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Let /1 be a finite dimensional algebra over an algebraically closed field k. 
In the study of mod /i, the category of finitely generated /i-modules, it has been 

recently recognized that the Auslander-Reiten quiver Qn of /1 is a very useful tool. 
We recall the definition of Qn: Consider a system of representatives {h 

the isomorphism classes of indecomposable modules in mod /1. Then Q,l has as 
points the objects Mi, ie I. We put an arrow Mi +Mj if and only if there is an 
irreducible map between Mi and Mj. 

NOW if Mi is a non-projective indecomposable /i-module, Dtr Mi is a non-injective 
indecomposable /l-module; here tr is the transpose and DM= Homk(M, k). Hence 
Dtr MiZMj for some Mj. In this way we obtain an operator on the non-projective 
objects with inverse t.rD. 

Let C be a component of the Auslander-Reiten quiver, containing projectives. 
We recall that a section in C is a subset S of C having the following properties: 
(i) if ME S, then Dtr M$ S. 
(ii) if A& S and 1M-GV is an irreducible map, then either Rre S or Dtr NE S. 
In many cases there exists a section S such that C can be embedded in a good way 

in ZS, where ZS is the translation quiver defined by C. Reidtmann (see Section 1). 
This is the case for instance for hereditary algebras [3]. In this paper we will consider 
algebras /1 such that the category :Ip, of indecomposable projectives can be 
embedded in some good way in Zf for some finite quiver r. In this case, the 
connected components (Ci) 0; Qn containing projectives will be embedded in Z[r in 
such a way that properties of ,4 are given by geometrical properties of ZT. We will 
prove that these components Cj are preprojecrive: that is C’ does not contain 
oriented cycles and for any .VE Cj there is some n =n(M) such that Dtr” A4 is 
projective. 

Each member /i of the family of algebras constructed in this paper admits a (.@)- 
cover in the sense of [2]. F. Larri6n has shown recently the converse of this result. 

We thank F. Larri6n for this useful remarks in the presentation of this work. 
This work has been reported by the second author at the 786th meetins of the 

American Mathematical Society in Pittsburgh (May 1981). 
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1. Preliminaries 

1.1. Defiaalitions and notation (see [4]). A translation quiver D = (0, r) is a quiver D 
together with a subset PO of DO (the set of points of 0) and injection z : PO -‘Do such 
that: 

(a) D has not loops nor double arrows. 
(b) X- = (r+‘x)+ for each XE PO, where X+ (resp. X-) denote the set of points y in DO 

which are connected by an arrow x+y (resp. y-x) in D. 

Let kD be the path category associated to the quiver D over the algebraically 
closed field k, Consider .1/ the ideal of kD generated by the mesh relations in D: 

where yLx is the path given by the arrow z-+x. 
Now consider the Riedtmann category of D: 

k(D) = kD/. 4. 

1.2 Definition. If D = (0, T) is a translation quiver, and .Y’ c DO, then we say that .Y’ 
is a section in D if and only if: 

(a) if XE .?, then TX@ ,I/: 
(b) if x4-y is an arrow in D with XE .Y’ then ye ,Y’ or rye ,v: 

The proof of the theorems in this paper will use induction on some partially 
ordered set of sections. 

Now fix r any quiver without oriented cycles and double arrows. We will be 
specially interested in the translation quiver U’ which was defined by Riedtmann 
(see [4]) in the following way: 

@r-)0 = r, x z 

and there is an arrow 

(x9 W( y,j) 

in U if and only if i = j and there is an arrow x+y in r, or j = i + 1 and there is an 
arrow Y-+X in r. The translation T of ZT and its inverse i are given by: 

T(.Y, i) = (x, i - 1) and T’(x, i) = (x, i + 1). 

We will study Mod k(D), the category of (contravariant additive) functors from 
the Riedtmann category k(D) to the category of abelian groups, for some translation 
qllivers B. Namely, we will be imerested in Zr and certains translation subquivers. 

lt is convenient to prove next proposition in the general case after this: 

1.3. emark (Riedtmann). Whenever we have a translation quiver D and a full 
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subquiver D’ of D, there is an induced structure of translation quiver in D’. 
Moreover, there is a natural way to identify the categories k(L)‘) and k(D)/& where I 
is the ideal of k(D) generated by the points of f which are not in D’. 

1.4. Proposition. Suppose D = (D, r) is a translation quiver. Whenever x E PO9 the 
folrowing sequence of functors is exact in Mod k(D): 

t-9 rx) - a u(-,&+rad(-,x)-O 
TEX- 

where rad( -, . 3) is the Jacobson radical of k(D), a is given by (( -, yrX, z))z E X- and B by 
N-9 YAr~x-* If xe PO, then Ip is an isomorphism. 

Proof. Assume XE PO. Clearly ./la = 0 by definition of .& and it is easy to see that #j 
is epimorphism. Now take o E U( y, ti) such that p(a) = 0. Then /3(a) E , /(( y, X) and 
so p(O) = Cj UjpyjVj for SOme Vj E (_Y, ryj), Uj E (Yj, X) and Yj E PO. 

(a) If Uj@rad(yj,~), then Yj=xand Uj=tjlxfor some tjEk. 
(b) if Uj E rad(yj, x), then tij =B(u~) for some U; E I_l(yj, zJ. 
Therefore, considering both cases, we may write: 

for some v E (y, 7x) and t E k. 

But (-, p,) =/?a and then, /Y(a) =##( C Ujpyjvj + atv), Since kD is free, we have 
0 = C Ujpy,vj + atv. Thus, modulo .h’, we have 0 = atv. 

The proof of the last statement is similar (case (a) can not occur). Cl 

2. (P)-Generating systems 

Observe that .‘/ := LOX {i} is a section in Zr for each ie Z. We will say that 
3 C (ZT)o is flat if XC 9; for some i and .f is connected in ZT. An arrow x +y in 
Zf is called flat if {x, y} is flat l 

Whenever .f c (ZQ, we will use the following notation: 

and 

o+(X) = u 7”(.YP, O-(Y)= u S”(S) 
nr0 nz0 

O(S) = O’(.FNO-(I-). 

2.1. Definition. A family U = { .FI, . . . , I &} of flat sets is called (P)-generating 
system if the following axioms are satisfied: 

(a) 0( 9;) n 0( -5) = 0 whenever i # j. 
(b) There are not flat arrows from O+( .Y;) to .I; if i+ jL 
(c) @no= u;= , a.m. 
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A quiver r has already been fixed, now we fix a (P)-generating system U in ZT 
and we denote -u’/ = U U. 

Define B. = O+( #)/ # and IT be the full translation subquiver of kT whose 
points are (~fq=(zr)o\Bo. 
Now consider la/r, the full translation subquiver of 2’r having as set of points 

(//T)0= (Z&\B, where 

We will study algebras of the form 

where .:i(K) denotes the additive category generated by k(U). 
First, we will prove the following results which are basic in the proof of next 

theorems. 
Let .i be the family of flat subsets .y- of Zr satisfying the following conditions: 
(a) There are .;i;, . . . . .;/r~ U such that ./=U:=, Fi.ji;: for some n+O. 
(b) .I- is maximal satisfying property (a). That is if .I-’ is any other flat subset 

satisfying (a) and .Jc . I-’ then . ye;= .J’. 

Observe that any -YE J’f is contained in some .j- E .? namely, XE Y; for some i and 
it is clear that the connected component of .‘+n -‘r containing x satisfies properties 
(a) and (b). 

If .& J> are subsets of @I-‘),,, we write .(;1 I .Y; if ?‘.I-, c .~i for some nz0. 

2.2. Lemma. ( i-n ( .W), 1, - 1 E .F) is Q family of sections in 71‘ which is partial/j 
ordered by I and covers LT. 

Proof. We claim that for any . I- E . i); I I- 13 ( 7/r)o is a section in I’K in order to see 
this, take J-E .i, then .~=u:_, ??I; for some (.& ,..., /,)cU. 

Assume we have an arrow x-+y in Jr with XE (1-i Then we have XE f”l. < for some 
i, and by definition of (P)-generating system we also have that Y E F’,+ for some 
n L 0 and some +S U. 
First case: A-, _v E . /, for some j. 

We have that /- = .I- U iti. +I J, is a flat set which clearly satisfies property (a). 
Therefore I’ = 7 because ./- is maximal. In particular, _VE .I; 
Second case: .Y E , i., and y E t iJ + I for some j. 

By definition of (P)-generating system, we must have rz >O. Hence rye Jr, and we 
have as before that 

/= = /- u i’” - y/;,c ,/, 

is a flat set satisfying (a). Then /- = I’- and T_VE 1: 0 

2.3. Lemma. ( I- n (K),, 1 .i E .F ) is a farniiy of sections in JT which is partially 
ordered by s and covers W. 
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Proof. Observe that whenever XE 431, then F+ Bi. It follows that whenever .Y’ is a 
section in X, then .Y’ n (if)0 is a section in C. Cl 

3. Mod -P in terms of Mod k(C) 

We will denote also by \9/ the full subcategory of k(W) whose objects are the 
points in & 

We have the very well known pair of adjoint functors 

H 

Mod +?C 
RCS 

Mod k(U) 

where Res is the restriction functor and H is its right adjoint given by 

for any NE Mod +Y and XE (#r),. Here we have ResHz id, since -fl is a full 
subcategory. 

We will prove that 

H Mod ~‘r’/- {M IMS H(N) for some NEMOCI #) 

is an equivalence of categories and we will give a more handy description of this 
category. 

Remark 1.3 gives a precise meaning to the following statements. 

3.1. Lemma. The following sequence of functors 

C-J&+ LL (-,X;)I,4(-,~x)IN40 
x, E .Y + 

is exact in Mod u whenever XE (W )o. 

Proof. First observe that rad(-, TX) 1 t, = (-, TX) 1 v because TX@ ‘//. 
Using the fact that Res is an exact functor and Proposition 1.4, it is enough to 

consider the case tx $ (/I-‘),. 
We will denote by (-, u)’ the projective corresponding to y in k(K). 
Since TXE Bt and x$13,, we have that (-, TX)’ I V = 0. We know from 1.4 that 

(-,x)’ I 2t + IL (--, xi)’ I ti -+rad(-, TX)’ I y +O 
s, E x + 

is an exact sequence. But, as before, 

0=(-,~x)‘l V=rad(-,~x)‘I ,+ 
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From 1.3, we know that there is a commutative square 

and we get the desired result. n 

3.2. Proposition. If M=H(N) for some NE Mod ‘(/ then for any XE (W)O the 
following sequence is exact: 

O+p+f(TX)-+ U_ M(Xi)4&f(X). 
.v, E .v + 

Proof. Applying the funeior (-, N) to the sequence appearing in last lemma, we 
obtain the exact sequence 

fi+((-* 7~) ] I’/, NJ+ n ((-3 Xi) ) 1’/, N)+((-, X) 1 r’/r N) 
\‘, E .\ + 

which is precisely the sequence we wanted. El 

We will denote by .#( I?) the full subcategory of Mod k(W) whose objects are the 
functors M such that for any XE (//I-‘),,, the sequence: 

is exact. 

0 -*M( t-r) + IL M(Xi) + M(X) 
#,E.\’ 

3.3. Lemma. If x E (//f ). and ME .#( ti ), there is a monomorphism 

Wc)‘,J 
M(x) ____I* U n_JW) \‘f I: 

rvhere each S,,, E ( y, A-) for 15 (Y c n,,. 

Proof. We have in (H3, a partial order induced by the relation x1 <x2 if there is an 
oriented path going from x1 to x2. -We will prove the lemma by induction on this 
partial order. 

If XE //, there is nothing to prove; this holds in particular for any x minimal. 
Suppose the lemma is proved for each .zc_u and assume x@ ,‘/. Let us prove the 

lemma for x. Since xe @, we have Z;YE (//r),. Then 

M(X)* II M(Xi) 
\!ET\’ 

is c: monomorphism because ME -ti( ti). For each arrow TX+X, in U’, we have 
another X,+X in //r and hence we may apply our hypothesis to each one of this x, 
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obtaining monomorphisms 

M(q)+ .LL n~M( y). 
.VE Y 

The composition 

is the morphism we were looking for. Cl 

3.4. Remarks. For any ME 9?(#) we have: 
(i) IfM/,=OthenM=O. 

(ii) If XE (jr)0 and 0# m E M(x), then there is some Q) E (y, x) with y E @ such 
that M(#)(m) #O. 

(iii) In particular, if (-, x) 1 ti - - 0 for some XE (I& then M(x) = 0. 

3.5. Proposition. If XE (W)O, then (-,x) E a(-#) if and oni’y if for any ZE (/I+)~ 
and 0 # CT E (z, x), there exists some @ E (y, z) with y E * and cqb # 0. 

Proof. If (-, x) E ;34(#), then by last remarks the other condition is satisfied. 
Now suppose this last condition and let us prove that (-, x) E a’( #). By the dual 

proposition of 1.4, we have an exact sequence of functors: 

(rz, -)+ LL (ti, -)+rad(z, -PO 
LIE:+ 

for any z E (//T)o. Then 

(iz, -)-+ LL (z;, -)-+(z, -9 
L,EZ’ 

is exact and in particular 

is exact. 

(rt, x)* UL (Zip X)+(2, X) 
t, E t 

+ 

Now we want to see that 

O- (a, x) -5 11 (Zi9X) 
z,EZ+ 

is exact. 
If 0 z CT E (~2, x), then we know that there is some @ E (y, TZ) with y E ti and cr@ # 0. 

Since ZE (//& we can assume that @ is some path and tl en it must factorize 
through some arrow zi* ’ fz. Knowing that cr@ #O, we h.lvc: (r,zj(a) = cxy #O. 
Hence the morphism 6, which is induced by the arrows Zi +?z in M’, is a mono- 
morphism. Cl 

3.6. Lemma. Ifx~ (//TJo, rad(-,x) iscontainedinsomei& d( /I/) and(--,x) 1 &O, 
then (-,x) E A(-ti). 
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Proof. For any ZE (//T)o such that t#x the following 

(2, X) = rad(z, s) - M(z) 

I 

5 ) 

1 

Y 

diagram is commutative: 

where y is the morphism given in 3.3, hence p is monomorphism too; and if z =x, we 
have that (-, . u) ] B #O. We can see that in both cases, the condition in the last pro- 
position is satisfied. q 

3.7. Proposition. (1) If M, kk .#( :‘/) are such that M 1 ti Al@ 1 J/ then MS@. 
(2) [f we have M&&f in 3( i’/) and @ 1 I’/ = I,U 1 fl, then @ = v. 

Iv 

Proof. In order to prove (l), we are going to construct an extension M * l@ of the 
given isomorphism M 1 liA li# jt(. This will be done by induction on the partial 
order of the family of sections which are covering //r (see 2.3). 

1 f .I is a minimal section, then ~1 c ir/ and &= &. is defined for any XE .‘I. 
Now assume we have defined 6; for any ZE ,‘I ‘, . $1 ’ section smaller than .*I, in such 

a way that each & is isomorphism and whenever we have an arrow &+z’ with 
:, z’ In sections smaller than . / then 

M(f) -- We) M(z) 

c0mn:utes 
We will define 4,. for any XE .+ in such a way that: 
(*) Whenever we have an arrow 2 --% .I- in //r the following square is commuta- 

t ive: 

and this will finish the proof. This will be done by induction on the partial order of 
f. 

We omit the construction when .I- is a minimal point of .I/. Assume we have 
defined & for any ZE .I with z<x and we have proved (*) for all z<x. We will 
construct 6,. 
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If XE @, define &= &. Let z 5~ be an arrow with ZE: 9’ and zcx or z in a 
section smaller than YI We know by Lemma 3.3 that there is a monomorphism 

Consider the diagram 

By the induction hypothesis, (b) is commutative and the exterior rectangle 
commutes because # is natural. Therefore, using that /I? is monomorphism, thf: 
square (a) turns out be commutative. 

Now consider the case XB +Y, then x= fz for some ZE (//T)O. Since A4, A&E %‘p( @), 
the sequences: 

and the corresponding one for M are exact. Here, each zi c TZ and z is in a section 
smaller than 9: Hence by the induction hypothesis, we have isomorphisms &,& 
such that the following diagram commutes; this implies the existence of &t: 

The commutativity of this diagram implies the statement (*). The proof (2) is 
similar, and we omit it. Cl 

3.8. Theorem. 

.#(#)={M~Modk(JT)IM~H(N)forsorneN~Mod ti}. 

Proof. First consider M= H(N), then by 3.2 ME .8( ti). r”low suppose ME .8( #) 
and take n= H(M I,). Then ME 9( #), but o// is a full subcategory of k(W) and 
then I@ 1 r’/ s M II. The result follows from last lemma. Cl 

3.9. Corollary. Mod L’// H __3 a(“//) is an equivalence of categories. ‘- 

Proof. Since Res Hz id, H is faithfull. By the last theorem H is dense, and, by 
3.7(2), H is full. Cl 
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3.10. Remark. The equivalence in last corollary restricts to an equivalence 
mod @&(%) where mod % and r( @) are the full subcategories of Mod @ and 
8(37/) respectively whose objects are functors in to the category of finite dimensional 
k-vector spaces. 

4. Almost split sequences in Mod @ 

In this section, we will restrict ourselves to the study of algebras A = A(T, U) 
satisfying the following condition: 

(*) (-, yi) \ ,#O for any arrow yr-+y in //r, whenever YE 4. 

This section will be devoted to the proof of the following result: 

4.1. Theorem. If (-,x) 1 t,#O, then: 

(A) (-9 x) E rW)= 
(“p) (-,--, , V/-+U.~,EX’ u1 I (-, xi) 1 y is minimal left almost split with each (-, xi) E IT(@). 
(C) If (-, x) [ ?I is not injectivej then 

~-+(--J) I P u. (7 Xi) I y +(--, TX? 1 ti -4 
x, E s + 

is an almost split sequence with each (-, xi) E r(#) and (-, TX) E r( ‘I/). 
(D) (-, x) ( I/ is injective if and only if (-, TX) ( r’/ = 0. 

This theorem enables us to give 2 good geometrical description of the preprojec- 
tive components of A. 

We will need some lemmas in the proof of the theorem, which will be done by 
induction on the partial order of the sections covering //r (see 2.3). 

4.2. Lemma. If (-, X)E r(U) and statements (B) and (C) hold for this x, then (D) 
also holds. 

Proof. If (- , x) / li is not injective, then by (C) we must have (-, TX) 1 I #O. 
Now assume (- ,x) 1 II is injective. By assumption, 

(-9X)/ti+ JJ. (-9Xi)IB 
\,E 8’ 

is minimal left almost split and, in particular, it is an epimorphism. From 3.1 we ge; 

(-rX)Ifl-+ L1 (-J,)(r-*(-,?X)I,+O 
\,E 8’ 

exact and therefore (-, TX) I r’/ = 0. 0 

.3. Lemma. Take (-,x) E r( ;‘/) and assume that for each arrow X+Xi in //r we 
huve (-, x,) E r( I//). Then if 

(-,x~/,+U(-_,xi)Iv/ 
\,E I 
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is minimal left almost split with IC x+, then I= x +. 

Proof. Assume x 
Y 
&XI 

hence 
‘xi is an arrow in H’, then (-, xi) E r(e). Take CT= (-, Y~,~~), 

al,:(-,X)Ir”(-r%~)IrD 

The map i : (-, x)*UxiEI (-, xi) is given by the matrix ((-, ySXi)) and we have 
i I e : (7 x) 1 ry +&, (7 xi) 1 p. Since i I -rk, is left almost split, a! I e can be factorized 
through i I *. Thus a I# = cr 0 i I * for some a. Now applying H and using 3.7(2), we 
get a! = H(CY I#) = H(a) 0 H(i I#) = H(a) 0 i. Moreover, 

H(O): U(-,Xi)*(-,~~) 
XiCl 

is induced by maps ~~i,~~ :x, -‘xi* Therefox 

YX,Xj= d D Xi. Xj O ax x 
X,E I 

1 I 

and this is impossible unless xi E I. 0 

4.4. Lemma. Suppose (-, x) E r(9) and 

O+(-,X)I#+ U (-,-Xi)(;U-+L+O 
X,EX+ 

i 

is an almost split sequence with each (i, Xi) E P( %). Then (-, TX) E r( $) and 

O+(-,Mi#-+ 1L (-9Xi)IfY+(-,~X)I&+O 
X,EX+ 

is an almost split sequence. 

Proof. From Lemma 3.1 we get 

o-(-,x)Irv- IL (-9Xi)l *-L-O 

h+----+ .LI. (--,%)I ti- (-341 u---+O 
x,ex+ 

In particular, ixE (/& Then using 1.4 and the fact that H is left exact we get the 
existence of a monomorphism 6 in the following commutative diagram with exact 
rows: 

O-(-,x)- LL (-J;)- H(L) 

(-,a--+ C- 3 Xi) - rad(-,ix) -0 
s, E .k + 

Hence, from Lemma 3.6, (-, ix) E r(-&). Cl 
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Proof of 4.1. In order to prove our theorem, it will be enough to prove the 
following: 

Assume that whenever Y” is a section smaller than .‘+ the theorem holds for any 
point in Y“. Then the theorem is true for all the points of the section .K 

We can observe that if .Y’ is minimal, the hypothesis hold for 9: 
Step I: (A) holds for any point in 9 n 9/. Suppose x is minimal in Y f’7 
rad( -, x) zU,.~.~ (-9 ti) and using the (*)-condition, we get (-, q) 1 

arrow Zi -+x in M’. Since x is minimal in Y f7 r’/, each Zi $ i’/ f7 .r: 
If zi E ,I/; then TZ is in a section smaller than .Y and by hypothesis (-, tzi 

injective and (-, ti) E r( 9/). If zi $ ,Y‘ then, again by hypothesis, 
(-, zi) E r( 2’/). The result follows from 3.6. 

Now assuming that (A) holds for any ZE .Y n r’/ such that t<x for some 
SE .‘I n #, we should prove (A) for this x. The proof is similar to the above 
Step II: (A) is true for all objects in Y. Take any XE ,t, we can assum 
Therefore TXE //r’ and TX is in a section .‘I ’ smaller than .I. It is easy to see that (C) IS 
true for rx and therefore (-,x) E r( ti). 
Step III: The theorem is true for any x minimal in .K 

Consider the minimal left almost split map for (-* s) 1 p : (-, x) 1 -=+UB, with Bl 
indecomposables. 

If Bi is not projective, then there is an irreducible map Dtr B, -+(-,x) 
then TX E (flT)o and applying (C) to this t... we have Dtr B, s (-, z) 1 9 for 
--+x in K lf SE I’/, then as we had in step I, rad(-,s)z&, (-,z) and hence G 
Dtr Bi s (-, z) 1 ,, for some arrow z-+x. Therefore, in both eases, z E u 8 ’ Q section 
smaller than J/, since x is minimal in .I/, and the result holds for t. Consequently, 
B,ztrD(-,z)l+(-, rz) ] li with (-, ~Z)E r( ti). 

1 f B, is projective, B, s (-, _ v) ) ,, for some y E ti and there is an arrow s-*J*. We 
h;aGe _VE J by 2.1(b). Then by step I, (-, u)tz r( P?). Now step III follows from 
Lemmas 4.2, 4.3 and 4.4. 
Step IV: Assume the theorem holds for any z E .‘f such that 2 <s far some x in 8. 
Then the result also holds for this x. 

As before, we consider the minimal left almost split map for (-,.Y) 
.Ll B, with B, indecomposables. And again, if B, is not projective, we 
( -, 5) 1 I, for some arrow 2 -+s. Then either I E ) / ’ a section smaller 
hot h cases, the theorem holds for 2. Thus B, s t tD(--, z) 

(7 C)E r( 4). 

It‘ B, is projective, as before B, st (- , ,v) I If for some YE PP and some attow x--+_P in 
I. Hence by step 1, (- , ~9 E r( t?). Finally, step 1V follows, ds before, from 4.2, 4.3 

;\r\d 4.4. I .j 
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Fig. 2a. 

Auslandcr-Reiten quiver of n 

Fig. 2c. 

In Figs. la, 21, the sets ot’ points enclosed in dash 

the (P)-generating system; in Figs. lb, 2b, they CO 

constructed in Section 2, Finally, in Figs. lc,2c, t 

(P)-cover in the sense of [LX]. 
We make the convention that all arrows arc directd tiom left to ri 

omit the orientation. 
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