2626 5208 7578

JPVM environment serves as an intermediate layer between the master and
the slaves. The master sends the messages to the slaves by its threads, ordering to
the JPVM demons of the slaves to initialize the appropriate analysis procedures.
In the next JPVM messages, input data for these procedures are sent. The result
of slave’s work is a JPVM message with the description of terminal markings or
a message describing errors.

4.5.3 Experimental Results and Concluding Remarks

For experimental analysis of the approach presented above, some tests have been
performed. The system was tested at a separated local-area network based on
100Base-T technology. The network consisted of 7 computers at most. Parame-
ters of the analyzed nets and the analysis time (in ms) are given in Table 4.3.
The obtained results are modest, but they show that the method seems to be

promising for large nets. For small nets, communication between the computers
within the network noticeably decreases the gain (as it can be seen in Table
4.3, for the smallest of considered nets there is no gain at all). For larger nets
the method provides greater possibilities of time saving. This correlates with
results of the experiments on the sequential version of analysis based on block
decomposition (see [251] and subsection 4.1.4).
Several problems are to be solved here. One of them is the evaluation of analy-

sis time of a single block; formula (4.10) is far from being exact. Another problem
is to take into account the costs of data transfer in the network, important for
analysis of some kinds of nets. Last bat not least, optimization of data transfer -
there are grounds to suppose, that data transfer in our system can be noticeably
improved.

5. Analysis by Solving Logical Equations –
Calculation of Siphons and Traps

This chapter is dedicated to one of the important Petri net analysis tasks -
calculation of siphons and traps. For some classes of Petri nets (and their ex-
tensions) properties like liveness and reversibility can be decided by analysis of
siphons and traps [21, 28, 155, 176, 194, 228, 241, 249] - for example, there is a
known result that a free choice net is live, if and only if every siphon contains a
marked trap [140, 183]. Finding siphons and traps has a variety of applications
to verification and design of parallel systems, such as detection and prevention
of deadlocks (usually in a correct system no siphon can be emptied) [65, 81, 92];
one application of this kind will be presented below in Subsection 6.1.3.

Siphons and traps of a Petri net correspond to the roots of certain logical
equations, which can be represented in CNF. Thelen’s method [162,207] allows
efficient calculation of prime implicants of a Boolean function represented in
such form. Application of the Thelen’s method for solving the mentioned logical
equations is discussed below; it makes possible obtaining sets of siphons and
traps in form of ternary vectors. Some heuristics for Thelen’s method have been
proposed and the computer experiments performed.

Normal Forms and Implicants of Boolean Expressions

Here we recall some definitions from Boolean algebra, which will be necessary
below.

Definition 5.1. A literal is either a propositional letter x or negation x of a
propositional letter x.

Definition 5.2. A conjunctive normal form (CNF) formula is one which is a
conjunction of disjunctions of literals. That is, a formula of the form:

(l11 ∨ . . . ∨ l1n1) ∧ . . . ∧ (lm1 ∨ . . . ∨ lmnm), (5.1)

where each lij is a literal.

A. Karatkevich: Dynamic Analysis of Petri Net-Based Discrete Sys., LNCIS 356, pp. 87–93, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

88 5. Analysis by Solving Logical Equations – Calculation of Siphons and Traps

Definition 5.3. A disjunctive normal form (DNF) formula is one which is a
disjunction of conjunctions of literals. That is, a formula of the form:

(l11 ∧ . . . ∧ l1n1) ∨ . . . ∨ (lm1 ∧ . . . ∧ lmnm), (5.2)

where each lij is a literal.

Definition 5.4. An implicant k of a Boolean function f is a conjunction of
literals such that k → f . A prime implicant kp of a Boolean function f is such
an implicant of f that removing any literal from kp leads to a conjunction k′

such that k′ is not an implicant of f .

5.1 Known Methods of Calculation of Siphons and Traps

5.1.1 Calculation of Siphons and Traps by Means of Solving Logical
Equations

Siphons and traps do not depend on the initial markings and can be detected
by structural analysis of a net. A siphon D has to satisfy the set of conditions:
∀ti ∈ T : ti

• ∩ D �= ∅ : ⇒ •ti ∩ D �= ∅ (see subsection 2.1.2).
Analogous conditions exist for a trap. They can be in natural way represented

by logical equations.
Consider a set of Boolean variables P = {p1,p2, ...,pm}, where m = |P |,

and pi = 1 if and only if pi belongs to a certain subset of places. Denote the
subsets of P corresponding to •ti and ti

• by Pi and P∗
i . Denote disjunctions of

the corresponding variables by ∨[Pi] and ∨[P∗
i]. Then the condition for transition

ti can be expressed by the formula: ∨[P∗
i] → ∨[Pi] = 1.

Then all the siphons of Petri net Σ = (P, T, F) are specified by the roots of
the logical equation.

Lemma 5.5 (Affirmation 4.9 from [249]). All siphons of a Petri net Σ are
defined by the roots of logical equation

∧n
i=1(∨[P∗

i] → ∨[Pi]) = 1, (5.3)

where n = |T |.
The analogous lemma can be formulated for traps.

Lemma 5.6 (Affirmation 4.8 from [249]). All traps of a Petri net Σ are
defined by the roots of logical equation

∧n
i=1(∨[Pi] → ∨[P∗

i]) = 1, (5.4)

where n = |T |.
So, siphons and traps of a Petri net can be calculated by solving logical equations;
this methodology is described in [249]. How to solve efficiently the equations of

5.1 Known Methods of Calculation of Siphons and Traps 89

this kind? One of the ways is elimination of implications and transformation of
the equation into DNF, from which the roots can be obtained. Another approach
allows simplifying the calculations, taking into account that in (5.3) and (5.4)
all variables occur without negation. In that approach the ternary matrices are
used to represent the equations, and the roots are obtained by combinatorial
operations on those matrices. For details see [249]. Another approach to symbolic
calculation of siphons and traps is described in [192,193].

Let us consider some transformations which can simplify solving the equations.
Let m = |ti•|, pi∗

1 ...pi∗
m - variables corresponding to the output places of ti. Then:

∨[P∗
i] → ∨[Pi] = ∨[P∗

i] ∨ (∨[Pi]) = ∧m
j=1

(
pi∗

j ∨ (∨[Pi])
)
. (5.5)

The equation is now transformed into CNF. Note that changing interpreta-
tion of the variables, such that belonging of a place to a set means that the
corresponding variable has value 0, would lead to inversion of all the literals in
(5.5), and the expression turns to be a conjunction of Horn clauses. As far as
we know, Minoux and Barkaoui [170] were the first who considered siphons and
traps in Petri nets as Horn-satisfiability solutions.

There is an efficient polynomial-time algorithm solving the satisfability prob-
lem for the Horn expression and finding a decision with minimal number of
variables having value 1 [178]. Hence, for a given subset of places it is possible
to calculate efficiently the maximal siphon contained in it ; this approach is used
in [21]. There are also methods of finding the minimal siphons or the minimal
siphons containing given places [206, 230, 231]. But here the task of generating
all siphons is considered; applying the mentioned approach to this task would
require a time-consuming combinatorial search.

Note that the approach described in this subsection does not lead to finding
basic siphons (traps) only, unlike the approaches described below. But this does
not mean, that all the siphons (traps) are calculated and represented explicitly;
it would lead to non-compact representations. A system of Boolean equations of
the kind (5.3) or (5.4) can be solved in such a way that the set of its roots will be
represented by a ternary matrix, every row of which describes several solutions
(see an example below). That is how we are going to solve the task.

5.1.2 Other Approaches to Calculation of Siphons and Traps

There are several methods in which siphons and traps are calculated by solving
systems of linear equations or inequalities. These methods can be grouped into
3 cathegories [66].

1. The particular class of Boolean equation systems can be transformed into
systems of linear inequalities, by solving which the siphons or traps can be
found [198].

2. The so-called p-invariants can be obtained by solving a linear equation
Cx = 0, where C is the incidence matrix of a net [172]. The set of states cor-
responding to a p-invariant is an st-component (a siphon and a trap at the

90 5. Analysis by Solving Logical Equations – Calculation of Siphons and Traps

same time). But not every siphon and trap has a corresponding p-invariant.
In the second approach [155] the net is transformed in such a way that for
every siphon (or trap) of the initial net there is corresponding p-invariant
of the transformed net. So, calculation of the siphons (traps) of the initial
net can be performed by solving linear equations generated according to the
transformed net.

3. A support of a vector being a solution of linear inequality Cx � 0 is a trap
in the corresponding net; but not every trap corresponds to such a solution.
In the third approach [197] the incidence matrix is transformed in certain
way so that it describes the same graph of a net, but with weighted arcs.
Solving the inequality obtained in this way allows to detect the traps of the
net. As far as the tasks of calculation of siphons and traps are equivalent (a
siphon of a net Σ is a trap in the net obtained from Σ by reversing all arcs),
the approach can be used for calculation of siphons too.

This chapter is dedicated to calculation of siphons and traps by solving logical
equations, so the methods using linear algebra are not considered here in details.

5.2 Algorithm to Find Siphons and Traps

As it is shown in Subsection 5.1.1, a Boolean formula describing siphons or traps
of a Petri net can be easily transformed into CNF (5.5). So the Thelen’s prime
implicant method can be efficiently applied to calculating of siphons and traps.
It was suggested in [229] to apply the Thelen’s method for Petri net analysis. The
new contribution is the efficient heuristics for finding prime implicants. These
heuristics (reordering the sum terms and the literals in the sum terms) can be
applied not only for Petri net analysis, but also for solving other tasks where
the Thelen’s method is used [32, 33, 228]. Thelen’s prime implicant method, the
heuristics and the experimental results are described in details in Appendix D.
The algorithm of calculating siphons and traps is presented below.

Let Σ be a Petri net.

Algorithm 5.7

1. Generate the Boolean formula for siphons (traps) of the Petri net according
to equations (5.3), (5.4).

2. Transform the formula into CNF applying equation (5.5).
3. Sort the sum terms and the literals in the sum terms to minimize search

tree.
a) Sort the sum terms by variables (Heuristic 2a from Appendix D).
b) Sort the literals in the sum terms (Heuristic 4 from Appendix D).

4. Find all prime implicants of the obtained formula using Thelen’s method.
5. Represent set of prime implicants as a ternary matrix. Each row corresponds

to one prime implicant and represents one or more siphons (traps).

5.3 Example 91

Fig. 5.1. A Petri net [241]

5.3 Example

Calculation of siphons and traps of a sample Petri net by using the proposed
method and some other methods is shown below.

5.3.1 The Proposed Method

Let us find all siphons of the Petri net from Fig. 5.1. First, Boolean formula is
generated according to equation (5.3):

(p1 → p6)(p2 ∨ p3 → p1)(p1 → p2 ∨ p4)
(p6 → p3 ∨ p5)(p4 ∨ p5 → p6) = 1. (5.6)

Next the formula is transformed into CNF using equation (5.5):

(p1 ∨ p6)(p2 ∨ p1)(p3 ∨ p1)(p1 ∨ p2 ∨ p4)
(p6 ∨ p3 ∨ p5)(p4 ∨ p6)(p5 ∨ p6) = 1. (5.7)

All prime implicants are found and the tree size for different heuristics (de-
scribed in Appendix D) is shown below:

No heuristics – order like in (5.7) 37 nodes,

Sort by Length 27 nodes,

Sort by Variables 25 nodes,

Reordering Literals 37 nodes,

SV + RL 25 nodes.

Prime implicants are represented by a ternary matrix:
p1 p2 p3 p4 p5 p6⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 − 1 1

− 0 0 1 1 1

1 1 1 − − 1

1 1 − − 1 1

1 − 1 1 − 1

1 − − 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.8)

92 5. Analysis by Solving Logical Equations – Calculation of Siphons and Traps

For the analyzed Petri net, there are 11 siphons, e.g. the first row defines 2
siphons: {p5, p6} and {p4, p5, p6}.

5.3.2 Some Other Symbolic Methods

By using the method described in [249], the task would be solved as follows.
Expression in the left part of (5.6) is transformed into a product of DNFs and
then into DNF:

(p1 ∨ p6)(p2p3 ∨ p1)(p1 ∨ p2 ∨ p4)(p6 ∨ p3 ∨ p5)(p4p5 ∨ p6)
= p1p2p3p4p5p6 ∨ p1p2p3p5p6 ∨ p2p3p4p5p6

∨p1p2p3p6 ∨ p1p2p5p6 ∨ p1p3p4p6 ∨ p1p4p5p6 = 1. (5.9)

The sum of products represents the set of siphons similarly as this set is rep-
resented by (5.8). Transformation (5.9) is performed by direct multiplying of
the expressions in parentheses; Thelen’s method cannot be used here because
the sums to be multiplied are not elementary. For this example, such transfor-
mation requires 31 multiplications of the elementary sum terms (compare with
24 multiplications of an elementary sum term and a literal when our method is
used).

In another approach [241,249] a ternary matrix Wr is constructed correspond-
ing to (5.3); for this example it looks as follows:

p1 p2 p3 p4 p5 p6

Wr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − − − − 1

1 0 0 − − −
0 1 − 1 − −
− − 1 − 1 0

− − − 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.10)

In this matrix the column minors not containing the so-called negative rows
(rows with 0-elements, but without 1-elements) correspond to the siphons. To
find them, the combinatorial search is necessary. For example, two last columns
satisfy the property just mentioned and correspond to the siphon {p5, p6}.

5.3.3 The Linear Algebraic Method

The linear algebraic method [66] requires to solve the system of linear inequations
yT CΘ � 0, where y is a vector indexed by places of a net, CΘ is a transformed
incidence matrix which, for our example, may look as follows:

5.4 Concluding Remarks 93

t1 t2 t3 t4 t5

p1

p2

p3

p4

p5

p6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 2 −1 0 0

0 −1 1 0 0

0 −1 0 1 0

0 0 1 0 −1

0 0 0 1 −1

1 0 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.11)

Support of any integer non-negative solution of the system corresponds to
a siphon. For example, (0, 0, 0, 0, 1, 1) is a solution, and it corresponds to the
siphon {p5, p6}.

5.4 Concluding Remarks

The first two methods of four demonstrated in Section 5.3 differ in the way of
transformation of equations; the first one includes the optimization techniques
and allows to obtain the result in smaller number of elementary steps (multi-
plications). Two last methods lead to obtaining the sets of siphons (traps) in
explicit representation, and two first approaches represent these sets in compact
form of ternary matrices. Compact representation is certainly a remarkable ad-
vantage here, because the number of siphons and traps is exponential in the
size of the net. Compactness of representation of the sets of traps (siphons) can
be increased by using the methods of minimization of Boolean functions [166].
Another prospective way of obtaining compact descriptions of siphons and traps
can be based on binary decision diagrams (BDD); from a BDD representation
of the functions in left parts of equations (5.3) and (5.4) it would be easy to get
information on siphons and traps. This requires however additional research on
the subject.

6. Verification of Detailed System Descriptions

6.1 Application of the Described Approaches to Other
Parallel Discrete Models

6.1.1 Interpreted Petri Nets and Sequent Automata

Analysis of Sequent Automata and Nets with Internal Variables

Reachability graph Gint of an interpreted Petri net Σint is a subgraph of the
reachability graph G of the underlying net Σ, because an interpretation can
reduce possibilities of the net evolution and never can expand them. RRG GR,
constructed for Σ, is a subgraph of G, but not necessarily of Gint; so GR can
miss some information, important for analysis of Σint.

p7p6

q|-v

p3

p5

p9

p1

a|-v

b|-q

l |- u v q

p2 p4

p8

b|-q

c|-u

c|-u

b|-q

Fig. 6.1. An interpreted Petri net

Consider the following example. Petri net from Fig. 3.1 has one deadlock,
which can be detected by the stubborn set method. The interpreted Petri net
shown in Fig. 6.1, with the same underlying net, has two reachable deadlocks - if

A. Karatkevich: Dynamic Analysis of Petri Net-Based Discrete Sys., LNCIS 356, pp. 95–121, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

96 6. Verification of Detailed System Descriptions

the initial value of q is 0, and if b = 0 when place p2 has a token, then a
token cannot leave place p3, because the condition q = 1 of firing of t5 is
never satisfied. So, marking at which places p3, p6, p8 have tokens, may be a
deadlock.

The stubborn set method, applied to the underlying net, cannot detect it. If
during the RRG constructing the internal variables are taken into account, but
the stubborn sets are constructed according to the basic method, the results may
be interesting, but still unsatisfactory.

Applying the stubborn set method to a non-interpreted Petri net, we often
have more than one variant of stubborn set for a given marking. Size of RRG
may remarkably depend on those choices, but in any case the set of detected
deadlocks will be the same [215]. If we apply the method to an interpreted net,
the deadlocks may be detected or not, dependently on the selected stubborn sets.
For our example, the variants of RRG are shown in Fig. 6.2. The first variant
shows that two deadlocks are possible. However, the second variant finds only
one deadlock, the other one remains undetected.

This example shows, that the stubborn set method in its classical form does
not work properly for interpreted Petri nets. The notion of stubborn set has
to be re-defined for such nets to take into account interaction via internal vari-
ables. And an algorithm allowing deadlock detection in interpreted Petri nets
would work also for sequent automata, because a sequent automaton can be
described as a form of interpreted Petri net (and vice versa). So, it makes
sense to concentrate on deadlock detection for sequent automata; in this way
a deadlock detection method for the interpreted Petri nets will be obtained
too.

Let us start form defining the notion of independent sequents, being a con-
cretization of the notion of independent transitions (Definition 3.1). For the

t8

t2 t4

t3

t7

 1

2,3,4

3,4,5 3,4,6

3,6,8 4,5,7

6,7,8 5,7,8

t1

t5 t6 t7

t6

 9

q=1 q=0

q=0

t2 t4

t3

t7

 1

2,3,4

3,4,5 3,4,6

3,6,8

t1

t6

q=1 q=0

q=0

Fig. 6.2. The variants of RRG for the nets from Fig. 6.1

6.1 Application of the Described Approaches to Other Parallel Discrete Models 97

sequents (and the transitions of the interpreted Petri nets), unlike for the tran-
sitions of the classical Petri nets, the second condition is not redundant, because
the diamond rule does not hold.

Definition 6.1. Sequents ϕ1 � ψ1, ϕ2 � ψ2 are (globally) independent, if the
following conditions hold:

1. no variable appearing in ψ1 (ψ2) is an argument of ϕ2 (ϕ1) (independent
sequents can neither disable nor enable each other);

2. ψ1ψ2 �≡ 0 (commutativity of enabled independent sequents).

Definition 3.16a can be concretized for the sequent automata. In order to do it,
we have to describe the case when a sequent can enable another one and when it
can disable another one (see Section 3.2). It can be done by obtaining CNF and
DNF forms for left part of every sequent, as it is described in [117]; but there
is a simpler way, based on transformation of a general-case sequent automaton
into equivalent simple sequent automaton. This can be done for every sequent
automaton by transforming left part ϕi of every sequent si into DNF (in the
applications it should be minimized) and splitting every sequent into several
simple sequents, such that every product term of ϕi will be the left part of a
sequent, and ψi will be its right part [249].

If all the sequents are simple, then s1 can enable s2, if there is a literal li
occurring in ψ1 and ϕ2, and in the current state li = 0; s1 can disable s2, if
there is variable x, occurring in ψ1 with (without) negation and in ϕ2 without
(with) negation. Every literal occurring in the left part of a sequent specifies a
necessary condition of its enabling.

Definition 6.2. A subset SS of the sequents of a simple sequent automaton at
state M is a stubborn set, if (1) for every sequent in SS such that there is a
literal l = 0 in its left part, being an internal variable with or without negation,
every sequent such that l occurs in its right part belongs to SS; (2) for every
enabled1 sequent si in SS every sequent sj such that ψiϕj ≡ 0 or ψjϕi ≡ 0
belongs to SS; (3) for every enabled sequent si in SS every sequent sj such that
ψiψj ≡ 0 belongs to SS; (4) SS contains an enabled sequent si such that ψi = 0
at M .

It follows from Theorem 3.18, that a reduced reachability graph of a simple
sequent automaton built using the stubborn sets in the sense of the definition
above contains all reachable deadlocks of the automaton. A safe Petri net, in-
terpreted or not, can be easily described by a system of sequents [117]. Sequent
automaton (6.1) corresponds to the net from Fig. 3.1, (6.2) - to the net from
Fig. 6.1. Variables pi correspond to places pi.

1 Or can become enabled for some combination of values of input variables; below the
term "enabled" is used in this extended sense.

98 6. Verification of Detailed System Descriptions

p1 � p1p2p3p4

p2 � p2p5

p2 � p2p6

p3 � p3p7 (6.1)
p4 � p4p8

p5 � p5p6

p6p7p8 � p6p̄7p8p1

p1a � p1p2p3p4v

p2b � p2p5q

p2b̄ � p2p6q̄

p3q � p3p7v̄ (6.2)
p4c � p4p8u

p4c̄ � u

p5b̄ � p5p6q̄

p6p7p8 � p6p̄7p8p1ūv̄q̄

We propose the following algorithm of deadlock detection for the interpreted
Petri nets, based on the reasoning presented above. The algorithm constructs a
reduced reachability graph for given safe interpreted Petri net Σint.

Algorithm 6.3

1. Obtain the sequent automaton equivalent to the net Σint.
2. If the sequent automaton is not simple, transform it into an equivalent simple

sequent automaton.
3. Remove all input variables from the sequents.
4. Generate a reduced reachability graph of the automaton in the following

way. For every state under consideration, simulate only the firing of those
sequents, which are enabled and belong to the stubborn set SS satisfying
Definition 6.2.

Let us apply the method to the interpreted Petri net from Fig. 6.1. Fig. 6.3
shows the RRG for this net (in the nodes, internal and output variables having
value 1 in the corresponding states are listed). It is one of several possible RRGs,
but every RRG created with the algorithm described above contains the same
deadlocks.

Of course, to detect the deadlocks in a sequent automaton (simple sequent
automaton), Algorithm 6.3 without the first step (first two steps) can be used.

Analysis of the nets with inhibitor arcs

See the net of Fig. 6.4a. The inhibitor arc (p5, t1) may cause a deadlock: {p1, p5,
p6}. An RRG of the net shown in Fig. 6.4b does not contain this deadlock. This
simple example demonstrates, that the basic stubborn set method has to be
modified to work properly for the nets with inhibitor arcs.

In order to apply the general approach described in Section 3.2, we have to
find out, which additional cases of enabling and disabling of transition firing
exist in the nets with inhibitor arcs, in comparison with classical Petri nets.
There are two such cases:

• transition t can disable transition t′, if there is place p ∈ t• such that p ∈
(•t′)(inh);

6.1 Application of the Described Approaches to Other Parallel Discrete Models 99

 1

2,3,4,v

3,4,5,q,v

 9

3,4,6,v

3,6,8,u,v 4,5,7,q

5,7,8,q,u 6,,7,8,u

Fig. 6.3. RRG for the interpreted Petri net from Fig. 6.1, built by Algorithm 6.3

p5p4

t2

p2

t3

t4

p1 p3

t1

p6

a)

1,2,3

2,3,4

p2,p33,4,5

4,5,6

b) c)

1,2,3

2,3,4

p2,p33,4,5

4,5,6

1,3,5

1,5,6

Fig. 6.4. A net with an inhibitor arc and two reduced reachability graphs

• transition t can enable transition t′, if there is place p ∈ •t such that p ∈
(•t′)(inh).

Taking into account these two cases, the Definition 3.16 can be reformulated
for the Petri nets with inhibitor arks as follows.

100 6. Verification of Detailed System Descriptions

Definition 6.4. A set TS of the transitions of a Petri net with inhibitor arcs
at marking M is a stubborn set, if (1) every disabled transition t in TS has an
empty input place p such that all transitions in •p are in TS or a marked input
place p, such that p ∈ (•t)(inh) and all transitions in •p are in TS; (2) no enabled
transition in TS has a common input place with any transition (including disabled
ones) outside TS; (3) if there is an enabled transition t in TS and place p such
that p ∈ t• and p ∈ (•t′)(inh), then t′ ∈ TS; (4) if there is an enabled transition
t in TS and place p such that p ∈ (•t)(inh), then all transitions in •p are in TS;
(5) TS contains an enabled transition.

It follows from Theorem 3.18, that a reduced reachability graph of a Petri net
with inhibitor arcs built using the stubborn sets in sense of Definition 6.4 contains
all reachable deadlocks of the net. Corresponding graph for the net of Fig. 6.4a
is shown in Fig. 6.4c.

Sometimes, in the extended Petri net models for control systems specifica-
tion, the enabling arcs are used [11, 12, 43]; defining the stubborn sets for such
nets is easy, because they can be easily modelled by classical Petri nets. The
corresponding definition is presented and discussed in [125].

Analysis of Nets with Priorities

In [30] a method of transformation of a bounded Petri net with priorities into
a behaviorally equivalent classical Petri net is described. This equivalence is
not complete, but preserves certain important behavioral properties, including
reachable deadlocks.

The idea of the method can be briefly described as follows: for any transition
t such that ∃t′ : (t′, t) ∈ ρ an additional place pt is introduced, which is an
input and output place for t′ and is connected to other transitions of the net
in such way, that M(pt) + M(•t) = const. Then pt is empty, if and only if t is
enabled, which makes firing of t′ impossible. Unfortunately, a safe ordinary net
with priorities can be transformed by this method into an unsafe (but always
bounded) net with weighted arcs without priorities. For details see [30]. Below,
an example taken from [30] is shown.

See Fig. 6.5. Note that the reachability graph of the net with priorities (Fig.
6.5a) and of the equivalent net without priorities (Fig. 6.5c) are the same, but
in the first case transitions t1 and t3 are parallel, and in the second case they
are in conflict.

As in previous examples, we can see here, that the basic stubborn set method
does not detect all deadlocks; for the initial marking of the net shown in Fig.
6.5a {t3} is a stubborn set, but if only the firing of transition t3 is executed from
the initial marking, the deadlock {p2, p5} will never be reached.

As far as there exists a method of transformation of a net with priorities into
a net without priorities, which can be successfully analyzed by means of the
stubborn set method, it is possible to define the stubborn sets for the nets with
priorities based on this transformation. Such definition looks as follows.

6.1 Application of the Described Approaches to Other Parallel Discrete Models 101

p5

p3

t2

p2

t3

p1

t1

a)

p4

ρ={t1,t2}

1,3

2,5 4

1,5 2,3

t1

t1 t2t3

t3

b)

c)

p5

p3

t2

p2

t3

p1

t1

p4

py

2 2

Fig. 6.5. A Petri net with priorities (a), its reachability graph (b) (the priority makes
impossible the change of marking corresponding to the dashed arc), and the equivalent
net without priorities (c) (thickened are the weighted arcs; py is the additional place)

Definition 6.5. A set TS of transitions of a Petri net with static priorities at
marking M is a stubborn set, if: (1) every disabled transition in TS has an empty
input place p such that all transitions in •p are in TS; (2) no enabled transition
in TS has a common input place with any transition (including disabled ones)
outside TS; (3) TS contains an enabled transition; (4) if an active transition in
TS cannot fire because there are enabled transitions with higher priority, then
one of such transitions is in TS; (5) if an enabled transition in TS has an output
place being an input place for a transition t such that (t′, t) ∈ ρ, then t′ ∈ TS;
(6) if for enabled transition t ∈ TS (t, t′) ∈ ρ, then each transition, which input
place is an output place of t′, is in TS.

It follows from Theorem 3.9 and correctness of the Best-Koutny’s method of
transformation of a net with priorities into a net without priorities (proof see
in [30]), that a reduced reachability graph of a Petri net with priorities built using
the stubborn sets in sense of Definition 6.5, contains all reachable deadlocks of
the net. For the example shown in Fig. 6.5, the graph built in such way is identical
to the full reachability graph (at the initial marking the only set of transitions
satisfying Definition 6.5 is {t1, t3}, so both deadlocks will be detected). Some
other examples will follow.

102 6. Verification of Detailed System Descriptions

However, condition (6) of Definition 6.5 is redundant. It takes into account,
that if firing of an active transition t adds tokens to the input places of a tran-
sition t′ such that (t′′, t′) ∈ ρ, then such firing can make impossible firing of t′′.
However, if t′ and t′′ have no common input places, this situation is temporal
(before firing t′) and does not affect the reachable deadlocks; and if t′ and t′′

share an input place, then t′ is in TS due to condition (2). That’s why condition
(6) can be removed from Definition 6.5 [132].

A net with priorities shown In Fig. 6.6a has one reachable deadlock less than
the underlying net without priorities. Fig. 6.6b demonstrates its reduced reach-
ability graph, built by means of the presented method. In Fig. 6.6c, a net with
priorities is shown (a modified example from [27]), for which the basic stubborn
set method can miss two reachable deadlocks - {p2, p6} and {p3, p6} (firing of
transition t1 would not be simulated at the initial marking - the dashed arc in
Fig. 6.6d). The method proposed above allows detecting all the deadlocks.

It is interesting to compare the results presented above with [222], solving
the same problem and also referring to [30], however with another structure of
the proofs. The stubborn sets for priority nets described by Varpaaniemi allow
better reduction of reachability graphs, than the sets satisfying Definition 6.5,
but they are more complicated in their definition and more difficult to construct.
We can say, that in [222] a generalization of weak stubborn sets for the nets
with priorities is proposed, and Definition 6.5 presents a similar generalization
of strong stubborn sets.

6.1.2 Statecharts

Static Analysis

Possible deadlocks in Statecharts can be detected by solving a system of Boolean
equations, such that its roots specify the deadlocks.

As far as in a deadlock, according to definition, no transition can fire, for
every active local deadlocked state p the following holds:

∀t : (out(t) = p) ⇒ (trigger(t) ∩ Z �= ∅), (6.3)

where Z is the set of internal events. It means that for every transition, for
which p is the input state, exists an internal event which would be necessary
for firing the transition but does not occur (no active state generates it, and
no transition which would generate it can fire). Let Boolean variable p denote
activity (p = 1) or inactivity (p = 0) of state p in a deadlock; let Boolean
variable ε denote availability of an internal event e. For a state p for which
condition (6.3) holds:

(p →
∧

out(ti)=p

∨
ej∈trigger(ti)

εj) = 1. (6.4)

It means, that for every state p, active in a deadlock, and for every out-
going transition (

∧
out(ti)=p), in the set trigger(ti) there is at least one event

(
∨

ej∈trigger(ti)), which is not available (εj = 1).

6.1 Application of the Described Approaches to Other Parallel Discrete Models 103

p6p5

t2

p2

t3 t4

p1 p3

t5

p7

ρ={(t3,t1), (t4,t1), (t3,t2), (t4,t2), (t3,t5),
(t4,t5), (t1,t6), (t4,t6), (t1,t7), (t2,t7)}

p4

p8

p9 p10 p11

t6 t7

a)

1,2,3,43

2,3,4,5

3,4,5,6

3,4,9

4,7,9

7,8,9

9,11

b)

p5

p1

t1

ρ={(t1,t4), (t2,t4)}

c)

p4

p2 p3

p6

t2

t3

t4

1,5

2,6 3,6

4,5 1,6

t3

t2 t2
t1

t4

4,6

d)

Fig. 6.6. Examples of deadlock detection of the nets with priorities

In a global deadlock, only the static and external events can be available, so
we can write that

ε =
∧

e∈saction(pk)

pk. (6.5)

It follows from (6.4, 6.5), that a local state p satisfying (6.3) can be active in
a deadlock, if

(p →
∧

out(ti)=p

∨
ej∈trigger(ti)

∧
ej∈saction(pk)

pk) = 1, (6.6)

or activity of a local state in a deadlock may implicate inactivity of some
other states in this deadlock.

Constructing equation (6.6) for every local state satisfying (6.3), adding the
characteristic function of global states (which has to be generated including
events [149, 150, 151]) and specifying, by assigning 0 to the corresponding vari-
ables, that no dynamic internal events are available and no states not satisfying

104 6. Verification of Detailed System Descriptions

p2

t2: {e2}/{e1}

H

p1

p5

p4

p3

p11 p12

p6 p7

t4: {e1}

t5: {e3}/{e2}

t1: {e3}/{e2}
t7: {e1}/{e2}

p8

t3: {e1}
t8: {e1}

t6: {e2}

Fig. 6.7. An example of Statechart

(6.3) are active, we obtain a system of equations, with roots corresponding to
all possible deadlocks.

If a system has so many global states that generation of characteristic function
turns to be too time-consuming, it can be substituted by the function describing
hierarchical structure of the system (structure function, which can be easily gen-
erated from the so-called AND-OR tree [151]). However, there is no guarantee,
that the deadlocks detected in such way are reachable. Their reachability can be
additionally checked by optimal simulation of the system [113].

Let us demonstrate this problem on a simple example shown in Fig. 6.7. Here
Z = {e1, e2}. Equation 6.7 describes the structure of this Statechart:

(p2p3p̄6p7 ∨ p2p3(p6p7 ∨ p6p7))(p4p̄5p̄8 ∨ p4p5p8 ∨ p4p̄5p8) = 1. (6.7)

As far as there are no static events in this Statechart, it is enough to assign 0
to all variables corresponding to states, which do not satisfy (6.3). These states
are p4 and p7; substituting p4 = p7 = 0 to (6.7), we obtain:

(p2p̄3p̄6 ∨ p3p6p2)(p5p8 ∨ p5p8) = 1. (6.8)

This equation has 4 solutions, corresponding to the deadlocks: {p2, p5};
{p2, p8}; {p3, p6, p8}; {p3, p5, p6}. The static analysis, not using the characteris-
tic function, cannot answer the question, whether these deadlocks are reachable
from the initial state. It can be checked by the dynamic analysis, as described
below.

Dynamic Analysis

Let us start from modelling Statecharts by Petri nets. There are several meth-
ods of such modelling [113, 151, 154], but not all of them are adequate for our
purposes. We propose the following algorithm generating a Petri net Σ for given
Statechart:

6.1 Application of the Described Approaches to Other Parallel Discrete Models 105

Algorithm 6.6

(Here, to avoid ambiguity, Statechart transitions are denoted as tz, and Petri
net transitions as tp.)

1. Create a place for every state pi such that hrc(pi) = ∅ or history(pi) = true
and for every internal event ej such that ∃tz : ej ∈ trigger(tz).

2. For every Statechart transition tz create a set of Petri net transitions Ttz:
for every possible combination of the active substates of out(tz), except of
substates of the states with history being the substates of out(tz), a transition
in Ttz is created; places corresponding to the states from this combination
belong to the set of input places of the transition. If hrc(out(tz)) = ∅ or
history(out(tz)) = true, then |Ttz| = 1. Also, ∀tp ∈ Ttz:
a) All places, corresponding to the states which will become active, when

in(tz) becomes active, except of the substates of the states with history
being the substates of in(tz), belong to t•p.

b) All places corresponding to the events from taction(tz) belong to t•p.
c) All places corresponding to the events from trigger(tz) belong to •tp.

3. For a transition tz between the states being the substates of a state p such
that history(p) = true, all the Petri net transitions corresponding to tz
should have the place corresponding to p as both input and output place.

4. For every place e corresponding to a dynamic event, create a transition tp
such that •tp = {e}, t•p = ∅.

5. Consider every situation such that for a transition tz ∃p, e : e ∈ trigger(tz),
e ∈ saction(p). Remove corresponding Petri net transition t′p and for every
state p such that e ∈ saction(p) add transition t′′p such that •t′′p = •t′p ∩ {p},
t′′p• = t′p• ∩ {p}.

6. In the initial marking, the places are marked corresponding to the initially
active states of the Statechart, and also the places corresponding to the
states p such that history(parent(p)) = true, default(parent(p)) = p.

It is easy to see that a Petri net created as described in this section can
simulate all possible evolutions of an asynchronously interpreted Statechart. The
transitions added in step 4 serve for modelling the property of the events to be
available only "for an instant of time" [223].

Fig. 6.8 presents the Petri net corresponding to the Statechart shown in
Fig. 6.7.

Analysis of the reachability graph of the net presented in Fig. 6.7 shows that
there are 3 reachable deadlocks: {p2, p5, p6}; {p3, p6, p8}; {p3, p5, p6}, which cor-
respond to the deadlocks of the Statechart: {p2, p5}; {p3, p6, p8}; {p3, p5, p6}. So,
not all the deadlocks detected by static analysis are reachable in the system.

But simulation of the Statechart considered here leads to the conclusion, that
one more deadlock - {p3, p5, p6} - is not reachable. It is directly reachable in our
Petri net model from the markings {p3, e1, p5, p6} and {p3, e2, p5, p6}, but in the
first case event e1 will be consumed by t3 or t4, in the second case e2 will be
consumed by t2. The events in such situations cannot just disappear, and the

106 6. Verification of Detailed System Descriptions

p2

p3

p7

p6

e2

e1

p4

p5

p8

t6

t4

t5

t1

t7

t3 t8

t2

te2

te1

Fig. 6.8. Petri net modelling the Statechart from Fig. 6.7

state {p3, p5, p6} turns to be unreachable. It would not be the case, if t2, t3 and
t4 would require some external events to fire; but they do not.

What went wrong in our analysis? The Petri net model would be adequate
here, if we add priorities: a transition t added in step 4 with respect of event e
should have lower priority than any other transition t′ having an input place com-
mon with it, if for the Statechart transition t′z corresponding to t′: trigger(t′z) ⊇
Z. Intuitively, it means that an available event cannot just "disappear", if an
enabled transition can consume it.

Simulation of the net of Fig. 6.8 with priorities as described above shows,
that there are two reachable deadlocks - {p2, p5, p6} (corresponding to deadlock
{p2, p5} of the Statechart) and {p3, p6, p8}.

In this example the reachability graph cannot be reduced by stubborn set
method; in general case the variant of this method for the Petri nets with pri-
orities, described in Subsection 6.1.1, can be applied here. As far as we have
an adequate Petri net model and a method allowing finding of the deadlocks in
Petri nets, it is possible to formulate a method of analysis in terms of State-
charts. It is convenient, however, to construct here the stubborn-like sets PS of
states and events, not of the transitions. The algorithm of constructing a set PS

for a Statechart at global state M , based on Definition 6.5, is presented below.

Algorithm 6.7

1. For a state p ∈ P such that M(p) = 1 and ∃t ∈ T such that out(t) = p and
t is enabled: PS := {p}.

2. For every p, t such that p ∈ PS , out(t) = p, t is enabled: PS := PS∪trigger(t);
3. If ∃p, t : p ∈ PS , out(t) = p, t is disabled because of lacking internal events,

and there is no e in PS such that e ∈ (Z ∩ trigger(t)) and M(e) = 0, add
such e to PS .

4. For every e such that e ∈ PS and M(e) = 1, for every t′ ∈ T such that p′ is an
immediate substate of a superstate of type OR (not necessarily immediate)

6.1 Application of the Described Approaches to Other Parallel Discrete Models 107

of out(t) and M(p′) = 1, if such p′ does not belong to PS yet (it exists by
construction).

5. For every e such that e ∈ PS and M(e) = 0, if there is no p ∈ PS and t such
that p is an immediate substate of a superstate of type OR (not necessarily
immediate) of out(t), e ∈ action(t)) and M(p) = 1, add such p to PS .

6. If p ∈ PS , M(p) = 1 and there is enabled transition t such that out(t) = p,
add to PS all the active sub and superstates of type OR (not only immediate),
being the immediate substates of the states of type OR, if those states do
not belong to PS yet.

7. If there is a transition t such that trigger(t) ⊆ Z and there is enabled t′ such
that out(t′) ∈ PS and firing of t′ activates , out(t): PS := PS ∪ trigger(t);

8. If there is e ∈ PS , M(e) = 1, t ∈ T , trigger(t) ⊆ Z, e ∈ trigger(t): add to
PS the state p such that p is an immediate substate of a superstate of type
OR (not necessarily immediate) of out(t) and M(p) = 1, if p does not belong
to PS yet.

9. Repeat 2-8 while PS grows.

It is easy to see that by the construction PS contains only the active states
and the internal events. Steps 7, 8 are added to take into account the fact, that
an event can disappear only if there is no transition able to consume it.

Deadlock detection can be performed as follows. Start from the global state M0
(all events are initially unavailable). Then, for every considered global state M ,
construct PS by Algorithm 6.7 and simulate firing of all the enabled transitions
originating from the states belonging to PS and "disappearing" of all the events
belonging to PS , which can disappear without being consumed by some active
transitions. Such graph will contain all reachable deadlocks of the system.

p2

t1

p1

p3

p5 p6

p7p8

p9 p12

p11p10

t2: Ø/{e1}

t5: {e1}

t6: Ø/{e2}

p4

t3

t4

t7

t8: {e2} t9

Fig. 6.9. Another example of Statechart. External events are not shown.

108 6. Verification of Detailed System Descriptions

p3p5p9

p2

p3p6p9e1

Deadlock!
p3p8p9e1

p3p7p9e1

p3p8p11e2

p3p8p10

p4

p3p8p12

Fig. 6.10. Reduced reachability graph for the Statechart shown in Fig. 6.9

In Fig. 6.10 the reduced reachability graph for the Statechart shown in Fig. 6.9,
obtained by means of the described method, is present. Full reachability graph
in this case contains 15 nodes, the reduced graph contains only 9.

6.1.3 FSM Networks

FSM networks are much simpler for analysis and implementation, than the
general-case Statecharts: in all global states the number of active local states
is the same, and every automaton has exactly one active state. Below we dis-
cuss two tasks of verification of such networks: detection of local deadlocks and
potentially unreachable local states.

Detection of Local Deadlocks

An internal event in an FSM network is absent because of a deadlock, if every
FSM which can generate this event is deadlocked. For static events we can write:

(ε →
∧

e∈saction(pj
i)

∨
pj

l ∈P j ,l �=i

pj
l) = 1, (6.9)

and for dynamic events:

(ε →
∧

e∈taction(tj
i)

∨
pj

l ∈P j

pj
l) = 1, (6.10)

where p and ε are the Boolean variables with the same meaning as in equations
(6.4 - 6.6).

From (6.4, 6.9, 6.10) the following equations can be constructed: for every p
satisfying (6.3)

(p →
∧

out(t)=p

∨
e∈trigger(t)

∧
e∈saction(pj

i)

∨
pj

l ∈P j ,l �=i

pj
k) = 1, (6.11)

6.1 Application of the Described Approaches to Other Parallel Discrete Models 109

(p →
∧

out(t)=p

∨
e∈trigger(t)

∧
e∈taction(tj

i)

∨
pj

l ∈P j

pj
l) = 1. (6.12)

It follows that activity of a local state in a deadlock implies activity of some
other local states. If all the automata in the network are the Moore automata,
it is sufficient to use equations (6.11); if all of them are the Mealy automata,
it is sufficient to use (6.12). Equations for all the local states satisfying (6.3)
together with the characteristic function specify a system of equations, having
roots corresponding to the global (if all the automata participate in it) or local
deadlocks.

If the characteristic function is not available, it can be replaced by the struc-
ture function, which can be built in evident way for an FSM network. However,
in such case only dynamic analysis can definitively answer the question, whether
a deadlock is reachable from the initial state.

In case when the deadlock is local, it is not always necessary to analyze dynam-
ically the whole network. It may be sufficient to analyze a subsystem, selected
by the Algorithm 6.8. Its input data are an FSM network and a local deadlock
Md detected by static analysis; its output is a subsystem (a set of automata)
N ′.

Algorithm 6.8

1. Add to N ′ (initially empty) all the automata, participating in the deadlock.
2. Add to N ′ all the automata generating events consumed by the transitions

in N ′.
3. Repeat step 2 while changes of N ′ occur.

Now for each such subsystem (of course there may exist the same subsystems
for several deadlocks or the subsystems including each other; in that case there
is no sense to analyze separately the subsystems included by other subsystems)
deadlocks can be detected by constructing a reduced reachability graph using
Algorithm 6.7.

Detection of Unreachable Local States

A more general case of a behavioral problem than a deadlock is unreachabil-
ity of local states. If some local states are inactive in all the reachable global
states, it can be detected from the characteristic function. This function does
not, however, answer the question, whether a local state, initially reachable, can
become unreachable. Check of this possibility requites another analysis method.
The problem of local states reachability, in spite of its undoubted practical im-
portance, has not been studied for FSM networks in the aspect presented here,
as far as we know.

The task is formulated as follows: an FSM network is given. If there exist such
global states of the network, that some states of the automata in the network
are unreachable from these global states, detect such cases.

110 6. Verification of Detailed System Descriptions

1
1q

A1

A2

b
c

d
e
f

d

c

p1
1

d p2
1

a,c

b,c

p1
2

c p2
2

d,e

d,f

p1
1

p2
1

p1
2

p2
2

a) b) c)

Fig. 6.11. A simple example of FSM network: a) structure of the network; b) state
transition graphs of the FSMs in the network; c) modelling Petri net obtained by
Algorithm 6.6.

An FSM network can be modelled by Petri net with application of Algorithm
6.6 (if only the communicating automata without hierarchy are considered, the
algorithm can be simplified, as described in [116]). An example of such modelling
is shown in Fig. 6.11.

Below we detect unreachable states by analyzing the modelling Petri nets. In
some cases such analysis can be simplified by reduction. If there is a strongly
connected subgraph of a state transition graph of an FSM such that no tran-
sitions require events from other FSMs and no states generate input events for
other FSMs, the corresponding Petri net places can be replaced by a single place.
In some cases a connected (not strongly) subgraph of state transition graph can
also be replaced by single place, but detailed discussion of this topic remains
beyond the scope of this book.

If the modelling net is live, no unreachable local states can exist in the system;
but, first, the opposite is not true in general case, because steps 2 and 5 of
Algorithm 6.6 can bring redundancy into the net; second, there seems to be
no simple way of deciding liveness of the nets of this kind. So we propose the
method which does not require liveness analysis.

The method is based on the following affirmation.

Lemma 6.9. Let N be an FSM network and Σ - the Petri net modelling it (built
using Algorithm 6.6). If there is siphon D in Σ such that there is no FSM in N
for which D contains all places corresponding to it, then there exists a global state
of N such that no local states corresponding to the places of D are reachable.

Proof. If siphon D does not contain the places corresponding to all states of any
FSM in the network, then there exists a global state M ′ of N such that no place
in D is marked in the corresponding marking M of Σ. No marking which marks
any place of D is reachable from M , hence no such global state is reachable in
N from M ′, that a local state corresponding to a place in D is active.

6.1 Application of the Described Approaches to Other Parallel Discrete Models 111

Consider the example shown in Fig. 6.11. There is siphon D = {p1
1, p

2
1}, and

for the state in which these places are not marked, the net is deadlocked. It
means that there exists such global state that p1

1 and p2
1 will never be reached.

Lemma 6.9 does not work in another direction, and it is possible that there are
unreachable local states, but there are no siphons of the kind described in Lemma
6.9. An example is shown in Fig. 6.12 (state p3

1 may become unreachable).

d c

b

c d

a

a,b

p1
1

p2
1

p1
2

p2
2

p1
3

p2
3

Fig. 6.12. An example of unreachability which cannot be detected by the described
method

The class of the situations of unreachability, which can be detected by the
method, includes all global and local deadlocks. It is shown by the next lemma.

Lemma 6.10. Let N be an FSM network and Σ - the Petri net model of this
network. If there is a set of FSMs N ′ ⊆ N such that there is a global state Md

in which the active states of FSMs in N ′ constitute a deadlock, then the set D
of all places corresponding to the passive states of FSMs in N ′ and all places
corresponding to the dynamic events generated only by transitions of FSMs in
N ′, is a siphon.

Proof. Let t ∈ •D. By construction (Algorithm 6.6) it corresponds to a transi-
tion tz of an FSM A ∈ N . Let A ∈ N ′. If Md(out(tz)) = 1, then, according to
the definition of deadlock, tz cannot fire, because a static or dynamic event is
not available, which can be generated only by a state or transition of an FSM
A′ ∈ N ′. If Md(out(tz)) = 0, then out(tz) ∈ D. In both cases there is place p ∈ •t
such that p ∈ D, so t ∈ D•. Let A /∈ N ′. Then, by construction, there is place p
such that p ∈ •t, p ∈ t•. Hence •D ⊆ D•, and D is a siphon.

In Fig. 6.13 a more general example of detected situations is shown.
Siphons of a Petri net can be calculated by solving a logical equation using

the Thelen’s method [32, 207,228], as described in Chapter 5.

Remark. The implicants in the Thelen’s method are calculated by using a search
tree; as far as we are not interested in the siphons including all the places corre-
sponding to an FSM, the branches leading to such decisions should be pruned.

Below, the algorithm detecting possible unreachablility situations for given
FSM network N is described.

112 6. Verification of Detailed System Descriptions

p4

do: {b}

p0

{a}

p1 p2

p3
p8

do / a

p5 p6

p7

{b }

Fig. 6.13. An example of unreachability detectable by the method and not being a
deadlock

Algorithm 6.11

1. Create for N a Petri net Σ by means of Algorithm 6.6.
2. If possible, perform reduction of Σ, as described above.
3. Detect the siphons of Σ by means of Algorithm 5.7, taking into account the

Remark given above.
4. Every obtained siphon D (satisfying the Remark) specifies a set of global

states (all the global states in which no local states corresponding to places
in D are active) and a set of local states (corresponding to the places in D)
which are not reachable from these global states.

Example: consider the network shown in Fig. 6.13. The corresponding Petri net
(after reduction) is shown in Fig. 6.14. Place p1

5 corresponds here to the states
p1
1, p1

2; p2
5 corresponds to the states p2

1, p2
2.

p3
1 p3

2p4
1 p4

2

p5
1

p5
2

Fig. 6.14. Reduced Petri net modelling the FSM network shown in Fig. 6.13

We have the equation:

(p1
3 ∨ p1

5 ∨ p2
4)(p

2
4 ∨ p1

5 ∨ p2
4)(p1

3 ∨ p1
4)(p1

4 ∨ p1
5)

∧(p2
3 ∨ p2

5 ∨ p1
4)(p

1
4 ∨ p2

5 ∨ p1
4)(p2

3 ∨ p2
4)(p2

4 ∨ p2
5). (6.13)

6.2 Verification of Parallel Automata Implementation 113

After simplification we obtain:

(p1
3 ∨ p1

5 ∨ p2
4)(p

1
3 ∨ p1

4)(p1
4 ∨ p1

5)(p
2
3 ∨ p2

5 ∨ p1
4)(p

2
3 ∨ p2

4)(p2
4 ∨ p2

5). (6.14)

The only root satisfying the Remark is: p1
5 = p2

5 = 1, p1
3 = p1

4 = p2
3 = p2

4 = 0.
It means that if the network is in any global state such that the local states p1

3,
p1
4, p2

3, p2
4 are not active, then these states are unreachable.

6.2 Verification of Parallel Automata Implementation

Apart from possible mistakes in high-level system specification, implementation
process may also be a source of troubles. Even if the design algorithms are
correct, their software implementation may turn to be not perfect (they say, there
is no software without bugs). There exists the following verification problem:
testing behavioral equivalence between a higher-level specification and the lower-
level specification, being the result of applying design procedures to the former.
There are generally two approaches to solve the problem: testing (comparing
behavior of two models, representing the same system at different levels) and
symbolic approach (analytical check of equivalence of these models). Of course
the problem arises at various steps of implementation.

There are the following main steps of obtaining structural description of a
controller from its high-level specification [40]:

• obtaining an automaton with abstract states;
• state encoding;
• obtaining a Boolean or sequent automaton;
• low-level optimization.

At all the steps some mistakes may appear. Below, we consider verification
of transformation from a parallel automaton to a sequent automaton. Hierar-
chical structures are not considered here (each hierarchy level can be verified
separately)

6.2.1 Testing Approach

Complete comparison of systems’ behavior could be obtained by means of con-
structing the full state spaces, but then the state explosion problem arises. It
can be avoided here, if the following question is answered: how to generate a
reasonably short test allowing to detect incorrectness in behavior, if it exists,
with high probability? Testing approach, unlike analytical one, is universal in
the sense that it allows testing in similar way models of different levels, and also
the hardware devices [120].

Transition coverage

In many cases, transition coverage [84] (or even coverage of selected states and
transitions [129]) is considered to be sufficient. Then, we can ask how to cover

114 6. Verification of Detailed System Descriptions

all the transitions of a parallel automaton by possibly short firing sequences?
In terms of Petri nets, the problem can be formulated as follows: which step
sequence, allowed in the initial state, covers all transitions and is minimal by
length?

For the LSα-nets, corresponding structures of the parallel automata, obtaining
a coverage is simplified by the fact, that no choice performed during simulation
can deadlock the net or make impossible future firing of any transition or at-
taining the initial marking.

Exact minimization of the sequence would require thorough investigation of
the net structure and probably dealing with the full reachability graph in an
explicit way. We propose a heuristic approach and make a claim that it allows
to obtain "rather short" step sequences.

Heuristic (Greedy Covering). At each state considered select one transition
from each enabled cluster, such that:

1. if there are transitions in the cluster not covered yet, select one of them;
2. else, select transition t such that there is the shortest path in the Petri net

graph to an uncovered transition starting from t, in comparison with all other
transitions belonging to [t].

Theorem 6.12. Step sequence, obtained by applying the heuristics to a con-
nected LSEFC-net Σ, covers all its transitions after the finite number of steps.

Proof. Suppose the opposite. Then, as far as Σ is safe, there is a step sequence σ,
constructed according to the heuristic, such that MσM and the set of uncovered
transitions remains the same (non-empty) during the execution of σ from M .
Let p belong to a cluster enabled in M ; let t be the uncovered transition such
that there is the shortest path in the Petri net graph from p to t (from Lemma
3.27, Σ is strongly connected, and t always exists). Denote the token in p at M
as a. Suppose, that if a transition firing removes token a from a place, it appears
in the output place of the transition, such that the path from this place to t in
the net graph is the shortest one.

If a transition belonging to [p] fires during σ, then, according to the heuristic,
this is the transition from which the path to t is the shortest possible one (as
far as Σ is EFC, all transitions in a cluster can be enabled only simultaneously).
According to what we supposed, a appears after its firing in the place p1 such
that path from p1 to t is shorter than from p to t. Generally, if a changes its place,
the path from the place pa, where a is situated, to t becomes each time shorter
(and no uncovered transition is covered by σ, so t remains the closest uncovered
transition to pa). As far as p belongs to an enabled cluster at M , and according
to the heuristic (at each step a transition in every enabled cluster fires), a does
change its place already at the first step ∆1 of σ. Let p1 be the place containing
a after ∆1. Σ is safe, so M(p1) = 0; then there is a step in σ removing token
(a) from p1. Then a appears in p2, from which the path to t is closer, than from
p and p1. The same reasoning leads to the conclusion, that a will be removed
also from p2 during the execution of σ and will appear closer to t. As far as Σ is

6.2 Verification of Parallel Automata Implementation 115

Table 6.1. Simulation of interpreted PN from Fig. 6.15

step current state output input transitions firing

1 p1 start t1

2 p2 rt x1 t2

3 p3,p6,p11 y11,y21,y31 x11,x21,x31 t3,t6,t11

4 p4,p7,p12 y12,y22,y32 x12,x22,x32 t4,t7,t12

5 p5,p8,p13 y23,y33 x23,x33 t8,t13

6 p5,p9,p14 y24,y34 x24,x34 t9,t14

7 p5,p10,p15 t16

8 p16 t17

9 p1 start t1

10 p2 rt x1 t2

11 p3,p6,p11 y11,y21,y31 o1,o2,o3 t5,t10,t15

12 p5,p10,p15 t16

13 p16 r t18

14 p2 rt

finite, after finite number of steps (within σ) a appears in a place pn ∈ •t. Then,
according to the same reasoning, t (or another uncovered transition belonging
to [t]) belongs to σ. We have come to a contradiction, because we supposed,
that no uncovered transition is covered during firing of σ from M . The proof is
completed.

Consider the example taken from [70], representing an algorithm for control of
a driller (Fig. 6.15) (a parallel automaton of Moore type).

Table 6.1 describes simulation of this automaton, according to the proposed
heuristic. For more compact representation, cells in columns "input variables"
and "output variables" enumerate variables having value 1.

It is easy to see, that in this example simulation process of 13 steps covers all
the transitions (selecting another transition at step 8 would lead to a sequence
which is one step shorter). Other kinds of simulation would be more complicated;
for example, a stubborn-set-like simulation would require 17 steps, maximal
concurrent simulation - 31 step, their combination (as described in Section 3.4)
- only 10 steps, but all these alternative variants would require constructing
the reachability subgraphs, and in the suggested approach we deal with a linear
process.

Fault Models

Transition coverage allows detecting some behavioral differences between two
objects (for example, whether a transition will fire when a condition is satisfied
and whether it will cause the required changes of output variables), but, of
course, not all differences can be found in this way. Thorough analysis requires
formalizing of possible fault models.

116 6. Verification of Detailed System Descriptions

t16

p8

t8 X23

p9

t9

p10

t10 O2

p7

p6

t6

t7 X22

p4

t4

p5

t5 O1

p3

t3

p13

t13 X33

p14

t14

p15

t15

p12

p11

t11

t12

p16

p2

p1

t1

t17 t18

t2

Y22

Y23

Y24

Y33

Y34

X24

X21
*!O2

X12

X11*!O1

X34

O3

Y32

X31
*!O3

X32

RT

START

!R R

X1

Y11

Y12

Y31Y21

Fig. 6.15. Interpreted Petri net for a driller controller

As far as the main operation of conversion between a parallel automaton and
a sequent automaton is state encoding, it is reasonable to suppose that during
state encoding something may go wrong. It may lead to the next troubles during
a transition firing.

1. The set of active local states required for the transition to fire is wrong.
2. A local state unnecessarily remains passive when the transition fires.
3. A local state unnecessarily remains active when the transition fires.
4. A local state unnecessarily becomes passive when the transition fires.
5. A local state unnecessarily becomes active when the transition fires.

6.2 Verification of Parallel Automata Implementation 117

Covering all those faults would require:

1. Checking every transition firing with all the possible combinations of active
and passive local states not corresponding to its input places.

2. Checking whether - at every considered global state - a transition can fire
which should not fire at that state.

The first of these 2 items requires in fact constructing full state space (there is
a way to reduce it, but not radically), which we are trying to avoid. The second
one, however, is much easier to satisfy; it would require no n times longer testing
than with the approach considered in the previous subsection, where n is the
number of transitions.

Advanced Testing

Here we propose the following addition to the testing approach considered above:

At every considered state, before testing any transition which should fire,
check all the transitions which should not fire.

Of course it is reasonable, for minimizing testing time, to check these transi-
tions not one-by-one, but rather joining them into the groups which should be
as large as possible. For the example considered above, such testing may look as
follows (Table 6.2).

For example, if there was a mistake in state encoding, and firing of transition
t4 activates place p16, then it will be detected at step 16 - then the output signal
RT will turn to be 1, when it should be 0. Note that the previous variant of
simulation would not allow detecting this bug.

As far as not all the possible mistakes in state encoding and optimization can
be detected by simulation without generation of full state space, we suppose that
developing of symbolic verification methods for the transformations is also useful.
This approach, based on the formal proof that the state encoding is correct, is
presented below.

6.2.2 Analytical Approach

As it was mentioned above, analytical method of verification of the design process
cannot be universal - a special method is needed for verification of every step of
design. This subsection is dedicated to verification of the transformation from
a parallel automaton to a sequent automaton. The most essential part of such
transformation is the state encoding.

Below, the following task is considered: a parallel automaton A is given; a
state encoding of this automaton (codes of all the local states presented by the
ternary vectors of the same length) and the sequent automaton S supposed to
be obtained by applying this encoding to A are also given. It is necessary to
check, whether automata A and S are behaviorally equivalent. Note that here
we can assume that for every transition t of A the corresponding sequent s of S
is known, and that s is always a simple sequent.

118 6. Verification of Detailed System Descriptions

Table 6.2. Advanced simulation of interpreted PN from Fig. 6.15

step current state output input transitions firing

1 p1 x1, x11, x12, x21, x22, x23, x24,
x31, x32, x33, x34

2 p1 o1, o2, o3, r

3 p1 start t1

4 p2 rt start, x11, x12, x21, x22, x23, x24,
x31, x32, x33, x34

5 p2 rt o1, o2, o3, r

6 p2 rt x1 t2

7 p3,p6,p11 y11,y21,y31 start, x1, x12, x22, x23, x24, x32,
x33, x34

8 p3,p6,p11 y11,y21,y31 r

9 p3,p6,p11 y11,y21,y31 x11,x21,x31 t3,t6,t11

10 p4,p7,p12 y12,y22,y32 start, x1, x11, x21, x23, x24, x31,
x33, x34

11 p4,p7,p12 y12,y22,y32 o1,o2,o3,r

12 p4,p7,p12 y12,y22,y32 x12, x22, x32 t4,t7,t12

13 p5,p8,p13 y23,y33 start, x1, x11, x12, x21, x22, x24,
x31, x32, x34

14 p5,p8,p13 y23,y33 o1, o2, o3, r

15 p5,p8,p13 y23,y33 x23, x33 t8,t13

16 p5,p9,p14 y24,y34 start, x1, x11, x12, x21, x22, x23,
x31, x32, x33

17 p5,p9,p14 y24,y34 o1, o2, o3, r

18 p5,p9,p14 y24,y34 x24, x34 t9,t14

19 p5,p10,p15 start, r, x1, x11, x12, x21, x22, x23,
x24, x31, x32, x33, x34, o1, o2, o3

t16

20 p16 start, x1, x11, x12, x21, x22, x23,
x24, x31, x32, x33, x34, o1, o2, o3

t17

21 p1 x1, x11, x12, x21, x22, x23, x24,
x31, x32, x33, x34

22 p1 o1, o2, o3, r

23 p1 start t1

24 p2 RT start, x11, x12, x21, x22, x23, x24,
x31, x32, x33, x34

25 p2 rt o1, o2, o3, r

26 p2 rt x1 t2

27 p3,p6,p11 y11,y21,y31 r

28 p3,p6,p11 y11,y21,y31 x11, x21, x31 t3,t6,t11

29 p3,p6,p11 y11,y21,y31 o1, o2, o3 t5,t10,t15

30 p5,p10,p15 start, r, x1, x11, x12, x21, x22, x23,
x24, x31, x32, x33, x34, o1, o2, o3

t16

31 p16 start, r, x1, x11, x12, x21, x22, x23,
x24, x31, x32, x33, x34, o1, o2, o3

t18

32 p2 rt

6.2 Verification of Parallel Automata Implementation 119

The simplest part of verification is checking whether a sequent specifies the
same communication with the external world as the corresponding transition of
A. For this purpose it is sufficient to check whether their input conditions and as-
signments to the output variables are the same. This check requires linear time2.

Knowing the concurrency relation between the local states is necessary for
verification; as far as in case of almost all state encoding methods for the parallel
automata (except the one-hot encoding) [5, 39, 40, 41, 42, 186, 202, 245, 247, 249]
it is also necessary, and can be calculated in polynomial time [141,152, 186], we
suppose that this information is available during verification.

For every transition µ−ϕ � ψ → ν and corresponding sequent ϕfz � kzψ (the
items of the list below correspond to possible troubles described in Subsection
6.2.1):

(a) there should be fz =
∧

p∈µ Qp;
(b) there should be (k′

z → ∧
p∈(ν\µ) Qp) = 1;

(c) there should be kz(
∨

p∈(µ\ν) Qp) ≡ 0;
(d) there should be no place p /∈ µ such that µ ⊆ P (p) and kzQ(p) ≡ 0;
(e) there should be no place p′ /∈ ν such that (k′

z → Q(p′)) ≡ 1.

Here k′
z is an elementary conjunction consisting of kz and all the literals

occurring in fz which are not negated in kz. It is easy to see that sequents ϕfz �
kzψ and ϕfz � k′

zψ are behaviorally equivalent, as far as the automaton is inertial
and consistent (k′

z describes values of internal variables after the sequent firing).
If all mentioned conditions hold, every sequent of the sequent automaton

performs changes of activity of local states exactly as it is specified by the cor-
responding transition of the parallel automaton.

Let us consider next example (a modified example from [249]). A parallel
automaton is given (the transitions are numbered for convenience):

1. 1 − u � ab → 9
2. 9 − u → 2.3
3. 2 − vw � bc → 10
4. 10 − w � b → 11
5. 11 − c → 2
6. 2 − v � ac → 4.5
7. 3 − uw � d → 6
8. 4 − ūv � a → 12
9. 12 − u � a → 4

10. 4 − u � ab → 7
11. 5 − vw � c → 8
12. 6.7.8 � ad → 13
13. 13 − w → 1

2 Note that the checking and the verification method described below can be applied
only before any optimization procedures are applied to the sequent automaton [38,
40, 237]. Verification of optimization of the sequent automata is a task requiring
special methods.

120 6. Verification of Detailed System Descriptions

The following codes were assigned to the local states of the automaton3:

a b c d z1 z2

1

2

3

4

5

6

7

8

9

10

11

12

13

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − − − 0 0

− − 0 − 1 0

− − − 0 1 −
0 − − − 1 1

0 − 1 − 1 1

− − − 1 1 −
1 0 − − 1 1

− − 0 − 1 1

1 − − − 0 0

− 0 1 − 1 0

− 1 1 − 1 0

1 1 − − 1 −
− − − − 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.15)

And the following sequent automaton was obtained:

1. uz1z̄2a � ab

2. uz̄1z2a � z1cd

3. vwz1z̄2c � bc

4. wz1z2bc � b

5. z1z2bc � c

6. vz1z2c̄ � z2ac

7. uwz1d � d

8. ūv̄z1z2a � a

9. uxyab � a

10. uz1z2a � ab

11. vwz1z2ca � c

12. z1z2abcd � z1ād

13. wz̄1z2 � z2

3 Here the output variables a, b, c, d are used for coding, hence becoming the internal
variables; z1 and z2 are "pure" internal variables, invisible outside the automaton.

6.2 Verification of Parallel Automata Implementation 121

Checking of, say, sequent 6, corresponding to transition 2− v � ac → 4.5, can
be performed as follows:

1. z1z2c̄ = Qp2 holds;
2. z2acz1 = Qp4 ∧ Qp5 holds;
3. z2ac ∧ Qp2 = 0 holds;
4. there are 2 local states parallel to p2: p3 and p6. For both states we have:

z2ac ∧ Qp3 = z2acdz1 �≡ 0, z2ac ∧ Qp6 = z2acdz1 �≡ 0.
5. The last condition should be checked for all local states except p4 and p5.

For state p1, for example, validity of the formula z2acz1 → az̄1z2 should be
checked. It is easy to see that the formula is not a tautology.

Checking of sequent 8, corresponding to transition 4 − ūv � a → 12, shows
that something is wrong: p4 ∈ P (p5), and kz ∧ Qp5 = a ∧ acz1z2 = 0 (condition
4 does not hold). This is caused by a mistake in state encoding: in the code of
p5 there should be "-" in position a, not 0.

An interesting addition to this method would be "decoding" of the local states:
a parallel automaton and corresponding sequent automaton are given, and codes
of the local states are to be restored. If the codes can be restored in noncontra-
dictory way and the conditions described above are satisfied for all transitions,
then we can be "more sure" that the implementation is correct.

As far as the symbolic method is not universal, developing the analogous
methods for verification of other steps of design would be useful. Also, some
encoding methods implicitly use certain knowledge about reachability of global
states; applying our method for verification of such encoding may lead to wrong
results. Improving the method to take into account such situations is one of the
directions of our future studies.

7. Conclusion

Programming and hardware design languages, allowing to describe parallel pro-
cesses, are widely used nowadays. Also, parallel formal models are widely used in
the systems of computer-aideddesign of discrete devices.This is natural for the cur-
rent level of development of system engineering and logical design, because practi-
cally every non-primitive software or hardware system, from logical control devices
to multithread software applications, consists of concurrently acting objects.

However, problems of analysis and verification of parallel models are far from
being solved satisfactorily. That’s why developing of methods and algorithms of
such verification is a task of great importance in the modern system engineering
and computer science.

This book proposes several methods of solving the problems of formal ver-
ification of parallel systems. Two main classes of such systems are considered:
based on Petri nets formalism and on FSM formalism (in the second case we deal
with parallel compositions of FSMs). Two main approaches, based on construct-
ing of reduced state spaces and on solving the systems of Boolean equations
respectively, are used for the methods of analysis developed in this book.

Classical methods of reduced state space construction are based on selection
of a subset of possible parallel evolutions of a system and simulating only the
selected ones, to avoid interleaving. This approach, however, allows in general to
decide only a very limited set of properties. On the other hand, in its widespread
modifications it does not take into account the practically important details
of parallel systems, such as interaction of the parallel processes via internal
signals, which may remarkably affect the system properties. Methods of analysis
of parallel systems by means of solving logical equations have not been sufficiently
developed to be used in CAD systems and are not adapted to verification of the
FSM-based systems.

The popular CAD systems allow analyzing the parallel models at the syntac-
tical level, considering in fact every sequential component separately. Most of
the problems caused by interaction of concurrent processes are ignored or turn
to be an area of responsibility of a designer - who has no possibility to verify a
complex system manually. In fact, the only way for a designer to verify certain

A. Karatkevich: Dynamic Analysis of Petri Net-Based Discrete Sys., LNCIS 356, pp. 123–125, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

124 7. Conclusion

important conditions of system correctness is simulation, which even in the best
case cannot cover most of possible bugs of parallel systems.

So it seems reasonable to develop the methods of analysis of parallel systems,
which can be implemented in CAD tools and would allow to perform formal
verification such as deciding liveness and safeness, detecting deadlocks and un-
reachable states. Such methods, avoiding construction of the full state spaces,
allowing however to decide the important properties, are proposed in the book.

Application of the known approaches, based on the reduced state space genera-
tion, to the subclasses of the Petri net structures, which are especially convenient
for description of the parallel algorithms, allows to obtain more information on
their behavior, than it is possible for the general-case Petri nets, as it is shown in
Chapter 3. Further minimization of memory amount is possible; this approach
can be used in cases when memory amount turns to be so high that it becomes
a critical parameter (Section 3.6).

It seems to be natural to analyze the parallel systems, especially the large
ones, also in parallel; therefore the methods of parallel and distributed analysis
of large Petri nets are proposed (Chapter 4). The algorithm of net decomposition
and analysis by a local computer network, optimized with respect to execution
time, is implemented and practically verified.

A lot of information about properties of the ordinary Petri nets and the Petri
net models can be obtained by solving logical equations representing the net
structure. These equations can be presented and easily operated in CNF. The
efficient methods of their solving and detecting by means of that the siphons
and traps in Petri nets are proposed (chapter 5). On the base of these methods,
the algorithm detecting deadlocks and unreachable states in FSM networks has
been developed (Section 6.1.3).

Most of methods of Petri net analysis can hardly be applied to verification of
the real-life designs, because, as it was mentioned above, they do not take into
account some important details of these systems. So it is important to adapt the
analysis methods for the various kinds of interpreted Petri nets, FSM networks,
SFCs and Statecharts - that means, to the formal models sufficiently powerful
to be used as detailed specifications of the discrete systems. An attempt to do it
is made in Section 6.1, based on the generalized stubborn set method described
in Section 3.2, the logical algebraic method presented in Chapter 5, and the
modelling method from [113].

Correctness of an implementation (behavioral equivalence between high-level
and low-level descriptions of the same system) also needs to be checked. Section
6.2 is dedicated to checking equivalence between a parallel automaton and a
sequent automaton being a result of design operations on the parallel automaton,
such as state encoding.

In the author’s opinion, the main results presented in this book are the following:

• stubborn set method for the general-case parallel discrete systems;
• theoretical results on behavior of special practically important classes of Petri

nets and efficient methods of analysis of Petri nets with single-token initial
markings based on them;

7. Conclusion 125

• algorithms of memory-saving analysis of Petri nets, based on dynamic reduc-
tion of reachability graphs;

• methods of parallel and distributed analysis of large Petri nets;
• efficient method of calculation of siphons and traps in Petri nets by solving

logical equations;
• methods of analysis of practically important low-level models such as inter-

preted Petri nets, nets with priorities and nets with inhibitor arcs;
• methods of analysis of system specifications in the form of FSM networks,

sequent descriptions, SFC- and Statechart-based descriptions;
• methods of verification of transformation of parallel automata into low-level

sequent descriptions;
• theoretical results on Petri nets and the stubborn set method, showing new

possibilities of the method previously known;
• theoretical results on cycles in reachability graphs; a quick method of break-

ing of cycles in oriented graphs;
• optimization of calculation of prime implicants of Boolean functions.

Certainly, most of the research directions presented in this book require further
development. The interesting and important topics of related studies, in the
author’s opinion, are (among others):

• developing methods of deciding well-formedness of EFC-nets and general-case
Petri nets by means of constructing of reduced state spaces;

• developing the net reduction methods allowing to obtain firing sequences
leading to ”wrong” states;

• developing methods of dynamic analysis of continuous, hybrid and high-level
Petri nets;

• design of software tools for verification of descriptions of parallel systems in
VHDL, Verilog and other HDL languages, based on the dynamic and static
analysis.

The approaches presented in this book, as we suppose, are not limited to the
models considered here, and can be applied to analysis of other kinds of software
and hardware parallel systems.

Acknowledgments

The research was supported by the KBN (Komitet Badań Naukowych, Polish
State Committee for Scientific Research) grant 4T11C 006 24.

I am grateful to:

– M. Adamski and A. Zakrevskij for constant support and valuable comments
on a preliminary version of this book which helped to improve it;

– A. Valmari and E. Best for consulting the author via email (to E. Best also
for sending [30]);

– G. �Labiak and G. Andrzejewski for fruitful and inspiring discussions;
– J. Bieganowski for help with LATEX;
– B. Galiński for verifying my English.

The results presented in Chapter 5 were obtained in cooperation with J. Bie-
ganowski and A. W↪egrzyn (who proposed applying Thelen’s method for analysis
of the Petri nets [229]). The results presented in Appendix D are based on the
ideas of J. Bieganowski described in [32] (in Polish; for extended English ver-
sion see [33]). Software implementation of Thelen’s method with the heuristics
and the computer experiments described in Appendix D were performed by
J. Bieganowski. The method of distributed analysis of Petri nets described in
Section 4.5 was implemented as a student project supervised by the author
and consulted by T. Gratkowski, the experiments with it were performed with
T. Gratkowski’s essential help. The results presented in Table 4.2 were obtained
as a part of a student project supervised by the author.

A. A Theorem on the Stubborn Set Method

Theorem A.1. RRG of a bounded Petri net contains a marking, from which
no deadlock is reachable, if and only if the full reachability graph contains such
marking.

Theorem A.2. [212, 217] If no ignoring occurs in the RRG of a bounded Petri
net, and the full reachability graph contains a terminal component TC, then the
reduced state space contains a terminal component TCred such that TCred ⊆ TC.

Proof of Theorem A.1.
=⇒ is obvious (RRG is a subgraph of full reachability graph).
⇐= Let there is marking M ∈ [M0〉, such that no deadlock is reachable from

it. Then a terminal component TC is reachable from M in the full reachability
graph. If there is no ignoring in the RRG, then, according to Theorem A.2, the
RRG contains a terminal component TCred ⊆ TC, hence containing a mark-
ing, from which no deadlock is reachable. If an ignoring occurs, then from the
markings, where it occurs, no deadlock is reachable in the RRG.

A. Karatkevich: Dynamic Analysis of Petri Net-Based Discrete Sys., LNCIS 356, p. 129, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

B. Decyclization of the Oriented Graphs

Some methods of optimal ”decyclization” of oriented graphs are described in
[53, 158]. One of them is based on the fact that the adjacency matrix of an
acyclic oriented graph can be transformed (by reordering columns and rows) to
a strictly triangular matrix. The method reorders the matrix so that the number
of non-zero elements below or on the main diagonal is minimized. Then the arcs
corresponding to such non-zero elements are removed. Of course such reordering
is a complex combinatorial problem.

Another method described in [53] is based on Boolean transformations: let
a Boolean variable correspond to every arc of the graph, and elementary dis-
junction of these variables (without negation) corresponds to every cycle in the
graph. Transform the obtained CNF into DNF (by multiplying the disjunctions
and deleting products that subsume others) and select the shortest elementary
conjunction, which will correspond to minimum feedback arc set.

By using some newer methods of Boolean transformations, this approach can
be much refined. In fact, the shortest prime implicant has to be calculated here.
A very efficient method of computation of the prime implicants of CNF was
proposed by Thelen [207], in which the prime implicants are obtained without
direct multiplying, but by using search tree and the reducing rules. In [162] a
modification of the Thelen’s method intended for computation of the shortest
prime implicant is presented. In [33, 228] the heuristics for the Thelen’s method
are proposed (not affecting the results but additionally reducing the search tree).
On the other hand, the task can be reduced to the deeply investigated unate
covering problem [49]. So, much can be done to accelerate exact solving of the
task.

Computing of all cycles in a graph requires exponential time and space in
worst case; computation of the shortest prime implicant is NP, the same as the
covering problem. For most practical purposes a quick approximate algorithm
would be useful. Such algorithm is proposed in [111].

In this algorithm the weights are assigned to the arcs of the graph according
to the formula:

w(e) = id(init(e)) − od(init(e)) + od(ter(e)) − id(ter(e)), (B.1)

A. Karatkevich: Dynamic Analysis of Petri Net-Based Discrete Sys., LNCIS 356, pp. 131–133, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

132 B. Decyclization of the Oriented Graphs

1

2

1

1

2

1

1

1

1 1

11

2

2

2

3 3

3

3
3 3

0

0

0
3

3

0

0
4

-1

-1

a)

b)

c)

3

2
1

11

2

3

Fig. B.1. Examples of breaking cycles in oriented graphs by the described algorithm

where e is an arc, w(e) is the weight, id and od are input and output degrees
respectively, init(e) and ter(e) are the initial and terminal nodes of the arc e,
correspondingly. Then the arcs are sorted (in order of nondecreasing weights)
and added to the acyclic oriented graph being constructed, excluding the arcs
adding of which would create a cycle. The algorithm processes each strongly
connected component separately.

This process is similar to the process of building minimal spanning tree in
Prim’s algorithm [48], but, of course, a greedy algorithm cannot guarantee the
optimal solution in this case. The intuition behind the algorithm is the following:
if the initial node of an arc has many incoming arcs and few outgoing arcs, and

B. Decyclization of the Oriented Graphs 133

its terminal node has many outgoing arcs and few incoming arcs, then it is likely
that the arc belongs to many cycles and it is one of the few or the only one
common arc of these cycles. So, it is better not to add such arc to the acyclic
graph being built, that’s why higher weight is assigned to it.

The time complexity of the algorithm is ((|V | + |E|)2). For many examples
the solutions it gives are exact or close to exact (see Fig. B.1).

C. Intersecting P-Blocks

Proof of Lemma 4.11

If P ′
in ∩P ′′

in �= ∅, suppose that P ′
in ⊆ P ′′

in. Then if P ′
out ⊂ P ′′, then Σ′ is a subnet

of Σ′′, and if P ′
out \ P ′′ �= ∅, then P ′

out ∩ P ′′ = ∅, because Σ′′ can loose tokens
only through P ′′

out (by definition). It means that P ′′
out ⊂ P ′, hence (from (4.1))

P ′′ ⊂ P ′, P ′
in = P ′′

in (or P ′′
out = P ′

in, but then M ′′
in > M ′′

out, which contradicts
(4.4)), and Σ′′ is a subnet of Σ′. So if P ′

in ∩ P ′′
in �= ∅, then neither P ′

in ⊆ P ′′
in,

nor P ′′
in ⊆ P ′

in. If P ′
out ⊂ (P ′′ \ P ′′

out), then Σ′′ can get tokens not only through
P ′′

in, which contradicts (4.1). If P ′
out \ (P ′′ \P ′′

out) �= ∅ and P ′
out ∩ (P ′′ \P ′′

out) �= ∅,
then Σ′′ can loose tokens not only through P ′′

out, which also contradicts (4.1). If
P ′′

out ∩ (P ′ \ P ′
out) �= ∅, then all the variants of intersection between P ′′

out and P ′

lead to a contradiction in similar way; the variants P ′
out ⊆ P ′′

out and P ′′
out ⊆ P ′

out

are also contradictory. So if P ′
in ∩P ′′

in �= ∅, then: (P ′
in \ P ′′

in) �= ∅, (P ′′
in \ P ′

in) �= ∅,
(P ′

in \ P ′′
in) ∩ P ′′ = ∅, (P ′′

in \ P ′
in) ∩ P ′ = ∅, (P ′

out \ P ′′
out) �= ∅, (P ′′

out \ P ′
out) �= ∅,

(P ′
out \ P ′′

out) ∩ P ′′ = ∅, (P ′′
out \ P ′

out) ∩ P ′ = ∅. Let us call it the first variant.
If P ′

in ∩P ′′ = ∅,then P ′
out ⊆ (P ′′ \ P ′′

i/o); considering of other variants leads to
contradiction with Definition 4.5 or to conclusion that Σ′′ is a subnet of Σ′. Let
us call it the second variant. There is no need to consider separately the third of
possible variants (P ′

out ∩ P ′′ = ∅, P ′
in ⊆ (P ′′ \ P ′′

i/o)), because it is symmetrical
with the second one.

So there are only two possible variants of intersection between P-blocks, illus-
trated by Fig. 4.8.

The first variant (Fig. 4.8a): there is no transition t such that (•t ⊂ P ′ \P ′′)∧
(t• ⊂ P ′′∩P ′), (t• ⊂ P ′ \P ′′)∧(•t ⊂ P ′′∩P ′), (•t ⊂ P ′′ \P ′)∧(t• ⊂ P ′∩P ′′) or
(t• ⊂ P ′′ \P ′)∧(•t ⊂ P ′∩P ′′), because the opposite would contradict Definition
4.5. So, the subnets Σ1, Σ2 and Σ3 satisfy (4.1); it means that these subnets are
independent of each other (there is no synchronization between them). Then, if
Σ′ and Σ′′ satisfy conditions (4.3,4.4), then Σ1, Σ2 and Σ3 satisfy them, too.
It is easy to see, that if (4.2) holds for Σ′ and Σ′′, then either all the places in
Σ′

in ∩ Σ′′
in are marked in M0, or neither of them is marked, and Σ1, Σ2 and Σ3

satisfy (4.2). So, for Σ1, Σ2 and Σ3 conditions (4.1-4.4) hold, and they are the
P-blocks.

A. Karatkevich: Dynamic Analysis of Petri Net-Based Discrete Sys., LNCIS 356, pp. 135–136, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

136 C. Intersecting P-Blocks

The second variant (Fig. 4.8b): there is no transition t such that (•t ⊂ P ′ \
P ′′)∧(t• ⊂ (P ′′∩P ′)\P ′′

in), (t• ⊂ P ′\P ′′)∧(•t ⊂ P ′′∩P ′), (•t ⊂ P ′′\P ′)∧(t• ⊂
P ′ ∩ P ′′) or (t• ⊂ P ′′ \ P ′) ∧ (•t ⊂ (P ′′ ∩ P ′) \ P ′

out), because the opposite
would contradict Definition 4.5. So, the subnets Σ1, Σ2 and Σ3 satisfy (4.1);
communication between them exists only through P ′′

in and P ′
out (P1in = P ′

in,
P1out = P2in = P ′′

in, P2out = P3in = P ′
out, P3out = P ′′

out). Then, if Σ′ and Σ′′

satisfy conditions (4.3, 4.4), then Σ1, Σ2 and Σ3 satisfy them, too. If (4.2) holds
for Σ′ and Σ′′, then at M0 either all the places in P ′

in and no other places in
P ′ ∪ P ′′ are marked at M0, or neither of places in P ′ ∪ P ′′ are marked; so Σ1,
Σ2 and Σ3 satisfy (4.2). So, for Σ1, Σ2 and Σ3 conditions (4.1-4.4) hold, and
they are the P-blocks.

It is also easy to show, that in both variants Σ4 satisfies (4.1-4.4), so Σ4 is
also a P-block. The proof is finished.

D. Improvements of Thelen’s Prime Implicant
Method

D.1 Introduction

A lot of tasks related to computer-aided logical design require calculation of
prime implicants of a Boolean function, which is often represented as a product
of sums (conjunctive normal form). The most known of such tasks is the two-
level minimization of Boolean functions. Most classical and modern methods of
minimization (especially exact) require calculation of all the prime implicants,
from which a subset representing minimal DNF is then selected. For example, the
most widely used minimization program ESPRESSO uses this approach [166].

It is worth mentioning, however, that some new efficient methods have been
developed in order to avoid generation of all prime implicants [50, 63, 166].
On the other hand, new variants of minimization methods requiring all the
prime implicants are still being developed [166, 189, 190]. And there are many
other applications of a method of prime implicants generation. For example,
calculation of complement of a Boolean function (in DNF), or transformation
of a Boolean equation from CNF to DNF. And vice versa - as far as, due to
de Morgan’s laws, transformation from DNF to CNF can be performed by a
transformation from CNF to DNF. One more application is detecting siphons
and traps in a Petri net, as described in Chapter 5. Generally, solutions of a
logical equation can be easily obtained from prime implicants of its left part, if
the right part is 1.

There are also tasks, which can be solved by calculating shortest prime impli-
cant or prime implicants satisfying certain conditions. In [162] several such tasks
from the area of logical design are discussed. Tasks of unate and binate covering
can be easily represented as logical expressions in CNF and are usually solved by
one of two approaches: BDD-based [64] or branch and bound, for which shortest
prime implicant would correspond to the optimal solution [49]. The same is true
for some graph problems, such as decyclisation of graphs [111]. The problem of
detecting deadlocks in FSM networks can be reduced to the problem of generat-
ing a subset of prime implicants (see subsection 6.1.3). The approach discussed

A. Karatkevich: Dynamic Analysis of Petri Net-Based Discrete Sys., LNCIS 356, pp. 137–144, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007

138 D. Improvements of Thelen’s Prime Implicant Method

in this appendix can be applied (directly or with some modifications) to the
whole range of problems mentioned above.

Several algorithms for generation of prime implicants are known. The method
of Nelson [174], probably historically first such method for CNF, is based on
straightforward multiplying of the disjunctions and deleting the products that
subsume other products. More efficient methods are known: an algorithm based
on a search tree, proposed by B. Thelen [207], and recursive method described
in [166]. Comparison of these two methods is beyond the scope of this work.

Execution time of the Thelen’s method depends remarkably on the order
of clauses and literals in the expression. Hence we may suppose that some re-
ordering of the expression will increase efficiency of the algorithm. As far as
the search tree in the Thelen’s method is reduced by means of certain rules
(described below), it is difficult to evaluate a priori the effects of different vari-
ants of reordering. It is reasonable to use a heuristic approach and to verify the
heuristics statistically. Some of such heuristics are described in [161, 162].

This appendix describes some new heuristics, their analysis and comparison
with other known heuristics. Experiments are performed by using the randomly
generated samples; optimal combination of the heuristics is formulated on the
basis of experimental results.

D.2 Thelen’s Method

Thelen’s prime implicant method is based on the Nelson’s method [174], who has
shown, that all the prime implicants of a Boolean function in conjunctive form
can be obtained by its transformation into disjunctive form. Nelson’s transfor-
mation is very time- and memory-consuming, because all intermediate products
should be kept in memory, and their number grows exponentially.

Thelen’s method transforms CNF into DNF in much more efficient way. It
requires linear memory for transformation and additional memory for calculated
prime implicants. The subsuming products are not kept in memory. A search
tree is built, such that every level of it corresponds to a clause of the CNF,
and the outgoing arcs of a node correspond to the literals of the disjunction.
Conjunction of all the literals corresponding to the arcs at the path from the
root of the tree to a node is associated with the node. Leaf nodes of the tree are
the elementary conjunctions being the prime implicants of the expression or the
implicants subsuming the prime implicants calculated before. A sample tree is
shown in Fig. D.1.

The tree is searched in DFS order, and several pruning rules are used to
minimize it. The rules are listed below.

R1 An arc is pruned, if its predecessor node-conjunction contains the complement
of the arc-literal.

R2 An arc is pruned, if another non-expanded arc on a higher level still exists
which has the same arc-literal.

R3 A disjunction is discarded, if it contains a literal which appears also in the
predecessor node-conjunction.

D.3 Heuristics for Thelen’s Method 139

The rules listed above are based on the following laws of Boolean algebra:

a ∧ a = a;
a ∨ a ∧ b = a;

a ∧ a = 0;
a ∧ 0 = 0;
a ∨ 0 = a;

a ∨ a = a; (D.1)
a ∧ (a ∨ b) = a; (D.2)

a ∨ a = 1; (D.3)
a ∨ 1 = 1; (D.4)
a ∧ 1 = a. (D.5)

Rules R1 and R3 follow immediately from (D.2) and (D.3). Rule R2 provides
that the implicants associated with the leaf nodes, if they are not prime, subsume
the implicants calculated before. It means that the first calculated implicant is
always prime. An arc at level i with arc-literal x, such that there is a non-
expanded arc with the same arc-literal at level j higher than i, is pruned by it.
An implicant obtained by expanding this arc would be at least one literal shorter
than the implicant which would be obtained without applying rule R2. As far as
the path comes twice through literal x (at the levels i and j), according to (D.1),
(D.2), the longest of these two implicants subsumes the shortest one. Hence the
first calculated implicant cannot subsume the implicants calculated later, but
it can be subsumed by them. So, applying rule R2 allows to check whether an
implicant is simple immediately after its calculation. It is enough to compare it
with all the implicants calculated before. Due to this property the algorithm is
less memory-consuming, because only prime implicants are kept.

H.-J. Mathony [162] has proposed the additional fourth reduction rule, which
reduces the search tree up to 25%.

R4 An arc j is pruned, if another already expanded arc i with the same arc-
literal exists on a higher level v and if rule R2 was not applied in the subtree
of arc i with respect of arc l on level v which leads to arc j.

Unfortunately, using this rule complicates the algorithm remarkably, because
additional information on applying rule R2 has to be kept. Additional reduction
makes smaller the probability of appearing of the non-prime implicants at the
leaf nodes. There is also no guarantee that such implicants will not appear, and
still it is necessary to perform checking, the same as in case of the tree built
using only 3 pruning rules. Next expression is an example, for which non-prime
implicants still appear even if all 4 rules are used: (x∨y)y(y∨z)z(x∨z) (Fig. D.3).

D.3 Heuristics for Thelen’s Method

One possible way of reducing the search tree is sorting the disjunctions by their
size in ascending order.

Heuristic 1 (Sort by Length [162]). Choose disjunction uj with the smallest
number of literals.

140 D. Improvements of Thelen’s Prime Implicant Method

a

b c

a b c

a b

R3

a

b c

R2

ab

a d

R3

ab

a b

ab

R1

b c

R2R1

a

ac bc

b c

R3

b c

R3

ac

b

bc

a d

ac

a d

abc

R3

bcd

Fig. D.1. An example of the tree for Boolean formula: (a ∨ b ∨ c)(a ∨ b)(b ∨ c)(a ∨ d)

Effect of this heuristics can be illustrated with a complete search tree (without
arc pruning). Its size (number of nodes) can be calculated according to the
formula:

|V | = 1 +
n∑

i=1

i∏
j=1

Jj , (D.6)

where Jj is the number of literals in clause number j. Let a formula consist of 5
clauses, each having a different number of literals, from 2 to 6. If they are sorted
from maximal to minimal length, the complete search tree will contain 1237
nodes; if sorted from minimal to maximal this tree will contain only 873 nodes.
In the second case it is 30% smaller. As we see, sorting of clauses influences the
tree size remarkably. Of course for the reduced search trees relation may differ.

Now let us turn to the pruning rules. Note that every rule can be implemented
only if the disjunction under consideration contains the same variables as the
disjunctions corresponding to the predecessor nodes. It means that if next dis-
junction contains the variables which appear in the previous disjunctions, there
are possibilities of reduction at that level; and there is no possibility of reduction
for the new variables. So we may suppose that sorting of the clauses according to
the variables may also lead to tree reduction. The similar effect is used here as in

D.3 Heuristics for Thelen’s Method 141

the case of sorting by length: disjunctions containing many repeating variables
allow to reduce the tree remarkably, and if such reduction can be performed not
far form the root, the tree will be growing slower. So the following heuristics
reorder the disjunctions in such a way that minimal number of new variables
appear at every following level of the search tree.

Heuristic 2a (Sort by Literals). Choose disjunction uj with the minimal
number of literals that do not appear in the disjunctions chosen before.

Heuristic 2b (Sort by Variables). Choose disjunction uj with the minimal
number of variables that do not appear in the disjunctions chosen before.

The only difference between these two variants is that heuristic 2a compares
clauses according to literals and heuristic 2b according to variables. This means
that xi and xi are two different items for heuristic 2a but not for heuristic 2b.
Average results of these heuristics are similar, but there are examples where the
tree reduction differs a lot. So it is possible to obtain better results by selecting
most effective heuristic for every example. It will be the subject of forthcoming
research.

The effect of heuristics 2a and 2b is comparable to the effect of heuristic 1,
but we may say, that it is more "intelligent", which is confirmed by statistical
analysis. The results of computer experiments are presented in Table D.1, and
as far as heuristics 2a and 2b give similar average results, only one of them is
presented.

Reordering literals in clauses also affects the search tree, because it changes
order of generated prime implicants and may make rule R2 applicable or not at
certain levels of the tree.

Two following heuristics reorder literals in clauses. The first of them allows
quick calculation of the shortest prime implicant, and the second heuristic re-
duces search tree when it is necessary to calculate all prime implicants.

Heuristic 3 (Sorting literals[162]). Choose literal vi with the maximum fre-
quency in the non-expanded part of the expression.

Sorting the literals according to heuristic 3 leads to the situations, in which rule
R3 will be more often applicable for the arcs at the left side than at the right
side. Hence, probably the first calculated prime implicants will be the shortest
one. Now by using branch-and-bound method most of other arcs will be cut in
several steps.

If all prime implicants have to be generated, the ordering should be different:
in such case it is better to generate shortest implicants later (reverse order of
literals given by heuristic 3). That reduces probability of appearing non-prime
implicants at the leaf nodes. As far as due to rule R2 an implicant can subsume
only the implicants calculated before, if the implicants calculated later are in
most cases shorter than those calculated earlier, then chance of subsuming is
small. The following heuristic is a reversion of heuristic 3.

Heuristic 4 (Reordering Literals). Choose literal vi with the minimum fre-
quency in the non-expanded part of the expression.

142 D. Improvements of Thelen’s Prime Implicant Method

a)

b

a

a

R3

a

b

bc bd

R4

b)

b

a

a

R3

a

b

bc bd

R2

a c dc da a c da c d

Fig. D.2. An example of the tree, in which effects of heuristic 4 and rule R4 are the
same

In many cases (but not always) effects of rule R4 and heuristic 4 are very similar.
Rule R4 prunes an arc, if at a higher level there is a non-expanded arc with the
same arc-literal (let it be a). It means that at the level i literal a is not the last
literal in the clause. Let literal b be situated after a in the clause. From the arc
corresponding to the literal b there is a path to the node under consideration at
level l. If literal a would be the last in the clause, instead of R4, rule R2 would
be applicable with the same effect (Fig. D.2).

We may also state that if literal a appears at level i and also at a lower level
l (in clauses ui and ul (i > l)), then if b does not appear in the clauses with
numbers greater than i, after applying heuristic 4 in the clause ui literal b will
appear before a and R2 will be applicable instead of R4. But if b appears in the
clauses with numbers greater than i, this effect will not always occur.
Here is an example of heuristic 4:

(a ∨ b)(a ∨ c ∨ d).

After applying the heuristic:

(b ∨ a)(a ∨ c ∨ d).

Such ordering of literals causes that the arc leading to non-prime implicant
ba, which in the first case could be pruned only by applying rule R4, will now
be pruned by rule R2.
Another example:

(a ∨ b ∨ c)(a ∨ b)(a ∨ c ∨ d)(b ∨ c).

In this case heuristic 4 does not change ordering of the literals. Literals a and
b, appearing in clause 2, appear in the next clauses with the same frequency, and
without applying rule R4 the algorithm will generate a non-prime implicant ba.

On the other hand, it may happen that reordering of literals by heuristic 4
allows pruning the arcs which would not be pruned by rule R4. It is possible

D.3 Heuristics for Thelen’s Method 143

Table D.1. Results of computer experiments

Bool. K STD H1 H2a H4 H2a + H4 R4

form. V V % V % V % V % V %

20×30 144 42194 7680 18.2 7522 17.8 2536 6.0 702 1.7 7856 18.6

20×26 145 7755 9504 122.6 6391 82.4 2596 33.5 2191 28.3 4268 55.0

20×22 12 1422 645 45.4 599 42.1 247 17.4 283 19.9 247 17.4

20×22 105 2486 3166 127.4 3166 127.4 702 28.2 1067 42.9 702 28.2

20×21 70 3024 1543 51.0 1435 47.5 816 27.0 738 24.4 816 27.0

20×21 28 1346 671 49.9 635 47.2 333 24.7 247 18.4 333 24.7

20×23 36 4356 1638 37.6 1575 36.2 705 16.2 654 15.0 705 16.2

20×23 16 2650 660 24.9 826 31.2 881 33.2 391 14.8 881 33.2

20×21 117 3418 4181 122.3 4181 122.3 773 22.6 1139 33.3 773 22.6

25×31 946 51275 26030 50.8 26075 50.9 6365 12.4 2910 5.7 6374 12.4

25×29 144 55608 4222 7.6 1770 3.2 2283 4.1 438 0.8 2859 5.1

25×32 560 63234 22826 36.1 18831 29.8 4170 6.6 2125 3.4 4170 6.6

25×26 91 6838 4603 67.3 4109 60.1 1917 28.0 970 14.2 1919 28.1

average: 58.5 53.7 20.0 17.1 22.7

because the rules R2 and R4 are not completely symmetrical. Rule R4 has addi-
tional condition which is absent in rule R2. This condition may block applying
rule R4. But if the literals can be reordered in such a way that rule R2 will be
applicable, then such an arc will be pruned. Fig. D.3 illustrates this situation.

In the tree for expression (x ∨ y)x(y ∨ z)z(x ∨ z) (Fig. D.3a) rule R4 cannot
be applied because the condition is not satisfied (in the left subtree rule R2 was
applied), that’s why in the right subtree a non-prime implicant xyz appears.
Heuristic 4 changes the expression into the form: (y∨x)x(y∨z)z(x∨z). Now, the
non-prime implicant does not appear, because the arc leading to this implicant
is pruned by rule R2 (Fig. D.3b).

Experiments demonstrate that both heuristic 4 and rule R4 efficiently and
almost at the same extent reduce the number of generated non-prime implicants.
Rule R4 is more difficult for implementation and increases necessary memory
amount. It seems that applying heuristic 4 is more reasonable because allows to
obtain similar effect with less effort.

Results of computer experiments are summarized in Table D.1. For the tests,
the randomly generated Boolean expressions were used. In the first column num-
ber of variables and number of clauses of an expression are given (e.g. 20×18).
V denotes tree size (number of nodes); K denotes number of prime implicants.
The column ’%’ shows percentage of the tree size for every heuristic, in respect
of the size in case when no heuristic is used.

The experiments show that it is better to sort disjunctions according to heuris-
tic 2a, and literals in the disjunctions according to heuristic 4.

144 D. Improvements of Thelen’s Prime Implicant Method

y

x

x

x

R3

x

xz

y

R2

x

xy

z

xz

y

R3

x

z

z

R3

x

y

y

R2

x

x

x

z

xy

y

x

z

R3

xz

z

R2

z

a) b)

x

R3

z

xz xyz xz

x

R3

z x

R3

z

xz xyz xz

R3 R3

Fig. D.3. An example of the tree, in which there are differences between heuristic 4
and rule R4

References

1. P. A. Abdulla, S. P. Iyer, and A. Nylén. Unfoldings of unbounded Petri nets. In
Proceedings of the International Workshop on Computer Aided Verification, pages
495–507, 2000.

2. P. A. Abdulla, B. Jonsson, M. Kindahl, and D. Peled. A general approach to par-
tial order reductions in symbolic verification (extended abstract). In Proceedings
of the International Workshop on Computer Aided Verification, pages 379–390,
1998.

3. M. Adamski. Realizacja sieci Petri z wykorzystaniem PLA. In Krajowa Konf.
Teoria Obwodów i Układy Elektroniczne, pages 455–459, 1981.

4. M. Adamski. Projektowanie układów cyfrowych systematyczna metoda struktu-
ralna. Wyższa Szkoła Inżynierska w Zielonej Górze, 1990.

5. M. Adamski. Parallel controller implementation using standard PLD software. In
FPGAs : International Workshop on Field Programmable Logic and Applications,
pages 296–304. Abingdon EE&CS Books, 1991.

6. M. Adamski, A. Karatkevich, and M. Węgrzyn, editors. Design of Embedded
Control Systems. Springer-Verlag, New York, 2005.

7. M. Adamski, J. L. Monteiro, W. Fengler, and A. Wendt. A distributed Petri net-
based discrete controller system. In Proceedings of the Conference on Automatic
Control - Control’96, volume 2, pages 777–782, Oporto, 1996.

8. M. Adamski and M. Węgrzyn. Field programmable implementation of concurrent
state machine. In Computer - Aided Design of Discrete Devices: Proceedings of
the International Conference, volume 1, pages 4–12, Minsk, 1999.

9. M. Adamski, M. Węgrzyn, and P. Wołanski. A VHDL based approach to logic
controllers design. In Proc. of Int. Conference Programmable Devices and Systems,
pages 9–16, 1998.

10. R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Partial-
order reduction in symbolic state space exploration. In Proceedings of the Inter-
national Workshop on Computer Aided Verification, Lecture Notes in Computer
Science 1254, pages 340–351. Springer-Verlag, 1997.

11. G. Andrzejewski. Hierarchical Petri nets as a representation of reactive behaviors.
In Proceedings of the International Conference on Applied Computer Systems,
volume 2, pages 145–154, Szczecin, Poland, 2001.

12. G. Andrzejewski. Programowy model interpretowanej sieci Petriego dla potrzeb
projektowania mikrosystemów cyfrowych. PhD thesis, Uniwersytet Zielonogórski,
2003.

146 References

13. G. Andrzejewski. Hierarchical Petri nets for digital controller design. In
M. Adamski, A. Karatkevich, and M. Węgrzyn, editors, Design of Embedded Con-
trol Systems, pages 27–36. Springer-Verlag, New York, 2005.

14. G. Andrzejewski and A. Karatkevich. Interpreted Petri nets in system design.
In Proceedings of the 10th International Conference on Machine-Building and
Technosphere in XXI Century, volume 4, pages 7–10, Donetsk, Ukraine, 2003.

15. G. Andrzejewski and A. Karatkevich. Program model of hierarchical Petri net.
In Proc. of the 2nd International Workshop on Discrete - Event System Design,
DESDes 04, pages 9–14, Dychów, Polska, 2004.

16. G. Andrzejewski and A. Karatkevich. Interpreted hierarchical Petri nets in digital
controller design. Radioelektronika i Informatika, (1):74–79, 2005.

17. M. Auguin, F. Boeri, and C. Andre. Systematic method of realization of inter-
preted Petri nets. Digital Processes, (6):55–68, 1980.

18. F. Balarin, editor. Hardware-Software Co-Design of Embedded Systems. The PO-
LIS Approach. Kluwer Academic Publishers, 1997.

19. Z. Banaszak, J. Kuś, and M. Adamski. Sieci Petriego. Modelowanie, sterowanie
i synteza systemów dyskretnych. Wyższa Szkoła Inżynierska, Zielona Gora, 1993.

20. J. Baranowski. Metody syntezy układów cyfrowych opisanych sieciź Petri. PhD
thesis, Politechnika Ślźska, Gliwice, 1982.

21. K. Barkaoui and M. Minoux. A polynomial-time graph algorithm to decide live-
ness of some basic classes of bounded Petri nets. In Proceedings of the 13th
International Conference on Application and Theory of Petri Nets, Lecture Notes
in Computer Science, volume 616, pages 62–75. Springer-Verlag, 1992.

22. B. Baumgarten. Petri-Netze: Grundlagen und Anwendungen. Spektrum, Akad.
Verlag, 1996.

23. H. Belhadj, L. Gerbaux, M. Bertrand, and G. Saucier. Proc. of the IFIP
WG10.2/WG10.5 Workshops on Specification and synthesis of communicating
finite state machines. In Synthesis for Control Dominating Circuits, pages 91–
102. Elsevier, North-Holland, 1993.

24. G. Berthelot. Checking properties of nets using transformation. In Advances
in Petri Nets’85, Lecture Notes in Computer Science, volume 222, pages 19–40.
Springer-Verlag, 1986.

25. G. Berthelot and C. Roucairol. Reduction of petri nets. In Mathematical Founda-
tions of Computer Science, Lecture Notes in Computer Science, volume 45, pages
202–209. Springer-Verlag, Berlin, 1976.

26. G. Berthelot, C. Roucairol, and R. Valk. Reduction of nets and parallel programs.
In Lecture Notes in Computer Science, volume 84, pages 277–290. Springer-Verlag,
1980.

27. E. Best. Petri net semantics of priorities. In Extended Abstracts of Concurrency
and Compositability, pages 11–14, S. Miniato, 1990.

28. E. Best, L. Cherkasova, J. Desel, and J. Esparza. Characterisation of home states
in free choice systems. In Semantics for Concurrency. Proceedings of the Interna-
tional BCS-FACS Workshop, pages 16–20, London, UK, 1990. Springer-Verlag.

29. E. Best and J. Desel. Partial order behaviour and structure of Petri nets. Formal
Aspects of Computing, 2:123–138, 1990.

30. E. Best and M. Koutny. Petri net semantics of priority systems. Theoretical
Computer Science, (96):175–215, 1992.

31. G. Bhat and D. Peled. Adding partial orders to linear temporal logic. In Pro-
ceedings of the 8th International Conference CONCUR’97, Lecture Notes in Com-
puter Science, volume 1243, pages 119–134, Berlin, Germany, July 1997. Springer-
Verlag.

References 147

32. J. Bieganowski and A. Karatkevich. Heurystyki dla metody Thelena obliczania
implikantów prostych. In Materiały IV Krajowej konferencji Metody i systemy
komputerowe w badaniach naukowych i projektowaniu inżynierskim, MSK’03,
pages 71–76, Kraków, 2003.

33. J. Bieganowski and A. Karatkevich. Heuristics for Thelen’s prime implicant
method. Schedae Informaticae, 14:125–135, February 2005.

34. K. Bilinski. Application of Petri Nets in Parallel Controllers Design. PhD thesis,
University of Bristol, 1996.

35. K. Bilinski, M. Adamski, J. Saul, and E. Dagless. Petri-net-based algorithms
for parallel-controller synthesis. IEE Proceedings - Computers and Digital Tech-
niques, 141(6):405–412, 1994.

36. G. Bruno, A. Castella, G. Macario, and M. P. Pescarmona. Scheduling hard real-
time systems using high-level Petri nets. In Application and Theory of Petri Nets
1992, Lecture Notes in Computer Science, volume 616, pages 93–112. Springer-
Verlag, 1992.

37. P. Buchholz. Hierarchical high level Petri nets for complex system analysis. In
Valette, R., editor, Application and Theory of Petri Nets 1994, Proceedings of 15th
International Conference, Zaragoza, Spain, Lecture Notes in Computer Science,
volume 815, pages 119–138. Springer-Verlag, 1994.

38. L. D. Cheremisinova. Minimization of finite-response sequential automata that
implement parallel logical control algorithms. Automatic Control and Computer
Sciences, 22(4):69–74, 1988.

39. L. D. Cheremisinova. Software and hardware implementation of PRALU-
algorithms. In Logical Control, volume 6, pages 88–105, Minsk, 2001. Institute of
Engineering Cybernetics of NANB. (in Russian).

40. L. D. Cheremisinova. Implementation of Parallel Logical Control Algorithms.
Institute of Engineering Cybernetics of NANB, Minsk, 2002. (in Russian).

41. L. D. Cheremisinova. Optimal state assignment of asynchronous parallel au-
tomata. In M. Adamski, A. Karatkevich, and M. Węgrzyn, editors, Design of
Embedded Control Systems, pages 125–137. Springer-Verlag, New York, 2005.

42. L. D. Cheremisinova and Yu. V. Pottosin. Assignment of partial states of a par-
allel synchronous automaton. In Proceedings of the International Conference on
Computer-Aided Design of Discrete Devices, pages 85–88, Minsk-Szczecin, 1995.

43. S. Christensen and N. D. Hansen. Coloured Petri nets extended with place ca-
pacities, test arcs and inhibitor arcs. In Proceedings of the 14th International
Conference on Application and Theory of Petri Nets, Lecture Notes in Computer
Science, volume 691, pages 186–205, London, UK, 1993. Springer-Verlag.

44. E. M. Clarke, O. Grumberg, M. Minea, and D. A. Peled. State space reduction
using partial order techniques. STTT, 2(3):279–287, 1999.

45. E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press,
Cambridge, USA, 1999.

46. A. Classen. Modulare Statecharts: Ein formaler Rahmen zur hierarchischen Pro-
cessspezifikation. Lehrstuhl für Informatik II, Aachen University of Technology,
M.Sc. Thesis, Germany, 1993.

47. J. M. Colom, J. Campos, and M. Silva. On liveness analysis through linear
algebraic techniques. In Proceedings of Design Methods Based on Nets, Esprit
Basic Research Action 3148, W.G. 6, Deliverables Covering the Period June 1989
to June 1990, Paris, 1990.

48. T. H. Cormen, Ch. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, 1994.

148 References

49. O. Coudert and J. K. Madre. New ideas for solving covering problems. In Pro-
ceedings of the Design Automation Conference, DAC’95, pages 641–646, 1995.

50. O. Coudert, J. K. Madre, and H. Fraisse. A new viewpoint on two-level logic
minimization. In Proceedings of the Design Automation Conference, DAC’93,
pages 625–630, 1993.

51. R. David and H. Alla. Petri Nets and Grafcet. Tools for Modelling Discrete Event
Systems. Prentice-Hall, New York, 1992.

52. J. Davis, C. Hylands, J. Janneck, E. A. Lee, et al. Overview of the Ptolemy
Project. Technical Memorandum UCB/ERL M01/11, Berkeley, March 2001.

53. N. Deo. Graph Theory with Applications to Engineering and Computer Science.
Prentice-Hall, New Jersey, 1974.

54. J. Desel. A proof of the rank theorem for extended free choice nets. In Applications
and Theory of Petri Nets 1992, Lecture Notes in Computer Science, volume 616,
pages 134–153. Springer-Verlag, 1992.

55. J. Desel and J. Esparza. Free Choice Petri Nets. Cambridge University Press,
1995.

56. D. Drusinsky and D. Harel. Using Statecharts for hardware description and syn-
thesis. IEEE Transactions on Coputer-Aided Design, 8(7):798–807, July 1989.

57. J. Esparza. Model checking using net unfoldings. In Proceedings of TAPSOFT ’93,
Lecture Notes in Computer Science, volume 668, pages 613–628. Springer-Verlag,
1993.

58. J. Esparza and S. Römer. An unfolding algorithm for synchronous products of
transition systems. In Proceedings of 10th International Conference on Concur-
rency Theory, Eindhoven, Lecture Notes in Computer Science, volume 1664, pages
2–20. Springer-Verlag, August 1999.

59. J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding
algorithm. In 2nd TACAS, LNCS 1055, pages 87–106. Springer-Verlag, 1996.

60. J. Esparza and M. Silva. On the analysis and synthesis of free choice systems.
In Advances in Petri Nets 1990, Lecture Notes in Computer Science, volume 483,
pages 243–286, Berlin, Germany, 1991. Springer-Verlag.

61. J. Esparza and M. Silva. A polynomial-time algorithm to decide liveness of
bounded free choice nets. Theor. Computer Science, 102(1):185–205, 1992.

62. R. Esser. An Object Oriented Petri Net Approach to Embedded Systems Design.
PhD thesis, Swiss Federal Institut of Technology, Zürich, 1996.

63. P. C. McGeer et al. Espresso-Signature: a new exact minimizer for logic functions.
In Proceedings of the Design Automation Conference, DAC’93, pages 618–624,
1993.

64. R. K. Brayton et al. VIS: a system for verification and synthesis. In Proceedings
of the Conference on Computer-Aided Verification, CAV’96, Lecture Notes in
Computer Science, volume 1102, pages 332–334. Springer-Verlag, August 1996.

65. J. Ezpeleta, J. M. Colom, and J. Martinez. A Petri net based deadlock prevention
policy for flexible manufacturing systems. IEEE Transactions on Robotics and
Automation, 11(2):173–184, 1995.

66. J. Ezpeleta, J. M. Couvreur, and M. Silva. A new technique for finding a generat-
ing family of siphons, traps and st-components. Application to colored Petri Nets.
In Advances in Petri Nets 1993, Lecture Notes in Computer Science, volume 674,
pages 126–147. Springer-Verlag, 1993.

67. W. Fengler, A. Wendt, M. Adamski, and J. L. Monteiro. Petri net based program
design and implementation for controller systems. In Proceedings of 1996 IFAC
Triennial World Congress, volume 1, pages 425–429, San Francisco, USA, 1996.

References 149

68. J. Fernandes, M. Adamski, and A. Proença. VHDL generation from hierarchical
Petri net specifications of parallel controllers. IEE Proceedings - Computers and
Digital Techniques, 144(2):127–137, 1997.

69. A. Ferrari. JPVM: network parallel computing in Java. Concurrency: Practice
and Experience, 10(11–13):985–992, 1998.

70. L. Ferrarini. An incremental approah to logic controller design with Petri nets.
IEEE Transactions on System, Man and Cybernetics, 22(3):461–474, 1992.

71. D. D. Gajski, F. Vahid, S. Narayan, and J. Gong. Specification and Design of
Embedded Systems. Prentice-Hall, 1994.

72. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM: Parallel Virtual Machine. A Users’ Guide and Tutorial for Networked Par-
allel Computing. Massachusetts Institute of Technology Press, 1994.

73. A. Gill. Introduction to the Theory of Finite-state Machines. McGraw-Hill, New
York, 1962.

74. C. Girault and R. Valk. Petri Nets for Systems Engineering. A Guide to Modeling,
Verification, and Application. Springer-Verlag, Berlin Heidelberg, 2003.

75. V. M. Glushkov. Synthesis of Digital Automata. Fizmatgiz, Moscow, 1962. (in
Russian).

76. P. Godefroid. Using partial orders to improve automatic verification methods.
In Proceedings of the 2nd International Workshop on Computer Aided Verifica-
tion CAV ’90, Lecture Notes in Computer Science, volume 531, pages 176–185.
Springer-Verlag, 1991.

77. P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem, LNCS, volume 1032. Springer-
Verlag, New York, USA, 1996.

78. P. Godefroid and D. Pirottin. Refining dependencies improves partial-order ver-
ification methods (extended abstract). In Proceedings of the 5th International
Conference on Computer Aided Verification, CAV ’93, LNCS, volume 697, pages
438–449, London, UK, 1993. Springer-Verlag.

79. L. Gomes, J. P. Barros, and A. Costa. Structuring mechanisms in Petri net
models. In M. Adamski, A. Karatkevich, and M. Węgrzyn, editors, Design of
Embedded Control Systems, pages 153–166. Springer-Verlag, 2005.

80. V. S. Grigoryev, A. D. Zakrevskij, and V. A. Perchuk. The sequent model of
the discrete automaton. In Vychislitelnaya Tekhnika v Mashinostroenii, pages
147–153. Institute of Engineering Cybernetics, Minsk, March 1972. (in Russian).

81. A. Gurel, O. C. Pastravanu, F. L. Lewis, and A. Doganalp. Deadlock avoidance
using a (min,+) matrix model for flexible manufacturing systems. In Proceedings
of the 4th Workshop on Discrete Event Systems, Cagliari, Italy, 1998.

82. M. Hack. Analysis of Production Schemata by Petri Nets. MIT Project MAC
TR-94, 1972. Corrections: Project MAC, Computation Structures Note 17 (1974).

83. D. Harel. Statecharts: a visual formalism for complex systems. Science of Com-
puter Programming, 8:231–274, 1987.

84. J. Hartmann, M. Vieira, H. Foster, and A. Ruder. A UML-based approach to
system testing. Innovations in Systems and Software Engineering, 1:12–24, 2005.

85. M. Heiner. Verification and optimization of control programs by Petri nets with-
out state explosion. In Proceedings of the 2nd International Workshop on Manu-
facturing and Petri Nets held at the International Conference on Application and
Theory of Petri Nets, ICATPN ’97, Toulouse, June 1997, pages 69–84, 1997.

86. M. Heiner. Petri net based system analysis without state explosion. In Proceedings
of High Performance Computing, Boston, April 1998, pages 394–403, San Diego,
1998.

150 References

87. K. Heljanko, V. Khomenko, and M. Koutny. Parallelisation of the Petri Net
Unfolding Algorithm. Technical Report CS-TR-733, University of Newcastle upon
Tyne, 2001.

88. B. Hnatkowska and Z. Huzar. Transformation of dynamic aspects of UML models
into LOTOS behaviour expressions. Applied Mathematics and Computer Science,
11(2):537–556, 2001.

89. G. J. Holzmann. Design and validation of computer protocols. Prentice-Hall,
Upper Saddle River, NJ, USA, 1991.

90. G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley, 2003.

91. J. E. Hopcroft and J. D. Ulman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

92. Yi. Huang, M. Jeng, X. Xie, and S. Chung. A deadlock prevention policy for flex-
ible manufacturing systems using siphons. In Proceedings of IEEE International
Conference on Robotics and Automation, 2001, volume 1, pages 541–546, 2001.

93. P. Huber, A. M. Jensen, L. O. Jensen, and K. Jensen. Towards reachability
trees for high-level Petri nets. In Advances in Petri Nets 1984, Lecture Notes in
Computer Science, volume 188, pages 215–233. Springer-Verlag, 1985.

94. Th. Hummel and W. Fengler. Design of embedded control systems using hybrid
Petri nets. In Proceedings of the International Workshop on Discrete - Event
System Design, pages 189–194, Przytok k/Zielonej Góry, Poland, 2001.

95. Th. Hummel and W. Fengler. Design of embedded control systems using hybrid
Petri nets and time interval Petri nets. In M. Adamski, A. Karatkevich, and
M. Węgrzyn, editors, Design of Embedded Control Systems, pages 141–151, New
York, 2005. Springer-Verlag.

96. R. Janicki and M. Koutny. On Some Implementation of Optimal Simulation.
Technical Report 90-07, McMaster University, Hamilton, Ontario, 1990.

97. R. Janicki and M. Koutny. Optimal simulations, nets and reachability graphs. In
Advances in Petri Nets 1991, LNCS, volume 524, pages 205–226. Springer-Verlag,
1991.

98. R. Janicki and M. Koutny. Using optimal simulations to reduce reachability
graphs. In Proceedings of the 2nd International Conference on Computer-Aided
Verification CAV’90, LNCS, volume 531, pages 166–175. Springer-Verlag, Lon-
don, 1991.

99. R. Janicki, P. E. Lauer, M. Koutny, and R. Devillers. Concurrent and maximally
concurrent evolution of non-sequential systems. Theoretical Computer Science,
43:213–238, 1986.

100. K. Jensen. Coloured Petri Nets. Basic Concept, Analysis Methods and Practical
Use. Volume 1: Basic Concepts. EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, Berlin, 1992.

101. K. Jensen and G. Rozenberg, editors. High-Level Petri Nets: Theory and Appli-
cation. Springer-Verlag, Berlin, 1991.

102. A. A. Jerraya and J. Mermet, editors. System-Level Synthesis. Kluwer Academic
Publishers, 1999.

103. J. Kalinowski. Wykorzystanie sieci Petriego do projektowania systemów
cyfrowych. PhD thesis, Politechnika Warszawska, 1984.

104. A. Karatkevich. Correctness analysis of α-nets. In Logical Control, volume 1, pages
97–106. Institute of Engineering Cybernetics, Academy of Sciences of Belarus,
1996. (in Russian).

References 151

105. A. Karatkevich. Analysis and Optimization of Parallel Logical Control Algo-
rithms. PhD thesis, Belarusian State University of Informatics and Radioelec-
tronics, Dept. of Computer Science, Minsk, 1997. Manuscript (in Russian).

106. A. Karatkevich. Reachability analysis of the live and safe Petri nets. In Proceed-
ings of the 5th International Conference the International Conference on Parallel
Computing in Electrical Engineering PARELEC’98, pages 175–178, Białystok,
Poland, 1998.

107. A. Karatkevich. Hierarchical decomposition of safe Petri nets. In Proceedings of
the 3rd International Conference on Computer - Aided Design of Discrete Devices,
volume 1, pages 34–39, Minsk, Belarus, 1999.

108. A. Karatkevich. Minimization of transitions number for a parallel automaton.
In Proceedings of the International Conference on Discrete Optimization Meth-
ods in Scheduling and Computer-Aided Design, pages 197–201, Minsk, Belarus,
September 2000.

109. A. Karatkevich. Optimal simulation of α-nets. In Proceedings of the Polish-
German Symposium on Science, Research and Education, pages 217–222, Zielona
Góra, Poland, 2000.

110. A. Karatkevich. Dependence between some behaviour properties of α-nets. In
Proceedings of the 4th International Conference on Computer-Aided Design of
Discrete Devices, pages 57–60, Minsk, 2001.

111. A. Karatkevich. On algorithms for decyclisation of oriented graphs. In Proceedings
of the International Workshop on Discrete - Event System Design, pages 35–40,
Przytok k/Zielonej Góry, Poland, 2001.

112. A. Karatkevich. Dynamic reduction of reachability graphs of Petri nets. Ra-
dioelektronika i Informatika, (no 1):76–82, 2002. (in Russian).

113. A. Karatkevich. Deadlock analysis in Statecharts. In Proceedings of the Fo-
rum on Specification and Design Languages, pages 414–424, Frankfurt, Germany,
September 2003.

114. A. Karatkevich. To behavior analysis of a class of Petri nets. In Proc. of 27th
IFAC/IFIP/IEEE Workshop on Real-Time Programming, pages 33–38, Lagów,
Poland, May 2003. Elsevier, Oxford, UK.

115. A. Karatkevich. Detecting possible deadlock states in automata networks. Ra-
diotechnika, nr 138:134–140, 2004. (in Russian).

116. A. Karatkevich. Detection of the unreachable states in FSM networks. In Proceed-
ings of the 5th International Conference on Computer-Aided Design of Discrete
Devices, pages 47–54, Minsk, 2004.

117. A. Karatkevich. Deadlock detection in discrete concurrent systems. In Proceedings
of the 8th International Conference on experience of designing and application of
CAD systems in microelectronics CADSM’2005, pages 250–253, Lviv-Polyana,
Ukraine, 2005.

118. A. Karatkevich. Memory-saving analysis of Petri nets. In M. Adamski,
A. Karatkevich, and M. Węgrzyn, editors, Design of Embedded Control Systems,
pages 65–74. Springer-Verlag, 2005.

119. A. Karatkevich. Properties and analysis of α-nets. Informatyka Teoretyczna i
Stosowana, 5(8):53–64, 2005.

120. A. Karatkevich. Verification of implementation of parallel automata (testing
approach). In Proceedings of the IEEE East-West Design and Test Workshop
EWDTW’05, pages 66–69, Odessa, Ukraine, 2005.

121. A. Karatkevich. Stubborn set method for interpreted Petri nets. In Proceedings
of the 3rd IFAC Workshop on Discrete-Event System Design, DESDes’06, pages
227–232, Rydzyna, Poland, 2006.

152 References

122. A. Karatkevich. Verification of implementation of parallel automata (symbolic
approach). In Proceedings of the IEEE East-West Design and Test Workshop
EWDTW’06, pages 112–115, Sochi, Russia, 2006.

123. A. Karatkevich and M. Adamski. Deadlock analysis of Petri nets: minimization
of memory amount. In Proceedings of the 3th Electronic Circuits and Systems
Conference, pages 69–72, Bratislava, 2001.

124. A. Karatkevich, M. Adamski, and M. Węgrzyn. Rapid correctness analysis for
Sequential Function Chart. In Proceedings of the 45th International Scienific
Colloquium IWK’2000, pages 679–684, Ilmenau, Germany, October 2000.

125. A. Karatkevich and G. Andrzejewski. Analiza wybranych własności interpre-
towanej sieci Petriego metodź optymalnej symulacji. In Materiały Pierwszej Kra-
jowej Konferencji Elektroniki, volume 2, pages 685–690, Kołobrzeg-Dźwirzyno,
Polska, 2002.

126. A. Karatkevich and G. Andrzejewski. Hierarchical decomposition of Petri nets for
analysis and design of digital microsystems. International Journal of Computing,
5(1):18–25, 2006.

127. A. Karatkevich and G. Andrzejewski. Hierarchical decomposition of Petri nets
for digital microsystems design. In Proceedings of the International Conference
on Modern Problems of Radio Engineering, Telecommunications and Computer
Science - TCSET’2006, pages 518–521, Lviv-Slavsk, Ukraine, 2006.

128. A. Karatkevich and T. Gratkowski. Analysis of the operational Petri nets by
a distributed system. In Proceedings of the International Conference on Mod-
ern Problems of Radio Engineering, Telecommunications and Computer Science
- TCSET’2004, pages 319–322, Lviv-Slavsk, Ukraine, 2004.

129. A. Karatkevich and M. Węgrzyn. ATPG: Current State and Main Problems. In
Proceedings of the Polish-German Symposium on Science, Research and Educa-
tion, pages 205–210, Zielona Góra, Poland, 2000.

130. A. Karatkevich and A. Zakrevskij. Analysis of Petri nets by means of concurent
simulation. In Proceedings of the International Conference on Parallel Computing
in Electrical Engineering PARELEC, pages 87–91, Warsaw, Poland, 2002. IEEE
Computer Society.

131. A. Karatkiewicz. Dynamiczna analiza systemów współbieżnych. In Materiały
konferencji naukowej Informatyka - sztuka czy rzemiosło, KNWS ’04, pages 41–
46, Zielona Góra, Polska, 2004.

132. A. Karatkiewicz. Wykrywanie blokad w systemach priorytetowych. In Materiały
konferencji naukowej Informatyka - sztuka czy rzemiosło, KNWS ’05, pages 67–
72, Zielona Góra, 2005.

133. P. Kemper. Linear time algorithm to find a minimal deadlock in a strongly
connected free-choice net. In Proceedings of the 14th International Conference
on Application and Theory of Petri Nets 1993, Chicago, USA, Lecture Notes in
Computer Science, volume 691, pages 319–338. Springer-Verlag, 1993.

134. P. Kemper. Superposition of Generalized Stochastic Petri Nets and its Impact on
Performance Analysis. PhD thesis, University of Dortmund, Dep. of CS, 1997.

135. P. Kemper and F. Bause. An efficient polynomial-time algorithm to decide liveness
and boundedness of free choice nets. In Proceedings of the 13th International
Conference on Application and Theory of Petri Nets, Sheffield, Lecture Notes in
Computer Science, volume 616, pages 263–278, 1992.

136. G. Klas. Hierarchical solution of generalized stochastic petri nets by means of
traffic processes. In Proceedingsof the 13th International Conference on Appli-
cation and Theory of Petri Nets, Sheffield, Lecture Notes in Computer Science,
volume 616, pages 279–298, 1992.

References 153

137. R. König and L. Quäck. Petri-Netze in der Steuerungstechnik. Oldenbourg,
München, 1988.

138. A. Korotkevich. Analysis of asynchronous systems of simple sequentions. In
Proceedings of the 39th International Scientific Colloquium, IWK’94, pages 446–
452, Ilmenau, Germany, 1994.

139. A. Korotkevich. Checking properties of the asynchronous systems of sequents by
using reduction. In Proceedings of the International Conference on Computer-
Aided Design of Discrete Devices (CAD DD’95), pages 99–102, Minsk-Szczecin,
1995. Wydawnictwo Uczelniane Politechniki Szczecinskiej.

140. V. Ye. Kotov. Petri Nets. Moscow, Nauka, 1984. (in Russian).
141. A. V. Kovalyov. Concurrency relation and the safety problem for Petri nets. In

Proceedings of the 13th International Conference on Application and Theory of
Petri Nets 1992, Lecture Notes in Computer Science, volume 616, pages 299–309.
Springer-Verlag, June 1992.

142. A. V. Kovalyov. An O(|S| × |T |)-algorithm to verify if a net is regular. In
Proceedings of the 17th International Conference in Application and Theory of
Petri Nets 1996, Lecture Notes in Computer Science, volume 1091, pages 366–
379. Springer-Verlag, June 1996.

143. T. Kozłowski. Petri Net Specification Format (PNSF). Technical report, Univer-
sity of Bristol, 1994.

144. T. Kozłowski, E. Dagless, J. Saul, M. Adamski, and J. Szajna. Parallel controller
synthesis using Petri nets. IEE Proceedings - Computers and Digital Techniques,
142(4):263–271, 1995.

145. L. M. Kristensen. State Space Methods for Coloured Petri Nets. PhD thesis,
University of Aarhus, 2000.

146. S. Kumagai, S. Kodama, K. Tsuji, and Y. Nakamura. Preservation of liveness
in hierarchical Petri nets. Electron. Commun. Jpn., Part III, Fundam. Electron.
Sci., 73(5):8–18, May 1990.

147. O. P. Kuznetsov and G. M. Adelson-Velski. Discrete Mathematics for Engineer.
Energoatomizdat, Moscow, 1988. (in Russian).

148. G. Łabiak. Modelling Statecharts diagrams by means of Petri nets. In Proceedings
of the 6th International Conference on Advanced Computer Systems, pages 253–
259, Szczecin, October 1999.

149. G. Łabiak. From UML Statecharts to FPGA - the HiCoS approach. In Proceedings
of the Forum on Specification and Design Languages, pages 354–363, Frankfurt,
Germany, 2003.

150. G. Łabiak. Symbolic state exploration of UML Statecharts for hardware de-
scription. In M. Adamski, A. Karatkevich, and M. Węgrzyn, editors, Design of
Embedded Control Systems, pages 73–83. Springer-Verlag, New York, 2005.

151. G. Łabiak. Wykorzystanie hierarchicznego modelu współbieżnego automatu w pro-
jektowaniu sterowników cyfrowych. PhD thesis, Uniwersytet Zielonogórski, 2005.

152. G. Łabiak and M. Adamski. The method of concurrency matrix generation
for statechart-based digital controllers. In Proceedings of the 11th International
Conference on Mixed Design of Integrated Circuits and Systems, pages 445–450,
Szczecin, Poland, 2004.

153. G. Łabiak and A. Karatkevich. Metody specyfikacji, syntezy i weryfikacji hierar-
chicznych diagramów stanów. IX Konferencja Naukowa Reprogramowalne Ukşady
Cyfrowe, Pomiary Automatyka Kontrola, (Nr. 7, wyd. spec.):109–111, 2006.

154 References

154. G. Łabiak and P. Miczulski. UML statecharts and Petri nets model compari-
son for system level modelling. Mezhdunarodny sbornik nauchnykh trudov: Pro-
gressivnye technologii i sistemy mashinostroyeniya, 27:310–314, 2004. Donetsk
National Technical University, Ukraine.

155. K. Lautenbach. Linear algebraic calculation of deadlocks and traps. In Concur-
rency and Nets, Advances of Petri Nets. Springer-Verlag, Berlin, 1987.

156. K. Lautenbach and H. A. Ridder. A Completion of the S-invariance Technique by
means of Fixed Point Algorithms. Research Report 10-95, Universität Koblenz,
1995.

157. B. Lee and E. A. Lee. Hierarchical Concurrent Finite State Machines in Ptolemy.
In Proceedings of the International Conference on Application of Concurrency to
System Design, pages 34–40, Fukushima, Japan, March 1998.

158. A. Lempel. Minimum feedback arc and vertex sets of a directed graph. IEEE
Trans. Circuit Theory, CT-13(4):399–403, December 1966.

159. R. W. Lewis. Programming Industrial Control Systems Using IEC 1131-3. IEE,
London, 1995.

160. M. Makela. A Reachability Analyzer for Algebraic System Nets. Research Report
A69, Helsinki University of Technology, 2001.

161. H. J. Mathony. Algorithmische Entwurfstverfahren für Zwei- und Mehrstufige
Schaltnetze. PhD thesis, ITIV, Universität Karlsruhe, 1988.

162. H. J. Mathony. Universal logic design algorithm and its application the synthesis
of two-level switching circuits. Proceedings of the IEE, 136(3):171–177, 1989.

163. A. Mazurkiewicz. Trace theory. In Petri Nets: Applications and Relationships to
Other Models of Concurrency, Advances in Petri Nets 1986, Part II, Proceedings
of an Advanced Course, Bad Honnef, September 1986, Lecture Notes in Computer
Science, volume 255, pages 279–324, New York, USA, 1987. Springer-Verlag.

164. C. McCreary, J. Thompson, H. Gill, T. Smith, and Y. Zhu. Partitioning and
Scheduling Using Graph Decomposition. Department of Computer Science and
Engineering CSE-93-06, Auburn University, 1993.

165. K. L. McMillan. Using unfolding to avoid the state explosion problem in the verifi-
cation of asynchronous circuits. In Proceedings of the 4th International Conference
on Computer Aided Verification, Lecture Notes in Computer Science, volume 663,
pages 164–177, Montreal, Canada, June 1992. Springer Verlag.

166. D. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill, New
York, 1994.

167. P. Miczulski. Calculating state spaces of hierarchical Petri nets using BDD. In
Design of Embedded Control Systems, pages 85–94. Springer, New York, 2005.

168. P. Miczulski. Weryfikacja i synteza programów dla reprogramowalnych sterown-
ików logicznych z wykorzystaniem funkcji monotonicznych i diagramow BDD. IX
Konferencja Naukowa Reprogramowalne Ukşady Cyfrowe, Pomiary Automatyka
Kontrola, (Nr. 7, wyd. spec.):112–114, 2006.

169. R. Milner. Communication and Concurrency. Prentice-Hall, Inc., 1989.
170. M. Minoux and K. Barkaoui. Deadlocks and traps in Petri nets as Horn-

satisfiability solutions and some related polynomially solvable problems. Discrete
Mathematics, 29:195–210, 1990.

171. M. Montalbano. High-speed calculation of the critical paths of large networks.
IBM Systems Journal, 6(3):163–191, 1967.

172. T. Murata. Petri nets: properties, analysis and applications. Proceedings of the
IEEE, 77:541–580, April 1989.

References 155

173. D. Nazareth, F. Regensburger, and P. Sholz. Mini-Statecharts, A Lean Version
of Statecharts. Technical Report TUMŰI9610, Technische Universität München,
1996.

174. R. Nelson. Simplest normal truth functions. Journal of Symbolic Logic, 20(2):105–
108, 1955.

175. M. Notomi and T. Murata. Hierarchical reachability graph of bounded Petri nets
for concurrent-software analysis. IEEE Trans. Softw. Eng., 20(5):325–336, 1994.

176. A. Ohta, K. Tsuji, and T. Hisamura. On liveness of extended partially ordered
condition nets. IEICE Trans. on Fundamentals of Electronics, Communications
and Computer Sciences, E82–A(11):2576–2578, 1999.

177. G. K. Palshikar. An introduction to model checking, 2004. www.embedded.com.
178. Ch. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
179. J. Pardey, A. Amroun, M. Bolton, and M. Adamski. Parallel controller synthesis

for programmable logic devices. Microprocessors and Microsystems, 18(8):451–
457, 1994.

180. E. Pastor and J. Cortadella. Efficient encoding schemes for symbolic analysis of
Petri nets. In Proceedings of the Conference on Design, Automation and Test in
Europe, Paris, France, pages 790–795, 1998.

181. E. Pastor, O. Roig, J. Cortadella, and R. M. Badia. Petri net analysis using
boolean manipulation. In Valette, R., editor, Application and Theory of Petri
Nets 1994, Proceedings 15th International Conference, Zaragoza, Spain, Lecture
Notes in Computer Science, volume 815, pages 416–435. Springer-Verlag, 1994.

182. D. Peled. All from one, one for all: on model checking using representatives. In
Proceedings of the 5th International Conference on Computer Aided Verification,
Lecture Notes In Computer Science, volume 697, pages 409–423. Springer-Verlag,
1993.

183. J. L. Peterson. Petri net theory and the modeling of systems. Prentice-Hall, 1981.
184. C. A. Petri. Kommunikation mit Automaten. Schriften des IIM Nr. 2, Institut

für Instrumentelle Matematik, Bonn, 1962.
185. Yu. V. Pottosin. Generation of parallel automata. In Methods and Algorithms for

Logical Design, pages 132–142, Minsk, 1995. Institute of Engineering Cybernetics
of Academy of Sciences of Belarus. (in Russian).

186. Yu. V. Pottosin. Optimal state assignment of synchronous parallel automata.
In M. Adamski, A. Karatkevich, and M. Węgrzyn, editors, Design of Embedded
Control Systems, pages 111–124, New York, 2005. Springer-Verlag.

187. M. Rauhamaa. A Comparative Study of Methods for Efficient Reachability Anal-
ysis. Licentiate’s thesis, Helsinki University of Technology, Department of Com-
puter Science and Engineering, 1990.

188. W. Reisig. Petri Nets, volume 4 of EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, 1985.

189. R. Rudell and A. Sangiovanni-Vincentelli. Multiple-valued minimization for PLA
optimization. IEEE Transactions on CAD/ICAS, CAD-6(5):727–750, Sept. 1987.

190. B. Rytsar and V. Minziuk. The set-theoretical modification of boolean func-
tions minimax covering method. In Proceedings of the International Conference
on Modern Problems of Radio Engineering, Telecommunications and Computer
Science, TCSET’04, pages 46–48, Lviv-Slavsko, Ukraine, 2004.

191. V. M. Savi and X. Xie. Liveness and boundedness analysis for petri nets with event
graph modules. In 13th International Conference on Application and Theory of
Petri Nets 1992, Sheffield, UK, Lecture Notes in Computer Science, volume 616,
pages 328–347. Springer-Verlag, June 1992.

156 References

192. K. Schmidt. How to calculate symbolically siphons and traps of algebraic Petri
nets. In Technical Report A39, pages 1–40. Helsinki University of Technology,
1996.

193. K. Schmidt. Siphons and traps for algebraic Petri nets. In Proceedings of the
Workshop CSP, pages 157–168, Berlin, Oct 1996.

194. K. Schmidt. Characterizing liveness of Petri nets in terms of siphons. In Pro-
ceedings of the 18th International Conference on Application and Theory of Petri
Nets, Lecture Notes in Computer Science, volume 1248, pages 271–289. Springer-
Verlag, June 1997.

195. T. Schober,A.Reinsch, and W.Erhard. Modeling and verification of sequential con-
trol paths using Petri nets. InProceedings of the International Workshop on Discrete
- Event System Design, pages 41–46, Przytok k/Zielonej Góry, Poland, 2001.

196. T. Schober, A. Reinsch, and W. Erhard. Verification of control paths using Petri
nets. In M. Adamski, A. Karatkevich, and M. Węgrzyn, editors, Design of Em-
bedded Control Systems, pages 51–62, New York, 2005. Springer-Verlag.

197. J. Sifakis. Le Controle des Systemes Asynchrones: Concepts, Proprietes, Analyse
Statique. PhD thesis, I’Universite Scientifique et Medicale de Grenoble, 1979.

198. M. Silva. Las redes de Petri: en la Automática y la Informática. Ed. AC, 1985.
199. Z. Skowroński. Translacja specyfikacji funkcjonalnej układów cyfrowych na sieć

Petirego dla potrzeb syntezy systemowej. PhD thesis, Politechnika Szczecińska,
Wydział Informatyki, 2000.

200. J. Staunstrup, H. R. Andersen, H. Hulgaard, J. Lind-Nielsen, K. G. Larsen,
G. Behrmann, K. Kristoffersen, A. Skou, H. Leerberg, and N. B. Theilgaard.
Practical verification of embedded software. IEEE Computer, 33(5):68–75, 2000.

201. B. Steinbach and A. D. Zakrevskij. Parallel automaton - basic model, properties
and high-level diagnostics. In Proceedings of the 4th International Workshop on
Boolean Problems, pages 151–158, Freiberg, Germany, 2000.

202. B. Steinbach and A. D. Zakrevskij. Parallel automaton and its hardware imple-
mentation. In Proceedings of the Design and Diagnostics of Electronic Circuits
and Systems Workshop, pages 250–257, Smolenice, 2000.

203. U. Stern and L. D. Dill. Parallelizing the Murphy verifier. In Proceedings of the
International Conference CAV’97, LNCS, pages 256–267. Springer, 1997.

204. M. E. Szabo, editor. The Collected Papers of Gerhard Gentzen. North-Holland,
Amsterdam, 1969.

205. B. Taconet and B. Chollot. Grafcet programming on programmable logic con-
troller with logical, ladder and boolean language. Revue Nouvel Automatisme,
24(1-2):41–45, 1979.

206. S. Tanimoto, M. Yamauchi, and T. Watanabe. Finding minimal siphons in general
Petri nets. IEICE Trans. on Fundamentals of Electronics, Communications and
Computer Sciences, E79–A(11):1817–1824, 1996.

207. B. Thelen. Investigation of Algorithms for Computer-Aided Logic Design of Dig-
ital Circuits. PhD thesis, Universität Karlsruhe, 1988. (in German).

208. V. V. Tropashko. Proof of the conjecture of complete reducibility of α-nets. In
Design of Logical Control Systems, pages 13–21. Institute of Engineering Cyber-
netics of Academy of Sciences of BSSR, 1986. (in Russian).

209. OMG Unified Modeling Languag Specification Version 1.5. OMG, 250 First Av-
enue, Needham, MA 02494, U.S.A., March 2003.

210. A. Valmari. Eliminating redundant interleavings during concurrent program veri-
fication. In Proceedings of the Conference on Parallel Architectures and Languages
Europe, Vol. 2, Lecture Notes in Computer Science, volume 366, pages 89–103,
Berlin, Germany, 1989. Springer-Verlag.

References 157

211. A. Valmari. A stubborn attack on state explosion. In Proceedings of the 2nd
International Workshop on Computer Aided Verification, CAV ’90, LNCS, volume
531, pages 156–165, London, UK, 1991. Springer-Verlag.

212. A. Valmari. Stubborn sets for reduced state space generation. In Advances in
Petri Nets 1990, Lecture Notes in Computer Science, volume 483, pages 491–515.
Springer-Verlag, Berlin, Germany, 1991.

213. A. Valmari. On-the-fly verification with stubborn sets. In Proceedings of the
5th International Conference on Computer Aided Verification, CAV’93, LNCS,
volume 697, pages 397–408, London, UK, 1993. Springer-Verlag.

214. A. Valmari. Compositional analysis with place-bordered subnets. In Application
and Theory of Petri Nets, LNCS 815, pages 531–547. Springer, 1994.

215. A. Valmari. State of the art report: Stubborn sets. Petri Net Newsletter, (46):6–
14, April 1994.

216. A. Valmari. Stubborn set methods for process algebras. In Proceedings of the
DIMACS workshop on Partial order methods in verification, POMIV’96, pages
213–231, New York, USA, 1997.

217. A. Valmari. The state explosion problem. In Lecture Notes in Computer Science:
Lectures on Petri Nets I: Basic Models, volume 1491, pages 429–528. Springer-
Verlag, 1998.

218. V. Varadharajan and K. D. Baker. Directed graph based representation for soft-
ware system design. Software Engineering J., 2(1):21–28, January 1987.

219. K. Varpaaniemi. On combining the stubborn set method with the sleep set
method. In Proceedings of the 15th International Conference on Application and
Theory of Petri Nets, Lecture Notes in Computer Science, volume 815, pages
548–567. Springer-Verlag, Berlin, Germany, 1994.

220. K. Varpaaniemi. On Computing Symmetries and Stubborn Sets. Technical Report
B12, Helsinki University of Technology, Digital Systems Laboratory, 1994.

221. K. Varpaaniemi. On the Stubborn Set Method in Reduced State Space Generation.
PhD thesis, Helsinki University of Technology, Department of Computer Science
and Engineering, 1998.

222. K. Varpaaniemi. Stubborn sets for prioriry nets. In Proceedings of ISCIS 2004,
Lecture Notes in Computer Science, volume 3280, pages 574–583. Springer-Verlag,
Berlin, Germany, 2004.

223. M. von der Beeck. A Comparison of Statecharts Variants. In LNCS, volume 860,
pages 128–148. Springer-Verlag, 1994.

224. F. Wagner and M. Rakowski. Zastosowanie sieci Petriego do projektowania mikro-
programowych układów sekwencyjnych. Archiwum Automatyki i Telemechaniki,
26(3):385–395, 1981.

225. P. Wołański. Modelowanie układów cyfrowych na poziomie RTL z wykorzystaniem
sieci Petriego i podzbioru języka VHDL. PhD thesis, Politechnika Warszawska,
1998.

226. P. Wolper and P. Godefroid. Partial-order methods for temporal verification. In
Proceedings of the 4th International Conference on Concurrency Theory, CON-
CUR’93, LNCS, volume 715, pages 233–246. Springer-Verlag, UK, 1993.

227. A. Węgrzyn and P. Bubacz. XML format for high-level Petri net. In Proceedings
of ACS 2001, volume 2, pages 269–278, Szczecin, 2001.

228. A. Węgrzyn, A. Karatkevich, and J. Bieganowski. Detection of deadlocks and
traps in Petri nets by means of Thelen’s prime implicant method. Applied Math-
ematics and Computer Science, 14(1):113–121, 2004.

158 References

229. A. Węgrzyn and M. Węgrzyn. Symbolic veification of concurrent logic controllers
by means Petri nets. In Proceedings of CAD DD’99, volume 1, pages 45–50,
Minsk, Belarus, 1999.

230. M. Yamauchi, S. Tanimoto, and T. Watanabe. Finding a minimal siphon con-
taining specified places in a general Petri net. IEICE Trans. on Fundamentals
of Electronics, Communications and Computer Sciences, E79–A(11):1825–1828,
1996.

231. M. Yamauchi and T. Watanabe. Time complexity analysis of the minimal siphon
extraction problem of Petri nets. IEICE Trans. on Fundamentals of Electronics,
Communications and Computer Sciences, E82–A(11):2558–2565, 1999.

232. S. A. Yuditski, A. A. Tagayevskaya, and G. K. Yefremova. A Language for Al-
gorithmic Design of Discrete Control Devices. Preprint of Institute of Control
Sciences, Moscow, 1977. (in Russian).

233. S. A. Yuditski, A. A. Tagayevskaya, and G. K. Yefremova. Design of Discrete
Systems of Automatics. Mashinostroyeniye, Moscow, 1980. (in Russian).

234. V. N. Zakharov. Sequent description of control automata. Izvestiya AN SSSR,
(2), 1972. (in Russian).

235. A. D. Zakrevskii. Verifying the correctness of parallel logical control algorithms.
Program. Comput. Softw. (USA), 13(5):218–221, 1987.

236. A. D. Zakrevskij. A-net - a functional model of a discrete system. Doklady AN
BSSR, 25(8):714–717, 1981. (in Russian).

237. A. D. Zakrevskij. Logical Synthesis of Cascade Networks. Nauka, Moscow, 1981.
(in Russian).

238. A. D. Zakrevskij. Reduction method of correctness checking of parallel logical
control algorithms. Doklady AN BSSR, 27(7):617–619, 1982. (in Russian).

239. A. D. Zakrevskij. Implementation of parallel logical control algorithms on pro-
grammable logic arrays. Automatika i Telemechanika, (7):116–123, 1983. (in
Russian).

240. A. D. Zakrevskij. Parallel automaton. Doklady AN BSSR, 28(8):717–719, 1984.
(in Russian).

241. A. D. Zakrevskij. To checking liveness of ordinary Petri nets. Doklady AN BSSR,
29(11):1006–1009, 1985. (in Russian).

242. A. D. Zakrevskij. Elements of the theory of α-nets. In Design of Logical Control
Systems, pages 4–12. Institute of Engineering Cybernetics of Academy of Sciences
of BSSR, 1986. (in Russian).

243. A. D. Zakrevskij. The analysis of concurrent logic control algorithms. In Fun-
damentals in Computation Theory, Lecture Notes in Computer Science, volume
278, pages 497–500. Springer-Verlag, 1987.

244. A. D. Zakrevskij. Decomposition approach to analysis of parallel logical con-
trol algorithms. In Formal Models of Parallel Computation. Siberian section of
Academy of Sciences of the USSR, Novosibirsk, 1988. (in Russian).

245. A. D. Zakrevskij. To the theory of parallel algorithms of logical control. Izvestiya
AN SSSR, Tekhnicheskaya Kibernetika, (5):179–191, 1989. (in Russian).

246. A. D. Zakrevskij. Optimization of matrix of partial state assignment for parallel
automata. In Formalization and Automatization of Logical Design, pages 4–11.
Institute of Engineering Cybernetics of Academy of Science of Belarus, 1993. (in
Russian).

247. A. D. Zakrevskij. Parallel logical control algorithms: verification and hardware
implementation. Computer Science Journal of Moldova, 4(1):3–19, 1996.

References 159

248. A. D. Zakrevskij. High-level design of logical control devices. In Proceedings of
the 3rd International Conference on Computer-Aided Design of Discrete Devices,
pages 13–18, Minsk, 1999.

249. A. D. Zakrevskij. Parallel Algorithms of Logical Control. Second edition, URSS,
Moscow, 2003. (in Russian).

250. A. D. Zakrevskij. Using sequents for description of concurrent digital systems
behavior. In M. Adamski, A. Karatkevich, and M. Węgrzyn, editors, Design of
Embedded Control Systems, pages 3–13, New York, 2005. Springer-Verlag.

251. A. D. Zakrevskij, A. G. Karatkevich, and M. A. Adamski. A method of analysis
of operational Petri nets. In Proceedings of the 8th International Conference on
Advanced computer systems, pages 449–460. Kluwer Academic Publishers, Boston,
2002.

252. A. D. Zakrevskiy. Petri nets modeling of logical control algorithm. Autom. Control
& Comput. Sci., 20(6):38–45, 1986.

253. M. Zhou and F. DiCesare. Petri Net Synthesis for Discrete Event Control of
Manufacturing Systems. Kluwer Academic Publishers, Boston, 1993.

Index

algorithm
computational, 41, 42, 64
distributed, 80, 82
parallel, 2, 5, 22, 42, 47, 124

logical control, 5, 6, 15, 22, 41, 42,
54, 55

Prim’s, 132
analysis

coverability, 22
distributed, 7, 82–85, 124, 125, 127
dynamic, 4, 6, 7, 104, 109, 125
liveness, 66, 70, 73, 110
memory-saving, 125
parallel, 80, 124, 125
reachability, 22, 23, 61, 70, 80
safeness, 66
static, 104, 105, 109, 125
structural, 4, 22, 23, 88

arc, 10
enabling, 100
inhibitor, 15

automaton
parallel, 2, 3, 5, 6, 8, 16, 17, 113, 114,

116, 117, 119–121, 124, 125
asynchronous, 4
synchronous, 4

sequent, 2, 5, 16, 17, 25, 95–98, 113,
116, 117, 119–121, 124

consistent, 17
simple, 16, 97, 98

automaton (FSM), 1, 3, 4, 6, 14, 20, 21,
108–111, 113, 123

deadlocked, 21
Mealy, 21, 109

Moore, 21, 109

BDD, 3, 6, 25, 93, 137
behavior, 1, 4, 6, 7, 17, 19, 23, 26, 41,

113, 124
block of a net, 30, 31, 41, 42, 63–66, 68,

69, 72, 76–85
P-, 76, 77

minimal, 77
minimal, 31, 65, 68, 76, 77, 80, 83
P-, 72–78, 135, 136
two-pole, 41, 72
well-formed, 75

boundedness, 22, 23, 25, 59, 79
n-, 59
structural, 22

CAD, 2, 124
CAD systems, 1, 2, 4, 123
cluster, 12, 42, 47, 50, 114

disabled, 12
enabled, 12, 42, 46, 114

component, 9, 17, 19, 21, 123
SM-, 12, 21, 22, 76, 77
st-, 89
strongly connected (SCC), 9, 65, 132
terminal (TC), 9, 53, 54, 59, 129

composition, 1, 64, 77
complete, 65, 77, 80, 123
cyclic, 65
parallel, 65, 77, 78, 123
partial, 65, 77
sequential, 65, 77, 80

compression techniques, 6

162 Index

concurrency relation, 81, 119
conflict, 10, 20, 41, 100
conservatism, 60
controller, 2, 5, 14, 15, 17, 54, 113, 116
coverability, 32, 60
covering, 4, 117, 131

binate, 137
greedy, 114
unate, 131, 137

cycle, 8, 31, 57–59, 64, 65, 80, 83, 125,
131–133

deadlock, 3, 4, 20–23, 28–30, 34–37,
39–42, 44, 46, 48, 53, 57–59, 64, 67,
68, 70, 73, 79, 95, 96, 98, 100–106,
108, 109, 111, 112, 124, 129

global, 3, 9, 20, 103
local, 3, 20, 108, 109, 111
reachable, 22, 29, 38, 42, 64, 74, 95, 97,

100–102, 104–107
deadlock detection, 4, 22, 31, 32, 57, 61,

87, 96, 98, 103, 107, 137
deadlock-freeness, 3, 5, 33, 40
decomposition, 7, 30, 31, 41, 63, 64,

68–70, 73, 75, 76, 78–80, 124
block, 31, 42, 63–67, 69, 70, 78–80, 84,

85
hierarchical, 25, 69, 70, 73, 79
multi-level, 74
P-, 74–76

decyclization, 131
minimal, 59

discrete device, 1, 2, 4, 5, 14, 59, 113, 123
document type definition (DTD), 84

event, 6, 16, 19–21, 102, 103, 105–110
absent, 21
available, 20, 106
disabled, 20
dynamic, 20, 103, 105, 108
input (external), 3, 19–21, 103, 106,

107, 110
internal, 19, 102, 103, 105–108
output, 21
present, 21
static, 20, 103, 104, 108
timeout, 17
trigger, 17

fault, 22, 47, 48, 117

form
conjunctive normal (CNF), 87, 89–91,

97, 124, 131, 137, 138
disjunctive normal (DNF), 88, 89, 92,

97, 131, 137, 138
minimal, 137

function
Boolean, 8, 14–16, 87, 88, 93, 125, 137,

138
monotonic, 25

characteristic, 25, 103, 104, 109
default, 19, 20
hierarchy, 18
history, 19
output, 21
source, 19
state labelling, 19
state transition, 20
state-type, 19
structure, 104, 109
target, 19
transition labelling, 19
weight, 13

GRAFCET, 2
graph

coverability, 23, 24
marked, 73
net, 10, 44, 45, 57, 58, 66, 90, 114
oriented, 8, 59, 64, 125, 131, 132, 137

acyclic, 82, 131–133
program dependence, 82
reachability, 6, 7, 9, 16, 24, 26, 28, 31,

32, 35, 36, 38, 40, 43, 44, 46, 50, 52,
57–61, 74, 75, 95, 100–102, 105–107,
125

full, 28, 30–32, 34–36, 41, 46, 48, 50,
52–56, 66–68, 78, 101, 108, 114, 129

reduced (RRG), 27, 29, 30, 33, 34,
41, 46–48, 50–53, 55, 57, 60, 61,
67–69, 78, 79, 95–102, 108, 109, 129

state transition, 110

HDL, 125
heuristics

for Thelen’s method, 87, 90, 91, 127,
131, 138–144

for transition coverage, 114, 115
hierarchy, 1, 21, 110, 113
history, 20, 105

Index 163

ignoring, 29, 30, 32, 48, 53, 54, 129
ignoring problem, 29, 30
implicant, 88, 111, 138, 139, 141, 143

non-prime, 139, 141–143
prime, 8, 87, 88, 90, 91, 125, 131,

137–139, 141, 143
shortest, 131, 137

Java Parallel Virtual Machine (JPVM),
84, 85

lazy state space constructions, 6, 23, 56,
80

linearization, 11, 28, 39
liveness, 22–25, 33, 42, 43, 45, 46, 48,

52–54, 59, 66, 70, 73, 77, 87, 110,
124

structural, 22
logical control, 1, 5, 6, 21

macroplace, 70–72, 74–78
macrotransition, 70, 73
marking

definition, 10
initial, 10–12, 22–24, 46, 47, 53, 60,

65–67, 71, 78, 81–84, 88, 100–102,
105, 114

correct, 63, 64, 66, 72
single-token, 7, 42, 53, 54, 124

non-reversible, 50
reachable, 11, 42, 45, 46, 52, 60, 67, 68
safe, 10
terminal, 41, 64–67, 81–85
unsafe, 10, 48, 66, 76

matrix
adjacency, 131
incidence, 13, 24, 25, 89, 90, 92
ternary, 25, 89–92

message, 82, 83, 85
method

ample set, 31, 32
Best-Koutny’s, 100, 101
block decomposition, 31, 63, 66–70,

78–80
branch-and-bound, 141
coverability graph, 23
coverability tree, 23
critical path, 81
Janicki-Koutny’s (OPT), 39–41
linear algebraic, 92

Nelson’s, 138
recursive, 138
sleep set, 32
state equation, 24
stubborn set, 6, 7, 26, 28–32, 41, 42,

46, 47, 53, 54, 61, 66, 79, 80, 95, 96,
98, 100, 102, 106, 124, 125, 129

generalized, 7, 33, 124
symmetry, 32
Thelen’s, 87, 90, 92, 111, 127, 131,

137–139
unfolding, 26

methods
BDD-based, 25
integer programming, 24
logical algebraic, 124
net reduction, 23, 45, 52, 125
persistent set, 27, 28, 33, 34, 78, 79

model, 1, 2, 4, 7, 9, 10, 14, 16, 17, 21, 28,
32, 42, 53, 70, 113, 125

fault, 115
formal, 1, 123, 124
FSM-based, 2, 6
hierarchical, 69
operating, 84
parallel, 21, 28, 123

discrete, 7, 95
Petri net, 2, 6, 15, 21, 69, 100, 105,

106, 111, 124
model checking, 3
modelling, 15, 104–106, 110, 124

network
communication, 6
computer, 82, 85, 124
FSM, 1, 4, 5, 7, 16, 20, 21, 108–113,

124, 125, 137
project, 81, 82

p-invariant, 89, 90
partial order reduction, 6
path, 6, 22, 23, 30, 31, 44–48, 58–61, 73,

114, 138, 139, 142
critical, 81, 82
simple, 44

persistence, 22
Petri net, 2, 4–8, 10–15, 21–25, 27–31,

34, 35, 37, 38, 40–42, 44, 55, 57–60,
63, 64, 66, 69, 70, 72, 73, 75–80, 82,
84, 85, 87, 88, 90–92, 95–98, 100,

164 Index

104–106, 110–112, 114, 123–125,
127, 137

α-, 5, 7, 12, 42, 43, 45–53, 66
live and safe (LS), 24, 43, 114
safe, 16
strongly connected, 44, 46, 47

bounded, 11, 23, 54, 59, 60, 78, 129
colored, 2
connected, 10, 43

strongly, 10
conservative, 11
continuous, 125
cyclic, 7, 63, 66, 81
free choice, 12, 22, 42, 87

extended (EFC), 6, 12, 22, 32, 34, 42,
45, 53, 55, 125

structurally live and bounded, 24
hierarchical, 70, 71, 74, 77
high-level, 125
hybrid, 2, 125
interpreted, 2, 4, 7, 14–16, 22, 28,

95–99, 115, 116, 118, 124, 125
of Mealy type, 14, 15
of Moore type, 15
safe, 17, 98

live, 4, 11
live and safe (LS), 11, 70, 76, 77
object, 2
occurrence, 26
operational (OPN), 63–67, 78, 81, 83,

84
quasi-live, 11
random, 50, 67, 82
reduced, 52, 112
reversible, 11
s-, 7, 42, 53, 55, 124

bounded, 53
live and safe, 43, 53

safe, 6, 11, 25, 36, 38–40, 57, 72–74, 77,
78, 97

state machine (SM), 12
state machine decomposable (SMD),

40
unbounded, 3, 6, 23, 26
underlying, 4, 15, 16, 21, 22, 42, 95, 96,

102
unsafe, 4, 44
well-formed, 11
with enabling arcs, 100
with inhibitor arcs, 15, 98–100, 125

with multiple (weighted) arcs, 13, 14,
100, 101

bounded, 100
with priorities, 15, 16, 100–103, 106,

125
bounded, 100
safe, 100

place, 10
empty, 28, 29, 79, 100, 101
input, 10, 13, 28–32, 34–37, 45, 46,

64–66, 71, 79, 81, 82, 100–102, 105,
106, 117

internal, 67, 82
marked, 10, 30, 100
output, 10, 13, 29–31, 35, 44–46, 64,

66, 67, 71–73, 82, 89, 100, 101, 105,
114

unsafe, 67
places

parallel, 26
PNSF3, 84
PRALU, 2, 42
priority relation, 15
projection, 12, 72, 81, 83

quasi-liveness, 22

reachability, 3, 24, 60, 77, 109, 121
reversibility, 3, 22, 26, 42, 43, 46, 47, 60,

87

safeness, 3, 22–25, 42, 43, 45, 46, 48, 52,
61, 66, 79, 124

search (state space), 4, 28, 60–62
selective, 5, 28, 35, 36

parallel (PSS), 38–41
persistent-set, 28
weak-persistent-set, 36

sequence
firing, 9, 11, 22, 24, 28–30, 34–40, 43,

46, 48, 52, 58–60, 66, 72, 73, 114,
125

infinite, 29
input, 21
step, 11, 37, 39, 40, 114, 115

sequent, 14–17, 97, 98, 117, 119, 121, 125
enabled, 16, 97
simple, 16, 97, 117

sequent description, 2, 5
sequent firing, 16

Index 165

sequents
independent, 96, 97
parallel, 17

set
ample, 31, 32
minimum feedback arc, 59, 131
persistent, 27–29, 33–35, 37–39, 41, 42,

78, 79
weak, 34–37

reachability, 73, 77
sleep, 32
stubborn, 28–30, 32–34, 42, 46, 47, 78,

79, 96–98, 100–102
strong, 28, 29, 39, 102
weak, 28, 29, 36, 37, 102

SFC, 2, 5, 7, 17, 18, 42, 48, 49, 54, 55,
124, 125

unreachable, 17
unsafe, 17

siphon, 7, 12–14, 22, 23, 87–93, 110–112,
124, 125, 137

basic, 12, 13, 89
minimal, 12, 13, 89

SPIN, 32
state

abstract, 113
active, 20, 102, 105, 107, 108, 111
current, 97, 115, 118
deadlocked, 102
default, 19
destination, 21
global, 3, 5, 6, 9, 10, 16, 17, 19–22, 27,

31, 33, 34, 103, 104, 106–113, 117,
121

reachable, 17, 26, 27, 109
initial, 17, 20, 29, 34, 53, 77, 78, 104,

109, 114
input, 64, 102
local, 3, 5, 6, 16, 17, 21, 26, 103,

108–110, 112, 113, 116, 117,
119–121

active, 16, 116
passive, 16, 117
reachable, 16
unreachable, 3, 108–111, 124

output, 64
reachable, 3, 6, 9, 17
source, 21
terminal, 22, 79

state assignment, 17

state encoding, 5, 16, 17, 113, 116, 117,
119, 121, 124

one-hot, 119
state equation, 24
state explosion, 23, 41
state explosion problem, 25, 26, 113
state space, 3, 6, 9, 23, 25, 26, 60, 68, 70,

74, 78–80
condensed, 32
full, 6, 32, 56, 79, 82, 113, 117, 124
infinite, 3, 6, 23
reduced, 6, 7, 48, 123–125, 129

Statecharts, 5, 7, 16–19, 21, 102, 104,
106, 108, 124, 125

states
non-parallel, 17
parallel, 16, 17

step (of SFC), 17
terminal, 17

active, 17
step (of simulation), 11, 38, 74, 114, 115,

117, 118
subnet, 12, 30, 31, 63, 70–76, 82, 135, 136
substate, 18–20, 105

active, 105
immediate, 18, 20, 106, 107

superstate, 18, 106, 107
symmetric components, 32
system, 1–7, 15–17, 19, 21, 22, 26, 27,

29, 31–34, 41, 70, 75, 78, 85, 93, 95,
104, 105, 107, 110, 113, 123–125

asynchronous, 4, 5
control, 2, 6, 17, 100

logical, 5–7, 17
correct, 21, 87
cyclic, 3, 9, 26, 53
dynamic, 5, 16
embedded, 5–7
finite-state, 26
free choice, 32
hardware, 46, 123, 125
infinite-state, 26
labelled formal concurrent (LFCS), 28
multiprocessor, 80, 82
of equations, 104, 109

Boolean, 89, 102, 123
linear, 89

of linear inequalities, 89, 92
of sequents, 16, 17, 97
operating, 5

166 Index

parallel, 3–7, 26, 31, 33, 47, 87, 123–125
parallel discrete, 1, 3, 5–7, 9, 23, 25,

27, 28, 30, 33, 34, 63, 124
safety-critical, 3
sequential, 3
software, 46, 123, 125
state-transition, 7
synchronous, 4, 5

system engineering, 69, 123

trace, 28
transition, 9, 10, 17, 19

active, 16, 20, 101, 102, 107
dead, 9, 45, 66
disabled, 28, 29, 33, 34, 79, 100, 101
enabled, 9, 10, 14, 15, 20, 23, 28, 29,

33–37, 46, 47, 58, 78, 79, 100, 101,
106, 107

invisible, 32
live, 9, 45, 46

transition action, 19
transitions

dependent, 27, 33
independent, 11, 27, 28, 32, 33, 35, 41,

43, 96
parallel, 10

trap, 7, 12–14, 22, 23, 87–91, 93, 124,
125, 137

basic, 12, 13, 89
minimal, 12–14

tree, 18
AND-OR, 104
coverability, 23
parse, 83
search, 90, 91, 111, 131, 138–144
spanning, 132

UML, 1
unfolding, 26, 41, 80

finite, 26

variable
coding, 17
inertial, 16
input, 15, 97, 98, 115
internal, 15–17, 96, 97, 119, 120
output, 15, 16, 32, 98, 115, 119, 120

verification, 1–8, 22, 46, 57, 84, 87, 95,
108, 113, 117, 119, 121, 123–125

formal, 1, 3–5, 123, 124
symbolic, 117

Verilog, 1, 125
VHDL, 1, 125

well-formedness, 22, 125

XML, 84

Printing: Mercedes-Druck, Berlin
Binding: Stein + Lehmann, Berlin

	front-matter
	1Introduction
	2Main Notions, Problems and Methods
	3Reduced Reachability Graphs
	4Decomposition for Analysis
	5Analysis by Solving Logical Equations — Calculation of Siphons and Traps
	6Verification of Detailed System Descriptions
	7Conclusion
	back-matter

