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The concept of the Goldie dimension of a module has been dualized in two
different ways: by Fleury in [2] and by Varadarajan ir [5]. Fleury’s dualization was
of the lattice nature while the character of Varadarajan’s dualization was categorial.
It appears, however, that in fact the second one is entirely of the lattice nature while
the character of the first one is not. Modular lattices seem 10 be the right ground
to study such questions. Namely the concept of the Goldie dimension of modules
can be extended to modular lattices and the fact that the lattice dual to a modulae
one is modular itseif, allows us to define the dual dimension of a lattice as the Goldiwe
dimension of its dual copy. Moreover the Goldie dimension of the lattice (M) of
all submodules of a module M ard the classical Goldie dimension of M appear to
be the same. So do the dual ditnension of #(M) and the dimension corank A
defined by Varadarajan. This approach allows us to simplify proofs of all the main
results of [4,5] and gives new characterizations of th2 dimension corank. Besides,
the constant occurring in the Kuro§-Ore Theorem [3] - called Kuro3-Ore dimension
further on - as well as the spanring dimension defincd by Fleury [2] prove spevial
cases of the Goldie dimension.

As we are mainly interested in the above problems with reference to modules, the
terminology we use throughout the paper is taken from the theory of modules. Fos
the basic notations and results of the lattice theory we refer to [3].

Throughout the paper ¥ =(L;V, A) will denote a modular lattice with 0 and |
(0#1). The dual lattice #%=(L;A, V) is modular as well. Thus for modular
lattices the Duality Principle holds, i.e. if a statement @ about lattices expressed ia
terms V and A is true for all modular lattices, then the dual statement of ¢ (obtained
from ¢ by interchanging vV and A) is also true for all modular lattices.

Let fora,beL, [a,b] = {xe L |a<x=<b}. Obviously, [a,b) is a sublattice of + and
[0,1]1=L.
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For modular lattices the Isomorphism Theorem holds {3]:

A. For any a,be L the mapping ¢, :x~xA\b is an isomorphism of [a,aVvb] and
[anb, b). The inverse isomorphism is y,:x~xVa.

A subset I of L\ {0} is called join-independent iff for any finite subset X of I
and xe I\ X we have VXAx=0, where VX denotes the join of all elements of X.
By dualization we obtain the meet-independency and respective results for this
notion.

We need the following result concerning join-independency for modular lattices

[3):

B. If I is a join-independent subset of L\ {0} and x is a non-zero element of L such
that for any finite XC I, xA\V X =0, then the set IU{x} is join-independent too.

Zorn’s lemma implies that any join-independent subset of L\ {0} is contained in
a maxima join-independent subset /' of L\ {0}. By Bif0#£xe L\ I’, then VXAx#0
for some finite subset X of I'.

l'

Definition 1. (a) We shall say that a non-zero element a € L is essential in ¢ iff for
any non-zero element xe L, anx#0.

(b) We shall say that a lattice ¢ is uniform iff any non-zero element of L is essen-
tial in ¥.

Remark. The terminology in Definition 1 is used as in the theory of modules. As

in the lattice theory, a lattice ¢ is uniform means, that 0 is a meet-irreducible
element in <.

Lemma 2. Let a<b<c<d be elements of L. If b is essential in [a, c] and c is essen-
tial in [a,d), then b is essertial in [a,d].

Proof. Let xe[a,d] and bAx=a. Since b<c, a=(bAx)Ac=bA(xAc). But since b
is essential in [a, c] and xAc € [g, ¢}, xAc = a. Now by essentiality of ¢ we obtain x = a.
This means that b is essential ir: [q,d].

The following lemma is in fact the crucial step in extending the concept of Goldie
dimension of modules to modular lattices.

Lemma 3. Let a,b,c,de L and bAd=0. If a and ¢ are essential in [0, b] and [0, d]
respectively, then aV c is essential in [0,bvd].
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Proof. First we will prcve that avd is essential in [0, bvd]. For, let x be an element
of [0,bvd] such that xA(avd)=0. This and B give aA(xvd)=0 and hence
anbA(xvd)=0. Since a is essential in [0, b] and bA(xvd) € [0, b), bA(xvd) =0. Cer-
tainly xAd=0. Hence, using again B, we obtain xA(bvd)=0. But, xsbvd, so
x=0. This proves that avd is essential in [0, bVd]. Similarly we obtain that avc is
essential in [0,avd]. Now Lemma 2 completes the proof.

Using a simple induction, one can extend Lemma 3 to the following:

Corollary 4. If a,,...,a,,b,,..., b, are elements of L such that
(i) the set {b,,...,b,} is join-independent,
(ii) a; are essential in [0,b;] for 1<i<n,

then a,V---Va, is essential in [0,b,V---Vb,].

Theorem 5. The following conditions are equivalent:

(1) L does not contain infinite join-independent sets.

(2) L contains a finite join-independent set {a,,...,a,} such that a\v---va, is
essential in & and the lattices [0,a;] are uniform for 1 <i<n.

(3) sup{le contains a join-independent subset of cardinality equal to k} =
n<oo,

(4) For any sequence a,<a,=<--- of elements of L there exists j such that for al{
k=j, a; is essential in [0, a;].

Proof. (1)=(2). Let us notice first that for any 0 be L there exists a non-z¢ro
element ¢ < b such that the lattice [0, ¢] is uniform. If not, then by induction we wili
construct a sequence ¢, ¢, ... of elements of L\ {0} such the set {¢;.c3,...} is join-
independent and, for any k, ¢;V:--V¢; is not essential in [0,b). For &k =1 the con-
struction is clear. Now let us assume that we have constructed ¢;....,¢; .. Since
c;V-Vee_, is not essential in [0,b]), there exists O#d<b such that
{c,V---Vcx_;)Ad=0. By the assumption the lattice [0,d] is not uniform. Heace
there exist 0#d,,d,<d with d\Ad,=0. Put ¢;=d,. By B {c,....c;} is join-
independent and ¢,;V---Vc; is not essential in [0,b] as (,V---Ve)Ady =0 and
d,#0. Thus we have an infinite join-independent set of elements of L. This con-
tradicts (1).

Now let X be a maximal join-independent subset of the set of all elements xe £
such that the lattice [0, x] is uniform. By (1) the set X is finite, say X'= {¥;,....x. 1.
We claim that x,V-:-Vx, is essential in #. If not, then (x;V-+-VX,)Aa =0 for some
0+ae L. By the foregoing there exists an element 0# ¢ <a such that the lattice [0, ¢]
is uniform. Obviously the set {x),..., Xp, ¢} is join-independent. This contradicis
the maximality of X.

(2)=(3). Let us assume that L contains a join-independent set {b,,.... &, and
k>n. We show by induction (changing if it is needed indexes at @,) that

@i) for any 0<j=<n the set {a,,..., @, ;. »..., b} is join-independeni.
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For j=0 (i) is clear. Now let j=0 and c=a,V---Va;Vb;,,V---Vb; and consider
the element (a;Ac)V---V(a,Ac). Since all lattices [0, a,],...,[0,a,] are uniform, by
Corollary 4, (a,Ac)V:+-V(a,Ac) is essential in [0,a,V---Va,] whenever a;Ac+0 for
s=1,...,n. But by (2) a,V+--Va, is essential in ¥, so in this case (a;Ac)V---V(a,Ac)
is essential in .¢. This implies immediately that c is essentiai in ¥ which contradicts
the fact that cAb;,,;=0. Hence for some 1<s<n,aAc=0. Putting j+1=s, we
obtain that the set {ay,...,a;,1,b;,2,...,b;} is join-independent. Thus (i) holds.

In particular (i) implies that the set {a,,...,a,, 0,41, ..., 9%} is join-independent.
This is impossible as a,V+:-Va, is essential in ¥. The proof (2)=(3) is complete.

(3)=(4). If (4) is not satisfied, then there exists a chain 0#a,<a,<--- of
elements of L such that for any j=1, ¢; is not essential in some [0, a,;], with
k(j)>j. Let {j,} be a sequence of indexes defined as folios: j, =1, j,,=k(jm-1)
By the foregoing there exist elements 0#a; <a;  with a; Aa; ==0. By B the set
{a;,a},...,a,...} is join-independent. This contradicts (3).

@=(). If (1) is not satisfied, then L contains a join-independent set
{ay,...,a,,...}. Thena;<aVa,<a;Va,Va;<--- and for any k, (a;V---Va)Aa,, =
0. This contradicts (4).

Now we can define the Goldie dimension of a modular lattice.

Definition 6. If ¥ satisfies the equivalent conditions (1)-(4) of Theorem 5, then the
Goldie dimension u-d # of ¥ is equal to n. If ¥ does not satisfy the conditions,
then we put u-d ¥ = oo,

By Theorem 5 we obtain the following:

Corollary 7. (a) Ifu-d ¥=n<oo and ae L, then u-d[0,a] <n and inequality is strict
iff the element a is not essential in ¥.

(b) Ifu-d ¥=n<oo and the set {a,,...,a,} of elements of L is join-independent,
then

k
u-df0,a;v---va] = ¥, u-d[0,a;]<n,

j=1

Dualization of Definition 1 leads to the following:

Definition 8. (a) We shall say thai an element a#1 of L is small in ¢ iff for any
element x#1 of L, avx#i.

(b) We shall say that a laitice ¥ is hollow iff any element x#1 of L is small in ¥.

Dualizing Theorem 5 we obtain:

Theorers 9. The following conditions are equivalent:
(1) L does not contain infinite meet-independent sets.
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(2) L contains a finite meet-independent set {a,,...,a,} such that a,A---Na, is
small in ¥ and [a;, 1] are hollow for 1 <i<n.

(3) sup{k | L contains a meet-independent subset of cardinaiity equal to
k}=n<oo,

(4) For any sequence -+-a,<a,_;<---<a, of elements of L there exists j such
that for all k=j, a; is small in [a, 1].

Now we can define the dual Goldie dimension of a modular lattice.

Definition 10. If ¢ satisfies the equivalent conditions (1)-(4) of Theorem 9, then
the dual Goldie dimension h-d ¥ of % is equal to n. If %' does not satisfy the con-
ditions, then we put h-d ¥ =00,

Obviously we have h-d ¥ =u-d #°.

Dualizing Corollary 7 we obtain:

Corollary 11. (@) If h-d ¥=n<ow and aeL, then h-d[a,1]<n and inequality is
strici iff the element a is not small in %.

(b) If h-d ¥=k<oo and the set {a,,...,a,} of elements of L is meel-
independent, then

h-da,A-+Aa,, 1]1= ¥ h-dla;, 1] <k.
i=1

Since the lattice #(M) of all submodules of a module M is modular, we can apply
the above results in this case.

Let us notice that if N is a submodule of a module M, then:

(a) N is essential (small) submodule of M iff N is an essential (small) element in
the lattice A(M).

(b) The module M is uniform (hollow) iff th

Now Theorem 5 gives the following well known resuit.
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Corollary 12. Given a module M the following conditions are equivalent:

(1) M does not contain an infinite set X of non-zero submodules of M such that
if Ny,..., N €X, then the sum N,+---+ N is direct.

(2) M contains non-zero uniform submodules Ny,...,N, such that the sumn
N=N,+---+N, is direct and N is an essential submodule of M.

3) sup{klM contains a direct sum of k non-zero submodules} =n< e,

(4) For any sequence N, ¢ N, C --- of submodules of M there exists j such that N,
is an essential submodule in N, for k=j.

Remark. Obviously condition (1) of the above Corollary and the fact that M con-
tains no infinite direct sum of non-zero submodules are equivalent.
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Let us notice now that if N is a submodule of a module M, then the sublattice
[N, M] of the lattice #(M) is isomorphic to #(M/N) in a natural way.
Now Theorem 9 applied to M) gives:

£V cmnllnmn: 12 Ers rusyy sundils A thoa fnllnwing rnanditinnce avo onuivalon
COIONGALY AJe. I"UI Gy IMiVGWIT IVL T JUNU VIS LUTIGHIVIID WIT CyYRivTWILIse,
{IN M containe no infinite set X of proper submodules such that if
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N...... N...e then {N-n nN;)-i—N. |I—M.
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(2) M contains proper submoa'ules N,,...,N, such that
@) (N;N---NN;_{AN; . 1 N---NN,)+N;=M for 1<i<n,
(b) N\N---NN, is a small submodule of M,
(c) M/N; are hollow modules for 1 <i<n.
(3) sup{k|M contains proper submodules Ny, ..., Ny such that (N;---ON;_;N
N;.1N---NN,)+N;=M for lsisk} =n< oo,
(4) For any sequence N2 N, 2 -+ of submodules of the module M there exists

-----

Jj such that N;/Ny is a small submodule of M/Ny for all kz=,.

The Chinese remainder theorem (cf. [5]) implies that if N,,...,N, are sub-
modules of a module M such that (NM,N---NN;_,AN;,;N:--NN,)+N;=M for
1 <i<n, then the natural homomorphism f of M to the product [];_, M/N; is ‘on-
to’. Obviously ker f=N;N---NN,. Conversely, if f is a homomorphism of M on-
to the product [];_, M; of non-zero modules M; and N;=ker n;° f, where 7; is the
natural projection of []7_, M;, then

(i) (N;N--NN,_;AN;,;N--NN)+N;=M

i+1 =

orl<i<n

(ii) ker f=N;N---NN,.

Now conditions (2) and (3) of Corollary 13 can be reformulated as follows:

(2’) There exists a homomorphism f of M onto the product of # non-zero hollow
modules such that ker f is a small submodule of M.

39 sup{k|M can be homomorphically mapped onto the product of & non-zero
modules} = n< o,

t,eualmy (

\_f
g

]
=
(4]
w

In l“] Varadaramn mtroduced the notion of corank of a module M, defining
corank M = n if M satisfies condition (3’) and corank M = oo otherwise. In [4] Sarath
and Varadarajan proved, in a more complicated way equivalence of (2’) and (3').
Actually corank M =h-d AM), so corank is simply equal to the Goldie dimension
of the dual lattice #°(M) of all submodules of M.

2. Now we prove that the Kuro§-Ore dimension of modular lattices is a special case
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of the Goldie dimension. First we prove:

Theorem 14. Let ¥'=(L; A, A) be a modular lattice with 0 and 1. If 1 =a,V---va,
is an irredundant representation of 1 as a join and the lattices [0,a,}, ..., [0,a,] are
hollow, then h-d ¥ =n.

Proof. We proceed by induction on n. For n=1 the Theorem is clear. Let n=2 and
consider the lattice [0,4,], with 4, =a,V---Va,. Obviously the element 4, is a unit
in [0,4,] and 4, =a,V---Va, is an irredundant representation of @, as a join and the
lattices [0,a;] are hollow for 2<i<n. By the induction assumption we have
h-d[0,d,] =n—1. Since @,Va; =1, by the Isomorphism Theorem A, we obtain

[@,,1]1=[d,,4,Vva,]=[4, ay,a;] C [0, a,].

This implies that the lattice [d,, 1] is hollow.
If h-d #£n, then, by Theorem 9, L contains a sequence of elements b,,..., b,
such that the set {a,, b,,...,b,} is meet-independent. Now it is easy to see that

[/\ b, 1] - [/\ b,-,d,v(/"\ b,-)] = [al/\</"\ b,~>,d,] c[0,4,].

i=1 i=1 i=1 i=1

Hence h-d[0,d;]=n. This contradicts our assumption. Therefore h-d » <n.
Now let @, =a;A---Aa;_Aa;, \A---Aa, for 1<j<n. We have

i#j
Hence the set {a,...,d,} is meet-independent and h-d ¥'=n. This proves the
Theorem.

Let us observe that a lattice % is hollow if and only if 1 is a join-irreducible
element in %. So Theorem 14 implies:

Corollary 15 [Kuro§-Ore]. If 1=a,V---Va,=b,V---Vb; are irredundant represen-
tations of 1 as a join of join-irreducible elements a,,...,a,, by, ..., by, then k =n.

Now we will shortly discuss the notion of spanning dimension of modules in-
troduced by Fleury in [2]. Trying to dualize the Goldie dimension of modules Fleury
considered modules satisfying the following (in some sense dual to the condition (4)
of Corollary 12) condition:

(*) For each strictly decreasing chain M, DM, D --- of submodules of M, the M,
are small in M from some point on.

He proved that if a module M satisfies (*), then

(1) M=N,+++-+ N, for some hollow submodules N; (1<i<k) of M.

) f M=N;+---+N,=Ni+---+ N,, are two irredundant representations of M
as a sum of hollow submodules, then k =m.
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Then he defined the spanning dimension of M to be equal to Sd(M) =k.

The condition () can be extended to modular lattices:

(»») For each (strictly) descreasing chain a;,>a,>-- of elements of L, the
elements g; are small in ¢ from some point on.

- 0y L . . « sl .

Let us define G={{a,,...,a;} |a el, Vi,a;=1 and the join V!, a; is
irredundant}. We can partiaiiy-order the set G putting {a;,...,a;}={b;,...,b,} if
e imians 2 Fm 1 o Lo tn o taten A nmeena alacencts b P )l we T At 110 Alacasera tlame
Cvily llj 101 1=K 13 a JULlL UL QULHC CICHITHW U; 1UL I S LOCL ud Uudelve Lial
if {a,,...,a;} is a2 minimal element of G, then the lattices [0,4;] are hollow. Now
the Kérig Graph Theorem (cf. [1]) implies that if ¥ satisfies (xx), then (G, =) is
Artinian. In consequence if a lattice ¥ satisfies (*+), then for some elements
ay,....,ar€L, 1 =a,V---Vay, [0,a;] are hollow for 1 =i<k. Now by Corollary 15, if

l=a;Vv---Va,=aVv-Va, are two irredundant representations of 1 such that [0, a;]
(1<i<k) and [0,a]] (1=<j=<n) are hollow, then k=n. This extends the notion of
the spanning dimension of modules to modular lattices.

Remark. Obviously the condition (**) implies condition (4) of Theorem 9 but these
conditions are not equivaient (in fact even the condition (*) is not equivalent to con-

1. s oA o~ T3 %

dition {(4) of Co lary i3 (see 151)). ﬂence me spannmg dimension is not the
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