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Let A be a finite dimensional algebra over an algebraically closed field k.

In the study of mod A, the category of finitely generated A-modules, it has been
recently recognized that the Auslander—Reiten quiver 0,4 of A is a very useful tool.

We recall the definition of Q,: Consider a system of representatives {M;};c; of
the isomorphism classes of indecomposable modules in mod A. Then Q, has as
points the objects M;, iel. We put an arrow M;—M; if and only if there is an
irreducible map between M; and M,.

Now if M; is a non-projective indecomposable A-module, Dtr M; is a non-injective
indecomposable /1-module; here tr is the transpose and DM = Hom(M, k). Hence
Dtr M;= M, for some M;. In this way we obtain an operator on the non-projective
objects with inverse trD.

Let C be a component of the Auslander—Reiten quiver, containing projectives.

We recall that a section in C is a subset S of C having the following properties:

(i) if Me S, then Dtr M ¢ S.

(ii) if Me S and M —N is an irreducible map, then either Ne S or Dtr Ne S.

In many cases there exists a section S such that C can be embedded in a good way
in Z8, where ZS is the translation quiver defined by C. Reidtmann (see Section 1).
This is the case for instance for hereditary algebras [3]. In this paper we will consider
algebras A such that the category #, of indecomposable projectives can be
embedded in some good way in ZI" for some finite quiver /. In this case, the
connected components {C,} o7 Q, containing projectives will be embedded in ZI" in
such a way that properties of A are given by geometrical properties of ZI". We will
prove that these components C; are preprojective: that is C; does not contain
oriented cycles and for any Me C; there is some n=n(M) such that Dir" M is
projective.

Each member A of the family of algebras constructed in this paper admits a (.#)-
cover in the sense of [2]. F. Larrién has shown recently the converse of this result.
We thank F. Larrién for this useful remarks in the presentation of this work.

This work has been reported by the second autho~ at the 786th meeting of the
American Mathematical Society in Pittsburgh (May 1981).

0022-4049/83/%03.00 © 1983 North-Holland
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1. Prelimiraries

1.1. Definitions and notation (see [4]). A translation quiver D= (D, 1) is a quiver D
together with a subset P, of D, (the set of points of D) and injection 7: Py— Dy such
that:

(a) D has not loops nor double arrows.

(b) x~ =(zx)™ for each x € Py, where x* (resp. x~) denote the set of points y in D,
which are connected by an arrow x—y (resp. y—x) in D.

Let kD be the path category associated to the quiver D over the algebraically
closed field k. Consider .# the ideal of kD generated by the mesh relations in D:
Ux= ~E_‘ Yax'Vuxz (xe Py)
where y_ , is the path given by the arrow z—x.
Now consider the Riedimann category of D:

k(D)=kD/.4.

1.2 Definition. If D=(D, 1) is a translaiion quiver, and .¥' C Dy, then we say that .’
is a section in D if and only if:

(a) if xe .7, then tx ¢ .7.

(b) if x—y is an arrow in D with xe .7 then ye ¥ or tye .¥.

The proof of the theorems in this paper will use induction on some partially
ordered set of sections.
Now fix I" any quiver without oriented cycles and double arrows. We will be

specially interested in the iranslation quiver ZI” which was defined by Riedtmann
(see [4]) in the following way:

(Zl")(): ro xXZ
and there is an arrow
D= (¥ J)

in ZI" if and only if i=/ and there is an arrow x—=y in I', or j=i+ 1 and there is an
arrow y=x in I. The translation t of ZI" and its inverse T are given by:

(i) =i—-1) and f(xi)=(xi+1).

We will study Mod (D), the category of (contravariant additive) functors from
the Riedtmann category k(D) to the category of abelian groups, for some translation
gunivers D. Namely, we will be in:erested in ZI” and certains translation subquivers.

It is convenient to prove next proposition in the general case after this:

1.3. Remark (Riedtmann). Whenever we have a translation quiver D and a full



Preprojective components for certain algebras 3

subquiver D’ of D, there is an induced structure of translation quiver in D.
Moreover, there is a natural way to identify the categories k(D’) and k(D)/I, where I
is the ideal of k(D) generated by the points of I" which are not in D".

1.4. Proposition. Suppose D= (D, 1) is a translation quiver. Whenever x € P,, the
Sfollowing sequence of functors is exact in Mod k(D):

(=) —— L1 (=, 2) —— rad(~, ) ——0
IEX™
where rad(—, ?) is the Jacobson radical of k(D), a is given by ((—, :x.z))zex- and by
(= V2.))zex-- If x& Py, then B is an isomorphism.

Proof. Assume xe€ P,. Clearly 8a=0 by definition of .# and it is easy to see that 8
is epimorphism. Now take o € i1(y,z;) such that 8(g)=0. Then f(cg) € .#(y, x) and
s0 B(a) =¥, uju,,v; for some v; € (¥, 1)), u;€(y),x) and y; € P,.

(@) If u; ¢ rad(y;, x), then y;=x and u;=1;1, for some ;€ k.

(b) if u; erad(y;, x), then u; = B(u;) for some u; € 11(y;,z)).

Therefore, considering both cases, we may write:

B(o)= ¥ Buju,v; + tuv
J

for some ve (), tx) and te k.

But (-, u,)=pa and then, B(c)=p(L u;uijj+atv). Since kD is free, we have
o= Y uju,v;+atv. Thus, modulo .4, we have g =atv.

The proof of the last statement is similar (case (a) caza not occur). []

2. (P)-Generating systems

Observe that ¥;:=Iyx {i} is a section in ZI" for each ie Z. We will say that
7 C(ZIN)y is flat if 7 C Y; for some i and .7 is connected in ZI". An arrow x =y in
2T is called flat if {x, y} is flat.

Whenever .7 C(ZI')y, we will use the following notation:

o*(NH=U 7, o0 ()=l ")

n20 nz0
and
O(7)=0"(ANUO ().

2.1. Definition. A family U={.7,,...,.7;} of flat sets is called (P)-generating
system if the following axioms are satisfied:

(@) O(7;))NO(7;)=0 whenever i#.

(b) There are not flat arrows from O*(.7;) to .7; if i#}.

(© @Mo=U., 0(%).
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A quiver I has already been fixed, now we fix a (P)-generating system U in ZI'
and we denote # =|JU.

Define By=0*(#)/# and 7I" be the full translation subquiver of ZI" whose
points are (7I')y=(ZI')o\ Bo.-

Now consider #I, the full translation subquiver of 7I' having as set of points
(#IN)o= (7I')y\ B, where

B ={xe (7F)olHomk(,r,(—, T"x) l »=0 for some n=0}.

We will study aigebras of the form

A=ALU)=End 1) (11 w)
ue ¥
where .«/(/I") denotes the additive category generated by k(/I).

First, we will prove the following results which are basic in the proof of next
theorems.

Let .7 be the family of flat subsets .7~ of ZI” satisfying the following conditions:

(a) There are .7}, ...,.7,€ U such that ./‘=U,":l t".7; for some n; =0.

(b) .7 is maximal satisfying property (a). That is if .7 is any other flat subset
satisfying (a) and .7 C ./ " then .7 = ./",

Observe that any xe /I is contained in some ./ € .#: namely, x € .#; for some i and
it is clear that the connected component of .7, 7I" containing x satisfies properties
(a) and (b).

If .7y, .73 are subsets of (ZI'),, we write ./} <./ if §".7,C .7, for some n=0.

2.2, Lemma. {7 N(7I), ’ .7 € .7} is a family of sections in 7I" which is partially
ordered by < and covers /T.

Proof. We claim that for any ./ € .#, .7 N(7I), is a section in 7I". In order to see
this, take .7 € .#, then ,/"=Uf, , T.7, for some {.7},..., 7} CU.

Assume we have an arrow x—y in 7" with xe .7, Then we have xe ".7; for some
i, and by definition of (P)-generating system we also have that ye "/, for some
n=0 and some ./, € U.
First case: x, y € ./; for some j.

We have that ./ = ./ U¢"/.C./ is a flat set which clearly satisfies property (a).
Therefore ./ = / because ./ is maximal. In particular, ye ./,
Second case: x€ ./;and ye ./, for some Jj.

By definition of (P)-generating system, we must have n>0. Hence tve /I, and we
have as before that

/; =/ U f‘n B ‘)/}C /_I
is a flat set satisfying (a). Then /= / and tve . 0O

2.3. Lemma. {./ N(/T), | /€ .»} is a family of sections in 7I" which is partially
ordered by < and covers /T.
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Proof. Observe that whenever x € B, then 7,€ B,. It follows that whenever .¥ is a
section in 7', then .¥ N(#IN)is a section in /. O

3. Mod # in terms of Mod k(/I")

We will denote also by # the full subcategory of k(#I') whose objects are the
points in #.
We have the very well known pair of adjoint functors

H

Mod # Mod k(/I")

Res
where Res is the restriction functor and H is its right adjoint given by
HN)®)=((=%)| 0 N)

for any NeMod # and xe(#I'),. Here we have Res H=id, since # is a full
subcategory.
We will prove that

H
Mod # —— {M |M=H(N) for some NeMod #}

is an equivalence of categories and we will give a more handy description of this
category.
Remark 1.3 gives a precise meaning to the following statements.

3.1. Lemma. The following sequence of functors ’

=0 ]o= L (= x|~ (=09 ,~0
X,€X
is exact in Mod u whenever xe€ (/I'),.

Proof. First observe that rad(~, x)| , = (-, #x)| , because tx¢ 7.
Using the fact that Res is an exact functor and Proposition 1.4, it is enough to
consider the case ¥x g (/I'),.
We will denote by (—, y)’ the projective corresponding to y in k(7I").
Since 7x € B, and x ¢ B,, we have that (—, ¥x)’ I »=0. We know from 1.4 that
(= x| = L (%) |, ~rad(=, 20|, —0

N EX
is an exact sequence. But, as before,

0=(-,Tx) | o =rad(—, tx)’ | v
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 From 1.3, we know that there is a commutative square

s Y2 ¥Y, _._\Il
(=X} | v AR\ THA) |y

(=X |y — (= x) ]|,

and we get the desired result. []

3.2. Proposition. If M=H(N) for some NeMod # then for any xe(4I')y the
following sequence is exact:

0—-M(zx)~ 11 M(x))— M(x).
xext
Proof. Applying the funcior (-, N) to thc¢ sequence appearing in last lemma, we
obtain the exact seqience
6-((= |, M)~ LL (= x) | 1, N) = (=0 | 1 N)

X;EX

which is precisely the sequence we wanted. [

We will denote by .#( #) the full subcategory of Mod k(7I") whose objects are the
functors M such that for any xe (#I'),, the sequence:

""""

xex’

is exact.
3.3. Lemma. [fxe(/I')gand Me A( ), there is a monomorphism

MS,,)
M(x)— Ll n,M(y)

VE &

where each 6,,€ (¥, X) for 1 <iy<n,.

Proof. We have in (/M) a partial order induced by the relation x, <x, if there is an
oriented path going from x; to x,. We will prove the lemma by induction on this
partial order.

If xe #, there is nothing to prove; this holds in particular for any x minimal.

Suppose the lemma is proved for each z<.x and assume x¢ #. Let us prove the
lemma for x. Since x¢ #, we have txe (#I')y. Then

M)~ 11 M(x)
vern'

is @ monomorphism because Me .#( #). For each arrow tx—x, in /I, we have
another x,—~x in /I" and hence we may apply our hypothesis to each one of this x;



Preprojective components for certain algebras 7

obtaining monomorphisms

M(x)~ Il n\,M(y).

The composition

M- 11 Mx)- 11 1L M(y)

newxt xewxt yev

is the morphism we were looking for. [J

3.4. Remarks. For any M e #(#) we have:
(i) If M|,=0then M=0.
(ii) If xe(#I')y and 0+ m € M(x), then there is some ¢ € (y, x) with ye€ # such
that M(¢)(m)#0.
(iii) In particular, if (-, x) | »=0 for some xe (#I')y. then M(x)=0.

3.5. Proposition. If xe(#/T')y, then (-,x)e Z(#) if and only if for any ze (/")
and 0+ a €(z, x), there exists some ¢ €(y,2) with ye 7 and a¢ +0.

Proof. If (-, x)e #(#), then by last remarks the other condition is satisfied.
Now suppose this last condition and let us prove that (-, x) e #(+#). By the dual
proposition of 1.4, we have an exact sequence of functors:
(7z,-)~ 1L (z;, -)—rad(z, -)—0

€z

for any ze€ (#/I')o. Then
(fZ, ")—' u (Zb —)—’(29 _)

ziez'
is exact and in particular

(Tz, %)~ Ll (i, X) (2, X)

is exact.
Now we want to see that

0— (72, 1)~ 11 (z;, %)
is exact. e
If 0% a e (T2, x), then we know that there is some ¢ € (y, ¥7) with ye # and a¢ #0.
Since ze(#I')y, we can assume that ¢ is some path and tten it must factorize
through some arrow z,-—sz. Knowing that a¢#0, we have (p,2)(@)=ay#0.
Hence the morphism &, which is induced by the arrows z;,— 7z in /I, is a mono-

morphism. [J

3.6. Lemma. If xe(/T)y, rad(—, x) is contained in some M e 4(%) and(—,x)l +#0,
then (—, x)e A(#).
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Proof. For any 7€ (#I'), such that z#x the following diagram is commutative:

(zx)=rad(zx) ——— M)

11 n,rad(z, ) &— 1L n,M(y)

ve v ve v
where y is the morphism given in 3.3, hence 7 is monomorphism too; and if z=x, we
have that (—,x)] ,#0. We can see that in both cases, the condition in the last pro-
position is satisfied. [J

3.7. Proposition. (1) If M, Me #( ) are such that M| ,=M |, then M= M.
(2) If we have M%::M in .A(%)and ¢ l =W I v then ¢ =y,
v

Proof. In order to prove (1), we are going to construct an extension M 2. Mof the
given isomorphism M | ,—2» M |,. This will be done by induction on the partial
order of the family of sections which are covering #I” (see 2.3).

If .+ is a minimal section, then .» C # and ¢.= ¢, is defined for any xe .7.

Now assume we have defined ¢ for any ze #, .» ' section smaller than .7, in such
a way that each ¢. is isomorphism and whenever we have an arrow 732 with
2,2’ in sections smaller than .7 then

M)
MZ)Yy—— M)

o, | é.
1

- , :\’((2’) _
ME) — M@2)
comn:utes
We will define ¢, for any xe .7 in such a way that:
(*) Whenever we have an arrow z — x in 71" the following square is commuta-
tive:
€ M)
M) —— M(2)

0, 0.

- .'W((I) _
M(x) —— M(2)

and this will finish the proof. This will be done by induction on the partial order of
/.
We omit the construction when x is a minimal point of . Assume we have

defined ¢ for any ze .» with z<x and we have proved () for all z<x. We will
construct @,.
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If xe #, define ¢,=¢,. Let z—>» x be an arrow with ze ¥ and z<x or Zina
section smaller than Y. We know by Lemma 3.3 that there is a monomorphism

M@ £, ZIE.E. n,M(y).

Consider the diagram

M(x) » 11 n,M(y)

M(a

@
* M(2)
ve ¥
¢x=6.\' (a) 521 (b) Iléy:ll%
)
* M(2)

M) » 11 n,M(y)
ye ¥

By the induction hypothesis, (b) is commutative and the exterior rectangle
commutes because ¢ is natural. Therefore, using that # is monomorphism, th:
square (a) turns out be commutative.

Now consider the case x ¢ #, then x= 7z for some ze (/I'). Since M, Me #{(¥),
the sequences:

0—M(72)~ 11 M(z)~M(2)
zezt

and the corresponding one for M are exact. Here, each z; <7z and z is in a section
smaller than . Hence by the induction hypothesis, we have isomorphisms @, @.
such that the following diagram commutes; this implies the existence of ¢;,:

0

1|Vl(fz) — 1 M@z)— M)

<

b us, .
[}
+
00— M(iz) —— U M(z)) — M(2)
The commutativity of this diagram implies the statement (x). The proof (2) is
similar, and we omit it. [

3.8. Theorem.
A()y={MeMod k(/I') IM-:—H(N) for some Ne Mod #}.

Proof. First consider M= H(N), then by 3.2 Me .2(#). Now suppose Me #(#)
and take M=H(M | ,). Then Me #(#), but # is a full subcategory of k(/I') and
then M| ,=M|,. The result follows from last lemma. [J

3.9. Corollary. Mod LN A(4) is an equivalence of categories.

Proof. Since Res H=id, H is faithfull. By the last theorem H is dense, and, by
3.7(2), His full. [
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3.10. Remark. The equivalence in last corollary restricts to an equivalence
mod %—ir(fﬂ) where mod # and r(#) are the full subcategories of Mod # and
A(#) respectively whose objects are functors in to the category of finite dimensional
k-vector spaces.

4. Almost split sequences in Mod #

In this section, we will restrict ourselves to the study of algebras A =A(l,U)
satisfying the following condition:

(*) (-, )| +#0 for any arrow y;—y in /', whenever y€ .

This section will be devoted to the proof of the following result:

4.1. Theorem. If (-, x)|,#0, then:
(A) (-, x)er(¥).
{B) {(—,x | iad § SERY T ') [ v is minimal left almost split with each (—, x;) € v(¥).
) If (-, x) l s IS not injective, then
O—-’(_v x) | v u (—: xi) | ¥ _.(-s fX) ' v '

XEX*

is an almost split sequence with each (-, x;)e v(#) and (—, Tx) e v(%).
(D) (-, x) | » is injective if and only if (-, tx) i v=0.

This theorem enables us to give a good geometrical description of the preprojec-
tive components of A.

We will need some lemmas in the proof of the theorem, which will be done by
induction on the partial order of the sections covering #I” (see 2.3).

4.2. Lemma. If (-,x)ev(#) and statements (B) and (C) hold for this x, then (D)
also holds.

Proof. If (—,x)i »+ 1 not injective, then by (C) we must have (-, 7x) | +#0.
Now assume (—, x) | , is injective. By assumption,

(_v-):)|f/_’ u (_bxi)lﬂ

N ex’

is minimal left almost split and, in particular, it is an epimorphism. From 3.1 we ge:

(-0 |,~ L (-x)|,~(=],~0

xex’

exact and therefore (—,fx)' «=0. [

4.3. Lemma. Take (—,x)er(#) and assume that for each arrow x—x; in /I" we
have (-, x)er(«). Then if

(“sx)li/ '—)J..I;(-,X,‘) l 4
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is minimal left almost split with ICx*, then I=x*.

Yx,x; . .
Proof. Assume x—= x; is an arrow in /T, then (-, x;) e t(%). Take a= (-, Pxx)s
hence

aly:(-,x)lw'—’(—s-xj)llh

The map i:(-,x)~1l, (-, x;) is given by the matrix ((-, Yx.x;)) and we have
il,, (=) | ¢ 1 e (=, X)) | ». Since il,, is left almost split, a | v can be factorized
through i |4. Thus @|, =0 °i |, for some . Now applying H and using 3.7(2), we
get a= H(a | ;)= H(g) © H(i | ,) = H(g) © i. Moreover,

H(o): 1L(-,x)~ (=, x;)

x;el
is induced by maps d, ,; :x; ;. Therefoire

Vx, x= Z ’5,\','. xj ° 5x.x;
x,€l
and this is impossible unless x;e 1. 0O

4.4. Lemma. Suppose (-, x)er(¥) and
0—=(-,x) I « 1L (-, x) | ¢—>L—0

xjex*
3

is an almost split sequence with each (i, x)er(¥). Then (-, Tx)ev(#) and

0-(=x|,~ L (-,x)|, = (-, 2], ~0

Xi€EX

is an almost split sequence.

Proof. From Lemma 3.1 we get

0———"(",)()'#——" u(—,Xj)ig—’ L __—'0

=

(= )|,—0

=0, —— L (x|,
X, €X
In particular, txe (#I")y. Then using 1.4 and the fact that H is left exact we get the

existence of a monomorphism ¢ in the following commutative diagram with exact
rows:

0———(=,9—— LL(-,x)

xext

H(L)
?

d

|
(- x)— L (-, x) —— rad(-,&x) —0

xex’

Hence, from Lemma 3.6, (-, ix)er(¥). U
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Proof of 4.1. In order to prove our theorem, it will be enough to prove the
following:

Assume that whenever .7’ is a section smaller than .7 the theorem holds for any
point in .#‘. Then the theorem is true for all the points of the section .7.

We can observe that if .# is minimal, the hypothesis hold for .7.

Step 1: (A) holds for any point in .7 N #. Suppose x is minimal in .» N #. From 1.4,
rad(—, x)=1I, ., (~,z,) and using the (*)-condition, we get (=,2)| + %0 for each
arrow z;—x in /I". Since x is minimal in ¥ N #, each 2, ¢ # N 7.

If z;e€ 7, then 1z is in a section smaller than .# and by hypothesis (-, 7z,) | , is not
injective and (-,z)er(#). If z,¢.# then, again by hypothesis, we have
(—,z) €v(#). The result follows from 3.6.

Now assuming that (A) holds for any ze.» N # such that z<x for some
xe.» N #, we should prove (A) for this x. The proof is similar to the above part.
Step 11: (A) is true for all objects in .». Take any xe€ .7, we can assume x¢ #.
Therefore txe #I" and tx is in a section .7 ' smaller than .7. It is easy to see that (C) is
true for 7x and therefore (—, x) e v( #).

Step 111: The theorem is true for any x minimal in .7,

Consider the minimal left almost split map for (-, x)|,: (—.x)| « — 11 B, with B,
indecomposables.

If B; is not projective, then there is an irreducible map Dtr B, = (-, .\')I o 1fxe @,
then 7x e (#I'), and applying (C) to this zx we have Dtr B,=(-.,2)|, for some arrow
z=xin /I If xe #, then as we had in step [, rad(-,x)=1l.., (-,2) and hence
Dtr B; =(—,2)|, for some arrow z—x. Therefore, in both cases, z€ .7 a section
smaller than .7, since x is minimal in .», and the result holds for z. Consequently,
B,=trD(-,2)| ,=(-, 2|, with (-, f2) e r( #).

If B, is projective, B,s(-,y)l . for some ve # and there is an arrow x—y. We
have ve.r by 2.1(b). Then by step I, (-, y)er(#). Now step 11l follows from
Lemmas 4.2, 4.3 and 4.4.

Step IV: Assume the theorem holds for any z€ .7 such that z<.x for some x in 7,
Then the result also holds for this x.

As before, we consider the minimal left almost split map for (w.,\‘)l £ («—..\')' 7t
11 B, with B, indecomposables. And again, if B, is not projective, we have Dir B, =
(=.2) | » for some arrow z—x. Then cither z€ .7 a section smaller than 7 or z€ . In
both cases, the theorem holds for z. Thus B,=uD(-.2) I . =(-, f:)i . and
(=T er(¥).

If B, is projective, as before B, =(-, _v)l . for some ve # and some arrow x—yin
-+, Hence by step I, (=, M) e v( #). Finally, step 1V follows, as before, from 4.2, 4.3
and 4.4, (]

4.5. Corollary. A is of finite representation type if and only if there are not
nonzero paths in k(71°) of arbitrary length. And in this case, each connected

component of the Auslander—Reiten quiver of A has a (P)-cover in the sense of
| PAT
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Auslander - Reiten guiver of A

 ATOOOOEREEN A
OREKREHIIKRKIRIN

RIXKKHKKKKIKKKIKAKRKAKNK

Fig. Ic.

Finally, in order to clarify underlying geometric ideas in this paper, we consider
two examples. The first one (Fig. 1) corresponds to the algebra of the following
bounded quiver with relations fy = fide = e = ndd=0:

o
(4

o

1
B ¥

I3 4 [4

. n t 17

1L

(This example is considered in [3].)
The second one (Fig. 2), which is trivial in some sense, has a more revealing

behavior.
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i

Fig. 2a. Fig. 2b.

Auslander-Reiten quiver of A
\/\, >\\

Fig. 2.

In Figs. 1a, 2a, the sets of points enclosed in dashed lines represent the members of
the (P)-generating system; in Figs. 1b, 2b, they correspond to the family of sections
constructed in Section 2. Finally, in Figs. 1¢, 2¢, they correspond to sections of the
(P)-cover in the sense of [2].

We make the convention that all arrows are directed from left to right and we
omit the orientation,
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